
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Omar Seddeq Omar Yaqub

MODELING, ANALYSIS, AND SIMULATION OF TWO CONNECTED INTERSECTIONS USING
DISCRETE AND HYBRID PETRI NETS

Master of Science in Electrical and Computer Engineering

Lingxi Li

Yaobin Chen

Maher Rizkalla

Lingxi Li

Yaobin Chen 12/03/2012

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of Choose your degree

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

MODELING, ANALYSIS, AND SIMULATION OF TWO CONNECTED INTERSECTIONS USING
DISCRETE AND HYBRID PETRI NETS

Master of Science in Electrical and Computer Engineering

Omar Seddeq Omar Yaqub

12/03/2012

MODELING, ANALYSIS, AND SIMULATION OF TWO CONNECTED

INTERSECTIONS USING DISCRETE AND HYBRID PETRI NETS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Omar Seddeq Omar Yaqub

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2012

Purdue University

Indianapolis, Indiana

ii

To my father, mother, brothers, and sister.

iii

ACKNOWLEDGMENTS

I would like to recognize my advisor, Dr. Lingxi Li, for his unceasing assistance

since I started the Masters program at IUPUI. In particular, I greatly appreciate

his support on this thesis. I also want to thank the other members of my thesis

committee, Dr. Yaobin Chen and Dr. Maher Rizkalla for their comments and advice.

Additionally, I would like to thank my friend, David Johnson, for his assistance

formatting my thesis in Latex. Also, I am most thankful for all the feedback given by

the other members in Dr. Li research group, especially Dr. Maria Cabasino for her

encouragement and advice. Lastly, I am grateful for the assistance of Sherrie Tucker

and all other faculty and staff of the ECE department for which the completion of

this work would not be possible without.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1

1.1 Traffic Management Strategies . 1

1.2 Petri Net Modeling of Traffic Systems (Previous Related Work) . . 3

1.3 Thesis Contribution . 4

1.4 Thesis Organizing . 5

2 BACKGROUND ON PETRI NETS . 7

2.1 Definitions and Discrete Petri Nets Structure 7

2.1.1 Marking of Petri Nets . 8

2.1.2 Dynamics of Petri Nets . 9

2.1.3 State Equation of Petri Nets 12

2.2 Continuous Petri Nets . 13

2.3 Hybrid Petri Nets . 16

2.4 Timed Hybrid Petri Nets . 19

2.5 Conflict in Petri Nets . 25

3 HYBRID PETRI NET MODELING OF TWO CONNECTED INTERSEC-
TIONS . 27

3.1 Urban Traffic Network . 27

3.2 Single Intersection Structure . 28

3.3 Timed Petri Net Model of a Single Intersection 34

3.4 The Dynamics of Timed Hybrid Petri Net Model 39

3.5 Structure of Two Successive Intersections 42

v

Page

3.6 Timed Petri Net Model for Two Successive Intersections 43

3.7 Simulation Results . 46

4 DISCRETE PETRI NET MODELING OF TWO CONNECTED INTER-
SECTIONS . 52

4.1 Petri Net Model for a Single Intersection 53

4.2 Petri Net Model for Two Connected Intersections 59

4.3 Modified Binary Petri Nets . 61

5 CONCLUSION . 66

5.1 Summary . 66

5.2 Conclusions . 67

5.3 Future Work . 68

5.3.1 Modified Binary Petri Nets 68

5.3.2 Hybrid Petri Nets . 69

LIST OF REFERENCES . 70

vi

LIST OF TABLES

Table Page

3.1 Four phases of a signalized intersection. 33

3.2 Initial values used in simulation. 47

4.1 The state evolution of the Petri net model for a single intersection. . . 58

4.2 Marking evolution of Petri net model for two connected intersections. . 65

vii

LIST OF FIGURES

Figure Page

2.1 An unmarked Petri net. 8

2.2 A marked Petri net. 10

2.3 The reachability graph of a discrete Petri net. 11

2.4 A continuous Petri net. 14

2.5 The reachability graph for a continuous Petri net. 16

2.6 A timed hybrid Petri net. 21

2.7 Conflicts in Petri nets. 26

3.1 The structure of a single intersection. 29

3.2 Timed hybrid Petri net model of a single intersection. 35

3.3 Structure of two successive intersections. 42

3.4 Timed hybrid Petri net model of a road connecting two intersections. . 45

3.5 Simulation result for durations of phases. 48

3.6 Simulation results for vehicle queues at the western entrance of the inter-
section. 49

3.7 Simulation result for vehicle flow at the western exit. 50

3.8 Simulation result for vehicle flow in the connected road. 51

4.1 Petri net model for a single signalized intersection. 54

4.2 Block diagram of Algorithm 1 for capturing the state evolution of the Petri
net shown in Fig. 4.1. 57

4.3 Petri net model of two connected intersections. 60

4.4 A simple modified binary Petri net model. 63

viii

ABSTRACT

Yaqub, Omar Seddeq Omar. M.S.E.C.E., Purdue University, December 2012. Mod-
eling, Analysis, and Simulation of Two Connected Intersections Using Discrete and
Hybrid Petri Nets. Major Professor: Lingxi Li.

In recent decades, Petri nets (PNs) have been used to model traffic networks for

different purposes, such as signal phase control, routing, and traffic flow estimation,

etc. Because of the complex nature of traffic networks where both discrete and con-

tinuous dynamics come into play, the Hybrid Petri net (HPN) model becomes an

important tool for the modeling and analysis of traffic networks. In Chapter 1 a brief

historical summery about traffic systems control and then related work is mentioned

followed by the major contributions in this research. Chapter 2 provides a theoretical

background on Petri nets. In Chapter 3, we develop a HPN model for a single sig-

nalized intersection first, then we extend this model to study a simple traffic network

that consists of two successive intersections. Time delays between different points of

network are also considered in order to make the model suitable for analysis and sim-

ulation. In addition to HPN models, we also consider discrete Petri nets where their

modeling simplicity enables the characterization of the occurrences of all events in the

system. This discrete PN is particularly useful to give a higher-level representation

of the traffic network and study its event occurrences and correlations. In Chapter 4,

we build a discrete PN model to represent a traffic network with two successive inter-

sections. However, we find that the model leads to unbounded places which cannot

accurately reflect the dynamics of the traffic in terms of event occurrences. Hence,

we introduce the Modified Binary Petri nets (MBPN) to overcome the limitation and

resolve the confliction problem when we design our controllers. This MBPN model

is a powerful tool and can be useful for the modeling and analysis of many other ap-

ix

plications in traffic networks. Chapter 5 gives a summary for each chapter, provides

conclusion and discusses future work for both discrete and hybrid Petri nets.

1

1. INTRODUCTION

The traffic congestion problem appeared along with the evolution of car industry

in the 1960s. Since then, it has been getting worse especially in large and fast-

growing cities. Congestions in traffic systems lead to severe consequences such as

reducing the efficiency and safety of traffic systems, degradation of traffic network

infrastructure, and increasing the environmental pollutions. Therefore, system model,

analysis, simulating, control, and optimization of traffic networks have been studied

extensively [1].

1.1 Traffic Management Strategies

Back in 1960s, research regarding control and optimization of vehicles motilities

inside cities is known as traffic-signaling control strategy. It mainly depends on chang-

ing some parameters of traffic-signal with the objective to enhance the throughput

of a single intersection or a traffic network and guarantee the safety operation of the

traffic network. Generally, a specific performance index is chosen to be optimized

such as maximizing the number of vehicles that use the traffic network during a

deterministic time period, or minimizing and equalizing the queues lengths at the

intersections, such as the problem studied by Lei and Ozguner [2]. According to the

number of intersections considered, traffic-signaling control strategies are divided into

isolated strategies and coordinating strategies. It is obvious that isolated strategies

are those related to problems of controlling a single intersection while coordinating

strategies are applied to the problems of traffic networks (which consist at least of

two intersections and the roads connecting them). Furthermore, according to the

time response feature, traffic signaling control strategies are classified as fixed-time

and traffic-response strategies [1, 3, 4].

2

In fixed-time strategies, historical data and statistics of vehicles flow at specific

points in traffic network during deterministic time periods are used to solve a bunch

of mathematical equations (linear or non-linear) to determine the optimal values of

control parameters in order to optimize the chosen performance index. For single

intersection problems, splits (green light durations) and the phase plan (how many

phases shall be applied and what vehicle movements are allowed during each phase)

are the main controlling parameters. For traffic network problems, in addition to these

parameters, the offsets between intersections traffic light cycles are also considered.

Clearly, these parameters would be different for different chosen time periods because

vehicle behavior will not be the same; vehicle flow at a specific location in traffic

network is not the same during rush hours and off-peak time. The most known

fixed-time strategy is traffic network signal tool (TRANSYT) which first introduced

by Robertson [5]. In TRANSYT, vehicle travel time in a bounded zone of traffic

network and the number of stops are used as performance indices to be optimized.

According to Papageorgiou et al. [1], the first practical implementation of TRANSYT

leads to minimize vehicle average travelling time in a traffic network by 16% [1,3,5,6].

Instead of using historical data, responsive-time strategy is adopted based on real-

time measurements. The controlling process in responsive-time strategy is performed

through the continuous acquiring of measurements from upstream intersections induc-

tive loops and digital cameras, and sending them to a central computer for process.

Dynamic programming strategies are used to obtain the optimal values of splits and

offsets [7]. SCOOT (split cycle offset optimization technique) [8] is the most known

and usable responsive-time strategy. It is considered as the responsive-time version

of TRANSYT that was introduced by Robertson et al. [1, 3, 8, 9].

Recently, the traffic management problem has considered many other objectives

other than improving the vehicle mobility, for instance, saving gas and energy, reduc-

ing pollutions, etc. These problems are now addressed in the framework of intelligent

transportation systems (ITS), where a variety of objectives have been considered,

such as improving the mobility of special vehicles (such as public transportations

3

and emergency vehicles), reducing the environmental impact of traffic systems, and

minimizing the gas usage of vehicles.

1.2 Petri Net Modeling of Traffic Systems (Previous Related Work)

Recently, much attention has been given to discrete event systems for the modeling

and analysis of traffic systems and networks. As a powerful graphical and mathemat-

ical tool for the modeling and analysis of practical complex systems, Petri nets have

been used to model traffic network in different ways for a variety of purposes. It can

be concluded that when vehicle flow has been studied, hybrid Petri net (HPN) [10–12]

is a suitable representation tool because it consists of both continuous and discrete

nodes that are working together to reflect the dynamics of the entire traffic system.

Continuous nodes are suitable for modeling continuous dynamics such as vehicles

flow, while discrete nodes are used to represent discrete events such as changing in

traffic signal and/or enabling/disabling vehicle movement because of emergent events

as incase of accidents and the blocking roads. Febbraro and Sacone [13] developed

a general HPN model for transportation system. Traffic flow was described by con-

tinuous nodes and the events that affect the traffic dynamics were modeled through

discrete nodes. Febbraro et al. [14] used a simple HPN to model the intersection of

two one-way streets, while Andzquez et al. [15] used a continuous Petri net to model

a non-signalized intersection. Adding discrete nodes were essential to represent a

four-way intersection with two phase traffic light through a HPN. Febbraro et al. [3]

have also developed the HPN model to improve the performance of special vehicles

such as buses and emergency vehicles.

In aforementioned works, HPN models were used since they were more accurate

to reflect the dynamics for the entire traffic network for certain applications. On the

other hand, in some traffic network applications such as in control and monitoring,

only events are the desired objectives to be studied and analyzed. For these problems

discrete Petri nets (DPN) are the suitable representation tools. List and Cetin [16]

4

proposed a DPN model which described a traffic light signals phase change for an

intersection. Qu et al. [17] used a DPN model for a small transportation system to

estimate the optimal travel route between the starting and destination points. Wu et

al. [18] used a DPN model to represent control of a simple two-way intersection used

by intelligent vehicles.

1.3 Thesis Contribution

The variety of applications of Petri nets in traffic networks in general was a mo-

tivating factor in developing two intersection models using both hybrid and discrete

Petri nets. Regarding to hybrid Petri nets, this work objectives (i) the design of

a general model for a signalized intersection that can be used to represent vehicles

mobility across the intersection considering simulating details such as time intervals

that vehicles spend to cross the intersection and time intervals between successive

phases (if required). (ii) Extending intersection modeling to a network modeling that

simulate and analyze a connection between two successive, an area that has not been

researched using Petri nets. While dealing with the complexity of the HPN design,

discrete Petri nets were used in the design of high level events models for traffic net-

work (iii). Such a model will not offer much information such as the hybrid model.

However, it will be a suitable representation for problems such as analyzing the af-

fects of an event occurrence somewhere on the network on other events taking place

somewhere else. In designing such a model some difficulties were experienced due

to the limitation of traditional discrete Petri nets such us having unbounded places

which were not desirable in the design. Using Petri net control equations was not

a suitable or practical solution; it led conflict in transitions firing. Therefore, the

modified binary Petri nets (MBPN) were introduced to overcome the problems faced

in design of the event-model (iv).

5

1.4 Thesis Organizing

In this thesis, definitions, classifications and dynamics of Petri nets are introduced

in Chapter 2 to give the reader the basic background to understand the following chap-

ters. Definitions, classifications and dynamics of Petri nets are supported by simple

examples. After this theoretical background, two Petri net models for two successive

signalized intersections were proposed. The first proposed model, introduced in Chap-

ter 3, is a Hybrid model. The motivation for designing such a model is to establish

a general Petri net framework for traffic networks that can be used to tackle typical

traffic problems such as the analysis and simulation of vehicle mobility, optimization,

and routing problems for large-scale network. The aspect of having an accurate sim-

ulation for vehicle mobility in traffic networks requires the modeling of intersections

as well as roads connecting them, and then using both discrete and continuous nodes

to simulate the travelling time between any two points in the network (e.g., between

the point where vehicles leave an intersection and the point where vehicles enter the

following intersections). Also, the time that vehicles take to cross an intersection is

considered. Then the model is simulated through a demo-version of HPN simulator

issued this year. In Chapter 4 a discrete model is introduced. This model is based

mainly on higher-level event occurrences without considering details of lower-level

continuous dynamics. For instance, it can represent the event of vehicles crossing an

intersection during a specific traffic light phase from a specific entrance to a known

destination. However, this model does not consider information such as how many

vehicles have crossed the intersection or how much time this process takes. The ad-

vantage is that this model gives an abstract view of the entire complex network and

can be used to analyze the effect of the occurrence of a specific event in a specific

node on other parts of the traffic network. After the DPN model was developed for

two successive intersections, its disadvantage of having some unbounded places was

identified and analyzed. Hence, a modified binary Petri net (MBPN) model was pro-

posed to overcome this limitation since it is more suitable for the analysis and control

6

of the connected intersections. Finally, Chapter 5 draws conclusions and presents the

future work.

7

2. BACKGROUND ON PETRI NETS

2.1 Definitions and Discrete Petri Nets Structure

Petri nets are tools for modeling systems, which consist of a combined graphical

and mathematical representation that offers supervision of the events and / or time

evolution of systems and processes. A Petri net is a bipartite directed graph comprised

of two types of vertices or nodes, called places and transitions, which are connected

through edges that are called arcs. While places are represented by circles, transitions

are represented by thick bars. A Petri net graph contains a finite but non-zero

number of places, transitions, and arcs. Arcs can only connect different types of

nodes together: a place to a transition or a transition to a place. Each arc has a

specific weight, which should be a finite positive integer. For an arc, if this number

is not shown on the Petri net diagram or its attached description, it is assumed to be

one.

Generally, as described in other works [10, 19, 20], an unmarked Petri net (UPN)

is structured based on four elements and is defined as

UPN = (P,T, B−, B+)

where

P is a finite and non-empty set of places of size N

T is a finite and non-empty set of transitions of size M

B− is the input incident matrix, which consists of the arcs weights directed from

places to transitions such that B−(pi, tj) is the weight of the arc directed from the

place i to the transition j . If there is no such arc, then the element B−(pi, tj) is zero.

B+ is the output incident matrix which consists of the arcs weights directed from

transitions to places such that B+(pi, tj) is the weight of the arc directed from the

8

transition j to the place i. If there is no such arc, then the element B+(pi, tj) is zero.

The size of both incident and output matrices, B− and B+, is N ×M .

Fig. 2.1 shows a Petri nets structure. This Petri net contains 4 places, P =

{p1, p2, p3, p4}, and three transitions, T = {t1, t2, t3}. As shown in Fig. 2.1, the

weight of the arc connecting place p3 to transition t3 is two while other arcs have a

weight of one since no other weights are shown. Thus, the input and output incident

matrices (B−, B+) can be written as:

B− =

1 0 0

0 1 0

0 0 2

0 0 0

 , B
+ =

0 0 0

1 0 0

1 0 0

0 1 1

Fig. 2.1. An unmarked Petri net.

2.1.1 Marking of Petri Nets

Since a Petri net is a system modeling tool that supervises events, a mechanism is

needed in order to present any events or changes in the system or the process. This

9

is represented by adding tokens inside places of the Petri net, where the distribution

of tokens is called a marking. A token is graphically presented as a black dot. Each

place is marked with any natural number of tokens (i.e. any non-negative integer).

However, at least one place must have a non-zero number of tokens in order to call

the Petri net a marked Petri net. The number of tokens in a place i is written as

m(pi). Thus in addition to the previously mentioned four elements (P,T, B−, B+)

that define an unmarked Petri net, another element is needed to define a marked Petri

net. This is the initial marking of the Petri net, which is written as m0. Therefore

the marked Petri net (MPN) is defined as MPN = (P,T, B−, B+,m0) where m0 is

a column vector that contains the initial marking of all places in the net.

An example of a marked Petri net is shown in Fig. 2.2. This is the same Petri net

displayed in Fig. 2.1 but with the following marking applied, p3 with two tokens and

both p1 and p4 with one token each. Therefore, the initial marking vector is:

m0 =
[
1 0 2 1

]T
=

1

0

2

1

2.1.2 Dynamics of Petri Nets

After introducing tokens and marked Petri nets, it is possible to investigate the

dynamics of Petri nets, which is the changing in the nets marking through the firing

of at least one transition. A transition is said to be enabled if each of its input places

contains a number of tokens that is greater than or equal to the arc weight that

connects that specific place to the transition. In other words transition tj is enabled

at a specific marking mk if and only if the condition of Eqn. 2.1 is satisified.

mk(pi) ≥ B−(pi, tj) (2.1)

10

Fig. 2.2. A marked Petri net.

Based on this condition, from Fig. 2.2, it is clear that transitions t1 and t3 are

enabled while the transition t2 is not.

Generally, there is a difference between the terms enabled transition and fireable

transition. While the enabling condition is defined in the inequality above, firing

conditions can be more general; for a transition to be fireable, it should be enabled

and it might need to satisfy other conditions such as from external events or a time

condition.

For autonomous discrete Petri nets, those Petri nets which their dynamics are not

affected by external events not time, as soon as a transition gets enabled, it fires.

The dynamics of firing occurs in two steps, but it is an immediate process assumed

to not have any time duration. First, a specific number of tokens are moved to the

transitions from each input place to that transition. The number of tokens moved is

equal to the weight of the arc that connects the input place to the transition. Second,

tokens are transferred from the transition to all its output places. The number of

tokens transferred to each output place is equal to the weight of the arc connecting

the transition to the destination place [19].

11

To give an example of the firing of a transition, go back to Fig. 2.2. Transitions t1

and t3 are enabled while transition t2 is not. So t1 fires and a token will be removed

from place p1 and then a token will be added each to places p2 and p3. Therefore,

the marking vector is changed from the initial marking m0 =
[
1 0 2 1

]T
to the

marking m0 =
[
0 1 3 1

]T
. This simple firing process can be written as m0

t1−→ m1.

Starting from the initial marking m0 , consider the firing sequence S = {t1, t3, t2}.

As mentioned above, by firing the transition t1 we will get the marking m1. And

then starting from m1, firing the transition t3 will generate the marking m2 =[
0 1 1 2

]T
(two tokens are removed from p3 and one token is added to p4),

which is written as m1
t3−→ m2. Finally, the transition t2 fires generating the marking

m2 =
[
0 0 1 3

]T
, which is written as m2

t2−→ m3. Thus, starting from the initial

marking m0 the firing sequence S = {t1, t3, t2} generates the marking m3, which is

written as m0
t1,t3,t2−−−−→ m3 or m0

S−→ m3.

To assist the analysis of a Petri nets dynamics, there is a chart showing vectors of

possible markings connected through arcs representing the transitions between each

marking. This is a reachability graph, in which all possible markings are shown as

well as their generated sequence. Fig. 2.3 shows the reachability graph for the Petri

net in Fig. 2.1.

Fig. 2.3. The reachability graph of a discrete Petri net.

12

In some Petri nets and under specific initial markings, the number of the reachable

markings is infinite. For the Petri net in Fig. 2.2, if a small modification is made

by adding an arc from the transition t2 to the place p1, the number of reachable

markings will be infinite. In other words, the possible number of tokens in some

places is unbounded; such Petri nets are known as unbounded Petri nets. From the

previous definition, it is clearly impossible to analyze unbounded Petri nets through

the reachability graph. Instead, converability root tree technique is used, which is

described in detail by David and Alla [10,19].

2.1.3 State Equation of Petri Nets

With the previous Petri net in Fig. 2.2, it has been easy to study all possible firing

sequences and figure out all reachable markings. However, the number of possible

markings grows exponentially with the number of places in a Petri net and so in

analyzing larger and more complicated systems, this method will take much more time

and may become unfeasible to use after a certain point. Fortunately, the bipartite

structure of Petri nets and the tokens dynamics offers a mathematical representation

through linear algebra. This representation makes it easy to figure out the final

marking generated from an initial marking through a given firing sequence and so it

becomes much easier to analyze the dynamics of large systems by solving this equation

through a program.

As previously mentioned, the marked Petri net is defined through the five elements

(P,T, B−, B+,m0). Both matrices B− and B+ are N ×M dimensions. Where N

is the number of places and M is the number of transitions. It is necessary now to

introduce the incidence matrix B which is:

B = B+ −B− =

0 0 0

1 0 0

1 0 0

0 1 1

−

1 0 0

0 1 0

0 0 2

0 0 0

 =

−1 0 0

1 −1 0

1 0 −2

0 1 1

13

So for the Petri net in Fig. 2.2, let mk be the marking of this Petri net before the

firing sequence S and m′k be the marking after the occurrence of the firing sequence

S, so mk
S−→ m′k.

The relation between these two markings is known as the state equation of the

Petri net, which is given by Eqn. 2.2.

m′k = mk +B.s (2.2)

Where mk and m′k are N × 1 marking vectors, B is a N ×M matrix, and s is the

characteristic vector of sequence S with a dimension of M × 1. The component sj is

the number of times the transition tj is fired in the sequence S. Therefore, for the

Petri net in Fig. 2.2 the firing sequence S = {t1, t3, t2} is represented in the state

equation through the vector s =
[
1 1 1

]T
. Sticking with the given initial marking

m0 =
[
1 0 2 1

]T
and the firing sequence s =

[
1 1 1

]T
, it is possible to find final

state, which is:

1

0

2

1

 +

−1 0 0

1 −1 0

1 0 −2

0 1 1

×

1

1

1

3

 =

0

0

1

3

2.2 Continuous Petri Nets

Not all physical systems can be represented by discrete Petri nets. Parameters

such as water flow and smoke movement cannot be represented through discrete

models. Instead, continuous Petri nets can be used. The structure of the continuous

Petri nets is the same as for discrete Petri nets, except in two points:

14

• The weights of the arcs connecting places to transitions or transitions to places

can be any finite positive real number, where it was restricted to integers for

discrete Petri nets.

• Instead of having integral number of tokens, places can be marked by any finite

non-negative real number [10,21,22].

In the graphical representation of continuous Petri nets, a place is represented by

a double circle while a transition is represented by a rectangular box. Fig. 2.4 shows

an example of a continuous Petri net consisting of three places and two transitions.

Fig. 2.4. A continuous Petri net.

For continuous Petri nets, a transition tj is said to be q-enabled in a specific

marking mk if the enabling degree q is greater than 0 and is given by Eqn 2.3.

q = min(i:pitinj)

((mk(pi))

(B−(pi, tj))
(2.3)

This means that the enabling degree q of the transition tj at the marking mk is the

15

minimum value of division each marking of the transition tj input places on the weight

of the arc connects that place to the transition. Note that q is a finite positive real

number [10].

Going back to Fig. 2.4 and applying the definition of enabling degree, it is clear

that transition t1 is 2-enabled and the transition t2 is 0.5-enabled.

The dynamics of continuous Petri nets is different from discrete Petri nets in the

enabling conditions, which is shown in Fig. 2.4. In order to investigate the firing

of a transition and the firing sequence of continuous Petri nets, a new notation is

introduced: α. The term [tj]
α means that the transition tj is fired by the value

α at one time. To clarify this notation more, examine the continuous Petri net

in Fig. 2.4. The term [t2]
0.3 means that the transition t2 firings by the amount

of 0.3, so 0.3 tokens are removed from the continuous place p3 and are added to

the continuous place p1. Therefore, the marking of the Petri net is changed from

s =
[
2.2 2.0 0.5

]T
to s =

[
2.5 2.0 0.2

]T
. The firing sequence and the state

equation mentioned for the discrete Petri nets are also applicable for continuous Petri

nets, with the only exception being that the components of sequence vector s are real

non-negative numbers corresponding to each [tj]
α.

For continuous Petri nets, the number of reachable markings is infinite even when

dealing with bounded Petri nets. Therefore, it is impossible to consider all the

reachable markings in the reachability graph. Instead, the reachability graph con-

sists only of general markings, called macro-markings, that show whether the places

are marked or not (i.e. has tokens or empty). For example, the Petri net given

in Fig. 2.4 has three places, so it could have maximum of eight macro-markings:[
0 0 0

]T
,
[
m1 0 0

]T
,
[
0 m2 0

]T
,
[
0 0 m3

]T
,
[
m1 m2 0

]T
,
[
m1 0 m3

]T
,[

0 m2 m3

]T
,
[
m1 m2 m3

]T
, where the values m1, m2, and m3 are positive real

numbers. Clearly, the maximum number of macro-markings for a Petri net consisting

of N places is 2N . Even though the initial markings of the Petri net in Fig. 2.4 is

considered in the macro-marking
[
m1 m2 m3

]T
, it can be presented as a separate

macro-marking in the reachability graph. Fig. 2.5 illustrates the concept of macro-

16

marking through the reachability graph of the given Petri net. It should be noted

that the reachability graph consists only of four macro-markings, which is because

the other possible four markings in which the marking m1 is zero are not reachable

since it is impossible for the marking m1 to have less than 0.2 tokens.

Fig. 2.5. The reachability graph for a continuous Petri net.

2.3 Hybrid Petri Nets

As mentioned previously, continuous Petri nets are suitable for modeling sys-

tems such as water flow. Nevertheless, there can be systems too complex to be

modeled through continuous Petri nets. Consider the example of water flow be-

tween two tanks where a pump is used to transfer the water from tank A to tank

B while an open/close valve is used for water transfer in the other direction. Al-

though the process of moving the water between the two tanks is continuous, the

actions of starting, stopping, and switching the direction of this process is discrete

(open/close the valve or turn on/off the pump) [11]. These discrete actions are taken

depending on other continuous parameters such as if the level of water in the tank

is at a specific point, the temperature of the pump has reached a critical value,

etc. Therefore, the optimum representation of this system using Petri nets cannot

17

be achieved except by using both continuous and discrete nodes, in a hybrid Petri

net [23–26]. Marked hybrid Petri nets are structured based on these six elements:

HPN = (P,T, B−, B+,m0, h)

where h is the hybrid function, which is used for both places and transitions to indi-

cate whether the node is discrete or continuous:

h : P ∪T→ {C,D}

The other five elements P, T, B−, B+, m0 have the same definitions as before.

However, in HPN, the set of places P consists of both continuous and discrete places

and the set of transitions T consists of both discrete and continuous transitions. If

PC is defined as a set that consists of all continuous places, PD is defined as a set that

consists of all discrete places in a HPN, then P = PC ∪PD. Similarly, T = TC ∪TD.

Where TC is the set of continuous transitions and TD is the set of discrete transitions.

Furthermore, the initial markings m0 is restricted to finite non-negative integer values

for the places in the set PD while it could be any finite non-negative real number for

the rest of the places (i.e. the set PC). Usually, the marking m of hybrid Petri nets

is described in order depending on the place type; discrete or continuous. If mD is

the marking of discrete Petri nets in a specific hybrid Petri net, mC is the marking

of continuous places of this Petri nets, md is the number of discrete places, and mc

is the number of continuous places in this Petri net, then the marking of the HPN

is written in the form m = (mD,mC) while the marking vector can be described

as
[
p1 p2 · · · pmd pmd+1 · · · pmd+mc

]T
.Finally, the arcs connecting a discrete

place and a continuous transition have to be equal in their weights. In other words,

if the notations pc, pd, tc, and td represent a continuous place, a discrete place, a

continuous transition, and a discrete transition, respectively, the relation of Eqn. 2.4

has to be satisfied for all places and transitions.

B+(pd, tc) = B−(pd, tc) (2.4)

Since hybrid Petri nets have both continuous and discrete nodes, they should have

different enabling conditions for the continuous and discrete transitions as well as

18

different token movements to/from continuous and discrete transitions. For discrete

transitions, the enabling condition used for discrete Petri nets is still applicable; it

does not matter whether the input places are discrete or continuous. In a specific

marking mk a discrete transition is enabled if and only if the condition of Eqn. 2.5 is

satisified.

mk(pi) ≥ B−(pi, t
D
j) (2.5)

Alternatively, the firing condition for a continuous place depends on the type of

input place. In a specific marking mk a continuous transition is enabled if these two

conditions are satisfied:

mk(p
D
i) ≥ B−(pDi , t

C
j) (2.6)

for all input discrete places to the transition tj

mk(p
C
i) > 0 (2.7)

for all input continuous places to the transition tj

The evolution behavior of hybrid Petri nets is followed the state equation given

in Eqn. 2.2. As for the marking vector, firing sequence vector s is also placed in

order that the firing times of discrete transitions in are ordered first, and then those

for the continuous once. If sD gathers the number of firings of discrete transitions

in a specific hybrid Petri net, sC gathers the number of firings of continuous transi-

tions, nd is the number of discrete transitions, and nc is the number of continuous

places in this Petri net, then the firing sequence vector of the HPN is written as

s =
[
t1 t2 · · · tnd tnd+1 · · · tnd+nc

]T
. Where the firing times for the transi-

tions in sD can take only nonnegative integers, while for transitions in sC the firing

times can be any real positive value (or zero). David and Alla have examples [10,11]

that analyze the marking changes of hybrid Petri nets depending on the graphical

analysis and using the state equation also to demonstrate the results.

19

2.4 Timed Hybrid Petri Nets

In the previous sections the discrete, continuous, and hybrid Petri nets which were

introduced and analyzed are known as autonomous Petri nets in which Petri nets

model and simulate only event evolution of physical systems. Obviously, for some

physical systems and processes time modeling is an essential issue that has to be

taken in account together with the event evolution. These processes can be modeled

and simulated through non-autonomous Petri nets, which are generally defined as

Petri nets whose dynamics are affected by external events; if these external events are

only change in time, then these Petri nets are known also as timed Petri nets. Since in

this research, no other external events are modeled, the term, non- autonomous Petri

nets, is equivalent to the term, timed Petri net (TPN). Similar to the autonomous

Petri nets, TPN are also classified as discrete, continuous, and hybrid. Since in this

research only the hybrid non-autonomous Petri nets are used, their structure and

dynamics are described in details in this section while other publications [10,27] can

be used to know more about discrete and continuous timed Petri nets. The structure

of the marked timed hybrid Petri nets is exactly as the structure of the marked hybrid

Petri net with adding one element λ. So the marked THPN is defined as

THPN = (P,T, B−, B+,m0, h, λ)

The first six elements P,T, B−, B+,m0, h have the same definitions as in the pre-

vious section. λ is a function that assigns a nonnegative integer number symbolized

as di to each discrete transition (each element in the set TD) and it assigns a non-

negative real number symbolized as Ui to each continuous transition (each element in

the set TC). di is a time associated with the discrete transition ti and means that this

transition is fired after di time units since it becomes enabled. If the time associated

with a discrete transition is zero, this transition is fired as soon as it becomes enabled,

which is the case of all discrete transitions in non-autonomous Petri nets. One the

other hand, Ui is the maximum flow rate associated with the continuous transition ti

which can be used to calculate the maximum firing speed for this transition [10].

20

After introducing the structure of THPN, transition enabling and the dynamics

are analyzed briefly. In THPN, the enabling condition for discrete transitions is the

same for those transitions in HPN, which is previously mentioned in Eqn 2.5. Thus,

a discrete transition is said to be enabled if each of its input places (discrete and

continuous) contains a number of tokens that is greater than or equal to the arc

weight that connects that specific place to the transition. For continuous transitions,

the enabling concept is a little bit complicated compare to the HPN. The continuous

transition ti is said to be strongly enabled if the two conditions in Eqn. 2.6 and

Eqn. 2.7 are satisfied. If only the first condition is met (the input discrete places

condition), the continuous transition ti is said to be weekly enabled if all of its input

continuous places that are zero marked have at least an input transition which is

firing. In THPN, each continuous transition fires in a deterministic speed, known as

the firing speed. This firing speed can be constant or variable. In the model presented

in this research, only constant firing speed transitions are used. However, the term

constant firing speed does not mean that the transition fires in only one speed all the

time, but it implies that for a given marking mD
k of discrete places each transition

has a known maximum firing speed that it does not exceed. Maximum firing speed

is given by Eqn. 2.8.

Vi = Ui ×D(ti,m
D
k) (2.8)

Where Ui is the associated flow rate to the transition ti , and D(ti,m
D
k) is the

enabling degree of the continuous transition ti, considering only the discrete input

places. If assumed that the continuous transition ti has k discrete input places, then

its enabling degree is the least number of tokens that can be transferred in one shut

from one of the k discrete places to this transition. If a continuous transition is not

connected to any discrete place, then it is known as an immediate transition that has

an infinite flow rate. Transition ti fires in a speed vi that is greater than or equal

to zero and less than or equal to Vi. In the THPN model presented in this research,

since all the discrete places that connected to continuous transitions are marked with

21

no more than one token, the maximum firing speed is the same as the maximum

flow rate assigned to the transition. Usually in THPN, each continuous transition is

connected to at least one discrete place. Fig. 2.6 shows a THPN that consists of six

places and four transitions; p1, p2, p3, t1, and t2 are discrete nodes while p4, p5, p6,

t3, and t4 are continuous nodes.

Fig. 2.6. A timed hybrid Petri net.

As shown at time zero, the marking of the Petri net is m0 = m(t = 0) =

(1, 1, 0, 6, 0, 0) while λ = (5, 1, 2, 2). To investigate the dynamics of the given Petri

net, the first step is to determine the enabled transition at time t = 0. It is obvi-

ous that transition t3 is strongly enabled and transition t4 is weakly enabled while

both discrete transitions t1 and t2 are not enabled. Therefore, at time t = 0, tran-

sition t3 starts to fire with a firing speed of 2 tokens per time unit. As soon as t3

22

starts firing, tokens are transferring continuously from the continuous input place p4

to the continuous output place p5 with a rate of 2 tokens per time unit. Thus, at

time ε which is a very small real number ε → 0, transition t4 starts to fire in the

same firing speed for t3 (2 tokens per time unit). At time ε the marking of the Petri

net becomes m(t = ε) = (1, 1, 0, 6 − 2ε, 2ε, 0). After another small time interval ε

passes, the Petri net marking becomes m(t = 2ε) = (1, 1, 0, 6 − 4ε, 2ε, 2ε). During

the second infinity small time interval ε another infinity small amount of tokens (2ε)

transferred from the place p4 to the place p5 while the amount 2ε which already was

in the place p5 is transferred to the place p6. Hence, during the time interval (0

¡t ¡3) the marking of the Petri net is written as m(t) = (1, 1, 0, 6 − 2ε − 2t, 2ε, 2t).

Following the same steps, the marking of the Petri net at the exact time t = 3 can

be estimated to be m(3) = (1, 1, 0, 0, 2ε, 6− 2ε), and in the time t = 3 + ε, the mark-

ing m(3 + ε) = (1, 1, 0, 0, 0, 6) is reached. However, since ε → 0, the approximation

m(3) = m(3 + ε) can be used to write the marking of the Petri net after 3 time units

as m(3) = (1, 1, 0, 0, 0, 6). It is obvious that the marking of p4 takes an infinity small

value all the time during this interval because the firing speeds of the upstream and

downstream transitions are equal. Similar scenario is expected if the firing speed of

the downstream transition is greater than the firing speed of upstream transition.

On the other hand, if the firing speed of the upstream transition is greater than the

firing speed of the downstream transition, the place in-between will have a linearly

increasing marking until the firing of the upstream transition ends. Coming back to

the exampled Petri net, at time t = 3, 6 tokens have been transferred from the place

p4 to the place p6 through the place p5. Therefore, the discrete transition t1 becomes

enabled but it cannot be fired until after passing of another 5 time unites (because

of its associated time d1 = 5). At time t = 8, the transition t1 fires and 6 tokens are

removed from the continuous place p6, and one token is deposited in the discrete place

p3. We come up with the marking m(8) = (1, 1, 1, 0, 0, 0). One time unit later (since

d2 = 1), the transition t2 fires, so the token at the discrete place p3, is removed and

6 tokens are added to the continuous place p4, to come up with the initial marking

23

again at t = 9, m(9) = m(0) = (1, 1, 0, 6, 0, 0). Then the same firing sequence takes

place again and so on.

Similar to the discrete, continuous, and autonomous HPN, the dynamics of THPN

can be observed and the marking evolution can be calculated using the state equation.

However, the state equation for THPN is different from what was introduced before

since the time factor is taken into consideration. Assuming the number of discrete

places, continuous places, discrete transitions, and continuous transitions in a THPN

are md, mc, nd, and nc respectively. Also the total number of places is m where

m = md+mc and the total number of transitions is n where n = nd+nc. Furthermore,

let v be the firing speed vector. The size of v vector is n where the first nd elements

are zero (since the discrete transitions do not have a firing speed), while the other

nc elements represent the firing speeds of the continuous transitions. Thefore, v is

written in the form v =
[
0 0 · · · 0 vnd+1 · · · vnd+nc

]T
where the element vi is

the firing speed of the continuous transition ti. On the other hand, let d(t) be the

vector representing the number of firing times of transitions in the time interval (0

to t). The size of d(t) vector is n where the last nc elements are zero (those which

represent the continuous transition), while the first mc elements represent the firing

times of discrete transitions in the time interval (0 to t). Thefore, d(t) is written in the

form d(t) =
[
d1 d2 · · · di · · · dnd 0 · · · 0

]T
where the element di is an integer

nonnegative number and represents the number of firings of the discrete transitions

ti between 0 and t. Finally, it is possible now to introduce the vector s(t) which is

equivalent to the vector s in autonomous Petri nets [10].

s(t) = d(t) +

t∫
0

v(u).du (2.9)

Where u represents the firing rate of the continuous transitions. In the similar form

of the one of autonomous Petri nets, the state equation of timed hybrid Petri nets is

written as

24

m(t) = m(0) +B.s(t) = m(0) +B.(d(t) +

t∫
0

v(u).du) (2.10)

Eqn. 2.10 represents the marking evolution of THPN starting at time t = 0. It

is also possible to write the marking of the THPN at any time t2, if its marking is

known at any time t1, such that 0 ≤ t1 < t2

m(t2) = m(t1) +B.(d(t2)− d(t1) +

t2∫
t1

v(u).du) (2.11)

When considering the two vectors d(t) and v(u), the discrete transitions are or-

dered in front of the continuous ones. Therefore, the vector form of m(ti) is written

as
[
mD(ti) mC(ti)

]T
or

[
p1(ti) p2(ti) · · · pmd(ti) pmd+1(ti) · · · pmd+mc(ti)

]T
.

Furthermore, the matrices B+ and B− are written as:

B+ =

B+
DD B+

DC

B+
CD B+

CC

 , B− =

B−DD B−DC

B−CD B−CC

where B+

DD and B−DD represent the arc weights between the discrete places and the

discrete transitions. B+
CC and B−CC represent the weights between the continuous

nodes. B+
CD, B−CD represent the connections between continuous places and discrete

transitions.B+
DC , B

−
DC represent the connections between discrete places and continu-

ous transitions. Since B+
DC = B−DC , the incident matrix B can be written as:

B =

BDD 0

BCD BCC

Now, it is easy to write Eqn. 2.11 in the matrix form

25

mD(t2)

mC(t2)

 =

mD(t1)

mC(t1)

+

BDD 0

BCD BCC

×

d1(t2)− d1(t1)

d2(t2)− d2(t1)
...

dnd(t2)− dnd(t1)

0

+

t2∫
t1

0

vnd+1(u)

vnd+2(u)
...

vnd+nc(u)

du

2.5 Conflict in Petri Nets

A conflict is a property of Petri nets that depends on the structure and the mark-

ing. In a specific marking mk, when a place pi is connected as an input place to

more than one transition and the number of tokens at pi is not enough to enable and

fire all the possible enabled output transitions, conflict appears between two or more

transitions. In Fig. 2.7-a, a conflict in a discrete Petri net is shown. At the shown

marking (1,1), two possible firings conflict, either t1 fires or t2 fires. However, if the

marking of the net was (0,1), no conflict would exist since transition t1 is not enabled

because no tokens exist at its input place p1, so t2 is enabled and it fires. Conflicts

occur in continuous and hybrid Petri nets as well. In Fig. 2.7-b, a conflict between a

discrete transition and a continuous transition is shown, such a conflict exists in the

THPN model introduced in Chapter 3. It is obvious that transitions t1 and t2 cannot

be fired at the same time. This conflict is a design aspect that has to be determined

(which transition will take the priority) depending on the physical system or process

that is modeled [10].

26

Fig. 2.7. Conflicts in Petri nets.

27

3. HYBRID PETRI NET MODELING OF TWO

CONNECTED INTERSECTIONS

In order to design a Petri net model for traffic intersections that capture vehicle

flow in different locations and the change of signal phases, discrete and continuous

nodes have to be used together. The general modeling concept is to use continu-

ous nodes for vehicle flow and the discrete nodes for the traffic light signal (phase

changing). In this thesis, vehicle flows are represented through the firing speeds of

continuous transitions. Arc weights represent split and cross-direction factors (e.g.,

the percentage of vehicles that take left turns, go straight, and take right turns at

intersections). Queues of vehicles at intersections are modeled through continuous

places. The conflict between continuous and discrete transitions is used to represent

decisions of enabling/disabling vehicle movements. Timed transitions play a signifi-

cant role to capture the time for vehicles to cross the intersection. Furthermore, they

are used to build a delay circuit in the modeling of a road connecting two intersec-

tions. In this chapter, the structure of the traffic network is reviewed first, and then

a hybrid Petri net model for a single intersection is presented, followed by a simple

traffic network model that consists of two connected signalized intersections. Finally,

a Petri net simulator is used to simulate the traffic flow for these two connected in-

tersections, detailed results are analyzed to show the effectiveness of the proposed

modeling approach.

3.1 Urban Traffic Network

Generally speaking, an urban traffic network consists of two major elements:

Roads and Intersections. As mentioned by Febbraro et al. [3], an urban traffic network

can be represented as the set U:

28

U = {R, I}

.

where R is a finite set consists of M roads such that R = {R1, R2, · · · , Rm, · · · , RM}

and I is a finite set consists of N intersections such that I = {I1, I2, · · · , In, · · · , IN}.

Since this thesis focuses only on signalized intersection, the term intersection is

used instead for signalized intersection. The intersection In is defined as “an urban

traffic network element which connects two or more roads and consists physically of

the area which is occupied by vehicles crossing the intersection as well as a part of

the adjacent roads from which vehicle flows come and to which vehicle flows go” [3].

The function of the traffic signals is to controls vehicle flows through the intersec-

tion. The road Rm is an urban traffic network element which connects two successive

intersections and permits only one way travelling direction.

3.2 Single Intersection Structure

In Fig. 3.1, an eight-roads intersection model is shown with parts from its acces-

sible roads. Direction symbols {n, s, e, w} are used to define the eight roads. They

represent the four directions north, south, east, and west, respectively:

In Fig. 3.1, Rin
i , R

out
i are the road which connected to the intersection

from the direction i. Traffic in Rin
i flows towards the intersection while

traffic in Rout
i flows out from the intersection. Therefore, the road set

{Rin
w , R

in
e , R

in
n , R

in
s , R

out
w , Rout

e , Rout
n , Rout

s } represents the roads connecting to the in-

tersection; the subset {Rin
w , R

in
e , R

in
n , R

in
s } represents the incoming roads, while the

subset {Rout
w , Rout

e , Rout
n , Rout

s } represents the outgoing roads. Considering vehicle flow,

similarly, the notation f ini represents the flow of the vehicles that travel toward the

intersection from the direction i, while the notation f outi represents the flow of vehicles

leaving the intersection toward the direction i. Therefore, the vehicle flow entering

the intersection from the four directions is gathered by the set {f inw , f ine , f inn , f ins }

29

Fig. 3.1. The structure of a single intersection.

while the set {f outw , f oute , f outn , f outs } captures the vehicle flow that is moving out of the

intersection in the four directions.

Assuming that, before reaching the intersection within a certain distance, any

vehicle has three options: being in the left lane, which means turning left at the

intersection is obligatory; being in the middle lane, which means the vehicle will

go straight at the intersection; or being on the right lane, which gives the vehicle

the option to keep going forward or turning right when it reaches the intersection.

30

Consequently, vehicle flow f ini splits into two flows: f li which represents the flow of

vehicles that turning left at the intersection; while f fi represents the flow of vehicles

that keep going forward or turning right at the intersection. Thus, the two sets

{f lw, f le, f ln, f ls} and {f fw, f fe , f fn , f fs } represent these two flow divisions for the four

incoming directions.

Furthermore, the notation f l
′
i represents the flow of vehicles entering the intersec-

tion from direction i and turning left direction, while the notation f f
′

i is defined as

the flow of vehicles entering the intersection from direction i and traveling forward or

turning right direction. Consequently, two sets gather the flow of vehicles entering the

intersection from the four incoming directions: {f l′w , f l
′
e , f

l′
n , f

l′
s } and {f f ′w , f f

′
e , f

f ′
n , f

f ′
s }.

Finally, the notation qlw represents the queue of vehicles that are waiting to cross the

intersection toward the left coming from direction i. Similarly, the notation qfw repre-

sents the queue of vehicles that are coming from direction i and waiting to cross the

intersection and going forward or turning right direction. Therefore, two queue sets

appeared {qlw, qle, qln, qls} and {qfw, qfe , qfn, qfs }.

When it comes to designing a model for an intersection in an urban traffic network,

the percentages of vehicles that turn left, keep going forward, and turn right at the

intersection are considered to be an essential piece of information that shall be known

(or assumed). Therefore, it is necessary to define the parameter αji as the split factor

where i takes one of the four directions {n, s, e, w} and j stands for f or l. Hence, αle

represents the factor of vehicles coming from the east and turn left (south) as they

approach the intersection, while αfn is the percentage of vehicles coming from the

north and avoiding the left lane as they approach the intersection (which includes both

vehicles that keep going forward (south) or turning right (west) at the intersection).

These two relations have to be satisfied:

0 ≤ αji ≤ 1 (3.1)

αfi + αli = 1 (3.2)

31

As vehicles reach the intersection, another parameter becomes important which

determines the percentages of vehicles that turn right at the intersection and those

which keep going forward. This parameter is defined as the cross-direction factor and

symbolized as βji where i takes one of the four directions {n, s, e, w} and j stands for

ff or fr. Hence, βffi represents the percentage of vehicles moving forward through

the intersection out of the total number of vehicles coming from the direction i and

split forward (not left) while they approach the intersection. Similarly, βfri is the

percentage of vehicles turning right at the intersection out of the total number of

vehicles that coming from the direction i and split forward (not left) while they

approach the intersection. As mentioned for the split factor, the cross-direction factors

also satisfy the relations:

0 ≤ βji ≤ 1 (3.3)

βffi + βfri = 1 (3.4)

Mathematically, the split factor and the cross-direction factors are described by

the equations as follows:

αji =
f ji
f ini

(3.5)

βji =
f ji
f fi

(3.6)

Where f ffi and f fri are the flows of vehicles that keep going forward and turn right

at the intersection, respectively. Even though vehicle flows change with time, the

split and cross-direction factors are assumed to be fixed for a given time interval.

It is logical to assume that the split and cross-direction factors are constant for a

known time interval. For a particular intersection, both of the split factors and the

cross-direction factors can be measured. Depending on these measurements each

32

day in the week is divided to time intervals. For example, in a given intersection it

was noted that during the morning rush hour (7 AM to 8 AM) 1/3 of the vehicles

coming from the east turn left while the 2/3 keep going forward as they approach

the intersection. At the intersection, 1/2 of this 2/3 turn right while the other 1/2

keep going forward. While for all other times of that day, it is assumed that 55%

of the vehicles coming from the east turn left while 45% keep going forward as they

approach the intersection. At the intersection, 20% of vehicles either in the right late

or in the middle lane will turn right and the 80% will keep going forward. As a result

it is clear that for that day two time intervals exist; at the time interval (7 AM to

8 AM), the factors are: αle = 1
3
, αfe = 2

3
, βfre = 1

2
, and βffe = 1

2
while at other time

interval the factors are: αle = 0.55, αfe = 0.45, βfre = 0.2, and βffe = 0.8.

As shown in In Fig. 3.1, the intersection is represented physically by means of

roads, vehicle flow, and queues. On the other hand, it is represented functionally by

the means of the traffic light signals. The role of a traffic light signal is to safely

control vehicle, and also optimize the traffic by shortening the queue lengths and

equalizing them or maximizing the number of vehicles crossing the intersection during

a specific time interval. Generally speaking, in intelligent transportation systems

this process is implemented through controlling different parameters such as phase

transition, lights durations, and the offset between cycles (the total time duration

required for all phases to take place once) for a group of intersections. For traffic

signals, a phase is defined as an event of giving particular permission to vehicles

coming from specific directions to cross the physical area of the intersection toward

specific directions. These permissions are given by the green and yellow lights, while

disabling the movement of other vehicles through the red light. The number of

phases in a specific signalized intersection depends primarily on the number of roads

connected through this intersection and the expected vehicle flow in each direction.

A specific intersection might be controlled through more than one plan, each of them

is applied in a specific time in the day or specific day (days) of the week. Each plan

has a specific number of phases, deterministic time durations for each phase, and

33

Table 3.1
Four phases of a signalized intersection.

Phase Enabled Directions Allowed Flows Phase Duration

1 f lw, f
l
e φ1 = φg1 + φy1

2 f fw, f
f
e φ2 = φg2 + φy2

3 f ln, f
l
s φ3 = φg3 + φy3

4 f fn , f
f
s φ4 = φg4 + φy4

particular offsets between cycles of the group of controlled intersections. For a four-

bidirectional road intersection, the number of phases is not more than eight as shown

by List and Cetin [16]. In this modeled intersection, the following assumptions were

made for the traffic signal:

• There are four possible phases such that: in phase 1 vehicle flow from east to

south and from west to north are permitted, in phase 2 vehicle flow from east

to west (and north) and from west to east (and south) are permitted, in phase

3 vehicle flow from north to east and from south to west are permitted, and in

phase 4 vehicle flow from north to south (and west) and from south to north

(and east) are permitted. It is clear that the directions between brackets are

the right direction of the straight allowed flow, so they are too allowed at the

same phase.

• The duration (length) of phase i known as φi , which is the summation of the

green light duration φgi and the yellow light duration φyi of that phase.

• Except for the enabled ones, all vehicle flows, are disabled and so cannot cross

the intersection through a red light.

34

3.3 Timed Petri Net Model of a Single Intersection

Before introducing the Petri net model, some assumptions need to be taken in

order to simplify the model and make it possible to be simulated. First, the flow

rate of vehicles at a particular location during a specific time interval in a particular

phase is assumed to be constant. This approximation is necessary for the model to

be simulated. In reality, the flow rate of vehicles crossing an intersection is variable

since it is a function of the average speed of vehicles, which can also vary. At the

beginning of the phase, the vehicles that cross the intersection first are those that

have zero initial speed, those that reduce their speed at the intersection, and finally

those crossing the intersection without any changes in their speed. However, for the

model to be simulated it is necessary to make this approximation, which does not

mean that the flow rate will be fixed during a particular phase but it will be given in a

step function form that usually has one or two values for its range. Furthermore, this

approximation is accurate and reflects the reality of solving problems that consider

the total outcome of each phase. It should be noted that this approximation does well

if the phase durations are long. Second, it is assumed that the flow rate is the same

during the green and yellow light durations; which does make sense in reality. Finally,

it is assumed that a time interval exists between any two successive phases (between

switching to the red light at the leading phase and the switching to the green light

at the lagging phase). This time interval will be given a value that is greater than or

equal to the time consumed by a vehicle to cross the intersection. This assumption

reflects the safety condition in reality and is also considered an essential assumption

in terms of Petri net structure to avoid some expected conflicts.

35

Fig. 3.2. Timed hybrid Petri net model of a single intersection.

Fig. 3.2 shows a timed hybrid Petri net model for the four bidirectional single inter-

section given in Fig. 3.1. The model is divided into nine sub Petri nets (modules) and

36

each one is bounded by a dashed rectangular box. Four of these modules represent the

movements of vehicles while entering the intersection (Nin, Sin, Ein,Win) and another

four represent vehicles while crossing and leaving the intersection (Nout, Sout, Eout,

Wout). The remaining dashed box (D) in the middle of the graph represents the

switching between the four different phases. The sub Petri net (D) is the only pure

discrete net while the other eight consists of hybrid nodes. Starting with the pure

discrete part, the process of phase changing is modeled through 16 places and 8 tran-

sitions. The eight transitions are timed transitions, so each of them has a specific

non-negative integer value assigned (di/j) to it and represents the time units that it

take this transition to be fired after it becomes enabled. Each transition represents

either the beginning or the end of a specific phase. When transition tie fires, phase

i ends; the firing of the transition tjs means that phase j starts. Since four phases

exist, only eight transitions are required to represent the beginning and ending of

these phases. Out of the 16 places mentioned, four of them are used only as an

indicator to show which phase is currently active. A token in place pi means that

phase i is active while losing this token indicates the end of the phase. The condition

p1 + p2 + p3 + p4 ≤ 1 has to be satisfied at all times (the reason that being less

than is acceptable instead of just equivalence is because it is assumed that there is

a short time duration between each two phases). Each place pi is attached with two

other places pia and pib which are used to translate the meaning of enabling/disabling

vehicles movement to the modeling language as will be shown in the model dynamics

description. The transition ti/j represents the transition from phase i to phase j, so

four transitions are required to represent the whole cycle. In addition to these 16

places and 8 transitions, which are shown in a cycle form in the center of Fig. 3.2, an-

other set of places and transitions are used to simulate the time consumed by vehicles

when they are crossing the intersection. As soon as phase i starts, a token is added

to the place pic, which in turn immediately charges the places pi1c and pi2c through

the immediate transitions tic (the last step takes place in phases 2 and 4 only). These

places and transitions are responsible for delaying the flow of vehicles leaving the

37

intersection from the flow of vehicles entering the intersection if required (if the time

that takes a vehicle to cross the intersection is large enough to be simulated). Finally,

the arcs weighs between all the discrete nodes mentioned above are one.

For an input moduleiin where i takes the four directions symbols {w, e, n, s}, the

transition tini represents the flow rate of the vehicles entering the intersection from

the ith direction. A real positive value is assigned to this transition; this value, which

is the flow rate of the transition (tokens per time unit) in the Petri net language,

represents the flow rate of vehicles approaching the intersection in the unit of vehicle

per time unit. Since the discrete place pinid that connected to the transition T ini is

marked with one token each, the firing speed of transition tini (which is the maximum

speed in this case) is the same as the flow rate. The transition tini is connected to

the place P in
i with arc weights of 1. At any time the number of tokens in place pini

represents the number of vehicles approaching the intersection from the direction i.

Downstream pini , a split transition tsi appears. This transition splits the incoming flow

(symbolized f ini in Fig. 3.1) into the flows f li and f fi , which respectively represents

the flow of vehicles taking a left versus those that keep going forward or take a right

at the intersection. The weight of the arc connected pini to the transition tsi is 1 while

the weights of arcs connected the transition tsi to the places pfi and pli are the split

factors αfi and αli, respectively. As mentioned for transition tini , real positive value

is assigned to the transition tsi . These values represent the saturation (maximum

allowed) flow of vehicles approaching the intersection from direction i. The markings

of the two places pfi and pli respectively represent the number of vehicles waiting at

the queues to take left at the intersection, and the number of vehicles that will keep

going forward or take a right. Places pfi and pli are connected to transitions tfi and

tli respectively through arcs of weight 1. The firing of the transition tli represents

vehicles that are coming from direction i and taking a left, which are crossing the

intersection with a flow rate that is equivalent to the firing speed of transition tli. The

assigned value to the transition tli represents the saturation (maximum allowed) flow

of vehicles crossing the intersection while the actual flow rate (firing rate) can be this

38

value or less depending on the firing rate of transitions upstream. Similarly, firing of

transition tfi represents that vehicles coming from direction i and keep going forward

or take a right are crossing the intersection with a flow rate less than or equal to the

saturation flow, which is the flow rate values that are assigned to the transition tfi

in the Petri net language. Since all vehicles that are taking a left at the intersection

are going to one destination, only one output module is required to represent this

destination. Transition tli is connected to the output module jout through an arc of

weight 1, where j takes the direction symbol that represents the destination of vehicles

coming from the incoming direction i and taking left at the intersection. On the other

hand transition tfi is connected to the two output modules kout, lout, where k takes the

direction symbol that represents the destination of vehicles coming from the incoming

direction i and keep going forward with the intersection while l takes the direction

symbol that represents the destination of vehicles coming from the incoming direction

i and taking right with the intersection. That the arc connecting the transition tfi to

the module kout equals βffi while the arc connecting transition tfi to the module lout

equals βfri .

The output module jout represents the vehicles crossing and leaving the intersec-

tion toward direction j. The module stream starts with three continuous places pjx

where x takes three different values from the set {1, 2, 3, 4} for each phase. The place

pjx represents the vehicles while crossing the intersection during phase x towards the

direction j. The three nodes pjdx, tjdx, and tjx work together as a time delay circuit

in order to represent the average time consumed by vehicles to cross the intersection

during phase x towards the direction j as will be shown on the dynamics description

of the model. The continuous place poutj represents the vehicle leaving the intersec-

tion toward the direction j while the transition toutj exists downstream the mentioned

output continuous place and reflects the flow rate of vehicles leaving the intersection.

Each continuous transition is connected to at least one discrete place. Some of

these connections are necessary for the design purposes, primarily the enabling and

disabling the transition, while others are added only to make sure that the model is

39

theoretically suitable to be analyzed with any simulator. As mentioned in David and

Alla’s book [10], the continuous transition which is not connected to a discrete place

will be fired at an infinite speed. Therefore, to avoid this, a discrete place marked

with a token is added to each transition that does not connect to a discrete place

previously.

3.4 The Dynamics of Timed Hybrid Petri Net Model

If it is assumed that time 0 is the beginning of the first phase, the markings of the

discrete places shall be as shown in Fig. 3.2. As soon as the time interval between

the fourth and the first phases ends, one token is removed from p(4/1) and one token

is added to each place of p1, p1a, p1b, and p1c. Having a token at p1a and p1b means

that the transitions tlw and tle are enabled and ready to be fired, if the markings of

plw and ple are greater than zero. In traffic flow language, this means permission is

given to those vehicles that are waiting to go left from the west and east sides of the

intersection to cross the intersection towards north and south direction, respectively.

At the beginning of this phase, the flow rates of the transitions tlw and tle depend on

the markings of plw and ple at t = 0 respectively, which reflect the queues of vehicles

waiting to cross the intersection from west to north and east to south. If the marking

of plw is greater than or equal to the maximum firing speed of tlw, then tlw will fire

in its maximum firing speed (which is the maximum flow rate). Otherwise, tlw will

fire in a rate equal to the marking of plw at time t = 0 and is given in the unit of

token per time unit. The flow rates of transitions tinw , tine , tinn , and tins represent the

flow of vehicles approaching the intersection from the four directions. Since these

transitions do not have any continuous place as an input, their maximum speeds are

their flow rate or firing rate. The continuous firing of the transition tini will transfer

tokens to the places pli and pfi through the place pini and the transition tsi , which

represent the split point where vehicles take the left lane or keep using the other

two lanes. Therefore, the places pli and pfi are used as cumulative places (vehicles

40

queues). Then, as mentioned above, permission is given to both transitions tlw and tle

to fire during the first phase. The tokens (vehicles) flows reach the places pn1 and ps1,

respectively. All the events mentioned up to now happened at time t = 0, excluding

the firing of transitions tn1 and ts1. These two transitions will not be enabled until

a token is transferred from the place p1c to the discrete places pnd1 and psd1 through

firing the timed transition t1c, which will be fired after a specific number of time units

∆t = d1c since it becomes enabled at time t = 0. This value d1c is a design value

that is assigned to the transition t1c and represents the average time that is consumed

by a vehicle coming from the west or east direction to cross the intersection towards

north or south direction in a left turn, respectively. Thus, transitions tn1 and ts1 will

be fired at time t = d1c. Of course, these two transitions will not be fired if there are

no vehicles crossing the intersection during the first phase because their continuous

input places are marked zero in this case. Firing of transitions tn1 and ts1 results in

tokens at the output places poutn and pouts , which in turn fire the output places toutn and

touts with a flow rate depending on the previous nodes and represent the flow rate of

vehicles leaving the intersection toward north and south directions, respectively.

If the first phase duration is φ1 time units, the time associated with the timed

discrete transition t1e(d1e) shall be φ1 time units too. Therefore, as soon as the first

phase ends the transition t1e fires and a token is removed from p1, p1a, and p1b and one

token is added to the place P(1/2); this token will spend some time here before firing

the transition t2s. This time is equal to the interval time between the two phases (first

and second), and is assigned to the transition t2s. Therefore, after d2s time units, a

token is removed from the place p(1/2) and a token is added to each place of p2, p2a,

p2b, and p2c.

Removing tokens from p1a, and p1b means that transitions tlw and tle are no longer

enabled because, as mentioned in Chapter 2, the discrete transition has the firing

priority over the continuous one if a conflict exist between them in a HPN. So vehicles

coming from west (east) are not permitted anymore to cross the intersection towards

north (south). Furthermore, it is essential to make sure that the two tokens at the

41

discrete places pnd1 and psd1 at the end of this phase. Otherwise, when the first

phase takes place again, two tokens will show up in each place of pnd1 and psd1, which

will affect the flow rate of the output transitions and give unreal results and the

case will be worse during the flowing cycles of this phase (since more tokens will be

added). Therefore, the timed discrete transitions tnd1 and tsd1 are used and assigned

with values dnd1 and dsd1 which both of them equal d1e time units, the same as the

first phase duration. Nodes pk1, tk1, pk2 and tk2 are used as sinks for draining these

tokens. On the other hand, adding a token to each place of p2, p2a, p2b, and p2c

means the starting of the second phase through given permissions to vehicles coming

from west (east) to keep going forward toward east (west) or taking right toward

south (north) and the process will be similar to the one described for the first phase.

The only difference is that the place p2c is divided through the transition t2c into

two streams because during this phase, there are two different movements are taking

place; vehicles crossing the intersection forward and right, which in reality might

take a different amount of time to complete. The timed discrete transition t21c is

used to reflect the time taken by vehicles traveling forward (from west to east and

east to west) to cross the intersection during the second phase while transition t22c

models the time consumed by vehicles taking a right at the intersection during the

second phase (from west to south and east to north). This movement takes less time

than the forward movement so it is excepted that d22c < d21c. Furthermore, d21c can

be assigned the value of zero since it is usually a very small amount, which means

transition t21c can be an immediate transition. Furthermore, for intersections where

the time consumed by vehicles to cross the intersection is very small, all of these

nodes that represent this consumed time can be removed from the model. However,

the model used in this research is the general one.

42

3.5 Structure of Two Successive Intersections

After introducing the single intersection model, it is easy to establish a Petri net

model for a full traffic network, which is desired in this study. Actually, this simple

model was chosen to be the simplest network possible in order to avoid very complex

Petri net drawings that come from modeling large networks. However, through the

mathematical representation of Petri nets, it will be easy to deal with larger traffic

networks (i.e. with more intersections), which can be modeled using the concepts

described in this chapter.

Now, consider a network consisting of two intersections: Intersection-1 on the

left (west) and Intersection-2 on the right (east); Fig. 3.3 shows this traffic network.

The same symbols that are introduced in the single intersection graph are used to

represent roads, queues, inputs, and outputs flows with adding (1) or (2) at the end of

the bottom text for each variable to distinguish whether it belongs to Intersection-1

or Intersection-2. Similarly, the phase durations, split and cross-direction parameters

are written in the same way. As it is shown in the figure, R(1/2), and R(2/1) represent

the roads from Intersection-1 to Intersection-2 and from Intersection-2 to Intersection-

1, respectively. Furthermore, road R(1/2) parameters are represented through symbols

that are attached with the notation (1/2) at the end of their bottom text.

Fig. 3.3. Structure of two successive intersections.

43

Generally, when the vehicles flow is the desired objective to be studied, each road

is divided to sections. These sections have different lengths and each section has its

own parameters, such as vehicle density, input and output flows, and vehicles speed

at that section. The relation between these parameters in divided into road models

that can be described in equations as written by Papageorgiou and Payne [28, 29].

In this research, it is assumed that the two unidirectional roads connecting the two

intersections are short enough that the road parameters are not changing so the roads

need not be divided into sections. If the average time that takes a vehicle to travel

from Intersection-1 to Intersection-2 is t(1/2) time units, then the coming flow from

the east direction to Intersection-1 f ine(1) is nothing but the outgoing flow directed to

the west from Intersection-2 f outw(2) delayed with T(1/2) time units. Similarly, the flow

f oute(1) is nothing but the flow f inw(2) delayed with T(2/1) time units, which is the average

time for vehicles to travel from Intersection-1 to Intersection-2.

3.6 Timed Petri Net Model for Two Successive Intersections

The Petri net model introduced previously for a single intersection will be used

to represent each intersection of the given network in Fig. 3.4. Roads R(1/2), and

R(2/1) are also modeled through hybrid Petri nets that connect the two intersections.

Therefore, it is better to introduce the model of the road R(1/2), and R(2/1) first,

then gather the four Petri nets (Intersection-1, Intersection-2, road R(1/2), and road

R(2/1)) and connect them to come up with the whole network model. Since the model

introduced in this research can be used for both kind of problems, those which focus

on the overall outcome during a specific time such as optimization problems and those

which analyze and simulate the behavior of networks in detail and the macroscopic

timing is considered as an essential parameter to be modeled. As it was done for the

single intersection Petri net model when the time required for a vehicle to cross the

intersection was modeled by using timed transitions and the priority firing concept,

the time consumed by vehicles to cross a road is taken in consideration. However,

44

since this time is respectively large compared to that which required for a vehicle to

cross the intersection, using the same approach exactly will not be suitable. In other

words, delaying the firing of a specific transition that represents the incoming flow

to Intersection-2 from Intersection-1 a certain time, which is required for vehicles

to cross the road through a single timed discrete transition, might be a suitable

model for the overall outcome during a specific phase but it will not reflect suitable

simulation results. Therefore, transition firing delaying will be used but after dividing

the connection between Intersection-1 and Intersection-2 to n sections. After that,

the delaying approach will be applied to each section so vehicles traveling between

the two intersections can be simulated. Fig. 3.4 represents a Petri net model for the

road R(1/2).

As it is noted from Fig. 3.4, the road model consists mainly of three queues

of Petri nets; each one represents vehicles travelling across the road in a specific

phase of Intersection-1s traffic signal (no vehicles movement in R(1/2) during the first

phase). The timed discrete transition t21C(1) is nothing but the transition in the

single intersection model of Intersection-1 that is used to delay the flow of vehicles

leaving the intersection forward (from west to east and from east to west) from the

flow of vehicles entering the intersection during the second phase of Intersection-1

traffic light. As mentioned before, firing of this transition is considered permission for

vehicles traveling from east to west and west to east to leave Intersection-1. However,

from the network model perspective, firing of this transition will also initiate the part

of Petri net road model that represents vehicles movement in road R(1/2) during the

second phase to start a firing sequence simulating this movement. As soon as this

transition fires a token is added to the discrete place pind2(1/2), which represents the

input node to this queue.

45

Fig. 3.4. Timed hybrid Petri net model of a road connecting two intersections.

In the subscript of each place, the number 2 indicates the second phase while the

(1/2) indicate the road directed from Intersection-1 to Intersection-2. Having a token

46

at pind2(1/2) implies that the transition tind2(1/2) will fire after a specific time dind2(1/2) , which

is a design parameter that will be chosen depending on the number of divisions in this

Petri net queue and the average traveling time from Intersection-1 to Intersection-2

t(1/2). As soon as this transition fires, a token is transferred from pid2(1/2)n to p1x2(1/2)

and p1y2(1/2) which will give permission to the continuous transition t1z2(1/2) to start

firing and transferring tokens from place pin(1/2) to p1z2(1/2). Since pi(1/2)n is downstream

of transition toute(1) (which represents the flow of vehicles leaving Intersection-1 to the

east side which is Intersection-2), it is obvious that this continuous nodes sequence will

model vehicles movement in road R(1/2). Coming back to the discrete node p1y2(1/2), it

is easy to note that after a specific time units d1y2(1/2) the token will be transferred to

the sink place pk(1/2) through the firing of timed transition t1y2(1/2). Since this process

will take the firing permission away from the continuous transition t1z2(1/2), d
1
y2(1/2)

shall be equal to d2e(1) which is the second phase duration in Intersection-1. For the

token in place p1x2(1/2) (the assigned time for transition t1x2(1/2) to be fired) will remain

only d1x2(1/2) time units where d1x2(1/2) = dind2(1/2). Then the token will transfer to the

following division places p2x2(1/2) and p2y2(1/2) and the same firing process will take place

again. Finally the transition toutc2(1/2) transfer tokens from the last continuous place

in the divisions sequence pnz2(1/2) to the place pout(1/2), which will transfer those tokens

(vehicles) to Intersection-2 input tinw(2).

3.7 Simulation Results

With the objective of measuring the effectiveness of our modeling approach, some

simulations were carried out for single signal intersection and connected intersections

models. A demo version of SimHPN is used. SimHPN is a Matlab embedded software

issued in 2012 that simulated hybrid Petri nets [30].

Starting with the single intersection model, Table 3.2 lists the parameters for the

simulation. Some of these values are arc weights of input and output incident matrices

and phase durations are the values that assigned to some timed discrete transitions.

47

Table 3.2
Initial values used in simulation.

Each Input Flow 2 vehicles per second

Phase 1 Duration 10 seconds

Phase 2 Duration 20 seconds

Phase 3 Duration 10 seconds

Phase 4 Duration 20 seconds

Time Duration Between Successive Phases 2 seconds

Number of Vehicles at Queue plw 10

Number of Vehicles at Queue pfw 19

Number of Vehicles at Queue ple 7

Number of Vehicles at Queue pfe 14

Number of Vehicles at Queue pln 5

Number of Vehicles at Queue pfn 0

Number of Vehicles at Queue pls 3

Number of Vehicles at Queue pfs 0

αli 0.25

αfi 0.75

βffi 0.7

βfri 0.3

Finally, input vehicle flow is represented through the maximum firing speed of input

continuous transitions.

Due to the large size of this simulation (the size of input and output incident

matrices is 78× 62), the simulation takes about 45 minutes. During our simulation,

we save one figure per simulation process. Fig. 3.5 shows the durations of four phases

and time intervals between each two successive phases. As it is mentioned in the

Table 3.2, duration of the first and the third phase is 10 seconds while the second and

48

the forth phases is 20 seconds. All of these values are design parameters that can be

changed depending on the given problem; if not needed for a specific problem, the

time intervals (2 seconds) can be taken off.

Fig. 3.5. Simulation result for durations of phases.

Fig. 3.6 shows vehicles queues at the western entrance of the intersection. The

initial value of the vehicles queue that aims to take a left at the intersection (towards

north) is 10 (plotted in blue). And since these vehicles are allowed to cross the

intersection during the first phase (which starts at time of 2 seconds), the number

of vehicles in the queue will keep decreasing until it becomes zero, which reflects the

real case in traffic networks. As soon as the first phase ends (at time of 12 seconds),

vehicles start to queue again and wait for the next time permission is given to cross

the intersection.

For those vehicles queuing in the middle and right lanes to go east (forward) or

south (right), they are initially 19 and they keep increasing up to the time of 12

seconds. Exactly at this point, the second phase starts and these vehicles cross the

49

Fig. 3.6. Simulation results for vehicle queues at the western entrance
of the intersection.

intersection. After 8 seconds, no vehicles will stop at the intersection up to the end

of this phase and then they will accumulate again and so on.

As mentioned in the model description, vehicle flow is represented through contin-

uous transitions. Fig. 3.7 shows the flow of vehicles leaving the intersection towards

west. During the first phase, which ends at t = 12 seconds, no vehicle leaves the

intersection towards west because, as shown in Table 3.1, during this phase the per-

mitted movements are from west to north and east to south. After the end of the

first phase, the interval time between two phases (2 seconds), and the simulated time

for vehicles to cross the intersection from east to west, vehicles flow at the western

exit of the intersection can be shown as a peak which corresponds to the queue of

vehicles waiting on the east-side to cross the intersection. As these vehicles cross the

intersection, vehicles flow decreases and take a constant value that is shown a little

bit after the end of the second phase and is the result of simulating the required

50

time to cross the intersection from east to west. In regards to the phases description

in Table 3.1, it is expected to have output flow at the western exit during the two

following phases as shown in Fig. 3.7.

Fig. 3.7. Simulation result for vehicle flow at the western exit.

Results of simulating the connections between the two intersections show some

limitations. However, it gives good results if the input flow is not very small com-

pared to the saturation flow of the road connecting the two intersections. In Fig. 3.8,

vehicle flow (during the second phase of the first intersection) in the road connecting

Intersection-1 (west side) to Intersection-2 (east side) is plotted. It is assumed that

the out flow from Intersection-1 towards Intersection-2 is constant and the average

travelling time between two intersections is assigned the value of 10 seconds (which

is represented in terms of the Petri net with a value associated to some timed dis-

crete transitions in the road model). The plotted flows are done for some successive

locations (continuous transitions) in the road that are a fixed distance apart. The

one which started at time zero belongs to the output flow of Intersection-1 while the

51

last one that starts at time 10 represents the input flow to the Intersection-2 coming

from Intersection-1.

Fig. 3.8. Simulation result for vehicle flow in the connected road.

During the second phase of Intersection-1, flow was simulated in other branches

(which represented the road model during phases 3 and 4) and the flow there is zero

as expected. Due to the time-cost of simulating such large networks, simulations

have been done by using equivalent nodes to represent the intersections with the

assumption that the input flow is constant and is not small compared to the saturation

flow.

52

4. DISCRETE PETRI NET MODELING OF TWO

CONNECTED INTERSECTIONS

In the previous chapter, both discrete and continues nodes are used integrally to

model vehicle flow which is affected and controlled by discrete events. Even though

the gained information is valuable, the model was not easy to design and its dynamic

mechanism was not simple to simulate and analyze, especially for large-scale traffic

networks. In other traffic management problems, all gained information in the pre-

vious model may not be interesting. In this chapter, an event Petri net model is

introduced. The objective of the proposed model is to represent the phase switching,

enabled/disabled flows, queues, and other occurrences in term of event representa-

tion that does not consider time. In other words, the occurrence of the event that

vehicles flow in a certain road in the network during a certain phase can be observed

through this model without focusing on the time interval for this event. Also phases

are represented as events, that each event of them is followed by other events such

as enabling/disabling flows, vehicles crossing the intersection, vehicles leaving the

intersection toward a specified destination, a queue exists, and so on.

In order to avoid the complexity, again a single intersection model is introduced

in detail first. Then it will be extended to be applied for two successive intersec-

tions. However, this two intersections model by traditional Petri nets may lead to

unbounded places which cannot accurately reflect the dynamics of the traffic. At-

tempting to control the unbounded places through Petri nets, control method results

in undesired transition conflicts. Hence, the Modified Binary Petri net (MBPN) is

used to overcome this limitation and resolve problems of conflicted transitions and

unbounded places. This MBPN model is a powerful tool and can be useful for the

modeling and analysis of many other similar applications.

53

4.1 Petri Net Model for a Single Intersection

The same structures for single and double intersections, which were introduced

in the previous chapter through Fig. 3.1 and Fig. 3.3 respectively, are used as the

desired modeling problem for this chapter. Furthermore, the same phase plan which

is mentioned in Table 3.1 is applied.

The discrete Petri net model for the four-bidirectional road (as shown in Fig. 3.1) is

depicted in Fig. 4.1. It is easy to note that the model is divided into 13 sub Petri nets

(modules), where each one is bounded by a dashed rectangular box. Eight of these

modules represent the movement of vehicles while entering and crossing the intersec-

tion considering their intention to cross it directed left (N in
l , S

in
l , E

in
l ,W

in
l) or directed

forward/right (N in
f , S

in
f , E

in
f ,W

in
f). Four of the sub Petri nets (N out, Sout, Eout,W out)

represent vehicles while leaving the intersection toward the four directions. Finally,

the sub Petri net (T) represents the phase change of the traffic light signal.

The sub Petri net T consists mainly of four places (pp1, pp2, pp3, pp4) and four tran-

sitions (tsp1, t
s
p2, t

s
p3, t

s
p4) representing the four different phases mentioned in Table 3.1.

The other nodes in the sub net T exist only to make sure that the model offers a

safe operation (i.e. no directional conflicts between vehicles while crossing the inter-

section). Having a token at the place ppk indicates that the kth phase is taking place

while losing this token means the end of this phase. Furthermore, firing of transi-

tion tspk reflects the starting of the kth phase. It should be noted that the condition

pp1 + pp2 + pp3 + pp4 = 1 has to be satisfied all the time.

Events related to vehicles moving through the intersection are described by the

other twelve sub Petri nets; eight sub Petri nets are used to model vehicles entering

and crossing the intersection such as I inj where I takes the notations (N,S,E,W),

i stands for (n, s, e, w) and j takes either l (left) or f (forward and right). The sub

net I inj consists of five places and four transitions; the appearance of a token in the

place piijn implies that vehicles are entering the intersection from the ith incoming

direction with the intention to take the direction of j. Otherwise, having no tokens

54

Fig. 4.1. Petri net model for a single signalized intersection.

in this place implies no vehicles are in such a case. Similarly, having a token in

the place pqij indicates the event that there is a queue of vehicles waiting in the

55

incoming direction i with the intention to cross the intersection directed j (left or

forward/right). Furthermore, a token at the places ppij means permission is given

to those vehicles in the queue to cross the intersection while a token existing in pcij

represents the event that those vehicles are crossing the intersection. Finally, the four

sub Petri nets (N out, Sout, Eout,W out) are quite simple. Each of them consists of a

place pouti and a transition touti . A token in the aforementioned places describes the

event that vehicles are leaving the intersection in the outgoing direction.

The execution of the Petri net model in Fig. 4.1 is based mainly on the state

equation given in Eqn. 2.2 and on the assumption that whenever a transition is

enabled it fires immediately. The fact that permission is given to vehicles entering

the intersection from a specific source towards a specific destination during a specific

phase results a modeling consideration that this permission has to be canceled at

the end of this specific phase whether some vehicles cross the intersection or not.

Consequently, eight conflicts appear in the model between each coupled transitions

(tpij, t
s
ij). The proposed algorithm specifies a priority execution for each conflict. If

the initial marking of the Petri net model is the one given in Fig. 4.1, the only

enabled transition is tsp1. Therefore, it fires immediately through removing a token

from each input place to this transition (pp4, p
2
p4) and adding a token to each output

place of this transition (pp1, p
1
p1, p

p
wl, p

p
el). It simply means that the first phase starts

(indicated through the token at pinp1) and permission is given to vehicles entering the

intersection from east and west towards left to north and south respectively to cross

the intersection.

To clarify the firing sequence, focus only on those vehicles that enter from west

towards south. As shown in Fig. 4.1, initially a token exists at pqwl, so vehicles are

waiting in the west entrances to take a left with the intersection. However, a conflict

appears at this step between transitions (tpwl, t
s
wl) since both of them are enabled and

only one token marked their common input place ppwl. At this point the algorithm

will give the priority to transition tpel, whose firing results removing tokens from the

permission and queuing places (ppwl, p
q
wl) and adding a token to the place pcwl which

56

indicates the event of vehicles crossing the intersection from west to south that has

taken place simultaneously with the occurrence of the event that vehicles crossing the

intersection from east to north.

In the following step, three transitions are fired together (tcwl, t
c
el, t

s
p2). Firing the

transitions tcwl, t
c
el implies that vehicles are leaving the intersection towards south

and north through removing tokens from pcwl, p
c
el and adding a token to each one of

pouts , poutn which indicates the event that vehicles are leaving intersection towards south

and north directions. Simultaneously, in the sub Petri net T, the transition tsp2 fires

indicates the starting of the second phase and so on.

The necessity of having the sink transition tswl is to make sure that vehicles cross

the intersection safely. If we assume no vehicles are waiting in the queue to cross

the intersection from west to south during the first phase, the permission will still be

available through the existence of a token in ppwl , which will lead vehicles coming from

west to cross the intersection even after the ending of the first phase and is unsafe.

Therefore, the role of the sink transition tswl is to take away this permission if it has

not been used during the first phase.

An algorithm was developed to identify the enabled transitions at each time step

and fire the enabled transitions immediately based on the state equation and the

mentioned priority role. Given the initial marking and input and output incident

matrices, the algorithm will firstly construct the column matrix A, which initially

is equal to the initial marking and then it will find the following marking using the

state equation given in Eqn. 2.2 and compare it to the existing columns. If it is not

equal to any of them, it will be considered a new marking, will be saved as a new

column in matrix A, and will be used to find the subsequent marking. Otherwise, if

the new calculated marking is equal to any of the previous ones (any column in A),

the algorithm will stop and matrix A at this point consists of all possible markings

in their order of occurrences. The block diagram of the algorithm (Algorithm 1) for

capturing the state evolution of the Petri net is shown in Fig. 4.2.

57

Fig. 4.2. Block diagram of Algorithm 1 for capturing the state evolu-
tion of the Petri net shown in Fig. 4.1.

In Table 4.1, we capture the state (marking) evolution of the Petri net model

shown in Fig. 4.1 related to each step of transition firing. The first column in the

table represents the initial marking of the Petri net. When a specific event occurs

at a specific firing step, it will be represented through one at the table cell, which

belongs to this event/firing step. Similarly, losing one to be zero in a specific table

cell implies the end of that specific event. Since the model consists of 56 places, it

is not possible to include all of them in the table. We focused only on the places

with essential meanings. It is to be noted that at each firing step, one and only one

of the four phase places (pp1, pp2, pp3, pp4) will take the value 1 which is expected as

previously mentioned. Some places have identical marking through all firing steps,

which implies they are identical and can be modeled through one row only.

58

Table 4.1
The state evolution of the Petri net model for a single intersection.

m0 1st 2nd 3rd 4th 5th 6th 7th 8th 9th

pp1 0 1 1 0 0 0 0 0 0 1

pp2 0 0 0 1 1 0 0 0 0 0

pp3 0 0 0 0 0 1 1 0 0 0

pp4 0 0 0 0 0 0 0 1 1 0

pinij 0 1 1 1 1 1 1 1 1 1

pcwl, p
c
el 0 0 1 0 0 0 0 0 0 0

pcwf , p
c
ef 0 0 0 0 1 0 0 0 0 0

pcnl, p
c
sl 0 0 0 0 0 0 1 0 0 0

pcnf , p
c
sf 0 0 0 0 0 0 0 0 1 0

poutw 0 0 0 0 0 1 0 1 0 1

poute 0 0 0 0 0 1 0 1 0 1

poutn 0 0 0 1 0 1 0 0 0 1

pouts 0 0 0 1 0 1 0 0 0 1

59

If another marking is used initially, such as a marking that represents the case

where no vehicles enter the intersection from north, south, and east, the value 1

will never exist at the place poutw during any firing step, which means that the event

vehicles leave the intersection towards west will not take place. This is an expected

result for having avoided the occurrence of other events.

4.2 Petri Net Model for Two Connected Intersections

After modeling events in a single intersection through a discrete Petri net, the

next step is to extend the model to serve the simple traffic network shown in Figure

3-3, which consists of two successive intersections and the roads connecting them. If

we call the intersection on the left side Intersection-1 and the intersection on the right

side Intersection-2, the east output of Intersection-1 is the west input to Intersection-2

while the west output of Intersection-2 is the east input to Intersection-1.

For this case, the Petri net model for traffic network shown in Figure 3-3 consist

of two single intersection Petri nets models connected to each other. However, minor

modifications are done to each one of these two models. For Intersection-1 model, the

arcs connecting tinel to pinel and tinef to pinef are removed while for Intersection-2 model,

arcs connecting tinwl to pinwl and tinwf to pinwf are removed. To distinguish between the

Petri net nodes belonging to each intersection, we added (1) as the subscript for

each node symbol in Intersection-1 similarly adding (2) for Intersection-2. The two

single intersection models are connected to each other through their east and west

inputs/outputs nodes shown in Fig. 4.3.

The markings of phase indication places are considered the same for both intersec-

tions. However, it does not matter whether they are synchronized or not because the

model is an event representation of the logical relations of events (not considering the

detailed timings). If this synchronization is changed, there will be a different state

evolution but the result will be the same in that the same events will occur.

60

Fig. 4.3. Petri net model of two connected intersections.

During the event that vehicles are leaving Intersection-1 (east directed toward

Intersection-2), a token at poute(1) will result in the firing of transition toute(1), which removes

the token from poute(1) and adds a token to both places pinwf(2) and pinwl(2) representing the

occurrence of events that vehicles are entering Intersection-2 from the west. However,

this step does not happen smoothly when we execute the double intersection model

using Algorithm 1. The case is that during one phase cycle (the four phases take a

place once successively) transitions toute(1) and toutw(2) fires three times because places poute(1)

and poutw(2) are charged three times per cycle since there are vehicles leave Intersection-

1 east directed and Intersection-2 west directed during three phases in a cycle. On

the other the four the input places, pinef(1), p
in
el(1), p

in
wf(2) and pinwl(2), gain three tokens

each per cycle and release only one of these tokens since the transitions downstream

these places fire once each cycle. It is obvious that this firing mechanism will lead

the Petri net to be unbounded. Physically, the model will not be considered a good

representation of event occurrence anymore because at some point if no vehicles enter

61

to the network through one of the three entrance of Intersection-1, west, north, and

south, there will still be vehicles traveling from Intersection-1 to Intersection-2 which

is not a real case. That is because places pinef(1), p
in
el(1) will still have tokens to feed the

net of Intersection-2. The same case of unreal representation will exist for vehicles

travel from Intersection-2 towards Intersection-1.

There are several approaches to tackle this modeling issue. First, a Petri net

controller was designed based on work by Moody et al. [31] in order to keep the

number of tokens in each one of the four mentioned places does not exceed 1. This

controller did so but it transferred the unbounded problem to the upstream places

poute(1) and poutw(2). Adding another controller places to control these two nodes will not

solve the problem because it causes conflicts, which stops the execution of Algorithm

1 when it is used for the new model (with the controller). Designing a controller for

the six places in one step will give the same result. Other solutions such as changing

the weights of arcs connecting poute(1) to toute(1) and poutw(2) to toutw(2) to be three instead of one

will solve the problem only by avoiding having any place in the network be unbounded

but the system will not be a good representation of the event sequence. Therefore,

a modified binary Petri net was used, which will be presented in detail in the next

section.

4.3 Modified Binary Petri Nets

As it can be seen from previous discussions, Petri nets can be used to determine

whether an event has happened or not based on the occurrence of other events. Mod-

eling in such a way can be easily done through representing the occurrence of a specific

event by associating a token in a specified place that describes this event. When the

event does not take place, no tokens are assigned to the place. However, with tra-

ditional Petri nets modeling mechanisms, there is a problem of having more than

one token in some places, which will produce other states that no longer accurately

represent event occurrences/non-occurrences. Thus, the idea of using the traditional

62

Petri net firing mechanisms, but enhanced by adding a restriction that no places

can be marked with more than one token, will be a good solution for this problem.

Therefore, the modified binary Petri net is defined similarly as the traditional Petri

net but with three additional rules as follows.

• The weights of all arcs in the Petri net are ones; which indicates the nets are

ordinary and all elements in the input and output incidents matrices can only

be zeros or ones.

• The initial marking of the modified binary Petri net can only be zero or one.

• State evolution from one marking to another is performed through the following

two steps:

1. The marking m′k is calculated according to the traditional state equation

of Petri nets given in Eqn. 2.2 (m′k = mk +B.s);

2. The marking m′k is updated according to the number of tokens as follows.

m′k(p) =

 0 for places p such that m′k(p) = 0

1 for places p such that m′k(p) ≥ 1
(4.1)

Based on this definition it is easy to see that, for modified binary Petri nets, we

have:

• Elements of incident matrixes take only three values -1, 0, or 1.

• Any modified binary Petri net is bounded since the number of states is less than

or equal to 2n where n is the number of places.

To illustrate the differences between the traditional and modified binary Petri

nets, lets study the Petri net exampled provided in Fig. 4.4.

If Algorithm 1 is applied when the net is traditional, the marking evolution will

be given by:

63

Fig. 4.4. A simple modified binary Petri net model.

1

0

0

0

t1−→

0

1

1

0

t2,t3−−→

0

0

0

2

t4−→

1

0

0

1

t1,t4−−→

1

1

1

0

t1,t2,t3−−−−→

0

1

1

2

t2,t3,t4−−−−→

1

0

0

3

t1,t4−−→

1

1

1

2

t1,t2,t3,t4−−−−−→

1

1

1

3

t1,t2,t3,t4−−−−−→

1

1

1

4

 · · ·

1

1

1

r − 1

t1,t2,t3,t4−−−−−→

1

1

1

r

t1,t2,t3,t4−−−−−→

1

1

1

r + 1

As it is shown from marking evolution, the Petri net is unbounded due to place p4,

where the number of tokens in it will keep increasing after the marking
[
1 1 1 2

]T
.

Assume that the Petri net mechanism is restricted to the binary modified net.

Even before calculating the marking evolution using MBPN, it is obvious that the

total number of achieved markings cannot exceed 24 or 16. The marking evolution

for the exampled Petri net will be given by:

64

1

0

0

0

t1−→

0

1

1

0

t2,t3−−→

0

0

0

1

t4−→

1

0

0

0

From this simple example, it is easy to get this result from analyzing the graph.

Using a modified algorithm that support the binary marking feature gives the same

result. Only three markings exist and they will keep repeating.

It is not difficult to see that the modified binary Petri nets have bounded markings

and are more suitable for the modeling and analysis of connected traffic intersections.

Generally, for applications that can be represented through binary-state nodes (0 or

1), the number of states is finite no matter how many nodes the net has. Representing

these binary systems through the traditional Petri net might not be a good idea since

the number of the reachable states (markings) might be infinite which does not reflect

the real evolution of these binary systems. Modified binary Petri net will guarantee

smooth representation for event occurrences for those binary systems through its

property of bounded markings.

When investigating the Petri net model in Fig. 4.3, Algorithm 1 is still used but

with a small modification that takes into account Eqn. 4.1 mentioned above. The

algorithm performs 15 steps before it stops due to the condition of having repeated

markings. Because of the size of the used Petri net model (P = 112, T = 88),

Table 4.2 shows only the markings of those places which represent the connections

between the two intersections. The modified binary Petri net framework resolves the

issue of unbounded states and is a more realistic tool for the modeling and analysis

of certain traffic applications other than traditional Petri nets.

65

Table 4.2
Marking evolution of Petri net model for two connected intersections.

m0 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

pp1(1), pp1(2) 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0

pp2(1), pp2(2) 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0

pp3(1), pp3(2) 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

pp4(1), pp4(2) 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

poute(1) 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1

pinwl(2) 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1

pinwf(2) 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1

poutw(2) 0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 1

pinel(2) 0 0 0 0 0 0 1 0 1 1 1 0 0 0 1 1

pinef(2) 0 0 0 0 0 0 1 0 1 1 1 1 1 0 1 1

66

5. CONCLUSION

5.1 Summary

In Chapter 1, the problem of traffic congestions and the motivation to carry out

the proposed research in this thesis was introduced. In addition, related work to

the approaches that are used in this thesis (using Petri nets in traffic networks) was

presented.

Chapter 2 provided the background knowledge on Petri net models and hybrid

Petri net models. Examples including discrete and hybrid Petri nets were described

in details in order to simplify the theoretical definitions and dynamics of Petri nets.

Chapter 3 described in detail the structure and parameters of a signalized intersec-

tion. Then the hybrid Petri net model for this single intersection where combinations

of discrete and continuous nodes are used to represent events and vehicle flow in the

intersection was introduced. This model was extended later to model two successive

intersections by introducing a hybrid Petri net model for roads that are connecting

these two intersections. Simulations were carried out and the results were presented

and discussed in details. The simulation results showed the effectiveness of this mod-

eling approach.

Chapter 4 developed a discrete Petri net model for a single traffic intersection

and then extended it to represent a traffic network consists of two connected intersec-

tions. This model was based on traditional Petri nets in order to analyze the effect of

occurrence/non-occurrence of specific events on other network nodes without consid-

ering the detailed dynamics. An algorithm was designed to capture transition firings

based on the state equation, the priority assignment, and the role of immediate firing

for any enabled transitions. It was noted that the traditional Petri net model for two

connected intersections lead to unbounded places in the model, which are not realistic

67

for monitoring and control. Thus, a modification to the traditional Petri nets was

introduced to resolve this issue. We called this new type of Petri net the Modified

Binary Petri nets, which is very good representation for traffic network in terms of

event occurrences and traffic dynamic correlations.

5.2 Conclusions

Hybrid Petri nets are a very useful modeling and analysis tool for the study of

traffic networks. Timed discrete transitions also play a significant role in modeling

flow delays in the network, which allowed representing the time required for a vehicle

to cross the intersection or travel between two intersections. The firing speed feature

of continuous transitions and the flexibility to choosing non-integer values for the arc

weights between continuous nodes were the two keys for represent vehicle flow. Fur-

thermore, the role of priority in conflicts between discrete and continuous transitions

makes it easy to represent enabling/disabling vehicles movements. Even though the

simulator used was a demo-version that was issued this year and was still under de-

velopment, it was very helpful in many ways, such as the simulation of vehicle flows

and queues.

Although discrete Petri nets do not provide the same amount of detail that can

be captured through hybrid Petri nets, their simple dynamics can be used smoothly

to model some traffic problems including those that need many nodes to be modeled.

Modified binary Petri nets were finally introduced in this thesis to overcome some

design limitations of traditional discrete Petri nets. It will be a very helpful tool in

the study of other applications. For instance, it is smoothly used to model events

occurrence/non-occurrences of systems consisting of 112 nodes (places).

68

5.3 Future Work

5.3.1 Modified Binary Petri Nets

Starting from the two connected intersection discrete model, it is possible to ex-

pand the approach developed in this thesis to study traffic network with much more

complex dynamics and behaviors. To see this implication, assuming that there is a

complex traffic network consisting of n intersections, it is possible to derive its input

incident matrix B composed from input incident block matrices as

B− =

B−1 0 · · · 0

0 B−2 · · · 0
...

...
. . .

...

0 0 · · · B−n

where B−1 , B

−
2 , B

−
n are the input incident matrices for intersections I1, I2, through In,

respectively. The size of these block matrices may be different because it depends

on the intersection specifications such as the number of incoming and outgoing roads

connected to the intersection and the number of phases. Note that the off-diagonal

entries are zeros because intersections are connected through transitions to places.

For the output incident matrix, the diagonal block matrices will be the output

incident matrixes for the intersections B+
1 , B

+
2 , B

+
n . Each one of other block matrices

will represent the connection between two intersections. While B+
1−2 represents the

connections from intersection I1 to intersection I2, B
+
2−1 represents the other way

connection from I2 to I1. The general form of the output incident matrix for a

complex traffic network can be written as:

B+ =

B+

1 B+
2−1 · · · B+

n−1

B+
1−2 B+

2 · · · B+
n−2

...
...

. . .
...

B+
1−n B+

2−n · · · B+
n

69

It is easy to expand the two-intersection discrete model to a larger traffic network

with a much greater number of intersections. In addition, the modified binary Petri

net model can guarantee the boundedness of places in the net, and thus are suitable

for capturing the event occurrences of the overall traffic network.

One direction for future work is to enhance the model with timing information by

using timed transitions. By incorporating time information, the new model will be

suitable for event simulations in large traffic networks. Another interesting research

direction is to identify a wider range of applications (e.g., routing, scheduling, etc.)

of modified binary Petri nets in traffic networks.

5.3.2 Hybrid Petri Nets

It is also possible to build a hybrid Petri net model for large traffic networks.

However, it will take lots of effort. One future direction is to develop a simulation

software on hybrid Petri nets and investigate some other models such as variable speed

hybrid Petri net [10] (which will be more suitable tool to represent vehicles flow) to

improve our simulation and analysis of the traffic network with complex nature and

dynamics.

LIST OF REFERENCES

70

LIST OF REFERENCES

[1] M. Papageorgiou, C. Diakaki, V. Dinopoulou, A. Kotsialos, and Y. Wang, “Re-
view of road traffic control strategies,” Proceedings of the IEEE, vol. 91, pp. 2043–
2067, December 2003.

[2] J. Lei and U. Ozguner, “Decentralized hybrid intersection control,” in Decision
and Control, 2001. Proceedings of the 40th IEEE Conference on, vol. 2, pp. 1237–
1242, 2001.

[3] A. Di Febbraro, D. Giglio, and N. Sacco, “Urban traffic control structure based
on hybrid petri nets,” Intelligent Transportation Systems, IEEE Transactions
on, vol. 5, pp. 224–237, December 2004.

[4] G. Improta and G. E. Cantarella, “Control systems design for an individual
signalized junction,” Transp. Res. B, vol. 18, pp. 147–167, 1984.

[5] D. I. Robertson, “Transyt method for area traffic control,” Traffic Eng. Control,
vol. 10, pp. 276–281, 1969.

[6] M. T. Li and A. C. Gan, “Signal timing optimization for oversaturated networks
using transyt-7f,” Transportation Research Board, pp. 118–126, 1999.

[7] N. H. Gartner, “Development and testing of a demand-responsive strategy for
traffic signal control,” in American Control Conference, 1982, pp. 578–583, June
1982.

[8] D. I. Robertson, “The scoot on-line traffic signal optimization technique,” Traffic
Eng. Control, vol. 23, pp. 190–192, 1982.

[9] J. Y. K. Luk, “Two traffic-responsive area traffic control methods: Scat and
scoot,” Traffic Eng. Control, vol. 25, pp. 14–22, 1984.

[10] R. David and H. Alla, Discrete, Continuous, and Hybrid Petri Nets. Springer,
first ed., 2005.

[11] R. David and H. Alla, “On hybrid petri net,” 2001.

[12] D. Ling-xun, D. Li-hua, Y. Hong-ju, and L. Hang, “Hybrid modeling of control
system based on hybrid petri nets,” in Control and Automation, 2007. ICCA
2007. IEEE International Conference on, pp. 2158–2162, June 2007.

[13] A. Di Febbraro and S. Sacone, “Hybrid modelling of transportation systems
by means of petri nets,” in Systems, Man, and Cybernetics, 1998. 1998 IEEE
International Conference on, vol. 1, pp. 131–135, October 1998.

71

[14] A. Di Febbraro, D. Giglio, and N. Sacco, “Modular representation of urban traffic
systems based on hybrid petri nets,” in Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE, pp. 866–871, 2001.

[15] C. Va andzquez, H. Sutarto, R. Boel, and M. Silva, “Hybrid petri net model of a
traffic intersection in an urban network,” in Control Applications (CCA), 2010
IEEE International Conference on, pp. 658–664, September 2010.

[16] G. List and M. Cetin, “Modeling traffic signal control using petri nets,” In-
telligent Transportation Systems, IEEE Transactions on, vol. 5, pp. 177–187,
September 2004.

[17] Y. Qu, L. Li, Y. Liu, Y. Chen, and Y. Dai, “Travel routes estimation in trans-
portation systems modeled by petri nets,” in Vehicular Electronics and Safety
(ICVES), 2010 IEEE International Conference on, pp. 73–77, July 2010.

[18] J. Wu, A. Abbas-Turki, and A. El Moudni, “Discrete methods for urban intersec-
tion traffic controlling,” in Vehicular Technology Conference, 2009. VTC Spring
2009. IEEE 69th, pp. 1–5, April 2009.

[19] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.
Springer, second ed., 2008.

[20] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, pp. 541–580, April 1989.

[21] R. David and H. Alla, “Continuous petri nets,” in Proc. 8th European Workshop
on Application and Theory of Petri Nets, June 1987.

[22] R. David and H. Alla, “Autonomous and timed continuous petri nets,” 11th
International Conference on Application and Theory of Petri Nets, pp. 367–386,
June 1990.

[23] R. David, “Modeling of hybrid systems using continuous and hybrid petri nets,”
in Petri Nets and Performance Models, 1997., Proceedings of the Seventh Inter-
national Workshop on, pp. 47–58, June 1997.

[24] M. ALLAM and H. ALLA, “Modeling production systems by hybrid automata
and hybrid petri nets,” Conf on Control of Industrial Systems, May 1997.

[25] Z. Huiqin, G. Jun, X. Youbao, and L. Wei, “Modeling and analysis of a testing
system using hybrid petri net,” in Electronic Measurement and Instruments,
2007. ICEMI ’07. 8th International Conference on, vol. 1, pp. 465–470, July
2007.

[26] M. Dotoli, M. Fanti, and A. Mangini, “Fault monitoring of automated manu-
facturing systems by first order hybrid petri nets,” in Automation Science and
Engineering, 2008. CASE 2008. IEEE International Conference on, pp. 181–186,
August 2008.

[27] M. Kloetzer, C. Mahulea, C. Belta, L. Recalde, and M. Silva, “Formal analysis
of timed continuous petri nets,” in Decision and Control, 2008. CDC 2008. 47th
IEEE Conference on, pp. 245–250, December 2008.

72

[28] H. J. Payne, “Models of freeway traffic and contro,” in Mathematical Models of
Public Systems (Simulation Council Proc), vol. 1, pp. 51–61, 1971.

[29] M. Papageorgiou, Applications of Automatic Control Concepts to Traffic Flow
Modeling and Control. Berlin, Germany: Springer-Verlag, first ed., 1983.

[30] J. Julves and C. Mahulea, “Simhpn: A matlab toolbox for hybrid petri nets user
manual,” vol. 1, January 2012.

[31] J. Moody, K. Yamalidou, M. Lemmon, and P. Antsaklis, “Feedback control of
petri nets based on place invariants,” in Decision and Control, 1994., Proceedings
of the 33rd IEEE Conference on, vol. 3, pp. 3104–3109, December 1994.

