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ABSTRACT

Bandi, Ajay Kumar. M. S. E. C. E. , Purdue University, May 2013. An Integrated
Sensor System for Early Fall Detection. Major Professor: Maher E. Rizkalla.

Physical activity monitoring using wearable sensors give valuable information

about patient’s neuro activities. Fall among ages of 60 and older in US is a lead-

ing cause for injury-related health issues and present serious concern in the public

health care sector. If the emergency treatments are not on time, these injuries may

result in disability, paralysis, or even death. In this work, we present an approach

that early detect fall occurrences. Low power capacitive accelerometers incorporated

with microcontroller processing units were utilized to early detect accurate informa-

tion about fall events. Decision tree algorithms were implemented to set thresholds

for data acquired from accelerometers. Data is then verified against their thresholds

and the data acquisition decision unit makes the decision to save patients from fall

occurrences. Daily activities are logged on an onboard memory chip with Bluetooth

option to transfer the data wirelessly to mobile devices.

In this work, a system prototype based on neurosignal activities was built and

tested against seven different daily human activities for the sake of differentiating

between fall and non-fall detection. The developed system features low power, high

speed, and high reliability. Eventually, this study will lead to wearable fall detection

system that serves important need within the health care sector.

In this work Inter-Integrated Circuit (I2C) protocol is used to communicate be-

tween the accelerometers and the embedded control system. The data transfer from

the Microcontroller unit to the mobile device or laptop is done using Bluetooth tech-

nology.
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1. INTRODUCTION

The fall is a very risky factor in elderly people’s daily living, especially the indepen-

dently living elders; it often causes serious physiological injuries, such as bleeding,

fracture, and central nervous system damages. If the emergency treatments are not

on time, these injuries may result in disability, paralysis or even death. On the other

hand, the fall may produce many psychological problems such as fear of movement,

and worry about living independently [1]. It is estimated that over one third of adults

of ages 60 years and older fall each year, making it a leading cause of nonfatal injury

for that age group.

In 2002, about 22% of community-dwelling seniors reported falling events with

medicare costs per fall averaged between $9,113 and $13,507 [2]. In 2000, falls among

older adults cost the U.S. health care system over $19 billion and this reached $30

billion by 2010. With the population aging, both the number of falls and the costs to

treat fall injuries are likely to increase. By 2020, the annual direct and indirect cost

of fall injuries is expected to reach $54.9 billion [3].

One in three adults of age 65 and older is subjected to a fall each year [4] [5].

Of those, 20% to 30% suffer moderate to severe injuries that make it hard to live

independently, and increase their risk of early death [6]. Older adults are hospitalized

for fall-related injuries five times more than they are for injuries from other causes.

In 2009, about 20,400 older adults died from unintentional fall injuries [5]. In the

same year emergency departments treated 2.4 million nonfatal injuries among older

adults; more than 662,000 of those patients were hospitalized [7].
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1.1 Advantages of Fall Detection

Most of the present clinical assessment tools include either self-report or observer-

rated measures. Although self-report measures are simple to acquire, they could be

inaccurate due to many reasons such as poor patient memory and misjudgments of

actual capability. Observer-related surveys by personal caretakers are often time con-

suming and rarely capture changes in functional status that may fluctuate throughout

the day. Remote monitoring of physical activity using body-worn sensors provides

an alternative to assessment of functional independence by subjective and paper-

based questionnaires. The objectivity and comprehensiveness of a patients physical

performance record could be improved by a system that automatically identifies the

activities carried out by the individual throughout the day, particularly in remote

locations such as the patients home or community.

1.2 Literature Review for Fall Detection

There have been research efforts to detect fall events. In an article written

on Barometric pressure and triaxial accelerometry-based falls event detection [8],

a waist mounted device was designed to feature a barometric sensor for the reduc-

tion of false positives in fall events using decision tree for pattern recognition. The

device comprises of a custom-made data acquisition device, which comprises of a

triaxial accelerometer (MMA7260, Freescale Sample Rate 40Hz), a microcontroller

(MSP430F149, Texas Instruments) with a 12-bit analog-to-digital convertor (ADC),

an atmospheric air pressure sensor (SCP1000, VTI Technologies), a Bluetooth module

(WML-C30AH, Mitsumi), and a Li-Pol rechargeable battery. The data processing be-

gins with incoming signals passing through median filter, then a low pass filter from

where the gravitational acceleration component is obtained, and subtraction from

the median filtered signal gives estimation of body acceleration. SVM (Signal Vector

Magnitude from GA component), SMA (Signal Magnitude Area from BA component,

tilt angle, and differential pressure parameter are extracted from the processed signal.



3

In an article about-automatic fall detection using wearable biomedical signal mea-

surement terminal [9] discuss about a waist mounted device that detects fall events

in real time with an alarm feature. The device uses a Kionix KXM52-1050 (Sample

Frequency of 20Hz) tri-axial accelerometer and a Bellwave BSM856 CDMA (Code

Division Multiple Access) standalone modem for detection and signal management.

The fall detection has four thresholds (Fall Upper Threshold, Fall Lower Threshold,

Laying Upper Threshold, Laying Lower Threshold) and uses only Y-axis to determine

them.

With the advent of smartphones with accelerometers, programmability can be

used to implement the fall detection algorithms directly in smartphones but as the

phone may not be carried by the person at all times and the chances of the phone

being dropped accidentally makes this option unfeasible [10].

1.3 Wireless Applications

A sensor is a device, which can convert physical information into signals, which can

be interpreted by a user using an electronic component. Usually the signals received

from these sensors are in analog form and can be converted and formatted into digital

by using computers. With the advent of technology we can now use sensors, which are

smart and efficient enough such that they come with all the processing and conversion

units on the sensor body itself. These smart sensors are energy efficient and they also

have embedded functions to communicate, transfer data and can also take inputs

from the computers to accomplish the applications.

Smart sensors can be used to design integrated data acquisition systems [11],

where they are used to obtain data continuously, process them and implement them

in their respective applications to accomplish the tasks assigned. High-resolution data

is expected to have from these sensors so that the uncompromised accuracies can be

obtained. Sending these high-resolution data to the remote computers in real-time
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gives the ability to monitor and store the data efficiently. It also reduces the size of

the processing unit, which is supposed to be with the person at all times.

1.4 Embedded Sensor System Applications

Sensor technology has been used in measuring different physical quantities such as

position, temperature, humidity, orientation, pressure, torque, radiation, acceleration

and many more. With this wide range of capabilities, sensors find their applications

in many areas in our day-to-day life. Applications include Medical, automotive,

industrial, HVAC (heating, ventilation, and air conditioning), civilian etc. In this

thesis we are primarily concerned about medical [12] and civilian usage of sensors to

monitor and protect elders from fatal fall occurrences in real-time.

1.5 Sensor Fabrication Techniques

Semiconductors play a major role in sensor manufacturing using advanced tech-

niques like MEMS (Micro-Electro Mechanical System), lab-on-chip, system-on-chip

and ASIC (Application-Specific Integrated Circuit). These sensors are capable of

doing data acquisition and signal processing at the same time consuming the lowest

possible power. Figure1.1 explains the basic digital processing system inside a typical

sensor. Initially, the physical data is obtained from the sensing area and the receiver

section turns it into the digital signal-processing unit. Here the analog signals are

converted to digital signals using A/D converters. The output of this block is then

given to the transmitter section, where the data can be transmitted to other circuits

like microprocessors or computers using various communication protocols, some of

them include I2C, SPI and UART.

In this project we used accelerometers as the sensor units, which can record the

patients physical activity. There are different types of accelerometers and what differ-

entiates them is the type of sensing element and the principle of operation involved.

The following is the list of typical accelerometers in use:
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Fig. 1.1. Block diagram of a typical sensor

Capacitive: These accelerometers sense the change in the electrical capacitance be-

tween static condition and dynamic state with respect to acceleration.

Piezoelectric: These accelerometers use materials such as crystals, which generate

electric potential from an applied stress, also called as the piezoelectric effect.

Piezoresistive: Accelerometers (strain gauge accelerometers) work by measuring

the electrical resistance of a material when mechanical stress is applied.

Hall effect: Hall effect accelerometers measure voltage variations stemming from a

change in the magnetic field around the accelerometer.

Magnetoresistive: Accelerometers work by measuring changes in resistance due

to a magnetic field. The structure and function is similar to a Hall Effect

accelerometer except that instead of measuring voltage, the magnetoresistive

accelerometer measures resistance.
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MEMS-based Accelerometers: MEMS technology is based on a number of tools

and methodologies, which are used to form small structures with dimensions

in the micrometer scale. The same technology is being utilized to manufacture

state of the art MEMS-Based Accelerometers.

From industry to education, accelerometers have numerous applications. These

applications range from triggering airbag deployments to the monitoring of nuclear

reactors. There is a number of practical applications for accelerometers that are used

to measure static acceleration (gravity), tilt of an object, dynamic acceleration, shock

to an object, velocity, orientation and the vibration of an object.

Reasons for selecting MMA8452Q accelerometer:

1. It supports I2C communication (between accelerometer and the microcontroller)

2. It has two programmable interrupt pins for six interrupt sources:

• It provides flexible output data that can be configured to be in either 8-bit

or 12-bit

• Motion/freefall detection is based on the configured threshold

• It can detect single/double taps

• It has the ability to detect the orientation in all 6 orientations

• It has a built in high-pass filter along with user configurable cut off fre-

quencies, which features transient detection

• It has a built in auto-wake/sleep mode

3. It features dynamically selectable acceleration ranges of ±2g/±4g/±8g

4. Its output data rates can be chosen from 1.56 Hz to 800 Hz depending on the

signal resolution required by the application
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1.6 Communication Protocol

The digital data from the sensors is usually provided in the serial form. We have

some communication protocols, which are intended to use in these sensor applica-

tions, where the data can be of high resolution and frequencies, ranging from KHz to

few MHz. Some of them are Inter Integrated Circuit protocol (I2C), Serial Periph-

eral Interface (SPI), Universal Asynchronous Receiver and Transmitter (UART), and

Universal Serial Bus (USB) [13].

In this thesis I2C communication protocol is used, which is dependent on the clock

frequency. All the communication and data transfer in this protocol is done with

reference to the clock line. This I2C uses bidirectional open drain lines, Serial Data

line (SDA) and Serial Clock line (SCL) pulled up with resistors. The typical voltages

involved in this communication are 3.3V or 5V. The device that is controlling the other

peripheral devices is called master and the devices connected to the master are called

slaves. Each slave has its own address so that they can be invoked uniquely during

operation. SPI is also similar to I2C but it has a chip select line to control the slaves

connected to it. UART and USB communications are asynchronous communication

protocols, where the data transfer and communication is done without a clock signal.

1.7 Proposed Approach

Triaxial signal based on scientific data features like SVM, SMA, and tilt angle are

calculated and fed into the decision tree algorithm to obtain the real fall thresholds

while eliminating false falls. Threshold values, determined from experimental verifica-

tion, are used in the fall detection prototype, and whenever a fall is detected, an LED

is turned on, and the event is logged. The proposed approach features high speed

- low power from the use of low power and high speed embedded system processor.

The algorithms used here also feature high speed to reach the processor decision in a

timely manner.
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2. NEUROSCIENCES AND NEUROSIGNALS

Prior to designing a reliable and effective fall detection system, it is necessary to

study the neurological inputs and pathways of balance and natural fall prevention in

humans. People monitor their environment by constantly adjusting their orientation

with respect to movements. Two particular systems use external inputs to perform

this task and anticipate the occurrence of a fall: vestibular system and somatosensory

system.

2.1 Vestibular System

The vestibular system is in charge of engaging neurological pathways to provide

perceptions of gravity and movement. The inner ear consists of a series of components

that help transduce signals into electrical events. The membranes in the inner ear

consist of three semicircular ducts (horizontal, anterior, and posterior), two otolith

organs (saccule and utricle) and the cochlea, which is part of the auditory system. The

semicircular ducts respond mainly to angular acceleration. A head turning movement

induces movement of inner fluids that bend the cilia of hair cells. This causes the

external input to convert into neurosignals. The otolith organs are located against

the walls of the inner ear and they also influence the transmission of signals during

head movements through the VIIIth nerve to the brainstem. The utricle organ has

higher sensitivity when the head is upright, while the saccule is most sensitive when

the head is in a horizontal position [14].
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2.2 Somatosensory System

Somatosensory systems allow identifying the environment using physical touch.

For instance, it helps process information about characteristics of the environment

such as temperature and pain through neural stimulation. Also, the somatosensory

system of proprioception causes awareness of body position through muscle and joint

stimulation. This sensory information is transported and processed by somatosensory

systems along various pathways based on the type of information that is being trans-

ported. For particular muscle contraction or proprioceptive information is carried

along the column-medial lemniscal pathway [15].

2.3 Neurosignals

Different studies have shown how the proprioceptive system and muscle reac-

tions influence body anticipation to a free fall in elderly subjects. Electromyography

(EMG), a technique that helps study the muscle electrical activity, has helped to

evaluate muscle activity during a fall. In Bisdorff’s “EMG responses to free fall in

elderly subjects and akinetic rigid patients” [16], EMG recordings in two normal

subjects in response to randomly presented startling stimulus (fall) or non-startling

stimulus (click) were analyzed. The subjects task was to dorsiflex the ankles in re-

sponse to either stimulus. The fall induced startle occurred at about 100ms followed

by the voluntary contraction at about 200ms. To assess the relative strength of the

response, the rectified EMG areas were normalized in individual subjects by setting

the strongest single activation found at an arbitrary level of 100%. The mean EMG

strength was significantly larger in response to the startling stimulus (fall = 78.6 (SD

17.2)) than to the non-startling stimulus (click = 50.4 (SD 18.5); arbitrary % EMG

units; p = 0.0001). It was concluded that in the case of a free fall it seems reasonable

to assume that, in normal subjects, the vestibular system is important but, as the

data suggest, patients with longstanding absence of vestibular function are capable

of using other sensory sources to generate the response. Contact and proprioceptive
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signals, particularly from the neck, have access to the brainstem at latencies only

fractionally longer than vestibular ones and it could be important in detecting a fall

and triggering motor responses [16]. Other conclusions include:

1. EMG responses in younger normal subjects occurred at: sternomastoid 54ms,

abdominals 69ms, quadriceps 78ms, deltoid 80ms, and tibialis anterior 85ms.

This pattern of muscle activation, which is not a simple ostrocaudal progression,

may be temporally/spatially organized in the startle brainstem centers.

2. Voluntary tibialis EMG activation was earlier and stronger in response to a

startling stimulus (fall) than in response to a nonstartling stimulus (sound).

This suggests that the startle response can be regarded as a reticular mechanism

enhancing motor responsiveness.

3. Elderly subjects showed similar activation sequences but delayed by about 20ms.

This delay is more than that can be accounted for by slowing of central and pe-

ripheral motor conduction, therefore suggesting age dependent delay in central

processing.

4. Avestibular patients had normal latencies indicating that the free fall startle

can be elicited by non-vestibular inputs.

5. Latencies in patients with idiopathic Parkinsons disease were normal whereas

responses were earlier in patients with multiple system atrophy (MSA) and de-

layed or absent in patients with Steele-Richardson-Olszewski (SRO) syndrome.

The findings in this patient group suggest

• Lack of dopaminergic influence on the timing of the startle response.

• Concurrent cerebellar involvement in MSA may cause startle disinhibition.

• Extensive reticular damage in SRO severely interferes with the response

to free-fall.
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2.4 Experiment Protocol

Based on the results of Bisdorffs [16] shown in Section 2.3, and after obtaining

St. Vincents Hospital Internal Review Board (IRB) approval for experimentation

with human subjects (R2010-138), the following protocol for experimentation was

developed:

2.4.1 Test A

Two rounds of testing were performed. For the first round, test A, six healthy

volunteers (3 male, 3 female) between the ages of 21 and 35 years old were recruited.

Five wireless sensors were positioned in five different places as shown in Figure 2.1.

Each person performed different fall types including forward, backward, and sideways,

falling while transitioning from chair to standing position. Non-fall data was also

recorded that included walking and bending.

2.4.2 Test B

For the second round of experiments ten healthy volunteers (5 male, 5 female)

between ages of 21 and 40 years old were recruited. Similar to the first experimental

set, the subjects performed the same fall types but this time the data was collected

only from sensors S1, S2, and S3 for simplicity and high noise in the activity of lower

extremities. The network camera was also used in test B to record all the activities,

falls and no falls, of every subject.

The sensors used for Test B set of experiments are from Freescale semiconductors,

called ZSTAR3, shown in Figure 2.2. The ZSTAR3 has MMA7361LT low power

capacitive accelerometer on it. Three ZSTAR3 sensors are placed on the patients

body and the data is acquired using a wireless USB stick. The wireless communication

is done at 2.4 GHz Radio Frequency. ZSTAR3 triaxial accelerometer sensor has a

selectable data rate of 30, 60 or 120Hz. The wireless range of these sensors is up to
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Fig. 2.1. Sensors placement

20 meters. It consumes 1.8 to 3.9 mA of current during normal mode of operation.

A coin sized CR2032 3V battery powers the sensors.

During the data acquisition from accelerometer sensors, all the falls and non-fall

events are recorded using an IP camera to have a log of fall time so that they can

be used while processing the data for thresholds using decision trees. The IP camera

used in this project is IQinVision IQEYE2803A4, and is shown in Figure 2.3. This

IPcamera is set up using a File Transfer Protocol Server (FTP) and FTP client. The

filezilla software is set up in such a way that the camera data is transmitted to an
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Fig. 2.2. ZSTAR3 sensor and USB stick

external hard drive connected to a computer through Wi-Fi. The camera data is

obtained in the form of sequential images with a time stamp on them.

Fig. 2.3. IPcamera used during experiments
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2.4.3 Test C

For the third round of experiments six healthy volunteers (4 male, 2 female)

between ages of 21 and 40 years old were recruited. Similar to the second experimental

setup, the subjects performed the same fall types but this time hardware prototype

is used. The details of this hardware is described in Chapter 3. Figure 2.4 illustrates

the placement of sensors and the processing unit.

Reasons for opting the new Hardware prototype:

• The new fall detection unit is an integrated wired sensor system because; wire-

less sensors are prone to high power usage when compared to wired.

• Wireless sensors are more vulnerable to signal interference and they need to

have individual power supplies.

• Wireless sensors are not easy to carry, as they are not held together. Due to

this reason they need to be calibrated each time when the patient uses it.

• The new hardware prototype comes with a vest, to which all the three ac-

celerometers are sewed and the processing unit is also attached to it.

• These accelerometers have long cables such that it can be adjusted on the vest

for people of different heights.

• The processing unit handles the fall detection when thresholds are met and also

it has a Bluetooth module to transmit the data to any Bluetooth enabled device

wirelessly.
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Fig. 2.4. Front and back view of Proposed hardware prototype. Green
blocks represent the accelerometers and the red represents the process-
ing unit
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3. HARDWARE DESIGN

This chapter provides the information about the hardware design and integra-

tion of sensors into an embedded system. The embedded system using I2C

communication between the micro controller and the sensors is detailed. The

serial data from the micro controller is transmitted using a Bluetooth module.

3.1 The Embedded System

The integrated system consists of triaxial accelerometers, I2C multiplexer, mi-

cro controller and Bluetooth module. The following block diagram Figure 3.1

gives the basic idea of the integrated hardware and the types of communication

between the components. The ATmega328 is the Major control unit, to which

everything is integrated. The accelerometers are connected to this control unit

through an I2C multiplexer such that the Microprocessor can distinguish be-

tween them even though they have the same addresses. The information from

the accelerometers is processed and the data is wirelessly transmitted to mobile

devices or laptop using the Bluetooth module connected to it.

3.1.1 Arduino

Arduino UNO microcontroller unit used in this project is an open source hard-

ware. It has ATmega328 micro controller on it. It comes with a total of 14 dig-

ital input/output pins and 6 analog inputs. Out of the 14 digital input/output

pins, 6 can be used as Pulse Width Modulation (PWM) outputs. It has a 16

MHz ceramic oscillator onboard.
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Fig. 3.1. Block diagram of the integrated sensor system

The ATmega328 has 32KB Flash Memory, 2KB SRAM and 1KB EEPROM.

The Arduino UNO board operating voltage is 5V and it has an onboard voltage

regulator which can take up to a maximum of 20V from the supplied power

jack. The board can be programmed using the USB port available and it can

also be powered using the same port. The power jack provided can be used to

run the Arduino when it is not used with the USB. There is an ICSP header

for debugging and also a reset push button. In this project we are using the

analog pins A4 and A5 pins to connect the SDA and SCK of the I2C multi-

plexer. Digital pin D2 is used as logical low interrupt for the multiplexer. The
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Fig. 3.2. Arduino UNO board

Bluetooth module is connected to Rx and Tx pins of the Arduino so that the

serial communication can be done wirelessly. Figure 3.2 details the Arduino

UNO prototyping board and Figure 3.3 shows the pin diagram of ATmega328.

3.1.2 MMA8452Q Accelerometer

The MMA8452Q is a 3-Axis, smart, low-power, capacitive micromachined Digi-

tal Accelerometer from Freescale semiconductors with 12 bits of resolution [17].

It is packed with two interrupt pins, which can be used to invoke the inbuilt

flexible user programmable options and embedded functions. Those embedded

interrupt functions allow for overall power savings relieving the host processor

from continuously polling data.



19

Fig. 3.3. ATmega328 pin diagram

Fig. 3.4. MMA8452Q system architecture

The MMA8452Q has user selectable full scales of ±2g/±4g/±8g with high-

pass filtered data available for real-time applications. The communication is

done using the I2C digital output interface. The MMA8452Q accelerometer

has 42 configurable registers, which can be used based on the application. The

acceleration data of the X, Y and Z-axes are stored as 2’s complements of 12-bit

numbers of the 6 registers from 0x01 to 0x06. Some of the features are motion
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freefall detection, tap and pulse detection, orientation, high pass filtering, Auto-

sleep and wake up. The Accelerometer is small enough for patients to wear.

The MMA8452Q operating at 800Hz consumes 165µA current, making it a

perfect choice for this application. Figure 3.4 and Figure 3.5 give the block

and circuit diagrams that detail the internal architecture and pin connections

of accelerometer.

Fig. 3.5. MMA8452Q pin connections

3.1.3 I2C Multiplexer for Accelerometers

The accelerometers used in design of this prototype are MMA8452Q from Freescale

semiconductors. The data from the accelerometers are read using I2C commu-

nication. I2C communication is done based on the address of the slave units

connected to the master unit. All the 3 accelerometers that are used in the

design have the same address 0x2A. PCA9544A 4-channel I2C-bus multiplexer,

a quad bidirectional-translating switch, is used to regulate the switching be-

tween the three accelerometers, where one SCL/SDA pair can be selected at a

time [18]. The PCA9544A provides four interrupt inputs and one open drain
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interrupt output. Whenever any device generates an interrupt, it is detected by

the multiplexer and the interrupt output is driven low. Out of the four chan-

nels available, three were used to do the communication with the accelerometers.

The multiplexer has a unique address of 0x70 while the SDA and SCL are con-

nected to A4 and A5 of the Arduino. Figure 3.6 gives the pin diagram and

Figure 3.7 is the sample application of PCA9544A I2C multiplexer.

Fig. 3.6. PCA9544A pin diagram

3.1.4 Bluetooth

The Bluetooth module used in this prototype is a factory configured serial data

transmission board. It has Vcc, Tx, Rx, and ground pins of which the Tx of the

Bluetooth is connected to Rx of Arduino, and the Rx of Bluetooth is connected

to the Tx of Arduino in order to transfer the data wirelessly. The Bluetooth

module is configured to 9600 Baud rate as a default setting. It can operate at

a range of up to 30ft and voltage range from 3.3 to 5 V.



22

Fig. 3.7. Application of PCA9544A I2C multiplexer

Fig. 3.8. Bluetooth module

3.2 Inter-Integrated Circuit Communication- I2C

Inter-Integrated Circuit is a bidirectional two-wire interface synchronous com-

munication protocol. It requires two bus lines, Serial Data and Serial Clock.
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Each device connected to this bus is software addressable by a unique address.

I2C bus is a multi-master bus where more than one integrated circuit is capable

of initiating a data transfer can be connected to it, which allows masters to

functions as transmitters or receivers. I2C communication is highly immune to

noise, has wide supply voltage range that consumes very low current.

Fig. 3.9. I2C timing diagram

In this thesis, the microprocessor acts as a master and the three triaxial ac-

celerometers act as slaves. Both the bi-directional lines, SDA and SCL are

connected to a positive supply voltage via 4.7KΩ pull up resistors. Data trans-

fer rate on the I2C bus can range from 100Kbits/s to 3.4 Mbits/s based on

the application modes. A data START condition is observed when a HIGH to

LOW transition on the SDA while SCL is HIGH. A LOW to HIGH transition

on the SDA line while SCL is HIGH defines a STOP condition. These START

and STOP conditions are always generated by the master. Once the START

condition is initiated, the bus is considered as busy until a STOP condition is

reached. Figure 3.9 shows the signal integrity timing diagrams, including the

START and STOP bits.
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3.3 UART Communication

The Universal Asynchronous Receiver/Transmitter communication is used to

transmit the data from three accelerometers to the mobile device using the

Bluetooth module. Unlike I2C, UART is an asynchronous communication pro-

tocol (No clock required). Baud rate for the Bluetooth module used in this

thesis is set to 115200.

3.4 Hardware Programming

– The wire and math libraries are included for the I2C communication and

trigonometric functions respectively.

– Initially to begin the I2C communication with the accelerometers, the con-

tents of 0x0D register is read using the readRegister user defined function.

– This readRegister function invokes the Wire.beginTransmission function

of the Arduino library, which begins a transmission to the I2C slave device

with the address 0x1D.

– The Wire.write(0x0D) function writes the data from the accelerometer in

response to a request from the ATmega328.

– The Wire.endTransmission(false) command is used not to send a STOP

condition to the Wire.beginTransmission such that the I2C bus will not

be released yet. This prevents another master device from transmitting

between messages. This allows one master device to send multiple trans-

missions while in control.

– Wire.requestFrom(address, quantity) is used by the master to request bytes

from a slave device.

– Wire.read( ) reads a byte that was transmitted from a slave device to a

master after a call to requestFrom() was transmitted from a master to

slave.
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– The measured acceleration data of the MMA8452Q is stored in OUT X MSB,

OUT X LSB, OUT Y MSB, OUT Y LSB, OUT Z MSB, and OUT Z LSB

registers as 2s complement 12-bit numbers. The most significant 8-bits of

each axis are stored in OUT X (Y, Z) MSB

– The MMA8452Q has an internal ADC that can sample, convert and return

the sensor data when requested.

– The 8-bit command transmission begins on the falling edge of SCL.

– The transaction on the I2C bus starts with a START condition signal.

After START condition has been transmitted by the master (ATmega328),

the I2C bus is considered as busy.

– The next byte of data transmitted after START contains the slave address

in the first 7 bits, and the eighth bit is reserved to indicate whether the

master is receiving data or transmitting data.

– The MMA8452Q is set to operate at 800 Hz (Maximum available) such

that it can transmit 84 samples per second when 115200 baud rate is used.

– Signal features SVM, SMA and Tilt angle are calculated and the thresholds

are set such that whenever there is a fall occurrence, the LED pin connected

to the 12th pin of Arduino is turned on and the event is logged on the PC.

– The Arduino UNO board is programmed using the Arduino software and

the code is included in the appendix section.
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4. PATTERN RECOGNITION AND DATA

ACQUISITION

In this study the two preprocessing steps performed by Karantonis et al. [19]are

used. The first step is median filtering and the second step is low pass filtering.

The low pass signal filtering is considered as an estimation of the gravitational

acceleration (GA), and the median filtering is an estimation of the body accel-

eration (BA).

4.1 Feature Extraction Indices SVM, SMA, Tilt Angle

In this study we used the second algorithm presented by Karatonis et al. [19].

The algorithm is based on the assumption that a fall is a signal of extreme

impact. The degree of movement intensity is known as signal vector magnitude

(SVM) and it is derived from the BA component as follows:

SVM [i] =
√
x2BA [i] + y2BA [i] + z2BA [i] (4.1)

where xBA [i] is the ith sample of the BA component along the axis samples

(similarly for yBA [i] and zBA [i]). Comparing the SVM with a threshold helps

determine the fall event. In order to measure the intensity of the activity and

distinguish between rest and movement, the signal magnitude area (SMA) is

calculated. SMA is the sum of the integrals of the three acceleration signal

magnitudes and it is also calculated using the BA component as shown:

SMA [i] =
1

T

j=i−T∑
j=i

(|xBA [j]|+ |yBA [j]|+ |zBA [j]|) (4.2)
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where xBA [i], yBA [i] , and zBA [i] are the BA components of the x, y , and z axis

signals and T is the sampling period. Using the GA component of the signal

helps determine the postural orientation of the subject wearing the accelerom-

eters. The derivation of tilt angle can be achieved using the GA component

along the z axis as

Φ [i] = cos−1

(
zGA [i]√

x2GA [i] + y2GA [i] + z2GA [i]

)
(4.3)

where xGA [i] is the ith sample of the GA component along the axis samples

(similarly for yGA [i] and zGA [i])

4.2 Threshold Information

Using data collected after Test A and Test B described in Chapter 2 section

4 and video recordings of the fall, image processing techniques were used to

classify the accelerometer data as fall and no fall events based on the body

inclination. The images were processed in order to determine the moment in

which body inclination was between 15 and 60 degrees with respect to the

vertical axis. Using that moment in time where the image reached the range,

the accelerometer data was then classified as fall or no fall (0 for no fall and

1 for fall). Matrices containing the classification array of zeros and ones, and

arrays of SMA values, SVM, and Tilt angles for the three sensors were created

and used to find thresholds using a decision tree model.

4.3 Decision Tree Model

Decision trees are pattern recognition tools that provide weighted solutions to

a classification problem with output classes such as fall/no fall in our case.

Decision Trees are constructed from training data sets in which each data point
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contains an input vector along with a target value. The target value, either a

1 or a 0, represents the class to which the data belongs. The software Rattle, a

sub-package of R was used for the purpose of training and calculating the fall/no

fall threshold values. These thresholds are later coded using if-then statements

and later stated on unseen data points as the prediction is compared with

true classes. Figure 4.1 shows a sample DT as a flowchart with rules. Two

parameters in Rattle are adjusted to modify the output: complexity cost and

loss matrix. The complexity cost is a number between 0 and 0.0001 that adjusts

the size of the tree. The larger the complexity costs the simple decision tree

containing fewer nodes. The loss matrix is a comparative misclassification cost

used to make fall or no fall class almost pure.

Fig. 4.1. Example decision tree
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4.4 Falls and Non Falls Setups

Using the new hardware prototype of the integrated sensor system, data was

collected from 6 subjects (4 male and 2 female). The age, height and weight of

all subjects were documented. All the six subjects were asked to wear the vest,

to which the sensors and the processing unit were attached. Seven different

activities, which imitate both falls and non-falls, are asked to perform:

– Frontal fall: Subjects were asked to take two laps of normal walking

around the mattress and to imitate a frontal fall on the mattress.

– Side fall: Subjects were asked to take one lap and take a side fall on the

mattress.

– Back fall: This fall was taken without walking, but asked to fall down

backwards.

– Chair fall: Before the data acquisition, the subject will be sitting in a

chair and asked to imitate a chair fall while standing up, and the data is

collected.

– Sit normal in a chair: This involves the subject sitting in a chair nor-

mally.

– Sit sudden in a chair: In this, the subject is asked to sit suddenly and

it should be considered as a non-fall by the detection unit.

– Tripping: Subjects are asked to walk normally for some time, then imitate

a trip near a window but prevent themselves from falling. This should be

detected as a no fall by the hardware unit.

– Lay normal on a bed: Subjects were asked to walk around and lay

normally on a bed.

– Lay suddenly on a bed: This is similar to normal laying but the subject

will be doing it with a sudden movement.
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Out of these 7 activities, the first 4 are the real falls and the later 3 are non-

falls. Accuracy is determined based on the true positives, true negatives, false

positives and false negatives of the fall detection. The following figures illustrate

some of the fall types and also give an idea of the test setup.

4.5 Data Acquisition Using Bluetooth Enabled Laptop

The serial data transmitted by Bluetooth module connected to the processing

unit can be saved on any computer that has Bluetooth capability. The pairing

password for the Bluetooth module is 1234 by default. The baud rate is also

set to 9600 as factory default. As we need to transfer our serial data at 115200

baud rate, it can changed by sending some AT commands to it. AT+BAUD8

command will change the baud rate from 9600 to 115200. Serial data from the

Bluetooth can be saved on a computer in command separated values file ver-

sion (csv) using MATLAB as shown in Figure 4.6. The Bluetooth device can

be identified and used to save data using the command:

s=serial(‘/dev/tty.BTUART-DevB’); for Mac

s=serial(‘COM4’); for Windows

set(s, ‘BaudRate’, 115200); is used to set the baud rate of the port.

datestr(now,‘HH,MM,SS,FFF’); is used to store the data with a time stamp in

Hours:minutes:seconds:milliseconds format.

The falls are detected in real time using the thresholds set on the signal features.

During the experimentation process, the data is transmitted in real time to a

Bluetooth enabled device to verify the accuracy of hardware prototype.

Figures 4.2 to 4.5 shows four diffrent types of falls visually and Figure 4.7

illustrates a frontal fall graphically with the SVM from 3 accelerometers.
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5. RESULTS

Three different tests were performed. The first two tests used two different

resulting data sets from Test A and Test B described in the experimental pro-

tocol section and generated fall detection simulations using MATLAB. Prior to

testing for fall detection accuracy, it was necessary to test the resulting decision

tree thresholds on a series of consecutive samples of the fall data after the first

time the threshold was met. Figure 5.2 shows accuracy results of fall detection

using 5 to 25 consecutive samples after the first time the threshold is met. It

was concluded that testing the threshold on 15 consecutive samples was the

best option with about 86% accuracy. Once the test range was determined, the

following tests were performed:

5.1 Test One

The data set generated using collected data in Test B was enrolled in the decision

tree software. The output thresholds were then tested on data generated using

Test B data. Figure 5.1 shows a fall detection simulation output. The green

dot shows where the algorithm detected the fall. Fall detection classification

was done as follows:

– A true positive occurs when a green dot lied before the lower most point

of the plot as shown in Figure 5.1. We know that the fall trajectory occurs

before the lowest peak based on the video images. In this case a fall was

correctly identified. A fall positive occurs when a green dot appears in no

fall data sets (i.e. tripping, sudden sitting). In this case no-fall data was

incorrectly classified.
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– A true negative occurs when a no-fall data set is correctly classified or

when a green dot does not appear in no-fall data.

– A false negative occurs when a fall data set is incorrectly classified or when

a green dot does not appear in a fall data set.

Fall detection accuracy results of Test One are represented in Figure 5.3.

Fig. 5.1. Fall Detection Simulation (MATLAB Output Plot)

5.2 Test Two

The data set generated using collected data in Test B was enrolled in the decision

tree software. The output thresholds were then tested on data generated using

Test A data. Fall detection accuracy results for falls only of Test Two are

represented in Figure 5.4. Figure 5.5 shows test results using thresholds on the

data collected for a total of sixteen subjects.
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Fig. 5.2. Accuracy Results by Number of Consecutive Samples used for Testing

Fig. 5.3. Detection Results Enrolling and Testing with same Data Set (Data Set 2).

5.3 Test Three

In test three, the hardware prototype was tested. Fall detection was performed

by the microprocessing unit in real time. Classification was recorded based on
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Fig. 5.4. Detection Results Enrolling Data set 2 and Testing on All
Data (Data Set 1 and Data Set 2).

Fig. 5.5. Total Simulation Detection Results Enrolling Data set 2 and
Testing on All Data

whether the LED light went on during falls or other no-fall events or movements.

Using the output threshold values of the decision tree models and programming
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them in the microprocessing unit, the prototype was tested in several frontal

falls and data was collected. However, falls were not being detected under those

threshold conditions. Using the new data of frontal falls generated by the hard-

ware prototype, and observing the threshold values generated by the decision

tree model, an informed selection of thresholds was performed as follows:

– For every fall, one SMA and one SVM, value for the three sensors were

manually chosen from the range where fall happens (right before the lowest

acceleration value). For simplicity and because high fluctuation of Tilt

angle values, it was decided to only select SMA and SVM values.

– Out of all the falls, the lowest values of SMA, SVM, were selected. It was

determined to select the lowest values because it would guarantee a closer

threshold to the beginning of the fall.

– Manual thresholds were reprogrammed in the microprocessor.

Figures 5.6 and 5.7 show the results of test three.
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Fig. 5.6. Detection Results of Hardware Prototype for Falls Only

Fig. 5.7. Detection Results of Hardware Prototype including No-Falls
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6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This thesis addresses how an integrated sensor system was designed for early fall

detection in elders. In an initial phase, a deep understanding of neuroscience and

the relationship between brain activity and fall events was developed through

research. Then an off the shelf wireless sensor unit from Freescale (ZSTAR3) was

used for data acquisition. For the initial set of experiments, a total of sixteen

subjects performed seven different kinds of falls as well as no-fall activities. Data

from the wireless triaxial accelerometers was used to calculate signal features

like Signal Vector Magnitude, and Signal Magnitude Area, and Tilt Angle.

These features were tested and simulated with MATLAB software, against each

fall data set to determine thresholds, which were obtained using decision trees.

Once the data was processed, a decision tree model was used to determine fall

detection thresholds. A hardware prototype was then developed. This hardware

features low power, high-speed sensors and processing units. The prototype, in

which the calculated thresholds were programmed, was tested with a final set of

experiments in which six volunteers were asked to imitate seven different kinds

of falls while wearing the hardware prototype. Once again, the test included

falls and non-falls. Accuracy was measured separately for total number of actual

falls and total number of activities (which include both falls and non-falls). The

new hardware prototype had an accuracy of 100% in detecting fall events and

95.55% accuracy in the case where all the fall and non-fall events are included.

Figure 6.1 shows the closed loop functioning diagram of the project.
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Fig. 6.1. Closed loop functioning diagram

6.2 Future Work

This thesis work shows an efficient working prototype of fall detection unit.

However, it is important to eliminate further the occurrence of false positives.

This can be refined by improving threshold values and by adding a gyroscope

to classify both angular velocity and body position. Observing 84 samples per
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second at the receiving end of the Bluetooth has brought sufficient resolution

to detect the fall event, other sampling rates may be needed to try in order

to optimize noise, calculation time, and robustness to achieve better real time

application. This prototype can also be further extended by including a safety

feature were airbags can be deployed using portable pressurized air cylinders

to prevent hip and neck fractures during a fall event. Including a protection

system requires further research in order to ensure the safety of the patient by

elaborating not only a reliable system that will deploy timely, but also that

it does not cause further injury to the patient. Research in determing the

angle of impact will be helpful in deploying airbags in an intelligent way and it

should be classified based on factors like height, weight and age. The system

can also include a communication system that uses a cellphone application that

integrates emergency services to assist people who have experienced a fall. The

system can also include a log feature where data can be saved and used for

further classification and specification of activities.
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APPENDIX: SOURCE CODE

#include <Wire.h>

#include <math.h>

#define MUX 0x70

#define SA0 1

#define MMA8452 ADDRESS 0x1D

const byte SCALE = 8;

const byte dataRate = 0;

int int1Pin = 2;

int int2Pin = 3;

int alarm = 12;

int accelCount[3];

float accelG[3];

float SVM1;

float SVM2;

float SVM3;

float SMA1;

float tilt1;

float SMA2;

float tilt2;

float SMA3;

float tilt3;

int t = 9999;

void setup()

{
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Wire.begin();

Serial.begin(115200);

pinMode(int1Pin, INPUT);

digitalWrite(int1Pin, HIGH);

pinMode(int2Pin, INPUT);

digitalWrite(int2Pin, HIGH);

digitalWrite(alarm, LOW);

pinMode(alarm, OUTPUT);

byte c;

c = readRegister(0x0D);

if (c == 0x2A)

{

initMMA8452(SCALE, dataRate);

}

mux(0);

mux(1);

mux(2);

mux(3);

mux(0xFF);

}

void loop()

{

static byte source;

mux(0);

if (digitalRead(int1Pin)==1)

{

readAccelData(accelCount);

for (int i=0; i<3; i++)
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accelG[i] = (float) accelCount[i]/((1<<12)/(2*SCALE));

SMA1 = abs(accelG[0]) + abs(accelG[1]) + abs(accelG[2]);

SVM1=sqrt( square(abs(accelG[0])) + square(abs(accelG[1])) + square(abs(accelG[2]))

);

tilt1 = acos(accelG[2] / SVM1) * 57.2957;

Serial.print(SVM1, 4);

Serial.print(”,”);

Serial.print(SMA1, 4);

Serial.print(”,”);

Serial.print(tilt1);

Serial.print(”,”);

}

mux(1);

if (digitalRead(int1Pin)==1)

{

readAccelData(accelCount);

for (int i=0; i<3; i++)

accelG[i] = (float) accelCount[i]/((1<<12)/(2*SCALE));

SMA2 = abs(accelG[0]) + abs(accelG[1]) + abs(accelG[2]);

SVM2=sqrt( square(abs(accelG[0])) + square(abs(accelG[1])) + square(abs(accelG[2]))

);

tilt2 = acos(accelG[2] / SVM2) * 57.2957;

Serial.print(SVM2, 4);

Serial.print(”,”);

Serial.print(SMA2, 4);

Serial.print(”,”);

Serial.print(tilt2);

Serial.print(”,”);
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}

mux(2);

if (digitalRead(int1Pin)==1)

{

readAccelData(accelCount);

for (int i=0; i<3; i++)

accelG[i] = (float) accelCount[i]/((1<<12)/(2*SCALE));

SMA3 = abs(accelG[0]) + abs(accelG[1]) + abs(accelG[2]);

SVM3=sqrt( square(abs(accelG[0])) + square(abs(accelG[1])) + square(abs(accelG[2]))

);

tilt1 = acos(accelG[2] / SVM3) * 57.2957;

Serial.print(SVM3, 4);

Serial.print(”,”);

Serial.print(SMA3, 4);

Serial.print(”,”);

Serial.print(tilt3);

Serial.print(”,”);

}

if (SVM1<=0.744 && SMA1<=0.9197 && SVM2<=0.8182 && SMA2<=0.9297

&& SVM3<=0.8543 && SMA3<=0.9414)

{

digitalWrite(alarm, HIGH);

Serial.print(t);

}

Serial.println();

mux(3);

mux(0xFF);
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}

void mux(byte channel)

{

byte controlRegister = 0x04;

controlRegister |= channel;

Wire.beginTransmission(MUX);

if (channel == 0xFF)

{

Wire.write(0x00);

}

else

{

Wire.write(controlRegister);

}

Wire.endTransmission();

}

void readAccelData(int * destination)

{

byte rawData[6];

readRegisters(0x01, 6, rawData[0]);

for (int i=0; i<6; i+=2)

{

destination[i/2] = ((rawData[i] << 8)|rawData[i+1]) >>4;

if (rawData[i] > 0x7F)

{ destination[i/2] = destination[i/2] + 1;

destination[i/2] *= -1;

}
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}

}

void initMMA8452(byte fsr, byte dataRate)

{

MMA8452Standby();

if ((fsr==2)||(fsr==4)||(fsr==8))

writeRegister(0x0E, fsr >>2);

else

writeRegister(0x0E, 0);

writeRegister(0x2A, readRegister(0x2A)&(0x38));

if (dataRate <= 7)

writeRegister(0x2A, readRegister(0x2A) | (dataRate <<3));

writeRegister(0x11, 0x40);

writeRegister(0x13, 0x44);

writeRegister(0x14, 0x84);

writeRegister(0x12, 0x50);

writeRegister(0x21, 0x7F);

writeRegister(0x23, 0x20);

writeRegister(0x24, 0x20);

writeRegister(0x25, 0x08);

writeRegister(0x26, 0x30);

writeRegister(0x27, 0xA0);

writeRegister(0x28, 0xFF);

writeRegister(0x2C, 0x02);

writeRegister(0x2D, 0x19);

writeRegister(0x2E, 0x01);

MMA8452Active();

}
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void MMA8452Standby()

{

byte c = readRegister(0x2A);

writeRegister(0x2A, c & (0x01));

}

void MMA8452Active()

{

byte c = readRegister(0x2A);

writeRegister(0x2A, c | 0x01);

}

void readRegisters(byte address, int i, byte * dest)

{

Wire.beginTransmission(MMA8452 ADDRESS);

Wire.write(address);

Wire.endTransmission(false);

Wire.requestFrom(MMA8452 ADDRESS, i);

int j = 0;

while(Wire.available())

{

dest[j] = Wire.read();

j++;

}

Wire.endTransmission();

}
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byte readRegister(uint8 t address)

{

byte data;

Wire.beginTransmission(MMA8452 ADDRESS);

Wire.write(address);

Wire.endTransmission(false);

Wire.requestFrom(MMA8452 ADDRESS, 1);

data = Wire.read();

Wire.endTransmission();

return data;

}

void writeRegister(unsigned char address, unsigned char data)

{

Wire.beginTransmission(MMA8452 ADDRESS);

Wire.write(address);

Wire.write(data);

Wire.endTransmission();

}


