
P2HR, A PERSONALIZED CONDITION-DRIVEN

PERSON HEALTH RECORD

A Thesis

Submitted to the Faculty

of

Purdue University

by

Zachary King

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electric and Computer Engineering

August 2017

Purdue University

Indianapolis, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Zina Ben Miled

Department of Electrical and Computer Engineering

Dr. Brian King

Department of Electrical and Computer Engineering

Dr. Dongsoo Kim

Department of Electrical and Computer Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program



iii

This thesis is dedicated to my family, specifically my parents Brian and Sue King

who have supported me through my education.



iv

ACKNOWLEDGMENTS

I would like to acknowledge my thesis advisor Dr. Zina Ben Miled and the other

members of my thesis committee Dr. Brian King and Dr. Dongsoo Kim. I would

also like to thank Dr. Titius Schleyer and Dr. Latifat Oyekola for their help and

guidance. Finally, I would like to recognize the team support of Kyle Haas and the

members of the Data Driven Knowledge Discovery and Management lab.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Personal Health Records . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 SYSTEM DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 SYSTEM IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Network Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Index Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Peer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



vi

LIST OF FIGURES

Figure Page

1.1 Hypertension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 P2HR Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Three Tier Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Hypertension Condition-Based . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Hypertension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Communication Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Sub-Network Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Information Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.8 Example of Collections in the PHR . . . . . . . . . . . . . . . . . . . . . . 17

2.9 CDA Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 CDA Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.11 CDA Performer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.12 CDA Participant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 CDA Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.14 CDA JSON Format for Chest X-Ray . . . . . . . . . . . . . . . . . . . . . 24

2.15 Two Body Weight Readings . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 XML Vital Sign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 CDA Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Data Structure for Vital Sign in Golang . . . . . . . . . . . . . . . . . . . 32

3.5 Diabetes Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Network Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.7 Message Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Node Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vii

LIST OF ALGORITHMS

Algorithm Page

3.1 Converting XML to JSON . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Push Event-Based Health Record into MongoDB . . . . . . . . . . . . . . 33

3.3 Inserting Multiple JSON Files . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Extracting Event-based Data from MongoDB . . . . . . . . . . . . . . . . 34

3.5 Converting Event-Based Data to Condition-Based . . . . . . . . . . . . . . 35

3.6 Extracting Condition-Based Data from MongoDB . . . . . . . . . . . . . . 36

3.7 Updating Condition-Based Data into MongoDB . . . . . . . . . . . . . . . 36

3.8 Inserting Condition-based Heatlh Records into MongoDB . . . . . . . . . . 37

3.9 Index Server Initial Receive . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Send Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.11 Receive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.12 Sub-network Initialize Request . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.13 Sub-network Initialize Response . . . . . . . . . . . . . . . . . . . . . . . . 44

3.14 Server Information Exchange . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.15 Check Sub-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.16 Peer Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.17 Response to Sub-Network Initialization . . . . . . . . . . . . . . . . . . . . 49

3.18 Update Sub-Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.19 Peer Information Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . 52



viii

ABSTRACT

King, Zachary. MSECE., Purdue University, August 2017. P2HR, A Personalized
Condition-Driven Person Health Record. Major Professor: Zina Ben Miled.

Health IT has recently seen a significant progress with the nationwide migration of

several hospitals from legacy patient records to standardized Electronic Health Record

(EHR) and the establishment of various Health Information Exchanges that facilitate

access to patient health data across multiple networks. While this progress is a major

enabler of improved health care services, it is unable to deliver the continuum of the

patient’s current and historical health data needed by emerging trends in medicine.

Fields such as precision and preventive medicine require longitudinal health data in

addition to complementary data such as social, demographic and family history.

This thesis introduces a person health record (PHR) which overcomes the above

gap through a personalized framework that organizes health data according to the

patients disease condition. The proposed personalized person health record (P2HR)

represents a departure from the standardized one-size-fits-all model of currently avail-

able PHRs. It also relies on a hybrid peer-to-peer model to facilitate patient provider

communication. One of the core challenges of the proposed framework is the mapping

between the event-based data model used by current EHRs and PHRs and the pro-

posed condition-based data model. Effectively mapping symptoms and measurements

to disease conditions is challenging given that each symptom or measurement may be

associated with multiple disease conditions. To alleviate these problems the proposed

framework allows users and their health care providers to establish the relationships

between events and disease conditions on a case-by-case basis. This organization pro-

vides both the patient and the provider with a better view of each disease condition

and its progression.
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1. INTRODUCTION

1.1 Background

As patient-provider interactions become increasingly specialized through advances

in the medical field, the expectation of a centralized medical record becomes increas-

ingly unattainable. Settling for a scattered record, however, may lead to gaps in

the patient’s medical history rendering a holistic approach to medical treatment also

unattainable. Evidence for a preferred holistic approach or at least an approach that

is based on a wide health information spectrum can be found in several cases. In [1],

it was found that a number of coronary artery bypass patients develop depression,

placing these patients at the intersection of two diverse fields of medicine by todays

practice. Similarly, the Alzheimer Association has found evidence that links Type

2 diabetes to Alzheimer disease and the Center for Disease Control established that

Obesity can lead to countless number of health problems [2].

The above examples suggest that the involvement of both the patient and the

provider in maintaining personal health records is the only viable and practical solu-

tion for efficient health care delivery. Indeed, person health records (PHR) can provide

an efficient means through which patients can interact with health care providers in

various fields as well as share health information with them. This information can be

• Extracted from Electronic Health Record (EHR) systems, from different health

institutions and different health networks. EHRs are becoming ubiquitous in

hospitals and other medical services facilities. Recent studies indicate that

96% of non-Federal acute care hospitals have adopted certified EHRs systems

by 2015 [3]. In addition, initiatives such as Blue Button+ [4] and FHIR [5]

allow patients to electronically access their own health information from various

health providers such as health plans, pharmacies and hospitals.
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• Augmented through patient self-captured information from applications and

devices (e.g., fitness, nutrition, and health monitoring devices). In recent years,

we have seen an emergence of home health care devices including step counters,

blood glucose monitors and heart rate monitors. Such devices can be aligned

with the proposed P2HR system to enable patients to manage the devices and

store the data that these devices generate.

• Shared with health providers when and as needed. This is an important step

that completes the feedback loop in patient managed health care. Recently, the

office of the National Coordinator for Health Information Technology conducted

a pilot through the National Association for Trusted Exchange (NATE) [6] to

demonstrate the potential and current gaps in the digital communication be-

tween the patient and the health care provider. This experiment highlighted the

need for the development of efficient bidirectional communication mechanisms

between PHRs and EHRs.

As defined in [7], a PHR is an application that allows people to access and manage

their lifelong health information and make this information available to health care

providers as needed. Our vision of a PHR system takes into account not only the need

for patient managed health record, but also the future focus on precision medicine and

personalized preventive medicine. The proposed Personalized Person Health Record

(P2HR) aligns with these future trends since each health record is personalized to the

context and disease conditions of the patient.

1.2 Personal Health Records

Currently available PHR systems support one or more of the following function-

alities [8]:

• Information Collection: This functionality is concerned with health data stor-

age. The data of interest can be entered into the system directly by the user or

extracted from an EHR using a patient portal.
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• Information Management: This functionality is related to the update of the

health information by the patient. There are currently many fitness mobile

applications and devices that can be connected to a PHR where the generated

data can be stored over time. This functionality can also be extended to storing

notes of daily diet, workout details, or a wellness diary.

• Information Sharing and Exchange: This functionality covers patient-provider

exchanges of health information. It allows users to directly connect with their

health care providers and receive up-to-date health data.

Examples of PHR systems include the Dossia Health Manager [9] which places

an emphasis on information sharing and exchange through its real-time news feed.

MeTree [10] and Health Heritage [11, 12] both focus on including family health his-

tory. The aim of MeTree is to aid health care providers with decision making while

that of Health Heritage is to match family history with current research in order to

identify effective preventive strategies. HealthVault [13] focuses on the ease of access

to information and self-management through interoperability support with numerous

external applications including health and fitness devices. It also permits the ag-

gregation of multiple family member’s accounts. Google Health [14, 15], which has

been discontinued in 2011, emphasized an efficient environment for data collection

and storage. One of the most functional systems available is PatientsLikeMe [16].

It is dedicated to visualtizing data based on condition as well as allowing patient-

to-patient communication. PatientsLikeMe is technically not a PHR, but a social

network dedicated to connecting patients with similar disease conditions in order to

share their experiences.

Supporting a holistic approach to medical treatment by using a PHR has several

advantages, however it also has several challenges. One of its major challenges is the

potential for mainstream adoption. In [17], the low adoption rate was found to be

attributed in part to the lack of personalization in currently available one-size-fits-

all PHR systems. Mainstream adoption is critical because PHR systems inherently
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place the burden of the management and ownership of the health information upon

the patient. Therefore, in order for this type of system to be accessible to all, it must

be flexible and support the interoperability with many EHRs.

In order to facilitate the interoperability among health information systems, the

U.S. National Library of Medicine (NLM) created the Unified Medical Language

System (UMLS) which integrates several standards including HL7, LOINC, and

RxNORM into a unified Metathesaurus [18, 19]. UMLS includes two additional

components. The first is a semantic network which categorizes the entities in the

Metathesaurus and establishes the relationships among them and the second com-

ponent is a specialist lexicon which can correctly interpret user-entry errors [18, 19].

This overarching unified metadata standard is consistent with the current unification

trend in the health sector. A different standard, the Consolidated Clinical Document

Architecture, which aims at unifying the data model used by various health infor-

mation systems is also being promoted [20]. Both of these standards are essential

to the interoperability of health information systems. From the perspective of the

proposed P2HR, the use of these standards by EHRs entail that one unique interface

is sufficient to support the exchanges between the proposed P2HR and the multitude

of available EHRs.

In order to achieve mainstream adoption, it is imperative that the PHR makes

the patient’s health record understandable to an average user with potentially lim-

ited medical knowledge. Currently most patient records retrieved from EHRs use

the Clinical Document Architecture (CDA) as the standard for exchanging health

records. CDA was developed by the Health Level Seven International (HL7) and is

currently the ANSI approved national standard format for exchanging clinical doc-

uments [21]. Specifically, CDA is based on the HL7 Reference Information Model

(RIM). An example of the CDA format is shown in Figure 1.1.

CDA does not address how the documents are exchanged even though HL7 in-

cludes the HL7 messaging component which is an interoperable specification for ex-

changing health records [5]. HL7 is currently developing a new specification Fast
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Fig. 1.1. Hypertension

Healthcare Interoperability Resources (FHIR). FHIR will most likely replace HL7

messaging. The goal of FHIR is to ”simplify and accelerate HL7 adoption by being

easily consumable but robust, and by using open Internet standards where possi-

ble” [5]. FHIR uses a RESTful protocol [5]. One advantage that FHIR has over its

predecessor HL7 messaging v3 is its applicability to mobile device. Moreover, com-

pared to CDA, it is more modular and uses JSON objects making it easier for the

data to be accessed from any programming language.

Blue Button+ proceeded FHIR. It is an online patient portal that gives patients

access to their health records [4]. It returns health records in a machine readable stan-

dard XML file [4]. This XML file is partitioned into multiple sections including vital

signs, encounters, immunizations, medications, etc. This information is organized in

exactly the same way as in the original EHR system. Blue Button+ stores the infor-

mation using the CDA standard. Figure 1.1 [4] is an example of an extracted Blue

Button file corresponding to the vital signs partition. The information in the XML file

references multiple coding standards including SNOMED-CT, RxNorm, and LOINC.
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In a survey, it was found that 87% of non Veteran Affairs health care providers found

the information that the veterans obtained using Blue Button was helpful or very

helpful when treating their patient [22].

Blue Button, the previous version of Blue Button+, is used by Health vault to

enable users to upload health records that are in CDA format into the PHR. However,

FHIR is not currently used by any PHR as it is still under development. One of the

main gaps in the currently available standards is that they do not allow for user

generated information to be exchanged. Future extensions to these standards are

likely to address this gap.

1.3 Proposed Framework

The above example PHRs have attempted to gain mainstream adoption through

content delivery rather than functionality. Indeed, each differentiates itself by the

content it presents instead of how it is presented. Furthermore, all currently avail-

able PHRs are event-driven (e.g., encounters, lab results, medications, etc.). The

proposed framework organizes health information based on disease conditions (e.g.,

hypertension, diabetes, asthma, etc.). We believe that this new approach facilitates

personalization and encourages mainstream adoption. For example, if a patient is pre-

scribed medication for arthritis and high cholesterol by a general practitioner, these

medical conditions are distinct and this distinction should be reflected in the presen-

tation of the information as it relates to each condition. Under current event-driven

PHRs, this information is collectively associated with a single event (i.e., encounter

with health provider) rather than being differentiated according to the respective con-

ditions. Organizing records based on condition rather than events can make health

information more readily accessible to both the patient and the health care providers

including pharmacists, physicians, nurses, as well as home health care specialists.
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Chapter 2 of this thesis describes the design of the proposed PHR. Chapter 3

presents the implementation of the system and Chapter 4 summarizes the main con-

tributions of this thesis and presents direction for future work.
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2. SYSTEM DESIGN

This chapter introduces the key components as well as the communication model and

data model of the proposed system. Figure 2.1 shows the basic architecture of the

proposed system (P2HR).

Fig. 2.1. P2HR Architecture

P2HR has a three-tier software architecture [23] (as illustrated in Figure 2.2). The

interface of the system allows the users to access their health information as well as

contain functionalities found in most social networks. These functionalities include

inserting health records, connecting with other users, posting and sharing content,

and joining groups. The system combines the functionalities of both traditional PHRs

and common social networks in order to promote health awareness and engage users.
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Fig. 2.2. Three Tier Architecture

Fig. 2.3. Hypertension Condition-Based
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Fig. 2.4. Hypertension

The middle tier manages information flow between the presentation tier and the

data management tier. This tier handles the mapping from the event-based XML files

of the EHRs to the condition-based JSON files. In addition, JSON files retreived from

other health care providers or external devices are also mapped into the condition-

based data model as shown in Figure 2.2. Currently, the mapping is done manually

by the user. Future work will investigate automating this process. The mapping

begins when the user adds a new condition. The interface will then prompt the user

to establish the relationships between the extracted files and the given condition. The

middle tier is also responsible for connecting a given person’s P2HR to the P2HRs of

other individuals belonging to the person’s sub-network. The sub-network is defined

by the user and identifies the other peers from the general network that the user

would like to communicate with.

The third tier is the data management tier. This tier is responsible for storing

and retrieving information from the back-end NoSQL database. Each document in

the database includes information related to a given disease condition. An exam-
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ple of a hypertension document is shown in Figure 2.3 which is converted from the

hypertension xml file shown in Figure 2.4.

Information is passed between the three tiers (i.e., Presentation Tier, Middle Tier

and Data Management Tier) by using a JSON string format. The P2HR data model

presented several challenges related to data extraction, mapping and management.

These challenges and proposed solutions are discussed in the next sections.

2.1 Communication Model

The proposed framework is based on a distributed architecture which consists of an

index server and several nodes. This architecture is shown in Figure 2.5. The index

server collects information from the peers, such as IP address, user identifiers and

user connections. It then distributes this information to other nodes in the network

as needed. The index server has two main functions. It acts as a lookup table and

controls access authorization. The peers also have two main functions. The first is

to store and distribute data and the second function is to send requests to the index

server.

There are two widely used communication models: the centralized client-server

model and the distributed peer-to-peer (P2P) model. In the client-server model, the

server handles requests from all the clients placing the burden of computing power and

data management on the server [24]. This centralized access and data management

is a key advantage in the client-server model. The disadvantages include a single

point of failure and the increasing cost associated with processing a large number of

requests from the clients.

The distributed communication model consists of nodes that cooperate to service

each other’s requests. Typically, all the nodes in a peer-to-peer (P2P) network have

the same privileges and roles. In [25], the authors argue that the major advantages of

P2P networks are improved scalability, low cost infrastructure and improved resource
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Fig. 2.5. Communication Model

aggregation. There are three variations of P2P networks: Unstructured Network,

Structured Network, and Hybrid Network.

Unstructured P2P networks do not have a central entity in the network and all

peers are the same. In this type of network, data will travel through other peers to

reach its destination. Examples of unstructured P2P networks include the file sharing

applications Gnutella [26] and FreeNet [27]. The advantage of this network is that its

scalability is not limited by a central management node. However, as stated in [25],

this increased scalability is at the expense of a reduced level of information validity

since any node is allowed to participate in the network.

Structured P2P networks organize the nodes in a tree structure where leaf nodes

have to rely on their parent nodes in the tree to communicate with other nodes. Bit-

torrent [28] is an example of a structured P2P network. One advantage of structured
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P2P networks over unstructured networks is the ability to trace messages back to

their original sender since the nodes are organized according to a specific tree. The

disadvantage to this network; is the same as the unstructured network, that being a

reduced level of information validity.

The Hybrid P2P network is the third type of distributed communication model.

This model is a combination of the client-server and the P2P architectures. In the

Hybrid P2P model an index server is used as a centralized lookup table for the nodes

in the network. Napster [29] is an example of a hybrid P2P network. It uses a

centralized cluster of index servers that maintain indexes for the information in the

network. Each peer is assigned one of the index servers in the cluster. When a given

peer wants to exchange data with another peer, it will request the IP address of the

target peer from the assigned index server. The two peers can then exchange data

directly [29].

The hybrid P2P network offers additional security features compared to the previ-

ous two types of P2P networks. Indeed, the index server can be used to authenticate

each peer. However, this advantage comes at the expense of introducing a single point

of failure in the network which may be mitigated through a cluster of index servers

as used in Napster.

The proposed system is based on the hybrid P2P communication model and has

two core processes: sub-network initialization (Figure 2.6) and information exchange

(Figure 2.7). To create a sub-network, each user has to connect with a target peer.

The sub-network initialization starts with peer A finding peer B using some unique

identifier (i.e. email address, name, etc.) then requesting B to join his/her sub-

network. In order to execute this process, peer A sends a request message to the

index server. This request message contains peer B’s unique identifier. The index

server uses this identifier to lookup peer B in its local database. The index server will

also issue an outstanding sub-network request to peer B which can be either accepted

or declined. If the request is accepted by peer B, the index server will update each of

the peer’s sub-network and send the updated sub-network information to both peers.
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Fig. 2.6. Sub-Network Initialization

The second process is the information exchange process and consists of sharing

and exchanging health information between peers. The process starts with peer A

requesting communication with peer B through the index server following the same

steps used in the previous process. When the index server receive this communication

request, it will first use the information in the message to check whether or not peer

B is already a member of peer A‘s sub-network and if peer B is active. If both of

these conditions are true, the index server notifies peer B of the request and sends

the IP address of peer B to peer A. In the future, this step can be used to incorporate

security features ensuring that each peer is communicating with trusted and known

peers. Once peer A has the IP address of peer B, it can establish a TCP connection

and exchange data with the target peer.
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Fig. 2.7. Information Exchange

2.2 Data Model

The data model defines the structure of the data being exchanged and how this

data is stored. Traditionally, data is stored in relational databases for most commonly

used information systems. These relational databases consist of a collection of tables.

A table in a relational database is made up of rows and columns where a row can

be seen as an object (i.e., person, medicine, etc.) and a column is an attribute of

the object (i.e., height, dosage, etc.). Relational databases are suitable for structured

data.

The emergence of semi-structured and unstructured data led to a new data model:

NoSQL. NoSQL databases can be classified into different categories: document-based,

key-value, graph, tabular, etc. [30]. In this thesis, a document-based NoSQL database

is used. Data is stored in collections of documents. A collection is the counterpart
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of a table and a document is the counterpart of a row in a relational database.

NoSQL databases led to improved scalability and improved performance compared

to relational databases because they can accommodate unstructured data and avoid

the strict consistency rules imposed by relational databases [31].

The document-based database used is MongoDB [32]. MongoDB differs consider-

ably from a relational database. For instance, there are no primary or foreign keys.

Instead, documents are connected using an objectID which is a unique identifier to a

document that is populated whenever a document is inserted into the database.

The data management tier in the peer application contains databases for each

person represented in the user’s sub-network (as shown in Figure 2.8). Each database

is identified by the user’s uid and is split into two sections event-based and condition-

based data. The documents that are event-based correspond to a single event and are

stored in the collection associated with the event type. The left hand side of Figure 2.8

shows the collections Encounters and Vital Signs. For the condition-based data, there

is a single collection for each person. Whenever information is exchanged between

peers, the recipient will store the senders’ data locally in his/her own database. The

documents in the collection will each refer to the sender’s disease condition. The

condition document contains multiple arrays, one for each event type (i.e. Encounter,

Vital Sign, etc.). The arrays are tagged with the standard code that connects it to

the instances related to the condition. These codes come from the event-based data

which is defined when extracted from the EHR. In traditional EHRs and PHRs, the

event-based data is stored in a relational database and is structured according to each

event (e.g., encounter, lab result, medication) where each event is associated with a

table and the rows in the table are instances of the event. In the proposed system,

the event are also stored based on the event type as in the traditional PHR. However,

the proposed system allows for an event to be referenced by multiple conditions.

The health records in the proposed PHR are initially stored in the event-based

collection until the patient or doctor associates the specific event with a condition.

This is accomplished through an interface that allows the patient or doctor to drag and
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Fig. 2.8. Example of Collections in the PHR

drop events to the corresponding condition. Future work will investigate automating

this step.

The records that the user uploads are extracted from an EHR. When a health

record is retrieved from an EHR, it is split up by event (e.g., Encounter, Procedure,

Lab Result, etc.). Currently, there are 15 components represented in the system

where each component corresponds to an equivalent component in the Blue Button

XML file (Figure 2.9). For each of these components a data structure is created and

populated with the extracted data which is obtained by parsing the XML file. The

structure of a Blue Button document is in the CDA format as shown in Figure 2.9.
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Fig. 2.9. CDA Components

The CDA document can be split up into two main sections: the header and the

body. The header of CDA document is the first of the 15 components and includes

the information surrounding the patients, the encounters, the providers, and the

authenticity of the document [33]. All of this data is static and will rarely change.

The information in the header will not have any relationship with any condition.

Therefore, it will not be represented in the condition-based collection of the proposed

system. This information is important when exchanging health data with EHRs

as these EHRs use it to distinguish between patients. For this reason, the header

maintains its format in the associated collection of the proposed system.

The body of the CDA document is composed of 14 components. The structure

of the CDA document and its components are shown in Figure 2.9. Each component

in Figure 2.9 is also split up into the same two sections: the header and the body.
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Fig. 2.10. CDA Observation

The header stores the information concerning the respective component. It mainly

includes the standard coding system that is used to reference the component. The

body of the component stores the values related to an event as well as the information

surrounding the event. The structure of an event is shown in Figure 2.10. The

event contains the coding standard used to identify the event. Figure 2.10 is for a

Chest X Ray and the standard used, in this case, is SNOMED-CT which is stored in

the ”code” element. This portion of the body will be called the observation and is
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included in all components. For the procedure component it is called the procedure,

but in most other components it is labeled as observation. The observation will

also store measurements if necessary. For instance the observation portion for Body

Weight will contain a weight and the unit that represents the weight (pounds, grams,

stones, etc.). The observation portion will also contain more information depending

on the component. Figure 2.11 shows a portion from the Procedure component

which includes information about the performer or the doctor that performed the

procedure. Figure 2.12 shows another portion from the Procedure component which

contains information about the health care provider. The rest of the components have

similar structure and include the previously mentioned segments or other segments.

For instance, some observations include an additional segment called Product. This

segment stores information on a given product used by the patient and it is related to

the Medications component. An example of this segment is shown in Figure 2.13. All

of the example CDA documents are from the Blue Buttons implementation guide [4].

Inserting the CDA documents into the MongoDB database begins by converting

the documents to JSON. The JSON format of the chest x-ray observation is shown

in Figure 2.16. Each observation will be in an array, where each member of the array

will be translated to a document. Once the data is converted to JSON, a collection

is constructed for each component and each observation becomes a document in the

corresponding collection. The structure of the observation will remain the same in

the database. The headers of each component are uniform across all patients as they

are used to distinguish between components within the document. For this reason

the headers can be discarded as the values can be added to an XML file when the

health records are exchanged.

The condition-based collection of the data management tier is structured dif-

ferently from the event-based collections. A user’s application may store multiple

databases, one for each person (e.g., the individual, a parent, or a child) each of these

databases contain the condition-based collection of represented person as well as the

event-based data that is represented in the condition-based collection.
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Fig. 2.11. CDA Performer

Each user (i.e., person) is associated with a unique identifier (uid). Furthermore,

each document in a condition-based collection is specific to one disease condition. It

is referenced by a unique identifier that corresponds to the document type (cuid).

The combination of uid and cuid are used by other collections and documents to

reference any document. For instance the uid identifier can be used to connect two

family members. The structure of a document in P2HR contains categories similar

to those found in Blue Button+ (e.g., lab results, medications, vital signs).

Instead of storing the actual data in the condition-based collection of the database,

a different approach is used. The condition-based data is populated with references

to the corresponding events that are located in the event-based collections of the

database. This is shown in Figure 2.10. The process uses the corresponding code

to reference the events that are related to the condition. The coding standard used
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Fig. 2.12. CDA Participant

depends on the component as each component may use a different standard. For

instance, the medications component uses RxNORM. The coding system used by the

component can be found in the code element of the original CDA document from

Figure 2.14 under the key codeSystemName. This approach is possible because each

code is unique and will be present in all instances of an event. There are three main

reason why the data is only stored in the event-based collections.

• The event may be related to several conditions: For example, a patient’s vital

signs are associated with nearly all conditions. In order to avoid replication by

all conditions, the event is stored in a single location and then referenced.
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Fig. 2.13. CDA Product

• The event may not relate to any conditions: For example, personal information

like phone number, address or name are not related to a condition.

• Reduces the complexity of the translation between the two different data mod-

els: Since the condition-based data model is unique to the proposed system,

every time a user exchanges records with an EHR the record will have to be

converted back to the original event-based data model. The proposed cross-

referencing mechanism avoids the need for a translation during each exchange.

The proposed data model is also efficient because it simplifies the queries used to

retrieve relevant information from P2HR. For example, for a patient with diabetes

the patient’s body weight will be associated with the diabetes disease condition. This

reading would be collected many times throughout the patient’s lifetime and a new
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Fig. 2.14. CDA JSON Format for Chest X-Ray

document is created in the Vital Signs collection for each reading (Figure 2.15). Each

body weight reading will have a different objectID. Instead of storing all of these

objectIDs in the condition-based collection, the system only stores the code for body
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Fig. 2.15. Two Body Weight Readings

weight. A single query can then be used to retrieve all of the body weight readings.

Figure 2.15 shows two different body weight readings from two separate days, each has

a unique id and the same LOINC code. By using the LOINC code as a reference for

the body weight in the diabetes document, the relationship between the two readings

can be retained while still treating them as separate events. Another advantage to

using the code of the event as a reference rather than the document objectID is that

the coding standard is universal. Therefore, the relationships that a given user defines

between his/her condition and events can be applied to another user’s condition-based

data. For instance, a doctor could define the relationship for one patient’s condition

and then apply those same relationships to the rest of his/her patients. The data will

obviously be different but all of the events will use the same coding standard. The

doctor will have to actively choose when this relationship can be used as a template

as in few cases conditions can vary from one patient to another. The most common
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example of this is medication since some medications can be used to treat multiple

conditions. Finally the proposed approach can also help with the automated mapping

of event-based data to the condition-based data model by using a learning algorithm

to classify the events.
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3. SYSTEM IMPLEMENTATION

This chapter describes the implementation of the proposed P2HR system. The imple-

mentation covers the data flow including how health records are received, processed,

and stored. Particular emphasis is placed on the mapping from the event-based to the

condition-based data model. The implementation of the underlying communication

model for the proposed framework is also described in this chapter.

3.1 Data Model

Figure 3.1 displays the flow of the data within the P2HR system. Two types of

data are handled by the system. The event-based data and the condition-based data.

Both types of data are stored in a single database on a peers local machine. There can

be multiple databases on a local machine, each containing the information associated

with a single user. This can be useful for storing a relatives health information.

However, it is mainly used by health care providers to store all of their patient’s

health records.

Data extracted from an EHR is either in XML or JSON format (Figure 3.1).

Blue Button data is in XML and FHIR can be either XML or JSON. The Process of

converting the event-based health records from an EHR to the proposed condition-

based health records starts with extracting the data from the EHR. The extraction of

information from the source EHRs is achieved through Blue Button+ [4] or FHIR [5].

As mentioned previously, Blue Button+ returns health records in a machine readable

standard XML file [4] which is partitioned into multiple components including vital

signs, encounters, immunizations, medications, etc. An example of Blue Button file

is shown in Figure 3.2. The first indentation in the XML file is all the information

related to the code of this particular event. In this case the LOINC standard is
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Fig. 3.1. Data Flow

used to define a code for Intravascular Systolic (Hypertension). The remainder of the

XML file contains the measurement, unit, and date of the reading. The XML file is

converted to JSON format so the record can be parsed and mapped to the proposed

P2HR data model. This parsing is done in the middle tier using goxml2json [34],

an open source Go Package. This package takes the XML input and returns the file

in JSON format. However, in order to preserve bidirectional compatibility, the Blue

Button XML file is not discarded. It is stored in the event-based collections of the

database and its relation to the transformed data file is tracked. This facilitates the

extraction and delivery of health information from the P2HR back to an EHR in the

event-based format. Algorithm 3.1 shows the process of converting the XML file to

JSON format.
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Fig. 3.2. XML Vital Sign

Function readEMR(HR xmlfile)

1 json,err = xmltojson.convert(HR)

2 if err != nil then

3 return nil, err

end

4 pushEvent(json)

5 return nil

Algorithm 3.1. Converting XML to JSON

In order to parse the incoming information, Golang structures were built for each

component in the Blue Button+ XML file. Figure 3.3 shows an example P2HR

JSON structure that corresponds to the XML example for Vital Signs from Figure

3.2. As mentioned previously, each component contains multiple entries. An entry
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is an instance that is related to the corresponding component. Some instances are

recorded many times over a patient’s lifetime (e.g., blood pressure) and each instance

is a unique entry in the component. Each of these instances are stored in their

associated document within the respective collection. The structure to each document

is unique to the component.

One of the difficulties of the conversion from XML to JSON is that XML can

store multiple data types in an array, whereas in Golang this is not allowed. To cir-

cumvent this limitation, arrays are defined as JSON raw messages [35] with deferred

decoding. These arrays of json.RawMessages are then unmarshaled as an array of

interfaces. The latter process allows the mapping of array values to their correspond-

ing variables. Building the Golang data structures internal to the proposed P2HR

was straightforward, but time consuming. The process of building the golang structs

was tedious because of the amount of detail that is present in each of the components

extracted from the EHR. For instance, Blue Button has 15 components including the

header. All the components have a similar structure, but they are not exactly the

same. For example, Figure 3.2 is the structure for Vital Signs which is a relatively

simple event when compared to a Procedure (Figure 3.3). The Procedure will have

the same information as Vital Signs, excluding a value and unit as there is no mea-

surement or reading for a procedure. In addition it also includes more information

such as provider and participant.

Extracting health records from EHRs using FHIR follows the same procedure

as Blue Button. However, unlike Blue Button, FHIR gives the user the option of

extracting the records in XML format or JSON format. If the user uploads an XML

FHIR document, then the conversion to JSON is performed. However, if the data is

in JSON format then Algorithm 3.1 can be skipped. The main difference between

FHIR and Blue Button is that FHIR is more modular. There are more components

associated with FHIR and Golang structs have to be developed for these additional

components in order to properly parse the health records.
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Fig. 3.3. CDA Observation

Once parsing is completed, Algorithm 3.2 is called in order to upload the records

into the MongoDB database, the back-end of P2HR. MGO [36] is used to import and

export documents into/from MongoDB. It is an open source driver that allows access

to the database through a port. Functions in MGO are available to match the Mongo

server functions query, insert, update, etc.

Algorithm 3.2 begins by connecting to the MongoDB database using mgo.Dial

(localhost). The MongoDB server must be running in the background. The for
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Fig. 3.4. Data Structure for Vital Sign in Golang

loop iterates through each event type (i.e., Vital Sign, medication, lab results). The

structure corresponding data is shown in Figure 3.4. Each event contains an array of

structures where each instance in the array is a specific event. Finally, Algorithm 3.3 is

invoked. It takes the array of event instances and the collection coll as variables. The

Insert function inserts each instance of the event into the corresponding collection.

The process of converting event-based data is currently done by the user/patient

or their health care provider. The interface of the P2HR system allows users to

add new conditions then drag and drop instances of events to the most appropriate

condition.

In order to display the data, it must first be extracted from the database. The

process of extracting the event-based data is described in Algorithm 3.4. This algo-

rithm begins by connecting to the MongoDB server. In the for loop, each collection



33

Function pushEvent(push jsonfile)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 for event in push do

5 d = session.DB(event-based).C(event.Name)

6 Insert(event,d)

end

7 return nil

Algorithm 3.2. Push Event-Based Health Record into MongoDB

Function Insert(event []jsonfile, coll Collection)

1 for instance in event do

2 coll.Insert(instance)

end

3 return nil

Algorithm 3.3. Inserting Multiple JSON Files

is accessed and then a query is executed to retrieve every event since there can be

multiple occurrences of the same event. For example, a vital sign like blood pres-

sure is measured often and each measurement is stored in a document. However,

all associated documents have the same code. The drag and drop function would

be time consuming and redundant if the user had to execute it for every individual

blood pressure reading. Therefore, using the code from the coding standard allows

the user to establish a relationship between a condition and all of the results. Using
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Function pullEvent()

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 for event in database do

5 d = session.DB(event-based).C(event)

6 err = d.Find().One(&result)

7 if err != nil then

8 return nil, err

end

9 toHTML(event,result)

end

10 return nil

Algorithm 3.4. Extracting Event-based Data from MongoDB

this approach, a single query can be used to return all related events to the given

code and these events are then inserted into the result array and used as a parameter

for the function toHTML(). The toHTML() function takes the event and all of the

documents associated with the event as variables. The toHTML() will then display

all of these events allowing the user to establish the relationships between events and

conditions.

When a user inserts an event into a condition using the drag and drop function

of the system, Algorithm 3.5 is called. The data that is fed into Algorithm 3.5 and

includes the condition name and the information surrounding the event, specifically
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Function convertEvent(push jsonfile)

1 condition = pullCond(cond)

2 update = append(condition.cond, insert)

3 pushCondition(update)

4 return nil

Algorithm 3.5. Converting Event-Based Data to Condition-Based

the code, coding standard and event type (Medication, Lab Result ...). This data is

retrieved from the event-based collections in the database. Using these variables, the

function extracts the document that relates to the corresponding condition from the

condition-based collection in the database as shown in Algorithm 3.6. This algorithm

is similar to Algorithm 3.4, but accesses the condition-based collection. The condition

name is used as the query variable in the Find function. The Find function will

subsequently return a single document similar to Figure 3.4. Algorithm 3.5 resumes

when the function updates the condition by appending the specific event code to the

corresponding event array.

Fig. 3.5. Diabetes Data Structure

The final step takes the updated condition document and uploads it into the

condition-based collection. This process is similar to uploading the event-based data

as shown in Algorithm 3.7. The algorithm connects to the MongoDB server as in

Algorithm 3.3. However, it will access the user‘s condition-based collection. The
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Function pullCond(cond string)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 d = session.DB(Condition-based).C(me)

5 err = d.Find(bson.M”Condition”:cond).One(&result)

6 if err != nil then

7 return nil, err

end

8 return result

Algorithm 3.6. Extracting Condition-Based Data from MongoDB

Function pushCondition(push jsonfile, collection string)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 d = session.DB(Condition-based).C(collection)

5 d.Update(bson.M”Condition”:push.Condition, push)

6 return nil

Algorithm 3.7. Updating Condition-Based Data into MongoDB

other difference is that it does not insert the document so as not to duplicate records.

The algorithm calls the Update function which takes a query and the JSON file

that will replace the extracted record. The Update function is built into the MGO
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driver. The query is the same as Algorithm 3.6 and the JSON file that will replace

the extracted record is the new updated document. It deletes the document found

through the query and inserts the new file. If the query does not return a document

then the update function works the same way as an insert.

Function peerExchange(push []jsonfile, user string)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 for x in push do

5 pushCondition(x,user)

end

6 return nil

Algorithm 3.8. Inserting Condition-based Heatlh Records into MongoDB

The above algorithm is also called when P2HR users share their health records.

The condition-based data that a peer might receive will already be in the correct

format, as it must be coming from another P2HR. The data received will consist of

multiple collections. In order to store these collections into MongoDB, Algorithm 3.8

is called which will in turn call Algorithm 3.7 multiple times, once for each document

received. Algorithm 3.7 is called with the variables doc and user, where doc is the

document that needs to be uploaded and user is the identifier of the person who owns

the documents. In the case where a person is uploading his/her own health record,

user will be the username of the owner of the PHR. When the data is uploaded for

another person in the sub-network, user is this person’s username. The user variable

is important because the documents need to be placed into a different database based

on this variable. As mentioned previously, the update function in Algorithm 3.7 will
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still work even if the document does not already exist. If the query returns nil then

the update function will work as an insert function.

3.2 Network Processes

Fig. 3.6. Network Processes

There are two types of network processes involved in the proposed system: sub-

network initialization and information exchange. Sub-network initialization is the

process by which two peers join each other’s sub-networks. Information exchange is
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the process by which two or more peers that belong to each other’s sub-networks send

and receive information. Figure 3.6 shows the flow of function calls concerning the

network processes and this section describes the underlying functions as executed by

the index server and the peers.

3.2.1 Index Server

Algorithm 3.9 describes the functions of the index server. The server is constantly

running awaiting for a peer to send them a request. The structure of a message

received by the server is shown in Figure 3.7. The most important part of the Message

is the MesType which indicates the function the server will have to call to process the

message. Currently there are three MesTypes :

• MesType 0 is the first step of the sub-network initialization process and corre-

sponds to the SubNetRequest function. The SubNetRequest function triggers a

local database search for the target peer. Subsequently, an invitation to join

the source’s sub-network is sent to the target peer.

• MesType 1 continues the sub-network initialization and corresponds to the Sub-

NetResponse function. This function receives the response from the target peer.

Depending on the response (i.e., accept or decline), the server will send a mes-

sage to both peers with their updated sub-networks.

• MesType 2 indicates an information exchange request and corresponds to the

Connect function. This function triggers a local database search in order to

verify the target peer’s membership to the source’s sub-network. Depending on

whether or not the target is a member of the source’s sub-network, the server

will send the communication information of each peer to their counterpart.

The message data type also contains the uid of the target peer and the source node

information. The data structure associated with a node is shown in Figure 3.7. The

Node stores the name, uid, and IP address of a peer. The other part of the message
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is the Utility variable which is a json.RawMessage. The json.RawMessage data type

allows the message to contain different data depending on the message type. This is

used because the data being received has to be flexible so that different information

can be stored in the variable and parsed according to the MesType. This will also be

useful in the future to accommodate additional request types.

The ServerListen function is the initial function executed by the server and is

shown in Algorithm 3.9. Since all network processes are managed by the server, this

function executes continuously in order to receive requests from the peers. The first

three functions called by the index server establish a connection and then parse the

data into a message type. Based on the message type, the relevant function is invoked

and the server continues to listen for requests.

Fig. 3.7. Message Data Structure

Fig. 3.8. Node Data Structure

Algorithms 3.10 and 3.11 describe the steps involved in sending and receiving

messages. Algorithm 3.10 shows the send process. The underlying function takes two

arguments: the Message that is to be sent and a string that contains the IP address

of the target. The send function first dials the target node with the Dial function
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Function ServerListen()

1 ln = net.Listen()

2 conn = ln.Accept()

3 Message = bufio.NewReader(conn).Read()

4 if Message.MesType == 0 then

5 SubNetRequest(Message)

end

6 if Message.MesType == 1 then

7 connect(Message)

end

8 if Message.MesType == 2 then

9 SubNetResponse(Message)

end

10 return nil

Algorithm 3.9. Index Server Initial Receive

from the Golang library using the target node’s IP address. The Dial function will

establish a TCP connection with the target. The next step takes the Message and

marshals it as a JSON file by using the Marshal function from the Golang library.

Finally, the newly created JSON file is sent to the target node by invoking the encode

function which uses the conn variable that was obtained using the Dial function.

Again, the reason the message is marshaled is because custom data types cannot be

sent and received in Golang.

The Receive function assumes that a connection with a source has already been

established and accepted. The function takes the connection as an argument, it uses

the connection to create an encoder the same way as the Send function. Then uses
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Function Send(Message Message, target String)

1 conn, err = net.Dial(”tcp”, target)

2 if err != nil then

3 return nil, err

end

4 j = json.Marashal(Message)

5 json.NewEncoder(conn).Encode(b)

6 return nil

Algorithm 3.10. Send Function

Function Receive(conn Connection)

1 j = new []bytes

2 result = new Message

3 json.NewEncoder(conn).Decode(&j)

4 json.Unmarashal(Message, &result)

5 return result

Algorithm 3.11. Receive Function

the Decode function to extract the message as an array of bytes. This is followed by

the Unmarshal function which is the counterpart of the Marshal function mentioned

previously. The Unmarshal function takes two arguments: an array of bytes and an

empty structure that will house the new data. The final step consists of returning

the result which is a Message struct that contains the data extracted from the JSON

file that was received from the source node.

If the MesType is 0, then the source is trying to add a peer (target) to his/her

sub-network. The SubNetRequest function is shown in Algorithm 3.12. The function

begins by extracting the relevant information of the target peer from the index server’s

lookup database using the target’s uid included in the message. The return value of
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the Find function is of type Node and is populated with the data that satisfied the

query. Using the IP address from this Node, the index server will send a message to

the target peer. The message sent to the target is an exact duplicate of the message

received from the source peer, except the Source will be the extracted Node and

the Target uid will be the original Source’s uid. This is because the target node only

needs the Source’s uid. Once the message is sent, the server will resume the execution

of the ServerListen function until a new message is received.

Function SubNetRequest(Msg Message)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 d = session.DB(Index).C(Nodes)

5 err = d.Find(bson.M”uid”:Msg.Target uid).One(&result)

6 if err != nil then

7 return nil, err

end

8 Msg.Target uid = Msg.Source.Uid

9 Msg.Source = result

10 Send(result.Ipaddr, Msg)

11 return nil

Algorithm 3.12. Sub-network Initialize Request

If the MesType is 1, then the sub-network initialization process continues and

the SubNetResponse function is called (Algorithm 3.13). The message will contain a

boolean value which is true if the target accepted the invitation and false otherwise.

The boolean value will be contained in the Utility variable. The message will originally
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be in a Json.RawMessage format until the MesType is known to be 1. The Utility

variable will then be parsed as a boolean value using the the unmarshal function. If

the response is true, the index server will send each node’s updated sub-network to

the source and target nodes, respectively. This is performed by calling the update

function. The update function takes two uids and finds the sub-network of the first

uid and adds the second uid to it then returns the updated Node. The message will

be sent to each peer and will contain the peer’s updated sub-network consisting of an

array of uids. If the request is denied, the index server will notify the source node.

Function SubNetResponse(Msg Message)

1 var result bool

2 json.Unmarashal(Message.Utility, &result)

3 if result then

4 Send(Msg.Source.Ipaddr,Update(Msg.Target uid))

5 Send(Msg.Ipaddr,Update(Msg.Source.Uid))

end

6 else

7 Message.MesType =4

8 Send(Msg.Ipaddr,result)

end

9 return nil

Algorithm 3.13. Sub-network Initialize Response

If the MesType corresponds to an information exchange, then Algorithm 3.9 will

invoke Algorithm 3.14 which includes the connect function. The connect function

begins by invoking the VerifySubNet function which will return a boolean depending

on whether or not the target peer is a member of the source’s sub-network. This
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function is shown in Algorithm 3.15. The VerifySubNet function works by accessing

the server’s local database then extracting and then querying the database for the

Node of the Source. Then the Source’s sub-net is iterated upon in order to see if the

Target uid is contained in the sub-net. If this is true, the index server will extract

the information of the target, as in Algorithm 3.12. The algorithm will then send the

source node’s IP address to the target node and vice versa. The message that is sent

will stay the same as it was received, except the Node in the message will be the Node

corresponding to the peers counterpart (i.e., The Source receives the Targets Node

and vise versa). If the target is not a member of the source’s sub-network, then the

index server will notify the source. The message will be a duplicate of the original

request made by the source except with a MesType of 3.

3.2.2 Peer

This section describes the two network processes from the peer’s prospective.

Algorithm 3.16 begins with the peer listening for messages from the index serve. The

peer will always be listening unless it is sending a request to the index server. The

peer will only listen to the index server, unless it received notification that a member

of their sub-network wishes to connect. The messages that the peers receive are

slightly different from those that are received by the index server. The structure of a

message remains the same as in Figure 3.7. However, a new message type is added.

These messages are defined as follows:

• MesType 0: This message corresponds to a sub-network initialization message

and will only be received by the target peer. It will trigger a decision on whether

or not the target wants to accept the invitation to join the sub-network initiated

by the source. The decision is then sent to the server.

• MesType 1: This message corresponds to the second part of the sub-network

initialization function and will trigger an update of the user’s local database if

the target peer accepts the invitation to join.
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Function connect(Msg Message)

1 ch = VerifySubNet(Msg.Target uid, Msg.source)

2 if ch then

3 session,err = mgo.Dial(localhost)

4 if err != nil then

5 return nil, err

end

6 d = session.DB(Index).C(Nodes)

7 err = d.Find(bson.M”uid”:Msg.Target uid).One(&result)

8 if err != nil then

9 return nil, err

end

10 Send(result.Ipaddr,Msg)

11 Msg.Source = result

12 Send(Msg.Source.Ipaddr,Msg)

end

13 else

14 Msg.MesType =4

15 Send(Msg.Source.Ipaddr)

end

16 return nil

Algorithm 3.14. Server Information Exchange
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Function VerifySubNet(target string, source string)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 d = session.DB(Index).C(Nodes)

5 err = d.Find(bson.M”uid”:source).One(&result)

6 if err != nil then

7 return nil, err

end

8 for x in result.sub-net do

9 if x == target then

10 return true

end

end

11 return false

12 return boolean

Algorithm 3.15. Check Sub-Network

• MesType 2: This message corresponds to the information exchange process.

The peers process this message depending on whether they are the source or

the target: The target will listen for the source IP address and the source will

establish a TCP connection with the target.
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Function PeerListen()

1 ln = net.Listen()

2 conn = ln.Accept()

3 Message = Receive(conn)

4 if Message.MesType == 0 then

5 makeDecision(Message)

end

6 if Message.MesType == 1 then

7 update(Message)

end

8 if Message.MesType == 2 then

9 establishConn(Message.Source)

end

10 else

11 return

end

12 return nil

Algorithm 3.16. Peer Response

• MesType 3: This message is used when any of the processes fail. Failure sce-

narios include a) when the target declines to join the source’s sub-network, b)

when the target is not a member of the source’s sub-network or c) when the

target is not active.
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If the message received by the peer is of type 0 it means that the peer is the target

of a sub-network initialization process. This message will trigger the makeDecision

function shown in Algorithm 3.17. The function begins by prompting the peer to

make a decision on whether or not it would like to join the source‘s sub-network.

As mentioned on the server side of this process, the response will be in the form of

a boolean value true if accepted and false otherwise. The next step is to alter the

message before it can be sent back to the server. The MesType is changed to 1 which

will notify the server that this is in response to a sub-network initialization request.

The response boolean value is inserted into the Utility variable and the message is

sent to the server.

Function makeDecision(Message Message)

1 Response = decide(Message.source)

2 Message.MesType = 1

3 Message.Utility = Response

4 send(Server, Message)

5 return nil

Algorithm 3.17. Response to Sub-Network Initialization

The update function is invoked if MesType is 1 as shown in Algorithm 3.18. This

function is the same as the one used by the server when updating sub-networks.

Every peer will have a collection in their database that contains personal information

including the user’s sub-network. The function connects to the peer’s local database

and uses the Find function to extract the personal document. The next step consists

of updating the sub-net variable to the new sub-network received from the server in

the message. Finally, the peer uses the MGO function Update to insert the resulting

structure into their local database.

The establishConn function is triggered when MesType is 2 as shown in Algorithm

3.19. The establishConn function encompasses the entire information exchange pro-

cess of the peers. This function is split into two components one that is executed by
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Function update(Message Message)

1 session,err = mgo.Dial(localhost)

2 if err != nil then

3 return nil, err

end

4 d = session.DB(Me).C(personal)

5 err = d.Find(bson.M”uid”:Me).One(&result)

6 result.sub-net = Message.Source.Sub-net

7 err = d.Update(bson.M”uid”:Me, result)

8 if err != nil then

9 return nil, err

end

10 return nil

Algorithm 3.18. Update Sub-Network

the source and the other is executed by the target peer. The source is the peer that

establishes the TCP connection. The source will begin the execution of the function

by extracting the data related to the disease condition he/she wants to send to the

target. This data could be the entire health record, a single condition, or specific

document related to the condition. Using the condition document, the appropriate

data is extracted. As previously mentioned, the condition document does not store

any data values related to the condition. It only references the data by using the

appropriate code. These codes are used to query the event-based collections for the

actual data related to the condition. For each component, a query is executed to

find all of the documents that contain the codes mentioned in the query. The query

will return the comp variable which contains all of the documents associated with the
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condition. The comp variable is then appended to an array and this array is included

into the Utility variable of the Message which is sent to the target node.

The target node will execute the same Listen function that was executed in the

PeerListen function, except that in this case the node will only accept communication

from the source’s IP address which was received in the message from the server. The

restricted communication is a security measure so that the peers can only commu-

nicate with the server or with a verified peer. Once the target peer establishes the

connection with the source, the Receive function is invoked and returns the message

after it has been Unmarshaled. The target will use the source information to create a

new database or access a previously existing database that is labeled using the Uid of

the source. The target will then will access each collection and insert the related doc-

uments from the Utility array. Each variable in Utility is an array that corresponds

to a component (i.e., Procedure, Encounters, Vital Signs, etc.) each of these arrays

contains the documents that relate to the condition specified.

The final message type (MesType 3) will only be received by the original requesting

node. This message type is only received if the source was trying to add a peer to

their sub-network and the request was denied or if the target peer is inactive. This

message can also be received if during the information exchange process the target

peer is inactive or the target is not a member of the source’s sub-network.
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Function establishConn(Message Message)

1 if Message.Source = Me.IP then

2 session = mgo.Dial(localhost)

3 d = session.DB(Me).C(personal)

4 err = d.Find(bson.M”uid”:Me).One(&result)

5 for each component in result do

6 d = session.DB(Me).C(component)

7 err = d.Find(bson.M”code”:result.component).All(&comp)

8 Message.Utility = append(Message.Utility, comp)

end

9 Send(Message, Message.Target)

end

10 else

11 ln = net.Listen(Message.Source.IPaddress)

12 conn = ln.Accept()

13 Message = Recevie(conn)

14 session = mgo.Dial(localhost)

15 for each component in result do

16 d = session.DB(Message.Source.Uid).C(component)

17 err = d.Find(bson.M”code”:result.component).All(&comp)

end

end

18 return nil

Algorithm 3.19. Peer Information Exchange
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4. CONCLUSION

The main contributions of this research include the design and implementation of the

network architecture, the data model and the mapping from the EHR’s event-based

data model to the proposed condition-based data model. Implementing the system

did come with some challenges. For instance, there was a lack of available data to test

the system. Besides the example CDA document from Blue Button’s implementation

guide there were few other sources of test data. That being said had the mapping

been implemented using FHIR instead of Blue Button there would have been more

available sources of test data as there are multiple repositories filled with FHIR data.

The reason we did not implement the system using FHIR is because it was still under

development and is less usable for the average patient. Another challenge when

implementing the system was developing the data model. Originally the condition-

based data stored the objectIds of the event documents related to the condition.

However, when the system was completed it was found that querying the system

for each objectId was not only complex but also inefficient. The goal of the project

was to create a single system that contains all three of the functionalities described

in [8]. These functionalities include information collection, information exchange, and

information management. The resulting model allows the efficient review of data by

health providers and promotes the sustained mainstream engagement of patients.

In the future we would like the P2HR+ (our expanded version of P2HR) to as-

sess family medical records in greater depth, possibly finding relationships between

relatives. We would look at conditions shared by relatives, and identify similarities.

This functionality can help advance preemptive diagnosing.

We would also like to automate the process of mapping the traditional event-based

data model to the proposed condition-based data model. One way to accomplish this

is through an ontology that maps the events in the retrieved EHR record to their
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associated condition. Our ontology will be a network of multiple ontologies each

section of the ontology can focus on a specific portion of an EHRs health record (e.g.,

Medications, Encounters, Lab Results and etc.). The medical classifier ICD-10, which

is included in UMLS, contains information on thousands of conditions, symptoms,

and most importantly causes of diseases. We can use ICD-10 in the ontology to

identify the condition by using the symptoms. An ontology is appropriate because new

treatments, lab tests, and medications are continuously being introduced. Another

approach to automating this process is by applying a learning algorithm to our system.

The training set would be collected using the currently implemented drag and drop

approach. A neural network could then be applied to the training set and newly

created conditions could automatically be filled. Furthermore, these functionalities

can be used to replace the currently implemented drag and drop approach that maps

event-based to condition-based records.

Patient controlled health information is not a novel idea. It has been proposed in

numerous formats and phases, however widespread acceptance of PHRs has yet to be

obtained. Presentation and storage of information has remained constant through-

out many of these PHR iterations. It is important to thoroughly compare various

methods of PHRs before any adoption takes place. A condition-driven PHR architec-

ture organizes information in a much clearer format for both the patient and doctor.

This creates the beneficial features of increased patient-to-doctor communication and

involvement, and efficient diagnosis of conditions. The medical landscape is rapidly

growing. The healthcare community must continue to develop and consider new ideas

and approaches in order to handle the growing demands and needs.
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