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ABSTRACT

Yang, Kai. M.S.E.C.E., Purdue University, August 2011. A Multi-stage Non-cooperative
Iris Recognition Approach with Enhanced Template Security. Major Professor: Eliza
Yingzi Du.

Biometrics identifies/verifies a person using his/her physiological or behavioral

characteristics. It is becoming an important ally for law enforcement and homeland

security. Among all the biometric modalities, iris is tested to be the most accurate

one. However, most existing methods are not designed for non-cooperative users and

cannot work with off-angle or low quality iris images. In this thesis, we propose a

robust multi-stage feature extraction and matching approach for non-cooperative iris

recognition. We developed the SURF-like method to extract stable feature points,

used Gabor Descriptor method for local feature description, and designed the multi-

stage feature extraction and matching scheme to improve the recognition accuracy

and speed. The related experimental results show that the proposed method is very

promising. In addition, two template security enhanced schemes for the proposed non-

cooperative iris recognition are introduced. The related experimental results show

that these two schemes can effectively realize cancelability of the enrolled biometric

templates while at the same time achieving high accuracy.
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1. INTRODUCTION

1.1 Background

Biometrics identifies/verifies a person using his/her physiological or behavioral

characteristics [1]. It is becoming an important ally for law enforcement and homeland

security. Biometric characteristics can be physiological (such as iris [2], face [3, 4],

finger image [5, 6], hand geometry [7, 8], and palm print [9, 10]), behavioral (such

as signature [11] and typing rhythm [12]), or a combination of both (such as gait

[13, 14] and voice [15]). A biometric system senses a biometric signal, extracts a

salient set of features, encodes them into templates, and compares them with the

templates existing in a database [16]. A typical biometric identification procedure

includes the enrollment stage and the authentication stage. During the enrollment,

raw biometric data is fed to the feature extractor; a template is extracted and stored in

a database. During the authentication stage, the same feature extraction procedures

are implemented on the query biometric signal, and using pattern recognition methods

to check whether it is related to its claimed identity in the database (Figure 1.1).

Compared to the traditional authentication approaches (such as password or iden-

tification card), biometric is more secure, more convenient to users, and more resistant

to fraud. Within all the biometric modalities, iris has been tested to be one of the most

accurate biometrics. Iris recognition devices have been widely deployed at airports,

government departments, key labs, etc. According to the statistics and prediction of

International Biometric Group (IBG), iris recognition will expect a sustainable incre-

ment in the near future and the total market of iris recognition technology is going to

exceed 700 million USD in 2014. More potential applications related to iris recogni-
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tion are expected, especially in public security (criminal detection, surveillance, etc.)

and private information protection (access control, e-banking, etc.).

Fig. 1.1.: A typical biometric system

Currently, iris recognition methods can work very well with frontal-looking and

high quality images. Within, Daugman’s 2D Gabor wavelet approach has been

tested and evaluated using large databases, such as the United Arab Emirates (UAE)

database with over 600,000 iris images with over 200 billion comparisons [17]. The

positive iris recognition requires high cooperation from users, which may make the

recognition process inconvenient and ineffective. Moreover, with the more and more

increasing requirements of security nowadays, non-cooperative iris is a promising so-

lution for video surveillance and watch list monitoring (identifying wanted criminals

or suspects). However, most existing methods are not designed for non-cooperative

users and cannot work with off-angle or low quality iris images [18]. First, it is very

challenging to accurately segment off-angle iris images. Second, the iris features are

often deformed and it is very challenging to perform feature extraction and matching.

Another concern about current commercialized iris recognition systems is the se-

curity issue of the traditional biometric systems. The traditional biometric systems

are vulnerable to attacks. Ratha et al. [19] analyzed all possible attacks to a biometric

system (Figure 1.2). Each part of the system, including sensor, extractor, matcher,
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database and the channel between them are vulnerable to the danger of Trojan Horse,

phishing and overriding templates and results. In the signal acquisition module, at-

tackers can use a fake biometric to fool the user interface. During the transmission,

attackers can intercept the signal and replace it with one they recorded before to get

invalid access, which is referred to as replay attack. The true features and matching

input/output can be tampered during the feature extraction and matching process.

The template database and the channel between database and matcher could also

be a loophole attacked by hackers. The attackers can even directly change the final

result to ruin the system.

Fig. 1.2.: Possible attacks to a biometric system

Jain et al. further summarized these attacks into four types [20]: attacks on user

interface, attacks on modules, attacks on channels, and attacks on templates. The

most common attack on user interface is the spoofing attack on the signal acquisition

module. The adversary tries to fool the biometric system by presenting faked biomet-

ric traits to the sensor. Several implementations of liveness test [21–23] in biometric

systems have been proposed to deal with this problem. Attacks on modules refer to

direct attacks on biometric device modules, including attacks on hardware modules

and software modules. For example, the adversary attacks the executable program
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using a Trojan Horse [24] to modify the input/output into the value he desires. It

is possible to attack the biometric systems on the channels between modules, e.g.

intercepting original signals and replaying them with those they intercepted before or

fake ones. This will ruin the final matching results or cause the Denial of Service [25]

problem. Although the replay attack can be detected by adding a timestamp to the

signal [26, 27], it is widely accepted that the encryption and transformation should

be implemented from the beginning part of the biometrics identification system, nor-

mally combined with the signal acquisition module. Moreover, attacking on the stored

templates also leads to serious security and privacy issues therefore arouses the most

concern. We will discuss this in Chapter 4.

Unlike traditional authentication methods (password, pin, smartcard, etc.), iris

is always binding with user and cannot be replaced once compromised. Algorithms

that can ensure the iris template security and replaceability are required for future

iris recognition applications. In particular, it is desirable to have a system that can

re-generate a new pattern if the one being used is lost, or generate different patterns

for different applications to prevent cross-matching.

The objective of this thesis is to study the fundamental issues about iris based

authentication methods and develop a fast, robust and effective method to perform

non-cooperative iris recognition, while at the same time achieving iris template secu-

rity and replaceability.

1.2 Organization

The thesis is organized as follow. First, we will focus on the proposed speed-up

multi-stage non-cooperative iris recognition method, including Chapters 2 and 3. Re-

lated works of non-cooperative iris recognition will be reviewed and summarized in

Chapter 2 and the proposed method will be introduced in Chapter 3 along with its

related experimental results and analysis. Second, we will focus on security enhanced

approach based on the proposed non-cooperative iris recognition, including Chapter 4
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and Chapter 5. The related biometric template protection methods and security en-

hance schemes are reviewed, analyzed and summarized in Chapter 4. Two cancelable

template protection schemes based on the previous non-cooperative iris recognition

approaches in Chapter 3 are proposed in Chapter 5. Finally, Chapter 6 draws some

conclusions and future work.



6

2. RELATED WORKS OF NON-COOPERATION IRIS

RECOGNITION

2.1 Traditional Iris Recognition

The iris (Figure 2.1) is the colorful ring of tissue that allows light to enter the

interior of the eye. The iris is made up of connective tissue and has an intricate pattern

of furrows, ridges and pigments spots. These patterns have proven to be unique from

person to person in several large scale tests [17]. The iris is stable over long periods

of time and it can be acquired in a non-contact manner. In addition, the universality

of iris also makes it a good biometric trait for human positive identification.

Fig. 2.1.: Iris image

Like other biometrics, iris recognition has both enrollment and recognition stages

[28]. In the enrollment stage iris information is obtained in the following steps: image
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acquisition, iris segmentation, feature extraction, template generation, and matching

(Figure 2.2). The recognition process (Figure 2.3) includes acquisition, segmentation

feature extraction and template generation, and template matching.

Fig. 2.2.: Iris enrollment process

Fig. 2.3.: Iris recognition process

2.1.1 Iris Acquisition

The iris image acquisition acquires qualified images of eye region for further pro-

cess. Iris images are usually acquired by a near-infrared (NIR) camera because NIR

can reveal rich iris patterns even from iris with dark pigmentation [29]. For light

color eyes, using visible lights can reveal enough features. Existing iris acquisition

system can be divided into two types, depending on how much cooperativeness they

acquired from the user. The first type is cooperative system which requires users to

adjust their head position to acquire qualified images for the system [28,30]. Most of

the commercialized iris recognition systems are cooperative and the user may need

to take several attempts to provide an acceptable image. The second type has fewer

constraints in image acquisition. The system is trying to capture qualified iris image

at a distance or while subjects are walking at a normal speed. Matey et al. have
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designed less constrained iris recognition system, Iris On the Move (IOM), which can

obtain iris images from people walking at normal speed through their system and

then performs matching on the images that are obtained [31]. Fancourt et al. showed

in [32] that it is possible to acquire qualified images at a distance up to 10 meters.

Narayanswamy et al. [33] proposed a wavefront coded imaging technique to overcome

the constraints of the lens and increase the iris imaging depth-of-field. Image quality

measure and image restoration methods are also sometimes applied to ensure good

image quality in less-cooperative situations [34].

2.1.2 Iris Segmentation

The iris segmentation module extracts iris patterns from the other eye parts (e.g.

pupil, eyelids, and eyelashes) which are considered as noise [35]. In order to segment

the iris part correctly, the pupillary boundary, the limbic boundary, the eyelids and

eyelashes need to be detected.

Several typical segmentation algorithms have been proposed during the past two

decades. The most commonly used method assumes that both limbic and pupillary

boundaries are circles, which is referred as circular model based method. This type of

methods looks for the circular pattern of iris and pupil and works well for frontal gazed

images. Daugman [29] proposed modeling the pupil and iris as circles with integro-

differential operators to detect the center and the radius by finding the maximum in

the Gaussian blurred partial derivative with respect to radius, and center coordinates.

Ma et al. developed a segmentation method by approximating the pupil centroid

coordinates and applying Canny edge detection and Hough transform only in iris

region determined by center of the pupil [36]. Similar implementations have been

proposed in [37,38].

However, the circular assumption is often not true in real life applications when

a slight off-angle happens in the eyeball direction. The segmentation accuracy is not

high in such situations. Some research proposed ellipse model based methods which
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can mitigate the segmentation error in non-ideal situations. Zuo and Schmid [39] ap-

plied a rotated and translated ellipse based model with five parameters to fit the limbic

and pupillary boundaries. Du et al. [34] proposed a video-based non-cooperative iris

image segmentation scheme using a direct least-squares fitting of ellipses method to

model the deformed pupil and limbic boundaries. Shapeless methods allow the iris

and pupil boundaries to be segmented accurately even if it is not perfectly circular or

ellipse. Daugman [2] proposed an active contour based segmentation method. This

method describes the iris inner and outer boundaries in a snake graph. The thick-

ness of this line represents the sharpness of the radial edge and the amplitude of the

image represents the roundness of the snake. Shah and Ross proposed a geodesic

active contours method to extract the iris from the surrounding structures [40]. This

technique relies on the order of the Fourier series to approximate the inner and outer

boundaries of the iris.

2.1.3 Iris Recognition

After the image has been acquired and segmented, it is important to extract stable

and unique iris features and encode the features so that the unique features can be

represented as templates. Once the image has been encoded it can then be compared

to other encoded images. We categorize and discuss different types of iris recognition

methods respectively.

2.1.3.1. Phase Information Based Approach

Daugman [29] proposed 2D Gabor wavelet on the polar image, and encoded the

phase information according to the sign of the real and imaginary axis. All the current

commercialized iris recognition systems are based on this algorithm.

h(Re, Im) = sgn(Re, Im)

∫∫
I(ρ, φ) · e−iω(θ0−φ) · e−i(

(r0−ρ)
2

α2
+

(θ0−φ)
2

β2
) · ρdρdφ, (2.1)
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where h(Re, Im) is the complex value, which is composed of binary real and imaginary

values according to the sign of the 2D Gabor Wavelet output applied on the image, I,

in the spatial domain. The wavelet sizes of the 2D Gabor Wavelet are α and β on the

radial and angular axes, respectively, of log polar coordinates. The wavelet frequency

on the angular axis is ω, which is 3 octaves inversely proportional to β. Hamming

distance was used to measure the dissimilarity between any two iris templates.

Masek proposed a one dimensional Log-Gabor wavelet on the doubly dimensionless

polar iris image to encode iris texture information [41]. The Log-Gabor Wavelet can

be used as a band pass filter.

G(ω) = e
−log( ωω0

)2

2log(σ)2 , (2.2)

where σ is the filter bandwidth, and ω0 is the center frequency of the filter. Log-

Gabor filter is designed to remove the high and low frequency components inside the

iris area. A one-dimensional FFT is used to find the frequency characteristics from

−π to π radians. The highest and lowest frequencies are removed by using the Log-

Gabor Wavelet that is designed with the previously found parameters. The phase of

each pixel of the polar image filtered with Log-Gabor Wavelet is found for encoding

the iris patterns. A similar approach to Hamming Distance is used to calculate the

similarity between two encoded iris images.

Hollingsworth et al. [42] found that not all of the bits in an iris code generated

by Daugmans method [2, 29] are equally useful. They compared different regions in

the iris area and found that the middle bands of the iris are more consistent than

the inner bands. They also concluded that the inconsistencies are largely due to

the coarse quantization of the phase response. Therefore they generated a Masking

iris code bits corresponding to complex filter responses near the axes of the complex

plane, which is shown to increase the recognition accuracy of Daugmans method in

their experiments.

Velisavljevic [43] used the oriented separable wavelet transforms called direction-

lets to extract the iris features. Directionlets include separable 2-D basis functions
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of the skewed asymmetric wavelets, which make use of asymmetry and directionality.

Two low pass filters (the horizontal and vertical directions) and four directional high

pass filters (0◦,45◦, 90◦, and 135◦) are applied to filter iris images. The matching

score is calculated by a weighted Hamming distance score between two binary codes.

Miyazawa et al. [44] introduced a phase-correlation-based method for iris recogni-

tion in frequency domain using 2-D Discrete Fourier Transform (DFT). They found

that two similar normalized iris images have a distinct sharp peak in the phase corre-

lation function, which can be used as a good similarity measure for image matching.

Krichen et al. [45] found that phase based method can resist the effect of illumi-

nation variations. Therefore, it can be applied to degraded iris images captured in

less cooperative situations. Instead of using DFT phase information, they construct

the phase correlation function based on Gabor phase response for the reason that

Gabor analysis can reflect the possibility of relating spatial information (pixel posi-

tion) to the phase value extracted and can be used to extract information at different

resolutions and orientations.

Thornton et al. [46] proposed an iris recognition technique that uses correlation

filters designed in frequency domain. Their correlation filters are represented by

several training images. A specific filter is designed for each iris class. The matching

is done by performing cross-correlation between the test image and the filter impulse

response. The resulting correlation output should contain a sharp peak if there exists

a good match between the filter and image and no distinct peak if there is no match.

2.1.3.2. DCT Based Recognition Method

Monro et al. [47] proposed an iris feature extraction method based on differences of

discrete cosine transform (DCT) coefficients of overlapped angular patches from nor-

malized iris images. The segmented iris area is transformed and normalized into polar

coordinate. Horizontally aligned overlapping patches in are then selected for feature

extraction. The patches are averaged across width and windowed by a Hanning win-
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dow. Finally, DCT is applied to the 1-D patch vector. The differences between the

DCT coefficients of adjacent patch vectors are then calculated and a binary code is

generated from their zero crossings. The Hamming Distance is used for matching.

2.1.3.3. Edge Map Based Iris Recognition Method

Wildes et al. [30] proposed use of a Laplacian pyramid to decompose the iris

features for matching. The goodness of matching is measured by applying normalized

correlation to the pair of filtered images.

Sudha et al. [48] proposed a new iris recognition approach based on the Hausdorff

distance measure using edge map of iris images. They introduced a new measure,

called local partial Hausdorff distance, which is computed between the binary edge

maps of normalized iris images. This measure was proved effective in reflect dissim-

ilarity between two images. Moreover, edge map requires less storage space while

increases the recognition speed.

2.1.3.4. Blob Matching Based Approach

Sun et al. [49] proposed using moment-based iris blob matching to nd the spatial

correspondences between the blocks in the input iris image and the enrolled one, and

to quantitatively assess their similarity based on the number of matched block pairs.

They also proposed to use cascaded classifiers to improve the accuracy, especially for

noisy images.

2.1.3.5. Local Descriptor Based Approach

Zhu et al. [50] proposed a system to match iris based on the local scale invariant

features; this method is called the scale invariant feature transform (SIFT) method.

The advantage of this method is that it uses local feature therefore poor segmentation

caused by occlusion or other noise doesnt affect the SIFT process as much.
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Belcher and Du [34] proposed a region based SIFT approach for non-cooperative

iris recognition which works for off-angle iris images. In their method, iris features are

described without a polar transformation, affine transformation, or highly accurate

segmentation and the feature point descriptors are scale and rotation invariant.

2.1.3.6. Quality Measure Incorporated Approach

Ma et al. [51] proposed an iris recognition method using local characteristics of iris

texture variation applied on clear iris images. The proposed iris recognition method

starts with image quality assessment and selection. A quality assessment algorithm

is designed to select the highest quality portion of the iris patterns. Support Vector

Machine is used as a classification mechanism.

Procenca and Alexandre [52] used frontal images of the iris taken in visible light

spectrum. These images are non-ideal because there is more refection noise in the

visible spectrum. Proenca et al. [53] observed that for non-ideal iris images, noise in

one region decreases the iris recognition accuracy dramatically. The authors proposed

dividing the normalized polar image into six regions, and applying a feature extrac-

tion algorithm on each region separately. Each iris has six biometric signatures, and

the matching is performed on corresponding regions of two images separately. The

dissimilarity values for six regions are combined to accept or reject the match. It is

claimed that the proposed iris region division, regional feature extraction and match-

ing method decreased the false rejection rate of the non-cooperative iris recognition

algorithm more than 40%.

Vatsa et al. [54] applied a set of selected quality local enhancement algorithms to

generate a single high-quality iris image. Then they used the 1D-Log Gabor Wavelets-

based texture and topological feature extraction methods to extract the features from

the enhanced image. The binary phase coding and Euler code based.
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2.2 Non-cooperative Iris Recognition

Performing non-cooperative iris recognition is important for a number of potential

tasks, such as video surveillance and watch list monitoring (identifying most wanted

criminals/suspects). In addition, non-cooperative iris recognition systems can provide

more convenience for cooperative users for identification. Non-cooperative iris recog-

nition systems can effectively provide higher throughput therefore especially suited

for applications in populated areas, such as airport, subway station, attractions, etc.

However, non-cooperative iris recognition is still very challenging now due to the dif-

ficulty of locating the iris area accurately and describing the deformed feature prop-

erly. None of the methods reviewed in Section 2.1.3 is designed for non-cooperative

iris recognition.

Some researchers have proposed off-angle iris segmentation algorithms. Daugman

proposed the Fourier active contour approach to model the pupil and iris boundaries

[2]. Shah and Ross [40] proposed a geodesic active contours method to extract the

iris from the surrounding structures, which is proved to be effective in their WVU

non-ideal dataset. Zuo and Schmid proposed a robust segmentation method based on

image painting and contrast balancing [39]. He et al. proposed pulling and pushing

model [55]. In [34], Du et al. proposed a video-based non-cooperative iris image

segmentation scheme that uses a direct least-squares fitting of ellipses method to

model the deformed pupil and limbic boundaries.

For non-frontal iris feature extraction, Daugman proposed using affine transform

to correct the off-angle image and center the gaze [2]. However, this method is

limited because the affine transform assumes the iris is planar, while actually it has

some curvature. Schuckers et al. [56] proposed two methods to calculate angle of

gaze: using Daugmans integro-differential operator and also an angular deformation

calibration model. It needs an accurate estimate of the degree of off-angle and affine

transformation. In [57], Belcher et al. proposed a regional based SIFT method

for non-cooperative iris images. Iris features are described using local feature point

descriptors without polar or affine transform. However, it describes the area around
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a feature point using gradient information, which is not best suited for iris feature;

therefore the accuracy is not high. Later, they introduced a new non-cooperative iris

recognition method based on scale invariant Gabor descriptor [58]. This method can

achieve good results for off-angle and partial iris images; however, it is slow in feature

extraction. A faster feature point selection and description method is needed for real-

time applications. The Gabor Descriptor method will be reviewed in Chapter 2.3 and

the proposed multi-scale feature extraction and matching method for cooperative iris

recognition will be presented in Chapter 3.

2.3 Review of Gabor Descriptor based Method for Non-cooperative Iris Recognition

The currently used iris recognition algorithm in most commercialized systems re-

quires successful iris segmentation and global feature extraction on unwrapped iris

templates, which are very challenging in non-cooperative situations. A possible alter-

native to deal with non-frontal looking and partial image is to locate several interest

points in the partial iris region which are known as feature points. A properly de-

signed local descriptor should be created for each feature points. The feature points

are aligned and their descriptors are compared to generate a matching result.

The Gabor Descriptor method [58] does not require polar transformation, and can

work with low resolution and off-angle iris images. In this method, the iris features are

extracted using a Gabor descriptor. The feature extraction and comparison are scale-

, shift-, rotation- and contrast-invariant. The Gabor wavelet is incorporated with

scale-invariant feature transformation (SIFT) [57] to better extract the iris features.

Both the phase and magnitude of the Gabor wavelet outputs were used in a novel way

for local feature point description. The idea of Gabor Descriptor is the fundament

of the new algorithm in this thesis; therefore we will give a brief review of Gabor

Descriptor.
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2.3.1 Preprocessing

In the preprocessing step, the iris area is segmented from the image (Figure 2.4).

We used direct least square fitting of ellipse method to mathematically model the iris

boundary:

F (a,x) = a · x = ax2 + bxy + cy2 + dx+ ey + f = 0, (2.3)

where a = [a, b, c, d, e, f ]T and x = [x2, xy, y2, x, y, 1]T . Here we use 4ac− b2 = 1 as a

constraint to improve the fitting efficiency and accuracy in high noise data. Then a

window gradient-based method is applied to remove noise in the iris region [34].

Fig. 2.4.: Non-cooperative iris segmentation steps

2.3.2 Feature Point Selection

The Difference of Gaussian (DoG) approach [57] is used to find the potential

feature points which are invariant to scale, shift, rotation and contrast:

D(x, y, s) = G(x, y, s+ 1)−G(x, y, s). (s = 0, 1, 2, 3) (2.4)

G is the result of original image I(x,y) convoluted with Gaussian filter with dif-

ferent parameters:

G(x, y, s) = Gσs · I(x, y). (2.5)

Here,

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2.6)

gσs =
√
σ2

0 + σ2
s , (2.7)

where σ0 = 1.5
√

2 and σ0 = 1.5(
√

2)s.
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The whole iris region is divided in to 720 sub-regions (Figure 2.5). For each sub-

region, one extrema point at most is kept as the feature point. Lowe’s 3-D quadratic

method [59] and the Hessian matrix [60, 61] are used to test if a feature point is a

stable point or not.

Fig. 2.5.: Sub-region map of feature points

2.3.3 Feature Point Description

Each stable feature point is then described using a vector with 64 elements, which

is called a Gabor Descriptor. To create the descriptor for the feature point, a small

window centered on this feature point is used for feature extraction. The window size

is determined as:

W =

⌊√
2 · SA ·

N + 1

2
+ 0.5

⌋
, (2.8)

where SA = (
√

(x− xp)2 + (y − yp)2) · 2π
360
· 5 and N is the number of bins used to

describe the relative position of a point to a feature point (here N = 4). SA is the

spatial extension of the frame around the feature point (x, y) in the angular direction,

(xp, yp) is the coordinates of pupil center. SA is used to normalize the window around

that feature point and changes in size based on the distance between the feature point

and pupil center.



18

A bank of 2-D Gabor filters is then used to extract the iris features. The Gabor

filter in our research has the form:

G(x, y) =
1

2παβ
exp(−π(

(x− x0)2

α2
+

(y − y0)2

β2
)) · exp(i(ξx+ νy)), (2.9)

where (x0, y0) is the center of the receptive field of the spatial domain, (ξ, ν) is the

frequency of the filter, α, β are the standard deviations of the elliptical Gaussian along

x and y directions.

The magnitude of the filtered area is Gaussian-weighted based on the spatial

distance between each point and the feature point. The phase is divided into 4 areas.

Finally, the weight is summed to form one of the 64 bins based on its spatial location

referred to the feature point (4 x bins and 4 y bins) and phase quadratic (4 phase

orientation bins). The 64 length Gabor Descriptor vector for each feature point is

finally created by normalizing the cumulative weight to a unit vector (Figure 2.6).

The details are shown below. The resulting 64 bin feature point descriptor is then

normalized to a unit vector by dividing by the 2-norm of the descriptor.

Fig. 2.6.: Feature point description

2.3.4 Feature Matching

To match two feature point maps, the average of the distance scores between all

overlapping feature points is calculated and used as the matching score between two
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feature point maps. To make the proposed method be tolerant of segmentation error

and eye rotation, each feature point in a feature point map from image X, is compared

to each feature point in the fifteen surrounding bins (two bins on either side and one

bin above and below) in a feature point map from image Y, and the minimum average

distance score is stored for the two feature point maps compared.

2.3.5 Discussion of Gabor Descriptor

Gabor Descriptor combines the Scale Invariant Feature Transform (SIFT) method

and Gabor wavelet. SIFT method is proved to be effective in selecting interest point

and tolerating affine transformation [57], which makes it a possible solution for non-

cooperative or partial iris images. Gabor wavelet is proved to be suited for describing

iris features [28]. It is reasonable that Gabor Descriptor achieves promising accuracy

for non-cooperative iris images. However, there are still concerns and limitations

of this method. First, feature points only from 1 scale are used in this method,

however, in some situations, especially in low quality images, feature points are more

easily to detect and more stable in higher scales. Second, feature points are detected

and described within each sub-region, the overhead of filter convolutions is very high

due to the large number of feature points and filters. This makes the feature point

selection and description parts very slow. Third, there is no template protection

scheme applied to the generated template, which could be a serious issue in real-life

applications.

Based on the pros and cons of Gabor Descriptor, a newly designed feature point

selection, description and matching algorithm is presented in Chapter 3.1. The pro-

posed algorithm extracts more information from scale space and uses a multi-scale

matching scheme. A series of approximations are applied to the feature point se-

lection and description part to increase the speed. The experimental results on two

databases are presented and compared to Gabor Descriptor and other methods in

Chapter 3.2.
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2.4 Local Descriptor

Existing local region descriptors such as SIFT [59] or GLOH [62] have been proved

to be more effective and robust than global correlation methods under perspective

and illumination changes. Moreover, for non-cooperative iris recognition, it is much

easier to pair two set of local sparse points than align two deformable iris regions

globally. The discrimination power of the local descriptor is highly correlated with

the recognition accuracy, therefore how to properly design a descriptor is crucial.

2.4.1 SURF Descriptor

Speed Up Robust Features (SURF) presented by Bay et al. [63] has been proved an

effective local descriptor and has been widely used in objects recognition and tracking.

SURF descriptor describes each feature point by calculating the distribution of pixel

intensities in a scale dependent neighborhood, which is very similar to SIFT [59].

However, SURF descriptor makes use of the integral image and the box-like Haar

wavelet to decrease computing time.

The descriptor extraction can be divided into two steps. First, an orientation is

assigned to each feature point to achieve rotation invariant. A circular SURF window

is constructed first around each feature point. The size of the window is determined by

the scale of the feature point. The response to Haar wavelet in both x and y directions

are found for each pixel in the circular window. The orientation is calculated from

the above Haar response and Gaussian weighted by the distance between each pixel

and feature point. The orientation is estimated by the voting result of all pixels lying

in the window to create a rotation invariant descriptor. This step is optional for some

applications that do not require image rotation invariant very much. In this thesis,

the orientation is used to pair two feature points in the multi-scale matching process.
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The second step is to calculate the descriptor component. The aforementioned

SURF window is divided into 4x4 sub-regions, and a 4-length-vector is calculated and

extracted from the Haar response for each sub-region:

Vsub = [
∑

dx,
∑

dy,
∑
|dx| ,

∑
|dy|], (2.10)

where dx, dy are response to horizontal and vertical filter respectively. Finally a

64(4×4×4) length descriptor is generated for each feature point as SURF descriptor

(Figure 2.7).

Fig. 2.7.: SURF descriptor

Unlike SIFT, the descriptor component calculation does not contain a spatial

weighting scheme. All gradient attributed equally to the descriptor.

2.4.2 DAISY Descriptor

DAISY descriptor proposed by Tola et al. [64] are inspired by SIFT and GLOH

but can be computer much faster. The efficiency is achieved by convolving orienta-

tion maps to computer each bin value of the descriptor using Gaussian. A global

orientation map is pre-calculated and stored for each image. Thus there is no need

to repeat the gradient histogram calculation during the descriptor generation.
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For a given image I, H orientation maps Gi with the same size as I are computed

first. H is the number of quantized orientations. The orientation map is computed

using the image gradient norm: for each location Go(x, y) of the orientation map,

Go(x, y) = max(
∂I

∂o
, 0). (2.11)

Only the horizontal and vertical gradient ∂I
∂x

, ∂I
∂y

need to be computer using kernel

[1, 0,−1] and [1, 0,−1]T . other orientation norms can be directly derived using:

Gθ = max(cos θ
∂I

∂x
+ sin θ

∂I

∂y
, 0). (2.12)

Each orientation map is then convolved with a set of Gaussian kernels H with

different standard deviation σ. The Gaussian convolved maps can be computed very

conveniently in a cascade way:

GΣ2
o = HΣ2 ·Go = HΣ ·HΣ1 ·Go = HΣ ·GΣ1

o (2.13)

with Σ =
√

Σ2
2 − Σ2

1.

Based on the feature point location, a DAISY descriptor shown in Figure 2.8 is

created. The size of the circle stands for the standard deviation of the convolved

Gaussian kernel. the * sign is the location of feature point and the + sign is location

of the central pixel of the sample region around each feature point. The overlapping

regions guarantee the smooth transitions between different regions. The orientation

is determined by the radial direction and quantized into one of the eight orientations

of DAISY descriptor. (Figure 2.8)

2.4.3 Gabor Descriptor

2D Gabor wavelet has widely been used in feature extraction and object recog-

nition. Daugman discovered that simple cells in the visual cortex of mammalian

brains can be modeled by Gabor functions [28]. Thus, image analysis by the Gabor

functions is similar to perception in the human visual system. Moreover, 2D Gabor

filter has been proved very effective in iris feature extraction. Therefore, a filter bank
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consisting of Gabor filters with various scales and rotations is created and applied in

this research (Figure 2.9).

Fig. 2.8.: DAISY descriptor for non-cooperative iris

Fig. 2.9.: Examples of Gabor filters with different sizes and orientations.

By properly designing the parameter, a suitable Gabor filter bank is created for

each detected feature point. The orientation of the Gabor filter is rotated in ac-

cordance with the radial direction of the feature point. A 4x4 neighborhood of the

feature point is included for Gabor Descriptor (Figure 2.10).
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Fig. 2.10.: Gabor window and its 4x4 bins
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3. SPEED-UP MULTI-STAGE NON-COOPERATIVE IRIS

RECOGNITION

3.1 Speed-up Multi-Stage Non-cooperative Iris Recognition

Gabor Descriptor searches possible interest points within each sub-region. The

DoG approach and hessian matrix based interest detection requires tons of convolu-

tion operations, which greatly increase the template generation time. Therefore only

3 different scales are used in Gabor Descriptor method, e.g. all the detect feature

points are from only scale 2. The trade-off between the feature point completeness

and running time may possibly reduce the discriminability of the generated Gabor

Descriptor template. In this Chapter, a speed-up version of the Gabor Descriptor is

introduced. Multi-scale feature extraction and matching scheme is applied to enhance

the feature point repeatability increase the feature information.

3.1.1 Overview

The currently used iris recognition algorithm in most commercialized systems re-

quires successful iris segmentation and global feature extraction on unwrapped iris

templates, which are very challenging in non-cooperative situations. A possible alter-

native to deal with non-frontal looking and partial images is to locate several interest

points in the partial iris region which are known as feature points. A properly de-

signed local descriptor should be created for each feature point. The feature points

are aligned and their descriptors are compared to generate a matching result.
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The flowchart of the proposed approach is shown in Figure 3.1. During the en-

rollment, the off-angle iris is segmented using our non-cooperative iris segmentation

method. A multi-scale feature point selection algorithm is then directly applied to

the segmented iris region. Local descriptor is generated based on the information

around each feature point. Finally a multi-scale template is generated for each eye

and stored in the database. During identification, the same segmentation and fea-

ture extraction methods are applied to the test image and a multi-scale template is

generated. The generated template is compared with all templates enrolled in the

database using a multi-scale matching algorithm to find the closest match. We will

introduce the proposed approach step by step next.

3.1.2 Multi-scale Feature Point Selection

The filter convolution operation is very time-consuming. For example, an nxn

filter convolution needs n2 multiplications and n2 − 1 additions, which leads to a

O(n2) complexity. With the increase of filter size, the calculation time soars up. The

integral image and box filter approximation similar to SURF method [63] are used

here to speed up the filter convolution.

The integral image is computed rapidly from an input image and is used to speed

up the calculation of any upright rectangular area. The integral image is generated by

summing the entire pixel values between each pixel and the origin. For example, give

an image I and a point (x, y), the value at (x, y) of the integral image I is calculated

by the formula:

IΣ =

i≤x∑
i=0

j≤y∑
j=0

I(x, y). (3.1)

The convolution of an image I with an n×n box filter with value f at point (x, y)

can be implemented by only four operations using integral image IΣ:

Iconv(x, y) = f · ((A+D)− (B + C)), (3.2)
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where A,B,C,D is the value of the four corners of the convolved regions in integral

image IΣ: (Figure 3.2)

A = IΣ(x−
⌊n

2

⌋
, y −

⌊n
2

⌋
) (3.3)

B = IΣ(x+
⌊n

2

⌋
, y −

⌊n
2

⌋
) (3.4)

C = IΣ(x−
⌊n

2

⌋
, y +

⌊n
2

⌋
) (3.5)

D = IΣ(x+
⌊n

2

⌋
, y +

⌊n
2

⌋
). (3.6)

Fig. 3.2.: Filter convolution using integral image

To locate the interest points in multi-scale space, a scale-space needs to be created

first. The traditional approach to constructing a scale-space is to change the image

size and the Gaussian filter is repeatedly applied to smooth subsequent layers 3.3.

This method requires a great many of convolutions and image resizing operations.

To speed up this process, the Gaussian filter is approximated to a box filter only

containing blocks of several values (Figure 3.5). Moreover, instead of changing the

image size, the scale-space is created by convolving the unchanged image with a set of

consecutively changed box filters (Figure 3.5). The filter size is decided by the scale

of the points it detects 3.4:

filtersize = 3 · (2σ + 1). (3.7)
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Fig. 3.3.: Construct scale space using Gaussian pyramid

Fig. 3.4.: Construct scale space using filter pyramid
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Fig. 3.5.: Approximated box filter structure

To locate the interest points, The Fast Hessian Detector [63] is used to find the

potential feature points which are invariant to scale, shift, rotation and contrast. In

order to accelerate this process, a similar set of box filters as in [63] is applied to

approximate the Gaussian second order derivatives (Figure 3.6). For each point X =

(x,y) in image, the Hessian matrix of X at scale becomes:

H(x, y, σ) = [
Dxx(x, y, σ) Dxy(x, y, σ)

Dxy(x, y, σ) Dyy(x, y, σ)
], (3.8)

where Dxx, Dyy, Dxy are the convolutions of 3 approximated box filters with image in

X. The points with positive hessian determinant value and greater than a threshold

are selected as candidate feature points:

Det(H(x, y, σ)) = Dxx(x, y, σ) ·Dyy(x, y, σ)− 0.92D2
xy(x, y, σ). (3.9)

All the candidate points are then compared to its 26 neighbors in a 3 × 3 × 3

volume in scale space. The local maximum points are kept. (Figure 3.7)
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Fig. 3.6.: Approximated Gaussian filters for calculating Hessian matrix.

Fig. 3.7.: Local maximum point selection.

The final step is to interpolate the selected interest points in both spatial and

scale to achieve sub-pixel accuracy. Brown’s 3D quadratic method [65] is then used

to interpolate each feature point in scale space:

D(∆x̄) = D +
∂DT

∂x̄
∆x̄+

1

2
(∆x̄)T

∂2D

∂x̄2
∆x̄, (3.10)

whereD and its derivatives are evaluated at the selected point and ∆x̄ = (∆x,∆y,∆σ)T

is the offset from this point. Taking the derivative of this function with respect to x̄

and setting it equal to zero, we determine the extremum, ∆x̄, to be:

∆x̃ = −∂
2D−1

∂x̄2
· ∂D
∂x̄

. (3.11)
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The refined location of the interest point is adjusted by ∆x̃ if any of ∆x,∆y,∆ is

greater than 0.5. The interpolation process is repeated until ∆x̃ is less than 0.5 in all

the three directions.

For each sub-region divided in [58], at most one feature point is kept as the feature

point. The one with the largest hessian determinant value is kept as the final feature

point of this sub-region.

3.1.3 Multi-scale Local Descriptors

In [58], we developed the Gabor descriptor method. However, this method is slow

and more importantly, detected feature points only from 1 scale are used in Gabor

descriptor method, however, in some situations, especially in low quality images,

feature points are more easily to detect and more stable in higher scales. In this

research, we construct the scale space by subsequently convolving the image with

a series of approximated box filters with different sizes. The convolution is done by

applying the integral image, which greatly reduces the computation time. Within each

scale, several feature points are located and described to generate a scale specified

local descriptor. The local descriptors created at different scales compose the multi-

scale descriptor for each iris (Figure 3.8).
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Three kinds of local descriptors are selected or designed for non-cooperative iris

recognition in this thesis: SURF descriptor, DAISY descriptor and Gabor Descriptor.

The first two descriptors owe much of their strength to the use of gradient orientation

histogram, which are relatively robust to distortion. SURF descriptor makes use of

the Haar wavelet and the efficiency of integral image while DAISY descriptor takes

much more correlated regions and orientations into consideration. In contrast, Gabor

Descriptor relies on the response of the iris image to 2D-Gabor wavelet and created

a phase based magnitude histogram. Their experimental results are compared in

Chapter 3.2.

3.1.4 Feature Point Pairing and Multi-stage Matching

After generating local descriptor for each feature point, Two 10×72 feature maps

is generated for the iris regions similar to Chapter 2.3. The two feature maps have

5 degree different to tolerate segmentation error and to enhance the robustness of

the detected feature point location. While matching two irises, the feature points

in two templates are paired based on the sub-region they belong to. To be tolerant

of segmentation errors and eye rotation or dilation, during registration, each feature

point is compared to its corresponding point and its neighbors in the other comparing

template. Therefore multiple registrations are possible.

A multi-stage matching scheme is applied to each pair of compared templates

after alignment (Figure 3.9).Feature points are paired by aligning two sub-region

maps. At stage I matching, large scale points are paired and the paired point number

is compared to a threshold. Only two irises with enough paired large scale points

are kept to stage II matching, where the two multi-scale descriptors are compared to

generate the final matching score.

We pair the feature points in two templates based on the sub-region they belong to.

To be tolerant of segmentation errors and eye rotation or dilation, during registration,
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each feature point is compared to its corresponding point and its neighbors in the

other comparing template. Therefore multiple registrations are possible.

Fig. 3.9.: The proposed multi-stage matching scheme

Due to the stableness of the feature point extraction process, the feature points can

be used as an important factor to determine iris class. In non-cooperative situations,

it is common that iris images are not well focused, which may increase the difficulty

of detecting detailed iris pattern at small scales. This will cause problems for feature

points matching since the feature points detected at small scale may vary a lot.

However, at large scales, we found that two irises from the same class remain a high

stability in feature point locations. Therefore in the stage I matching, we separate

the feature point pairs by their scale and check the feature points detected at large

scales first(scale 3 to scale 5 in our experiment). If the number of repeated large scale

feature points of all possible registrations is less than a threshold, these two irises are

directly viewed as two different classes. In our research, the threshold is set to be 25%

of the total large scale feature point number, which is proved to be very effective in

reducing false acceptance without increasing too many false rejections. Two examples

of feature points pairing at different scales are shown in Figure 3.10; we can see that

these two images from the same iris maintain a high repeatability in feature point

locations at large scales feature points (paired in red line) while the imposter iris is

directly rejected after the stage I match since there are not enough detected feature

points pairings. The size of the circle stands for scale and color of the circle stands

for the sign of the trace of Hessian matrix.

After the large scale feature point check in stage I matching, if the number of

the paired large scale feature points is larger than the threshold, stage II matching
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is followed. All feature points are paired based on their sub-region locations, scale,

SURF orientation and the sign of the trace of Hessian matrix. Only if all the above

information of two feature points is in accordance with each other, the pairing is

valid. Two aligned irises are compared by checking the matching distance of the

descriptors of all the overlapping feature points in stage II matching. For all possible

registrations, the smallest average Euclidean distance of feature point matching pairs

is the matching distance between the two images. The matching distance is used to

further determine the iris class.

3.2 Experimental Results

3.2.1 Database

Two databases are used in the following experiments: IUPUI Remote Iris Image

Database and ICE 2005 Database. The IUPUI Remote Iris Image Database was

acquired at 10.3 feet from the camera to the subject using a MicroVista NIR camera

with Fujinon zoom lens. The database includes 3690 remote iris images of 31 users

in 6 directions (look left, look center, look right, look up-left, look up, look up-right)

(Figure 3.11). 6 videos were captured for each subject with different scenarios: frontal

look (1st video); reading from posters 15 feet from the subject and 5 feet behind the

camera (2nd and 3rd videos; searching the wall to count the number of occurrences

of a certain symbol (4th and 5th videos); and performing simple calculations using

numbers posted on the ceiling (6th video). Each video was acquired at 30 frames per

second with 1280x1024 resolutions. The average iris radius of the video images in the

database is 95 pixels. During the image acquisition, subjects can move their heads and

eyes freely to perform the tasks, which simulates a remote, non-cooperative situation,

such as when a subject looks at flight times at an airport. In addition, the subjects can

have their own emotions (smile etc.) during the acquisition process. Since there is no

public available database particularly for non-cooperative iris recognition currently,
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(a) A Genuine Match Example

(b) An Imposter Match Example Match

Fig. 3.10.: Feature points pairing at different scales and multi-scale matching
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we collected this dataset to measure the performance of our non-cooperative iris

recognition methods.

(a) Look Left (b) Look Center (c) Look Right

(d) Look Up-Left (e) Look Up (f) Look Up-Right

Fig. 3.11.: IUPUI remote iris image database: multiple angles [58]

Fig. 3.12.: ICE 2005 database [66]

The ICE 2005 Database [66] from National Institute of Standards and Technol-

ogy (NIST) consists mostly of frontal look eyes (Figure 3.12). It includes two sub-

databases: a left iris image database with 1527 images from 120 subjects, and a right

iris image database with 1426 images from 124 subjects. In this experiment, we used
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the more challenging left eyes. The ICE 2005 Database is mainly used to measure the

performance of our methods working in cooperative situation and to compare with

other currently popularly used methods.

3.2.2 Experimental Results in Non-cooperative Situation

For the IUPUI remote iris image database, we used the ICE 2005 matching proto-

col in this experiment: each image is matched against all other images in the database.

Therefore, all 3690 images were used in our experiment, comprising 6.8 million com-

parisons in the matching stage. We choose Gabor descriptor as the local descriptor to

describe each feature point. We compare our proposed method with regional based

SIFT method [57] and our previous Gabor descriptor method [58]. Figure 3.13 shows

the comparison of receiver operating characteristic (ROC) curve between Gabor de-

scriptor and our proposed method. The accuracy statistics of 3 methods are shown

in Table 3.1. We can see that our proposed method achieves a 3.10% equal error rate

(EER) and outperforms the other two previous non-cooperative iris recognition meth-

ods. The accuracy is increased due to the great reduction in false acceptance. The

feature extraction of the proposed methods is 5 times speed up than Gabor descriptor

method with increased recognition accuracy.

To ensure the accuracy, it will be important to have multiple enrollment images

with different eye-looking angle in non-cooperative situation. Therefore, we also con-

duct a video based multiple iris fusion experiment. The identity is determined by a

majority vote of all the recognized frames of each video. In this experiment, 10 im-

ages per eye were used from the first acquisition session for enrollment. They include

the different off-angles (left, right, up-left, up-right, and up). The total number of

enrollment images is 620 with 62 irises from 31 subjects. We automatically match

the enrollment images with the video frames in the 5 videos for each person from the

second acquisition session (the frontal look only video was excluded as they are all

frontal images) for 30 subjects and 60 irises, altogether 298 videos. We achieve 100%
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recognition accuracy (0% FAR at 0% FRR). The results show that 100% accuracy

can be obtained using multiple enrollment images, video sequences of an iris, and

fusion of matching results; even in a non-cooperative iris database.

Fig. 3.13.: ROC curves comparison of IUPUI database

Table 3.1: Comparison of three methods using IUPUI non-cooperative database

Algorithm EER GAR at FAR = 0.1% GAR at FAR = 0.01%

Regional SIFT [57] 5.88% 80.24% 67.63%

Gabor descriptor [58] 4.78% 89.66% 84.76%

Propose method 3.10% 92.20% 88.20%
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3.2.3 Experimental Results in Cooperative Situation

We also measure the proposed algorithm in cooperative situation. We use the 1527

left eyes of ICE Database, which provides 1165101 comparisons. Gabor Descriptor

is used for feature point description. The ROC curves of the all to all matching

are shown in Figure 3.14. The proposed method outperforms our previous Gabor

Descriptor based method. It is mainly due to the reason that the multi-scale matching

algorithm can eliminate a lot of false matching at stage I matching. The proposed

method is also compared with traditional method for frontal looking iris, 2D Gabor

wavelet method [29] and 1D log-Gabor wavelet method [41] (Table 3.2). The same

segmentation results are used for all the methods. The pupil and limbic boundaries

are modeled as a circle, which is a simple and reasonable approximation of the pupil

and limbic boundaries geometries for frontal looking eyes. We can see that our method

can still achieve comparable results as the most accurate algorithms for cooperative

iris recognition.

Fig. 3.14.: ROC curves comparison of ICE 2005 database
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Table 3.2: Comparison of four methods using ICE 2005 left eyes

Algorithm EER GAR at FAR = 0.1% GAR at FAR = 0.01%

2D Gabor [29] 1.26% 97.50% 96.29%

1D log-Gabor [41] 1.06% 97.39% 95.33%

Gabor Descriptor[58] 2.57% 93.16% 89.16%

Propose method 1.19% 97.20% 94.50%

To further justify the discriminability of our designed local descriptor, three differ-

ent local descriptors (SURF, DAISY and Gabor) are applied to left eyes of ICE 2005

Database. The same set of feature points are detected and described using Gabor

Descriptor, SURF Descriptor and DAISY Descriptor respectively. The comparison

of ROC curves are shown in Figure 3.15. Obviously, Gabor Descriptor based local

descriptor works better than the other two gradient based local descriptors. The

main reason is because SURF and DAISY descriptor describe feature points using

local gradient magnitude and angle information, whereas Gabor Descriptor encodes

feature information around feature points using the magnitude and phase response

of 2-D Gabor wavelets which is more capable of capturing iris feature characteristics.

The detailed statistic results of the three local descriptors are listed in Table 3.3.

Table 3.3: Comparison of three descriptors using ICE left eyes

Descriptor EER GAR at FAR = 0.1% GAR at FAR = 0.01%

Traditional SURF approach 5.99% 74.77% 61.03%

DAISY 9.41% 57.08% 40.53%

Proposed method 1.19% 97.20% 94.50%
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Fig. 3.15.: ROC curve comparison of three local descriptors
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4. REVIEW OF BIOMETRIC TEMPLATE PROTECTION

In this chapter, Attacking on the biometric template is discussed and biometric

template protection methods are categorized and analyzed.

Attack against the templates stored in database or during the matching process

is considered to be one of the most potential threats to the traditional biometric

systems. The intrusion into the template database may lead to serious consequences.

Jain et al. [20] summarized three vulnerabilities related to attacks on templates:

(i) an imposter can replace with a stolen template to gain unauthorized access. (ii)

fake or replicated biometric patterns can be created to spoof the system. (iii) the

stolen template can be replayed. Once the templates are stolen or tampered, it is

possible that all the services relying on the same biometric pattern are in danger,

which is known as the function creep [67]. Moreover, since biometric templates are

usually highly connected to the user privacy and some of the personal information

is sensitive, such as ethnic, gender, or the disease one is suffering from [68], privacy

risks of the traditional biometric systems are of greater concern. The templates

protection methods can mainly be categorized as the crypto and cancelable biometric

approach. The first idea originated from the crypto community, combining biometrics

with traditional standard cryptographic methods [69,70]. However, as we know, these

algorithms (e.g. MD5) give totally different outputs even if their inputs are very

close. In particular, these methods require extracting non-changing patterns from

biometric data, which is often challenging. Therefore the design of a robust hashing

algorithm to better tolerate the within-class variance of biometric templates while

discriminating between-class distance is necessary. To solve these challenges, several

types of methods have been proposed by the crypto community.
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One popularly used method is biometric hardening or bioHashing [71–74]. The

feature template is combined with user specific random information in order to be

projected to a new representation. An error-tolerant discretization method is then

used to quantize the feature description to reduce uncertainty. The projection acts

like a linear transformation of the biometric pattern. It can protect the true template

and ensure high security since the user specific random information can be generated

using different keys, which ensures the revocability of the templates. Moreover, the

introduction of user key can further increase the discriminability of the templates.

However, external randomness needs to be stored in a smart card or a token, making

it inconvenient in large scale applications. If the key is compromised, the scheme is

insecure since the projection process is usually invertible. It is also noticeable that

intrauser variation may reduce the stability of this scheme.

Key-binding [75–79] is another popular scheme in cryptosystem to protect the

security of both biometric template and cryptographic key. This method depends on

storing a helper data obtained by binding a key (which is independent of biometric

template) with the biometric template [20]. Notice that the helper data should not

reveal too much information about the key or biometric template. This scheme is

considered to be non-invertible since it is computationally infeasible to decode the

key or biometric template without knowing the biometric data. In [75], Juels and

Wattenberg proposed the idea of fuzzy commitment which incorporates error cor-

rection code with local biometric features to tolerate the within-class variance. The

method is proved to be effective in tolerating biometric data variations. However,

it does not work well when substantial re-ordering happens in the biometric feature

vector among different authentications, which is very common in biometric templates.

Later, Juels and Sudan proposed the fuzzy vault [76] approach, which is an order-

invariant version of fuzzy commitment. Note that this error correction based fuzzy

scheme is first designed for a cryptosystem, but it is particularly suited for biometric

data and biometric template protection. Therefore, it is often used in conjunction

with other template protection methods, such as biometric hardening to achieve can-
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celability [79]. However, current fuzzy vault scheme has some limitations; we will

address this issue later in Chapter 5.

Another type of similar scheme is categorized as key-generation [80–84]. In con-

trast with the key-binding method, the helper data of key-generation scheme is only

derived from the biometric traits and the cryptographic key is directly generated from

the help data. The ideas of secure sketch and fuzzy extractor introduced by Dodis

et al. [80] is an example design of key-generation cryptosystem. The secure sketch is

the helper data extracted from the original biometric patterns which leaks limited in-

formation of the biometric data while the fuzzy extractor can generate cryptographic

key from the biometric features. However, Simoens et al. [68] show that the attack

on the fuzzy template protecting scheme is possible. In particular, it is possible for

attacker to determine whether two documents are encrypted using the same biometric

data. Even this does not mean that the biometric templates are compromised, but it

is still a potential threat to user privacy. In addition, the stableness and diversity of

the generated key cannot be easily achieved simultaneously [20].

The idea of cancelable biometrics [19] is proposed by Ratha et al.. This type

of system implements cancelability by designing methods to transform the true sig-

nal and create alternatives for matching. These methods can be divided into two

categories: one tries to mask the original patterns by mixing artificial texture or

noise, which they called salting [85–88]. The other uses some non-invertible transfor-

mations to distort the original biometric patterns [89–92]. All these transformation

functions are considered to be non-invertible since they are relying on some one-way

functions which are easy to compute but hard to invert in polynomial time even if

the attackers steal the transformed template and/or transformation key. Compare to

other template protection methods, cancelable biometrics can preserve the biometric

representation. The main concern of this type of methods focuses on whether the

transform functions can preserve the discriminability of the biometric templates.

The comparison of the above four categories of methods are shown in Table 4.1

and all their advantages and disadvantages are listed in Table 4.2 [93].
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Table 4.1: Comparison of different biometric template protection methods

Stored

entity

Preserve

representation

Template

stableness
Revocable

Biometric

Hardening

Transformed

template and key
No Medium Yes

Key-binding Helper data No High No

Key-generation Helper data No Low No

Cancelable

Transform

Transformed

template
Yes High Yes

Table 4.2: Summary of different biometric template protection methods

Advantages Disadvantages

Biometric

Hardening

Easy to revoke and reissue

Increase the discriminability

Invertible

Original biometric can be

recovered by the attacker

if key is lost

Key-binding
Non-invertible

High template stableness

Not cancelable

Still leak some information

High FRR

Key-generation

Non-invertible

Directly generate key

from biometric patterns

Stableness and diversity

of the generated key can not

be achieved simultaneously

Cancelable

Transform

Keep representation

Can be applied to raw data

Easy to revoke and reissue

Non-invertible

Reduce the discriminability

Reduce accuracy
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5. SECURE ENHANCED DESIGNS FOR

NON-COOPERATION IRIS RECOGNITION

In this chapter, two secure enhanced designs for the non-cooperative iris recog-

nition method in Chapter 3 are introduced to secure the iris template respectively:

key incorporation based cancelable non-cooperative iris recognition and key-binding

based cancelable non-cooperative iris recognition. The experimental results and re-

lated discussions are presented in Chapter 5.3.

5.1 Key Incorporation Based Cancelable Iris Recognition

In different from the traditional cancelable iris recognition methods which the

key information is independent of the feature information. In this key incorpora-

tion scheme, we propose the partial-key information incorporation based cancelable

iris recognition method. It is a non-invertible transformation. Figure 5.1 shows the

system architecture. During Enrollment, a set of enrollment images is collected and

preprocessed. The feature selection and description algorithms introduced in Chapter

3 are applied to each preprocessed iris pattern. A unique non-invertible transform

method controlled by a random kernel is then carried out on each users Gabor De-

scriptor templates. Here we give a simple implementation of this random kernel: the

user provides a key as a seed to a pseudo-random number generator which is used to

create the random kernel. Thus, templates from the same user will have the same

unique transformation. Finally, the transformed cancelable templates are stored in a

database [94,95].
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Fig. 5.1.: Proposed key incorporation cancelable scheme

During authentication (Figure 5.1), the user is asked to provide the user key to

the system. The same feature selection and description algorithm is then applied to

the preprocessed testing images. The user key produces the same seed to the pseudo-

random number generator to realize a unique non-invertible transformation. Finally,

two Gabor Descriptor templates are compared in a transformed domain to make a

decision. Therefore if the transformed templates are compromised, the key can be

reissued and the compromising would not affect the original templates.

5.1.1 Incorporating the Key Information

In this research, we used the fact that the ring information r can reflect key

information and it is non-reversible. With this new feature information, the feature

descriptor becomes a 65-length vector (64 bins plus the ring information). (an example

is shown in Figure 5.2)
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Fig. 5.2.: 65-length descriptor with ring information

The r information is actually the radial position in the sub-region map of each

feature point. In order to enhance the template security and create cancelable tem-

plate, a re-arrangement of the sub-region is needed. Before re-arrangement, the radial

position of each feature point in sub-region map is recorded in r field added to the

Gabor Descriptor. The re-arrangement is uniquely determined by a user key, which

means a correct key provided should maintain the same re-arrangement. No mat-

ter how the transformation goes, the overlapping feature in original sub-region map

should be still overlapping after re-arrangement. Thus, the recorded radial position

of the overlapping feature point in both transformed templates should have the same

r value. By checking the correspondence of the r values of each overlapping feature

point in both test and enrolled templates, we can quickly get rid of the wrong user

key situations. The key information is incorporated with the iris pattern and we do

not directly compare the user key so there is less room for the attacker to get the

key information. Moreover, the added r information will not leak the true template

information because one cannot reverse the transform process only with the radial

position in the sub-region map provided. Also, the key could not be fully recovered

from the extracted key information.
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5.1.2 Non-invertible Transformation

The transformation process is a non-invertible spatial transformation consisting

of a random re-mapping of the 720 bins to shuffle the original location. Therefore

theoretically 720! (over 104200) different transformations can be obtained. To be

tolerant of segmentation error and provide redundancy, feature points located within

a 3×5 neighborhood region are considered to be overlapping during matching. In our

research, In order to make the re-mapping non-invertible, we only use part of the bins

(N < 720) from the original templates which contains all the feature points so that

the information for recognition will not be reduced. Therefore the true arrangement

number is much less than the theoretical one. (For example, 100 valid feature points

can get N!/(N-100)! different permutations). Even though, the number of possible

arrangements is still enough to ensure a potential attacker has a negligible probability

of guessing the arrangement of the original template using a brute-force attack.

In order to transform the original mapping arrangement, the user provides a ran-

dom seed for a pseudo-random number generator. This seed may be generated by a

physical hardware token that the user keeps in her possession; this provides a complex

random seed in a secure manner. The results of the pseudo-random number gener-

ator are applied to a transformation process that re-maps each of the sub-regions

from the original mapping arrangement into the newly transformed mapping. The

transformation process re-maps the arrangement of the sub-regions, while leaving the

contents of the 64-length descriptor in each sub-region unchanged from the original

mapping. To realize the 720-bin random permutation, a 128-bit sequence is gener-

ated from each users pin or token as an input seed, as well as a set of encryption keys

for the pseudo-random number generator. A one way hash encryption function or

DES-based method can be used to map the input seed into 720 128-bit strings using

the ANSI X9.17 pseudo-random number generator algorithm [96] below.

The 720 bit string sequence constitutes a unique random permutation applied

to the original Gabor Descriptor templates. The pseudo-random number generator

will produce the same numeric sequence when used with the same seed during a fu-
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ture transformation process. This allows for subsequently generated iris mappings to

undergo the same transformation, producing a consistently transformed mapping ar-

rangement for matching. Even if the attacker gets the original template arrangement,

that is just a part of the iris; the system can regenerate a new pin. The correspond-

ing templates in the enrollment database should be deleted and the user should be

re-enrolled in the database to achieve cancelability.

Algorithm 1 ANSI x9.17 pseudo-random number generator
For i = 1 : m

xi = Ek(I ⊕ s);

s = Ek(xi ⊕ s);

End

Return (x1, x2, . . . , xm)

I– initial value, s – input seed provided by user key, Ek – one-way encryption

function controlled by encryption key extracted from user’s pin or token.

5.1.3 Matching with a New Added Field

To match two feature point maps, the average of the distance scores between all

overlapping feature points is calculated and used as the matching score between two

feature point maps. To make the proposed method tolerant of segmentation error and

eye rotation, each feature point in a feature point map from image X, is compared to

each feature point in the fifteen surrounding bins (two bins on either side and one bin

above and below) in a feature point map from image Y, and the minimum average

distance score is stored for the two feature point maps compared.

In addition, we modified the Euclidean distance based matching algorithm by

taking the transformation into consideration. For both enrolled and test images from

a same user with the same key, the unique transformed mapping should be the same.

During matching, any overlapping blocks of the transformed templates should also

be overlapped in the original templates. Thus, we add a field which only records the
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ring number of the bin to provide location information of this feature point. Before

calculating the Euclidean distance, we check the feature point location information.

If several blocks are found to be too far away, we view the two templates as being

from different users and move on to the next comparison. The similarity (from 0 to

1) of two images X, Y is calculated as:

Sim(X, Y ) = (X.r1 == Y.r1) ·(X.r2 == Y.r2) · · · · ·(X.rm == Y.rm) ·

√√√√ 64∑
i=1

(Xi − Yi)2,

(5.1)

where X.rm and Y.rm are the ring location number of the mth overlapping block in

both X and Y . An attacker cannot recover the original permutation with only the

radius location information. Thus, with the added ring number, we can shorten our

matching time and reduce the false acceptance rate greatly without compromising

the security of the original templates.

In the matching process, there could be four possible scenarios: the two templates

for matching could be from:

• Same user and same key : The two templates should be matched.

• Same user and different keys : The template matching distance would be high

because the transformations are different and the two templates should not be

matched.

• Different users and same key : The template matching distance would be high

because iris patterns are different (i.e. Gabor Descriptors would be different so

the distance will be high).

• Different users and different keys : The template matching distance would be

high because both the iris patterns and the transformations are different. Under

such a scenario, the false acceptance rate will be reduced dramatically.
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5.2 Key-binding Based Cancelable Iris Recognition

To implement the key-binding based cancelable non-cooperative iris recognition,

the fuzzy vault scheme is combined with the large scale feature point detection and

description to enhance the iris template security. The high stability of the large scale

point location from two irises from the same class can be utilized as the mutual infor-

mation required by fuzzy vault scheme. However, the traditional fuzzy vault scheme

has some limitations. Some of the limitations will be analyzed and addressed by the

proposed design in this Chapter 5.2.1. The proposed fuzzy vault implementation for

biometric template protection is introduced in Chapter 5.2.2.

5.2.1 Fuzzy Vault Scheme

Fuzzy vault scheme [76] proposed by Juels and Wattenberg is a cryptographic

construction specifically suited for biometrics. A player Alice may place a secret key

k in a fuzzy vault and lock it use a set of elements from a universal field. In order

to retrieve the secret key k from the locked fuzzy vault, another player Bob has to

present his set of elements which is substantially overlapped with that of Alice to

unlock the fuzzy vault. Thus, fuzzy stands for the fuzziness of the set of elements

held by every player. The player who wants to unlock the vault and obtain the secret

key does not need to present the exactly same set with the one used for locking. A

small portion of fuzziness and variation is allowed.

Due to the variations of signal acquisition situations, the acquired biometric signals

from the same user are not exactly identical every time. The fuzziness of the biometric

signal can be utilized to construct a fuzzy vault, which is a typical design of key-

binding biometric template. The generated key-binding template (vault) is referred as

helper data in the key-binding based biometric template security protection schemes.

The helper data is the only information stored in the database, which leaks negligible

information of the true biometric template. In this way, the privacy and security of

users biometric template is secured.
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Fig. 5.3.: Traditional fuzzy vault scheme

A formal description of the fuzzy vault scheme is shown in Figure 5.3. During the

fuzzy vault locking, a locking set

Block = {Block 1, Block 2, . . . , Block n} (5.2)

is extracted from the enrolled biometric signal. A private key K is stored in the

vault in the following way: assuming K is a 128-bit AES key; the key is then divided

into 16 8-bit binary strings. A polynomial P of degree 15 is constructed using the

previous 16 binary number as its coefficients. The locking set Block is evaluated using

the polynomial and a genuine locking set

T = {(Block 1, P (Block 1)), (Block 2, P (Block 2)), . . . , (Block n, P (Block n)} (5.3)

is generated. In order to hide the genuine set T , a chaff point set

C = {(C1, Q(C1)), (C2, Q(C2)), . . . , (Cm, Q(Cm))} (5.4)
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is created and mixed into the genuine set T . Note that any point (Ci, Q(Ci)) in C

should not lie on polynomial P , e.g., Q(Ci) 6= P (Ci) for any i ∈ [1,m]. A redundancy

set R is created based on Block to correct errors when unlocking the vault. Error

correction code, such as Reed-Solomon code is applied to encode the locking set Block

and generate the redundancy code set R. Finally, a fuzzy vault V = {T,R,C} is

locked and stored in a smartcard or server. Note that the created vault V is supposed

to reveal only very little information of either the private key or biometric signal,

therefore it can protect the privacy and security of both private key and biometric

information of user.

During the fuzzy lock unlocking, an unlocking set

Bunlock = {Bunlock 1, Bunlock 2, . . . , Bunlock n} (5.5)

is extracted from the authentication biometric signal. The Bunlock is corrected using

the redundancy code set R generated when locking the vault. If the authentication

biometric signal is similar enough to the enrolled one, the error correction code should

be able to correct all the error bits and recover the exactly same set as Block. It is

now very easy to separate the genuine set T and chaff point set C from the vault V .

After is successfully recovered from V , the polynomial P is derived using Lagrange

interpolation. Suppose T = {(x1, y1), (x2, y2), , (xn, yn)} is obtained from the error

correction, for instance, RS decoding, P (x) is interpolated as follows:

P (x) =
f(x)

(x− x1)f ′(x1)
y1 +

f(x)

(x− x2)f ′(x2)
y2 + . . .+

f(x)

(x− xn)f ′(xn)
yn, (5.6)

where

f(x) = (x− x1)(x− x2) . . . (x− xn), (5.7)

and f
′
(x) is the derivative of f(x). Finally the private key K is recovered by concate-

nating the coefficient of P (x). Obviously, fuzzy vault can be used to protect a private

key for encryption usage. In the other hand, the match of the derived key with the

stored key indicates the match of biometric signal, therefore fuzzy vault can also be

used as a template secured biometric authentication scheme.
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However, the above scheme has some limitations if directly applied to biometric

system. First of all, the scheme is not cancelable or revocable, e.g., if the biometric

template is stolen, there is no easy way to revoke the obsolete vault and reissue a

new one like password. That will lead to severe consequence in real-life applications.

Second, the application of error correction requires the whole encoding and decoding

process implementing in Galois Field (GF). It is very challenging to transform the

biometric template into a stable binary template with low bit error rate. Moreover,

the more variation between the enrolled template and the authenticate template,

the more bits is needed for the error correction redundancy code, which makes the

encoding and decoding process very time-consuming. The proposed design in this

chapter will mainly address the above two concerns.

5.2.2 Proposed Fuzzy Vault Design for Non-Cooperative Iris Recognition

The proposed fuzzy vault design in this thesis makes use of the stableness of the

large scale feature points detected among irises from the same class in Chapter 3. The

positions of the matched feature point pairs are used as the genuine set T mentioned

in Chapter 5.2.1. The descriptor of the corresponding feature point is compared to

the enrolled template to determine whether it is an enrolled point. No error correction

code is needed for this scheme. There is also no need to store the private key in the

server. Instead, the private key is held by user himself/herself as a smartcard or

token, which eliminates the danger of being hacked in the server. The flowchart of

the proposed design is shown in Figure 5.4. We will discuss the vault locking and

vault unlocking process separately next.
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Locking the vault

During the vault locking process (Figure 5.4a), several iris images from each sub-

ject are selected as the enrollment/training images. Feature points are located and

described using the method introduced in Chapter 3. The more stable large scale

points are picked out as the candidate locking set. In this design, only feature points

with scale 3 or higher are selected. The corresponding 10× 72 feature map and local

descriptor are generated.

To make the locking set cancelable, a user specified external randomness (a unique

user key or token) is added to the scheme. A 128-bit private key is used to re-arrange

the feature map. Each sub-regions of the original 10× 72 feature map is re-mapped

to a new position on the 256× 256 transformed feature map (Figure 5.5).

To realize the transform, the unique 128-bit private key is input into a pseudo-

random number generator as a random seed. The results of the pseudo-random

number generator are applied to a transformation process that re-maps each of the

sub-regions from the original mapping arrangement into the newly transformed map-

ping. The transformation process re-maps the arrangement of the sub-regions, while

leaving the contents of the local descriptor in each sub-region unchanged from the

original mapping. A one way hash encryption function or DES-based method can be

used to map the input seed into 720 128-bit strings using the ANSI X9.17 pseudo-

random number generator algorithm [93]. The 720 bit string sequence constitutes a

unique random permutation applied to the original feature map. The pseudo-random

number generator will produce the same numeric sequence when used with the same

seed during a future transformation process. This allows for subsequently generated

iris mappings to undergo the same transformation, producing a consistently trans-

formed mapping arrangement for matching. if the attacker gets the original template

arrangement, the system can regenerate a new pin. The corresponding templates in

the enrollment database should be deleted and the user should be re-enrolled in the

database to achieve cancelability.
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To lock the vault, the 128-bit private key is divided into 8 16-bit binary strings

and each string is a coefficient of the 8-degree polynomial P . The coordinates of

each feature point on the transformed feature map are used as the input of the

polynomial. The x, y coordinates (0-255) of each feature point is converted into an 8-

bit binary code and the two binary code are concatenated as x | y. The concatenated

coordinates are evaluated by the polynomial P . The genuine set T is created as T =

{(B1, P (B1)), (B2, P (B2)), , Bn, P (Bn)} where Bi = xi | yi, | stands for concatenation

and n is the number of enrolled feature points.

To hide the genuine set, a set of chaff points C is added to the genuine set T

and the number of chaff points is from 1 to 64816 (65536 - 720), depending on the

required security strength (Figure 5.5). A fake descriptor for each chaff point is

randomly generated and stored along with the true descriptor as D. The fuzzy vault

V = {T,C,M,D} is finally locked, where T is the genuine set, C is the chaff point set,

M is the 256× 256 transformed feature map and D is the corresponding descriptor.

Unlocking the vault

During the vault unlocking (Figure 5.4b), each user presents both his/her iris

pattern and a unique private key to the system. The same feature points detection and

description process is applied to each authenticate iris. The large scale feature points

are located and a corresponding feature map and a descriptor set. The generated

feature map is remapped to a 256× 256 feature map by the unique private key using

the same algorithm as the vault locking. The transformed feature map is compared

with the enrolled feature map M in the vault to find the all the overlapping feature

points. Only those overlapping pairs with close descriptors are considered to be a valid

hit. The similarity of two feature points is determined by the Euclidean distance of

their related descriptors. The x, y coordinates of the hit points are concatenated and

the genuine set T of the vault is recognized. Lagrange interpolation in Chapter 5.2.1

is applied to the genuine set T to recover the polynomial P and the locked private

key is derived. The match of the derived private key with the user key indicates a

successful authentication.
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Fig. 5.5.: User specified transformation.

During the authentication, there could be four scenarios:

• The same user with the correct private key : The access is valid if there are

enough hit points to unlock the vault.

• The same user with incorrect private key : The access should be denied since

the wrong key will lead to a wrong transformation. The derived key will not be

able to match with the user key due to the lack of hit points.

• Different users with correct private key : The access should be denied since the

small similarity between the two irises will lead to a completely wrong unlocking

set, which derives a mismatched key.

• Different users with incorrect key : The access should be denied because neither

the iris pattern nor the user specified transformation is matched therefore the

probability of the match of the derived key from a completely wrong unlocking

and the incorrect user key is negligible.
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5.3 Experimental Results

5.3.1 Experimental Results for Key Incorporation Cancelable Scheme

For experiment 1, we use the 1527 left eyes of ICE Database, which provides

1165101 comparisons. In order to show the performance of our method in general

situations, we randomly assign a unique key to each user and apply random transfor-

mations to the biometrics templates every time and we do this 10 times, which means

we revoke the old key and re-issue a new key 10 times. We first apply the traditional

method without key information incorporated to the 10 transformed datasets, The 10

ROC curves using traditional Gabor Descriptor are shown in Figure 5.6a, the results

using key information incorporated cancelable approach are shown in Figure 5.6b.

The EERs comparisons of the 10 random experiments are listed in Figure 5.6c, we

can see that the recognition accuracy has been dramatically improved.

Table 5.1 compares using 2-D Gabor wavelet matching, 1-D Log-Gabor match-

ing, our Gabor Descriptor and the proposed cancelable method results on annular

iris images of the ICE database. To be comparable, all the methods use the same

segmentation method and frontal-look images. It is shown that our original Gabor

Descriptor method can achieve accuracy close to the traditional 2-D Gabor wavelet

method and 1-D Log-Gabor method. Our proposed cancelable method can effec-

tively reduce the FAR to achieve 0.001 EER. Moreover, our methods can work well

in non-cooperative situations (off-angle eyes). Most of the eyes from different classes

are directly rejected during the stored ring number checking process; therefore high

accuracy is reasonable.

We also compare the proposed key incorporated cancelable iris recognition method

with the matching results from top iris recognition companies/groups who partici-

pated in ICE in 2005 [66]. (Table 5.2) Our key incorporated cancelable method can

achieve better results than the best team, at the same time achieving cancelability.
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For experiment 2, IUPUI database is used to measure the performance of the

key incorporation cancelable scheme for non-cooperative situation. We used the ICE

2005 matching protocol in this experiment: each image is matched against all other

images in the database. Therefore, all 3690 images were used in our experiment,

comprising 6.8 million comparisons in the matching stage. Our own non-cooperative

segmentation algorithm was used to automatically obtain the iris region. Similar to

experiments on ICE database, we randomly assign a unique key to each user and

apply random transformations controlled by the user key to the iris templates of

each user. The 10 times results of our traditional method without key information

incorporated are shown in Figure 5.7a. We then use the proposed cancelable approach

to test the 10 trials; the results are shown in Figure 5.7b, where we can see that our

result is very steady and promising. Figure 5.7c shows the 10 EERs (Equal Error

Rates) comparison: Our Gabor Descriptor result for IUPUI database is 5.24% while

the average EER of our 10 times experiment using proposed method is 0.3965%.This

shows that the proposed method does not change the genuine matching results, but

greatly increases the matching distance of imposters.

Table 5.3 compares the results of using the two traditional cooperative iris recogni-

tion algorithms, 2-D Gabor wavelet matching [29] and 1-D Log-Gabor matching [41],

with our Gabor Descriptor [58] and the proposed cancelable method on the centered

eyes from our IUPUI remote database. The proposed method result is the average

result of 10 times experiments. To make the comparison result reasonable, we only

use the 610 frontal-look images (cooperative situation) and use the same segmenta-

tion outputs. Our Gabor Descriptor method results are comparable to the results

achieved using traditional matching algorithms and our proposed cancelable method

can effectively reduce FAR, which improves the accuracy.

All the above experiments using the key incorporation cancelable method achieve

very promising results, which is reasonable because we pre-assigned totally random

keys to different users. The key variation will result in totally different transfor-

mations which will be detected by our matching algorithm with ring information
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examination. Therefore, nearly all the false acceptance cases are excluded because

they cannot pass the ring number check mechanism. One thing to point out here is,

our scheme is not a direct and simple combination of key check and iris comparisons,

but incorporates the key information into the biometric templates. We do not di-

rectly compare the user key but extract the key information from the iris templates

and quickly exclude imposters. The extracted key information reveals just a small

part of information of both transformation key and original biometric template, which

makes it impossible for attackers to recover the true information. In such a way, we

can better protect the user key and achieve high accuracy, as well as reducing the

matching time.

From our experimental results, we can see that our method effectively obtains

cancelability while reducing the FAR greatly and thus improving the recognition ac-

curacy. Most of the false acceptances are rejected due to our transformation checking

mechanism by comparing the stored ring number before matching. The unique can-

celable transformation actually provides more information for identity verification.

Moreover, the non-invertible transformation is carried out on descriptor templates

without changing or ruining the original feature information. Thus, the added trans-

formation greatly increases the recognition accuracy.

5.3.2 Experimental Results for Key-binding Cancelable Scheme

For the key-binding cancelable scheme, left eyes of ICE 2005 database is used to

measure the proposed fuzzy vault design in Chapter 5.2.2. There are 119 subjects

altogether and the first iris image of each subject is encoded to form the vault. A

unique 128 bit private key is assigned to each subject to conduct the cancelable

transformation and is used to create the vault locking polynomial as well.

To measure the False Rejection Rate (FRR), all other irises from the each sub-

ject are through the same feature detection and extraction process. The remapped

template is generated and compare with the one locked in the vault. The genuine
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set is determined by checking the distance between the overlapping feature points

from the vault. Lagrange interpolation is applied to the derived genuine set and to

reconstruct the polynomial whose coefficients are concatenated as the 128 private key.

The matching of the derived private key with the assigned key indicates a genuine

acceptance. For different polynomial degrees, the Genuine Acceptance Rate (GAR)

is shown in Figure 5.8. For all the 16180 intra-class matching, we achieve a 95.94%

GAR at degree 4, which means a 4.06% FRR. As the polynomial degree goes up, more

hit points are needed to unlock the vault therefore the increase of FRR is reasonable.

However, even for degree 8, we still achieve an 89% GAR. The results are promising

compared to other fuzzy vault implementations [78,97–99].

To measure the corresponding False Acceptance Rate (FAR), we try to unlock the

vault using the irises which are not the same class as the enrolled one, which consists

1150448 inter-class matches. Theoretically, with the increase of polynomial degree,

the FAR should be reduced since the possibility that an inter-class pair of iris contains

enough hit points to unlock the vault at high polynomial degree is negligible. For all

polynomial degrees from 4 to 8, none of these inter-class tests can unlock the vault.

Hence the FAR of the proposed scheme is 0, which is very promising.

We can also measure the security of our fuzzy vault system quantitatively. Assume

that an attacker tries to unlock the vault by separating the genuine set from the chaff

points set using brutal force attack. To unlock a vault of polynomial degree 8, at least

8 genuine points needs to be correctly located. The vault has altogether 65536 points

and we suppose each iris has 20 feature points at high scale which is the average

case, therefore the possibility of a successful brutal attack is C(20, 8)/C(65536, 8) ≈

1.5×10−29. In another word, it will take an average of 6.7×1028 trials for an attacker

to crack the vault, which corresponds to a computational time of more than 7× 1011

years for a 3.0 GHz computer if we assume each trial takes even only one evaluation.
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Table 5.1: Comparison of different matching algorithms for ICE 2005 left eyes

Algorithm Images # EER
GAR at

FAR = 0.1%

GAR at

FAR = 0.01%

2-D Gabor 1527 1.26% 97.50% 96.29%

1-D Log-Gabor 1527 1.06% 97.39% 95.33%

Gabor Descriptor 1527 2.57% 93.16% 89.16%

The proposed cancelable

approach(average result

from 10 trials)

1527 0.10% 99.85% 99.62%

Table 5.2: Comparison of our method and others results

Group name Database used
GAR at

FAR = 0.1%

GAR at

FAR = 0.01%

SAGEM [13]
ICE database left eyes

(1527 images)
99.1% 98.9%

IritchD[13]
ICE database left eyes

(1527 images)
99.2% 98.6%

CMU[13]
ICE database left eyes

(1527 images)
99.1% 98.2%

CAM2(Daugman’s

method) [13]

ICE database left eyes

(1527 images)
98.9% 98.6%

Proposed cancelable

method

ICE database left eyes

(1527 images)
99.8% 99.6%
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(a) ROC Curves of 10 Trials using the Gabor Descriptor Method (ICE)

(b) ROC Curves of 10 Trials Using Proposed Method (ICE)

Fig. 5.6.: Result of experiments on ICE 2005 database (ICE database left eyes)
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(c) Comparison of EER

Fig. 5.6.: Continued

Table 5.3: Comparison of different matching algorithms for IUPUI Database

Algorithm Image # EER
GAR at

FAR = 0.1%

GAR at

FAR = 0.01%

2-D Gabor 610(frontal-look) 1.79% 92.57% 88.56%

1-D Log-Gabor 610(frontal-look) 2.95% 92.35% 89.80%

Gabor Descriptor 610(frontal-look) 2.73% 92.63% 87.61%

The proposed cancelable

approach(average result

from 10 trials)

610(frontal-look) 0.23% 99.77% 98.81%
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(a) ROC Curves of 10 Trials using Traditional Method (IUPUI)

(b) ROC Curves of 10 Trials using Proposed Method (IUPUI)

Fig. 5.7.: Result of experiment on entire IUPUI database
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(c) Comparison of EER

Fig. 5.7.: Continued

Fig. 5.8.: GAR at different polynomial degrees (FAR = 0)
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6. CONCLUSIONS AND FUTURE WORK

There are mainly three contributions in this thesis: (1) a speed-up multi-stage

non-cooperative iris recognition approach is proposed, (2) a key-incorporation-based

non-cooperative iris recognition approach is proposed, and (3) a key-binding-based

iris authentication approach is proposed.

The proposed speed-up multi-stage non-cooperative iris recognition approach makes

use of the integral image and box filter to accelerate feature point detection similar to

SURF method. Gabor wavelet based multi-scale local descriptor is applied to describe

each detected feature point, which outperforms the other two popularly used local

descriptors (SURF and DAISY) proved by the experimental results. A multi-stage

matching algorithm is then applied to the generated multi-scale local descriptor. The

high repeatability of detected feature point at large scales can be used to quickly sep-

arate different iris classes while the Gabor wavelet based descriptor can further detect

details in iris texture pattern. The new designed multi-scale descriptor is shown to

achieve high recognition accuracy even with low resolution off-angle iris images.

Based on the previous non-cooperative iris recognition approach, two security

enhanced cancelable iris recognition are proposed to protect the iris template. The

proposed key incorporated cancelable method achieves cancelability by applying a

non-invertible transformation to the original sub-region based template. The user

key information is incorporated with the transformed template by recording radial

location of each feature point. The key-incorporated cancelable approach can achieve

cancelability and also improve recognition accuracy, which is demonstrated by the

experimental results on two databases (IUPUI and ICE).
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The proposed key-binding scheme solves several limitations of the traditional fuzzy

vault: the proposed method achieves cancelability by including a user specified ex-

ternal randomness to generate a cancelable template; the high stability of the large

scale point location from two irises from the same class is utilized as the mutual in-

formation required by fuzzy vault scheme therefore error-correction code is no longer

required to achieve stableness. The experimental results on ICE database shows that

the proposed key-bind scheme can achieve 0 FAR and a very low FRR, which is very

promising for high-security level applications using iris in the future.

There are some more work can be done in the future to improve the current ap-

proach. For the speed-up multi-stage non-cooperative iris recognition approach, a

proper approximation of the Gabor filter used in feature description using a set of

box filters can be applied to further increase the descriptor generation speed without

reducing the accuracy too much. More experiments can be done on other databases

to show the effectiveness of this approach. For the key-binding system, more mutual

information between two irises can be extracted to increase the degree of the polyno-

mial so that the scheme can provide more flexibility in more secure applications with

longer key.
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