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ABSTRACT

Shafer, Brandon A. M.S.E.C.E., Purdue University, May 2014. Real-time Adaptive-
optics Optical Coherence Tomography(AOOCT) Image Reconstruction on a GPU.
Major Professor: John Jaehwan Lee.

Adaptive-optics optical coherence tomography (AOOCT) is a technology that has

been rapidly advancing in recent years and offers amazing capabilities in scanning the

human eye in vivo. In order to bring the ultra-high resolution capabilities to clinical

use, however, newer technology needs to be used in the image reconstruction process.

General purpose computation on graphics processing units is one such way that this

computationally intensive reconstruction can be performed in a desktop computer

in real-time. This work shows the process of AOOCT image reconstruction, the

basics of how to use NVIDIA’s CUDA to write parallel code, and a new AOOCT

image reconstruction technology implemented using NVIDIA’s CUDA. The results of

this work demonstrate that image reconstruction can be done in real-time with high

accuracy using a GPU.
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1. INTRODUCTION

Adaptive-optics optical coherence tomography (AOOCT) is a technology that has

been rapidly developing in recent years, increasing the capabilities of optical imaging

to amazing heights. Using a complex array of adaptable mirrors, lasers, cameras,

lenses, etc., researchers can scan the human eye and achieve detail down to the very

rods and cones that give one sight. From Adaptive Optics for Vision Science:

“The use of adaptive optics to increase the resolution of retinal imaging

promises to greatly extend the information that can be obtained from

the living retina. Adaptive optics now allows the routine examination of

single cells in the eye, such as photoreceptors and leukocytes, providing

a microscopic view of the retina that could previously only be obtained

in excised tissue. The ability to see these structures in vivo provides

the opportunity to noninvasively monitor normal retinal function, the

progression of retinal disease, and the efficacy of therapies for disease at

a microscopic spatial scale,” [1, p. 11].

Adaptive-optics has allowed for the discovery of new properties of cone photore-

ceptors [2,3]. As with a lot of medical research, the end goal of technological advances

of this nature is to aid in clinical diagnosis and treatment of patients. High resolution

OCT can help with diagnosis and on-going treatment of glaucoma [4], neovascular

age-related macular degeneration [5], macular hole [6,7], macular edema [6,8], among

others. For example, in detecting glaucoma, the measuring the average thickness of

certain quadrants of the retinal nerve fiber layer with OCT can be used to detect

eyes with early glaucomatous visual field defects and eyes with early glaucomatous

optic neuropathy [9]. This type of diagnosis can enable earlier detection and treat-

ment. However, in clinical settings there exists constraints and considerations that
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may not exist in a research and/or lab environment. Namely, ophthalmologists and

optometrists require an imaging technology that produces immediately available re-

sults to aid in diagnosis of patients. Tools that are provided to clinicians need to

enhance their capabilities without hindering the throughput of their work.

AOOCT, by its nature, requires significant calculations to transfer the scanned

data from the eye into human visible images for diagnosis. Although central process-

ing units (CPUs) are increasingly powerful, the time required for these calculations

using conventional sequential programming is prohibitive for a clinical environment.

Whereas, graphics processing units (GPUs), designed in a very different way, lend

to much better handling of certain kinds of problems that comprise a high degree of

parallelism, e.g., working with matrices, images and video, data sets, etc.

The way that graphics processors work is different from a conventional CPU such

as the Intel or AMD in PCs. CPUs are now very powerful devices that can handle

numerous sequential instructions (step-by-step commands) and work at high clock

rates. In recent years, those types of processors have moved to handling multiple

instructions at once with the use of a few very powerful multiple cores where each

core can handle its own stream of instructions. Instead of a few powerful cores,

GPUs contain up to thousands of less powerful cores. Sets of cores are controlled

by streaming multiprocessors (SMs). The cores under an SM operate in tandem,

following the same instructions together each on their own set of data, what NVIDIA

calls SIMT, i.e., single instruction multiple threads.

By using parallel programming in the form of NVIDIA’s CUDA, we have been

able to perform the necessary computations for image reconstruction in AOOCT,

in real time. While some research has been done recently in using GPUs for OCT

processing [10, 11], it is still a fairly new research area and as far as we know, this is

the first time it is being applied to ultrahigh resolution AOOCT for use in the human

retina.
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This thesis is divided into the following chapters: Chapter 2 “Adaptive-Optics

Optical Coherence Tomography,” Chapter 3 “CUDA,” Chapter 4 “AOOCT Processed

With CUDA,” and Chapter 5 “Results.” In Chapter 2, we explain the technology of

AOOCT and the process used to produce the final reconstructed images. Chapter 3

explains the basics of CUDA programming using CUDA-C. Chapter 4 explains how

we use parallel programming to produce the process necessary to calculate volume

images from AOOCT data in real time. Finally, Chapter 5 discusses the results of

our work and suggestions for future progress.
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2. ADAPTIVE-OPTICS OPTICAL COHERENCE

TOMOGRAPHY

In the last couple of decades, enormous progress has been made in the area of retinal

imaging in vivo (in the living human eye). One of these advances is in the area of

adaptive-optics optical coherence tomography or AOOCT. Using ultra-high resolution

spectral domain coherence tomography with adaptive-optics, researchers can obtain

3D resolutions as fine as 3 x 3 x 3 µm3 [12, 13]. With this extraordinary resolution,

individual rods and cones and even cells can be viewed in the living eye.

The evolution of this technology started with optical coherence tomography (OCT),

first published with use in vivo in 1993 [14–16]. From the report “Optical Coherence

Tomography” by Huang et al. comes the following description:

“Both low-coherence light and ultrashort laser pulses can be used to mea-

sure internal structure in biological systems. An optical signal that is

transmitted through or reflected from a biological tissue will contain time-

of-flight information, which in turn yields spatial information about tissue

microstructure” [14].

The first scanning was able to produce high spatial resolution of less than 2µm, but

the lateral resolution was limited by the beam diameter of the light to 9µm (of course

this was in sample tissue not in vivo). Since 1997, adaptive-optics have been used to

increase the resolution in OCT technology by correcting the ocular aberrations in real

time using deformable mirrors. It was first developed to correct for atmospheric blur

in ground-based telescopic systems, but is now a valuable tool in vision research [13].

To summarize, optical coherence tomography exploits the fact that different tissue

reflects light differently in order to create a high resolution image. Adaptive-optics

then corrects for diffraction caused by the eye’s lens and cornea. Even though a type
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of CCD camera is used to obtain the “image” from the system, the image must be

processed in order to reconstruct the 3 dimensions of the retina and, subsequently,

become useful for a clinician. The following subsections describe the steps taken

to acquire the image and calculate the final result in our research. In describing

AOOCT images in this paper, the terms A-line, B-scan, and volumes are used as

shown in Fig. 2.1. We process the image data a B-scan at a time.

Fig. 2.1.: Volume AOOCT images.

2.1 System

An AOOCT system consists of laser(s), deformable mirror(s), camera(s), and

assorted optics and optical devices. The complete setup is beyond the scope of this

thesis, but a good resource can be found in Adaptive Optics for Vision Science [1].
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Optical coherence tomography allows for scanning of very fine resolution, but with the

human eye, the imaging is distorted by the cornea and the lens. Prior to this research,

in our ignorance of the eye, we had only thought of the lens as being the sole optic in

the eye. However, the cornea also affects the light that enters the eye. Interestingly,

in a normal eye, the cornea and the lens on their own have greater optical aberration

than they have together. When correcting vision, such as in LASIK, the cornea is

corrected to match the lens, not to make the cornea optically perfect on its own,

which would make the vision ironically worse.

Adaptive-optics are used to correct for the optical aberrations introduced by the

cornea and the lens. Either by an open or closed feedback loop, using a reference signal

and an interferometer, deformable mirrors are adjusted to compensate for the aber-

rations. In Dr. Miller’s lab, with which we have worked very closely, two deformable

mirrors are used, one with low resolution but large range for coarse adjustment and

one with higher resolution and lower dynamic range for fine adjustment.

After initial setup, a laser is shone into the eye onto the retina. The returning

light is captured using a CCD camera. Both the scanning laser and the camera

are controlled via a computer, maintaining synchronization. Once in the computer,

the data needs to be processed to become understandable images. The processing,

described in Section 2.2, can be performed at runtime or after the fact. However,

runtime is preferable, and was our goal in this research, to enable the system to be

fast enough for clinical use, and to provide real-time visual feedback to the human

operator of the system to make adjustments for better results. One of the limitations

of imaging the eye is the difficulty in the subject keeping still and the minor discomfort

of a subject in placing the head in position to be scanned. Faster feedback in the

form of real-time imaging helps the operator to calibrate the system faster and to see

when a recording needs to be redone from movement.
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2.2 Processing Steps

AOOCT images are not readily apparent upon capture. Like a magnetic resonance

image in a hospital, the image must be processed to become useful to human eyes.

The steps of processing an AOOCT image after scanned spectral data is input into

the system is as follows, and the details of each step are explained in the following

subsections.

1. DC component subtraction.

2. Pad the A-lines to predetermined width.

3. Map the image to k-space.

4. Compensate for dispersion.

5. Fast Fourier Transform(FFT) to convert the image to time domain.

6. Crop and convert to pixels.

7. Final visualization.

2.2.1 DC component subtraction

When the A-lines are initially scanned, there exists a strong peak near zero fre-

quency in the spectra. There are a couple reasons we want to remove that peak.

First, during calibration, which is prior to but similar to our reconstruction process,

the highest peak of a physical structure is determined. It is necessary to remove the

DC peak because it interferes with this detection. Since our data also uses information

from the calibration, it is necessary to match that process. Second, if the DC peak

was not removed, in the final image it would present as a constant brightness and

interfere with the user being able to descern actual physical structural information

from the DC signal.
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To subtract the DC component out of the OCT signal, an averaged A-line spec-

trum is calculated from all of the A-lines of a B-scan as seen in Eq. 2.1.

Āi =
1

M
·
M−1∑
j=0

Aij (2.1)

where i is an element of A-line, j is the row in the B-scan, and M is the number of

A-lines in the B-scan. Then the averaged component is subtracted from each element

in the B-scan as seen in Eq. 2.2.

Anewij = Aij − Āi, 0 ≤ j < M, 0 ≤ i < N (2.2)

The overall effect is visualized in Figure 2.2.

2.2.2 Zero-padding

Zero-padding the incoming A-lines serves a couple purposes. It allows us to work

with sizes that are a power of two. This allows for faster subsequent FFTs and is

more conducive to GPU operations. Also, zero-padding, using Fourier transforms as

we do, acts as a form of interpolation. We cannot add data that is not present to

begin with, but this allows us to use more pixels with smaller frequency bin sizes,

creating a smoother image. For example, an input signal with A-lines that are 832

pixels wide is zero-padded up to a size of 4096 pixels wide. The same information

exists in the 4096 wide version as in the 832 wide version, but displaying the resultant

image in 4096 pixels will allow for a smoother, easier to understand image. Padding

the signal is a four step process. First, the initial signal is padded on both ends of

the A-line to have a size of a power of two to better facilitate the GPU as cuFFT

runs faster when the size is a power of two. The next three steps involve passing

the signal through an FFT, adding padding, and bringing it back through an IFFT.

This spreads the signal over the whole width we are allotting. It is akin to using

a spread-spectrum signal in communications. The first FFT is performed as shown

in Equation 2.3. Because the signal is real-valued, the transform F(x) is hermitian.

This can be and is exploited to increase processing speed by decreasing storage size.
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(a)

(b)

Fig. 2.2.: DC Subtraction from each scanned signal: The solid oscillating lines rep-

resent a single A-line. Image (a) is an individual A-line superimposed on the dotted

line representing an averaged A-line, Āi, from the entire B-scan. (b) The averaged

data is subtracted out of the individual A-line.

Xk =
N−1∑
n=0

xn · e−i2πkn/N (2.3)
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Third, each A-line is padded with zeros again as follows. If the full A-line were

seen, the padding would be in the middle, but since we are using hermitian symmetry

(discussed later in Section 4.4), only one side of the A-line is stored and padding only

needs to be applied to the end. Fourth, perform an inverse FFT as follows.

Xk =
1

N
·
N−1∑
n=0

xn · ei2πkn/N (2.4)

The signal going into the first FFT and the signal after the inverse FFT are real-

valued. Currently, if the initial A-line width is less than 2048, it is padded to 2048 in

step one, and finishes at 4096 after step four. If the initial A-line width is greater than

2048, the numbers become 4096 and 8192, respectively. These numbers were chosen

by Dr. Miller’s team in Bloomington for the resulting images to have appropriate

resolution.

2.2.3 K-space interpolation

Each pixel in an A-line corresponds to a wavelength of light. When captured, the

wavelengths associated with each A-line are not evenly spaced. In order to create

an evenly spaced final image, first the A-line spectra are realigned from λ-space to

k-space, where k = 2π/λ, and then the samples need to be equally spaced in k-space.

In order to do this, a calibration file is needed with the current wavelengths that are

associated with the A-line spectra. The first and last wavelengths are converted to

k-space as shown in Eq. 2.5 and Eq. 2.6.

kmin = (2 · π)/wavelength[0] (2.5)

kmax = (2 · π)/wavelength[end] (2.6)

A vector is then created with evenly spaced values with kmin and kmax as the beginning

and ending elements. All of the values of the new vector are converted back to λ-space

so that the current A-line spectra can be interpolated to the new evenly spaced, in

k-space, values as shown in Figure 2.3. We then use a simple linear interpolation
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to complete the process. Linear interpolation is used in this work in the interest of

faster computation time, but in future works better forms of interpolation (e.g., spline

interpolation) can be explored.

(a) (b)

Fig. 2.3.: (a) shows an A-line with pixels of A0, A1...A15 and wavelengths λ0, λ1...λ15

transformed to new values A′0, A
′
1...A

′
15 associated with new wavelengths that are

evenly-spaced in k-space, λ′0, λ
′
1...λ

′
15. (b) illustrates the uneven wavelengths trans-

forming to evenly-spaced wavelengths.

2.2.4 Dispersion compensation

OCT images are often blurred from an optical effect called dispersion [17, 18].

The light that enters the eye is dispersed because of the refractive index of the tissue.

The adaptive-optics help to counteract that effect, but do not completely eliminate

it. One reason for this is that the dispersion affects different wavelengths differently.

According to Cense et al., the relation between multiple orders of dispersion and the

phase θ(k) can best be described by a Taylor series expansion:

θ(k) = θ(k0) +
∂θ(k)

∂k

∣∣∣∣
k0

(k0 − k) +
1

2
· ∂

2θ(k)

∂k2

∣∣∣∣
k0

(k0 − k)2

+ . . .+
1

n!
· ∂

nθ(k)

∂kn

∣∣∣∣
k0

(k0 − k)n
(2.7)

with λ0 the center wavelength and k0 equal to 2π/λ0 [18].
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The third term represents second order dispersion. It is manifested along the A-

lines, and to remove the blur, each element in an A-line is multiplied by a complex

phase term determined during calibration of the system. The complex phase terms

are found in the human eye using a well-reflecting reference point, the center of the

fovea. After dispersion compensation, the resulting B-scans are complex-valued.

2.2.5 Fast Fourier Transform (FFT)

All of the prior steps have been preparing the data for this reconstructive step.

This FFT will reconstruct the data into an actual retinal volume image. The FFT

in this step is a 1D FFT along each A-line. The B-scan is complex-valued from the

previous step, and resulting image frame will be complex-valued as well. The FFT is

the same as in Equation 2.3

2.2.6 Final conversion to image

At this point, the B-scan is reconstructed into a complex-valued image. There

are several more steps to finish formatting the image for display, and there are some

optional steps that help optimize the image for the end user.

1. Crop the image.

2. Convert complex numbers to intensity.

3. Convert to log scale (Optional).

4. Normalize into pixels.

The cropping of the image disposes of unnecessary parts of the A-lines. The beginning

of the A-lines often contains large optical artifacts due to being near the coherence

gate of the OCT system. The end of the A-lines often contains little useful infor-
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mation. Prior to finding the intensity values, the image is cropped to exclude those

regions of the A-lines. Then, the complex numbers are converted to an intensity value

according to Eq. 2.8.

Iij = <(Bij)
2 + =(Bij)

2 (2.8)

where i is the column, j is the A-line position in the B-scan, B is the B-scan, and I

is the resulting image. If a log-scaled image is desired, the log is then calculated as

in Equation 2.9.

Ilogij = 10 · log10 (Iij) (2.9)

where Ilog is the resulting log-scaled image, i is the column, j is the row in the B-

scan, and I is the image resulting from Equation 2.8. The images are then normalized

and fit into unsigned character bytes of values of 0-255. The resulting image is 8-bit

grayscale.

Nij = (
Iij − Imin

Imax − Imin

) · 255 (2.10)

where I is either the resulting image from Equation 2.8 or 2.9, whichever is desired,

Imin and Imax are the minimum and maximum of the individual pixels in the B-scan,

respectively, i is the column, j is the row in the B-scan, and N is the resulting

normalized image. The minimum and maximum can be calculated automatically or

can be set by a user to make the resulting figure easier to visually understand. When

the minimum is set manually, data that is under the minimum will be clamped to zero,

and likewise for a manually set maximum, data that is greater than the maximum

will be clamped to 255.

Figure 2.4a shows what a linear B-scan looks like once it is complete. Figure 2.4b

shows that same figure as a log scale.
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(a) (b)

(c)

Fig. 2.4.: A processed B-scan where (a) is a linear version, (b) is a logarithmic version,

and (c) is cropped from (b)). These images were produced using our software from

data provided by Dr. Miller’s lab.
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(a)

(b)

Fig. 2.5.: 3D projected volume of processed B-scans from two different angles. These

images were produced using the software ImageJ using reconstructed images from our

software.
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3. CUDA

Almost all processors use the Von Neumann approach to computing where a proces-

sor fetches an instruction from memory, decodes that instruction, and performs the

operation of that instruction [19, p. 12]. Conventional CPU processors have become

very powerful over the years, increasing clock speed and throughput. Nowadays the

move has been also to more cores. Two, four, eight, etc. cores in a processor allow

for many more instructions to be processed and increases throughput. However, the

programmer must make use of the multiple cores, a non-trivial proposition, to use

this expansion of capability to enhance his or her own programs.

The GPU has come in favor over the last few years for general scientific computing

for a several reasons. To start with, GPUs come at problems in a way more akin to the

way past super computers addressed them than to a modern CPU; that is, they utilize

many cores to break a problem into many smaller parts to be worked. The overall

clock speeds of GPUs are much lower than the powerful CPU of most modern PCs.

For example, the NVIDIA Titan (the most advanced NVIDIA gaming GPU) runs at

a clock speed less than 1GHz [20], while most CPUs run around 3 GHz. However,

the GPU uses multiple supervisory cores, and thousands of CUDA cores, to make

quick work of problems that could take much longer using a CPU. Secondly, GPUs

are far less costly than supercomputers, and even Multi-Nodal computer systems. At

the time of this writing a single multicore processor can cost over a thousand dollars.

A Titan, costs approximately a thousand dollars, and a Tesla K20, the card used in

this research, around three thousand. A GPU can be put in a standard desktop PC

and even some laptops, and if more power is needed more cards can be added via the

PCIe bus. Thirdly, with the advent of CUDA C, from NVIDIA, writing programs

for GPUs has become far more accessible to scientists. In this chapter we discuss the

structure of CUDA GPU cards and the basics of how to program with them.
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3.1 Parallelism

CUDA programming starts with a normal program like any other in C++ or C

(CUDA-C is the fundamental path to coding for CUDA, but there are extensions

available for Python and other languages). However, actual computer code will be

divided in between work done on the GPU and work on the CPU. Which code is

for the GPU and which is for the CPU is explicitly written into the program. Code

that is for the GPU comes in the form of kernels. A kernel is akin to a function or

method in C/C++. There are arguments and the kernel, like a function, can contain

its own variables. A kernel is invoked from other code. However, there are some big

difference between a standard function written for a CPU and the kernel written for

the GPU. A kernel can be called in a way that it is run on many cores at once. While

more is said about the GPU hardware in Section 3.2, we also discuss it here.

While CUDA was an evolution from prior GPUs that were primarily for graph-

ics, but which had programmable properties, the first full-fledged architecture from

NVIDIA which allowed for General Purpose computing was the Fermi architecture.

In Fermi, the cards are designed with a number of Streaming Multiprocessors (SMs).

Each SM is made up of 32 cores with local registers, 64KB of SRAM between cache

and local memory, four special function units (SFUs), 16 load/store units for mem-

ory access, and can perform integer and floating point operations [21]. As shown in

Figure 3.1, the cores are divided into two sets of 16. Along with the SFUs and the

load/store units there are four execution blocks in an SM. In any one clock cycle, 32

instructions from either one or two warps (a warp is a bundle of threads, with each

thread being an instruction), can be issued to the execution blocks. As shown in

Figure 3.2, the Kepler SMX, the successor to Fermi, has expanded capabilities and

is much more powerful. An SMX has more cores, double precision, more load/store

units, more SFUs, and greater memory than the Fermi SM.
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Fig. 3.1.: Fermi streaming processor [21]
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Fig. 3.2.: Kepler SMX streaming processor [22]

CUDA operates under the SIMT model which stands for Single Instruction Mul-

tiple Thread. When an instruction is issued in a warp of threads, a full warp being

32 threads, this warp would encompass all the execution blocks of cores in the SM.
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The same instruction would be executed on each core, whereas each core operates on

its own thread. Each thread will be written to use its own data, so that the threads

in a warp are operating in parallel.

Listing 3.1: A vector addition example.�
1 __global__ void vecAdd(float* C,float* A,float* B)

2 {

3 int idx = threadIdx.x;

4 C[idx] = A[idx] + B[idx];

5 } �
Using the simplest of examples, vector addition, in Listing 3.1 a simple kernel is

written. This code is very simple with just two lines. On line number three, there

is an internal variable idx assigned from threadIdx.x. When a kernel is launched,

each thread has certain properties that can be exploited. Those properties give the

programmer an idea as to which specific thread is being worked on. That is not to say

that the programmer knows exactly where the thread will be executed in hardware,

or the order in which the thread will be executed in hardware. Those are issues

handled by a scheduler and can be different every time the program is run. This

does give the programmer the ability to specify different data for each thread to work

on. For illustration, say this kernel is launched as one warp of 32 threads. That

warp will be put onto a single SM, where each core will handle one thread. Line

number three uses the thread information (threadIdx is defined by CUDA and is not

a user defined variable) to reference the position in the vector where it will handle

information. So for example, there will be a core with thread number 16. On that core

line number three will assign a 16 to idx. Then line number four will be executed as

C[16] = A[16] + B[16]. Compare that to thread number 8, which will be executed as
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C[8] = A[8] + B[8]. The entire warp progresses through the code at the same time,

each core taking the same instruction on its own thread, but each instruction can

reference its own registers or memory.

Threads are grouped as warps that run on the cores of the SM, but when calling a

kernel, the threads are grouped in blocks. A block is made up of a number of warps,

with possibly more threads than can be run at a single instant, but few enough that

all of the memory associated with the block can fit on a single SM [23, p. 8]. On

current CUDA cards, a block can have up to 1024 threads. The kernel can be broader

than just a single block however. Multiple blocks of the same dimensions can be called

to operate the same kernel. In Listing 3.2, the kernel call for Listing 3.1, the threads

are in a single block. In Listing 3.3, the original kernel has now been adapted to work

on multiple blocks.

Listing 3.2: A vector addition example kernel call.�
1 dim3 blocks (1,0,0);

2 dim3 threads (32,0,0);

3 vecAdd<<<blocks,threads>>>(C,A,B); �

Listing 3.3: A vector addition example using multiple blocks.�
1 __global__ void vecAdd(float* C,float* A,float* B)

2 {

3 int idx = blockIdx.x * blockDim.x + threadIdx.x;

4 C[idx] = A[idx] + B[idx];

5 }

6

7 dim3 blocks (5,0,0);

8 dim3 threads (128,0,0);

9 vecAdd<<<blocks,threads>>>(C,A,B); �
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CUDA allows for up to three dimensions in the references in blocks and threads.

This makes referencing in matrices fairly straightforward. In Listing 3.4, the vector

addition example is expanded to work on a matrix. The differences between this ex-

ample and the previous example are the dimensions of the blocks, and the referencing

in the kernel.

Listing 3.4: A vector addition example using multiple dimensions.�
1 __global__ void matAdd(float* C,float* A,float* B)

2 {

3 int idx = blockIdx.x * blockDim.x + threadIdx.x;

4 int idy = blockIdx.y * blockDim.y + threadIdx.y;

5 int gid = idy * gridDim.x * blockDim.x + idx;

6 C[gid] = A[gid] + B[gid];

7 }

8

9 dim3 blocks (5,10,0);

10 dim3 threads (32,4,0);

11 vecAdd<<<blocks,threads>>>(C,A,B); �
Figure 3.3 shows how a two dimensional matrix can be represented in memory.

The matrix is stored row by row, so that Row 0 comes first then Row 1, etc. In

Listing 3.4, the individual elements are referenced in this way. The y dimension is

multiplied by the length of a row and then that result is added to the x dimension to

obtain the dereferenced element. In the same way, when referencing an element across

blocks, it is necessary to multiply the blockIdx (the id of a block) by the blockDim

(the number of threads in a block) and then add the threadIdx to get to the proper

element.
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Fig. 3.3.: Matrix storage structure

When writing parallel code for CUDA, it is also necessary to examine the rela-

tionship between threads in a block and between threads in different blocks. Threads

in the same block can share some local memory (NVIDIA calls it shared memory).

This is important because shared memory is much faster than global memory. In the

same way that cache is much faster than the memory in a CPU, the shared memory of

an SM in a GPU is much faster than the general global memory of the GPU. While

CUDA makes shared memory an option that can be used in a kernel, the threads

themselves can be on different warps and be executed at different times. In instances

where threads depend on data written by other threads, it is necessary to synchronize

using syncthreads(). This synchronization can come at a cost of computation time,

so threads that do not require communication are much preferred if possible. Also,

the order of thread execution is not something that can be known and relied upon

ahead of time.
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While threads can communicate with threads in the same block, cross-block com-

munication is not reliable. There are operations called Atomic Operations provided

by CUDA that enable a kernel to do a limited set of operations on shared and global

data that prevent race conditions. For example, two instances of a kernel that reside

in different blocks on different SMs could both write to the same location in global

memory and both writes will be honored and not interfere with each other when

using Atomics. However, the order of the write operations cannot be known ahead

of time. Furthermore, atomics do come at a cost; the atomic operations take longer

than normal read/write operations, and when two threads are in conflict, one will

have to wait, meaning that whole warp will be delayed.

3.2 Hardware

The newest iteration of CUDA architecture is the Kepler architecture. The GPU

used for our research is the Tesla K20. Kepler has numerous advances over the

previous generation that enable faster run times and better overall throughput. For

example, the new SMX streaming multiprocessor of the Kepler architecture is more

powerful, programmable and energy efficient than the previous generation. While

each SM has 32 cores , four special function units, and 16 load/store units for memory

access, the new Kepler SMXs have 192 cores, 64 double precision units, 32 special

function units, and 32 load/store units for memory access [22]. While not used in

our research, dynamic parallelism also offers the ability to call a kernel from a kernel.

In instances where a subsequent kernel needs information from a previous kernel

before launching, that subsequent kernel can be called from a GPU with dynamic

parallelism, whereas before it could not. Keeping that decision making and kernel

launches on the GPU can offer greater throughput and speed in the circumstances

that require it. NVIDIA is constantly innovating new capabilities with their GPUs,

besides the impressive increase in computing power via better hardware.
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Table 3.1: Fermi and Kepler GPU Capabilities [22]

Fermi

GF100

Fermi

GF104

Kepler

GK104

Kepler

GK110

Compute Capability 2.0 2.1 3.0 3.5

Threads / Warp 32 32 32 32

Max Warps / Multiprocessor 48 48 64 64

Max Threads / Multiprocessor 1536 1536 2048 2048

Max Thread Blocks / Multiprocessor 8 8 16 16

32-bit Registers / Multiprocessor 32768 32768 65536 65536

Max Registers / Thread 63 63 63 255

Shared Memory Size Configurations (bytes) 16K 16K 16K 16K

48K 48K 32K 32K

48K 48K

Max X Grid Dimension 216 − 1 216 − 1 232 − 1 232 − 1

Hyper-Q No No No Yes

Dynamic Parallelism No No No Yes

Besides the Tesla K20c GPU card, the machine that this research was performed

on also had 64 gigabytes of DDR3 RAM, an Intel Xeon processor, a Quadro K2000D

GPU, and a large 500 Gb SSD hard drive.
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4. AOOCT PROCESSED WITH CUDA

Adaptive-optics optical coherence tomography (AOOCT) has enabled incredible res-

olutions in scanning the living eye that were not possible before. AOOCT has allowed

the capture of volume images of structures in the retina, previously un-viewable except

by using microscopes. Now, with AOOCT, a number of clinical conditions are be-

ing studied, including age-related macular degeneration (ARMD), hereditary retinal

dystrophies, retinopathy of prematurity, and optic neuropathies [13]. Still, the major

drawback of this technology is that the result is computed, and the computations take

significant time. In order to push the technology to the next level, introduction into

regular clinical use, the calculation time needs to be within seconds instead of hours.

It is in this regard that CUDA parallel programming can be of important assistance

to this field. Algorithm 4.1 shows how a B-scan progresses through the GPU.

Algorithm 4.1 B-scan Reconstruction.

1: for all i such that 0 ≤ i < number of B-scans do

2: Convert incoming spectral data from 16-bit unsinged integer to float

3: Subtract DC component from B-scan

4: Pad A-lines

5: Align to k-space

6: Compensate for dispersion

7: 1D FFT of each A-line

8: Calculate intensity

9: Normalize

10: Move to next available CUDA stream for next B-scan

11: end for
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(a) (b)

Fig. 4.1.: Each row of the storage array is an A-line. A-lines then combine to make a

B-scan. In memory, rows are stored contiguously, i.e., A-line 1 is stored then A-line

2, A-line 3, etc. as in (a). Green squares mark the beginning of an A-line, and blue

squares mark the beginning of a B-scan. In this program, B-scans are handled one at

a time, but once finished are stored as in (b).

As mentioned in Section 3.1 and shown in Figure 3.3, it is important to realize

how the data is stored in memory. This is particularly true for usage on a GPU as

hiding memory latency is an important factor in the overall speed of a CUDA kernel.

In the following sections, data will be handled as a B-scan at a time, and like the

matrix in Figure 3.3, each B-scan will be stored as in Figure 4.1a.

4.1 Converting Incoming Data

Line 2 from Algorithm 4.1 converts the incoming data from 16-bit unsigned integer

to float. The spectra data as scanned by the camera is stored in memory as unsigned

16-bit integers. However, to perform the calculations needed in the reconstruction it

is much better to use floating point numbers. The incoming data is copied to the

GPU RAM as an array of unsigned 16-bit integers. In a very simple GPU kernel,
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each pixel is cast as a single precision float. A single precision float is stored in four

bytes. Then the pixel, as a single precision float, is stored in global memory on the

GPU.

4.2 DC Subtraction

Line 3 from Algorithm 4.1 is to remove the DC component of the incoming A-line

signals for the entire B-scan. The way to accomplish this is to calculate the average

for each point in all of the A-lines of a B-scan, as seen in Figure 4.2, and then subtract

the average from all of those points.

Fig. 4.2.: Averaging B-scan for DC subtraction.
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When first approaching this problem, the most straightforward method was to

write a kernel where a thread would loop through a column, accumulating a sum-

mation, divide by the number of elements, and loop through again subtracting the

average from each element. We initially implemented this technique.

Fig. 4.3.: Parallel reduction.

However, summing the elements linearly like this seemed very inefficient compared

to another summation technique called Reduction. Linearly adding and subtracting

through the columns takes on the order of 2N steps per thread. In reduction, the

elements are added together in steps similar to a “Divide and Conquer” recursive

technique in traditional programming [24]. Figure 4.3 shows how the elements are

combined. Generally, this allows for reducing the number of steps to log2N per warp.
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However, to use reduction for DC subtraction, the B-scan needs to be transposed first.

The reason for this is in the way that memory is accessed by the GPU. If the data

is not transposed first, when doing column reduction the memory access will be non-

coalescent and require many more memory fetches than necessary. If, however, the

B-scan is transposed, each row of the resulting matrix will be reduced to find the

summation of the elements, employing coalesced memory access. Once implemented,

we achieved better performance than the previous method. This is seen in Figure 4.4.

Fig. 4.4.: Transpose and reduce B-scan for DC subtraction.

We want to transpose the matrix first so that memory access will be coelesced.

Similarly, the act of transposing a large matrix on a GPU takes some of its own tricks

in order to run optimally. An excellent paper on this by Reutsch and Micikevicius [25]

shows how to use tiling and shared memory as well as diagonal block reordering in

order to get around these conflicts. Our transpose makes use of all of these techniques

(tiling, etc.) to optimize our speed.
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(a) (b)

Fig. 4.5.: Transposing tile using shared memory: each block handles a tile of the

matrix. A number represents a thread id, and a square an element in shared memory.

(a) Each thread loads the data from the matrix row-wise, and (b) write the data back

to global memory column-wise.

Once the B-scan is transposed, the reduction calculates the total along each row

and stores the calculated average in a new vector. Algorithm 4.3 shows the procedure

used for transposing the image, and Algorithm 4.4 shows the reduction procedure

used to calculate the averaged A-line. After this step is complete, another kernel is

launched that subtracts the average from each element as shown in Algorithm 4.5.

All three steps are combined in Algorithm 4.2.

Algorithm 4.2 DC subtraction.

1: transpose≪blocks,threads≫ . Algorithm 4.3

2: getAverage≪blocks,threads≫ . Algorithm 4.4

3: subtractAverage≪blocks,threads≫ . Algorithm 4.5
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Algorithm 4.3 transpose≪blocks,threads≫ (in, out, width, height, TILE DIM,

BLOCK ROWS)

Note: Variable in is the untransposed matrix, out is the transposed matrix, width

and height are from the size of the B-scan, and TILE DIM and BLOCK ROWS

are the tile dimensions.

1: bid ← blockIdx.x + gridDim.x × blockIdx.y

2: blockIdx y ← bid mod gridDim.y

3: blockIdx x ← ( ( bid / gridDim.y ) + blockIdx y ) mod gridDim.x

4: xIndex ← blockIdx x × TILE DIM + threadIdx.x

5: yIndex ← blockIdx y × TILE DIM + threadIdx.y

6: index in ← xIndex + ( yIndex ) × width;

7: xIndexO ← blockIdx y × TILE DIM + threadIdx.x;

8: yIndexO ← blockIdx x × TILE DIM + threadIdx.y;

9: index out ← xIndexO + ( yIndexO ) × height;

10: if xIndex < width then

11: for all i such that 0 ≤i < TILE DIM do

12: if (yIndex + i) < height then

13: tile[threadIdx.y + i][threadIdx.x] ← in[index in + i × width];

14: end if

15: i ← i + BLOCK ROWS

16: end for

17: end if

18: syncthreads()

19: if xIndexO < height then

20: for all i such that 0 ≤ i < TILE DIM do

21: if (yIndexO + i) < width then

22: out[index out + i × height] ← tile[threadIdx.x][threadIdx.y + i]

23: end if

24: i ← i + BLOCK ROWS

25: end for

26: end if
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In Algorithm 4.3, the inputs to the algorithm are in, width, height, TILE DIM,

and BLOCK ROWS. The variable in is the matrix that is being transposed. The

variables width and height are from the size of the entire B-scan and are used to keep

the threads in bounds. The variables TILE DIM and BLOCK ROWS are dimensions

of the tile. The variable out is where the transposed matrix is stored. Lines 1 through

9 are calculating the index of the elements of the matrix that will be read into shared

memory and the index of the elements of the resulting transposed matrix that will be

written out. There are a couple of ideas being used in these calculations. First, the

matrix is divided into tiles, submatrices, that each block works on. Second, blocks

are ordered using something called diagonal block reordering. To learn more about

these two concepts we would recommend the paper by Reutsch and Micikevicius [25].

In Lines 10 through 17, the kernel is reading in data from the matrix row-wise and

storing that data in local shared memory. Line 18 synchronizes the threads, making

sure that the entire tile is entirely read into memory. Since the number of threads in

the block is larger than an individual warp it is very important to keep the threads

synchronized, otherwise some threads could be at the writing out stage in the next

steps, prior to when the data is read in, meaning that the kernel will write out garbage

data before the desired data is available. Last, in Lines 19 through 26, the tile of

data that was stored in shared memory, is written out to the transposed matrix. The

writing is row-wise, preserving the coelesced memory access to global memory on the

GPU.
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Algorithm 4.4 getAverage≪blocks,threads≫ (in, out, n)

Note: Variables in and n are the inputs. Variable in is the transposed matrix, and

n is the width of the transposed matrix. Variable out is the resulting averaged

A-line.

1: tid ← threadIdx.x

2: i ← blockIdx.x × blockSize + threadIdx.x

3: gridSize = blockSize × gridDim.x

4: mySum ← 0

5: while i < n do

6: mySum ← mySum + in[i + blockIdx.y × n]

7: i ← i + gridSize

8: end while

9: sharedData[tid] = mySum

10: syncthreads()

11: b ← blockSize

12: while b > 64 do

13: if tid < b / 2 then

14: sharedData[tid] ← sharedData[tid] + sharedData[tid + b / 2]

15: syncthreads()

16: end if

17: b ← b / 2

18: end while

19: if tid < 32 then

20: while b > 1 do

21: sharedData[tid] ← sharedData[tid] + sharedData[tid + b / 2]

22: b ← b / 2

23: end while

24: end if

25: if tid = 0 then

26: out[blockIdx.y] ← sharedData[0] / n

27: end if
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In Algorithm 4.4 we are performing reduction on each row of the transposed matrix

from Algorithm 4.3. The result will be an averaged A-line. In Lines 1 through 3, we

are finding the thread information and the position of the row that we are averaging.

Line 4 initializes a variable used to hold our initial summation and aide in loading

the rows into shared memory. Lines 5 through 9 load the pixels in the row into local

memory. The rows that we are averaging can be an arbitrary width (the width of

this row is the height of the columns in the B-scan), and the shared local memory

has a width of the highest power of two under the transposed matrix width. The

pixels at indexes greater than the shared memory width are loaded by adding them

into the shared memory. Line 10 synchronizes the threads. Lines 11 through 18 start

the reduction. Each iteration through the while loop, the number of active threads

is cut in half. After each addition, the threads are synchronized in Line 15. This

is because the number of active threads is still greater than a warp and threads on

different warps run at different times. Once the active threads are down to a warp

the algorithm moves on to Lines 19 through 24 where synchronization is no longer

needed. The threads continue to be cut into half until the summation is contained in

the first element of the sharedData array. Finally, in Lines 25 through 27, the first

thread of each block outputs the average calculated in that block.

Algorithm 4.5 subtractAverage≪blocks,threads≫ (in, out, avg, width)

Note: in,avg,width are the input variables. in is the B-scan from before the trans-

pose was performed in Algorithm 4.3. avg contains the averaged A-line, and width

contains the width from the size of the B-scan. out is the output variable where

the resulting B-scan is written to.

1: idx ← blockDim.x × blockIdx.x + threadIdx.x

2: idy ← blockDim.y × blockIdx.y + threadIdx.y

3: if idx < width then

4: out[idy × width + idx] ← in[idy × width + idx] − avg[idx]

5: end if
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Algorithm 4.5 concludes Algorithm 4.2. Lines 1 and 2 find the column and row

information, respectively, of the matrix (the matrix prior to the tranposition) as well

as the avgeraged A-line calculated from Algorithm 4.4. In Lines 3 through 5 we

subtract the averaged A-line value from the matrix and store the result in global

memory.

4.3 Zero Padding

The next step, Line 4 of Algorithm 4.1, is padding A-lines. This is done for a

couple of reasons. The foremost is because it produces a better resulting image, but

also padding the A-lines out to a power of two is more efficient for the FFTs and

general use on the GPU.

This process includes three steps: 1D-FFT of each A-line, padding the center of

the resulting frequency information with zeros, and 1D-IFFT to return back from the

frequency domain. This is shown in Algorithm 4.6 with the middle padding shown

in Algorithm 4.7. By padding it this way, using FFTs, the signal is spread over

the padded width. The data going into the FFT is real; due to this, the data after

the FFT exhibits Hermitian symmetry. Detailed more in Section 4.4, the Hermitian

symmetry allows the resulting data to be stored in N/2 + 1 complex values. The

padding then occurs from N/2 + 2 until Npadded/2 + 1.

Algorithm 4.6 Pad

1: ComplexArray ← FFT real to complex

2: kernelPad≪blocks,threads≫ (ComplexArray)

3: RealArray ← IFFT complex to real

In Algorithm 4.6 we use cuFFT for Lines 1 and 3 and our own kernel for Line 2

described in Algorithm 4.7.
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Algorithm 4.7 kernelPad≪blocks,threads≫ (ComplexArray, inWidth, outWidth,

height)

Note: ComplexArray contains the output of the previous FFT. Variables inWidth

and outWidth dictate what the width of the output of the FFT is and the input

of the IFFT, respectively. height is the number of A-lines in a B-scan.

1: idx ← blockDim.x × blockIdx.x + threadIdx.x

2: idy ← blockDim.y × blockIdx.y + threadIdx.y

3: out ← idy × outWidth + idx

4: if idx ≥ inWidth & idx < outWidth then

5: for all i such that 0 ≤ i < height do

6: ComplexArray[out] ← 0

7: out ← out + outWidth

8: end for

9: end if

Algorithm 4.7 sets the padded area, as shown in Figure 4.6, to zero. Lines 1

through 3 determine the indexes of the elements that are to be set to zero. Line 4

blocks any threads from going outside of that area. Lines 5 through 8 step through

a column and sets the elements to zero.
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Fig. 4.6.: Storage of values when padding.

4.4 CuFFT

One of the strengths of CUDA in recent years has been the support of NVIDIA

and other GPGPU programmers in developing parallel packages that are useful to a

broad range of people. One such area is fast-Fourier transforms (FFTs). The cuFFT

library is NVIDIA’s FFT package for the GPU. It was based on FFTW, a widely

used CPU FFT package [26]. What is actually being calculated by an FFT is the

Discrete Fourier Transform (DFT) shown in Equation 2.3 and Equation 2.4 in the

forward and reverse directions, respectively.

In processing AOOCT data, as explained in Sections 2.2 and 2.2.5, FFTs are used

a total of three times for each A-line to transform it from raw data to a finished output

image. A forward DFT and a reverse DFT are used in padding the input data in
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Lines 1 and 3 of Algorithm 4.6, respectively, and another forward DFT is used upon

completion of the calculations in Line 7 of Algorithm 4.1. While offering a litany

of useful features, the particulars useful to our calculations are batching, complex

and real valued input and output, strided layout, and streamed execution [26]. As

seen in Table 4.1, the data varies in types for different operations through out the

processing, and the ability to specify complex or real is an advantage. The batching

is also necessary. Each FFT is performed on one A-line at a time. The ability to

batch the FFT calls over the whole B-scan is necessary for performance.

Table 4.1: Data flow through processing.

Step Format Byte per

Element

Elements per

Aline

Raw Data UInt16 2 Arbitrary

Pre Padding Float 4 Arbitrary

Padding Complex Float 8 Arbitrary

Post Padding Real Float 4 4096

· · · Real Float 4 4096

Post Disp. Comp. Complex Float 8 4096

Post FFT Complex Float 8 4096

Pre Display UInt8 1 < 2048

The cuFFT package is very flexible in that it allows for specifying the input and

output arrays to the FFT. By default, the FFT, whether operating in-place or going

from an input to an output or whether going from complex to real or real to complex,

uses space as seen in Table 4.2.
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Table 4.2: CuFFT data sizes used in different operations.

FFT Type Input Data Size Output Data Size

Complex to complex x x

Complex to real b1
2
xc+ 1 x

Real to complex x b1
2
xc+ 1

Instead of this default behavior, it is more desirable to keep the number of ele-

ments constant. An advanced layout mode enables a user to be precise in the number

of input and output elements and how those are arranged for batched operations [26].

In full operation, we utilize three FFTs: a real-to-complex FFT, a complex-to-real

inverse FFT, and a complex-to-complex final FFT. The library allows us to use com-

plicated storage of data and batched processing. It also takes advantage of hermitian

symmetry to save on storage space, and the reduced size makes the resulting actions

more efficient and faster. For example, when going through padding, a 2048-wide A-

line would be stored in 2048 floats. After the FFT, it would be 2048 complex values

(4096 floats). After padding, it would be 4096 complex values (8192 floats). Then

finally it would go through the inverse FFT to be 4096 real values due to symmetry

(4096 floats).

Because of the symmetry, cuFFT stores the symmetric array in N/2+1 elements.

Thus, the 2048-wide A-line goes into 1025 complex values after the first FFT (2050

floats). After padding, the A-line is in 2049 complex values (4098 floats). Also, using

advanced layout, the initial FFT places the 1025 complex value A-lines into an array

with 2049 complex values per A-line as shown in Figure 4.6 Looking at the array

on the B-scan level, the overall array is 2049 complex value wide by the number of

A-lines per B-scan. As a matrix it would have 2049 columns, and the number of
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A-lines per B-scan rows. The first 1025 complex value columns are occupied by the

results of the FFT, and the remaining 1024 complex value columns must be zeroed

out to complete the padding.

The cuFFT library relies on making a plan for an FFT. We utilize a separate plan

for each type of FFT: real-to-complex forward FFT, complex-to-real inverse FFT,

and a complex-to-complex forward FFT. When making a plan, the cuFFT library

allocates global memory for its operations. While this may not be obvious to the

user, it is important in this instance: since FFTs could be performed concurrently on

separate streams, we need separate plans for each FFT [26].

4.5 K-Space Mapping

Line 5 of Algorithm 4.1 is to align the A-lines to k-space The reasoning for k-space

mapping was explained in Section 2.2.3, as were the basic ideas. In practice, we use a

simple linear interpolation to find the new values for the A-line spectra. This requires

a two step process. First, the new values are mapped to old values, to find where

the interpolation is going to take place. The mapping searches the old wavelengths

to find the element that is just left or equal to the value being mapped as seen in

Figure 4.7.
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(a)

(b)

Fig. 4.7.: Mapping of new evenly-spaced wavelengths to configured wavelengths. Each

pixel of the incoming A-lines is associated with a wavelength. In a cartesian system,

one could think of the A-line values as y values and the wavelengths as x values. (a)

New evenly spaced wavelengths are mapped to the old wavelengths that are provided

from a configuration file. (b) To find the new value for the A-line at λ′ = 5, the

incoming A-line values from where λ = 4.4 and λ = 5.3 are used to perform a linear

interpolation.

The first step is not an ideal parallel problem because the mapping of each element

is somewhat independent. In essence, a search is being performed for each λ′ to

find the location in the λ array where λi ≤ λ′ ≤ λi+1. Because some searches will
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end earlier than others, the threads that finish early must still wait until the other

threads in the same warp finish, causing the cores to sit idle. The list of wavelengths

is monotonically increasing, which allows better than O(N) search time, but each

thread is possibly going to need different time to find the appropriate mapping. This

method is shown in Algorithm 4.8. However, the good news is that every A-line in a

scan will use the same wavelengths, so this mapping only needs to be done once. In

the mapping kernel, a vector is created and stored in global memory that contains

the location of the λlefti which is the value that is less than or equal to the new

wavelength.

During the actual interpolation kernel, Equation 4.1 is performed to find the new

A-line spectra as shown in Algorithm 4.9.

A′i = Alefti + (Arighti − Alefti)
λ′i − λlefti

λrighti − λlefti
(4.1)

where Alefti and Arighti are from the incoming A-line, and A′i is the new value that

we are interpolating from the incoming data. Only the interpolation described in

Equation 4.1 is performed for each A-line streaming through the program.
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Algorithm 4.8 findLefts≪blocks,threads≫ (configuredWavelengths, newWave-

lengths, width, mapping)

Note: configuredWavelengths, newWavelengths, and width are the input variables.

configuredWavelengths and newWavelengths are the wavelengths determined dur-

ing configuration and the new evenly-spaced in k-space wavelengths that we are

interpolating the A-lines to, respectively. width is the size of an A-line. mapping is

the output of this algorithm and is an array containing the mapping of newWave-

lengths to configuredWavelengths so that the interpolation in Algorithm 4.9 can

be done.

1: idx ← blockDim.x × blockIdx.x + threadIdx.x

2: sx[idx] ← configuredWavelengths[idx]

3: syncthreads()

4: test ← 0

5: left ← idx

6: x ← newWavelengths[idx]

7: max ← width − 1

8: min ← 0

9: repeat

10: if left < 0 then

11: left ← left + 1

12: else if left + 1 ≥ width then

13: left ← left − 1

14: end if

15: if sx[left + 1] < x then

16: min ← left

17: left ← (max − left) / 2 + left

18: else if sx[left] > x then

19: max ← left

20: left ← (left − min) / 2 + min
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21: else

22: test ← 1

23: end if

24: until test = 0

25: mapping[idx] ← left

Lines 1 through 3 of Algrorithm 4.8 set the index of the wavelengths being looked

at and load the configured wavelengths into shared memory. Line 4 initializes a

test variable that will be flipped to 1 once the correct mapping is complete. Line

5 initializes the left variable. Line 6 loads the newWavelength being examined by a

thread into a local variable x. Lines 7 and 8 initialize the max and min index search

areas. In Lines 9 through 24 the search area is iteratively cut down until an index

is found for variable left where sx[left] l x ≤ sx[left+1]. Lines 10 through 14 act as

a boundary. Lines 15 through 22 test to see if the condition just mentioned is met,

and if not then the search area is cut down. If the current value of left produces an

sx[left] that is to large then the max is moved to that value, otherwise, if the value

of left produces an sx[left+1] that is too small, then the min is moved to that value.

Line 25 saves the result out to variable mapping on global memory.
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Algorithm 4.9 kInterpolation≪blocks,threads≫ (xIn, yIn, xOut, yOut, mapping,

width,n)

Note: xIn and yIn are input arrays containing the wavelengths and A-line data,

respectively, from the previous padding step in Algorithm 4.6. mapping contains

the mapping from Algorithm 4.8. width contains the width and n contains the

height of the B-scan. xOut is also an input, it contains the newWavelengths

that the interpolated A-lines will be associated with. yOut is the output of this

algorithm, containing the interpolated A-lines.

1: idx ← blockDim.x × blockIdx.x + threadIdx.x

2: idy ← blockDim.y × blockIdx.y + threadIdx.y

3: left ← mapping[idx]

4: x ← xOut[idx]

5: xLeft ← xIn[left]

6: xRight ← xIn[left + 1]

7: for all i such that 0 ≤ i < n do

8: in ← (idy + i) × width + left

9: out ← (idy + i) × width + idx

10: m ← ( yIn[in + 1] − yIn[in] ) / ( xRight − xLeft)

11: yOut[out] ← m × (x − xLeft) + yIn[in]

12: end for

Lines 1 through 6 identify the indexes required to reference the configured wave-

lengths and incoming A-lines and the new wavelengths. They also load those values

into memory. Lines 7 through 11 perform the linear interpolation calculation.

4.6 Dispersion Compensation

This step of processing removes an optical effect called dispersion, common to

OCT images, that blurs the image. To remove the blur, a calibration file is provided

that contains complex phase terms. Each pixel in an A-line is multiplied by a complex
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phase term. In terms of CUDA, this is a very simple kernel that reads in B-scans

and multiplies by the complex coefficients provided from calibration as shown in

Algorithm 4.10.

Algorithm 4.10 compensateForDispersion≪blocks,threads≫ (phaseCorrection,

RealIn, ComplexOut, width, height)

Note: phaseCorrection is an array of complex coefficients. RealIn is the array of

real-valued A-line data after it has been realigned to k-space in Algorithm 4.9.

width and height are from the size of the B-scan. ComplexOut is the complex

valued A-lines output from this algorithm. For complex values .Real references

the real value and .Imag references the imaginary value.

1: idx ← blockDim.x × blockIdx.x + threadIdx.x

2: idy ← blockDim.y × blockIdx.y + threadIdx.y

3: gid ← idy × width + idx

4: pC ← phaseCorrection[idx]

5: for all i such that 0 ≤ i < height do

6: ComplexOut[gid] ← pC.Real × RealIn[gid] + pC.Imag × RealIn[gid]

7: gid ← gid + width

8: end for

Lines 1 through 3 calculate the indexes to reference the input and output arrays.

Line 4 loads the dispersion coefficient into memory. Lines 5 through 8 perform the

complex multiplication and save the result to global memory.
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4.7 Streaming

The Fermi architecture and Compute 2.0+ can simultaneously support:

• Up to 16 GPU kernels.

• Two asynchronous memory copies (provided they are in different directions)

• CPU computation.

Each of GPU kernels will be launched on a separate stream. With the Kepler ar-

chitecture and Compute 3.5, devices can support up to 32 streams, therefore up to

32 concurrent kernels [23]. While the device can support up to 16 or 32 streams,

increasing the streams may or may not increase throughput. There exists a finite

amount of resources on the device that can be computing at any given time. So while

streams are able to be concurrent, if the resources are already being used, a stream

will be scheduled and have to wait until resources become available.

Using streams does produce noticeable results, and is integral to keeping up with

the incoming data. The streams operate in a pipelined fashion, as seen in Figure 4.8.

Figure 4.9a and 4.9b show how the streams look in time using NVIDIA’s Visual

Profiler. Each block in a row is time that a kernel is running.

Fig. 4.8.: Pipelining of image processing.
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(a)

(b)

Fig. 4.9.: NVIDIA Visual Profiler timeline image of streams where (a) is over a wider

slice of time than (b), which is over a narrower, smaller subset of time.

One of the most notable benefits of using streams in this application is hiding the

latency of copying data from CPU RAM to the GPU RAM. To move data from the

CPU and more specifically from the RAM to the GPU RAM, the data streams via

the PCIe bus, the standard interface that graphics and other cards are connected to

the motherboard in a computer. This takes many clock cycles to accomplish, which

means there are a lot of instructions that can be carried out on CUDA cores during

the time that the data is transferred. Over PCIe 2.0, there is an effective cap at

500MB/s per lane. The Tesla K20c can use up to 16 lanes, giving a maximum of
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8GBs. Whether the throughput of the PCIe bus is high or not, streams allow the

GPU to continue computation while data is transferred asynchronously. The GPU is

capable of doing two memory transfers (in and out) concurrently with computation.

This is invaluable in hiding the memory copy latency.

In order to facilitate streams, it is advantageous to give each stream an exclusive,

clear path for the data to flow through, independent of the other streams. If the

streams used the same memory, it would be necessary to synchronize across streams to

prevent corruption of the data. While possible, this would be an added complication

and could lower the throughput. Fortunately, in this application, there is enough

global memory on the GPU to create separate paths for each stream. Each stream

uses its own designated memory for each step of the process as seen in Figure 4.10.

Also, it is important to be aware of memory usage by libraries like cuFFT. CuFFT

requires a plan to be made for the type and parameters of the FFT desired prior to

execution. The plan is a configuration for cuFFT in what algorithm it will use and

how the data will be moved and is necessary for execution. CuFFT provides built-in

functions that generate a plan using parameters of the FFT. Then when one wants to

execute the FFT, the execution references the plan that was made previously. While

not explicit in the documentation, each time a plan is generated, global memory is

allocated to perform the FFT. Therefore, a plan is needed for each stream as well.

Fig. 4.10.: Use of global memory with a CUDA Stream.
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5. RESULTS

To compare the performance of AOOCT on a GPU against the performance on a

CPU, the equivalent operations on a CPU were written in C/C++. Since cuFFT was

originally developed from FFTW, FFTW was used to perform the FFTs in the CPU

version. All data is handled in single precision. The performance times are recorded

in Table 5.1. Using the GPU version on a Tesla K20c provides at least a 34× speedup

over the Intel Xeon, and 75× speedup over the Intel Core i7. This is computed over

a data set consisting of 11 volumes containing the characteristics in Table 5.2. The

initial times used by Dr. Miller’s research group at Indiana University-Bloomington

using MATLAB were over 47 minutes. The GPU exhibits over 1900× speedup as

compared to this implementation.

Table 5.1: AOOCT Runtimes on GPU vs CPU

Device B-scan Volume µ* Volume σ**

Intel Xeon 18.95ms 4549ms 96.18ms

Intel Core i7 41.4ms 9925ms 805.7ms

NVIDIA Tesla K20c 0.549ms 131.74ms 0.468ms

* Time average over 30 runs.

**Standard deviation of total volume time.

As for accuracy, we have compared the linear normalized image output from our

CUDA implementation against the same steps performed using matlab. Pixel values

ranged from 0 to 255, and the largest difference between the two implementations was

observed to have a magnitude of 1. The matlab calculations are done using double
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Table 5.2: AOOCT Data Parameters

Parameter Value

A-line Length 832

A-lines per B-scan 240

B-scans per Volume 240

Volumes 11

precision compared to single precision on our GPU implementation, and mathematical

calculations on the GPU can have slightly different rounding errors than on the CPU.

With those known differences a variation of +/- 1 per pixel is acceptable.

5.1 Future Work

The overarching goal of this work is to make AOOCT a tool available in the clinical

environment. To that end, this work enables the processing to be done in real time,

but there is still much work to be done to make a unified platform commercially

available. In the realm of the computation, image registration and segmentation

are low hanging fruit for the near term. One of the issues with imaging in vivo is

movement. There exists a lot of movement in the eye during a scan, which translates

into image volumes that jump from B-scan to B-scan. This problem can be alleviated

with image registration and correction from B-scan to B-scan.
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5.2 Conclusion

By using CUDA-C, pipelining data into data streams, optimizing individual ker-

nels, and optimizing the load of resources for different kernels in different steps of the

process, we have been able to provide a real-time implementation of AOOCT image

processing. As of this writing, our work is in the final stages of being implemented

by Dr. Miller’s research group in Bloomington, and will provide a basis for advances

in the near future.
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