
Graduate School ETD Form 9 
(Revised 12/07)       

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled

For the degree of   

Is approved by the final examining committee: 

       
                                              Chair 

       

       

       

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  

      

Approved by Major Professor(s): ____________________________________

                                                      ____________________________________ 

Approved by:   
     Head of the Graduate Program     Date 

JASMIN DHIRAJLAL RADADIA

A HIGHLY PRECISE AND LINEAR IC FOR HEAT PULSE BASED THERMAL
BIDIRECTIONAL MASS FLOW SENSOR

Master of Science in Electrical and Computer Engineering

Maher E. Rizkalla

Yaobin Chen

Lingxi Li

Maher E. Rizkalla

Yaobin Chen 04/26/2010



Graduate School Form 20 
(Revised 1/10)

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 

For the degree of ________________________________________________________________ 

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*
   
Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with 
the United States’ copyright law and that I have received written permission from the copyright 
owners for my use of their work, which is beyond the scope of the law.  I agree to indemnify and save 
harmless Purdue University from any and all claims that may be asserted or that may arise from any 
copyright violation. 

______________________________________ 
Printed Name and Signature of Candidate 

______________________________________ 
Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

A HIGHLY PRECISE AND LINEAR IC FOR HEAT PULSE BASED THERMAL 
BIDIRECTIONAL MASS FLOW SENSOR

Master of Science in Electrical and Computer Engineering

JASMIN DHIRAJLAL RADADIA

04/27/2010



A HIGHLY PRECISE AND LINEAR IC FOR HEAT PULSE BASED THERMAL 

BIDIRECTIONAL MASS FLOW SENSOR 

 

 

 

 

A Thesis 

Submitted to the Faculty 

of 

Purdue University 

by 

Jasmin Dhirajlal Radadia 

 
 
 
 
 

In Partial Fulfillment of the 

Requirements for the Degree  

of 

Master of Science in Electrical and Computer Engineering 

 
 
 
 
 

May 2010 

Purdue University 

Indianapolis, Indiana 



 ii

 

 

 

 

 

 

 

 

 

 

 

 

 

I dedicate this thesis to my parents, brother and sister-in-law. Without their 

support, patience, and most of all love, the completion of this work would not have been 

possible. 



 

 

iii

 ACKNOWLEDGMENTS 

I owe my deepest gratitude to my parents, Dr. Dhirajlal Radadiya and Prabha 

Radadiya. Their patience, support, and most of all love, has been the key to my 

successful educational career. 

 

I am indebted to my brother, Dr. Adarsh Radadia, and my sister-in-law, Deepa 

Radadia for their guidance, love and support. Adarsh has been my inspirational role 

model throughout this academic journey and his assistance has been an invaluable 

contribution towards the completion of this work. 

 

I am grateful to my advisor Dr. Maher E. Rizkalla for his guidance and 

supervision during the entire course of this research and thesis work. I would like to 

thank him for providing an unflinching support in various ways and constant 

encouragement in hardship. 

 

I would like to thank Anna Shiver (Technician, Engineering Technology) and Jeff 

Sears (Lab Coordinator, Electrical and Computer Engineering) for providing assistance 

with some of the electrical components required for the experimental setup. 

 

I would like to thank Valerie Lim Diemer (Graduate Program Coordinator) and 

Sherrie Tucker (Office Coordinator, Electrical and Computer Engineering) for their 

assistance in fulfilling the requirements towards the graduate degree. 

 

I thank all my friends for their support and encouragement. 



 

 

iv

TABLE OF CONTENTS 

    Page 

LIST OF TABLES ............................................................................................................. vi 

LIST OF FIGURES .......................................................................................................... vii 

ABSTRACT ....................................................................................................................... ix 

1.  INTRODUCTION ......................................................................................................... 1 
1.1  Problem Statement ................................................................................................. 1 
1.2  Previous Work ....................................................................................................... 2 
1.3  Thesis Objectives ................................................................................................... 4 

2.  FLOW MEASUREMENT TECHNOLOGY ................................................................ 5 
2.1  Differential Pressure Flow Sensors ........................................................................ 6 
2.2  Positive Displacement Flow Sensors ..................................................................... 8 
2.3  Velocity Flow Sensor ............................................................................................. 9 
2.4  Mass Flow Sensors ................................................................................................ 9 

2.4.1  Coriolis Flow Sensors ............................................................................... 10 
2.4.2  Thermal Mass Flow Sensor (TMFS) ......................................................... 10 

2.4.2.1  Anemometric Flow Sensors ......................................................... 10 
2.4.2.2  Calorimetric Flow Sensors ........................................................... 12 
2.4.2.3  Thermal Time of Flight Sensor (TTOF) ...................................... 13 
2.4.2.4  Conclusion ................................................................................... 14 

3.  MATHEMATICAL MODELS OF HEAT AND MASS TRANSFER ....................... 15 
3.1  Conduction Heat Transfer .................................................................................... 15 
3.2  Convection Heat Transfer .................................................................................... 17 
3.3  Radiation Heat Transfer ....................................................................................... 21 
3.4  Analytical Model for Intrusive Type Design Calorimetric Mass  

 Flow Sensor ......................................................................................................... 21 
3.5  Finite Element Analysis ....................................................................................... 24 

4.  HARDWARE DESIGN ............................................................................................... 27 
4.1  The Heating Element ........................................................................................... 27 

 

 



 

 

v

               Page 

4.2  The Temperature Controller ................................................................................ 28 
4.3  The Temperature Sensor ...................................................................................... 30 
4.4  Electrical Bridge Circuit ...................................................................................... 31 
4.5  Instrumentation Amplifier ................................................................................... 33 
4.6  Difference Circuit ................................................................................................ 35 
4.7  The Pulse Generator ............................................................................................. 36 
4.8  Conclusion ........................................................................................................... 38 

5.  EXPERIMENTAL SETUP .......................................................................................... 39 
5.1  Experimental Assembly Model ............................................................................ 39 

5.1.1  Calorimetric Mass Flow Meter Design ..................................................... 40 
5.1.2  Electrical Circuitry Design ........................................................................ 41 

5.2  Computational Fluid Dynamics Simulation......................................................... 45 
5.2.1  Model Geometry and Boundary Conditions ............................................. 45 
5.2.2  Simulation Results ..................................................................................... 50 

5.3  Experimental Results ........................................................................................... 52 

6.  CONCLUSION AND FUTURE WORK .................................................................... 58 

LIST OF REFERENCES .................................................................................................. 60 



 

 

vi

LIST OF TABLES 

Table Page 

Table 5.1    Flow rates with respect to fan operation voltages .......................................... 45 

Table 5.2    Mesh statistics ................................................................................................ 47 

Table 5.3    Subdomain and boundary conditions for air .................................................. 48 

Table 5.4    Subdomain and boundary conditions for water ............................................. 49 

 

 



 

 

vii

 LIST OF FIGURES  

Figure   Page 

Figure 2.1    Closed conduit flow types .............................................................................. 6 

Figure 2.2    Conduit schematics to exemplify Bernoulli’s principle ................................. 7 

Figure 2.3    Schematic of one element arrangement anemometer ................................... 11 

Figure 2.4    Schematic layout of anemometer sensor in balance mode ........................... 12 

Figure 2.5    Schematic layout of a calorimetric sensor .................................................... 13 

Figure 2.6    Schematic layout of a thermal time-of-flight sensor .................................... 14 

Figure 3.1    (a) Horizontal section and (b) Cross-section ................................................ 22 

Figure 3.2    Triangular mesh elements in sensor geometry ............................................. 24 

Figure 4.1    Polyimide Thermofoil heater/Kapton heater ................................................ 27 

Figure 4.2    Schematic layout of the temperature controller setup .................................. 29 

Figure 4.3    CT325 pins to control the temperature of the heating 
               element connected ........................................................................................ 29 

Figure 4.4    Schematic layout of the thinfilm Platinum RTD .......................................... 30 

Figure 4.5    Simple Wheatstone bridge circuit with the sensing element ........................ 32 

Figure 4.6    Pin configuration of the INA128p instrumentation amplifier ...................... 33 

Figure 4.7    Schematic layout of the internal 3-op amp design of 
               INA128p ....................................................................................................... 34 

Figure 4.8    Schematic layout of the signal amplification circuit .................................... 35 

Figure 4.9    Schematic layout of the difference circuit .................................................... 35 

Figure 4.10  Pin layout of timer LM555 IC ...................................................................... 36 

Figure 4.11  Schematic layout of the timer IC circuit in astable mode 
               for pulse generation ...................................................................................... 37 

Figure 5.1    Flow measurement system layout ................................................................ 40 

 
 



 

 

viii

Figure               Page 

Figure 5.2    Experimentally assembled calorimetric thermal mass flow 
               sensor ............................................................................................................ 41 

Figure 5.3    Schematic layout of the sensing circuit and data acquisition 
               scheme .......................................................................................................... 42 

Figure 5.4    Heater temperature control scheme .............................................................. 43 

Figure 5.5    Schematic layout of the timer circuit/pulse generation ................................ 44 

Figure 5.6    Experimentally setup of the assembled calorimetric thermal 
               mass flow sensor .......................................................................................... 44 

Figure 5.7    Sensor geometry and mesh elements in COMSOL ...................................... 46 

Figure 5.8    Peak temperature difference versus air flow rate ......................................... 50 

Figure 5.9    Peak temperature difference vs. water flow rate .......................................... 51 

Figure 5.10  Plot of temperature difference between upstream and 
              downstream vs. time ...................................................................................... 52 

Figure 5.11  Experimental result and simulated result comparison .................................. 53 

Figure 5.12  Cool-off rate as a function of air flow rate ................................................... 54 

Figure 5.13  The average plot of the cool-off rates as a function of air 
               flow rate ....................................................................................................... 54 

Figure 5.14  Bi-directional sensing feasibility .................................................................. 55 

Figure 5.15  (a) The heating element operated in pulse mode with  
                     50% duty cycle, and (b) The heating element operated  
                     in pulse mode with 25% duty cycle. ............................................................ 56 

Figure 5.16  (a) Watt-hour consumption and (b) Joule consumption ............................... 57 

 

 



 

 

ix

ABSTRACT 

Radadia, Jasmin Dhirajlal. M.S.E.C.E, Purdue University, May, 2010.  A Highly Precise 
and Linear IC for Heat Pulse Based Thermal Bidirectional Mass Flow Sensor.  Major 
Professor: Maher E. Rizkalla. 
 
 
 

In this work we have designed and simulated a thermal bi-directional integrated 

circuit mass flow sensor. The approach used here was an extension to the gas flow model 

given by Mayer and Lechner [1]. The design features high precision response received 

from analog integrated circuits.  

 

A computational fluid dynamic (CFD) model was designed for simulations with 

air and water Using COMSOL Multiphysics. Established mathematical models for the 

heat flow equations including CFD parameters were used within COMSOL simulation 

(COMSOL Multiphysics, Sweden). Heat pulses of 55 °C for a period of nearly 120 

seconds and 50% duty cycles were applied as thermal sources to the flowstream. The 

boundary conditions of the heat equations at the solid (heating element) fluid interface 

were set up in the software for the thermal response. 

 

The hardware design included one heating element and two sensing elements to 

detect the bi-directional mass flow. Platinum sensors were used due to their linear 

characteristics within 0 ºC to 100 ºC range, and their high temperature coefficient 

(0.00385 Ω/Ω/ºC). Polyimide thinfilm heater was used as the heating element due to its 

high throughput and good thermal efficiency. Two bridge circuits were used to sense the 

temperature distribution in the vicinity of the sensing elements. Three high precision 

instrumentation low power amplifiers with offset voltage ~2.5µV (50µV max) were used 



 

 

x

for bridge signal amplification and the difference circuit. The difference circuit was used 

to indicate the flow direction. A LM555 timer chip was utilized to provide the heat pulse 

period.  

 

Simulation and experimental measurements for heat pulses with different 

amplitude (temperature) were in good agreement. Also, the sensitivity of the flow sensor 

was observed to remain unaffected with the change in the duty cycle of the heat operation 

mode. 
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1.    INTRODUCTION 

      1.1   Problem Statement 

The evolution of thermal mass flow technology began sometime in late the 

1950’s. The development and commercialization of mass flow measuring meter based on 

the thermal flow measurement principle began and gained wide acceptance in the 

industrial sector. The thermal mass flow meters had the capability to measure low and 

varying mass flow rates directly, and their great accuracy in measuring the mass flow led 

to the replacement of other older technologies in the field [2]. With the development of 

the thermal flow meters, additional features such as ability to compute multi-point flow 

averaging, inline flow meters, built-in flow conditioning, and ultra-clean construction 

made them the preferable choice in industrial applications like air flow measurement, 

process industries with gas reactions, semiconductor industries, just to name a few. 

 

 Constant improvisation in the thermal mass flow technology has been observed 

in order to achieve highest accuracy, linearity and lowest power consumption possible. A 

conventional thermal mass flow sensor employs a constant power source to heat a heating 

element  which is either exposed to the fluid flow, in case of invasive sensor design, or 

indirectly heats the fluid flow, in case of noninvasive design [3, 4, 5]. Therefore, to 

conserve energy, an alternative to the constant power source has to be designed and 

implemented such that the accuracy of the outcome and the reliability of the sensors are 

not affected. 

 

In summary, the current flow devices lack low power consumption, flexibility 

(multifunctional for gases and liquids), and bi-directional flow rate detection. 
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      1.2   Previous Work 

The heat/thermal pulse technique is employed by majority of the thermal mass 

flow sensors operating based on the principle of thermal time of flight. Bauer (1965) was 

the first recorded to use the pulsed-wire technique for flow measurement. Bauer’s method 

used two wire mounted perpendicular to each other and applied a square-wave pulse to 

one wire [6]. In his claim he was able to compute the average velocity based on the 

Equation 1.1: 

 

U
∆x
∆t

 

     (1.1) 

where: 

  is the measure velocity of the fluid 

  ∆  is the distance between the hot wires  

  ∆t  is the time of flight 

 

Further work in the same direction was carried out by Tomback (1969), Bradbury 

and Castro (1971) [7]. These works were all in the attempt to increase the dynamic range 

of the thermal time of flight mass flow sensors. In 1982, Boyd [8] utilized a heat pulse 

technique in his invention of a mass flow meter. His invention was comprised of a 

temperature sensor, a reference resistor, a low and high voltage source, and a pulse 

controller. The latter is used for the circuit control and thereby provide signal to the 

temperature sensor and the reference resistor. The operation of this device was similar to 

a hot wire anemometer based on King’s (1914) analysis which states that the rate of heat 

transfer is directly proportional to the Reynolds Number and can be described by the 

Equation 1.2: 

 

 

(1.2) 
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where: 

  is the thermal transfer coefficient 

  &  are constants 

  is the Reynolds Number 

α is the Reynolds power 

  is the Prandtl Number 

β is the Prandtl power 

 

The Reynolds number can be expressed by the equation: 

 

/  

(1.3) 

where: 

E is a constant 

W is the mass flow rate 

D is the pipe inside diameter 

µ is the fluid viscosity 

 

Boyd applied both, a low voltage pulse and a high voltage pulse, to the 

temperature sensor. He measured the voltage drop across the temperature sensor and the 

reference resistor. From this data, the temperature of the respective temperature sensor 

and reference resistor is calculated, which is further used to calculate the thermal transfer 

coefficient as the input to the sensor is known. The Reynolds number can be calculated 

using the thermal transfer coefficient which can be further used to compute the mass flow 

rate of the fluid. The delay between the heat pulse and electrical response represents a 

drawback to this system. Other researchers have come up with similar approaches but 

their ideas lack optimum power consumptions. 

 

With the advancement of new technology in hardware and software, an 

improvement in the sensor design helped reduce the complexities in the flow 
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measurement and calibration of circuits. Furthermore, new materials have showed a 

promising linearity needed for thermal sensors. The data acquisition technology has 

helped to interface sensors with the computer systems. In 1998, Mayer and Lechner [1] 

claimed an invention of low power consumption mass flow sensor. The device was 

fabricated on a single silicon crystal. An opening was etched and covered with a 

dielectric membrane. The assembly consisted of two thermopiles placed symmetrically, 

one on each side of a resistive heating element. The flow meter was operated in cycles, to 

reduce the power consumption. The pulsed mode was carried out in cycles by applying a 

current pulse till a certain time period that would allow the thermopile pair to reach 

equilibrium. Then no pulse was applied for a time period that was five times, preferably 

at least ten times, longer than the first pulse. The operation of this flow sensor was based 

on the Calorimetric flow measurement principle. The temperature difference signal of the 

two thermopiles was measured.  Results were dependent on the flow velocity, density of 

the fluid, and pressure. The mass flow was further computed using the calibration tables. 

      1.3   Thesis Objectives  

This thesis particularly focuses on mass flow measurement using the thermal flow 

technique in closed conduits. The objective of this research project is to contribute to the 

existing idea of power conservation in the thermal mass flow sensor operation. The 

earlier work of Mayer and Lechner [1] on gas flow measurement was extended to model 

fluid flow simulations. This objective has been accomplished by constructing a 

Computational Fluid Dynamic (CFD) model for gas (air) and liquid (water). 

 

In order to verify the CFD model data, an experimental in-lab mass flow sensor 

was designed. Experimental data supporting the CFD model data for gas (air) was further 

obtained. An attempt to experiment the current apparatus for liquids is under progress. 
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2.   FLOW MEASUREMENT TECHNOLOGY 

This chapter presents various methodologies for the fluid flow measurement, 

utilizing different sensor technologies. This study assists with the selection leading to 

optimum power consumption, high precision, and bi-directional flow system.  

 

Numerous industrial applications require a precisely controlled fluid flow. 

Depending on various flow conditions encountered in different applications, varieties of 

principles are applied to measure the flow rate of the fluids. Currently, various types of 

flow measurement sensors are available [9, 10, 11]. The flow sensors can structurally be 

distinguished as invasive and non-invasive types. Furthermore, based on their principle of 

operations some of the flow sensors can be classified as differential pressure, positive 

displacement, velocity, thermal, etc.  Out of all these existing flow sensors only the ones 

that are commonly prevalent are discussed below. 

 

Before understanding the principles of each flow sensor, it is necessary to 

understand the dynamic properties of fluid flow in closed conduits [12]. Fluid motion in a 

closed piping system can be characterized as one of the two main types: Laminar or 

Turbulent flow. In some cases combinations of both types of motions have been 

observed. In Laminar flow, the fluid travels in layers (in the axis parallel to the walls of 

the pipe), that do not mix as they move in the direction of the flow. The Laminar flow is 

also referred as streamline flow. In Turbulent flow, the fluid moves in a random course 

with only the average motion of the fluid being parallel to the axis of the pipe. Figure 2.1 

shows the laminar and turbulent flows. 
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Figure 2.1  Closed conduit flow types 

Our focus will be given to the Laminar flows where the Reynolds number is 

below 1000. The Reynolds number is a dimensionless number and can be used to predict 

the flow characteristics of a fluid. It is useful in characterizing the flow types. In Laminar 

flows the Reynolds number is lower as the viscous forces are dominant, while in 

Turbulent flows, the Reynolds number is higher as the inertia forces are dominant. 

 

Reynolds number can be calculated as shown in Equation 2.1: 

 

 

(2.1) 

where: 

 is the Reynolds number 

Ρ is the density of the fluid 

  is the mean velocity of the fluid 

D is the pipe diameter 

η is the dynamic viscosity of the fluids 

      2.1   Differential Pressure Flow Sensors 

Differential pressure type flow sensors are the most commonly used instruments, 

especially for liquid flow measurements [13]. The operational principle of differential 

pressure flow sensors is based on the Bernoulli’s equation of fluid dynamics [12]. When 
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fluid is passed through a pipe with different cross sectional area, a change in the pressure 

and velocity profile of the fluid takes place following Bernoulli’s equation.  

 

Figure 2.2 shows the basis of Bernoulli’s equation. 

 

Figure 2.2  Conduit schematics to exemplify Bernoulli’s principle 

In case of horizontal pipes, Bernoulli’s equation reduces to Equation 2.2: 

 

2
 

(2.2) 

where: 

  is the pressure before the restriction  

  is the pressure after the restriction 

  is the velocity before the restriction 

  is the velocity after the restriction 

  is the fluid density 
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The volumetric flow rate (Q) of the fluid can be determined by using the 

Conservation of mass principle given by Equation 2.3: 

 

 

(2.3) 

where: 

  is the cross sectional area of the pipe before restriction 

  is the cross sectional area of the pipe after restriction 

 

Therefore, 

 

 
1

2
 

(2.4) 

 

The most commonly used flow sensors based on the differential pressure principle 

in industry are orifice plate, flow nozzles, venture tubes and variable area-rotameters 

[14]. Some drawbacks were cited with these flow measurement sensors. The drawbacks 

include cost effectiveness issue, sensitivity, accuracy, bulk use devices.  

      2.2   Positive Displacement Flow Sensors 

The fluid flow component under measure, in Positive Displacement (PD) type 

flow sensors, is the volume rate of the fluid that flows through the pipe [12]. This type of 

flow sensors employs a mechanism with a chamber like structure. In this scheme, a 

known volume of fluid is entrapped and releases back into the flow stream. The volume 

flow rate of the flow stream can be computed by taking measurement of the total number 

of entrapments over a unit period of time. The PD flow sensors are used for gas and 

liquid flow measurement. More interestingly a PD flow sensor can be used to measure 

low gas or liquid flows without any external power being supplied. Despite the internal 
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moving mechanical components being mass-calibrated, the positive displacement flow 

sensor tends to be hydraulically imbalanced [15].  The PD sensor absorbs a small amount 

of energy from the flow stream and thereby drives its internal assembly. 

 

Some of the commonly used PD flow sensors in industry are oscillating piston, 

nutating disc, oval gear, vane, rotor, roots and multi-piston. Furthermore, these kinds of 

sensors are not favorable for use due to their non-invasive structure with additional 

mechanical components needed to perform the measurements.  

      2.3   Velocity Flow Sensor 

In the velocity flow sensors, the velocity parameter of the fluid flow is the basis of 

the measurement. This is due to the fact that fluid velocity is directly proportional to the 

volume flow rate [12]. These types of flow sensors use transducers that convert any 

physical changes in the system into electrical signals. The electrical parameters, such as 

power, frequency and phase, change with the physical changes of the system. These 

parameters can be analyzed and used to compute the velocity of the flowstream. Some of 

the most commonly used velocity flow sensors are turbine, vortex shedding, swirl, 

electromagnetic, ultrasonic (Doppler and transit-time), etc. The non linearity between 

flow, pressure, and velocity may cite some errors in measurements utilizing these 

sensors. 

      2.4   Mass Flow Sensors 

The mass flow sensors are measuring units that directly measure the mass flow 

rate of the fluid flow through a unit cross section.  The working range of this type of 

sensor depends on the fluid properties such as specific heat, density and temperature but 

is independent of the physical state of the fluid. 
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               2.4.1   Coriolis Flow Sensors 

These types of flow sensors give a direct mass flow measurement based on the 

change in the vibration of the tube through which the fluid under measurement is passed. 

The drawbacks of such sensors include larger size, high maintenance, and high 

installation costs [16]. 

               2.4.2   Thermal Mass Flow Sensor (TMFS) 

Thermal flow sensors are basically transducers, that comprise of both heaters and 

temperature sensors that are placed in a manner such that the streaming fluid carries some 

heat in the direction of the flow. This causes the temperature distribution to change 

around the temperature sensor.  This is attributed to the heat transfer in the vicinity of the 

sensor. The evaluation of the heat transfer is conducted in different ways depending on 

the operating modes of a thermal flow sensor. Fluids with constant density and specific 

heat properties can be measured without sensor calibrations. On the other hand, fluids 

with varying density and specific heat properties have to be calibrated for additional 

pressure temperature compensation. There are three basic categories for the thermal mass 

flow sensors: anemometric, calorimetric, and thermal time of flight sensors [17]. 

2.4.2.1  Anemometric Flow Sensors 

Generally, anemometer consists of single element, which is submerged in the 

streaming fluid and heated by an electrical signal. The element temperature is maintained 

above the ambient temperature. With any flow, the heat dissipated by the element will be 

carried over in the direction of the flow. The influence of the flow on the element 

temperature is measured by measuring the resistivity of the element. Hot wire or hot film 

anemometers have very fast response times due to their appropriate thermal mass. Figure 

2.3 show the common arrangement of anemometric flow sensor. 
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Figure 2.3  Schematic of one element arrangement Anemometer 

Anemometers can be operated in the following modes [18]: 

 

Constant power mode: In this mode, a constant power is supplied to heat a resistive 

element which further dissipates heat into the streaming fluid.  The resulting temperature 

of the resistor is used as a measure to calculate the fluid flow rate. Higher the flow, lower 

is the temperature of the resistive element. 

 

Constant temperature mode: In this mode, the temperature of the heating element is 

measured and maintained constant above the ambient temperature. The electrical power 

required to maintain the heating element at a constant temperature is used as a measure to 

calculate the fluid flow rate.  

 

Temperature balance mode: In this mode, two resistive elements are used, up- and 

downstream.  The temperature difference between the two heating elements is kept 

constant by controlled distribution of a constant total heating power. The ratio of the up- 

and downstream heating power is used as a measure to calculate the fluid flow rate. The 

advantage of this mode is that the system output is independent of the sensitivity of the 

sensors. Figure 2.4 shows the temperature balance mode of the anemometer sensor with 

differential temperature displayed. 
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Figure 2.4  Schematic layout of anemometer sensor in balance mode 

2.4.2.2  Calorimetric Flow Sensors 

Calorimetric flow sensors require a minimum of two or more elements. A 

standard arrangement, as shown in Figure 2.5, consists of a heating element aligned 

symmetrically between two sensing elements, up- and downstream, hence permits the 

sensors to be used for bidirectional fluid measurements. The differential temperature 

measurement of the two sensing elements, up- and downstream, is used as a measure to 

calculate the fluid mass flow rate. When there is no flow present, the temperature profile 

is symmetrical around the heater. These types of flow sensors have higher application in 

measuring low flow rates. Equation 2.5 gives the mass flow rate: 

 

∆
 

(2.5) 

where: 

  is the mass flow rate of the gas 

  rate of heat transfer 

  is the specific heat of the fluid under constant pressure 

∆T is the temperature difference across the heated section  
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Figure 2.5  Schematic layout of a calorimetric sensor 

2.4.2.3  Thermal Time of Flight Sensor (TTOF) 

TTOF sensors require a minimum of two elements. The configuration of the 

TTOF sensor elements is quite similar to that of the Calorimetric flow sensor. In this type 

of sensors, the heater is applied a constant pulse of an electrical energy. The heat pulse 

dissipated from the heater is carried away by the streaming fluid in the direction of the 

flow where the temperature sensor is placed to measure heat pulse. The time interval 

between the application of the electrical pulse and arrival of the heat pulse at the 

temperature sensor is called the Time of Flight. Since the distance between the heater and 

the temperature sensor is fixed, the Time of Flight provides the measure to calculate the 

fluid flow rate. The velocity can be computed based on Equation 2.6: 

 

∆
 

(2.6) 

where: 

U is the velocity of the fluid  

x is the distance between the heater and the sensor 

∆t is the time of flight of the pulse from the heater to the sensor 
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Figure 2.6 gives the common arrangement of TTOF sensors. 

 

Figure 2.6  Schematic layout of a thermal time-of-flight sensor 

2.4.2.4  Conclusion 

The conventional TMFS (anemometer) have been observed to use continuous 

power in all operational modes. Continuous power requirement reduces the flexibility of 

the flow sensor. TTOF sensors consume less power comparatively. But both types of 

TMFS are restricted to unidirectional flow sensing. Calorimetric TMFS can be used to for 

bi-directional flow sensing.
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3.   MATHEMATICAL MODELS OF HEAT AND MASS TRANSFER 

In this chapter the solutions of heat equations as applied to conduction and 

convection heat transfer are described.  The results of these solutions lead to the 

temperature distribution within the fluid. Because of the small size of the sensing 

elements (thinfilm Platinum RTDs) and its good thermal conductivity, the conduction 

heat transfer is negligibly small. The convection heat transfer will be the major 

contributor to the temperature distribution within the flow around the sensors. The 

mathematical model covers a bidirectional heat transfer from the heating element to the 

sensors. These models have led to the boundary and subdomain settings for the CFD 

model simulated with COMSOL. 

      3.1   Conduction Heat Transfer 

Conduction occurs due to presence of the temperature gradient within a medium. 

As a result, heat transfer within a medium takes place from a high temperature region to a 

low temperature region. This rate of heat flow (Q) is directly proportional to rate of 

change of temperature with respect to the distance and in the direction of the flow. The 

mathematical representation of the rate of heat flow is known as the Fourier’s Law. The 

rate equation in one-dimensional plane can be expressed by Equation 3.1:  

 

 

(3.1) 
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where: 

ρ is the thermal conductivity of the medium 

A is the area normal to the direction of the flow 

T is the temperature of the medium 

 

The negative sign in the above equation is due to the direction of the heat transfer 

towards the decreasing temperature. For steady state heat conduction, the heat transfer 

per unit area, also known as the heat flux ( ) can be given by Equation 3.2 [19]: 

 

  

(3.2) 

For homogeneous and isotropic materials the general unsteady state heat 

conduction equation in a three dimensional plane can be expressed in the Cartesian 

coordinates as: 

 

1
 

(3.3) 

where: 

  is the heat generation rate per unit volume 

k is the thermal conductivity of the material  

α is the thermal diffusivity 

 

Now if the flow is in steady state (i.e. 0) and if there is no internal heat 

generation in the material (i.e. 0), then the governing equation can be expressed as: 

 

0 

(3.4) 
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      3.2   Convection Heat Transfer 

In presence of a temperature gradient in a liquid medium, convection occurs, 

causing actual movement of fluid molecules from a high temperature region to a low 

temperature region (diffusion). Also, in convection, the transfer of energy takes place due 

to bulk/macroscopic motion of fluids [19]. There are two types of convections: natural 

convection and forced convection. In natural convection the flow is caused due to 

buoyancy effects in the fluid while in case of forced convection an external source (fan, 

pump, etc.) causes the flow.  

 

Irrespective of the nature of convection the heat flow rate equation can be 

expressed using the Newton’s law of cooling as shown in Equation 3.5: 

 

 

(3.5) 

where: 

q is the rate of heat transfer by convection (W) 

h is the average convective heat transfer coefficient (W/m2K) 

A is the heat transfer surface area (m2) 

Ts is the temperature of the solid surface (°C) 

T∞ is the temperature of the fluid free stream (°C) 

 

The heat flux rate ( ) can be expressed as show in Equation 3.6: 

   

    

(3.6) 

General statements of the conservation of energy laws play an important role in 

the analysis of heat transfer due to convection. One dimensional flow rate equation is 

given as in Equation 3.7: 

 

(3.7) 
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where: 

m is the mass flow rate of fluid 

ρ is the fluid density 

V is the normal velocity 

A is the flow area 

 

The law of conservation of mass as applied to an element in Cartesian coordinates 

can be expressed as [20]: 

 

0 

(3.8) 

where: 

u, v and w are the velocity components in the x, y and z-direction 

 

This is called the continuity equation. An alternative form of this equation is 

given as in Equation 3.9: 

 

· 0 

(3.9) 

where: 

  is the velocity vector 

 

  The law of Conservation of momentum: The Navier-Strokes equations of motion 

for Newtonian fluids are given as in Equations 3.10, 3.11, and 3.12: 

 

2
2
3

·  

(3.10) 
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2
2
3

·  

(3.11) 

 

2
2
3

·  

(3.12) 

The above three equations can be combined to be expressed in the vector form as 

in Equation 3.13: 

 

4
3

· ·  

·  

(3.13) 

This equation is simplified when applied to following cases: 

Case 1: Constant viscosity as given in Equation 3.14. 

 

1
3

·  

(3.14) 

Case 2: Constant viscosity and density as given in Equation 3.15. 

 

 

(3.15) 

where: 

  is a property called viscosity and  

p is the hydrostatic pressure 

 

The law of conservation of energy or the energy equation for heat transfer is given 

as in Equation 3.16: 



 

 

20

·  

(3.16) 

where: 

 is the specific heat of constant pressure 

k is the thermal conductivity 

p is the pressure 

β is the coefficient of thermal expansion and is defined as in Equation 3.17: 

 

1
 

(3.17) 

 is the energy dissipation function due to friction and in Cartesian coordinates can be 

given as in Equation 3.18: 

 

2  

 

2
3

 

(3.18) 

The above equations can be further simplified for the following cases: 

Case 1: Incompressible fluids as given in Equation 3.19. 

 

·  

(3.19) 

Case 2: Incompressible constant conductivity fluid as given in Equation 3.20. 

 

 

(3.20) 
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Case 3: Ideal gas law as given in Equation 3.21. 

 

· .  

(3.21) 

where: 

  is the specific heat at constant volume 

      3.3   Radiation Heat Transfer 

In some cases the heat transfer takes place through radiations or waves without 

any need of an intermediate medium present between the two elements. However, the 

radiation heat transfer is not important in case of thermal calorimetric flow sensors due to 

the relatively low magnitude of the thermal wavelengths [12]. 

      3.4   Analytical Model for Intrusive Type Design Calorimetric Mass Flow Sensor 

In an invasive type design calorimetric mass flow sensor the heating element and 

a pair of sensing elements come in direct contact with the flow stream of the fluid to be 

measured. Hence the heat transfer in this kind of a setup would take place either by 

conduction through fluid particles, or by convection through the fluid thermal mass. The 

temperature distribution can be determined by the applying the energy conservation 

requirements [12].  

 

Consider a homogeneous medium whose temperature distribution T(x,y,z) can be 

expressed in the Cartesian coordinates. The heat diffusion equation in the Cartesian 

coordinates for such a homogeneous medium can be expressed as Equation 3.22: 

 

1
 

(3.22) 



 

 

22

where: 

  is the rate at which energy is generated per unit volume of the medium. (W3/m) 

k is the thermal conductivity of the medium. (W/K*m) 

  is the thermal diffusivity of the fluid 

ρ is the density of the fluid 

cp is the specific heat of the fluid 

 

 

Figure 3.1  (a) Horizontal section, and (b) Cross-section 

An analytical model for calorimetric sensor is described by Nam-Trung Nguyen 

[12]. The temperature profile in the y and z directions is assumed to be constant and 

linear, hence simplifying the analysis to one dimension. Refer Figure 3.1, consider the 

cross section of the sensor whose area (A) can be given as dy2dz. Let the average fluid 

velocity be given as ‘v’. Hence the heat diffusion equation can be reduced and rewritten 

as Equation 3.23: 
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0 

(3.23) 

 

The above equation is linear in temperature and can be solved with the boundary 

condition as given in Equation 3.24: 

 

log 0 

(3.24) 

 

The obtained temperature distribution results are shown in Equations 3.25 - 3.29: 

 

  
2

 

(3.25) 

  
2

 

(3.26) 

2 2
   

(3.27) 

where, 

      

,

2

2
 

(3.28) 

 

2  

(3.29) 
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The temperature difference between the upstream sensor and the downstream 

sensor can be computed as shown in Equation 3.30: 

 

Δ  

(3.30) 

      3.5   Finite Element Analysis 

COMSOL uses the Finite Element Method (FEM) for discretization of any given 

problem and further simplifies the problem to make it suitable for numerical computation 

(COMSOL Multiphysics, Sweden). The FEM analysis can be understood step by step as: 

 

Step 1: Setting the Mesh 

 

Figure 3.2  Triangular mesh elements in sensor geometry 

First, a given element geometry is partitioned into small units of simple shape. 

This structure of small partitions is referred as mesh. In case of two dimensional analyses 

the element geometry is partitioned approximately into small triangular shape mesh 

elements as shown in Figure 3.2. The sides and corners of these triangles are known as 

mesh edges and mesh vertices. The mesh vertices are also known as node points.  

 

 



 

 

25

Step 2: The Finite Elements 

 

Once the meshing is complete, approximation of dependent variables is done by 

describing a function with a finite number of parameters in order to generate a system of 

equations for the Degree of Freedom (DOF). 

 

An example: 

 

For simplicity, consider a single variable ‘u’ in 1 dimensional finite element space 

corresponding to quadratic elements. Assume a mesh with node points x1 = 0, x2 = 1, x3 = 

2, x4 = 0.5 and x5 = 1.5.  The continuous function u is linear and a second order 

polynomial on each interval of the mesh. The corresponding DOF of u can be given 

as .  

 

Hence, the 2nd order polynomial function u(x) on the mesh midpoints and 

endpoints is given as Equation 3.31: 

 

 

(3.31) 

where: 

  is called the Basis function which equals 1 at all ith node points and equals 

0 at all other node points. For example in Equation 3.32: 

 

1 1 2            0 1
  0                                      1 2 

 

(3.32) 

The Basis functions can further be expressed in simpler form using the element 

coordinates and the standard d-directional simplex 

0, 0 … 0, . . . 1  of the mesh elements. Thus in the above 

example with quadratic elements in 1D, the basis function can be given as Equation 3.33: 
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1 1 2 , 4 1 2 , 2 1  

(3.33) 

 

Step 3: The Lagrange Element 

 

Lagrange interpolation is used to approximate the PDE solutions of the problem. 

Consider a polynomial functions u, in a finite element space, of the degree k (k is a 

positive integer). Thus each mesh element u is a polynomial is of kth order. Such 

functions are described using Lagrange points, of order k, with element coordinates as 

integer multiples of k -1. For example in a triangular mesh, if the pi is the number of node 

points, then the degree of freedom is given as Ui = u(pi) and a continuous basis function 

as . Thus, you have Equation 3.34: 

 

 

(3.34) 

The order k of the polynomial can be arbitrary, but the available numerical 

integration formulas usually limit the computation to k ≤ 5. The Lagrange element of 

order 1 is called the linear element, and element of order 2 is called the quadratic 

element. 
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4.   HARDWARE DESIGN 

In this chapter the hardware design including electrical circuit components, 

material used for sensors and analog chips are covered. This included interface circuitries 

required to measure the change in the electrical property of sensor as a result of 

flowstream. 

      4.1   The Heating Element 

A MINCO Polyimide Thermofoil flexible heater/Kapton heater was used as the 

heating element in this project. The heater is thin, lightweight and is suitable for the 

design purpose. The advantage of this heater is its increased throughput as the heater 

provides fast and efficient thermal response. Figure 4.1 shows the thinfilm 

polyimide/Kapton heater. 

 

Figure 4.1  MINCO Polyimide Thermofoil heater/Kapton heater 

The lead gauge of the heater is of size 30 as per the standardized American Wire 

Gauge (AWG) measurement. The heater has an Acrylic PSA backing. The operating 

range of the heater is from -30 °C to 100 °C with a maximum allowable watt density of 



 

 

28

13 W (20 W/in2). The effective area of the heater is 0.65 inch square. The resistance is 

about 6.2 Ohms with a tolerance of ±10% and a maximum allowable current of 3 A. The 

heater is operated on a DC supply of 2.5 V in pulse mode, with actual current of 0.403 A, 

and power output of 1 W.  

 

Note: The selection of this heating element was based on the energy in Joule required to 

generate an appropriate temperature range between 35 °C to 80 °C sensed by the 

sensor. It shows linearity within various cycles. 

      4.2   The Temperature Controller 

A miniature temperature controller (MINCO CT325) is used to control 

temperature of the heating element. The body of controller is filled with epoxy for 

moisture resistance. This controller offer simple control for flexible heating without 

needing any complex programming can help reduce the set-up time. The selection of this 

controller was based on its high precision in addition to its rated temperature (200 °C), 

covering the temperature range required for this project. The controller requires a RTD 

sensor to be attached to the heating surface of the heating element. The controller has a 

feedback system that takes an input from the RTD in order to control the heater output 

power. The Figure 4.2 shows the setup of the CT325 temperature controller. Terminals 1 

and 2 are for the DC input power supply; terminals 5, 6 and 7 for RTD sensor input, and 

terminals 3 and 4 are for the heater output. The input power range of the controller is 

from 4.75 V to 60 V of DC supply with a maximum allowable current of 4 A. 
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Figure 4.2  Schematic layout of the temperature controller setup 

The setpoint temperature can be adjusted and read at Vsetpoint terminal and the 

actual heater output temperature can be monitored at the Vtemp terminal using a voltmeter. 

The setpoint range of the controller is from 2 °C to 200 °C, and setpoint stability is 

±0.02% of span/°C. The Vsetpoint and Vtemp signal outputs corresponds to 0.010 V/°C over 

a specified range. Figure 4.3 shows the control pins for the CT325 temperature controller. 

 

Figure 4.3  CT325 pins to control the temperature of the heating element connected 
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      4.3   The Temperature Sensor 

 A pair of OMEGAFILM Platinum RTD elements (F3141) of class A is used as 

temperature sensing elements. RTD elements were chosen over thermocouple due to their 

ability to provide high accuracy. These thinfilm RTDs are made of IEC/DIN grade 

Platinum. Platinum metal shows great stability, repeatability and linearity in its resistance 

versus temperature characteristics. These thinfilm elements are of very small size and flat 

in shape. The temperature coefficient of resistance between 0 °C and 100 °C is 0.00385 

Ω/Ω/°C. The RTD elements have temperature range from -70 °C to 600 °C and have a 

rapid response time. The resistance of the RTD elements is 1000.00 ±0.60 Ω at 0 ºC. 

Figure 4.4 shows the dimension of the thinfilm RTD. 

 

Figure 4.4  Schematic layout of the thinfilm Platinum RTD 

An accurate model of resistance versus temperature function of the Platinum RTD 

elements can be give by using the Callendar-Van Dusen Equation [4.1]: 

 

100
1

100 100
1

100
 

(4.1) 

 

where: 

RT = Resistance at Temperature T 

Ro = Resistance at T = 0ºC 

α = Temperature coefficient at T = 0ºC ((typically +0.00392Ω/Ω/ºC))



 

 

31

δ = 1.49 (typical value for .00392 platinum) 

β = 0    T > 0 

0. 11    (typical) T < 0 

  

According to DIN EN 60751 standards for class A type thinfilm RTDs the 

Callendar-Van Dusen equation can be reduced to Equation 4.2 and Equation 4.3: 

 

 0      1 . .   

(4.2) 

 

 0      1 . . . 100 .   

(4.3) 

where: 

 

A, B and C are Callendar-Van Dusen constants 

A = 3.9083 · 10-3 °C-1 

B = -5.775 · 10-7 °C-2 

C = -4.183 · 10-12 °C-4 

R0 = 1000Ω measured at 0 °C 

R(T) is the resistance at temperature T (°C) 

      4.4   Electrical Bridge Circuit 

In general practice, to detect the change in the resistance with change in 

temperature, the RTDs are used in a simple Wheatstone bridge circuit as show in the 

Figure 4.5: 
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Figure 4.5  Simple Wheatstone bridge circuit with the sensing element 

The Wheatstone bridge is excited by a 5 V DC supply. The bridge circuit is said 

to be balanced when the Vo signal gives a value zero. In order to balance the bridge 

circuit the resistor values are chosen such a way that the ratio of resistors R2 over R1 is 

equal to the ratio of resistors R3 over R4(RTD) as shown in Equation 4.4: 

 

 

(4.4) 

The resistance of the RTD elements at room temperature was measured to be 

about 1100 Ω hence the resistance values of R1, R2 and R3 were chosen as 1100 Ω in 

order have a balanced bridge circuit. The measured V0 signal in the bridge circuit can be 

give in terms of input DC signal and the four resistors using the voltage divider rule as 

shown in Equation 4.5: 

 

 

(4.5) 
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The resistance of the RTD sensor changes along with the temperature change. 

This change in the resistance can be calculated by solving Equation 4.5 for the RTD 

sensor. Equation 4.6 gives the change in sensor resistance. 

 

 

(4.6) 

      4.5   Instrumentation Amplifier 

A low power, highly precise, instrumentation amplifier (INA128p) from Texas 

Instruments is used as a bridge signal amplifier and as a differential amplifier. The 

INA128 is a small size, laser trimmed, 8-pin plastic DIP with an inbuilt 3-op amp design 

that has a wide range of application. Figure 4.6 shows the pin configuration for INA128P. 

Figure 4.7 shows the 3-op amp design of INA128P. 

 

Figure 4.6  Pin configuration of the INA128p instrumentation amplifier 
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Figure 4.7  Schematic layout of the internal 3-op amp design of INA128p 

The INA128 has a very low offset voltage of 50 µV (max) with a drift of 0.5 V/°C 

(max) and a high common-mode rejection of 120 dB at G ≥ 100. The inputs are over-

voltage protected up to ±40 V. It can operate at a very low voltage (as low as ±2.25 V) 

with a low quiescent current of 700 µA. The gain equation of INA128 is given as in 

Equation 4.7: 

 

1
50 Ω

 

(4.7) 

where: 

 is the gain resistor that decides the desired gain. 

 

Figure 4.8 shows the schematic of connection between the electrical bridge and 

INA128p. 



 

 

35

 

Figure 4.8  Schematic layout of the signal amplification circuit 

      4.6   Difference Circuit 

The INA128 amplifier is used to design a differential circuit. The outputs from 

two Wheatstone bridge circuits are fed into the INA128 amplifier. Figure 4.9 shows the 

schematic of the difference circuit. 

 

Figure 4.9  Schematic layout of the difference circuit  

The differential output signal from the amplifier circuit is given as in Equation 

4.8: 
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(4.8) 

The values of the resistors are chosen such that the gain of the difference is unity 

as shown in Equation 4.9 and the circuit output is simply the difference of the two input 

signals as shown Equation 4.10. 

 

   

(4.9) 

 

(4.10) 

      4.7   The Pulse Generator  

A pulse generation circuit is designed in order to operate the heating element in a 

pulse mode. A timer IC (LM555) from National Instruments is used in the pulse 

generation circuit. The LM555 is small size 8-pin MDIP chip. 

 

Figure 4.10  Pin layout of timer LM555 IC 
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The LM555 is a highly stable and can generate accurate time delays. The LM555 

is operated in astable mode. In this mode the duty cycle/time delays are accurately 

controlled with two external resistors and one capacitor. Figure 4.11 shows the of the 

timer circuit for astable mode 

 

Figure 4.11  Schematic layout of the timer IC circuit in astable mode for pulse generation 

In this circuit, when a DC input is supplied to the LM555 timer, the capacitor C 

charges through the resistors RA and RB. The capacitor charge eventually builds up 

enough voltage to trigger an internal comparator to toggle the output flip-flop.  Once the 

flip-flop is toggled the capacitor C discharges through RB into the discharge pin (pin 

#7). When the capacitor C’s voltage reaches the low limit, another internal comparator is 

triggered to toggle the output flip-flop. The capacitor C charges again and the cycle is 

repeated.  
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The high time of the pulse can be set using Equation 4.11: 

 

0.693 ·  

(4.11) 

The low time of the pulse can be set using Equation 4.12: 

 

0.693 ·  

(4.12) 

The total period can be given by Equation 4.13: 

 

0.693 2 ·  

(4.13) 

      4.8   Conclusion 

The above described system allows portability and high level of integration. 

Based on the energy level of consumption various approaches may be followed. In this 

approach an energy level within 10 J/s may be appropriate. High energy power supplies 

may be utilized to provide higher energy levels for higher temperature distribution. The 

latter lacks flexibility and system portability. 
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5.   EXPERIMENTAL SETUP 

This Chapter discusses the in-lab arrangement of experimental assembly of the 

calorimetric thermal mass flow sensor. A computational fluid dynamic (CFD) simulation 

model replicating the boundary and subdomain conditions of the experimental setup was 

developed to predict the calorimeter response to air and water flow. The experimental 

results are presented and compared with the simulated predictions. 

      5.1   Experimental Assembly Model 

To validate the proposed methodology to measure a streamline fluid flow, a 

thermal mass flow sensor was assembled using the available resources as shown in 

Figure 5.1. The construction of calorimeter is discussed below along with the electrical 

circuits and data acquisition scheme used to operate, sense, and record the signals from 

the sensing elements. 
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Figure 5.1  Flow measurement system layout 

               5.1.1   Calorimetric Mass Flow Meter Design 

The overall approach for the calorimetric mass flow meter was based on prevalent 

industrial designs [5]. The experimental assembly of the sensor consisted of a thinfilm 

heating element positioned in the middle of two sensing elements. The heating element 

was the Polyimide Thermorfoil heater/Kapton heater, and the sensing elements were 

thinfilm Platinum RTDs as described in Chapter 4. Figure 5.2 shows the cross section of 

the PVC pipe used to encapsulate the sensor assembly. Holes of the size of the heating 

and sensing elements were drilled into the PVC pipe. After inserting the elements, the 

holes were sealed with 100% pure Silicone to provide thermal insulation. 
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Figure 5.2  Experimentally assembled calorimetric thermal mass flow sensor 

Figure 5.2 shows the placement and alignment of the heating and sensing 

elements. The sensing elements were placed 1 cm from the heating element edges in each 

direction, and were aligned with the edges of the heating element. Figure 5.2 shows the 

PCB used to mount the sensing elements.  

               5.1.2   Electrical Circuitry Design 

With the help of the integrated analog circuits, the signal from the sensing 

elements was acquired. Each sensing element was connected to an individual electrically 

balanced Wheatstone bridge. The output voltage signal from each bridge circuit was fed 

to separate instrumentation amplifier ICs. Since the output signals from the bridge 
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circuits were in millivolts, the gain of the amplifiers was set to ~100 to get the sensor 

response in volts. The outputs from the amplifiers were fed to a difference circuit, which 

also consisted of an instrumentation amplifier IC with no gain. Figure 5.3 shows the 

schematic of the circuit that was used to acquire the signal from the sensing elements, 

further, the difference signal was logged into the computer using Agilent 34401A 

multimeter. 

 

Figure 5.3  Schematic layout of the sensing circuit and data acquisition scheme 

The heater temperature control was achieved using Minco temperature controller 

(CT325). The pin description of the controller unit was described is Chapter 4. The 

controller was set to maintain the heater at a constant temperature of 55 °C.  
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Figure 5.4 shows the controller arrangement with the RTD as part of the feedback 

control for keeping the heat at constant temperature. 

 

Figure 5.4  Heater temperature control scheme 

The heating element was operated in pulse mode. The pulse generation was 

achieved using a timer (LM555) IC. The pins and configuration of LM555 is described in 

Chapter 4. The values of resistors and capacitors were selected such that the high time 

and low time of the pulse was 60 s each, i.e. 50% duty cycle.  Figure 5.5 shows the 

schematic of LM555 connected with the temperature controller unit.  
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Figure 5.5  Schematic layout of the timer circuit/pulse generation 

 

Figure 5.6  Experimentally setup of the assembled calorimetric thermal mass flow sensor 
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Figure 5.6 shows the in-lab experimental setup of the assembled thermal mass 

flow sensor. An off-the-shelf, 12V rated, CPU cooling fan was used to create an air flow. 

A wide range of air flow was achieved by varying the power supplied to the cooling fan. 

Table 5.1 shows the air flow achieved with respect to the voltage at which the cooling fan 

was operated. The flow measurement was done using an EXTECH Datalogging/Printing 

Anemometer (Model #451181). 

Table 5.1  Flow rates with respect to fan operation voltages 

 

      5.2   Computational Fluid Dynamics (CFD) Simulation  

A CFD simulation of heat and mass flow in a calorimetric thermal mass flow 

sensor was performed with the help of COMSOL Multiphysics. The Navier-Stokes and 

heat conduction/convection equations that were simulated are stated in Section 3.2. The 

simulation of the sensor was performed for operation in air and water. 

               5.2.1   Model Geometry and Boundary Conditions 

A geometric model replicating the actual size of the experimental assembly of the 

calorimetric thermal mass flow sensor was constructed in COMSOL. Figure 5.7 shows 

the geometric model of the sensor in COMSOL. 

Fan operation 

volatge (V)

Velocity 

(m/s)

Flow rate 

(L/m)

6 0.6 17.87846401

8 0.8 23.83795201

10 1 29.79744002

12 1.2 35.75692802
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Figure 5.7  Sensor geometry and mesh elements in COMSOL 

The geometric model was solved for incompressible Navier-Stokes, Conduction 

and Convection. Prior to solving the model, the geometry was meshed and refined to 

provide good quality elements near the heater and sensor surfaces. Figure 5.7 shows the 

triangular mesh elements and their quality, which is a scalar quantity. The measure is 

defined for each mesh element where 0 represents the lowest quality and 1 represents the 

highest quality. Table 5.2 gives the mesh statistics. 
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Table 5.2  Mesh statistics 

Number of mesh points 5272 
Number of triangular 

mesh elements 
10436 

Number of degrees of 
freedom 

62929 

Number of boundary 
elements 

354 

Number of vertex 
elements 

16 

Minimum element quality 0.7057 
Element area ratio 7.45E-4 

 

Once the meshing was complete, first the incompressible Navier-Stokes solution 

was generated using Lagrange stationary solver. Table 5.3 shows the subdomain and 

boundary conditions used to solve the model. A streamline artificial diffusion was 

selected for solving the Navier-Stokes (N-S) equations. After solving for x and y 

velocities, the N-S solutions were stored. The model was then solved for heat conduction 

and convection using a time-dependent solver. Time stepping was performed from 0 to 

300 s with interval of 1 s. The relative and absolute tolerances of 0.01 and 0.001 were 

chosen, respectively. Table 5.4 shows the thermal subdomain and boundary conditions 

used to solve the problem. The pulse heating mode was made possible by using the 

inbuilt COMSOL Heaviside functions. Equation 5.1 shows the expression used to 

generate a square pulse for a period of 120 seconds with 50% duty cycle. 

 

2 60,1 2 120,1   , 120  

(5.1) 

where: 

 is the desired heating element temperature  

 is the initial temperature of the heating element 

 is the desired temperature rise of the heating element from its initial value 

 is the modulo operator 

t is the time in seconds 

 2  is a smoothed Heaviside functions 
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Isotropic diffusion was enabled while solving the heat conduction and convection 

equations. Referring to Figure 5.7 for a flow from left to right, the temperature was 

recorded at the point, 0.01 meters, downstream and upstream from the respective edge of 

the heating element. The results for both air and water are shown in Section 5.2.2. Table 

5.3 and Table 5.4 give the subdomain and boundary conditions selected for the 

simulation with air and water. 

 

Case 1: Air 

Table 5.3  Subdomain and boundary conditions for air  

 

 

 

 

 

 

 

 

Incompressible 
Navier-Stokes Density (kg/m^3) ρ = 1.184

1, 2, 5, 6 
& 7 No slip

Dynamic viscosity 
(Pa.s) η = 18.1034E-6 3

Inflow/Outflow 
velocity

4
Normal flow 

pressure

Conduction and 
Convection

Thermal 
conductivity 
(W/(m.K)) k = 0.026

1, 2, 5, 
& 6 Thermal insulation

Density(kg/m^3) ρ = 1.184 3 T = 298 °K 
Heat capacity 

(J/(kg.K)) Cp = 1005.38 7
Desired heater 
Temp. in °K  

4 Convective flux

Subdomain Conditions Boundary Conditions

Subdomain Conditions Boundary Conditions
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Case 2: Water 

Table 5.4  Subdomain and boundary conditions for water 

 

 

 

 

 

 

 

 

 

Incompressible 
Navier-Stokes Density (kg/m^3) ρ = 998.2 1, 2, 5, 6 & 7 No slip

Dynamic viscosity 
(Pa.s) η = 1.0E-3 3

Inflow/Outflow 
velocity

4
Normal flow 

pressure

Conduction and 
Convection

Thermal 
conductivity 
(W/(m.K))

k = 0.0015 * T + 
0.1689 1, 2, 5, & 6 Thermal insulation

Density(kg/m^3) ρ = 998.2 3 T=298 °K 
Heat capacity 

(J/(kg.K)) Cp = 4200 7
Desired heater 
Temp. in °K  

4 Convective flux

Subdomain Conditions Bondary Conditions

Subdomain Conditions Bondary Conditions
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               5.2.2   Simulation Results 

Figure 5.8 shows the average of peak temperature difference between the 

upstream and downstream sensing element at different air flow rates. The heating 

element was operated in pulse mode with 50% duty cycle with peak temperatures at 30 

°C, 35 °C, 40 °C, 50 °C and 55 °C. We find that the temperature difference decreases as a 

function of flow rate. This is intuitive because the downstream sensing element, which 

gets heated by the convective heat transfer from the heating element, also cools off much 

faster if the flow of air is higher. The simulations show that using a higher heater 

temperature gives a higher slope and hence higher sensitivity in flow measurements. We 

also find that by increasing the heater temperature, a dynamic range of flow can be 

measured. The increase in flow range with heater temperature can be observed in the area 

marked by the red lines. 

 

Figure 5.8  Peak temperature difference versus air flow rate 
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Figure 5.9 shows the average of peak temperature difference between the 

upstream and downstream sensing element at different water flow rates. The heating 

element was operated in pulse mode with 50% duty cycle with peak temperatures at 40 

°C, 60 °C, 80 °C. Observation for flow sensing in water was found to be similar as in air. 

The temperature difference was found to decrease with the increase in water flow rate, 

and having a higher heater temperature increased the sensitivity (slope) for flow sensing. 

Since water has a higher kinematic viscosity, water sensing had to be simulated at lower 

flow rates in order to remain the laminar flow regime (Re <500 in simulations). We also 

find that by increasing the heater temperature, a dynamic range of flow can be measured. 

The increase in flow range with heater temperature can be observed in the area marked 

by the red lines. 

 

 

Figure 5.9  Peak temperature difference vs. water flow rate 
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      5.3   Experimental Results 

Figure 5.10 shows the plot of the temperature difference between the upstream 

and downstream sensing elements with respect to time. The heating element was operated 

in pulse mode and the heat pulse peak was set to 55 °C.  The high and low time for the 

pulse were 60 seconds each, i.e. 50 % duty cycle. On observing the graph, it can be seen 

that with the increase in the flow rate the differential temperature between the sensing 

elements decreases. The negative difference is due to the flow in the opposite direction. 

 

Figure 5.10  Plot of temperature difference between upstream and downstream vs. time 

Figure 5.11 shows the average of peak temperature difference between the 

upstream and downstream sensing element at different air flow rates. The heating 

element was operated in pulse mode with 50% duty cycle at 35 °C and 55 °C. As 

predicted from the simulation, we see the temperature difference decreases as velocity 

increases. At 35 °C, the simulation and experimental results show close resemblance. 

However, at 55 °C, the simulation and experimental results vary in nature. This can be 
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explained by the fact that the heat losses increase as the heater temperature increases. To 

avoid this difference, the experimental setup needs better heat modeling.   

 

Figure 5.11  Experimental result and simulated result comparison 

We also tried to measure the cooling rate of the sensing element as a function of 

the air flow rate, since it could potentially be used to infer air flow rate directly. Figure 

5.12 shows the differential cool-off rate of the downstream sensing element. The heating 

element was operated in pulse mode with 50% duty cycle at temperatures 40 °C, 50 °C 

and 55 °C. Data shows that with increase in the flow rate the cool-off rate also increases. 

Better linearity is seen with higher heater temperatures. This promises that cool-off rate 

of the downstream sensing element may also be used to infer or confirm the air velocity. 
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Figure 5.12  Cool-off rate as a function of air flow rate 

 

Figure 5.13  The average plot of the cool-off rates as a function of air flow rate 
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 Figure 5.13 shows average of the cool-off rates measured using the experimental 

setup operated at different heater temperatures. From the graph, we see that the overall 

relationship between the cool-off rate and the flow rate is linear. This linearity can help 

infer the air flow rates directly for a measured cool-off rate. 

 

Figure 5.14 is the plot of the differential temperature of the upstream and 

downstream sensing elements versus the time. The figure also shows the feasibility to 

sense the bi-directional flows using the experimentally assembled calorimetric mass flow 

sensor. 

 

Figure 5.14  Bi-directional sensing feasibility 
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Figure 5.14 shows the plot of differential temperature of the upstream and 

downstream sensing elements with respect to time at various flow rates. The negative 

difference is due to the flow in the opposite direction. In this case the heating element is 

operated in pulse mode at a higher temperature in order to get the sensing elements to 

reach their equilibrium state. Figure (a) shows the result plot with the heating element 

operated in pulse mode with 50% duty cycle. Figure (b) shows the result plot with the 

heating element operated in pulse mode with 25% duty cycle. It can be observed that with 

the reduction in the duty cycle the results remain unaffected.  The energy consumption 

requirements shown for the continuous heating, 50% duty cycle heating, and 25% duty 

cycle heating show that the sensor would consume less power while providing similar 

flow rate sensitivity as 50% or 100% duty cycle operation. 

 

Figure 5.15  (a) The heating element operated in pulse mode with 50% duty cycle, and     
(b) The heating element operated in pulse mode with 25% duty cycle. 
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Figure 5.16  (a) Watt-hour consumption and (b) Joule consumption 

Figure 5.15 show the energy consumption of the heating operation in the 

experimentally built thermal mass flow sensor. This graph shows how reducing the duty 

cycle of the heat pulse the energy consumption also can be reduced. 
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6.   CONCLUSION AND FUTURE WORK 

In this research project, a calorimetric thermal mass flow sensor was 

experimentally assembled and tested to measure flow rates in a closed conduit. Air and 

water flow were simulated using COMSOL software. The simulations were based on a 

mathematical model that was required to solve the Navier-Stokes fluid flow equations 

and the heat conduction/convection equation with boundary settings reflecting near-real 

situation. The air flow model was validated experimentally with flow range between 0.6 

to 1.2 m/s. 

 

In this work we have demonstrated the design of thermal sensor using thinfilm 

platinum sensor and polyimide thermofoil heating element. This provided the thermal 

responses expected for the design. The low power instrumentation amplifier provided 

very accurate measurements, and as low as ~2.5 μV (50 μV max) change was detected. 

This corresponds to a temperature change as low as 0.02 °C. The difference amplifier 

provided the direction of the flow. The selection of the temperature controller provided a 

very stable and accurate temperature distribution in the vicinity of the sensor. The timer 

circuit was designed to carry out heating operation in pulse mode with 25% and 50% 

duty cycle.  

 

A computational fluid dynamic (CFD) model replicating the boundary conditions 

of the assembled flow sensor was built using COMSOL Multiphysics. Simulations for air 

and water flows were performed. The experimental results were in close agreement with 

the simulation results. 
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The experimental results showed that a dynamic flow measurement range can be 

achieved by increasing the heater temperature. From the results, it was clear that by 

reducing the duty cycles the power consumption of the system can be reduced without 

having any adverse effects on the flow sensitivity of the sensor.  It was also concluded 

that the cool-off rate of the sensors can be a potential measure to predict the flow rate of 

the fluid under measurement. The challenges in experimental verification of the liquid 

flow included control of flow and electrical isolation of the sensing elements within the 

liquid medium. An epoxy material has been identified that can be possibly used for 

isolation. This was reserved for future consideration. In future we would like to realize a 

system that can be integrated with wireless devices that can transmit the magnitude of the 

fluid flow and its direction.  
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