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ABSTRACT

Ragozzino, Matthew. M.S.E.C.E., Purdue University, May 2013. Multiresolution
Variance-Based Image Fusion. Major Professor: Paul Salama.

Multiresolution image fusion is an emerging area of research for use in military

and commercial applications. While many methods for image fusion have been de-

veloped, improvements can still be made. In many cases, image fusion methods are

tailored to specific applications and are limited as a result. In order to make im-

provements to general image fusion, novel methods have been developed based on

the wavelet transform and empirical variance. One particular novelty is the use of

directional filtering in conjunction with wavelet transforms. Instead of treating the

vertical, horizontal, and diagonal sub-bands of a wavelet transform the same, each

sub-band is handled independently by applying custom filter windows. Results of the

new methods exhibit better performance across a wide range of images highlighting

different situations.



1

1. INTRODUCTION

Image fusion has been a research topic dating back many decades, and the idea

branches from a more generic research topic known as data fusion. According to [1],

data fusion is classified as a framework that aims to provide methods and tools for

the merger of data from different sources to improve the quality of information. The

application of the methods and tools dictate the measure of quality and improvement

of such.

Under the data fusion umbrella, image fusion is a broad topic itself. To precisely

define the term, image fusion is the strategic combination of two or more images.

Images can originate from both visible and infrared sensors or from the same sensor

at different moments in time. Assuming two images meet the requirement of being

properly registered, image fusion, according to [2], can produce images that are more

suitable for human vision as well as computer vision for post-processing.

the general organization of this thesis will be given in 1.2.

1.1 Image Fusion Framework

Image fusion, in general, is a technique in which images from multiple sensors or

multimodal imaging systems are merged together to create a new image with more

information than any one of the constituent images [3]. Although any number of

images can be fused together, practically tow or three are fused so as not to overwhelm

an end user with the amount of information contained in the resulting image.

The fusion of images follows a general framework illustrated in Figure 1.1 below.

Image registration, which is the process of aligning images taken of the same object

or scene at different times or through different sensors [4], is an essential aspect of
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Fig. 1.1.: General framework for image fusion

image fusion. This is required to relate information in any two images [3]. Once

image registration has been achieved, the process of fusing the input images begins.

There are many existing image fusion techniques. The most basic image fusion

techniques include simple averaging the constituent images or selecting the greatest

pixel value, while the more complex image fusion techniques include wavelet trans-

forms or the IHS color transform to merge information.

In addition to different techniques implemented in the fusion stage, each technique

can operate on one of the so called levels: “decision-level”, “feature-level”, and “pixel-

level”. Decision-level fusion is the highest level, feature-level is in the middle, and

pixel-level is the lowest [5]. More details and examples of each level are presented in

Chapter 2.

The target application also plays an important role in the fusion process. As

mentioned above, there are many techniques, but some are developed for specific sce-

narios. Two areas of image fusion include multifocus image fusion and multisensor
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image fusion. While multifocus and multisensor image fusion are not the only appli-

cations for image fusion, there is much research revolving around them, and methods

that work for one application may not work for others.

Multifocus image fusion is one type of fusion that focuses primarily on images in

the visible domain. When dealing with optical imaging systems, the ability to clearly

identify objects is determined by a system’s focal point. As the focal point changes,

any object in front of or behind the focal plane will be out of focus [6]. Additionally,

due to the fact that optical lenses suffer from a limited field of depth, an image where

all objects appear sharp is impossible [6]. To overcome the limitations of optical

lenses, multifocus image fusion has sought to combine the sharply focused regions of

various images of the same scene [7].

Unlike multifocus image fusion, multisensor image fusion is not bound to optical

imaging systems. As the name suggests, two or more sensors are used in multisensor

image fusion. Because a single sensor can only operate in a specific range in the elec-

tromagnetic spectrum, multiple sensors can extend the viewing of a specific scene [8].

For example, the use of multisensor image fusion can help identify security breaches

more effectively by merging visible and infrared images to account for changes in vis-

ible light. Image fusion is also used in conjunction with medical imaging. The ability

to combine CT and MRI images can help doctors imporve diagnostic accuracy.

The military also has critical need for image fusion methods. Providing efficient

fusion algorithms can assist in areas like target recognition. Just as with the com-

mercial market, military security may also benefit from new and innovative fusion

methods.

Throughout this thesis, the goal is to present novel fusion techniques that may

be used in various applications. The focus will fall upon multiresolution image fu-

sion; however, the methods presented may apply or provide insight to other fusion

techniques like multifocus image fusion.
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1.2 Thesis Organization

This thesis is organized as follows: In Chapter 2, a review of methods developed in

the field of image fusion will be presented. Following, Chapter 3 will provide details

about the methods developed, and Chapter 4 will present the results of each proposed

method. Chapter 5 will conclude and provide suggestions for future work.
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2. REVIEW OF LITERATURE

Throughout this chapter, a discussion of existing methods in the field of image fusion

will be presented and discussed. The organization of the chapter will follow image

fusion from the highest level to the lowest level (See Section 1.1 for details about

the various levels of image fusion). In Section 2.1, a presentation of “decision-level”

methods will take place followed by “feature-level” methods in Section 2.2, and finally

a series of “pixel-level” methods will be discussed in Section 2.3 through Section 2.5.

After presenting various techniques at each level, a high-level analysis of the methods

will be provided in Section 2.6.

2.1 Decision-Level Methods

Decision-level fusion is considered to be the highest level of fusion [6]. Decision-

level fusion methods fall into one of two categories: multimodal fusion or recognition.

However, regardless of the category, each method follows a similar framework that

fits within the fusion framework of Figure 1.1. In general, in decision-level image

fusion, images are preprocessed, features are extracted and subsequently classified,

and decisions are made based on the classification [9]. A general overview for decision-

level fusion can be seen in Figure 2.1.

While both have the same framework, the outputs are different. The recognition

methods produce an object identification from a predefined dictionary of responses.

In the case of the latter, feature extraction and classification are performed and if

enough of the classifiers agree, an identification is produced.

The first method for discussion is presented in [10] as a panchromatic sharpen-

ing (pansharpening) method for multiresolution remote sensing images. This method

seeks to provide a new method for sharpening panchromatic satellite images by decid-
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Fig. 2.1.: Framework for decision-level image fusion methods

ing between two existing pansharpening algorithms: À trous wavelet pansharpening

(AWLP) and À trous wavelet transform followed by context-based decision fusion

(AWCBD) [10]. Of course, this method can be classified as a multimodal fusion

approach. While AWLP and AWCBD are not decision-level fusion techniques, the

use of the two algorithms in tandem after classification makes the method in [10] a

decision-level image fusion method.

Furthermore this method follows the framework defined in Figure 2.1 very closely.

The method accepts two images, one image has a high spatial resolution and low

spectral resolution, this is the panchromatic image. The other image has low spatial

resolution and high spectral resolution, as is referred to as the visible image. The

visible image is segmented into regions in the feature extraction stage, and once

segmented, each region is classified as a small region or a large region. A decision

is made between the two algorithms based on the region size classification. For each

small region, the AWLP is applied while AWCBD is applied if the region is considered

large.

Another set of methods that operate at the decision-level are presented in [9].

The methods presented are meant to be used for target recognition, thus each falls
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in the recognition category of decision-level fusion. Unlike the algorithm presented

in [10], these methods aim to classify what is in the image from a set of predefined

choices. Using synthetic aperture radar (SAR) images, [9] attempts to recognize

a target by classifying each image using a set of feature extraction algorithms and

combine the results of each to make a decision. Principal Component Analysis (PCA),

Linear Discriminate Analysis (LDA), and Independent Component Analysis (ICA)

are utilized for feature extraction. In addition, there are three methods presented

and analyzed in [9]: multi-view decision fusion, multi-feature decision fusion, and

multi-classifier decision fusion.

In the multi-view decision fusion method, aerial images are taken of a target

at different angles. Each angle is preprocessed and one of the mentioned feature

extraction algorithms is applied. Once all the features are extracted, a single classifier

is applied to each image, and the output of the classification stage is analyzed such

that makes a decision on the target type is made.

Fig. 2.2.: Multi-view decision method structure

The multi-feature decision fusion method is similar to the multi-view. Instead of

multiple images taken at different angles, a single image is taken, preprocessed, and

two or more feature extraction algorithms PCA, LDA, and ICA are applied [9]. The
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same classifier is applied to the output of each feature extraction algorithm, and the

output of the classification stage is sent to a decision process to identify the target.

Fig. 2.3.: Multi-feature decision method structure

Finally, the multi-classifier decision fusion method has one image that is prepro-

cessed and analyzed by one of the feature extraction algorithm: PCA, LDA, and

ICA [9]. The output of the feature extractor algorithm is then sent to multiple clas-

sifiers and their outputs are sent to a decision process just like the multi-view and

multi-feature decision methods.

The last method to be discussed that works at the decision-level is presented

in [11]. Similar to [10], the proposed method in [11] applies to remote sensing images.

The main difference, however, is that the scheme in [11] seeks to classify the regions of

an image for remote sensing whereas [10] is concerned with improving the quality of

the image. In terms of classification, this method would fall into recognition because

it attempts to identify regions within an image using multiple classifiers. While

recognition is the main focus of this method, the output is a not a single response

from a predefined list as in [9]. The output is instead an image that is color coded to

reflect the classification of each region.
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Fig. 2.4.: Multi-classifier decision method structure

In this method, a single image is processed, and after preprocessing, the image’s

features are extracted. Once the features are obtained, two or more sets of classifiers

are applied to identify the various regions within the image. A decision is made

between the set of classifiers, and the corresponding region in the output image is

color coded to reflect the decision made. This method can be identified as a multi-

classifier decision method as shown in Figure 2.4.

In decision-level image fusion, the main idea is to use multiple images to classify

information. For some methods, like those found in [10], the goal is to take advantage

of multiple methods to fuse information. Others, like the methods in [9] and [11], seek

to identify information within images using a variety of feature extraction techniques

and classification methods. In the following section, the next level of fusion, feature-

level fusion, will be discussed. Unlike decision-level fusion, feature-level fusion does

not aim to classify images or regions but uses features to segment regions within an

image and fuse each region independently.
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2.2 Feature-Level Methods

As previously mentioned, feature-level image fusion methods attempt to extract

regions in the spatial domain to treat regions independently. The framework for

feature-level image fusion is very similar to decision-level image fusion but excludes

the classification stage. An overview for the feature-level image fusion process can be

seen in Figure 2.5.

Fig. 2.5.: Framework for feature-level image fusion methods

Similar to decision-level fusion, the first two steps involve image preprocessing fol-

lowed by feature extraction, although preprocessing is optional. Instead of classifying

each region, the output of the feature extraction stage is sent to a fusion process

where the regions calculated from the feature extraction process are fused.

In [12], a feature-level method is presented for multifocus image fusion. Multifocus

image fusion methods accept two visible images taken at two different focal settings

and attempt to consolidate the in-focus regions of each input image into a single

image. In order to combine the in-focus regions of two input images into a single

image, the method in [12] uses variance, gradients, and features of the input images

in a series of steps. First, using generic properties of the input images, an optimal

block size is calculated, and the input images are separated into the optimal block

sizes. For each block, various features are extracted, and using a neural network, the
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“clearness” is calculated. The clearness factor is used to decide which block will be

used in the output image.

Another method, described in [13], is a feature-level image fusion algorithm that

focuses on multisensor image fusion. In the proposed method, there are three main

steps to fusing the input images. To start, an over-complete dictionary is created using

the K-SVD algorithm which is a generalization of K-means clustering using singular

value decomposition. In the next step, features are extracted and grouped the features

using the dictionary in the first step into two categories: common components and

innovation components. With the common and innovation components separated,

fusion weights can be assigned independently. Common components will be fused

with a low weight while innovation components will be assigned a weight based on

the level of activity within the source image.

Similar to [13], the method presented in [14] focuses on multisensor image fusion.

However, unlike [13], the method presented in [14] utilizes segmentation and wavelet

transforms to fuse images. Initially, images are decomposed using wavelet transforms.

Based on the output of the wavelet transforms, the input images are segmented using

algorithms developed in [15, 16]. Once the segmentation stage, also known as the

feature extraction stage is complete, the segmented regions are sent on to the fusion

process.

The fusion process presented in [14] is applied to each region output from the

segmentation stage. Utilizing bitvariate alpha-stable distributions, the important

regions are identified in the original images. From the important information, a

mapping is generated from the coefficients produced by the bitvariate alpha-stable

distribution. These coefficients are utilized as fusion weights.

Feature-level image fusion has some advantages over other levels of fusion by

providing isolation of regions within an image; however, segmentation may be difficult

if too much or too little information exists in the input images. In the next sections,

various low level techniques, referred to as pixel-level techniques will be described.
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The first technique will be IHS transforms followed by wavelet transforms. Finally,

other various techniques will be presented.

2.3 IHS Transform Based Methods

The Intensity-Hue-Saturation (IHS) transform is a process for converting an image

in the red, green, and blue (RGB) color space to the IHS color space. In order to

utilize any IHS transform fusion methods, one of the input images must be represented

in the RGB color space. The transformation from RGB to IHS used in [17] is
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Like decision-level and feature-level methods, methods that utilize IHS transforms

follow a generic framework given in Figure 2.6.

Fig. 2.6.: Framework for IHS transform image fusion methods

In all IHS transform based methods, an image in the RGB color space, usually

a visible spectrum image, serves as one of the inputs. The other image can be an
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infrared image or a high resolution image. Using Equation 2.1, the visible image is

transformed, and the intensity component, I, extracted. The intensity component

and the other source image are fused together into a new intensity component, IF . IF

replaces I, and the inverse IHS transform is performed to generate the fused image.

The first IHS based method for discussion was developed by [18] and focuses

on remote sensing applications. In remote sensing image fusion there are typically

two images: a panchromatic image which has high spatial resolution but low spectral

resolution, and a visible image with low spatial resolution but high spectral resolution.

The objective is to replace some information in the visible image, which is represented

in the RGB color space, with the panchromatic image. The panchromatic image is

represented as a grayscale image.

The method in [18] initially transforms the visible image from the RGB color

space to the IHS color space using Equation 2.1. Once in the IHS color space, the

intensity component is replaced with the panchromatic image. Finally, the image is

transformed back to the RGB color space.

In addition to the simple fusion rule, [18] introduces a value t, where t ∈ [1,∞),

that determines the weight between the panchromatic image and the visible image.

When t = 1, the panchromatic image is not included in the fused image. As t → ∞,

the panchromatic image has more weight than the visible image.

Another method that uses IHS transforms for remote sensing applications is de-

scribed in [19]. Again, the visible images have low spatial resolution in the RGB

color space, while panchromatic images are represented as grayscale images. The

main difference between the methods in [18] and [19] is how the weights between the

intensity of the visible image and the panchromatic image are calculated. Instead of

using a user-defined weight, [19] uses statistical features within the intensity of the

visible image and the panchromatic image. The fused intensity is calculated using

a regional expectation ER. For each pixel (i, j), the expectation is obtained using a

3×3 window, represented as R, with (i, j) as the center. Denoting IV as the intensity
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of the visible image and IP as the panchromatic image, then the fused intensity is

IF found using

IF (i, j) = ER{IV (i, j)}+ (IP (i, j)− ER{IP (i, j)}) . (2.2)

Similar to [18], IF replaces IV , and the inverse IHS transform is used to generate the

fused image.

Another method that is similar to the previous two methods is proposed by [20].

The main goal of this method is to fuse multiple satellite images while enhancing

vegetation information.

The proposed method in [20] is a six step process following the framework in Figure

2.6. First, the visible image is transformed to the IHS color space, and an index,

known as HRNDVI, is calculated to determine the amount of vegetation within the

original visible image. The new intensity component is obtained using the intensity

from the visible image and the panchromatic image using a method similar to that

presented in [18]. After the new intensity image is determined, the fused image is

formed by reverting back to the RGB color space using the new intensity image.

Finally, enhancements to the vegetation components are made by adding to the G

and B components of the fused image using the HRNDVI to calculate the weight for

each pixel.

The final method, which is unlike any of the first three methods, is presented

in [21]. This method is mainly focused on multisensor image fusion, particularly

infrared and visible image fusion. Even though the application for this particular

method is for multisensor image fusion, the framework in Figure 2.6 is still followed.

In order to fuse visible and infrared images, [21] proposes the following method:

first, transform the visible image represented in the RGB color space to the IHS color

space. Decompose the infrared image and the intensity component of the visible

image with the dual-tree complex wavelet transform. For each high pass image, fuse

the information from the infrared and visible images using a covariance based method.
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Next, average the low-pass images. Once the fused low and high pass images are

processed, reconstruct a new intensity component using the inverse wavelet transform.

Finally, utilize the inverse IHS transform to obtain the fused image.

As an image fusion technique, IHS transforms offer some advantages over other

techniques. The main advantage is maintaining color in the fusion process; however,

not all applications require or allow color throughout the fusion process. In the next

section, wavelet transforms will be presented. Using wavelet transforms as a method

for fusion provides a certain level of control that many methods lack. Additionally,

wavelets can be adapted to almost any fusion situation.

2.4 Wavelet-Based Methods

In terms of image fusion, using wavelets is one of the most popular techniques.

There are many applications of wavelets in multisensor, multifocus, and multiresolu-

tion image fusion. Using wavelets provides a way to isolate frequency content while

maintaining time or, in the case of images, spatial characteristics [22]. Just as with

other techniques, wavelet fusion methods follow a framework that can be seen in

Figure 2.7.

Fig. 2.7.: Framework for wavelet image fusion methods
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All wavelet image fusion methods follow a basic three step process. First, images

are decomposed using a wavelet transform. After decomposition, a fusion rule is

applied to each subband image. Finally, the subbands that were generated in the

fusion process are reconstructed.

Early in the development of wavelet-based image fusion methods, [23] presented

three simple techniques for fusing panchromatic images and visible images for remote

sensing applications. Like many remote sensing methods, there are usually two inputs:

a low resolution image represented in the RGB color space, referred to as the visible

image, and a high resolution grayscale image, referred to as the panchromatic image.

All three techniques rely on wavelet transforms for fusion, particularly the À trous

wavelet algorithm [23]. The first method is a substitution method, the second an

additive method, and the third uses the IHS transform for fusion.

The first technique can be described as a simple substitution subsequent to the

wavelet decomposition. After registration and preprocessing of the images, the visible

and panchromatic images are decomposed using two or three levels of decomposition.

Within the decomposed visible and panchromatic images, the high-pass subbands of

the panchromatic image replace the high-pass subbands of the visible image. Once

the image substitution is complete, the inverse wavelet transform is applied to the

visible image to produce the output.

Next, [23] proposes an additive method for image fusion. The additive method is

similar to the substitution method in that the panchromatic image is decomposed.

However, the low resolution image is left as is. After extracting the R, G, and B com-

ponents out of the low resolution image, the high frequency content of the panchro-

matic image is directly added to the R, G, and B components of the visible image.

The new R, G, and B components are then combined to form the new, fused image.

The third and final method proposed by [23] is very similar to the second method.

Instead of using the R, G, and B components of the visible image, they are IHS color

space. The high-pass subband images of the panchromatic image are then added to
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the intensity component of the visible image. Once the addition is complete, the

image is reverted back to the RGB color space to form the newly fused image.

Another method developed for application in remote sensing is given in [24]. In-

stead of adding or substituting subband images, the proposed method uses variance

to fuse images together. Again, in remote sensing applications, there are two images,

a visible image and a panchromatic image. In order to fuse the images, each input

image is decomposed via a wavelet transform. After the decomposition is complete,

regional variance of each subband images is found. Regional variance of the coeffi-

cients neighboring (k, l) in each high-pass subband, defined as σ2(k, l), is obtained

for the visible and panchromatic images as used in the following fusion rule: for each

coefficient (k, l) in each high frequency subband image, the newly fused image F (k, l)

is constructed using the following:

F (k, l) =

⎧⎨
⎩

V (k, l) if σ2
V (k, l) ≥ σ2

P (k, l)

P (k, l) if σ2
V (k, l) < σ2

P (k, l)
(2.3)

where V is the visible image and P is the panchromatic image. As this rule is not

applied ot the low frequency subband images, they are averaged together. Next, the

inverse wavelet transform is applied to produce the final fused image.

Fusion of two images of the4 same scene taken with different focal settings is

presented in [25]. Again, wavelets are used to perform the fusion, and similar to

[24], the method uses statistics to fuse the information between the two images. In

particular, two levels of decomposition are used to create one low-pass image and six

high-pass images.

For each low-pass image, the energies are obtained in a window around each pixel

(k, l). Using the energy between the two low-pass images, a weight is produced. The

weight is then used to average the new low-pass images together.

Once the low-pass images are fused, the six high-pass images are fused using a

different rule. The information in the high-pass images is fused using a covariance

based rule instead of energy, as covariance is used to measure the dispersion in a
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region around a coefficient (k, l) [25]. For a given region defined around a coefficient

(k, l), if one image is in focus and the other out of focus, then the in-focus image will

have more weight in the fused high-pass image. After applying the energy rule to the

low-pass image and the covariance rule to the high-pass image, the inverse wavelet

transform is applied to produce the new, fused image.

In [6], another method is presented that applies to multifocus image fusion using

statistical properties like [25]. Instead of using covariance, the method uses regional

variance. Again, the wavelet decomposition is applied to the input images, and a low-

pass image and several high-pass images are created. The regional variance is then

obtainted for both the low-pass and high-pass images. For the low-pass, a weighted

average is applied to produce the fused low-pass image whereas for the the high-pass

images, the regional variance is used to obtained the “sharpness” of an image at a

given coefficient (k, l). The fused high-pass image, F , is created by a decision that

is similar to Equation 4.4. After generating the fused low and high-pass images, the

inverse wavelet transform creates the final fused image.

Another method that is similar to [25] and [6] is presented in [26]. Using statistical

properties, information between two decomposed images is fused together. Unlike

[25] and [6], [26] applies to medical images, specifically the fusion of a CT image

and an MRI image. Additionally, the approach in [26] applies a simple rule to the

high-pass image while using a covariance based rule on the low-pass image. After

applying a wavelet decomposition to the two input images (two levels of decomposition

are recommended), the covariance of the two low-pass images is used to generate a

coefficient matrix with values between 0 and 1. The coefficient matrix is used to

define the weighted average between the two low-pass images. As for the high-pass

images, a simple maximum value selection method between two corresponding high-

pass images is applied. The inverse wavelet transform is applied to produce the fused

image.

Another method that utilizes statistical properties in fusion is presented in [3].

The proposed method focuses on removing noise and using the properties of wavelet
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transforms to fuse multisensor and multimodal images. After removing noise from

the input images, each input is decomposed using wavelet transforms. Using the

standard deviation to measure contrast and signal-to-noise ratio, the subimages are

fused together. For regions in the images that have a high signal-to-noise ratio, the

weight of each image is proportional to the contrast. Otherwise, if the signal-to-noise

ratio is low, the weight is inversely proportional to the contrast. The inverse wavelet

transform is applied to generate the fused image.

In [5], four methods are proposed using the stationary wavelet transform. The

first and second are both based on choosing maximum values. The first works at the

pixel level while the second takes each decomposed subimage into account. The third

method is similar to the second method but uses regional variance, and the four and

final method is based on covariance.

As mentioned above, the first two methods are based on the principal of choosing

the max between the two images to be fused. The first works at the pixel level. For

each high-pass image after wavelet decomposition, the pixels are compared, and the

pixel with the greatest magnitude is picked to be in the fused image. The second

method is similar to the first, except instead of looking at each high-pass image

independently, all the subimages are considered at the same time. At a given location,

(k, l), the values are summed across the the high-pass subimages. The subimages with

the highest sum are placed in the fused subimages. The inverse wavelet transform is

applied to produce the final fused image.

The third method is based on variance and has a similar principal to the second

method. Instead of focusing on a single subimage, each high-pass subimage is used

to calculate the fused image. In the third method, regional variance is calculated in

each subimage and summed across the three high-pass subimages. The max value is

then used to choose between the two input images.

Finally, the fourth method uses a different approach by utilizing covariance be-

tween the two input images. Decisions are made on a pixel by pixel basis from the

results of the covariance matrix for each high-pass subimage. If the covariance matrix
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is below some threshold, the variance decides which image contributes to the fused

image. Otherwise, the two subimages are fused using a weighed average based on the

calculated covariance.

The last wavelet based method is proposed by [27]. The proposed method is unlike

any other method discussed thus far. Most wavelet based method focus on a static

number of decomposition stages whereas in [27], the number of decomposition levels

varies based on a rule. Given a threshold which is a parameter of the method, a

coefficient based on each entire subimage is calculated. If the coefficient is greater

than the threshold, the subimage is decomposed and the threshold calculation is

applied to each decomposed image. On the other hand, if the coefficient is less than

the threshold, a fusion rule is applied. No particular rule is suggested in [27], but

most rules discussed thus far may apply. The inverse wavelet transform is applied to

each level until a single fused image is reached.

Wavelet transform based image fusion techniques provide a robustness that other

methods lack. Using wavelets is by far the most popular technique in image fusion

as they provide the ability to adapt to many scenarios and applications. While very

popular, there are many methods other than the wavelet transform based method

and some of these are presented in the next section.

2.5 Other Methods

In addition to the wavelet transform and IHS transform based methods, there

are other methods that utilize Brovey Transforms, high-pass filtering, high-pass mod-

ulation, Principal Component Analysis (PCA), Hidden Markov Trees, and Genetic

Algorithms.

A method that uses a pyramid fusion scheme coupled with PCA is presented

in [28]. Once each input image is decomposed using a pyramid decomposition scheme,

the kth level is fused by using a 3× 3 window to calculate the weights for fusion using
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a PCA method. After the kth level is fused, the kth − 1 level is fused, and so on until

the top level is reached.

In [29], a method is proposed to fuse visible and infrared images using a Hidden

Markov Tree based decomposition approach. The method is similar to wavelet de-

composition; however, the Hidden Markov Tree distributes coefficients to subimages

differently. Once decomposition is complete and the energy around each pixel in the

decomposed images is used for fusion, the fused image is constructed.

Three methods based on genetic algorithms are described in [30]. The first pro-

posed method is a simple weighted average between two input images where genetic

algorithms are used to identify the optimal weight between the two images.

In the second method, [30] suggest that the input images be transformed to the

wavelet domain. Within the wavelet domain, on a pixel by pixel basis for each

subband image, a genetic algorithm is used to decide weather the pixel from one

image or the other is used in the fused image.

The final method proposed in [30] is a threshold selection algorithm. Since the

proposed methods aim to work with multisensor data, thresholds are checked against

the infrared image data. The innovation in this method occurs in genetic algorithms

should be used to select the optimal threshold value [30]. If the infrared image data

is greater than the threshold, the pixel from the infrared image is placed in the fused

image, otherwise the visible image pixel is selected.

In the next section a qualitative analysis of the various levels and techniques of

fusion will be conducted. The results of this analysis will provide reasoning for the

decision to develop the methods that are presented in Chapter 3.

2.6 Qualitative Analysis

Throughout this chapter, a presentation of the different levels of image fusion have

been presented. Decision, feature, and pixel image fusion levels have been described,

and techniques for each level have been discussed. Throughout this section, each level
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of fusion will be discussed and the conclusions will directly influence the approaches

that will be presented in Chapter 3.

The first level of fusion discussed in this chapter was decision-level image fusion.

Throughout the methods presented in Section 2.1, a recurring theme present was that

decision-level image fusion seeks to classify and identify objects within a scene. In [9],

decision-level fusion is regarded as an recognition tool.

While decision-level fusion is great for recognition, there are many negative as-

pects. First of all, the decision-level image fusion process is very selective. Typically,

classification is predefined by a dictionary. Elements or regions of the input images

are placed in one of the predefined categories. This leads to the second issue with

decision-level fusion: improper identification. If an element or region in an image

does not fit in one of the predefined categories, the element or region in question may

be forced to associate to one of the predefined classifications. Lastly, preparation is

a major step in decision-level fusion. In order to classify elements or regions within

an image, training is usually a major step before the algorithm can be implemented.

Feature-level fusion, unlike decision-level fusion, does not seek to classify elements

or regions within an image. Instead, feature-level fusion attempts to separate regions

and elements so that each region can be handled independently in the fusion process.

In [14], some of the benefits of feature-level image fusion include reduced sensitivity to

noise, enhanced features, and smart selection of fusion rules due to the independence

previously mentioned.

Even though isolation of regions within an image may assist in the image fusion,

the feature extraction process is not always exact, especially when dealing with fea-

tures from multiple sensors. For example, the features extracted from each sensor

may not line up exactly as expected between an infrared and visible spectrum image.

Furthermore, identifying regions between two images may be difficult, and if fusion

techniques between adjacent regions are acting independently using different settings

or different rules, distortion and misrepresentation of data may occur in the fused

image.
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When using IHS transforms for image fusion, there is a clear advantage over other

methods: color information is preserved throughout the process of fusion. However,

not all applications require that color information be preserved. Additionally, ac-

cording to [20], the use of IHS transforms for image fusion may also introduce color

distortion.

The most robust methods for image fusion use wavelet transforms. The distinct

advantage of wavelet transforms over other techniques is the isolation of spectral

information while maintaining time or spatial characteristics. Like the feature-level

fusion techniques, wavelets isolate regions so that information in different spectral

ranges can be handled independently. Unlike feature-level image fusion, however,

wavelet spectral regions are predefined, and the process of wavelet decomposition can

be implemented iteratively to refine the isolation of spectral regions.

While wavelet transforms are very popular and robust for image fusion, there are

some negative aspects. The first negative aspect to using wavelet transforms applies to

the process of decomposition and reconstruction. Discrete wavelet transforms are not

shift-invariant [7]. Additionally, wavelet transforms are not dynamic. The filters are

predefined, and in order to isolate specific frequencies, more levels of decomposition

may be required.

Despite the limitations of wavelet transforms, their advantages outweigh the dis-

advantages. When the information in the input images is unknown, a robust method

for fusion is needed. Using decision and feature-level image fusion techniques will

not fulfill this requirement. While using IHS transforms may be robust when infor-

mation is unknown, the applications in which IHS transform methods can be used is

limited. Additionally, while there are many other techniques for image fusion, many

are still underdeveloped or cannot compete with existing techniques. From the anal-

ysis of these various methods, a set of methods using wavelet transforms have been

developed and presented in Chapter 3. Following the presentation of the developed

methods, the results will be discussed in Chapter 4.
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3. METHODS

Details about each method will presented in Sections 3.3 through 3.7. This chapter

describes new fusion methods based on the wavelet transform and regional variance.

3.1 Wavelet Transforms

Wavelet-based image fusion methods follow a general framework. Decomposition,

fusion, and reconstruction are the typical stages in wavelet-based image fusion meth-

ods (see Figure 2.7). Within this general structure, the major difference between

methods is the fusion stage; the decomposition and reconstruction elements in each

method are very similar.

Through out this section, the various stages within the framework of wavelet-based

image fusion methods will be discussed. In Section 3.1.1, the decomposition stage will

be presented in detail. Following decomposition, general fusion will be discussed in

Section 3.1.2. Finally, reconstruction is presented in Section 3.1.3.

3.1.1 Decomposition

For one-dimensional discrete-time signals, a single-level wavelet decomposition

takes a signal, x[n], as an input and generates two signals: one that contains the low

frequency content of x[n] and the other which contains the high frequency content.

These are denoted as xL[n] and xH [n] respectively. In order to create xL[n] and xH [n],

the signal is first passed through two filters: a low-pass filter h1[n] and a high-pass

filter g1[n]. By passing x[n] through h1[n] and g1[n], the signals y′L[n] and y′H [n] are

generated, and yL[n] and yH [n] are produced by down-sampling y′L[n] and y′H [n] by a

factor of 2. The one-dimensional process of decomposition can be seen in Figure 3.1.
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Fig. 3.1.: One-dimensional single-level wavelet decomposition overview

The decomposition process is not limited to a single level. In many cases, de-

composition is applied multiple times and usually to the low pass signals to further

isolate the frequencies of the original signal x[n]. A visual representation of multi-level

decomposition is presented in Figure 3.2.

Fig. 3.2.: One-dimensional multi-level wavelet decomposition overview

Applying wavelet decomposition to two-dimensional signals is a simple process.

Instead of a one-dimensional signal, the input to the wavelet decomposition process

is an N ×M array denoted as X. The first step to decomposing a two-dimensional

array is to perform a one-dimensional wavelet decomposition on each column. From

this process two matrices are produced with approximately half the height of the

X assuming N >> length(h[n]) and length(h[n]) = length(g[n]). XL and XH will

represent the new matrices. After the two matrices are created, each row of XL and
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XH are decomposed using the same process that the columns used. The result will

produce four matrices that are approximately half the size of the original matrix. The

decomposed rows of XL will produce XLL and XLH , and the decomposed rows of

XH will produce XHL and XHH as shown in Figure 3.3.

Fig. 3.3.: Two-dimensional single-level wavelet decomposition overview

3.1.2 Fusion

From the decomposition stage, two input images X and Y are each broken down

into four smaller images. XLL, XLH , XHL, and XHH are extracted from X and

Y LL, Y LH , Y HL, and Y HH from Y . The images denoted by a subscript LL refer

to the low-pass images. Subscripts LH, HL, and HH refer to high-pass images. In

most cases, the low-pass image and the high-pass images are treated independently

from one another.

For all cases, the fusion stage attempts to extract the most important elements

from the input images and consolidate them into a single image. If the fused image

is denoted by Z, then the LL, LH, HL, and HH versions of X and Y are used
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to created ZLL, ZLH , ZHL, and ZHH . After each image is fused, the decomposed

images of Z are sent to the final stage: reconstruction.

3.1.3 Reconstruction

The final stage for wavelet based image fusion is the reconstruction stage, some-

times referred to as synthesis. Within this stage, the four images output from the

fusion process, ZLL, ZLH , ZHL, and ZHH , are taken as inputs and merged to create

the final output Z.

For a pair of one-dimensional, discrete-time signals yL[n] and yH [n], reconstruc-

tion is achieved by reversing the decomposition process. yL[n] and yH [n] are first

upsampled by a factor of 2, filtered by h2[n] and g2[n] to produce xL[n] and xH [n]

respectively. Reconstruction is completed by summing xL[n] and xH [n] to produce

x̂[n]. A visual representation of the reconstruction process can be seen in Figure 3.4.

Fig. 3.4.: One-dimensional single-level wavelet reconstruction overview

As mentioned in Section 3.1.1, the process of decomposition can be applied multi-

ple times. For each level a signal is decomposed, reconstruction needs to be applied.

For example, if a signal x[n] is decomposed twice, then reconstruction will be applied

twice. In order to reconstruct two or more levels, the reconstruction stage is cascaded

together. See Figure 3.5 for more details.

Similar to the two-dimensional decomposition process, two-dimensional recon-

struction processes the rows and columns separately. With four arrays, ZLL, ZLH ,
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Fig. 3.5.: One-dimensional multi-level wavelet reconstruction overview

ZHL, andZHH , as inputs, ZLL andZLH are grouped together, andZHL andZHH are

grouped together. The rows are processed first. Looking at the first group comprised

of ZLL and ZLH , each row of the two images is processed by the one-dimensional

reconstruction process highlighted in Figure 3.4. The resulting array will be ZL.

Duplicating the process for the group containing ZHL and ZHH , the array ZH is cre-

ated. Using ZL and ZH as inputs, each column is processed by the one-dimensional

reconstruction process to produce Z. Details for the process can be seen in Figure

3.6.

Throughout the processes of decomposition and reconstruction, four filters are

mentioned, h1[n], g1[n], h2[n], and g2[n]. Filters in the decomposition and recon-

struction stages are not arbitrarily assigned; instead, each filter is carefully chosen to

achieve perfect reconstruction [22].

In terms of image fusion, there are several sets of wavelet filters that are used.

Orthogonal and Bi-orthogonal wavelet filters are the most common wavelet filters

used in image fusion. In [31], a study was conducted to compare the efficiency of

the various filters within the Orthogonal and Bi-orthogonal wavelet families. As a

result of the study, a Bi-orthogonal wavelet filter was suggested for image fusion.

Throughout each method, a Bi-orthogonal wavelet filter was used to decompose the

input images and reconstruct the fused image.
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Fig. 3.6.: Two-dimensional single-level wavelet reconstruction overview

Fig. 3.7.: Perfect Reconstruction Filter Bank

3.2 Regional Variance

Within the wavelet image fusion framework described in Section 2.4, regional

variance plays a key role in the fusion stage. Sometimes variance is used to choose

which pixel is placed in the fused image, and other times, variance is used to define
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the weights for averaging between two images. In Sections 3.2 through 3.7, both

techniques are used.

Throughout this thesis, the biased estimate of the variance of a random variable

X, denoted by σ2
X , given in Equation 3.1 will be used. N represents the total number

of observations of X, and μX is the unbiased estimate of the mean of the random

variable X. The equation for μX is given in Equation 3.2.

σ2
X =

1

N

N∑
n=1

(X(n)− μX)
2 (3.1)

μX =
1

N

N∑
n=1

X(n) (3.2)

In the case of two-dimensional signals (sizeN×M), variance estimates, denoted by

σ2
X , will be obtained over a region R that has N ′ rows and M ′ columns (N ′ << N

and M ′ << M) centered around each point (k, l). In this thesis, estimates of the

mean and variance will be referred to as regional mean and variance respectively.

The equation for regional variance is provided in Equation 3.3. Using the same region

defined for regional variance, the regional average, specified as μX(k, l), is defined in

Equation 3.4.

σ2
X(k, l) =

1

N ′M ′
∑

(n,m)∈R
(X(k − n, l −m)− μX(k, l))2 (3.3)

μX(k, l) =
1

N ′M ′
∑

(n,m)∈R
X(k − n, l −m) (3.4)

In Sections 3.2 through 3.7, novel methods for image fusion using wavelet trans-

forms and regional variance are presented. Throughout the remaining sections, the

methods will be presented using single-level wavelet decomposition and reconstruc-

tion; however, these methods are not limited to single-level decomposition.
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3.3 Regional Variance Method

In the Regional Variance method, the goal is to regional variance, as defined in

Equation 3.3 to perform a weighted average between two images. Chapter 2 described

a few methods that used variance in order to fuse images. The method presented

in [21] uses covariance to calculate weights for the subband images for fusion while

the method below uses the regional variance of individual coefficients of the subband

images. In [24] and [25], variance is used on the wavelet coefficients; however, the

method in which the variance is used is different than the method defined below. The

method presented in [24] uses variance to select a value between two wavelet subband

images, and the method presented in [25] is similar to the method below in that the

variance defines a weight between the subband images for fusion. However, the way

that variance is used to define the weights in [25] is different.

The Regional Variance method uses two images,X and Y , as inputs, and produces

a fused image Z according to the following steps:

1. Images X and Y are decomposed using a two-dimensional wavelet transform.

X
DWT
=⇒

⎡
⎣ XLL XLH

XHL XHH

⎤
⎦ (3.5)

Y
DWT
=⇒

⎡
⎣ Y LL Y LH

Y HL Y HH

⎤
⎦ (3.6)

2. The regional variance for each coefficient in the decompositions of X and Y is

obtained and represented as

σ2
X(k, l) =

⎡
⎣ σ2

XLL
(k, l) σ2

XLH
(k, l)

σ2
XHL

(k, l) σ2
XHH

(k, l)

⎤
⎦
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for each coefficient (k, l) and

σ2
Y (k, l) =

⎡
⎣ σ2

Y LL
(k, l) σ2

Y LH
(k, l)

σ2
Y HL

(k, l) σ2
Y HH

(k, l)

⎤
⎦ .

for X and Y , respectively.

3. Weights for each coefficient at (k, l) in bandQ ∈ {LL,LH,HL,HH} is obtained
for image X using

MXQ
(k, l) =

σ2
XQ

(k, l)

σ2
XQ

(k, l) + σ2
Y Q

(k, l)
. (3.7)

The weights for the corresponding decomposition of Y is obtained as

MY Q
(k, l) = 1−MXQ

(k, l). (3.8)

4. The subbands are fused using the weights obtained from Equations 3.7 and 3.8

via

ZQ(k, l) = XQ(k, l)MXQ
(k, l) + Y Q(k, l)MY Q

(k, l) (3.9)

for all (k, l) and Q ∈ {LL,LH,HL,HH}.

5. The inverse wavelet transform is applied using ZLL, ZLH , ZHL, and ZHH to

produce the fused image Z.

In the next method, a modification is made to the Regional Variance method.

Instead of treating the low-pass image in the same way that the high-pass images are

processed, a different rule is applied to the LL band.

3.4 High-Pass Regional Variance Method

The High-Pass Regional Variance method is very similar to the Regional Variance

method in the previous section. The main difference between the two methods is how



33

the LL band is treated. Instead of using regional variance, the LL images are simply

averaged together on a pixel by pixel basis. Again from the two images X and Y , a

fused image Z is produced using the following steps:

1. X and Y are decomposed using a two-dimensional wavelet transform.

2. XLL and Y LL are averaged together to produce ZLL.

ZLL(k, l) =
XLL(k, l) + Y LL(k, l)

2
(3.10)

3. The regional variance of XQ and Y Q where Q ∈ {LH,HL,HH} is obtained.

4. The corresponding weights for XQ and Y Q where Q ∈ {LL,LH,HL,HH} are

obtained.

5. XQ and Y Q where Q ∈ {LH,HL,HH} are fused using the weights obtained

above.

6. The inverse wavelet transform is applied to ZLL, ZLH , ZHL, and ZHH to

produce the fused image Z.

The next method uses a similar technique to that presented in Section 3.3;however,

instead of treating each high-pass image the same way, variations of the same rule

are applied to each high-pass image independently.

3.5 Directional Filtering Method

The Directional Filtering method is based on the Regional Variance method in

Section 3.3 albeit different windows are utilized to obtain the regional variance of the

high-pass subband images. The following procedure describes how a fused image Z

is produced using Directional Filtering from X and Y .

1. Decompose X and Y using a two-dimensional wavelet transform.
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2. Obtain the regional variance of XLL and Y LL.

3. Obtain the regional variance of XLH and Y LH via the window orientation

depicted in Figure 3.8.

Fig. 3.8.: Window used on LH images

4. Find the regional variance of XHL and Y HL using using hte window configu-

ration shown in Figure 3.9.

Fig. 3.9.: Window used on HL images

5. Find the regional variance of XHH and Y HH along the diagonals of the window

shown in Figure 3.10.

6. Calculate the fusion weights for each coefficient.

7. Fuse each subband image using the weights obtained from the previous step.

8. Take the inverse wavelet transform of ZLL, ZLH , ZHL, and ZHH to produce

the fused image Z.
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Fig. 3.10.: Window used on HH images

In the next section, another method is presented using Directional Filtering, how-

ever, as in the method in Section 3.4, the LL image is treated independently from

the high-pass images. Additionally, a threshold is applied to assist with decisions in

the high-pass images.

3.6 High-Pass Directional Filtering with Thresholding Method

The High-Pass Directional Filtering with Thresholding method differs from the

Directional Filtering method in Section 3.5 by altering how the LL image is handled.

In addition to treating the LL image independently, this new method also introduces a

threshold to make decisions between the input images. The subsequent steps describe

the High-Pass Directional Filtering with Thresholding method:

1. Decompose X and Y using a two-dimensional wavelet transform.

2. Average XLL and Y LL.

3. Obtain the regional variance ofXLH and Y LH using the window given in Figure

3.8.

4. Find the regional variance of XHL and Y HL using the window depicted in

Figure 3.9.
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5. Obtain the regional variance of XHH and Y HH using the diagonal shaped

window given in Figure 3.10.

6. Calculate the fusion weights for each coefficient in subband Q where Q ∈
{LH,HL,HH}.

7. Fuse XQ and Y Q using a threshold T and the following:

ZQ(k, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

XQ(k, l) ifMXQ
(k, l) > T

Y Q(k, l) ifMY Q
(k, l) > T

XQ(k, l)MXQ
(k, l) + Y Q(k, l)MY Q

(k, l) otherwise

(3.11)

where Q ∈ {LH,HL,HH}.

8. Take the inverse wavelet transform of ZLL, ZLH , ZHL, and ZHH to produce

the fused image Z.

The next method is similar to the current method in that wavelets, regional vari-

ance, and thresholding are used throughout the method. However, a different ap-

proach is taken when applying the threshold in the fusion process.

3.7 Directional Filtering with an Adaptive Threshold Method

The final method proposed in this thesis is based on Directional Filtering. Again,

the method uses wavelets, regional variance, and threholding, but the implementation

of the threshold in the method is different than the previous method. The procedure

to obtaining a fused image Z from input images X and Y is as follows:

1. Decompose X and Y using a two-dimensional wavelet transform.

2. Obtain the regional variance of XLL and Y LL using a rectangular window.

3. Find the regional variance of XLH and Y LH using the window in Figure 3.8.

4. Obtain the regional variance of XHL and Y HL using the window in Figure 3.9.
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5. Find the regional variance of XHH and Y HH along the diagonals of the window

given in Figure 3.10.

6. Calculate the fusion weights for XQ and YQ where Q ∈ {LL,LH,HL,HH}.

7. Fuse each image given a threshold T where T ∈ (0.5, 1) using

ZQ(k, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

TXQ(k, l) + (1− T )Y Q(k, l) if MXQ
(k, l) ≥ T

(1− T )XQ(k, l) + TY Q(k, l) if MY Q
(k, l) ≥ T

XQ(k, l)MXQ
(k, l) + Y Q(k, l)MY Q

(k, l) otherwise

.

(3.12)

8. Take the inverse wavelet transform of ZLL, ZLH , ZHL, and ZHH to produce

the fused image Z.

In this chapter, five methods have been presented. Each method presented is a

novel approach to image fusion using a combination of regional variance and wavelet

transforms. The novelty for each method comes from method in which regional

variance is used to calculate weights for each wavelet subband. In addition, the

concept of directional filtering used in the last three methods is also a novel feature.

In the next chapter, results of each method will be shown and discussed in detail.
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4. RESULTS

In Chapter 3, five novel methods for image fusion were presented. Throughout this

chapter, results for each method will be presented. In Section 4.1, the group of images

used to test each method will be presented followed by a presentation of commonly

used fusion method to be compared to the proposed methods in Section 4.2. Sections

4.3 through 4.7 will present results for each method and compare the performance to

the methods presented in Section 4.2. Finally, Section 4.8 will discuss the performance

of each method in relation to the others.

4.1 Data Set

In order to present and analyze the performance of each proposed method, a set of

eleven images was utilized. The images come from two data sources. The first set of

images used was provided by NSWC Crane. The second set of images was provided

by [32] and contains a collection of images from different sources including TNO, The

Netherlands and David Dwyer of Octec Ltd. The images from both sets are given in

Figures 4.1 through 4.11.

(a) Visible Image (b) Infrared Image

Fig. 4.1.: Set 1 images provided by NSCW Crane
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(a) Visible Image (b) Infrared Image

Fig. 4.2.: Set 2 images provided by NSCW Crane

(a) Visible Image (b) Infrared Image

Fig. 4.3.: Set 3 images provided by NSCW Crane
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(a) Visible Image (b) Infrared Image

Fig. 4.4.: Set 4 images provided by [32]

(a) Visible Image (b) Infrared Image

Fig. 4.5.: Set 5 images provided by [32]
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(a) Visible Image (b) Infrared Image

Fig. 4.6.: Set 6 images provided by [32]

(a) Visible Image (b) Infrared Image

Fig. 4.7.: Set 7 images provided by [32]



42

(a) Visible Image (b) Infrared Image

Fig. 4.8.: Set 8 images provided by [32]

(a) Visible Image (b) Infrared Image

Fig. 4.9.: Set 9 images provided by [32]
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(a) Visible Image (b) Infrared Image

Fig. 4.10.: Set 10 images provided by [32]

(a) Visible Image (b) Infrared Image

Fig. 4.11.: Set 11 images provided by [32]
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4.2 Method Evaluation

Using the images shown in Section 4.1, each method discussed in Chapter 3 was

tested. Additionally, some commonly used methods were also used on the data sets

in order to establish a base case to compare the proposed methods. Furthermore

a evaluation of each method will be provided in terms of the entropy of each fused

image [25].

4.2.1 Entropy

While the use of entropy can provide a good quantitative measure of information

within an image, the quality of the fused image also plays an important role in the

success of an image fusion method.

To estimate the entropy of an image X, the first step is to generate a histogram

of the values of X, denoted as pX . Once the histogram is obtained, the entropy, HX ,

is estimated using

HX = −
L−1∑
i=0

pX(i) log2 pX(i). (4.1)

where L is the number of bins in the histogram. For a grayscale image, the number

of bins is typically 256. The subsequent sections introduce commonly used fusion

methods.

Now that the concept of entropy has been introduced, the four sections will focus

on basic fusion methods that will be used to compare against the proposed methods

in Chapter 3. The base methods and their results are presented in Sections 4.2.2

through 4.2.5.

4.2.2 Greatest Pixel Value Based Fusion

The Greatest Pixel method is one of the most basic methods for image fusion.

Given two images, X and Y , the Greatest Pixel method produces a new image Z by
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selecting the greatest value from X or Y for each pixel (k, l). Mathematically, the

greatest pixel method is represented as

Z(k, l) =

⎧⎨
⎩

X(k, l) if X(k, l) ≥ Y (k, l)

Y (k, l) if X(k, l) < Y (k, l)
(4.2)

The results of this method on the images in Figures 4.1 through 4.11 can been seen

in Figure 4.12 through 4.22.

Fig. 4.12.: The result of applying the Greatest Pixel method to the images in Figure
4.1

Fig. 4.13.: The result of applying the Greatest Pixel method to the images in Figure
4.2



46

Fig. 4.14.: The result of applying the Greatest Pixel method to the images in Figure
4.3

Fig. 4.15.: The result of applying the Greatest Pixel method to the images in Figure
4.4
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Fig. 4.16.: The result of applying the Greatest Pixel method to the images in Figure
4.5

Fig. 4.17.: The result of applying the Greatest Pixel method to the images in Figure
4.6
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Fig. 4.18.: The result of applying the Greatest Pixel method to the images in Figure
4.7

Fig. 4.19.: The result of applying the Greatest Pixel method to the images in Figure
4.8
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Fig. 4.20.: The result of applying the Greatest Pixel method to the images in Figure
4.9

Fig. 4.21.: The result of applying the Greatest Pixel method to the images in Figure
4.10
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Fig. 4.22.: The result of applying the Greatest Pixel method to the images in Figure
4.11

Instead of choosing the maximum pixel value between two images, the next method

presented is based on averaging the two images.

4.2.3 Pixel Averaging

In the Pixel Averging method, an average is taken of the two images. Given two

input images, X and Y , the fused image Z is produced by applying Equation 4.3 to

each pixel (k, l).

Z =
1

2
(X + Y ) (4.3)

The results of this method can be seen in Figures 4.23 through 4.33.

4.2.4 Wavelet Greatest Pixel

In the previous two sections, simple methods that work in the original spatial

domain have been presented. This next method is an adaptation of the method

presented in Section 4.2.2 by applying a wavelet transform.
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Fig. 4.23.: The result of applying the Pixel Averging method to the images in Figure
4.1

Fig. 4.24.: The result of applying the Pixel Averging method to the images in Figure
4.2

In particular, the two input images, X and Y , are decomposed using wavelet

transforms to produce XLL, XLH , XHL, and XHH from X and Y LL, Y LH , Y HL,

and Y HH from Y respectively. Using Equation 4.2, ZLL, ZLH , ZHL, and ZHH are

generated from the subband images of X and Y . Finally, a inverse wavelet transform
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Fig. 4.25.: The result of applying the Pixel Averging method to the images in Figure
4.3

Fig. 4.26.: The result of applying the Pixel Averging method to the images in Figure
4.4



53

Fig. 4.27.: The result of applying the Pixel Averging method to the images in Figure
4.5

Fig. 4.28.: The result of applying the Pixel Averging method to the images in Figure
4.6
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Fig. 4.29.: The result of applying the Pixel Averging method to the images in Figure
4.7

Fig. 4.30.: The result of applying the Pixel Averging method to the images in Figure
4.8
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Fig. 4.31.: The result of applying the Pixel Averging method to the images in Figure
4.9

Fig. 4.32.: The result of applying the Pixel Averging method to the images in Figure
4.10
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Fig. 4.33.: The result of applying the Pixel Averging method to the images in Figure
4.11

creates the final image Z from ZLL, ZLH , ZHL, and ZHH . The results of this method

can be seen in Figure 4.34 through 4.44.

Fig. 4.34.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.1
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Fig. 4.35.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.2

Fig. 4.36.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.3
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Fig. 4.37.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.4

Fig. 4.38.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.5
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Fig. 4.39.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.6

Fig. 4.40.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.7
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Fig. 4.41.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.8

Fig. 4.42.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.9
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Fig. 4.43.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.10

Fig. 4.44.: The result of applying the Wavelet Greatest Pixel method to the images
in Figure 4.11
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4.2.5 Wavelet Average

In Section 4.2.3, a method for averaging two images together was presented. In

this section, the averaging method is applied to wavelet coefficients.

Again, the input images, X and Y , are decomposed to produce XLL, XLH ,

XHL, and XHH from X and Y LL, Y LH , Y HL, and Y HH from Y . Using Equation

4.3, ZLL, ZLH , ZHL, and ZHH are generated from XLL, XLH , XHL, XHH , Y LL,

Y LH , Y HL, and Y HH . The final step involves reconstructing the fused image Z from

ZLL, ZLH , ZHL, and ZHH via an inverse wavelet transform. The results for Wavelet

Average can be seen in Figure 4.45 through 4.55.

Fig. 4.45.: The result of applying the Wavelet Average method to the images in Figure
4.1

The final basic method will be presented in the next section. Like the previous two

methods, the next method utilizes wavelet transforms for fusion. However, instead of

choosing the largest coefficient value or averging, variance is used to make a selection

between wavelet coefficents.
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Fig. 4.46.: The result of applying the Wavelet Average method to the images in Figure
4.2

Fig. 4.47.: The result of applying the Wavelet Average method to the images in Figure
4.3
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Fig. 4.48.: The result of applying the Wavelet Average method to the images in Figure
4.4

Fig. 4.49.: The result of applying the Wavelet Average method to the images in Figure
4.5
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Fig. 4.50.: The result of applying the Wavelet Average method to the images in Figure
4.6

Fig. 4.51.: The result of applying the Wavelet Average method to the images in Figure
4.7
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Fig. 4.52.: The result of applying the Wavelet Average method to the images in Figure
4.8

Fig. 4.53.: The result of applying the Wavelet Average method to the images in Figure
4.9
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Fig. 4.54.: The result of applying the Wavelet Average method to the images in Figure
4.10

Fig. 4.55.: The result of applying the Wavelet Average method to the images in Figure
4.11
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4.2.6 Wavelet Variance Selection

In Chapter 2, a variance based method was introduced in [24]. Using regional vari-

ance, decisions are made between the high-pass subbands of the wavelet decomposed

input images. For two input images, X and Y , wavelet decomposition is applied

to produce XLL, XLH , XHL, and XHH from X and Y LL, Y LH , Y HL, and Y HH

from Y . XLL and Y LL are averaged together pixel-by-pixel. For each high-pass sub-

band image Q where Q ∈ {LH,HL,HH}, the following equation defines how wavelet

coefficients are selected:

ZQ(k, l) =

⎧⎨
⎩

XQ(k, l) if σ2
XQ

(k, l) ≥ σ2
Y Q

(k, l)

Y Q(k, l) if σ2
XQ

(k, l) < σ2
Y Q

(k, l)
. (4.4)

The results of the Wavelet Variance Method are presented in Figures 4.56 through

4.66

Fig. 4.56.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.1
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Fig. 4.57.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.2

Fig. 4.58.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.3
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Fig. 4.59.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.4

Fig. 4.60.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.5
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Fig. 4.61.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.6

Fig. 4.62.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.7
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Fig. 4.63.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.8

Fig. 4.64.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.9
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Fig. 4.65.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.10

Fig. 4.66.: The result of applying the Wavelet Variance Selection method to the
images in Figure 4.11

In order to compare the results of the proposed methods to the base methods, the

entropy of each outcome of each base method is presented in Table 4.1.

Among the common methods, the best performances visually and in terms of

entropy came from the wavelet transform based methods. With the Greatest Pixel

and Pixel Averging methods, much of the visual quality was lost in the fused image
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Table 4.1: Entropy values of each image presented in Figures 4.12 through 4.55

Entropy Results

Set
Greatest
Pixel

Pixel
Averging

Wavelet
Greatest
Pixel

Wavelet
Average

Wavelet
Variance
Selection

Set 1 5.307 5.480 5.577 5.760 5.806
Set 2 5.334 5.421 5.716 6.424 6.672
Set 3 5.885 5.572 6.217 6.707 6.622
Set 4 6.132 2.755 6.836 6.500 6.476
Set 5 6.014 2.439 7.233 6.771 7.099
Set 6 5.758 4.543 6.008 5.453 5.313
Set 7 6.859 5.964 7.063 6.876 6.921
Set 8 6.758 5.832 6.549 5.935 5.727
Set 9 6.031 5.224 6.428 6.678 6.411
Set 10 6.506 4.691 6.783 6.882 6.567
Set 11 6.609 4.182 6.970 6.964 6.626

and entropy values were consistently less than the wavelet based methods. In many

cases, the important details in both images were diminished when fusing with the non-

wavelet based methods. When working with an image set where either the visible or

infrared images dominated the content, the Wavelet Greatest Pixel method performed

well visually and in terms of entropy; although, in situations where objects in both

input images are clearly defined, some of the important details were masked by the

Wavelet Greatest Pixel method. The Wavelet Average method, on the other hand,

objects were well defined in both input images. However, when one input image clearly

defined an object, and the same object was indiscernible in the second input image,

the Wavelet Average method had poor performance. Out of the three wavelet based

methods, the Wavelet Variance Selection method was the best visually; however, since

the LL subbands are averaged, the overall contrast of the fused image was reduced.

Now that each base method has been discussed, the upcoming sections will discuss

the results of each method on the input images that were presented in Section 4.1.

Each method will be compared to the results produced by the base methods discussed

in Sections 4.2.2 through 4.2.5.
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4.3 Regional Variance Method Results

The results of the Regional Variance method are depicted in Figures 4.67 through

4.77 for the images in Figures 4.1 through 4.11 based on a 3 × 3 window and two

levels of wavelet decomposition that were found to provide the “best” performance.

The entropy values for each image are provided in Table 4.2.

Fig. 4.67.: The result of applying the Regional Variance method to the images in
Figure 4.1

Based on the result of Tables Table 4.1 and 4.2, the Regional Variance method

performs as well or better than some of base methods. Against the Pixel Averg-

ing method, the Regional Variance method’s entropy results are consistently greater.

However, compared to the other four methods, Regional Variance only outperforms

them some of the time. For example, the Wavelet Greatest Pixel method is better

in terms of entropy on the images from Figures 4.4 and 4.8 images, and for images

from Figure 4.2, the Wavelet Average method seems to outperform the Regional Vari-

ance method in terms of entropy. Compared against the Wavelet Variance Selection

method, the Regional Variance method has similar or better performance in terms of

entropy. While there are a few cases where the Wavelet Variance Selection method

has higher entropy values than the Regional Variance method, the Regional Variance

method has similar or better performance in most cases.
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Fig. 4.68.: The result of applying the Regional Variance method to the images in
Figure 4.2

Fig. 4.69.: The result of applying the Regional Variance method to the images in
Figure 4.3
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Fig. 4.70.: The result of applying the Regional Variance method to the images in
Figure 4.4

Fig. 4.71.: The result of applying the Regional Variance method to the images in
Figure 4.5
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Fig. 4.72.: The result of applying the Regional Variance method to the images in
Figure 4.6

Fig. 4.73.: The result of applying the Regional Variance method to the images in
Figure 4.7
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Fig. 4.74.: The result of applying the Regional Variance method to the images in
Figure 4.8

Fig. 4.75.: The result of applying the Regional Variance method to the images in
Figure 4.9
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Fig. 4.76.: The result of applying the Regional Variance method to the images in
Figure 4.10

Fig. 4.77.: The result of applying the Regional Variance method to the images in
Figure 4.11
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Table 4.2: Entropy values of the images displayed in Figures 4.67 through 4.77

Entropy Results

Set
Regional
Variance

Set 1 5.861
Set 2 5.980
Set 3 6.429
Set 4 6.442
Set 5 7.108
Set 6 6.144
Set 7 6.866
Set 8 6.280
Set 9 6.324
Set 10 6.547
Set 11 6.541

From a visual quality stand point, the Regional Variance does well in some cases

but not in others. In the first two images from Figures 4.67 and 4.68, much of image is

not very sharp. Many of the details were lost, mainly due to the level of noise present

in the visible images. However, on images where there is a lower amount of noise

in the visible image, like those in Figures 4.69 through 4.77, and an abundance of

detail, the Regional Variance method is well suited. One of the issues with Greatest

Pixel, Wavelet Average, Wavelet Greatest Pixel, and Wavelet Variance Selection is

the overall reduction in contrast. With both averaging methods and Wavelet Variance

Selection, the overall image becomes very dark, and with Wavelet Greatest Pixel, the

images seem to be very bright. The benefit of the Regional Variance method is the

preservation of contrast.

Now that the Regional Variance method’s results have been presented and com-

pared to the base methods, the results of the High-Pass Regional Variance method

will be discussed. The difference between the Regional Variance method and the

High-Pass Regional Variance method is how the LL band is handled. Instead of

using regional variance, the LL bands are averaged together.
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4.4 High-Pass Regional Variance Results

In this section, the results of the High-Pass Regional Variance method are pro-

vided and compared to the base methods presented in Section 4.2. Again, the main

difference between this method and the Regional Variance method is that the LL im-

ages are averaged together rather than using regional variance. Using a 3× 3 window

for regional variance and two levels of wavelet decomposition, the image results for

the High-Pass Regional Variance method are presented in Figures 4.78 through 4.88.

Fig. 4.78.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.1

Similar to the Regional Variance Method, the High-Pass Regional Variance method

performs well in some of the cases but poorly in others. Looking at the Wavelet Great-

est Pixel and Wavelet Average methods, the two strongest base methods for image

fusion, the High-Pass Regional Variance method out performs about half the time.

From comparing Table 4.3 with Table 4.1, the High-Pass Regional Variance method

out performs the Wavelet Average method most of the time, and when the Wavelet

Average method seems to do better, the difference between entropy values produced

by the two methods is small. In reference to the Wavelet Variance Selection method,

the High-Pass Regional Variance method has a similar performance. While the en-
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Fig. 4.79.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.2

Fig. 4.80.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.3
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Fig. 4.81.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.4

Fig. 4.82.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.5
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Fig. 4.83.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.6

Fig. 4.84.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.7
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Fig. 4.85.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.8

Fig. 4.86.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.9
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Fig. 4.87.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.10

Fig. 4.88.: The result of applying the High-Pass Regional Variance method to the
images in Figure 4.11
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Table 4.3: Entropy values of the images displayed in Figures 4.78 through 4.88

Entropy Results

Set
High-Pass
Regional
Variance

Set 1 5.869
Set 2 6.681
Set 3 6.126
Set 4 6.351
Set 5 7.065
Set 6 5.426
Set 7 6.713
Set 8 5.660
Set 9 6.294
Set 10 6.220
Set 11 6.242

tropy of the High-Pass Regional Variance method is sightly less than the Wavelet

Variance Selection method, the entropy values are very similar.

Since the High-Pass Regional Variance method utilizes averaging of the LL band,

some of the results of and High-Pass Regional Variance methods appear to be very

similar to the Wavelet Average andWavelet Variance Selection methods. For instance,

the images in Figures 4.46 and 4.79 look identical. Even though the entropy of

the High-Pass Regional Variance Method is higher, the visual quality is difficult to

distinguish. In fact, many of the methods that use averaging on the LL band have

very similar qualities to the Wavelet Average method.

In the next section, the results of Directional Filtering will be presented and com-

pared to the base methods. Directional Filtering is similar to the Regional Variance

method with modifications to the window shapes based on the band that is being

processed.
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4.5 Directional Filtering Results

The results of the Directional Filtering method will be presented throughout this

section. Like the Regional Variance method, the Directional Filtering method uses

regional variance on all bands of the wavelet decomposed images; however, the window

shapes are adapted for each high-pass image. Using the base methods presented

in Section 4.2 for comparison, the Directional Filtering method will be compared

quantitatively and qualitatively. Results of the Directional Filtering Method are

shown in Figures 4.89 through 4.99.

Fig. 4.89.: The result of applying the Directional Filtering method to the images in
Figure 4.1

By comparing the entropy values in Table 4.4 and Table 4.1, it is observed that

the performance of the Directional Filtering method is dependent on the amount of

noise present in the input images. The results in Table 4.4 are very similar to the

results of the Regional Variance Method presented in Table 4.2.

Because the results of the Directional Filtering method are similar to the results

of the Regional Variance method, the relationship between the Directional Filtering

method and the Wavelet Variance Selection method is the same for the relationship

between the Regional Variance method and the Wavelet Variance Selection method.

Directional Filtering usual has similar or better performance in terms of entropy.
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Fig. 4.90.: The result of applying the Directional Filtering method to the images in
Figure 4.2

Fig. 4.91.: The result of applying the Directional Filtering method to the images in
Figure 4.3
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Fig. 4.92.: The result of applying the Directional Filtering method to the images in
Figure 4.4

Fig. 4.93.: The result of applying the Directional Filtering method to the images in
Figure 4.5
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Fig. 4.94.: The result of applying the Directional Filtering method to the images in
Figure 4.6

Fig. 4.95.: The result of applying the Directional Filtering method to the images in
Figure 4.7



93

Fig. 4.96.: The result of applying the Directional Filtering method to the images in
Figure 4.8

Fig. 4.97.: The result of applying the Directional Filtering method to the images in
Figure 4.9
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Fig. 4.98.: The result of applying the Directional Filtering method to the images in
Figure 4.10

Fig. 4.99.: The result of applying the Directional Filtering method to the images in
Figure 4.11



95

Table 4.4: Entropy values of the images displayed in Figures 4.89 through 4.99

Entropy Results

Set
Directional
Filtering

Set 1 5.859
Set 2 5.980
Set 3 6.459
Set 4 6.420
Set 5 7.098
Set 6 6.127
Set 7 6.875
Set 8 6.274
Set 9 6.372
Set 10 6.555
Set 11 6.548

In terms of the quality of the images presented in the Directional Filtering method

as can be seen in the images seen in Figures 4.89 and 4.90, noise from the visible

spectrum images in Figures 4.1 and 4.2 appears to be amplified in the fused image.

However, the visual performance is improved when both images have low levels of

noise, and unlike the images from the Greatest Pixel, Wavelet Average, Wavelet

Greatest Pixel, and Wavelet Variance Selection methods, contrast within the image

is better preserved.

The next method is an adaptation of the Directional Filtering Method. Like all

the methods presented thus far, the results of the next method will be compared to

the base methods from Section 4.2.

4.6 High-Pass Directional Filtering with Thresholding Results

In the High-Pass Directional Filtering with Threshold method, the best results

were produced with a 3 × 3 window, two levels of wavelet decomposition, and a

threshold of 80. The current method is a modification of the Directional Filtering

method by averaging the LL band and using a threshold for fusion in the high-
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Fig. 4.100.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.1

Fig. 4.101.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.2

pass images. Figures 4.100 through 4.110 depict the performance of the High-Pass

Directional Filtering with Thresholding method on the images in Figures 4.1 through

4.11.
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Fig. 4.102.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.3

Fig. 4.103.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.4
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Fig. 4.104.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.5

Fig. 4.105.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.6
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Fig. 4.106.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.7

Fig. 4.107.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.8
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Fig. 4.108.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.9

Fig. 4.109.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.10
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Fig. 4.110.: The result of applying the High-Pass Directional Filtering with Thresh-
olding method to the images in Figure 4.11

From the images it can be seen that the High-Pass Directional Filtering with

Thresholding method is consistently out performed by many of the methods presented

in Section 4.2. In addition, based on the entropy values of Table 4.5 and Table 4.1,

it is apparent that the results are not very strong for the proposed method. It is to

be noted that like the high-pass method results from Section 4.4, the performance

of the Wavelet Average while better than the High-Pass Directional Filtering with

Thresholding method yet both have comparable performance. This is due to the fact

that the proposed method uses averaging on the LL band of the image instead of

regional variance.

The entropy results obtained from the High-Pass Directional Filtering with Thresh-

olding are again similar to the entropy values obtained from the Wavelet Variance

Selection method. In most cases, the entropy values in the High-Pass Directional

Filtering method are less than the Wavelet Variance Selection method, but difference

between the two methods is relativity small.

While the entropy values for High-Pass Directional Filtering with Thresholding

do not suggest that the method performs well, yet from a qualitative standpoint, the

method has more consistent performance across noisy and low-noise images. From
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Table 4.5: Entropy values of the images displayed in Figure 4.100 through 4.110

Entropy Results

Set

High-Pass
Directional

Filtering with
Thresholding

Set 1 5.867
Set 2 6.490
Set 3 6.130
Set 4 6.320
Set 5 7.055
Set 6 5.409
Set 7 6.698
Set 8 5.649
Set 9 6.334
Set 10 6.236
Set 11 6.260

the images shown in Figures 4.100 and 4.101, its performance is similar to that of

the Wavelet Average method seen in Figures 4.45 and 4.46. In addition, the High-

Pass Regional Variance method exhibits good performance in Figures 4.107 and 4.108

similar to the results from the Wavelet Greatest Pixel method in Figures 4.41 and

4.42. While the performance of the Wavelet Greatest Pixel, Wavelet Average, and

Wavelet Variance Selection methods fluctuate based on the scene, the High-Pass

Regional Variance method excels by providing consistent output quality regardless of

the scene.

In the next section, the results for the Directional Filtering with an Adaptive

Threshold method will be presented. After presenting the results, the method will be

compared with the base methods from Section 4.2.

4.7 Directional Filtering with an Adaptive Threshold Results

The final method proposed is that of Directional Filtering with an Adaptive

Thresholding. This method uses regional variance with different windows in the
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high-pass images, three levels of wavelet decomposition, and a fixed threshold of 70.

The performance of this method is shown in Figures 4.111 through 4.121.

Fig. 4.111.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.1

In terms of entropy, the Directional Filtering with an Adaptive Threshold consis-

tently out performs many of the methods in Section 4.2. Comparing the values of

Table 4.6 and Table 4.1, there are a few situations where the Wavelet Average method

out performs the proposed method; however, the results are very close. In other cases,

the the Wavelet Greatest Pixel method out performs the proposed method. While

the proposed method is not the top performer in most cases, it is consistently one of

the top performing methods.

For most sets of input images, the entropy values obtained from the Directional

Filtering with an Adaptive Threshold method are consistently higher than the en-

tropy values from the Wavelet Variance Selection method. Out of all the proposed

methods, the Directional Filtering with an Adaptive Threshold method out performs

the Wavelet Regional Variance method more often and with greater differences.

As can be seen, the images in Figures 4.111 through 4.114 are very similar to the

images produced in Figures 4.45 through 4.48 respectively. The proposed method’s

performance is similar to that of the Wavelet Average method; however, in the cases
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Fig. 4.112.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.2

Fig. 4.113.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.3
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Fig. 4.114.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.4

Fig. 4.115.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.5
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Fig. 4.116.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.6

Fig. 4.117.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.7
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Fig. 4.118.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.8

Fig. 4.119.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.9
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Fig. 4.120.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.10

Fig. 4.121.: The result of applying the Directional Filtering with an Adaptive Thresh-
old method to the images in Figure 4.11
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Table 4.6: Entropy values of the images displayed in Figure 4.111 through 4.121

Entropy Results

Set

Directional
Filtering with
an Adaptive
Threshold

Set 1 5.734
Set 2 6.341
Set 3 6.535
Set 4 6.466
Set 5 7.105
Set 6 5.981
Set 7 7.043
Set 8 6.200
Set 9 6.448
Set 10 6.766
Set 11 6.817

where the Wavelet Average method has poor performance, the Directional Filtering

with an Adaptive Threshold method has better performance. Similarly, when com-

paring the results of the Wavelet Greatest Pixel method in Figures 4.41 and 4.42 to

the results of the Directional Filtering with an Adaptive Threshold in Figures 4.118

and 4.119 the performance is comparable. However, where the Wavelet Greatest

Pixel Method has poor performance, the visual quality of fusion from the Directional

Filtering with an Adaptive Threshold method is maintained.

Now that the results of each of the five proposed methods have been presented,

the next section will focus on analyzing each method. Using qualitative analysis, the

results will be discussed for all methods presented in Sections 4.3 through 4.7.

4.8 Qualitative Analysis

Overall, the methods presented in the Section 4.3 through 4.7 were often consis-

tent across the various images presented in Figures 4.1 through 4.11. In order to

have a good image fusion algorithm, the method must be able to work in a variety
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of situations, not just extreme ones. Throughout the remainder of this section, a

comparison of the five methods will be made.

In many cases, the results of the High-Pass Regional Variance and High-Pass

Directional Filtering with Thresholding methods look very similar to that of the

Wavelet Average method. In addition since the LL bands within these methods are

averaged together, in some cases, especially in the fusion of the images in Figure 4.6,

much of the infrared data is diminished. Instead of enhancing the image in the regions

with high infrared activity, the tendency of these images is to reduce the brightness.

The Regional Variance method and Directional Filtering methods are two methods

that seem to handle images with strong infrared or visible information better than the

the High-Pass Regional Variance and High-Pass Directional Filtering with Thresh-

olding methods. In Figures 4.72 and 4.94, each method accentuates the regions with

high infrared from Set 6 in Figure 4.6 activity much better than the high-pass meth-

ods represented in Figures 4.83 and 4.105. Even though the Regional Variance and

Directional Filtering methods help when regions have more content in one image over

the other, these two methods have poor performance in high noise situations. The the

High-Pass Regional Variance and High-Pass Directional Filtering with Thresholding

methods had better performance in noisy images, specifically the images from Figures

4.1 and 4.2.

The last method, the Directional Filtering with an Adaptive Threshold method,

is a method that has the best overall performance working with noisy images while

accentuating content well in both input images. While the high amount of content in

Figure 4.116 does not accentuate the infrared image as in Figures 4.72 and 4.94, there

is a good compromise in the performance. Particularly, when fusing noisy images, the

Directional Filtering with an Adaptive Threshold method does not accentuate noise

the way that the Regional Variance or Directional Filtering methods will.

In conclusion, the results indicate that there are three methods that perform better

than the other image fusion methods. In the case of noisy images, the Directional Fil-

tering with an Adaptive Threshold has the most consistency over the other methods.
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On the other hand, when noise is not an issue, the Regional Variance and Directional

Filtering methods perform well.
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5. CONCLUSIONS AND FUTURE WORK

Throughout this thesis, five new multiresolution image fusion methods have been

proposed. In addition to using wavelet transforms, the proposed methods use local

variance estimates to obtain fusion weights.

The Regional Variance, High-Pass Regional Variance, Directional Filtering, High-

Pass Directional Filtering with Thresholding, and Directional Filtering with an Adap-

tive Threshold methods were proposed throughout this thesis. Using entropy to

measure performance, the proposed methods were compared against some common

methods including the Pixel Average, Greatest Pixel Value, Wavelet Average, Wavelet

Greatest Pixel, and Wavelet Variance Selection methods.

The results of each proposed method were more consistent than the base methods.

Results indicate that the High-Pass Regional Variance and High-Pass Directional Fil-

tering with Thresholding methods had difficulties performing better than the Wavelet

Average method because the LL bands of the two proposed methods relied on aver-

aging. The Regional Variance and Directional Filtering methods outperformed the

High-Pass Regional Variance and High-Pass Directional Filtering with Thresholding

methods by performing fusion without reducing the overall contrast of the output

image. While these methods did perform well in most cases, noise in either input

image was amplified in the output. This lead to the final proposed method: Direc-

tional Filtering with an Adaptive Threshold. This method did not have the same

performance as the Regional Variance and Directional Filtering methods; however,

the results were considerably better than the High-Pass Regional Variance and High-

Pass Directional Filtering with Thresholding methods, and noise was not amplified

throughout the fusion process.

From the issues that arose with proposed methods, there are few areas of research

for future development of image fusion techniques. In the case of the Regional Vari-
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ance and Directional Filtering methods, modifications to the preprocessing stage or

within the fusion step itself may assist with noise suppression.

Entropy values of the base methods and proposed methods are rather close, and

the variance of entropy values of the proposed methods is small. In order to fur-

ther determine the effectiveness of the proposed methods, a statistical analysis using

hypothesis testing is needed.

Further work can be carried out to Directional Filtering. As stated before, the

issue with the High-Pass Regional Variance and High-Pass Directional Filtering with

Thresholding methods is the fact that the results are similar to the Wavelet Average

method. In order to enhance image fusion techniques that use wavelet transforms, it

is recommended to use information in the high-pass images to fuse the LL images.

For example, if variance in the HH image is stronger than the variance in the LH and

HL images, use a diagonal window to fuse the region in the LL image. Investigating

this technique may provide new avenues for image fusion in the wavelet domain.
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