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ABSTRACT

Ruan, Keyu M.S.E.C.E, Purdue University, August 2015. Identification of Unknown
Petri net Structures from Growing Observation Sequences. Major Professor: Lingxi
Li.

This thesis proposed an algorithm that can find optimized Petri nets from given

observation sequences according to some rules of optimization. The basic idea of this

algorithm is that although the length of the observation sequences can keep growing,

we can think of the growing as periodic and algorithm deals with fixed obsevations

at different time. And the algorithm developed has polynomial complexity. An

segment of example code programed according to this algorithm has also been shown.

Furthermore, we modify this algorithm and it can check whether a Petri net could fit

the observation sequences after several steps. The modified algorithm could work in

constant time. These algorithms could be used in optimization of the control systems

and communication networks to simplify their structures.
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1. INTRODUCTION

1.1 Background and Motivation

Discrete event dynamic systems(DEDSs) are a class of dynamic systems which are

asynchronous, with event-driven state evolution. DEDSs has been developing rapidly

since 1980s. A variety of theoretical models and analysis techniques from different

angles have been put forward. Usually only a finite number of discrete values are taken

as the state of these systems which are corresponding to possible physical conditions

such as the quality of the system components and the number of other parts waiting

to be delt with, or the status of other macro-management like plan making and

job scheduling. The changes of these states are due to the occurrence of various

events, e.g., the appearance and disappearance of certain environmental conditions

and the initialization or complete of the system operations. DEDSs have been widely

applied in modern world and have been increasingly important in technology areas

like automatic control systems, communication networks, and transportation systems,

which makes it considered as an important theoretical basis of analysis and design

for large and complex information processing and control systems. How to integrate

the various models and theoretical methods and form multi-level, multi-model theory

system in order to fully reflect the complexity of the DEDSs and give the effective

solutions to the practical problems have become the target of current study.

In this thesis, we will focus on one of the DEDSs model, Petri nets. A Petri net

is one of several mathematical modeling languages for the description of distributed

systems. It is a powerful method for describing dynamic systems and is especially

suitable for simulating the dynamic feature of the asynchronous concurrent systems.

Petri net has also been successfully used to analyze the performance of the fault

tolerance of operation systems and computer system architecture.
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In this thesis, we will study how to find the optimized Petri nets from given

observed conditions. After introducing some notations and presenting the standard

concept of Petri nets, in Chapter 3 we will first talk about the problem of finding

possible markings from given observation sequences. Because it has already been

shown that, if the length of the sequences is infinite, it is impossible to scan all

marking in the reachability tree in polynomial time, so we need to add some limiting

conditions to these sequences or the Petri net itself to make it possible to deal with this

problem in polynomial time. In this thesis, we have added limits to the observation

sequences. In the next part of Chapter 3 is to find V vectors which are keys to this

problem. Before doing that, we need to figure out how many times the transitions

in the desired Petri net have fired and the range of number of transitions to simplify

this problem. The given observation sequences lead to a lot of information. Once we

know the number of firing actions and transitions, we can use mathematical methods

to calculate exactly how many V vectors we have. After that, we have all conditions

for solving equations, and we could get the structures of Petri nets we need.

Chapter 4 will give the complete algorithm for solving this problem and practical

Matlab code. We will also analyze the time complexity of this algorithm to see

whether it could work as predicted in polynomial time.

In Chapter 5, we will talk about how to use the method in another way that

aims at checking whether a Petri net could generate certain observation sequences.

This is useful in optimizing the system describing by this Petri net in order to fit the

requirement of the given conditions. A modified version of the algorithm to achieve

this goal will also be proposed.

We will talk about the practical use of this algorithm in Chapter 6. As mentioned

above, Petri nets have been widely used in automatic control systems and communi-

cation networks, we also could apply this algorithm in these fields. Optimized Petri

nets will have the minimum number transitions and arcs, which can imply minimum

number of devices and materials in practical use. This will have significant impact

on time and money saving.
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Before further study of optimization of structure of Petri nets, we will talk about

some related studies with our subject and point out the similarity and differences

between our work and theirs.

1.2 Related Work

1.2.1 Identification of unkown Petri net structures

The main purpose of this thesis is to find the unknown structure of Petri net from

given observation sequences. This is actually the extension of the problem of identifi-

cation of unknown Petri net structures. We could find many similar studies by other

researchers. Authors in [1] have introduced a problem of identifying unobservable

transitions from given system events. Besides observable system events, the given

conditions also include the observable part of the Petri net. With these conditions,

after running certain algorithm, the unobservable structure of the system could be

generated in fast speed.

Authors in [2] have introduced a algorithm to determine whether to delete fault

transitions from current existing Petri net or not. The method of doing this is to

separate unobservable places and fault transitions from the regular ones. After a flow

of operations, we can make conclusions from the result firing vector. Although the

algorithm needs us to know the structure of the Petri net, it still could give us some

ideas about checking whether a transition is valid or not to be added into the Petri

net system.

Similar with the problem above, in this thesis, we also use given system events

(observation sequences) to identify unknown Petri net structures. The difference is

that, other than except the number of places, we don’t know anything about the

structure of Petri net. This is actually a challenging mission to solve this problem in

polynomial time. Hense, we proposed some ideas to add limits to the given system

events to simplify the problem. The advantage of identifying the whole structure is

the scope of application of this method will be much larger. According to the given
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conditions, what we could find is an estimation of the real Petri net. Although there

could be errors between the result of our outcomes and the real structure, the method

introduced in this thesis is a good try of expanding the ideas in [5]. As the method

in this thesis becomes more mature, it will also be a quite useful tool in unknown

system identification.

1.2.2 Marking scanning and firing sequences formation

Marking scanning looks like a simple problem and has been studied by quite a

lot of researchers. Actually, it is challenging to be done in polynomial time. Authors

in [3] have presented a method to scan possible markings that can fit both the given

observation sequences and the structure of the given Petri net. In this paper, the

length of the observation sequences is variable. The authors have shown in this case

the time complexity of this algorithm will be exponential. This means if we want to

lower its complexity, some limitation must be added. Authors in [4] have lowered the

complexity for a little by using some observation places but the complexity is still

exponential. Authors in [4] provide us a good thought of how to reduce complexity.

In this thesis, we also need to do marking scanning. But here, we don’t know the

structure of the Petri net which will definitely make the number of markings to be

scanned very large. However, this won’t be a big problem the largest possible number

of markings is proportional to the longest length of observation sequences-th power of

the number of the transitions [3] . In order to reduce the complexity, we need to make

the length of sequences be constant or using some methods to pick constant number

of transitions that could be fired in every loop. The latter one needs us to come up

with a way to make sure there are only a constant number of transitions are legally

fired, which is quite tough work. In this thesis, we use the former method. After the

length of sequences be limited, this problem becomes much simpler. The reason we

can limit length of observation sequences is also reasonable, which will be introduced

in later chapters. Authors in [5] proposed a problem of marking estimation with
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unknown initial marking and introduced a useful tool (observer coverability graph)

to help doing that. This tool could keep track of the estimation error on each place

of the net. Problems that has been dealt with in this paper are different from ours.

But we also deal with some structure estimation problems in later chapters and this

observer coverability graph could be another solution for those problems.

The step after marking scanning will be firing sequences formation. This is also a

problem has been studied by many researchers. Authors in [6] proposed an approach

to estimate the firing sequences with the least cost, where each transition is associated

with a nonnegative cost. In that case, finding a sequence with the least cost becomes

really important and challenging. Authors in [7] have also mentioned similar problem.

But here, the Petri net is associated with time delay. The author managed to come

up with some methods to solve the sequence estimation problem. In this thesis, we

also need firing sequences for the solving of state equations. However the formation

of firing sequences won’t be associated with any extra parameters. They will come

from all the markings we scanned. The way to find certain ones from a whole set of

markings to form a functional firing sequences is also challenging. All these will be

introduced in later chapters.

1.2.3 Practical use

The problem of the practical use of Petri nets is also a topic that has been studied

by many people for many years. Petri nets is a quite useful and convenient tool to

simulate actual system from both structure and working state aspects. Authors in [8]

have proposed the use of a device called middleware in sensor networks. Though

the concept of Petri net has not been mentioned in this article, the structure of the

system could be represented by Petri net. Different devices in this system could

be represented by places and transitions in Petri net and the connections could be

represented by arcs. Authors in [9] have talked about the practical use of Petri nets

from another aspect, process flow. In this article, Petri net has been used to represent
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the flow of the system. Places represent the states of the system, transitions represent

the actions leading the system from state to state and arcs represent the connections

between states and actions. The Petri will start at a place called ”Ready” with one

token in it. When the system works, the token will be moved from state to state

and finally reach the final place called ”End session” which marks the end of the

process flow. Authors in [10] used Petri net to model the approach they proposed to

detect the failure components in the system. They used places to represent failure

modes and transitions to represent the conditions that lead the system to failure

modes. Because the failure modes and conditions lead to failure modes are definitely

unobservable, the authors also need to do structure identifications in their work that

is also related to the problem in this thesis.

Those examples of practical use of Petri net has very high reference value. But we

could also use our idea to help improve them. In this thesis, we will talk about the

idea of using the algorithm which will be introduced in later chapters to optimize the

structure of sensor networks proposed in [8] and the flow of system process mentioned

in [9]. After that, we will also discuss the advantages of the optimization and the

reason we need to do that.

1.3 Major contributions

The study of Petri net has significant effects on giving us deeper understanding

of complex dynamical systems. Meanwhile learning its properties can give us more

inspiration in solving practical problems. In this thesis, we mainly deal with two prob-

lems, that are scanning markings in polynomial time and finding optimized structure

of Petri net. Our goal of is to find a method to generate a optimized Petri net in

polynomial time with given observation sequences with variable length. We develop

several methods to achieve that goal:(1) Adding limits to the observation sequences

to make the process of marking scanning simpler. (2) Developing algorithms to scan

all possible markings which could fit the given observation sequences. (3) Developing
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algorithms to enumerate all V vectors that may appear for each possible number of

firing actions and each number of transitions. Combining these conditions and find-

ing the last result with minimum number of transitions and arcs. (4) Some practical

use as well as the method to test whether the existed Petri net could fit the observa-

tion sequence have also been introduced to make the ideas in this thesis have more

practical meanings.

1.3.1 Limits to the observation sequences

The idea of limiting the length aims at reducing the complexity of the process of

the most important part, marking scanning. We assume the length of the sequences

keeps growing. When we actually want to use it as input of an algorithm, we use

just the existing observations when we load the sequences. At that time, the length

actually is a constant no matter what will be generated later. This fact can reduce

the complexity of the algorithm.

1.3.2 Marking scanning, V vectors and equation system solving

With the idea of constant length of observation sequences, the work in this part

becomes simpler. The first problem has been solved is making sure the number of

firing actions and the number of transitions are finite. It is impossible to try all

number from one to infinite. But actually we could get finite possible markings from

the given observation sequences. With the idea of fixed given sequences, we could get

the range of the number of firing actions and the number of transitions with upper

and lower bounds. The next problem is the maximum number of markings and V

vectors. We need the upper bounds of them to stop the searching. Both of them

could be found with some mathematical methods.



8

1.3.3 Existed Petri net Optimizing

As mentioned above, the limit of the observation sequences would cause errors in

our estimation, which means the structure of Petri net would not be exactly the same

with the real one. With the sequences grow, we may get more Petri nets with different

structures but still maybe none of them would be the real one. In that case, instead

of trying to find the exact real structure, we test the structure we have already found

to check if it still could fit the current observation sequences and decide whether we

need a new one that could make the Petri net work in good conditions as required.

As the sequences grow, this action could be repeated as many times as we want to

let the structure as accurate as it could be. This algorithm ensured the feasibility of

using the idea in this thesis in practical problems.

1.4 Organization

This thesis is organized as follows. The next chapter, Chapter 2 will provide some

basic concepts and mathematical background of Petri net models. Chapter 3 will

give the method of scanning all possible markings which could be generated from

the given observation sequences in polynomial time. The next part of Chapter 3 will

show the work of finding all possible V vectors for equation system solving. Chapter

4 will provide the complete algorithm and practical code. Time complexity will also

be analyzed. Chapter 5 will talk about some extention of this algorithm which could

be used in optimizing existing Petri net from given observation conditions. Chapter 6

will study some practical uses of our algorithm. We conclude this thesis in Chapter 7

to make a summary of the idea and algorithm and discuss some future work directions

that can be extended from this work.
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2. BRIEF INTRODUCTION OF PETRI NET

2.1 Introduction

Petri net was first been proposed by Carl Adam Petri in 1960s. It is a mathe-

matical modeling language for description of distributed systems. Petri net has both

intuitive graphical expression and rigorous mathematical formulation. Both of the

graphical expression and mathematical formulation of Petri net are excellent tools

for practical problems solving. Graphical expression could us intuitive expressions to

the target systems and mathematical formulation would make it more convenient to

dealing with problems.

2.2 Basic concept of Petri net

2.2.1 Structure

Petri net N=(P,T,A,W) is a set consisted with places, tokens, transitions and

weighted arcs. Here P={p1, p2, ...pn} is a finite set of places. T={t1, t2, ...tn} is a

finite set of transitions. A ⊂ (P×T)∪(T×P) is a set of arcs including both from

transitions to places and places to transitions. W:A → {1, 2, 3, ...} is the weight

function on the arcs. A simple example of Petri net is shown in Figure 2.1.

Places in Petri nets are marked as hollow circles. Places could not be connected

with arcs to each other directly. There must be one or more transitions between every

two places. The most important function of places are storing tokens which are those

black dots. Those tokens would be transited from place to place through transitions.

Transitions are usually marked as short black bars. Similar with places, transitions

could be connected with arcs with each other directly. There must be one or more
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Fig. 2.1. Simple Petri net.

places between every two transitions. Different from places, tokens could not be

stored in transitions. They are only tokens’ hubs during transiting.

The relationship between places and transitions could also be represented by nota-

tions. We could let •pi (•ti) (pi ∈ P and ti ∈ T) represent the set of input transitions

(places) for pi (ti) and let p•i (t•i ) represent the set of output transitions (places) for pi

(ti). Also, •p•i =
•pi∪p•i (•t•i =

•ti∪t•i ) could represent both input and output transitions

(places) for pi (ti).[3]

Arcs are the directed arrows connecting places and transitions. The directions

of the arcs will decide whether the arcs are input ones or output ones. Here, the

concept of input and output are just for corresponding transitions. The important

part of arcs is the numbers next to them which is called their weights. Those number

would decide whether those tokens could successfully be transited.

Example 1 See the Petri net in Figure 1.[3]

In the Petri net in Figure 1, places are P={p1, p2, p3}, transitions T={t1}, arcs

A={(p1×t1),(p2×t1),(t1×p3)} and weights W(p1, t1)=2, W(p2, t1)=1 and W(t1, p3)=1.

And the relationship between places and transitions are represeted by p•1 = {t1}, p•2
= {t1} ,•p3 = {t1}, •t1 = {p1, p2}, t•1 = {p3}.
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2.2.2 Marking

Marking is a column vector with elements number same as the number of places

in the Petri net which is a important property of Petri net which could provide the

state of Petri net at a time.. We use Mi=[a1, a2, ...an] to represents markings. The

integer elements in Mi corresponds to each places {p1, p2, ...pn} and represents the

numbers of tokens in each places in a certain time. If there is any change happen

in the net, we also could easily get to know through markings. We also use M(p)

to represents marking of place p which is the number of tokens in place p. Petri net

system could be denoted by < N,M0 >. Here M0 is the initial marking of the Petri

net.

Example 2 In the Petri net in Figure 1 in current time, there are two tokens in p1,

two tokens in p2 and no token in p3. Then the marking for this Petri net now will be

M0 = [2, 2, 0]T

2.2.3 Incident matrices

For the mathematical formulation of Petri net, several kinds of matrices need to be

introduced: output incident matrix B+, input incident matrix B− and their difference,

incident matrix B = (B+) − (B−). The concepts of input and output are just for

places. Incident matrix could give us a lot of information about the corresponding

Petri net such as the number of places which is the number of rows, the number

of transitions which the number of columns, the weight of every arc which is each

element in the matrix (zero represents no connection, signs represent directions). We

can see incident matrix could give us every condition we need to build a complete

Petri net which means if we know the corresponding incident matrix, we could get

one and only one solution of the structure of Petri net.

Example 3 The following matrices are corresponding with the Petri net in Figure

2.1.
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
2

1

0




0

0

2




2

1

−2


From up to bottom, the three matrices are input incident matrix B−, output

incident matrix B+ and incident matrix B.

2.2.4 Enabling and firing transitions

We call the one transition tj is enabled if the weight W of each input arc is smaller

than the number of tokens in corresponding place pi ∈ P , or in another way, M(pi)

need to be no smaller than B−(pi, tj) for all i ∈ {1, 2, 3, ...n}. This could also been

written as M ≥ B−(:, tj). Here B−(:, tj) is the column vector in B− corresponding

to transition tj. M [tj > is used to denote tj is enable under marking M.

When a transition is enabled, it could be fired. After it is fired, same number with

the weight of the corresponding arc of tokens will be removed from all input places

connected to this transition. And same number with the weight of the corresponding

arc of tokens will be added to all output places connected to this transition. Or in

another way, B−(:, tj) will be removed from previous marking M and then B+(:, tj)

will be added to it. So current marking will be: M ′ = M − B−(:, tj) + B+(:, tj). We

denote this firing action as M[tj >M’.
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Example 4 Consider the Petri net in Figure 1. The initial marking for that Petri

net is M0 = [220]T . The input incident matrix B− = [2, 1, 0]T . So in this condition,

M0 ≥ B−(:, t1), transition t1 could be enabled.

Example 5 In Petri net in Figure 1, t1 is enabled under [2, 2, 0]T so we could fire it.

During the firing, B−(:, tj) = [2, 1, 0]T is taken away from M0, and B+(:, tj) = [0, 0, 2]T

will be added to M0. So after t1 fired, M1 = [0, 1, 2]T which is shown in Figure 2.

This process is denoted by M0[t1 > M1.

2.2.5 State equation

The state euqation of a Petri net is the equation shown below:

B ∗ V = Mi −Mj

Here B represents the incident matrix of the Petri net, Mi is the state at time step

i, Mj is the state at time step j and V represents the firing vectors of the Petri net.

The firing vector V here is with dimension m × 1 (m is the number of transitions)

and with nonzero entries indicating the transition firings.

Example 6 Consider the Petri net in Figure 2.2.

Fig. 2.2. Petri Net 2

The incident matrix is:


−1 0

1 −1

0 1


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At the time t=0, M0 = [1 1 1]T . Transitions could be fired are t1 and t2. Let

M1 = [0 0 3]T at time t=1 which means t1 has been fired once and t2 has been fired

twice. The corresponding firing vector V = [1 2]T . Then the state equation for this

condition will be:


−1 0

1 −1

0 1

 ∗
 1

2

 =


1

1

1

−


0

0

3


Here we could see that the entries in firing vector V are actually the number of

total times every transition been fired which means the V vector could also be written

as the sum of all vis (i=1,2,....) where vi is firing vector for single firing action with

only one nonzero entry. In example 6, V = v1 + v2 + v2 = [1 0]T + [0 1]T + [0 1]T

where v1 represents t1 be fired once and v2 represents t2 be fired once.

2.2.6 Reachability Graph

The structure of a Petri net could be more complex which would make several

different transitions could be fired at the same time if we put enough tokens in places.

We use a method called reachability graph to represent all the possible firing actions.

This reachability graph gives us all the possible markings we can get from a Petri

net. In other word, if we want to study a finite Petri net, we don’t need to know

what exactly it looks like. We could just learn its reachability tree instead and then

do the other work use mathematical method like state equations.

Example 7 Consider the Petri net in Figure 2.3. We could draw its corresponding

reachability graph or reachability tree.

The graph in figure 3 is consisted with several markings and directed arcs weighted

with the names of transitions. In this tree each arc shows a firing action and the

weighted name is corresponded the fired transition. For instance, from initial marking

M0 = [1 1 1]T to marking M1 = [0 2 1]T , transition t1 has been fired. And from initial
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Fig. 2.3. Reachability Tree to PN2

marking M0 = [1 1 1]T to final marking MK = [0 0 3]T , all fired transitions could

form a sequence call firing sequence.

Definition 1 Let se = tj1tj2....tjn, n = 1, 2, ...., this sequence of transitions is called

a firing sequence between two markings Mi1 and Mi2 if we can start from Mi1 and

end at Mi2 with all and only these transitions from tj1 to tjn be fired in order.

In a reachability graph corresponding to a Petri net, sometimes we could get

more than one firing sequence from initial marking M0 to end marking Mk. In the

reachability graph in Figure 3, we could get two firing sequences, se1 = t1t2t2 and

se2 = t2t1t2. Though we have multiple firing sequences, the firing vector V is the same

because incident matrix B and the difference of Mk and M0 of the state equation keeps

the same. This property is very important in solving problems in this thesis.
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2.2.7 Sink and Source transitions

Two other concepts need to be mentioned are sink and source transitions.

Example 6 Consider the Petri net in Figure 2.4.

Fig. 2.4. Sink and Source transitions

In this Petri net, transition t1 is called source transition which has no input place

which means it could produce infinite tokens to its output places (here only P1).

Transition t2 is called sink transition which has no output place which makes it could

absorb infinite tokens from the input places and output nothing. Those transitions

are both important to the Petri net study and its practical use. But in this paper,

we need to get rid of them in order to simplify the problem.

2.3 Observation sequences

Observation sequences Os are special property used in this thesis which are im-

portant conditions for solving the problem. They could give the sequences of all token

changing in all places in the Petri net.

Example 7 Consider the Petri net in figure 2 and its corresponding reachability

graph. If we follow the firing sequences in the left side of the reachability graph

which will be [1 1 1]T → [0 2 1]T → [0 1 2]T → [0 0 3]T , the corresponding observation

sequences would be like following:

S1 : 1 → 0

S2 : 1 → 2 → 1 → 0

S3 : 1 → 2 → 3
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Because the sequences are called observation sequences, they will grow only when

there are token changing and if we don’t knwo the exact number of places, we could

only give the sequences corresponding to the places that are able be observed.

If there doesn’t exist place we cannot observe, the observation sequences could

actually provide more conditions besides changing of the token numbers. The most

direct condition it could provide is the number of places. More details of this will be

introduced in later chapters.

2.4 Summary

This chapter gives a brief introducing of the basic concepts of Petri net and Petri

net language. We have talked about the structure of Petri net in graphical expression,

markings, incident matrix, the concept of enabling and firing transitions, state equa-

tion, reachablity graph, sink transitions, source transitions and observation sequences.

These concepts will all be used in the later chapters.
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3. MARKING SCANNING AND FIRING VECTORS

SEARCHING

3.1 Introduction

The problem we deal with in this paper is following. We are given a observation

sequence Os of the number of tokens in each place which means we know all the

changes of tokens in this Petri net. In this case, it is possible to find out what Petri

net could generate this observation sequence. Our work is to creat a algorithm to

achieve this goal.

To find the structure of a Petri net, we need to find the corresponding incident

martix B from the state equation B ∗ V = Mi −Mj. The first chanllenge is how to

find the markings Mi and Mj. Doctor Lingxi Li from University of Illinois Urbana-

Champaign proposed a way to find all possible firing sequences.[1] But He has also

proved that it is impossible to find all sequences in polynomial time if we don’t know

the length of the observation sequences. So in this case, the first task of our work is

to deal with the length of the observation sequences.

In order to create a algorithm for the target problem in polynomial time, our idea

is to make the length of the observation sequences finite. The main idea of this is

that though the length of the sequences keeps growing, it will always be a constant

when we use it as input parameters in any problems. When we get to know that, we

can easily solve this problem.

After finding all markings, we have half of the conditions to solve the state equa-

tion. The next step is to find all possible firing vectors V . We don’t need observation

sequences in this part which the method of V vector searching is a little different from

marking scanning part.
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Because we don’t know the exact number of transitions, we also don’t know the

exact dimension of the V vectors. We could not create a algorithm working in poly-

nomial time if we don’t know how many targets we have. Similar with the part of

marking scanning, we will introduce the method to make sure the range of number

of firing vectors V . This is also the main problem we need to solve in this chapter.

Besides that, this chapter will give the method of finding firing vector V and also

the algorithm of state equation solving. At last, we could get the optimized incident

matrix B and the structure of Petri net we want with all the conditions we have.

3.2 Number of Markings

Because we want to find a Petri net with optimized structure from the given

observation sequences, we need to find all possible markings. So we need to know

how many markings we need to deal with in the worst case. Author in [11] gave a

upper bound of number of consistant markings get from label observation sequences

with unknown transitions. The upper bound given in that paper is polynomial in

the length of the observation sequence. But different from that, our observation

sequences is orgnized by number of tokens in different places. And in this thesis, the

upper bound of the number of markings generated from the observation sequences is

constant. The method we use to find the possible markings is similar with [12] with

is proposed by the same author in [11] which is the method of enumerating, scanning

all possible markings could generated from the given observation sequences.

The information we can get from the first glance of the observation sequences are

the longest length of the sequences and the number of increasing arcs and decreasing

arcs.

Example 8 Consider the observation sequences below.

S1 : 2 → 1 → 2 → 3 → 2 → 3

S2 : 1 → 2 → 1

S3 : 1 → 2 → 0 → 1
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S4 : 1 → 2 → 1 → 0

In this example, the longest length is the length of sequence S1 which is five.

There are seven increasing arcs: S1: 1 → 2, 2 → 3, 2 → 3; S2: 1 → 2; S3: 1 → 2, 0

→ 1; S4: 1 → 2. And there are six decreasing arcs: S1: 2 → 1, 3 → 2; S2: 2 → 1;

S3: 2 → 0; S4: 2 → 1, 1 → 0.

Proposition 1 The number of firing actions (name it Fa) should be a number

between the longest length (name it L) of the observation sequences and the smaller

one between the number of increasing arcs (name it Li) and number of decreasing

arcs (name it Ld).

Proof: The number of firing actions Fa should be at least equals the longest length

of the observation sequences to make it possible for the observation sequences to

make sense. So the lower bound of Fa should be L. Because the increasing arcs

in the sequences represent tokens have been transmitted into corresponding places

and decreasing arcs in the sequences represent tokens have been transmitted out of

corresponding places, considering there could be multiple transitions connected to the

same place, the smaller one of Li and Ld would be more closer to the actual number

of firing actions Fa. What has been proved after many practical tests is min(Li, Ld)

will always be larger than L. So min(Li, Ld) should be the upper bound of Fa.

Remark 1 In this paper, we ignore the transitions have not been fired and the Petri

net with self loop. In that case, the number of transitions (name it m) should be no

larger than the number of firing actions Fa and should be larger than one.

The range of number of transitions m is ensured by Remark 1. The lower bound

is one because we need at least at least one transition in Petri net. The upper bound

is Fa because we need to make sure each transition could be fired at least once. In

that case, if m > Fa, there will always be transition(s) would not be fired. Thus,

1 ≤ m ≤ Fa.
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With Proposition 1 and Remark 1, we could analyse the structure of corresponding

Petri net in different conditions. For every possible Fa − m pair, we could find all

markings from the observation sequences. The total number of all possible markings

for a fixed Fa−m pair could be calculated.

Proposition 2 Mark the number of increasing arcs during one firing action as nin.

And also mark the number of decreasing arcs during one firing action as nde. In the

worst case, the number of markings during one firing action should equal to

(nin + nin(nin−1)
2!

+ ... + nin!
nin!

) ∗ (nde + nde(nde−1)
2!

+ ... + nde!
nde!

)

The process to get the result in Proposition 2 is actually a process of mathematical

calculation. Now we try to prove it.

Proof: Assume we are given observation sequences with n places. The largest length

of the sequences is L. Then we assume during every firing action there are nin

increasing arcs and nde decreasing arcs. Note that nin + nde = n because the sum of

all increasings and decreasings should equal to the number of places. And because of

this equation nin + nde = n, we can know the range of both nin and nde are [1 n− 1]

because we could not fire transitions if during one firing action we have only increasing

or decreasing arcs.

Then, we can use the method of permutations and combinations to find all possible

combinations of the increasing and decreasing arcs. In the worst case, any combina-

tions of increasing and decreasing arcs could be possible. In that case, there are nin

kinds ways to pick one increasing arc from all possibilities, nin(nin−1)
2!

ways to pick two

increasing arcs from all possibilities,....only one way to pick all increasing arcs. Sum

up all the possible ways, for increasing arcs, there are (nin+ nin(nin−1)
2!

+ ...+ nin!
nin!

) ways

for selection in total. For decreasing arcs, it’s the same idea. So at last the number

of possible combinations of increasing arc and decreasing arc will be the product,

(nin + nin(nin−1)
2!

+ ... + nin!
nin!

) ∗ (nde + nde(nde−1)
2!

+ ... + nde!
nde!

). Prove done.
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Proposition 2 could give us the range of marking number during one firing action.

And for the whole process, in the worst case, we could have the same number of

possible markings. So we can get the total number of markings by multiply the

largest length L with the the number of markings during one firing action. As long as

we get the total number of markings, we know the range of how many loops we need

to do for the traversing of all markings which make it possible to find all possible

markings.

3.3 Markings and firing sequences

From the last section, we have already had enough information in finding all the

possible markings. The part of finding is actually really simple which is just visit each

marking once and store it. For some details, during every loop, we need to scan all

the markings in the order of possible combinations of increasing and decreasing arcs

from 1− 1 pair to nin−nde pair which are 1− 1, 1− 2, .... 1−nde, 2− 1, 2− 2, ... 2−

nde, ... nin − 1, nin − 2, ... nin − nde. During this work, we would have duplication.

Ignore those duplicated ones and start the next loop.

After we done this work for the total number of loops’ times, stop and store the

markings we get for later use. After that, we are ready to form firing sequences. We

need to know a whole sequence to solve a state equation system. The method to get

firing sequences are also simple. Find all the final markings in the markings we found,

and then keep looking for the previous marking of the current one until we meet the

initial markings. All the markings we have visited during that process consist one

possible firing sequecne.

3.4 Range of number of firing actions and transitions

Similar with marking scanning, we also need to find the range of number of how

many V vectors we have in order to make a algorithm working in polynomial time.

To get to know that, we need to figure out two things, the dimension of firing vector
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V which is also the number of transitions and the number of how many times the

transitions have been fired which is also the number of firing actions. The number of

firing actions Fa has already been given in last chapter of marking scanning which

should be a number between the longest length L of the observation sequences and

the smaller one between the number of increasing arcs Li and number of decreasing

arcs Ld. Let Falower = min(min(Li, Ld), L) and Faupper = max(min(Li, Ld), L), then

Falower ≤ Fa ≤ Faupper.

And about the number of transitions, we could also know its range from the

number of firing action Fa.

Proposition 3 The number of transitions m should be a number between one and

the number of firing actions or,

1 ≤ m ≤ Fa

. This definition could only work in the conditions where all transitions have been

fired at least once. In other word, we ignore all the unobservable transitions.

Proof: The lower bound equals one is obvious. We will always need at least one

transition in a Petri net. About the upper bound, because in our hypothesis every

transition in this Petri net have been fired at least once, So in order to achieve that,

we could not get transitions more than the number of firing actions Fa. Else we

would always have at least one transition has not been fired which is a contradiction

to the hypothesis. So in that case, the definition of range of number of transitions m

is correct. Prove done. After we know the range of those two parameters, we could

know the number of firing vectors V .
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3.5 Finding possible V vectors

We have already known the possible number of total firing actions and transitions

in the last several parts. Because the elements in V vector represent how many times

each corresponding transition be fired, the sum of all elements in V should equals to

the number of total firing actions Fa. Known that, the problem of finding V vectors

has been changed to figuring out all the possible ways to distribute firing actions Fa

to transitions m. To get deeper understanding for this concept, we will use a simple

example here to illustrate it.

Example 9 Consider the following situation.

Assume we have six firing actions which means Fa = 6. And the transition

number equals five which means m = 5. We can treat Fa = 1 + 1 + 1 + 1 + 1 + 1,

each one represents one firing action. And we can also treat m = 1 + 1 + 1 + 1 + 1,

each one represents one transition assigning position. Separate the six ones in Fa

to six parts and assign them into the five positions in m. We can use the method

of permutations and combinations here. There are 5*A5
5 ways for the assignment in

total. In other word, there are 5*A5
5 kinds of V vectors.

Because we have mentioned that we ignore all the transitions have not been fired

to simplify our problem, all the elements in the V vector should be larger than zero.

That means when we distribute the firing actions to transitions, we should not leave

zero there and every entry in firing vector V should at least be equal to one. In

that case, each transition assigning position should be assigned at least once. One

necessary step in the process of finding all V vectors is duplication removing. This

is because the ones to be assigned from Fa don’t have any differences from each

other. Assign them to m will definitely cause duplication. But it’s easy to deal

with by scanning all the existed V vectors and compare to the new generated one in

algorithm. After finishing the step of generate firing vector V , we have all we need

to solve state equation B ∗ V = M1 −M −M2.
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3.6 Equation system solving

After we have all conditions we need, it’s time to solve the equation system B∗V =

M1 −M2. The first thing we need to do before that is to pair V vector with the

difference of markings M1−M2 with the same dimension one by one. We don’t know

all the entries in incident matrix B which means we have m ∗ n variables. Each state

equation B ∗ V = M1 −M2 could provides us m equations. In that case, we need n

state equations can we actually get the solution martix B.

What need to be noticed is because the paring is random, the system is not

necessary to have a solution. What’s more, the elements in B matrix represents the

weight of each arcs in Perti net which should all be constant, so non-constant B

would not be accepted. In that case, not every combination of vector-difference pair

M1 −M2 and firing vector V could generate a useful B matrix. But that’s also not a

big problem in algorithm. Every time we find a rational incident matrix B, record it

with corresponding transition number m.

Keep doing the work above for several loops. The number of total loops could

be got from the maximum number of markings and firing vectors V calculated above

in the worst case. After all rational incident matrices B found, we could start the

optimization. Compare all matrices’ corresponding transition number (m) and choose

the smallest one. In all the B matrices with the minimum transitions, compare the

zero numbers in the matrices and choose the maximum one. The non-zero number

represents connection in Petri net. So most zeros in incident matrix B means least

arcs in Petri net which could be a way to optimize the structure of the net. If we

have multiply matrices with the same transition number m and zero number, they

are all optimized.

Now we have the smallest m and incident matrix B with most zeros. That is the

optimized solution for this problem in current condition which could be used in many

practical situations.
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3.7 Summary

In this chapter, we have finished the first and most important part of the problem,

finding all markings. To deal with the markings, we learned the given observation

sequences deeply and find a lot of useful information that could help solving the prob-

lem. What’s more, we proposed an idea of giving limit to the length of observation

sequence in order to solve the problem in polynomial time. This section could make

good fundamental for solving the whole problem.

Then we discussed the method to find all possible firing vectors V . The key

point for that is to make sure how many V vectors we have. The way to do that is

use mathematical method to generate the number of V vectors from the number of

transitions and the number of total firing actions. After the searching of V vectors, we

also talked about the solving of state equation B ∗V = M1−M2 and the optimization

of the incident matrix B get from the result of the equations. During the process of

equation solving, we have several problems need to notice. For the optimization after

equation solving, we could achieve our target to get the optimized incident matrix B

following some rules.
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4. ALGORITHM AND COMPLEXITY ANALYSIS

4.1 Introduction

In this chapter, we will give the complete algorithm for the whole problem. After

that we will analyze the complexity of this algorithm and figure out why it can work in

polynomial time. At last, some parts of the Matlab code written with this algorithm

will also be discussed.

4.2 Complete Algorithm

Algorithm 1

Input: Observation sequences with length L, fixed number places n and fixed initial

marking M0.

Output: Optimized B matrix and minimum transition number m.

1: Load the observation sequences and store it as a matrix M.

2: Assign -1 to those empty entries in M.

3: Calculate matrix T. Each entry in T is the number of one-step token changing

from the observation sequences.

4: Find the upper range of Fa.

5: min(min(Li, Ld), L)→ Fal

6: max(min(Li, Ld), L)→ Fah

7: Fal ≤ Fa ≤ Fah

8: for Fa=1 to Fah do

9: Scan the number of markings on the last row of firing action.

10: for num=1 to the last of the markings on the last row do

11: Assign current markings to Mtemp, corresponding T to Ttemp.
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12: Separate the first column of Ttemp into positive part P and negative part N

13: Do permutation to the indices of the vectors P and N. Name the new per-

mutation matrices we get as PermP and PermN

14: for i=1 to end of the columns of PermP do

15: for j=1 to end of the columns of PermN do

16: Select the first i columns of PermP and the first j columns of PermN .

17: Do some operations to get rid of duplicated rows.

18: for ii=1 to the last row of PermP do

19: for jj=1 to the last row of PermN do

20: Do shifting to all the entries in Mtemp and Ttemp corresponding

to the indices in current row of PermP and PermN .

21: Store the shifted Mtemp, Ttemp and the first column of Mtemp

which is one of the possible markings in the first blank slot of next

row with respect to unshifted Mtemp in the last row.

22: Also store the location where we store the first column of corre-

sponding Mtemp in the last row.

23: if The first column of current Mtemp equals to the final markings

and the entries of the second column of Ttemp is all -1 then

24: Mark this column as final marking and store it.

25: end if

26: end for

27: end for

28: end for

29: end for

30: end for

31: end for

32: while There still has final markings exsiting in all the markings. do

33: Find one final marking from all the markings we have.
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34: Follow the previous location we stored to find all markings until we reached the

initial marking.

35: Store all the markings during this search in a row and we have formed a marking

sequence.

36: Mark the final marking we found this time as regular marking.

37: end while

38: for Fa=Fal to Fah do

39: for m=1 to Fa do

40: Prepare a zero vector V has length equals to m.

41: Assign all entries in this vector V one and Rest ≤ Fa−m

42: if Rest = 0 then

43: Store V as a sum firing vector.

44: else

45: Prepare a cell V P with each element in the first row be vector with length

equals Rest and all entries equal to one

46: V row ← 2

47: for Vlevel=1 to Rest do

48: Start← 1

49: for Vmulti=1 to m do

50: At each value of Vmulti, loop for m(V level−1) times

51: if Vlevel=Rest then

52: Finish← Start

53: else

54: Finish← Start + m(Rest−V level) − 1

55: end if

56: Find the vector elements in cell V P with index between Start and

Finish, multiply current V multi to the V level-th entry in those vec-

tors and then store them in the V row-th row of V P

57: Start← m(Rest−V level) + Start
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58: if Vlevel=Rest then

59: Finish← Start

60: else

61: Finish← Start + m(Rest−V level) − 1

62: end if

63: end for

64: V row = V row + 1

65: end for

66: PermV ← thelastrowofV P

67: for iii=1 to the last column of PermV do

68: Add one to the entries in V corresponding to the value of elements in

the vector from current slot of PermV .

69: Store V as a sum firing vector.

70: end for

71: end if

72: end for

73: end for

74: for numv=1 to the last sum firing vector we have do

75: Prepare a empty vector V P2.

76: Add x elements equals to the index of current sum firing vector if the corre-

sponding entry has value x.

77: Do permutation to V P2.

78: for iiii=1 to the last row of V P2 do

79: Form one-step firing vectors with only one entry equals to one in the order

according to the elements in current row of V P2.

80: Store these one-step firing vectors as a firing sequences.

81: end for

82: end for

83: for k=1 to the last marking sequence do
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84: for h=1 to the last firing sequence do

85: if They have the same firing action then

86: Pair these two sequences and use the first m elements to calculate incident

matrix B.

87: end if

88: if This B has non integer entries then

89: BREAK

90: else

91: if This B could satisfy the state equations formed by the rest elements

from these two sequences then

92: Store this B

93: end if

94: end if

95: end for

96: end for

97: Select the Bleast with least column from all the Bs stored.

98: Select the Bopt with most zero entries from all the Bleasts stored.

99: Output these Bopts.

4.3 Complexity analysis

As mentioned, this algorithm works in polynomial time. In the part of marking

scanning from line 8 to line 16, we will loop for enough times to ensure we could find

all markings. We know in the worst case, there are (nin + nin(nin−1)
2!

+ ...+ nin!
nin!

)∗ (nde +

nde(nde−1)
2!

+ ...+ nde!
nde!

) markings. So this part, the time complexity is constant because

nin and nde are all constant if the input observation sequences are fixed. In the part

of finding all possible firing vectors V from line 17 to line 35, we will also loop for

enough times to ensure we could find all V vectors. We use a table with dimension

(Fa −m) ×mFa−m. m has range 1 ≤ m ≤ Fa which means the worst case for the
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dimension of this table is (Fa − 1) × mFa−1. Fa has constant range so visiting all

elements in this table and do some simple calculation will take polynomial time. In

the part of solving equation system, we have m equations and m ∗ n unknowns in

the worst case for a certain V − (Mk −Ml) pair. So we need n V vectors to get a

possible B matrix. Solving a equation system with n unknowns has time complexity

O(n3). So in this part, the time complexity is O((m ∗ n)3). The last part of finding

the optimized B matrix and transitions m, the worst case is every equation system in

the previous part could generate a rational B matrix which still be a constant number

because the number of B matrix equals one n-th of the number V vectors which is

polynomial. The time complexity of comparing all the B matrices is also a constant.

So in this case, the total time complexity will be polynomial. So this algorithm could

work in polynomial time.

4.4 Matlab code analysis

According to the algorithm we had in the previous section, we could practically

write some code using some program platform. In this thesis, we will use Matlab to

do that. The actual code will be attached in appendix and we will only discuss the

thought and process of programming. The same with the algorithm, the actual code

also has been divided into several parts.

4.4.1 Preparation

The first thing we need to do is loading the observations to Matlab. To load the

sequences, we need to first convert the sequences into matrix. Because the length of

each sequence corresponding to each place are not even, here we use the method of

adding negative one to the end of those sequences which don’t have enough entries.

The reason of using negative number is that in observations we won’t have negative

numbers which makes these negative ones could be used as flags to jump out of the

loops. After loaded, name this matrix M . Figure 4.1 shows the flow in this part.
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Fig. 4.1. Flow of observation sequcnes loading

Then we will deal with the increasing and decreasing arcs. As we have already

loaded the observation sequences as matrix M , we could use that to represent the

properties of increasing and decreasing of the arcs. Use those non-negative numbers

in M to subtract the element at the left hand side of them in the same row. For

those rows which don’t have enough non-negative numbers, we add 0.1s to the end

of the rows. Similar with the reason to use negative number for M , we use decimals
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here because there will not exist decimal in weights of arc in Petri net. So we could

use those decimals as flags too. After all the calculations done, we will have a new

matrix T with all integer entries represent the weights of arcs. Then we can count the

number of positive and negative entries which also means the number of increasing

and decreasing arcs.

The next step to be done for preparation is to ensure initial and final markings.

Initial marking is easy to find which is first column of loaded matrix. And to find final

marking, we need to as negative ones introduced above as flag to find the actual last

element of each row and combine them as a column with dimension number of places

times one. This new combined column vector will be final marking. After doing this,

we have done the preparation part.

4.4.2 Markings and firing sequences scanning

The part of marking and firing sequences scanning is the most important and most

complex part in the whole code. We need to first find all possible markings. Here we

find the markings by the step of each firing action which is to find all markings after

one firing action. And all markings will be separated to several levels corresponding

to firing actions. The total number of levels is the number of firing actions. To ensure

we won’t miss any marking, we use the largest possible value of firing actions which

is the smaller one between number of increasing and decreasing arcs.

At each level, when pairing increasing and decreasing arcs, we need to consider

the situation of multiple places connected to the same transition. So in order to find

all possible markings, we need to try different combinations with different numbers of

positive and negative entries from T matrix. Note that we will only need to care about

the first column of T matrix when do firing action. Then count the total number of

positive and negative entries and list all permutations of both of them. The listing

action will form two new matrices P and N which contain all possible permutations

of positive entries and negative entries from the first column of T matrix.
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After the operation of duplication removing, we can pick the first x columns of

P matrix to represent we connect x places as output to one transition and pick the

first y columns of N matrix to represent we connect y places as input to the same

transition. Each row of P and N has the information of which places will have tokens

changing which means those places are selected to be connected. After one pairing

operation done, store the position where we store current marking which is the first

column of M in another cell. This operation will help forming firing sequences later.

Then shift corresponding rows of M and T one column left and assign -1 to the end of

M and 0,1 to the end of T . Store current M , T and the first column of M which is one

of the markings in this level in cells starting from the first column. Keep doing these

operations until we reach the last row in both P and N matrices. One level done.

Notice that when we store M , T , the markings and the pre-position, the index where

we store them should be the same to make it possible for us to find them together.

To do the same operations for the next level, we will pick the markings, Ms and

T s from the first column to the end. Now the markings we stored in the last level

will be the previous markings for the markings we need to store in this level. Do the

same operations of pairing, shifting and storing until we reach the bottom of P and

N matrices. Notice for the new level, we need to store those matrices and markings

in the next rows of corresponding cells. We assume the number of firing actions is

maximum which is the smaller one between the number of increasing and decreasing

arcs. But we usually we won’t have that much firing actions for every firing sequences.

In order to jump of the loop, we will use the −1s and 0.1s we added in M and T as

flag. When we follow the process to shift the entries in M and T , if the next entry is

−1 in M or is 0.1 in T , we know we reached the end of this sequences. Here we have

two different situations. If the marking before shifting equals the final marking and

the marking after shifting has entries all −1, we has a good sequence we need. Else,

this sequence is a bad one and has to be abandoned. When we store final marking,

we add one row with element 0 to the end of it to make sure we can recognize this is

a final marking. Figure 4.2 below shows the flow of operations in this part.



36

Fig. 4.2. Flow of marking scanning

After all the work above, we have completed the step of marking scanning. But

that is not enough for the final equation system solving. We also need to know which

markings are in the same sequence. Remember we has stored the previous marking

positions of every marking in another cell with the same index with each marking.

We can follow that to find previous markings for all markings. We should start with

finding one final marking which is pretty simple because every final marking is one

row longer than the others. After finding one final marking, follow the positions to

find previous markings. When we find a previous marking is located at the first row

and first column of the marking storing cell, we reached the initial marking which

means we finished finding one firing sequence. Storing the markings in this sequence

as a row in the sequence storing cell and cut the extra row of the checked final marking
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off to make it won’t be selected any more. Keep doing these operations until there

is no final marking with one row longer which means we have all sequences we need.

Figure 4.3 below shows the flow of operations in this part.

Fig. 4.3. Flow of sequences scanning

4.4.3 Firing vectors distribution

The method to find firing vectors used to be as following. Distribute the ones

in firing action to slots of entries in firing vector. According to our algorithm, the

number of firing action Fa will always be no smaller than the number of transitions
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m which is also the number of entries in firing vector V . So we first get m ones out of

Fa and assign one to each entry of V to satisfy the requirement that all transitions

should be fired at least once. Note that if we have Fa = m, we have already get

a possible distribution way. The step will be jump to the next loop. Only when

Fa > m can we continue the following part. When Fa > m, we need to distribute

the rest Fa−m ones and use the method of permutations again. One difference with

similar work we did above is, in this part duplication of entries when distribute ones is

allowed which means at the worst case, we could have all Fa−m ones assigned to the

same entry. In that case, we prepare a vector with entry from 1 to m all duplicated

for Fa−m times and then do permutation. We get a new matrix after that and name

it Vperm. Select the first Fa−m columns of Vperm. Those columns will form a matrix

called Vselect and each row of it corresponds to a way for the assignment. Select a row

from Vselect and assign a one to each entry in V corresponding to the number in this

selected row. After that we will get a possible firing vector V . Store it in Vstore cell, in

the row with index same as the number of current number of transitions. Keep doing

the selection from the first to the last row of Vselect and store all the firing vectors we

get in Vstore cell in a row.

Though the method above could give us correct result, we could found that when

the length of observation sequences become large enough, the number of different

permutations will be quite huge. So we developed another method to solve this

problem. First let prepare a cell V P with all elements in the first row be vectors with

dimension 1 × (Fa − m) and with all entries equal to one. Similar to the method

above, Fa must be larger than m. Then Fa − m ≥ 1. Do loop V level equals 1

to Fa-m. At each V level loop, do another loop V multi equals 1 to m. Loop each

loop of V multi for another m(V level−1) times which aims at scanning all elements in

last row of V P . Then we need to initialize two parameters Start and Finish. The

initial value of Start is simple with is one. The initial value of Finish is a little more

complex. Here we only give the result and will explain later. If current V level equals

Fa−m, initial value of Finish equals Start, else it equals Start+m(Fa−m−V level)−1.
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Then multiply the value of current V multi to the V level-th entry of each element in

current row of V P with index between Start and Finish. After that re-assign value

to Start and Finish. Here new Start equals m(Fa−m−V level) plus current Start. The

new value of Finish also need to be separated into two different conditions but are

the same with the initialization conditions and values. When we reach the last loop of

V multi, before starting the next loop of V level, move to the next row of V P and all

the elements we get from the next loop of V level will be stored in the next row. Then

we explain why the value of Finish equals to Start when V level equals Fa−m. The

method we used here to find all possible ways to do distribution is jumping different

columns at each level of V level to do multiplication with could ensure that we could

actually list all possible distribution ways. The number of columns we need to jump

at each level is m(Fa−m−V level). When V level doesn’t equal to Fa−m, there are more

than one elements in this interval so that Finish will be m(Fa−m−V level)−1 lager than

Start. But when V level equals Fa − m, there is only one element in this interval,

then Finish has to be the same with Start. That is the reason why we select the

value of Finish like that in the previous content. After all these operations we also

could get the same result with the method above. But we could save much more time

and storage space than the previous one.

The operations above has only finished the work under a certain number of firing

action and transition. What we need is all possible firing vectors under all possible

number of firing actions and transitions. In that case, we use two levels of loops to

realize that. The first level is the loop of firing actions from length of observation

sequences to the smaller one between the number of increasing and decreasing arcs.

The second level is the loop of number of transitions from one to current number

of firing actions. In that case, in order to store all firing vectors we have and make

us could easily find the right vector when we need, we expand the cell Vstore where

we store firing vectors to three dimensional. The first dimension corresponds to the

rows which is also treated as the number of transitions to make it easier to find

corresponding vectors, the second slot corresponds to the actual slots to store V s
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and the third dimension will correspond the number of firing actions. In this way of

storing, we can find a vector with its corresponding number of transitions and firing

actions easily and will save us much trouble in the part of equation solving. Figure

4.4 below shows the flow in this part.

Fig. 4.4. Flow of vector distribution
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4.4.4 Equation solving with result optimization

We have got a set of firing sequences and a set of firing vectors from previous

subsections. In this part, we will do the equation solving. Note that in a equation

system B ∗ V = Mi − Mj, there are m × n variables where m is the number of

transitions and n is the number of places. These variables are the entries in incident

matrix B. But from one state equation system, we can only have m equations which

is decided by firing vector V . Because of that we need n state equation systems to

make it possible to solve all variables in B.

Fortunately, we can get many information from the set of firing sequences and

the set of firing vectors. Select a row of firing vectors and a row of firing sequences

with the same number of firing actions and transitions. Pick the first n firing vectors

and n + 1 markings from the sequences. Calculate the differences between each two

markings next to each other and get n difference vectors. These 2× n vectors are all

column vectors. Combine all the n firing vectors into a m × n matrix Vcom. Do the

same thing to those difference vectors and get a n × n matrix Mdcom. Then we can

get a incident matrix B by use the command Mdcom/Vcom.

But the work is not finished after we get this incident matrix. Usually we will have

extra firing vectors and markings in the same firing sequences. We need to test all of

them using the B we just calculated to make sure this matrix could satisfy all the firing

actions existed. If it could not satisfy any of these firing actions, this combination of

set of firing vectors and set of firing sequences won’t be able to generate a functional

Petri net. Because according to the properties of Petri net, the entries in incident

matrix could only be integer. In that case, if we get B matrices with even only one

non-integer entry, we have to abandon it and start the next loop. Another possible

situation is the number of firing actions is smaller than the number of places. Then

we won’t be able to have enough equations to solve the problem. We could just use

number of firing actions that is larger than the number of places to solve this.
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When we have had a incident matrix that could satisfy the whole firing sequences,

store it into a slot of a three dimensional matrix Bstore. Keep doing these operations

until we reach the bottom of both firing vector set and firing sequences set. The flow

of this part is shown in Figure 4.5.

Fig. 4.5. Flow of equation solving

After we found all functional incident matrices, the next step is to compare them

and find the optimized ones. The requirement of optimization is having the least

number of transitions and for those that have the same number of transitions which

equals to the least number, having the most number of zero entries. We could first
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scan the dimension of all the B matrices stored in Bstore to know their corresponding

number of transitions and get the minimum number. Then pick out those Bs with

the least transitions. After that, count the number of zeros in all the Bs and get

the minimum number. Now we can know which matrices have the least zeros which

means their structures is most simplified. We could have multiple matrices here that

have the same least number of transitions and the same most number of zeros. Then,

all of them could satisfy our requirement of optimization. Till here, the whole code

has been completed. The flow of this part is shown in Figure 4.6.

Fig. 4.6. Flow of result optimization



44

4.5 Simple example

4.5.1 Markings and sequences

Now we use a simple example to illustrate this algorithm in this section. We are

given observation sequences which shown below.

S1 : 2 → 1 → 0

S2 : 1 → 0

S3 : 0 → 1 → 2 → 3

First we count the largest length L. Here L = 3. Then find the number of

increasing arcs Li and decreasing arcs Ld where Li = 2 and Ld = 2. So the number

of firing actions which should satisfy L ≤ Fa ≤ min(Li, Ld) could only equal to 3.

This means we have only one loop for Fa.

Then we do some preparations of marking scanning. Prepare five cells to store

information: MatrixM,MatrixT,Markings, PreMarkings and incomp. Store the

initial marking [2 1 0]T to the first entry of Markings. Store ”None” to the first

entry of PreMarking. Store following matrix to the first entry of MatrixM .

MatrixM(1, 1) =


2 1 0 −1

1 0 −1 −1

0 1 2 3


Store following matrix to the first entry of MatrixT .

MatrixT (1, 1) =


−1 −1 0.1

−1 0.1 0.1

1 1 1


The upper level has only one marking which is the initial marking [2 1 0]T . So

we have only one loop of upper level markings for the beginning. Then we will do

permutation for the indices of positive and negative entries in the first column of

current corresponding matrix in cell Matrix T. For positive ones, we have two kinds

of permutations, [1 2]T and [2 1]T . We first deal with shifting one place at a time.
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Do shifting for both of the two kinds of permutations and get two shifted incomplete

matrices with only negative part done. These two matrices will be stored in the

second row of cell incomp which is short for Incomplete.

incomp(2, 1) =


1 0 −1 −1

1 0 −1 −1

0 1 2 3

 incomp(2, 2) =


2 1 0 −1

0 −1 −1 −1

0 1 2 3


Then use these incomplete matrices combine with the positive part permutations

to finish the shifting work. Here negative part has only one kind of permutation with

is [1]. So there will two kinds of completed shifted matrices which will be stored in

cells MatrixM .

MatrixM(2, 1) =


1 0 −1 −1

1 0 −1 −1

1 2 3 −1

MatrixM(2, 2) =


2 1 0 −1

0 −1 −1 −1

1 2 3 −1


Corresponding T matrices will also be stored into cell MatrixT .

MatrixT (2, 1) =


−1 0.1 0.1

−1 0.1 0.1

1 1 0.1

MatrixT (2, 2) =


−1 −1 0.1

0.1 0.1 0.1

1 1 0.1


And also the current markings which are the first columns of the elements in MatrixM .

Marking(2, 1) =


1

1

1

Marking(2, 2) =


2

0

1


At last, we need to record the locations of the previous markings to current mark-

ings. Because this is the beginning of all the operations, so the previous markings

here are all initial markings and the location will be [1 1]T in cell Markings.
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PreLocation(2, 1) =

 1

1

PreLocation(2, 2) =

 1

1


We can find that the corresponding elements in these cells have the same indices

which could make us find a group of information easily. Keep doing this for all

permutations, all number of transitions and all number of firing actions(here just one

possibility) and we will have the final Markings cell with all markings we want. The

completed Markings cell is shown in Table 4.1.

Table 4.1. Completed Cell Markings

A B C D E

1 [2 1 0]T

2 [1 1 1]T [2 0 1]T [1 0 1]T

3 [0 1 2]T [1 0 2]T [0 0 2]T [1 0 2]T [0 0 2]T

4 [0 0 3 0]T [0 0 3 0]T ”Invalid” [0 0 3 0]T ”Invalid”

Note that the element below those two [0 0 2]T s are marked as ”Invilid” which

should be abandoned and won’t appear in real program results. We add it here

to illustrate the work more clearly. The ”Invilid” elements means at it’s step, the

marking before shifting was not the final marking, and after we do shifting, we will

have -1 at the first column of corresponding M matrix. That means in this sequence,

we won’t reach the final marking [0 0 3]T with the given observation sequences. So

this marking will be deleted from the Markings cell. Those [0 0 3 0]T s are the final

markings. They are one column longer than the regular markings which aims to

recognize them more easily. From them, we follow the records in cell PreMarkings

to find the completed sequences which are shown below.
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Sequence 1 :


2

1

0

→


1

1

1

→


0

1

2

→


0

0

3



Sequence 2 :


2

1

0

→


1

1

1

→


1

0

2

→


0

0

3



Sequence 3 :


2

1

0

→


2

0

1

→


1

0

2

→


0

0

3



4.5.2 Firing vector distribution

We will only give the example of the second method of firing vector distribution

which is functioned by jumping in elements and multiplication. First we need to

create a three-dimensional cell to store firing vectors. We will talk about this cell

later. Then we should make sure how many levels of loop we have. First level should

be the loop of Fa, the number of firing actions. At each loop of Fa, the second level

should be m, the number of transitions. Ensured that, the next step is to figure out

how should we do assignment to V , the firing vectors. At each loop of m, the length

of index vectors are all different.

We will continue the examples from the last part. Fa has only one value 3 so

there is only one Fa loop. The number of transitions m could vary between 1 and

Fa = 3 and we will start will m = 1. First we create a cell V lstore with all elements

in the first row be vectors with length equals Fa −m = 2 and have all one entries.

The number of elements should be mFa−m = 1. So in this condition, there is only

one element in the first row of V lstore like the cell in Table 4.2.
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Table 4.2. Initialization of V lstore when Fa=3, m=1

A

1 [1 1]

Then we start our operations from the second row of V lstore. From here, we

will deal with the elements in the last row with the column index in the interval

with length m(Fa −m − V level) where V level is the variable of the loop from 1 to

Fa−m = 2 and numm is the variable of the loop from 1 to m = 1. For example, in

the second row, numm = 1, V level = 1 which makes the length of interval become

1. Then we only deal with the element in V lstore(1, 1). Multiply the first entry of

the vector in V lstore(1, 1) = [1 1] by current numm = 1 and we still get [1 1]. Store

it in the location of V lstore(2, 1). Because m = 1, it seems we have finished the

work for the loop of numm But actually we need to keep doing the numm loop for

m(V level−1) times at each value of numm to make it possible to visit each element in

the last row once when the number of columns growing larger. Though here, we only

have one element in each row and m(V level − 1) = 1 which let this operation makes

no differences. Then we have finished one loop of numm and will move to the next

row of V lstore at the beginning of each loop of V level. Now V level = 2, numm = 1

and m(Fa−m− V level) = 1. We will deal with the element in V lstore(2, 1) which

is [1 1]. Multiply current numm = 1 to the second entry and we will still get [1 1].

Store it in the location V lstore(3, 1). Then we get a V lstore like the one in Table 4.3.

This part has been done.

It is not obvious with all the work we need to do in this part with such small

dimension of V lstore. Then we assume we have m = 3 and Fa = 5 which makes

Fa − m = 2. With these conditions, after we doing initialization to V lstore we will

have the cell in Table 4.4.
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Table 4.3. Final version of V lstore

A

1 [1 1]

2 [1 1]

3 [1 1]

Table 4.4. Initialization of V lstore when Fa=5, m=3

1 2 3 4 5 6 7 8 9

1 [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1]

Then at row 2 and the loop of V level = 1, numm = 1, interval length equals

m(Fa−m−V level) = 3 and we deal with the elements in row 3 in a group. Loop each

value of numm for m(V level−1) = 1 times. Multiply the first entries in the first three

vectors by current numm = 1 store them and get the cell in Table 4.5.

Table 4.5. Step 1 at row 2

1 2 3 4 5 6 7 8 9

1 [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1]

2 [1 1] [1 1] [1 1]

Then we come to the second loop of numm when numm = 2. Interval length still

equals 3 but the we will start at the fourth element in row 1. Multiply the first entries

in the fourth, fifth and sixth vectors by current numm = 2, store them and get the

cell in Table 4.6.
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Table 4.6. Step 2 at row 2

1 2 3 4 5 6 7 8 9

1 [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1]

2 [1 1] [1 1] [1 1] [2 1] [2 1] [2 1]

Do the same thing at the loop of numm = 3, we will finish the loop of V level = 1

and get the cell in Table 4.7. After moving to the row 3 at loop V level = 2, interval

length m(Fa −m − V level) = 1 and loop time m(V level − 1) = 3 which means we

need to deal with elements in row 2 one by one and loop each value of numm for three

times. After all these operations, we will get our final version of V lstore with Fa = 5

and m = 3 shown in Table 4.8.

Table 4.7. Step 3 at row 2

1 2 3 4 5 6 7 8 9

1 [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1]

2 [1 1] [1 1] [1 1] [2 1] [2 1] [2 1] [3 1] [3 1] [3 1]

Table 4.8. Final result of V lstore when Fa=5, m=3

1 2 3 4 5 6 7 8 9

1 [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1] [1 1]

2 [1 1] [1 1] [1 1] [2 1] [2 1] [2 1] [3 1] [3 1] [3 1]

3 [1 1] [1 2] [1 3] [2 1] [2 2] [2 3] [2 1] [2 2] [2 3]
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After we get all the elements in cell V lstore after last loop of V level, the last

row will be the vectors will want. We will provide the completed V lstore cell and

used for the later calculation which is shown in Table 4.9. Elements in the second row

of this cell tell us which entry in V we should do assignment to. With the instruction,

we could have two kinds of firing vectors.

Table 4.9. Final version of V lstore when Fa=3, m=2

1 2

1 1 1

2 1 2

V1 =

 2

1

V2 =

 1

2


Do the same thing to the loop of m = 3, we will another possible firing vector

V3 = [1 1 1]T . Store all the vectors we get till now in a matrix in rows corresponding

to their transition numbers.

Those firing vectors are not enough for the state equation system solving because

they are the sum of those one-step firing vectors and could only generate only one

group of equations. So we need to do permutation again to generate all possible

situations for one possible firing vector we get here. Same with the permutation work

above, we will use index vectors to do that.

Now the length of index vector should equal to current Fa. Choose sum firing

vector V2 = [2 1]T as example, current Fa = 3, so the index vector should have

dimension 1 × 3. Then, elements in the vector should be one of the indices exists

in sum firing vector V2 which are 1 and 2. Here because the first entry of V2 is 2,

the element 1 could appear twice in the index vector. Thus, corresponding index

vector V I = [1 1 2]T . Then do permutation to it and we get the permutation matrix

PermMat
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PermMat =


1 1 2

1 2 1

2 1 1


PermMat will provide us the way to separate the sum firing vectors into one-step

firing vectors with could actually help solving the state equation system. And now

we can explain why we need the cell V ectors to be five dimensional. Because we

when choose a pair of marking sequence and firing vector sequence, we need to make

sure they are compatible with each other in Fa and m. At the same time, we also

need to make sure we have go through all possibilities. To ensure that, this three-

dimensional cell V ectors has been introduced. The third dimension is corresponding

to a certain sum firing vector, the other two dimensions will be used to store one-step

firing vectors. Note that each row in a two-dimensional cell corresponding to a sum

firing vector represents a actual firing sequences. Another important thing is the

number of firing actions for every firing sequence. This could be known by scanning

the length of each row which is easy to do. As we cleared all these above, we could

continue with the following work. Table 4.10 shows the some part of cell V ectors.

Table 4.10. V (:, :, 2) of cell V ectors

A B C

1 [1 0]T [1 0]T [0 1]T

2 [1 0]T [0 1]T [1 0]T

3 [0 1]T [1 0]T [1 0]T

Keep doing these operations until all loops of Fa and m are done. Pair those

marking sequences and firing sequences with the same Fa and use the first n marking

differences and one-step firing vectors to get the solution of incident matrix B. If

we pair Sequence 1 with V (1, :, 2), we will get following matrix B1. But if we pair

Sequence 1 with V (2, :, 2) or V (2, :, 3), there will be no solution for the state equation
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system and we will abandon this pair and go on to the next one. If we pair Sequence 2

with V (2, :, 2), we will get matrix B2. And if we pair Sequence 1 with V (1, :, 4) =

{[1 0 0]T , [0 1 0]T , [0 0 1]T}, we will get following matrix B3.

B1 =


−1 0

0 −1

1 1

B2 =


0 −1

−1 0

1 1

B3 =


−1 −1 0

0 0 −1

1 1 1


Keep doing the pairing, we could get all the integer incident matrices. The next

step is to find the optimized ones. From above, we can see B2 has one more transition

than B1 and B2. So according to our rules of optimization, B3 should be excluded.

Then compare the number of zeros in B1 and B2. Both are two. So B1 and B2 are

both optimized results.

4.6 Result

With all the flow analyzed above, we could have results with given observation

sequences. We will use the sequences below as the input.

S1 : 2 → 1 → 0

S2 : 1 → 0

S3 : 0 → 1 → 2 → 3

The sequences will be stored in text file as matrix in the same path with the Matlab

code. And the result generated at each step has been listed below from Figure 4.7 to

Figure 4.13.

If we use observation sequences with longer length as input, we could get more

information in time costs. Some different samples with different length input has

been shown in Table 4.11 below. With the data in Table 4.3, we could also draw a

chart to show how the code perform in time complexity with different length of input

sequences more intuitive. The result of that has been shown in Figure 4.14.
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Fig. 4.7. Result of marking scanning

Fig. 4.8. Result of sequences formation

Fig. 4.9. Result of sum vector searching

Table 4.11. Time cost in different length

Length 3 4 5 6 7 8

Time cost(s) 0.00877 0.04401 1.08690 30.47965 339.94708 14582.21290
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Fig. 4.10. Result of single step firing sequences searching

Fig. 4.11. Part of the cell storing firing sequences

Fig. 4.12. Part of the result of incident matrices before optimization searching
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Fig. 4.13. Final result: Optimized incident matrices

Fig. 4.14. Plot of time cost in different observation sequences length

It’s easy to find that the code written under our algorithm has better perfor-

mance in time cost which is another proof of the excellence of it. The tests of time

costs are operated in a laptop equipped with a 2.50 GHz processor, 8GB RAM and

Matlab R2013a.
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4.7 Summary

This chapter gives the complete algorithm that solves the problem in this the-

sis. This algorithm use given observation sequences as input and could generate the

optimized incident matrix of Petri net. After that we analyzed the complexity of it

and proved it could actually work in polynomial time. Then, we showed the pro-

cess to realize the algorithm with Matlab which has been divided into four parts:

preparation, markings and firing sequences scanning, firing vectors distributing and

equation solving with result optimization. In the part of preparation, we did the work

of observation sequences loading, initial and final marking searching and number of

increasing and decreasing arcs counting. In the part of markings and firing sequences

scanning, we scanned all the markings that could be used to form firing sequences

and formed a set of firing sequences using the method of storing previous markings.

In the part of firing vectors distributing, we built all possible firing vectors using the

relationship between number of firing actions Fa and number of transitions m. In the

part of equation solving with result optimization, we solved the state equation sys-

tems using the information we get from previous part and have found the optimized

ones from the results we got. We have already finished solving the main problem till

this chapter.
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5. RESULT UPDATE

5.1 Introduction

We have finished the optimization of the Petri net structure from given observation

sequences in the last several chapters. But what need to be noticed is that we only

get the approximation of the real Petri net that could generate the given observation

sequences because we only use only part of the sequences as input of the algorithm.

Though sometimes the result of the state equations could be the same the real Petri

net if we are lucky, most of the time it is very hard for us to have exact the same

structure. Then with the growing of the observation sequences, the optimized incident

matrix B we have could be no longer meet the requirement. This problem will keep

existing if we use observation sequences with fixed length. But we can develop another

algorithm to help ease this problem.

In this chapter, we will mainly discuss the algorithm that can ease the problem

that mentioned above.

5.2 Result incident matrix checking and updating

The method we use to ease the problem is that when the observation sequences

growing, checking whether the exist Petri net could satisfy current observation se-

quences. If it could, then we can still use it. If it could not, we need to use the

algorithm in chapter 5 to develop a new one that can fit current observation se-

quences.

The way that the algorithm works is similar to the one used for Petri net structure

optimization that introduced in chapter 5. But here we have already known the

incident matrix B. In order to know whether this B matrix can fit current observation
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sequences, we use this matrix in state equation systems to calculate the marking

difference Mi − Mj. Use known Mj, we can know the new Mi. Then we need to

calculate the lower and upper bound of Fa′ to make sure the range of firing action Fa′

for the new generated observation sequences.Let L′i equals the number of increasing

arcs, L′d equals the number of decreasing arcs in new generated sequences and assume

the length of new generated sequences is L′, according to the algorithm introduced

in chapter 5, the range of number of firing actions should be,

Fa′lower ≤ Fa′ ≤ Fa′upper

where,

Fa′lower = min(min(L′i, L
′
d), L), Fa′upper = max(min(L′i, L

′
d), L)

The next step is to check if it exist in new generated observation sequences. This

work need to be done for every new generated firing action to make sure we could

check every unit length of the observation sequences. If markings Mi exists in for each

unit length of new generated observation sequences, that means the Petri net could

still meet current requirement. Else we need to develop a new Petri net structure

with the algorithm in chapter 5 using current observation sequences as input.

We have to scan every possible marking from the new generated observation se-

quences in order to find if there exists the same one with calculated Mi. Similar with

the algorithm introduced in chapter 5, we still need to figure out the range of number

of firing actions and the range of number of possible markings but the difference is

we don’t need to care about the range of transitions because incident matrix B is

known.
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5.3 Algorithm

Algorithm 2

Input: Origin observation sequences with length Lo and final marking M0, new

generated observation sequences with length L′ and final marking Mk, incident matrix

B calculated from origin observation sequences.

Output: Whether the incident matrix could satisfy the new generated observation

sequences.

1: Build a set S to store possible marking sequences we found.

2: for Fa′ = Fa′lower to Fa′upper do

3: for i = 1 to Fa′ do

4: while 1 do

5: Find a possible marking Mi after i times firing.

6: if Mi = Mk then

7: if Marking sequence M0M1...Mi ∈ S then

8: Goto line 4

9: else

10: Store it in S

11: end if

12: end if

13: end while

14: end for

15: end for

16: while S 6= ∅ do

17: Pick one marking sequence from S and delete it from S

18: for j = 1 to k do

19: Solve the state equation B ∗ V = Mj −Mj−1 and get a V vector

20: if The sum of all entries in V = j and all enrties are constant then

21: if j 6= k then
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22: Goto line 15

23: else

24: Output ”Incident matrix B satisfies the new generated observation se-

quences”

25: end if

26: else

27: Goto line 14

28: end if

29: if S = ∅ and j = k then

30: Output ”Incident matrix B does not satisfy the new generated observation

sequences”

31: end if

32: end for

33: end while

5.3.1 Complexity Analyze

Better than the optimization algorithm in chapter 5, this algorithm could also

work in constant time if we use known incident matrix B as input. First, Marking

sequences scanning part works in constant time because same with L, the length of

new generated observation sequences L′ is also a constant number. Then according

to Doctor Li’s study[1], it takes O(mL′
) time to find all possible markings which also

means finding all possible marking sequences takes O(mL′
) time. Because both m and

L′ are constant, this part could works in constant time O(1). Second, the equation

solving part. This time the variable is firing vector V with constant dimension m×1.

As mentioned above, the complexity of solving equation system with n variables is

O(n3). So, the number of variables is constant, the complexity is O(1). Then because

the number of markings is constant, the total time complexity of finding all marking

sequences is also constant which makes the total complexity constant.
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5.3.2 Simple Example

Now we use a simple example to illustrate the algorithm 2. We have got a opti-

mized incident matrix in the example of algorithm 1 which is,

B1 =


−1 0

0 −1

1 1


If the observation sequences have grown into from the original ones into current ones

shown below.

S1 : 2 → 1 → 0 → 1

S2 : 1 → 0 → 1 → 2

S3 : 0 → 1 → 2 → 3 → 2 → 1 → 0

To check whether matrix B1 could satisfy this new observation sequences, we only

need to use the new generated part as the input of algorithm 2. Original final marking

[0 0 3]T becomes initial marking here. And the markings is [1 2 0]T .

S1 : 0 → 1

S2 : 0 → 1 → 2

S3 : 3 → 2 → 1 → 0

From the new generated observation sequences, we could know the range of num-

ber of firing actions Fa′ where 3 ≤ Fa′ ≤ 3. So here Fa′ = 3 which means there is

only one loop for Fa′.

Then we do the same permutation operations as in algorithm 1 to find all pos-

sible markings from the new generated observation sequences. Permutation ma-

trix PermM ′ for index of positive part of the first column of T ′, initial element

of MatrixM ′ and initial element of MatrixT ′ are shown as following.

PermM ′ =

 1 2

2 1


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MatrixM ′(1, 1) =


0 1 −1 −1

0 1 2 −1

3 2 1 0

MatrixT ′(1, 1) =


1 0.1 0.1

1 1 0.1

−1 −1 0.1


First select the first column of PermM ′, do shifting to the corresponding elements

in MatrixM ′(1, 1) and MatrixT ′(1, 1). We can find markings from that.

Marking1 =


1

0

2

Marking2 =


0

1

2


Then select the first two columns of PermM ′, do shifting to the corresponding

elements in MatrixM ′(1, 1) and MatrixT ′(1, 1). We can find markings from that.

Marking3 =


1

1

2


Markings Marking1,Marking2 and Marking3 are all possible markings we could

find at the first firing action. Then, we calculate M1 with state equation system and

incident matrix B1. There are two possible firing vectors V1 = [1 0]T and V2 = [0 1]T

because B1 has only two columns which means there are two transitions in this Petri

net. We can get M1 equals,

M11 =


−1

0

4

M12 =


0

−1

4


We can see that there appears negative numbers in these calculated markings

which makes it impossible that they could equal to any of the possible markings in set

{Marking1,Marking2,Marking3}. So we can make conclusion that this optimized

incident matrix B1 could not satisfy the observation sequences after growing which

means we need to reconstruct a new Petri net could fit the new sequences with

algorithm 1.
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5.4 Summary

In this chapter, we talked about the problem that we will have in using the op-

timization algorithm in chapter 5 and also proposed a new algorithm that can work

in constant time to ease this problem by checking if exist Petri net could fit current

observation sequences. Then we used an example to illustrate our ideas to make it

more clear how to use this algorithm. This algorithm aims at making up the problem

that the optimization algorithm have which could not renew the result it generates.

Combine these two algorithm together, we could have a complete method which could

be used for practical need.
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6. PRACTICAL USE

6.1 Introduction

Petri net is a useful tool in many information and technology fields like communi-

cation and automatic control system. The application of Petri net has been studied

for many years. The ideas and algorithm studied in this thesis could also be useful in

practical situations. Because of the unique structure Petri net has, it could represent

actual networks and working flow well.

In this chapter, we will introduce some practical ways to use Petri net in IT fields

from differnt aspects and give some thoughts about using our ideas and algorithms

in these fields.

6.2 Optimization of Network Structure

Sensor network is an important method to transmit data in many fields besides

control systems. Petri net could represent the structure of many network well. Wendi

B. Heinzelman and the others [8] studied about the sensor networks with middleware.

Middleware here has been used to bridging the gap between operation systems and

easing the development of distributed applications. According to Wendi B. Heinzel-

man’s idea, the middleware also has the function of managing the connection between

client and server.

In this case, we can treat the whole sensor network with middleware as a Petri

net. Operation systems and applications in the network will be treated as the places

in Petri net, middlewares will be transitions, connections between operation systems

and middlewares will be the arcs and the authority for the connections will be di-

cided by the relationship of arc weights and tokens in places. We can treat the data
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transmitted in sensor network as data satisfied certain conditions and the middle-

wares give authority to corresponding operation systems and applications to make

the transmission successful.

Then the problem is how to optimize this kind of networks to reduce the cost

of hardware and still can make it functional as predicted. Usually We could not

reduce the number of operation systems and applications because of load capacity.

So we need to think about reducing the cost on middlewares and connections. We

can try to connect more operation systems and applications to the same middlewares

to reduce number of middlewares needed. And also, we could optimize the structure

of sensor network to reduce the number of connections between Operation systems,

applications and middlewares. Those ideas are actually what we talked about in this

thesis which is to find the incident matrix B with least transition number m and most

zero entries.

6.3 Optimization of Process Flow

Besides the use in optimizing the network structure, Petri net also could represent

the process flow of data transmission or industry production. Hassan Jameel and the

others [9] worked on a kind of data transmission system between mobile and grid.

They developed a work flow of this system with Petri net themselves which has been

showns in Figure 5.

In the Petri net represented process flow in Figure 5, place represents each state

of the flow, transition represents certain action that can lead the flow go from one

state to another and the arc here simply represents the connection between state and

action. There will be only one token in this process flow which represents the process

of the flow. The token will initially be in the first state marked ”Ready” in the figure.

And as the flow going, it will be transmitted through states and finally be in the state

marked ”End session”.
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Fig. 6.1. Process Flow introduced in Hassan Jameel’s work [9]

This kind of process flow could give us some inspirations of using our algorithm

here. Though this Hassan Jameel’s work, the process flow has been formed in certain

rule and hard to be modified any more, we also could come up with some ideas to

optimize some process flow in similar situation. For example, if we want to know how

a system or program works but we could only observe its working states, we could

use the algorithm discussed in this thesis to find a optimized estimation of its process

flow. In that case, we can know approximately what the system or program looks

like and help deeply understand it.

6.4 Summary

In this chapter, we introduced some practical use of Petri net and have also talk

about how to use our ideas discussed in this thesis in these fields to help optimize

their systems. Two main aspects are involved. For network structure, we could help

reduce the number of middlewares and the unnecessary connections to reduce the time

and money costs. At the same time, simplified systems will also have better efficient

performance. For the process flow, we could help deeply understanding unknown

systems and programs with only their working states which is also a efficiency-related

problem and also could be a way to better assist the systems or programs with other

resources.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we first proposed an idea that we could treat the length of observation

sequences as constant when we use it as inputs to our algorithm. With this assump-

tion, we introduced an algorithm used in Petri net. This algorithm could generate

an optimized Petri net from given observation sequences in polynomial time. With

some mathematical analysis and software code verification, we could see this algo-

rithm could work. In that case, we also did some assumptions of using this algorithm

in real life. Because Petri nets could be used to represent structure of systems and

flow of operations, we could use this algorithm to optimize these systems that could

help improving their performance.

On the other hand, this algorithm has some disadvantages. One of them is that

there would be some estimation errors in this result. This is because we only get the

approximation of the real Petri net. For this reason, we developed a new algorithm,

which could perform better in time complexity. This algorithm will check whether

the resulted incident matrices could work as required if new observations have been

generated and decide whether we should run the first algorithm again to get new

matrices.

Though this algorithm could work in polynomial time, it uses exhaustive method

which could only be used in finite observation sequence length conditions. We can

keep the finite sequence length condition, but use another method to find markings

and V vectors with higher efficiency.

What’s more, there should exist a method that could work in variable sequence

length conditions. If we want to realize this, more assumptions need to be added

to this problem to make it possible to select a constant number of markings and V

vectors in every loop. If this modified algorithm could be proposed, it could be used

in much wider applications.
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Besides those, the method of updating the result of the algorithm is also a direction

could be improved. In this thesis, we use another algorithm with enumeration method

to check the B matrix in the result. We could make the algorithm update the result

itself as the observation sequences grow to meet the requirement. In this way, it

could get rid of the complicated enumeration and avoid reading the whole observation

sequences again.
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