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ABSTRACT

Cong, Shan M.S.E.C.E., Purdue University, May 2014. Morphometric Analysis of
Hippocampal Subfields: Segmentation, Quantification and Surface Modeling . Major
Professors: Maher E. Rizkalla, and Li Shen.

Object segmentation, quantification, and shape modeling are important areas in

medical image processing. By combining these techniques, researchers can find valu-

able ways to extract and represent details on user-desired structures, which can func-

tion as the base for subsequent analyses such as feature classification, regression, and

prediction.

This thesis presents a new framework for building a three-dimensional (3D) hip-

pocampal atlas model with subfield information mapped onto its surface, with which

hippocampal surface registration can be done, and the comparison and analysis can

be facilitated and easily visualized. This framework combines three powerful tools for

automatic subcortical segmentation and 3D surface modeling. Freesurfer and Func-

tional magnetic resonance imaging of the brain’s Integrated Registration and Segmen-

tation Tool (FIRST) are employed for hippocampal segmentation and quantification,

while SPherical HARMonics (SPHARM) is employed for parametric surface model-

ing. This pipeline is shown to be effective in creating a hippocampal surface atlas

using the Alzheimer’s Disease Neuroimaging Initiative Grand Opportunity and phase

2 (ADNI GO/2) dataset. Intra-class Correlation Coefficients (ICCs) are calculated

for evaluating the reliability of the extracted hippocampal subfields.

The complex folding anatomy of the hippocampus offers many analytical chal-

lenges, especially when informative hippocampal subfields are usually ignored in de-

tailed morphometric studies. Thus, current research results are inadequate to accu-

rately characterize hippocampal morphometry and effectively identify hippocampal
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structural changes related to different conditions. To address this challenge, one

contribution of this study is to model the hippocampal surface using a parametric

spherical harmonic model, which is a Fourier descriptor for general a 3D surface. The

second contribution of this study is to extend hippocampal studies by incorporating

valuable hippocampal subfield information. Based on the subfield distributions, a

surface atlas is created for both left and right hippocampi. The third contribution

is achieved by calculating Fourier coefficients in the parametric space. Based on the

coefficient values and user-desired degrees, a pair of averaged hippocampal surface

atlas models can be reconstructed. These contributions lay a solid foundation to fa-

cilitate a more accurate, subfield-guided morphometric analysis of the hippocampus

and have the potential to reveal subtle hippocampal structural damage associated

with different conditions.
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1. INTRODUCTION

Segmentation, quantification, and shape modeling techniques are important areas

in computer vision, and have been widely used in many biomedical studies [1] [2]

[3]. In this study, a creative framework for building a hippocampal surface atlas is

introduced using widely recognized segmentation and shape modeling methods. This

thesis introduces the issues that shape analysis can be applied to biomedical studies,

provides a brief description on related works, explains the contributions of this work,

and sketches the organization of this thesis.

1.1 Neuroimaging Analysis in Biomedical Studies

The hippocampus is widely studied with large varieties of neuroimaging tech-

niques, such as Computed Axial Tomography (CAT), Diffuse Optical Imaging, Event-

related Optical Signal, Magnetoencephalography, Magnetic Resonance Imaging (MRI),

Functional Magnetic Resonance Imaging (FMRI), Positron Emission Tomography

(PET), Single-Photon Emission Computed Tomography (SPECT) [4] [5] [6] [7] [8] [9],

etc. The development of these image acquisition techniques, has resulted in a large

body of studies that employ manual or automated methods to extract Regions Of

Interest (ROIs) from high-resolution images, and apply 3D morphometric analysis on

these ROIs.

1.1.1 Image Segmentation and Quantification

Identifying the morphological abnormalities is always a fundamental problem in

medical image analysis, but it is useful for disease prediction, diagnosis, and treat-

ment. In order to obtain the morphological changes, several classic methods can
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be applied. A common method based on volumetric analysis counts the volumetric

changes which have happened in the interested areas or the partition changes of the

structure. The most obvious benefit of volumetric analysis is simplicity. However,

the disadvantages are also obvious in that this measurement may not contain enough

information for some certain conditions, especially for complex conditions. For ex-

ample, even though different objects have similar volume numbers, they may have

totally different morphological structures; because of that, the differences between

structure may be overlooked if one only considers volumetric measures.

To overcome that problem and perform shape modeling and analysis, a structure

of the interested area needs to be extracted from volumetric images; this process is

done by image segmentation. The image segmentation is the process of partitioning

one image into several segments based on labeling an image, so a corresponding

relationship is created between label values and different object areas in the real

world. The classic methods for automatic image segmentation includes thresholding,

region growing, classifiers, clustering, Markov random field models, artificial neural

networks, deformable models, atlas based approaches [10], and many other methods.

Fig. 1.1 shows an MRI scan from different views, and label information is added

on the left and right hippocampus areas. However, as the goal of this study is to

build 3D models of the segmentation results, shape modeling and analysis techniques

are employed.

1.1.2 Shape Modeling and Analysis

In order to examine the shape abnormalities in hippocampal structures, sliced

images from MRI scans need to be aligned based on certain features, especially when

landmarks are used. After that, the comparison among different individuals can be

performed. To achieve this goal, shape modeling and visualization techniques are

introduced to model objects extracted from original segmented images.
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(a) Axial view (b) Coronal view

(c) Sagittal view (d) Sagittal view

Fig. 1.1.: Sample MRI scan of a human brain in axial, coronal, and sagittal view.

(a) The axial view is a slice taken horizontally of the brain as seen from the top. (b)

The coronal view is a slice taken vertically of the brain as seen from the front. (c-d)

The sagittal view is a slice taken vertically of the brain as seen from its left side.

Highlighted areas are left (brown) and right (red) hippocampi.
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3D modeling is the process of representing object surface using a computational

framework that simulates two-dimensional images through 3D rendering. Models can

be visualized by various geometric entities based on mesh or solid renderings, see Fig.

1.2 for an example 3D hippocampal structure.

(a) Solid rendering (b) Mesh rendering

Fig. 1.2.: Example of the hippocampus represented as a 3D binary object.

1.2 Previous Work

Because of the low contrast between tissues in certain human organs on images

such as brain scans, manually segmented structures were performed to ensure accu-

racy [11], and to avoid problems caused by individual topological variations in these

structures, which may puzzle automatic methods. Thus, much previous work is done

manually [12] [11] or semi-automatically [13] [14] [15], but manual or semi-automatic

segmentation cannot be used to process a large amount of data since it is very time

consuming. With the explosive development of imaging techniques, microscopy, laser

scanning, CAT, and MRI, high quality morphological data can be obtained quickly
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and easily from almost any structure, automatic segmentation approaches are pro-

posed to quickly quantify complex 3D shapes, such as [16], [17], [18], and [19].

Many 3D shape modeling and visualization techniques have been reported based

on computer vision and biomedical imaging analysis. Some of them are volumet-

ric studies such as den Heijer, et al. 2010; Dewey, et al. 2010; Holland, et al.

2009; Jack, et al. 2004; Ridha, et al. 2008; Wolz, et al. 2010. However, many

studies have suggested that surface-based analysis may offer advantages over volume

measures because the surface-based methods are able to localize patterns of hip-

pocampal atrophy and detailed point-wise correlation between atrophy and cognitive

functions/biological markers [20]. So using parametric surface as a shape descriptor

is well recognized, and many studies have been performed using different descriptors

such as landmark-based descriptors [21] [22], deformation fields [23] [24], distance

transforms [25], medial axes [26] [27] [28], and parametric surfaces [25] [29] [30].

1.3 Main Contributions of The Thesis

In this thesis, a creative framework is proposed that combines powerful segmen-

tation and shape modeling techniques. The main contributions include:

•High quality hippocampal subfield segmentation results generated by combining

effective segmentation tools Freesurfer and RIRST.

•The study of hippocampal subfields, which are usually ignored during registration

in existing surface-based or voxel-based morphometric studies.

•A 3D surface atlas of hippocampal subfields built using the SPHARM method.

1.3.1 Hippocampal Segmentation and Subfield Quantification

Critical hippocampal subfield information is usually ignored by hippocampal reg-

istration in existing surface-based or voxel-based morphometric studies. Such an ap-

proach is thus inadequate to accurately characterize hippocampal morphometry and

effectively identify hippocampal structural changes related to different conditions.
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Even though many recent studies provide solutions for extracting hippocampal

subfields based on MRI technologies [31] [32] [33] [34], these methods are not ap-

plicable to a large cohort. Automated extraction of hippocampal subfields from

1.5T or 3T MRI brain scans is still a challenging task [35], and there are very

few tools available. FreeSurfer (http://freesurfer.net/) is a widely recognized brain

segmentation and cortical parcellation tool, it recently released a promising routine

(http://freesurfer.net/fswiki/HippocampalSubfieldSegmentation) where hippocampal

subfields can be automatically segmented from regular MRI scans with a Bayesian

framework [36].

(a) (b)

Fig. 1.3.: Automatic segmentation results from (a) FreeSurfer (b) FIRST. There are

noisy boundaries on the FreeSurfer segmentation results compared with the FIRST

result

However, as reported by many groups using FreeSurfer for hippocampal volume

measures, the segmentation results turned out to have noisy boundaries 1.3 (a), thus it

is not suitable for surface study or detailed shape analysis [37]. There is another well-

developed automatic hippocampal segmentation tool, FIRST (www.fmrib.ox.ac.uk)

which was published as a part of the Functional Magnetic Resonance Imaging of the
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Brain (FMRIB) Software Library (FSL), and it generates satisfactory hippocampal

segmentation results 1.3 (b). Because of the successful hippocampal segmentation,

FIRST is employed in several of the latest hippocampal shape studies [38] [20]. The

disadvantage of FIRST is that it does not provide hippocampal subfield segmentation

results. In this thesis, both FreeSurfer and FSL are employed in generating smooth

hippocampal surface and its subfields.

1.3.2 3D Hippocampal Surface Atlas Modeling

SPHARM is employed for 3D hippocampal modeling and Surface-Based Mor-

phometry (SBM) studies, it is based on the Elliptic Fourier Descriptor (EFD) [39]

but extended to the 3D space. By using SPHARM, specific shape changes among

different hippocampi can be localized through aligning all objects together. Thus

morphological abnormalities can be easily identified. Fig. 1.4 shows the surface

modeling procedures used in this study.

Compared with image-based or voxel-based methods, surface-based approaches

have several advantages. First, surface-based approaches can be employed in more

general situations where a surface is not embedded in an image but instead is de-

fined by segmented boundaries, triangulations, or other information as described

in [40] [41] [42]. Second, as the boundary or surface of a 3D volumetric object actually

defines the shape, a surface-based representation may be more appropriate for study-

ing shape unless the appearance or tissue inside the object is also a focus of interest.

Third, scaling operation is not a challenging problem for surface-based approaches.

Unlike image or voxel-based approaches, scaling operations are done by re-sampling

3D volumetric images that usually introduce fatal quantification errors. For surface-

based methods, accurate scaling operations can be achieved for parametric surfaces

and polygonal surfaces, while no error is introduced during the scaling process.
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Fig. 1.4.: Entire modeling procedure
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1.4 Potential Applications

The research introduced in this thesis is an initial effort towards building a compu-

tational framework for subfield-guided hippocampal morphometry. This initial effort

is focused on surface-based morphometry and aims to build a surface atlas of hip-

pocampal subfields. Thus the surface atlas can be used for structural comparison

among different test groups to identify morphological abnormalities such as the com-

parison between disease and health controls. Compared with the volumetric studies,

surface-based studies are more suitable for localizing the structural changes on the

surface. The long-term goal is to find the relationship between shape morphological

changes and brain function. Thus, as an imaging biomarker, it has the potential

to detect brain diseases such as AD [14], epilepsy [43], and schizophrenia [44], and

provide critical information for clinical use.

1.5 Organization

The rest of the thesis is organized as follows. Chapter 2 introduces the MRI-based

hippocampus segmentation, quantification and stability analysis of the hippocampus

and its subfields. Chapter 3 describes a method for refining the volume-based hip-

pocampal subfield segmentation. Chapter 4 is dedicated to creating a surface atlas of

hippocampal subfields using SPHARM-based surface modeling. Chapter 5 concludes

the work with a plan for future work.
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2. HIPPOCAMPUS SEGMENTATION,

QUANTIFICATION, AND RELIABILITY ANALYSIS

In order to segment and quantify the hippocampus and its subfields, the following

three major steps were performed: (1) hippocampus segmentation, which provided

segmented hippocampus images from 3T MR scans. The results were generated

from FreeSurfer and FIRST separately. (2) hippocampal subfield information acquisi-

tion, which provided probabilistic maps for each hippocampal subfield area based on

FreeSurfer computation. (3) hippocampal subfield mapping. Each subfield map was

masked by the entire hippocampus generated by either FreeSurfer or FIRST to obtain

two new sets of subfield volume measures. Based on the measurement results of two

repeated scans, ICCs were calculated for reliability evaluation. Fig. 2.1 illustrates

the segmentation, quantification, and reliability analysis procedures.

Fig. 2.1.: A brief diagram of the structure of hippocampus segmentation, quantifica-

tion and reliability analysis process.
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2.1 Dataset Acquisition

The experimental data came from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI) database. ADNI is a multiple years, public-private partnership that is

aiming to test if PET, biological markers, serial MRI, neuropsychological and clinical

assessment can be combined to measure the progression of amnestic Mild Cognitive

Impairment (MCI) and early probable AD. ADNI longitudinal phenotype data in-

cludes structural, functional, diffusion and perfusion MRI scans, molecular imaging

scans (e.g., AV45-PET and FDG-PET), fluid bio-markers from cerebrospinal fluid

and blood, clinical data, and neuropsychological assessments. In this work, the base-

line MRI scans of the ADNI GO/2 cohort were downloaded, which was designed to

understand the very earliest stages of memory loss by enrolling individuals ages 55

to 90 who are in the earliest stages of AD and MCI, which included 195 health con-

trol (HC), 466 MCI, and 131 AD participants from approximately 50 sites from the

United States and Canada [45]. We randomly picked 26 participants from the HC

group. Two repeated baseline 3T MRI scans were downloaded for each participant.

The experiments were performed on a Dell Precision T7500 workstation running Unix

OS, and a Dell PWS670 workstation running WinXP.

2.2 Hippocampal Segmentation and Subfield Quantification

In this section, in order to describe the shape of the hippocampus, left and right

hippocampi were extracted from the original MRI scans. FreeSurfer and FIRST were

employed for segmentation of the hippocampus and its subfields.

2.2.1 Hippocampal Segmentation

FreeSurfer is a powerful package for analysis and visualization of structural and

functional brain imaging data. A fully automatic structural imaging stream is con-

tained within FreeSurfer tools package in order to process cross longitudinal and
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sectional data. It has been widely used and recognized for extracting the corti-

cal/subcortical surface between white and gray matter, segmenting of white matter

from the rest of the brain, rendering the pial surface, skull stripping, nonlinear regis-

tration of the cortical surface of an individual with a stereotaxic atlas, B1 bias field

correction, statistical analysis of group morphometry differences, labeling of regions

of the cortical surface and subcortical brain structures [46]. In this study, FreeSurfer

will be employed for the segmentation of the hippocampus and its subfields.

The hippocampal segmentations were obtained using a statistical model of im-

age formation around the hippocampal area based on Bayesian theory. The model

was built from manually traced segmentations of the right hippocampus with 0.38×
0.38 × 0.8mm3 in vivo MRI scans in 10 subjects. The process of building the left

hippocampus was to mirror the model of right hippocampus [36].

An example, hippocampal segmentation results from FreeSurfer are shown in Fig.

2.2, while Fig. 2.3 shows the hippocampal subfields mapped onto the surface.

Fig. 2.2.: The left and right hippocampi segmentations from FreeSurfer.
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(a) (b)

(c) (d)

Fig. 2.3.: Hippocampal subfields mapped onto the surface of hippocampi segmenta-

tions.
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The segmentation/registration function is also model-based for FIRST. The shape

models used in FIRST were constructed from manually segmented images provided

by the Center for Morphometric Analysis. The labels on each segment were marked

manually and were parameterized as surface meshes, thus a point distribution model

could be built. The surfaces of the model were deformable and used to automatically

parameterize the volumetric labels in terms of meshes. Furthermore, the deformable

surfaces were constrained in order to preserve vertex correspondence across the train-

ing data. Moreover, normalized intensities along the surface normals were sampled

and modeled. The shape and appearance model were built within a multivariate

Gaussian framework. As a result, shape model was expressed as a mean after av-

eraging the modes of variation. Based on the pre-trained models, FIRST searches

through linear combinations of shape models of variation for the most similar shape

instance, when it was given the observed intensities from the test images [47].

An example hippocampal segmentation result from FIRST is shown in Fig. 2.4.

Fig. 2.4.: The left and right hippocampi segmentations from FIRST.

2.2.2 Subfield Quantification

An initial segmentation of the subfields of the hippocampus from each MRI scan

using FreeSurfer was performed during the last section. Two sets of entire hippocampi

segmentation results from FreeSurfer and FIRST were also obtained.
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For the subfield segmentation results, each hippocampus (left or right) includes

8 probability maps based on the FreeSurfer output. These were then masked by the

entire hippocampus generated from FreeSurfer and FIRST segmentation processes.

Each probability map was represented by a matrix with the same size as that of the

hippocampus image, which means that each voxel on the hippocampus has one or

more probability values from different subfield probability maps, since they may have

overlapping areas especially around the boundary areas between different subfields.

The quantification work was to define the area and boundary of each subfield based

on the comparison results among all 8 probability maps. One probability map was

introduced first, all voxels with values bigger than 0 were set as label “1”, and the

probability map was saved as the original template. Then, the second probability

map was introduced to be compared with the template, for each voxel that second

map value larger than the value from the template, label “1” was replaced by label

“2”, and the template was updated by the bigger probability values. This process was

repeated until all 8 maps were compared. As the output, a label map was obtained

with the labels from “1”-“8”, which represented different subfields.

2.3 Reliability Analysis

ICCs [48] were calculated to evaluate the reproducibility of the volume measures of

these extracted structures, including hippocampal subfield measures and the subfield

measures after they were masked by the entire hippocampus segmentations generated

by FreeSurfer and FIRST. ICCs was used to describe how strongly units in the same

group resemble each other, while, for the sampled data in this study, each individual

had two sets of repeated scans. By performing the calculation, a two-way mixed model

was selected to configure Statistical Package for the Social Sciences (SPSS) 20.0,

due to the two raters (repeated MRI scans Group A and Group B), and volumetric

measure is considered as the single measure in this study. The higher ICCs leads to

better reliability.
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The calculation procedure is showed in Equation 2.3, where Yij is the ith observa-

tion in the jth group, μ is an unobserved overall mean, αj is an unobserved random

effect shared by all values in group j, and εij is an unobserved noise term [49].

Yij = μ+ αj + εij ,

For this model to be identified, αj and εij are assumed to have expected value

zero and to be uncorrelated with each other. Also, the αj is assumed to be identically

distributed, and the εij is assumed to be identically distributed. The variance of αj is

denoted α2
α and the variance of εij is denoted α2

ε . The ICC is determined in Equation

2.3.

ICC = α2
α

/
(α2

α + α2
ε ),

Fig. 2.6 shows the reproducibility results for subfield volume measures, whereas

ICCs range from 0.4 to 0.9 (values ranging from 0.4 to 0.75 are described as ”fair to

good” [50]). Using FIRST to mask the subfields yielded a set of ICCs (green line)

that were better than or similar to the original ones (blue line) because green line

had higher ICC values in general. This promising result suggests that FIRST-masked

subfields may be suitable for detailed shape analyses.

2.4 Results and Discussions

The ICCs were calculated based on the measures of hippocampal subfield volumes.

As shown in Fig. 2.5, the histogram chart represents the measures of subfield volume

distributions for one hippocampus, and different colors represent for different subfield

areas. The entire hippocampus segmentation from FIRST as well as from FreeSurfer

were used as a binary mask. For the areas that have a mask value of “1” but have no

probability value on any of 8 subfield maps, they were defined as “undefined”. More

details will be discussed in the next chapter. Based on the results from the histogram

measures, among the 8 hippocampal subfields “CA2-3” has the largest volume in the
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hippocampus which followed by the “Subiculum”, “presubiculum”, “the 8th area” ,

“CA4-DG”, “CA-1”, “fimbria”, and “hippocampal fissure”. Note that, (1) “the 8th

area” is the area that does not belong to any other subfields, which means it is the

area when the other 7 subfields are defined; (2) this order is based on the measure of

one individual; for different individuals, the order may change but will be similar to

this order. More results can be viewed in the “results demonstration” section; (3) for

small subfields, their measurement reliability is easily influenced by noise, as can be

seen by the subfields “CA4-DG”, “CA-1”, and “fimbria” usually having low ICCs.

Fig. 2.5.: Hippocampal subfield quantification results and volumetric distributions.

Fig. 2.6 shows the reproducibility/reliability of hippocampal subfield volumes

measured by ICCs. Where the ICC curve of original subfield segmentations from

FreeSurfer is shown in blue, the curve of original subfields masked by FreeSurfer is

shown in red, and the curve of original subfields masked by FIRST is shown in green.

Based on the reproducibility measures, using FIRST to mask the subfields yielded

a set of ICCs that were better than or similar to the original ones. While most of

the ICCs results by using FreeSurfer to mask subfields were similar or worse than the

original ones. This promising result suggests that FIRST-masked subfields may have

the potential to be used in detailed shape analysis.
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Fig. 2.6.: ICCs results using original (blue) hippocampal subfield segmentations, then

these subfield segmentations were masked by FreeSurfer (red) and FIRST (green)
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3. OPTIMIZATION AND RELIABILITY ANALYSIS OF

HIPPOCAMPAL SUBFIELD SEGMENTATIONS

Observed from the previous chapter, not all masked results were fully filled; there

might have been some holes inside or on the surface of the hippocampus segmenta-

tions, which might introduce some errors to the hippocampal subfield quantification

process. Thus, in this chapter, methods for identifying holes and fixing these holes

are discussed, by using the fixed results, hippocampal subfield quantification and

reliability tests are also performed. The structure of this chapter is shown in Fig. 3.1

Fig. 3.1.: The structure of Chapter 3: a procedure with fixed probability maps
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3.1 Fixing Holes

Taking a slice from CA1 as an example, Fig. 3.2 roughly shows holes (black areas

within the blue area) may exist within a hippocampal subfield area. The existence of

the holes may be caused by the limited accuracy that FreeSurfer subfield segmentation

can achieve.

Fig. 3.2.: Example holes for subfield CA1 (black areas within blue area)

Holes can not be defined based only on one subfield probability map. In order

to identify holes, the method is to overlap all 8 subfield probability maps together,

e.g., shown in Fig. 3.3 (a) and Fig. 3.3 (b). Note that the red area in the Fig. 3.3

(b) shows a hole found on the image (one MRI slice) after overlapping all probability

maps.
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(a)

(b)

Fig. 3.3.: A demonstration on holes is found on one image
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In order to make sure it is a hole, one can superimpose the overlapping result onto

the entire hippocampus segmentation (the mask) generated by FreeSurfer or FIRST.

A hole is a connected region, where all the 8 probability maps have value “0” (black),

but the mask has value “1” (white). In order to fill this hole, each probability map

can be smoothed with a 3D Gaussian kernel (a centered Gaussian low-pass filter)

to get non-zero values and assign these values to voxels in the holes. The Gaussian

lowpass filter of size S with standard deviations is defined as:

σ =
S

4×√
2× log(2)

, (3.1)

Where Full Width at Half Maximum (FWHM) equals half the filter size. Such a

FWHM-dependent standard deviation yields a congruous Gaussian shape:

H = exp [−(
x2

2 × σ2
x

+
y2

2× σ2
y

+
z2

2× σ2
z

)], (3.2)

The algorithm for fixing holes is shown as Algorithm 1:

Algorithm 1 Find holes

1: read entire hippocampus mask;

2: initialize Sub-map = [ ];

3: for i = 1 : 8 do

4: read P(i);

5: sub-map = P(i) + sub-map;

6: end for

7: Check = sub-map + mask;

8: Holes = find(Check = 1);

In Algorithm 1, P denotes the probability map of each hippocampal subfield,

and i denotes the ith map. The basic idea is to identify hole voxels that have value
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value of “1” after every subfield is masked. Because the mask is a binary image, and

probability maps take values from “0” to “1”, the locations on the mask that have

value “1” but have value “0” on all subfield probability maps, are identified as holes.

After identifying all holes, each probability map was smoothed before next step.

For each map, it was convolved with a Gaussian kernel (size=5 in our experiments)

to get nonzero values and then assigned to voxels in the holes. The algorithm to fix

the holes is shown in Algorithm 2:

Algorithm 2 Fix holes

1: Collect holes location information

2: for each probability map do

3: while existing holes do

4: apply Gaussian Kernel (size = 5) to smooth the map;

5: end while

6: end for

7: save new probability maps;

As a comparison, another algorithm was designed for fixing holes described in

Algorithm 3, in which, the flag is a condition indicating if a non-zero is found. P

is the biggest non-zero value found within the search window. D is the Euclidean

distance between hole point and the biggest non-zero point. N is adjusted by an

appropriate value that makes the window size not exceed the image size. Algorithm

3 is much more complex than the Algorithm 2. It is also very time consuming and

the results are not as ideal as the previous method, example results can be seen in

Section .
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Algorithm 3 Fix holes

1: collect holes location information

2: initialize flag = 0;

3: for each probability map do

4: for each hole point do

5: while flag = 0 do

6: for i = 1 : N do

7: windowsize = i× i× i;

8: Search the nearest non-zero value V;

9: if exsiting V then

10: pick the biggest probability value P within the window

11: newvalue = P 2/D

12: flag = 1

13: end if

14: end for

15: end while

16: end for

17: end for

18: save new probability maps;
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3.2 Results and Discussions

As the results of this chapter, based on the segmentation results obtained as

Chapter 2 mentioned, all 8 hippocampal subfields probability maps were fixed for

the left and right hippocampus of each participant, and two hole fixing methods will

be compared in Section 3.2.1 and shows that Gaussian Kernel smoothing is more

reasonable and suitable for this study. Using the fixed subfield probability maps, the

hippocampal subfield distributions were quantified more accurately. Which will be

indicated by the ICCs calculation results as shown in the Section 3.2.2. The following

sections presents the comparison results of different hole smoothing methods, and

demonstrate the reliability analysis based on the results generated before and after

the holes were fixed.

3.2.1 Map Smoothing

Fig. 3.4 demonstrates the comparison of the segmentation results before and after

holes were fixed, and the comparison of two different hole fixing methods. To illustrate

the former issue, there exists some holes (marked as dark green areas) as shown in

the Fig. 3.4 (a), then they were fixed by using hole fixing methods mentioned above

and the results can be seen in Fig. 3.4 (b) and Fig. 3.4 (c). Fig. 3.4 (b) and Fig.

3.4 (c) demonstrate the results based on two hole smoothing methods: Fig. 3.4 (b) is

an example result using probability value and Euclidean distance, while Fig. 3.4 (c)

is an example result using Gaussian Kernel smoothing method. Many noises which

showed on Fig. 3.4 (b), no longer appear on the Fig. 3.4 (c), thus more reliable results

were achieved. Results were improved by applying Gaussian Kernel to smooth subfield

probability maps, and more results can be viewed in the demonstration section. After

the holes were fixed, the quantification process was similar to the method as proposed

in the last chapter, except that the holes were updated with new values smoothed

by Gaussian Kernel. Then we measured the volumes of each hippocampal subfield

based on the new probability maps. Thus, for each hippocampus, the results after
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this step included (1) a binary object to represent the entire hippocampus, and (2) 8

probability maps P1 - P8, one for each subfield (see Fig. 2.3 for mapping it onto the

surface, where nonzero values were colored in red). These were the input data for the

next chapter.

(a)

(b)

(c)

Fig. 3.4.: A comparison between two smoothing methods: (a) the original hippocam-

pal subfields overlapped with entire hippocampi mask, the dark green areas indicate

holes; (b) subfield maps were fixed using the probability values and Euclidean dis-

tance; (c) subfield maps were fixed using Gaussian Kernel
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3.2.2 Reliability Analysis

For the reliability test, the sample dataset includes (1) FreeSurfer and FIRST

segmentation results before holes are fixed; (2) FreeSurfer and FIRST segmentation

results after holes are fixed using Gaussian Kernel smoothing method. And ICCs are

used to examine the reliabilities of these models, which is a similar process comparing

with the ICCs calculation process performed in last chapter.

The statistical analysis results were performed using Statistical Package for the

Social Sciences (SPSS) 20.0, in this experimental scenario, two raters was considered

as each individual has two repeated MRI scans. In order to select a set of appropriate

ICCs, the experimental procedure followed the procedure suggested in [51] for the

reliability analyses. A “two-way mixed model” was selected, due to the two raters

just mentioned above, together was a fixed effect when evaluating the target ratings,

as the ratings such as hippocampal volumes in this study were a random effect. The

“single measure reliability” was selected as a testing factor instead of the average

measure reliability, since the goal of this study was to examine the reliability of the

ratings for a typical single rater (i.e., volumetric measures before holes were fixed)

rather than the mean of all the ratings. “Consistency model type was selected instead

of choosing “absolute agreement, because the consistency of the relative standing of

the measures is the more important factor in this study, rather than the absolute

agreement between two raters. In summary, the SPSS was configured for this study

of selecting appropriate ICCs can be described as the “two-way mixed model, “single

measure reliability, and “consistency type.

The ICCs results indicate that the overall reliability was slightly increased as there

were not many holes existing in the hippocampi segmentations. On the other hand,

the existing holes also influence a small number of subfields to have a worse ICCs.

As the experiment of this study only take 30 sets of objects, this may be caused by

limited sample size. In our future study, a larger scale of dataset (over 700 sets of

object are getting to be processed) will be analyzed.
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Table 3.1.: The comparison of ICCs results based on segmentations from FreeSurfer:

before and after holes were fixed (left hippocampi)

ICCs for left hippocampi FreeSurfer(fixed) FreeSurfer(original)

CA1 0.64 0.537

CA2-3 0.808 0.747

CA4-DG 0.591 0.556

Fimbria 0.393 0.431

Hippo-fissure 0.782 0.799

Presubiculum 0.613 0.568

Subiculum 0.437 0.494

8th subfield 0.734 0.784

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Holes fixed

Original FreeSurfer

Fig. 3.5.: The ICCs comparison based on FreeSurfer results, measured on left hip-

pocampi



29

Table 3.2.: The comparison of ICCs results based on segmentations from FreeSurfer:

before and after holes were fixed (right hippocampi)

ICCs for right hippocampi FreeSurfer(fixed) FreeSurfer(original)

CA1 0.681 0.585

CA2-3 0.775 0.801

CA4-DG 0.756 0.756

Fimbria 0.479 0.441

Hippo-fissure 0.893 0.906

Presubiculum 0.689 0.748

Subiculum 0.671 0.688

8th subfield 0.707 0.662

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Holes Fixed

Original FreeSurfer

Fig. 3.6.: The ICCs comparison based on FreeSurfer results, measured on right hip-

pocampi
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Table 3.3.: The comparison of ICCs results based on segmentations from FIRST:

before and after holes were fixed (left hippocampi)

ICCs for left hippocampi FIRST(fixed) FIRST(original)

CA1 0.689 0.518

CA2-3 0.773 0.8

CA4-DG 0.695 0.671

Fimbria 0.6 0.544

Hippo-fissure 0.873 0.799

Presubiculum 0.536 0.491

Subiculum 0.584 0.54

8th subfield 0.779 0.837

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Holes Fixed

original FIRST

Fig. 3.7.: The ICCs comparison based on FIRST results, measured on left hippocampi
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Table 3.4.: The comparison of ICCs results based on segmentations from FIRST:

before and after holes were fixed (right hippocampi)

ICCs for right hippocampi FIRST(fixed) FIRST(original)

CA1 0.604 0.569

CA2-3 0.804 0.808

CA4-DG 0.762 0.769

Fimbria 0.803 0.804

Hippo-fissure 0.944 0.944

Presubiculum 0.705 0.725

Subiculum 0.609 0.655

8th subfield 0.679 0.662

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Holes fixed

Original FIRST

Fig. 3.8.: The ICCs comparison based on FIRST results, measured on right hip-

pocampi
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4. HIPPOCAMPAL SURFACE ATLAS MODELING

Even though the information of the hippocampus and its subfields has already been

obtained, it is still hard to compare the shape among different hippocampi and their

subfields, since the goal is to observe the morphometric changes. Since the binary

hippocampal objects cannot be compared directly across subjects, the SPHARM

method [52] is employed to model their surfaces so that group analysis (e.g., comput-

ing an average shape) can be facilitated. This work extends the analysis on single

object cases to multiple objects cases, and allows the analysis not only on the individ-

ual shape information of each object, but also on spatial relations between or among

objects. The SPHARM method was proposed by Brechbuhler et al. [29] to model ar-

bitrarily shaped but simply connected 3D objects. It is essentially a Fourier transform

technique that defines a 3D surface using three spherical functions and transforms

them into three sets of Fourier coefficients in the frequency domain. Three steps

were involved in our SPHARM processing pipeline: (1) spherical parameterization,

(2) SPHARM expansion, and (3) SPHARM registration. The structure of Chapter 4

is shown in Fig. 4.1.

4.1 Data preparation

The entire hippocampal segmentation results, and the 8 updated hippocampal

subfield probability maps generated from Chapter 2 and Chapter 3 will be used in this

chapter. Based on SPHARM requirements [52], in order to create shape descriptors

that can be compared across different 3D hippocampal structures, appropriate voxel-

based structures should meet the following properties:

1. Area preservation: every unit space on the surface of the object must be

assigned to the same relative amount of area in the parameter space.
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Fig. 4.1.: The structure of Chapter 4: a procedure to build a surface atlas of hip-

pocampal subfields using SPHARM

2. Topology preservation: each square face on the surface of the object must be

mapped to a spherical quadrilateral in the parameter space.
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3. Bijective mapping: each vertex on the hippocampal segmentation surface must

have the unique correspondent relationship exactly mapping from one point onto the

sphere, so as the inverse mapping.

4. Minimal angular distortion: the spherical mapping of each square face should

be as close to a spherical square as possible.

SPHARM can only model a surface with spherical topology, and not all hippocam-

pal segmentations meet this requirement. The hippocampus segmenations described

by voxel-based structures may contain errors due to the voxel quantization or the lim-

ited voxel resolution.In some cases, it may cause the mapping process to fail because

the voxel surface does not have spherical topology. These cases include: (1) sim-

ple cases (e.g., disconnected components); (2) bad edge connectivity; (3) bad vertex

connectivity; and (4) 3D holes.

Because the hippocampal segmentations are binary images, value “1” represents

the object, while value “0” represents the background. Based on the influencing

factors as discussed above, topology fix needs to be performed for the FIRST result

to make sure that the hippocampal object is simply-connected and its surface has

a spherical topology: (1) Simple cases include disconnected small components, and

holes inside the object, such as a zero is completely surrounded by ones. For the

former case, the way to resolve this problem is to remove them by changing their

values to 0; for the second case, the solution is to replace the zero values by ones.

(2) For bad edge connectivity, the solution is to select a voxel from 4 candidates and

change its value according to maximum number of different neighbors, illustrated in

Fig. 4.2(a). (3) For the bad vertex connectivity, there are two cases shown in Fig.

4.2(b) and Fig. 4.2(c). The solution of the first problem is to change a 1-value-voxel

from “1” to “0”, according to the maximum number of different neighbors. While the

solution of the second case is to change a 0-value-voxel from “0” to “1”, according

to maximum number of different neighbors. (4) For 3D holes shown in Fig. 4.2(d), a

hole fixing method proposed by Z. Aktouf et al. [53] is employed.
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(a) Bad edge (b) Bad vertex 1 (c) Bad vertex 2

(d) 3D holes

Fig. 4.2.: Several conditions that show the voxel-based structures need to be topology

fixed

4.2 SPHARM Parameterization

In order to describe a voxel-based hippocampal surface using spherical harmonics,

Spherical parameterization was introduced. It created a continuous and uniform

mapping from the object surface to the surface of a unit sphere, and it resulted in a

bijective mapping between each point v on a surface and a pair of spherical coordinates

θ and φ that matched the definition of spherical harmonics [54]:

v(θ, φ) = (x(θ, φ), y(θ, φ), z(θ, φ))T , (4.1)

Where θ is defined as the polar (or co-latitudinal) coordinate with θ ∈ [0, π], and

φ is taken as the azimuthal (or longitudinal) coordinate with φ ∈ [0, 2π); As shown
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in Fig. 4.3. Thus, the north pole is defined as θ = 0 and the south pole has θ = π.

Fig. 4.4 shows an example spherical parameterization. This parameterization is an

area preserving mapping computed using Brechbuhlers method [29].

Fig. 4.3.: A spherical unit: θ is defined as the polar (or co-latitudinal) coordinate

with θ ∈ [0, π], and φ is taken as the azimuthal (or longitudinal) coordinate with

φ ∈ [0, 2π)

Fig. 4.4.: Hippocampal surface (left) and its spherical parameterization (right). Color

indicates the correspondence between the surface and parameterization
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4.3 SPHARM Expansion

SPHARM expansion expands the object surface into a complete set of spherical

harmonic basis functions Y m
l , where Y m

l denotes the spherical harmonic of degree l

and order m and it is essentially a Fourier basis function defined on the sphere. Each

function is independently decomposed in terms of SPHARM as:

x(θ, φ) =

∞∑
l=0

l∑
m=−l

cmlxY
m
l (θ, φ), (4.2)

y(θ, φ) =

∞∑
l=0

l∑
m=−l

cmlyY
m
l (θ, φ), (4.3)

z(θ, φ) =
∞∑
l=0

l∑
m=−l

cmlzY
m
l (θ, φ), (4.4)

The expansion can be bundled as a single vector-valued form:

v(θ, φ) =

⎛
⎜⎜⎜⎝

x(θ, φ)

y(θ, φ)

z(θ, φ)

⎞
⎟⎟⎟⎠ =

∞∑
l=0

l∑
m=−l

⎛
⎜⎜⎜⎝

cmxl

cmyl

cmzl

⎞
⎟⎟⎟⎠ =

∞∑
l=0

l∑
m=−l

cml Y
m
l (θ, φ), (4.5)

where

v(θ, φ) =

⎛
⎜⎜⎜⎝

x(θ, φ)

y(θ, φ)

z(θ, φ)

⎞
⎟⎟⎟⎠ , (4.6)

and

cml =

⎛
⎜⎜⎜⎝

cmxl

cmyl

cmzl

⎞
⎟⎟⎟⎠ , (4.7)
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The prerequisite for SPHARM expansion is to finish spherical parameterization in

advance, as it was introduced in the last section. As the results of spherical parame-

terization shown in Equation 4.3, x(θ, φ),y(θ, φ),z(θ, φ) are functions that define the

location relationship between voxel-based object and spherical unit. Based on this

theory, the object surface can be described through expanding these three spherical

functions using SPHARM, as shown in Equation 4.3.

The Fourier coefficients cml are determined using standard least-square estimation

and can be estimated by solving a linear system. To describe how to calculate it, we

can pick one dimension, x(θ, φ) as an example. The goal is to compute the coefficients

cmlx up to a user-desired maximum degree Lmax. When an input spherical function

x(θ, φ) is described by a set of spherical samples (θi, φi) and their function values

xi = x(θi, φi), for 1 ≤ i ≤ n. Based on Equation 4.3, a linear system can be described

as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

y1,1 y1,2 y1,3 · · · y1,k

y2,1 y2,2 y2,3 · · · y2,k
...

...
...

. . .
...

yn,1 yn,2 yn,3 · · · yn,k

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1

a2

a3
...

ak

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...

xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.8)

where yi,j = Y m
l (θi, φi), j = l2 + l +m + 1, and k = (Lmax + 1)2. For every pair

(l, m), an indexing scheme j is the unique number assigned to these pairs. The above

system is solved by least square fitting for (a1, a1, · · · , ak)T as for most cases n �= k.

As each aj ≡ ĉmlx is an estimation of the original coefficients cmlx, for the unique index

j = l2 + l +m+ 1, the original function can be reconstructed as the form:

x̂(θ, φ) =

∞∑
l=0

l∑
m=−l

ĉmlxY
m
l (θ, φ) ≈ x(θ, φ), (4.9)

The object surface can be reconstructed using these coefficients, and the more

degrees (i.e. larger values of Lmax) the user uses, the more coefficients are generated

and the more accurate and detailed reconstruction x̂(θ, φ) will be achieved. Applying
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least-squares estimation in a same way onto y(θ, φ) and z(θ, φ), the results cmly and

cmlz are determined separately. Thus a series of bundled coefficients cml can be used

for approximating the original surface and also used to represent and reconstruct an

Fig. 4.5.: An example of degree 1 reconstruction (an ellipsoid) and the degree 15

reconstruction of the same object
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approximated surface. Fig. 4.5 shows the degree 1 reconstruction and the degree 15

reconstruction for the same object. The SPHARM parametrization and expansion

process are demonstrated in Fig. 4.6, the surface of an object (hippocampus) was first

bijectively mapped onto the spherical surface (done by SPHARM parameterization),

then this object was reconstructed by applying spherical harmonic functions and

using the calculated spherical coefficients and user-desired degree(done by SPHARM

expansion).

Fig. 4.6.: The object on left is the original hippocampus, the object in the middle is

the unit sphere, and the object on the right is the reconstructed hippocampus using

SPHARM expansion

4.4 SPHARM Registration

Sections 4.2 and 4.3 describe the working procedures of SPHARM parameteri-

zation and expansion that describe a 3D hippocampal surface based on computing

coefficients and user-desired degrees. As the goal is to compare different objects, a

method that can align all these objects into a common reference system should be

introduced; that’s the reason why SPHARM registration is proposed.
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SPHARM registration creates a shape descriptor (i.e., excluding translation, ro-

tation, and/or scaling) from a normalized set of SPHARM coefficients, which are

comparable across objects.

Fig. 4.7.: SPHARM registration using First Order Ellipsoids (FOEs). Each of (a-c)

shows the FOE on left and degree 15 reconstruction on right. Parameterization is

indicated by the mesh and color on the surface.

The Scaling invariance can be achieved by adjusting the coefficients so that the

object volume is normalized. Ignoring the 0th degree coefficient leads to transla-

tion invariance. By design, the 1st degree reconstruction is an ellipsoid unit for all

SPHARM models (see Fig.4.5), it is also known as FIRST Order Ellipsoid (FOE).

The Rotation invariance can be achieved through aligning the FOE [29]. Fig.4.7

demonstrates the registration of SPHARM models by aligning the FOEs. Each of

(a-c) shows the FOE at the left and degree 15 reconstruction at right. In (a), the

original pose and parameterization are shown. Note that the correspondence between

two SPHARM models is implied by the underlying parameterization: two points with

the same parameter pair (θ, φ) on two surfaces were defined to be a corresponding

pair. Thus, in (b), the FOE was used to align the parameterization in the parameter
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space and to establish the surface correspondence; although, the object pose stayed

the same, the parameter net on each FOE was rotated to a canonical position such

that the north pole was at one end of the longest main axis, and both the crossing

point of the zero meridian and the equator were at one end of the shortest main axis.

In (c), the FOE was used to adjust the object pose in the object space: the FOE was

rotated to make its main axes coincide with the coordinate axes, putting the shortest

axis along x and the longest along z. As the result, these two hippocampi were aligned

to a canonical position in both parameter space and object space. Algorithmic details

about this method are available in Brechbuhler et al. [29] [55].

4.5 Building Hippocampal Surface Atlas Models

The goal of this study is to build surface atlas models for left and right hip-

pocampi. In order to achieve this goal, parameterization, expansion and registration

techniques discussed above will be used. And as an expansion of previous work, sub-

field information is used for generating hippocampal surface atlas by parameterizing

the probability maps resulted from last chapter.

4.5.1 Construct A Mean Hippocampus

Based on the work discussed in Sections 4.2, 4.3 and 4.4, we are able to reconstruct

each hippocampus object with a certain degree, and align them together. After they

are well-aligned, given n hippocampal SPHARM models, mean values can be obtained

by averaging N sets of harmonics coefficients cml , as we have 26 sets of participant

data (Groups A and B). The way to calculate Fourier coefficients in in Harmonic

functions is as same as it was described in Section 4.3, and shows as the followings:

cmnew,lx =
cm1,lx + cm2,lx+, · · · ,+cmn,lx

N
, (4.10)

cmnew,ly =
cm1,ly + cm2,ly+, · · · ,+cmn,ly

N
, (4.11)



43

cmnew,lz =
cm1,lz + cm2,lz+, · · · ,+cmn,lz

N
, (4.12)

Here N = 26, and by using the new bundled coefficients cmnew,l, an averaged hip-

pocampus can be generated, as shown in Fig. 4.8.

(a) Left hippocampi

(b) Right hippocampi

Fig. 4.8.: Subfields mapped onto an individual SPHARM model
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4.5.2 Creating Hippocampal Surface Atlas

Given N hippocampal SPHARM models, we can calculate a mean SPHARM

model (as shown in Section 4.5.1) and use a similar idea to create a surface atlas.

Now we describe our approach to map the subfield information onto the mean surface.

The main idea is to also use spherical harmonic basis functions to expand each

subfield probability map. After that, for each surface location, we can assign it with

the subfield label which has the largest probability among all eight subfields. In

order to compute a SPHARM expansion for each probability map, we need to map

a probability value to each vertex on the original voxel surface (see Fig. 4.4). The

algorithm to give vertex values is shown in Algorithm 5; note that vertex probability

values are not expanded in Algorithm 5 as it demonstrates a process to generate

surface atlas for each individual. The process of building an averaged surface atlas

will be introduced later.

Algorithm 4 Compute vertex values based on probability maps of each hippocampal

subfield

1: for each subject; do

2: for each subfield probability map do

3: give vertex values based on face values;

4: if two or more faces share the same vertex then

5: add probabilities together P and record how many times N it has been

added;

6: end if

7: mean values = P
N
;

8: end for

9: end for

10: compare values on each vertex from each subfield;

11: vertex is labeled as the subfield having biggest probability value;
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Note that each original probability value was defined for each voxel, and thus

each face on the original surface has a unique probability value. Based on this,

a probability value for each vertex can be calculated by averaging the probability

values of its adjacent faces. Thus, a label map was generated in order to create a

surface atlas for each individual.

As the goal of this study is to build a mean surface atlas, some further work based

on spherical harmonics basis functions is described in Algorithm 5. In this algorithm,

the SPHARM expansion process is similar to the method as discussed in Section 4.3.

We denote probability map as L(θ, φ). Based on SPHARM expansion theory, it can

be reconstructed as Equation 4.5.2.

Algorithm 5 Generate hippocampal surface atlas information

1: for n subject do

2: for each subfield probability map do

3: give vertex values based on face values;

4: if two or more faces share the same vertex then

5: add probabilities together P and record how many times N it has been

added;

6: end if

7: SPHARM expansion and save coefficients;

8: end for

9: average coefficient values in parametric space

10: end for

11: compare values on each vertex from each subfield;

12: vertex is labeled as the subfield having biggest probability value;

13: use the vertex label information to reconstruct surface atlas

L̂(θ, φ) =

∞∑
l=0

l∑
m=−l

Ĉm
new,lY

m
l (θ, φ) ≈ L(θ, φ), (4.13)
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Where P̂ are coefficients, which are mean values from averaging n sets of objects.

And the models can be viewed in Fig. 4.9, Fig. 4.10, and Fig. 4.11.

(a) Model A left

(b) Model A right

Fig. 4.9.: As each participant has two repeated scans (Groups A and B), (a - b) are

models reconstructed from Group A, which contains 26 images.
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(a) Model B left

(b) Model B right

Fig. 4.10.: As each participant has two repeated scans (Groups A and B), (a - b) are

models reconstructed from Group B, which contains 26 images.
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(a) All averaged model left

(b) All averaged model right

Fig. 4.11.: As each participant has two repeated scans (Groups A and B), (a - b) are

models reconstructed both from Groups A and B, which contains 52 images.
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5. CONCLUSIONS AND FUTURE WORK

We have proposed a method for building a surface atlas of hippocampal subfields

from MRI scans using FreeSurfer, FIRST and SPHARM methods and tools. Us-

ing FreeSurfer, we have obtained valuable hippocampal subfield information. Us-

ing FIRST, we have extracted reliable hippocampal surface information. Using

SPHARM, we have developed an approach to create an atlas by mapping interpolated

subfield information onto an average surface. The empirical result using ADNI data

demonstrates good reproducibility of the proposed method.

We presented our initial effort towards building a computational framework for

subfield-guided hippocampal morphometry. Based on this work, some more compli-

cated registration methods can be applied as the FOE method registers SPHARM

objects in both parameter space and object space. However, it works only if the FOE

is a real ellipsoid but not an ellipsoid of revolution or a sphere [56].In the latter case,

we couldn’t find a unique set of main axes to align things together. Thus the more

advanced registration method such as SHREC (SPHARM Registration ICP) [56] will

be studied.

We need to first register all the hippocampal surface to an atlas and then define

the surface signals. The hippocampal surface atlas we built in this study was a

common reference system where morphometric analysis was performed. All surfaces

can be registered to it, then comparable across each other. Let Xt be our atlas, for

an individual complex X, we can directly use its deformation field δX = X − Xt

relative to the atlas Xt to describe it. Many feature measures will be concluded such

as normals, curvatures, and thicknesses.

Multi-scale analysis of hippocampal morphometry is also a goal of future work

that will be studied for the hippocampal morphometry at multiple scales, including

(1) the total volume, (2) subfield volumes, and (3) the detailed surface-based mor-
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phometric features extracted using the above method. We will use a well-established

statistical inference to identify hippocampal morphometric changes related to differ-

ent diagnostic or cognitive conditions while controlling for a few relevant covariates.

The following is the General Linear Model (GLM) we will use: y = XΨ + ZΦ + ε,

where the dependent variable is our morphometric measure; X = (x1, ..., xp)
T are

the variables of interest; Z = (z1, ..., zk)
T are the variables whose effects we want

to exclude; Ψ = (Ψ1, ...,Ψp)
T and Φ = (Φ1, ...,Φk)

T are the coefficients; and ε is

the error term. In surface-based analysis, the goal is to test if X is significant (i.e.,

Φ �= 0) for some y ∈ S, where S is our surface manifold. After extracting surface

signals, we will perform heat kernel smoothing [57] on the surface to increase signal

to noise ratio, run GLM as described above, use random field theory [58] for multiple

comparison correction, and finally map statistical analysis results on the surface for

an intuitive visualization. We will compare the results from surface-based analysis

with those from the analyses of the total volume and subfield volumes.

Furthermore, as the complexity of the hippocampal structure and the multi-modal

genetic, imaging, cognitive and clinical data, it remains challenges to develop novel

data mining methods to discover the complex relationship between hippocampal mor-

phometry and these rich multi-modal data. One direction of our future work will be

designed to address this challenge.
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A. DEMONSTRATE RESULTS
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. A.1.: Axial view of MRI scans with labeled left (red) and right (brown) hip-

pocampi.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. A.2.: Coronal view of MRI scans with labeled left (red) and right (brown) hip-

pocampi.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. A.3.: Sagittal view of MRI scans with labeled right (brown) hippocampi.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. A.4.: Sagittal view of MRI scans with labeled left (red) hippocampi.
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Fig. A.5.: Subfields masked by entire hippocampal segmentation result from

FreeSurfer, noises can be viewed around the edges.
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Fig. A.6.: Subfields masked by entire hippocampal segmentation result from FIRST,

some unreasonable quantifications are made.
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Fig. A.7.: Subfields masked by entire hippocampal segmentation result from FIRST,

after Gaussin Kernel is applied.
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(a)

(b)

Fig. A.8.: The distributions of hippocampal subfields on the 3D surface (left hip-

pocampi).



65

(a)

(b)

Fig. A.9.: The distributions of hippocampal subfields on the 3D surface (right hip-

pocampi).



66

(a)

(b)

Fig. A.10.: The distributions of hippocampal subfields on the 3D surface (left hip-

pocampi).
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(a)

(b)

Fig. A.11.: The distributions of hippocampal subfields on the 3D surface (right hip-

pocampi).



68

(a)

(b)

Fig. A.12.: The voxel-based structures after topology fix.
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(a)

(b)

Fig. A.13.: The voxel-based structures after topology fix.
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(a)

Fig. A.14.: SPHARM parameterization: bijective mapping from object surface to the

surface of unit sphere.
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(a)

(b)

Fig. A.15.: The hippocampal subfields distributions labeled on the surface, as each

participant has two scans, (a) is obtained from group A and (b) is obtained from

group B.
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(a)

(b)

Fig. A.16.: Bijective mapping results from hippocampi surface to spherical surface:

(a) is mapped from left hippocampi and (b) is mapped from right hippocampi.
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(a)

(b)

Fig. A.17.: The flat view of hippocampal subfields distributions labeled on the surface:

(a) is obtained from left hippocampi and (b) is obtained from right hippocampi.
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(a)

(b)

Fig. A.18.: The SPHARM expansion examples: (a) is obtained from left hippocampi

and (b) is obtained from right hippocampi.
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Fig. A.19.: SPHARM registration: fist group (first two images) is the original pose

and parameterization, second group is aligned in parameter space, third group is

aligned in object space.
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B. DEMONSTRATE PROGRAMS
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Subfield quantifications

clear all

close all

whole=’/net/age3/ADNI_Hippo_FSL/FSL_seg_results/’;

D0=dir(whole);

L0=length(D0);

hippo-fissure,left presubiculum,left subiculum\n’]);

for j=3:L0

parts=[’/net/age3/ADNI_Hippo_FSL/freesurfersub/’,D0(j).name,’/’];

D1=dir(parts);

L1=length(D1);

n=1;

m=1;

for i=3:L1

tl1=length(D1(i).name);

tl2=length(D0(j).name);

if tl1>11 && tl2>11

TF1=strcmp(D1(i).name(end-2:end),’nii’);

TF2=strcmp(D1(i).name(12),’l’);

TF22=strcmp(D1(i).name(12),’L’);

TF3=strcmp(D1(i).name(12),’r’);

TF33=strcmp(D1(i).name(12),’R’);

TF4=strcmp(D1(i).name(1),’r’);

TF5=strcmp(D1(i).name(end-4),’o’);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[left part]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if TF1==1 && TF4==1

if (TF2 ==1 || TF22==1 ) && TF5==0

if n==1

loadpath=[parts,D1(i).name];
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im1=load_nifti(loadpath);

im11{1,n}=im1.vol/max(max(max(im1.vol)));

im12=im1.vol/max(max(max(im1.vol)));

max(max(max(im1.vol)));

im11ref=im11{1,n};

im12(im11ref~=0) = 1;

n=n+1;

else

loadpath=[parts,D1(i).name];

im1=load_nifti(loadpath);

im11{1,n}=im1.vol/max(max(max(im1.vol)));

max(max(max(im1.vol)));

im12(im11{1,n}>im11ref) = n;

im11ref(im11{1,n}>im11ref)=im11{1,n}(im11{1,n}>im11ref);

n=n+1;

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[left end]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[right part]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if (TF3 ==1 || TF33==1) && TF5==0

if m==1

loadpath=[parts,D1(i).name];

im2=load_nifti(loadpath);

im21{1,m}=im2.vol/max(max(max(im2.vol)));

im22=im2.vol/max(max(max(im2.vol)));

max(max(max(im2.vol)));

im21ref=im21{1,m};

im22(im21ref~=0) = 1;

m=m+1;

else
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loadpath=[parts,D1(i).name];

im2=load_nifti(loadpath);

im21{1,m}=im2.vol/max(max(max(im2.vol)));

max(max(max(im2.vol)));

im22(im21{1,m}>im21ref) = m;

im21ref(im21{1,m}>im21ref)=im21{1,m}(im21{1,m}>im21ref);

m=m+1;

end

end

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[right end]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

QL=[whole,D0(j).name, ’/’, D0(j).name, ’-L_Hipp_corr_fix.mat’];

Whole_L=load(QL);

Whole_L11=Whole_L.bim;

Whole_L11(Whole_L11==1)=10;

QR=[whole,D0(j).name, ’/’, D0(j).name, ’-R_Hipp_corr_fix.mat’];

Whole_R=load(QR);

Whole_R11=Whole_R.bim;

Whole_R11(Whole_R11==1)=10;

Lx_min=Whole_L.mins(1);

Ly_min=Whole_L.mins(2);

Lz_min=Whole_L.mins(3);

Lx_max=Whole_L.mins(1)+length(Whole_L.bim(:,1,1))-1;

Ly_max=Whole_L.mins(2)+length(Whole_L.bim(1,:,1))-1;

Lz_max=Whole_L.mins(3)+length(Whole_L.bim(1,1,:))-1;

Rx_min=Whole_R.mins(1);

Ry_min=Whole_R.mins(2);

Rz_min=Whole_R.mins(3);
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Rx_max=Whole_R.mins(1)+length(Whole_R.bim(:,1,1))-1;

Ry_max=Whole_R.mins(2)+length(Whole_R.bim(1,:,1))-1;

Rz_max=Whole_R.mins(3)+length(Whole_R.bim(1,1,:))-1;

comb_L=im12(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max)+Whole_L11;

comb_R=im22(Rx_min:Rx_max,Ry_min:Ry_max,Rz_min:Rz_max)+Whole_R11;

comb_L(comb_L<10 & comb_L>0) = 0;

comb_R(comb_R<10 & comb_R>0) = 0; %% using FSL as mask

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[left part]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

WHL=comb_L;

[rl,cl,vl] = ind2sub(size(WHL),find(WHL >= 10));

[rl1,cl1,vl1] = ind2sub(size(WHL),find(WHL == 10));

Ll=length(rl1);

L_tag=1;

R=1;

for i=3:L1

tl1=length(D1(i).name);

tl2=length(D0(j).name);

if tl1>11 && tl2>11

TF1=strcmp(D1(i).name(end-2:end),’nii’);

TF2=strcmp(D1(i).name(12),’l’);

TF22=strcmp(D1(i).name(12),’L’);

TF3=strcmp(D1(i).name(12),’r’);

TF33=strcmp(D1(i).name(12),’R’);

TF4=strcmp(D1(i).name(1),’r’);

TF5=strcmp(D1(i).name(end-4),’o’);

if TF1==1 && TF4==1

if (TF2 ==1 || TF22==1 ) && TF5==0

loadpath=[parts,D1(i).name];

loadpath

im1=load_nifti(loadpath);
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New_map=smooth_3(WHL,im1.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max));

all_value{j-2,R}=New_map;

R=R+1

end

end

end

end

for i=1:Ll

[value,label]=max([all_value{j-2,1}(rl1(i),cl1(i),vl1(i)),all_value{j-2,...

2}(rl1(i),cl1(i),vl1(i)),all_value{j-2,3}(rl1(i),cl1(i),vl1(i)),...

all_value{j-2,4}(rl1(i),cl1(i),vl1(i)),...all_value{j-2,5}(rl1(i),cl1(i),...

vl1(i)),all_value{j-2,6}(rl1(i),cl1(i),vl1(i)),all_value{j-2,7}(rl1(i),...

cl1(i),vl1(i)),all_value{j-2,8}(rl1(i),cl1(i),vl1(i))]);

comb_L(rl1(i),cl1(i),vl1(i))=label+10;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[left end]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[right part]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

WHR=comb_R;

[rr1,cr1,vr1] = ind2sub(size(WHR),find(WHR == 10));

[rr,cr,vr] = ind2sub(size(WHR),find(WHR >= 10));

Lr=length(rr1);

R_tag=1;

R=1;

for i=3:L1

tl1=length(D1(i).name);

tl2=length(D0(j).name);

if tl1>11 && tl2>11

TF1=strcmp(D1(i).name(end-2:end),’nii’);

TF2=strcmp(D1(i).name(12),’l’);

TF22=strcmp(D1(i).name(12),’L’);
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TF3=strcmp(D1(i).name(12),’r’);

TF33=strcmp(D1(i).name(12),’R’);

TF4=strcmp(D1(i).name(1),’r’);

TF5=strcmp(D1(i).name(end-4),’o’);

if TF1==1 && TF4==1

if (TF3 ==1 || TF33==1) && TF5==0

loadpath=[parts,D1(i).name];

im1=load_nifti(loadpath);

New_map=smooth_3(WHR,im1.vol(Rx_min:Rx_max,Ry_min:Ry_max,Rz_min:Rz_max));

all_value{j-2,R}=New_map;

R=R+1

end

end

end

end

for i=1:Lr

[value,label]=max([all_value{j-2,1}(rr1(i),cr1(i),vr1(i)),all_value{j-2,2}(rr1(i),...

cr1(i),vr1(i)),all_value{j-2,3}(rr1(i),cr1(i),vr1(i)),all_value{j-2,4}(rr1(i),cr1(i),vr1(i)),...

all_value{j-2,5}(rr1(i),cr1(i),vr1(i)),all_value{j-2,6}(rr1(i),cr1(i),vr1(i)),...

all_value{j-2,7}(rr1(i),cr1(i),vr1(i)),all_value{j-2,8}(rr1(i),cr1(i),vr1(i))]);

comb_R(rr1(i),cr1(i),vr1(i))=label+10;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%[[right end]]%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Fixing holes with Gaussian Kernel

function W=smooth_3(mask,map)

L=1;

map=map./max(max(max(map)));
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h = fspecial3(’gaussian’,9);

W = imfilter(map,h,’replicate’);

while L>0

K = imfilter(W,h,’replicate’);

test=W+mask;

[r,c,v] = ind2sub(size(test),find(test == 10));

L=length(r);

W = K;

end

W(test < 10)=0;

Generating voxel-based structures and calculating vertex values

function [vertices, faces, mins, verind_table,num,name,mask_length] = gensfdata

mask_path=’/net/age3/ADNI_Hippo_FSL/FSL_seg_results/copy_fix/fix’;

mask_files = dir(sprintf(’%s/*_fix.mat’,mask_path));

mask_length=length(mask_files);

check_alignL=1;

check_alignR=1;

for m=1:mask_length

loadpath=[mask_path,’/’,mask_files(m).name];

load(loadpath);

bim(bim>0)=1;

sub_path=[’/net/age3/ADNI_Hippo_FSL/freesurfersub/’,mask_files(m).name(1:end-13),’/Label’];

sub_files = dir(sprintf(’%s/*_V3.nii’,sub_path));

ifL=strcmp(mask_files(m).name(14),’L’);

ifR=strcmp(mask_files(m).name(14),’R’);

vertices=[];

if ifL==1

loadpath=[sub_path,’/’,sub_files(1).name];

im1=load_nifti(loadpath);
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im1=im1.vol;

Lx_min=mins(1);

Ly_min=mins(2);

Lz_min=mins(3);

Lx_max=mins(1)+length(bim(:,1,1))-1;

Ly_max=mins(2)+length(bim(1,:,1))-1;

Lz_max=mins(3)+length(bim(1,1,:))-1;

im1=im1(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

check=im1./9+bim;

im1(check<1)=0;

[rl1,cl1,vl1] = ind2sub(size(im1),find(check == 1));

L_holes=length(rl1);

if L_holes>0

fix_path=[’/net/age3/ADNI_Hippo_FSL/freesurfersub/’,...

mask_files(m).name(1:end-13),’/’,’New_map/’];

path1=[fix_path,’rposterior_lefthippo_r.nii’];

if exist(path1)

ob1=[fix_path,’rposterior_left_1hippo_r.nii’];

cmd=[’mv ’, path1, ’ ’, ob1];

system(cmd);

pause(10);

end

fix_holes = dir(sprintf(’%s/rposterior_left*.nii’,fix_path));

fix_length=length(fix_holes);

for m_1=1:fix_length

loadme=[fix_path,fix_holes(m_1).name];

tempk=load_nifti(loadme);

all_value{m,m_1}=tempk.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

end

for i=1:L_holes
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[value,label]=max([all_value{m,1}(rl1(i),cl1(i),vl1(i)),...

all_value{m,2}(rl1(i),cl1(i),vl1(i)),all_value{m,3}(rl1(i),...

cl1(i),vl1(i)),all_value{m,4}(rl1(i),cl1(i),vl1(i)),...

all_value{m,5}(rl1(i),cl1(i),vl1(i)),all_value{m,6}(rl1(i),...

cl1(i),vl1(i)),all_value{m,7}(rl1(i),cl1(i),vl1(i)),...

all_value{m,8}(rl1(i),cl1(i),vl1(i))]);

im1(rl1(i),cl1(i),vl1(i))=label;

end

end

roi=im1;

DIM=size(roi);

roi = reshape(roi,DIM);

% make a work area so that all border voxels belong to the background

d = DIM+2; w = zeros(d);

w(2:d(1)-1,2:d(2)-1,2:d(3)-1) = roi;

temp_w=w;

temp_w(w~=0)=1;

% identifiy significant vertices (each vertice connects 8 adjacent voxels)

[xs, ys, zs] = meshgrid(1:d(1)-1,1:d(2)-1,1:d(3)-1);

len = prod(size(xs));

xs = reshape(xs,len,1);

ys = reshape(ys,len,1);

zs = reshape(zs,len,1);

nbsum = zeros(d);

inds = get_1d_ind(xs,ys,zs,d);

nbsum(inds) = sum([temp_w(inds),...

temp_w(get_1d_ind(xs+1,ys, zs, d)),...

temp_w(get_1d_ind(xs, ys+1,zs, d)),...

temp_w(get_1d_ind(xs+1,ys+1,zs, d)),...

temp_w(get_1d_ind(xs, ys, zs+1,d)),...
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temp_w(get_1d_ind(xs+1,ys, zs+1,d)),...

temp_w(get_1d_ind(xs, ys+1,zs+1,d)),...

temp_w(get_1d_ind(xs+1,ys+1,zs+1,d)),...

]’);

vertinds = find(nbsum~=0 & nbsum~=8);

[xs1,ys1,zs1] = get_3d_ind(vertinds,d); % significant ones

vnum = length(vertinds);

if check_alignL==1

vertices = [xs1,ys1,zs1]; % remove the margin of the work area

vertices0 = vertices;

check_alignL=check_alignL+1;

else

vertices = [xs1,ys1,zs1];

[P,M] = align_icp(vertices,vertices0);

vertices=P;

end

% identify square faces on the surface

vertinds = get_1d_ind(xs1,ys1,zs1,d); % values of x, y, z could be 0

verts(1:prod(DIM+1)) = NaN;

verts(vertinds) = 1:vnum;

tempind1 = find(temp_w(inds)==1 & temp_w(get_1d_ind(xs+1,ys,zs,d))==0);

faceind{1} = inds(tempind1);

tempind2 = find(temp_w(inds)==1 & temp_w(get_1d_ind(xs,ys+1,zs,d))==0);

faceind{2} = inds(tempind2);

tempind3 = find(temp_w(inds)==1 & temp_w(get_1d_ind(xs,ys,zs+1,d))==0);

faceind{3} = inds(tempind3);

tempind4 = find(temp_w(inds)==0 & temp_w(get_1d_ind(xs+1,ys,zs,d))==1);

faceind{4} = inds(tempind4);

tempind5 = find(temp_w(inds)==0 & temp_w(get_1d_ind(xs,ys+1,zs,d))==1);

faceind{5} = inds(tempind5);
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tempind6 = find(temp_w(inds)==0 & temp_w(get_1d_ind(xs,ys,zs+1,d))==1);

faceind{6} = inds(tempind6);

faces = [];

for i = 1:6

[x,y,z] = get_3d_ind(faceind{i},d);

v1s = verts(get_1d_ind(x,y,z,d));

switch i

case 1

v2s = verts(get_1d_ind(x,y-1,z,d));

v3s = verts(get_1d_ind(x,y-1,z-1,d));

V5s = verts(get_1d_ind(x,y,z-1,d));

templabel=[x,y,z];

case 2

v2s = verts(get_1d_ind(x,y,z-1,d));

v3s = verts(get_1d_ind(x-1,y,z-1,d));

V5s = verts(get_1d_ind(x-1,y,z,d));

templabel=[templabel;[x,y,z]];

case 3

v2s = verts(get_1d_ind(x-1,y,z,d));

v3s = verts(get_1d_ind(x-1,y-1,z,d));

V5s = verts(get_1d_ind(x,y-1,z,d));

templabel=[templabel;[x,y,z]];

case 4

v2s = verts(get_1d_ind(x,y,z-1,d));

v3s = verts(get_1d_ind(x,y-1,z-1,d));

V5s = verts(get_1d_ind(x,y-1,z,d));

inds2=get_1d_ind(xs+1,ys,zs,d);

idx2=inds2(tempind4);

x1=0;y1=0;z1=0;

[x1,y1,z1]=ind2sub(d,idx2);
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templabel=[templabel;[x1,y1,z1]];

case 5

v2s = verts(get_1d_ind(x-1,y,z,d));

v3s = verts(get_1d_ind(x-1,y,z-1,d));

V5s = verts(get_1d_ind(x,y,z-1,d));

inds2=get_1d_ind(xs,ys+1,zs,d);

idx3=inds2(tempind5);

x1=0;y1=0;z1=0;

[x1,y1,z1]=ind2sub(d,idx3);

templabel=[templabel;[x1,y1,z1]];

case 6

v2s = verts(get_1d_ind(x,y-1,z,d));

v3s = verts(get_1d_ind(x-1,y-1,z,d));

V5s = verts(get_1d_ind(x-1,y,z,d));

inds2=get_1d_ind(xs,ys,zs+1,d);

idx4=inds2(tempind6);

x1=0;y1=0;z1=0;

[x1,y1,z1]=ind2sub(d,idx4);

templabel=[templabel;[x1,y1,z1]];

end

faces(end+1:end+length(x),:) = [v1s; v2s; v3s; V5s]’;

end

lx=templabel(:,1);

ly=templabel(:,2);

lz=templabel(:,3);

tempim=zeros(length(w(:,1,1)),length(w(1,:,1)),length(w(1,1,:)));

tempim(2:d(1)-1,2:d(2)-1,2:d(3)-1)=im1;

lxl=length(lx);

L_label=[];

for g=1:lxl
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L_label(g)=tempim(lx(g),ly(g),lz(g));

end

temp_faces=[faces(:,1);faces(:,2);faces(:,3);faces(:,4)];

[count, bin] = histc(temp_faces, unique(temp_faces));

lc=length(count);

tempim=[];

verind_table=[];

% arrange files to be easily read

parts=[’/net/age3/ADNI_Hippo_FSL/freesurfersub/’,...

mask_files(m).name(1:end-13),’/’];

sw1=[parts,’rposterior_Left-Hippocampus.nii’];

sw2=[parts,’rposterior_Right-Hippocampus.nii’];

sw3=[parts,’rposterior_lefthippo_r.nii’];

if exist(sw1)

ob1=[parts,’rposterior_left_1hippo_r.nii’];

cmd=[’mv ’, sw1, ’ ’, ob1];

system(cmd);

pause(10);

end

if exist(sw2)

ob2=[parts,’rposterior_right_1hippo_r.nii’];

cmd=[’mv ’, sw2, ’ ’, ob2];

system(cmd);

pause(10);

end

if exist(sw3)

ob1=[parts,’rposterior_left_1hippo_r.nii’];

cmd=[’mv ’, sw3, ’ ’, ob1];

system(cmd);

pause(10);
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end

% apply mask on subfields

tempim0=zeros(length(bim(:,1,1)),length(bim(1,:,1)),length(bim(1,1,:)));

for m_1=1:fix_length

[m_1name,m_1add]=strtok(fix_holes(m_1).name,’.’);

loadme=[parts,m_1name,’.nii’];

tempk=load_nifti(loadme);

tt=tempk.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

tempim0=tt./max(max(max(tt)))+tempim0;

end

tempim0=tempim0./(max(max(max(tempim0)))+1);

tt1=tempim0+bim;

[rl1,cl1,vl1] = ind2sub(size(tt1),find(tt1 < 1)); %% tt1<1 delete

[rl2,cl2,vl2] = ind2sub(size(tt1),find(tt1 == 1)); %% tt1==1 holes

L_hole=length(rl2);

L_clean=length(rl1);

for m_1=1:fix_length

[m_1name,m_1add]=strtok(fix_holes(m_1).name,’.’);

loadme=[parts,m_1name,’.nii’];

tempk=load_nifti(loadme);

tm1=tempk.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

loadme2=[fix_path,fix_holes(m_1).name];

tempk2=load_nifti(loadme2);

tm2=tempk2.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

for g=1:L_clean

tm1(rl1(g),cl1(g),vl1(g))=0;

end

for g=1:L_hole

tm1(rl2(g),cl2(g),vl2(g))=tm2(rl2(g),cl2(g),vl2(g));

end
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% finish fixing

% give probability to vertices

tempim{m_1}=zeros(length(w(:,1,1)),length(w(1,:,1)),length(w(1,1,:)));

tempim{m_1}(2:d(1)-1,2:d(2)-1,2:d(3)-1)=tm1;

tempim{m_1}=tempim{m_1}./max(max(max(tempim{m_1})));

for g=1:lxl

L_label1{m_1}(g)=tempim{m_1}(lx(g),ly(g),lz(g));

end

% assign values to verteces based on face values

verind_table{m_1}=zeros(lc,1);

verind_table_C{m_1}=zeros(lc,1);

for g=1:lxl

verind_table{m_1}(faces(g,:),1)=verind_table{m_1}(faces(g,:),1)+L_label1{m_1}(g);

verind_table_C{m_1}(faces(g,:),1)=verind_table_C{m_1}(faces(g,:),1)+1;

end

verind_table{m_1}=verind_table{m_1}./verind_table_C{m_1};

end

% compare vertices and give new label

for g=1:lc

[value,label(g)]=max([verind_table{1}(g),verind_table{2}(g),...

verind_table{3}(g),verind_table{4}(g),verind_table{5}(g),...

verind_table{6}(g),verind_table{7}(g),verind_table{8}(g)]);

end

promap=verind_table;

verind_table=label’;

saveto1=[’/net/age3/ADNI_Hippo_FSL/submat/’,mask_files(m).name(1:end-11),’_V5_fix.mat’];

bim=temp_w;

mins=mins-1;

face_table=L_label’;

save(saveto1,’bim’,’mins’,’verind_table’,’face_table’,’vertices’,’faces’,’promap’);
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end

if ifR==1

loadpath=[sub_path,’/’,sub_files(2).name];

im1=load_nifti(loadpath);

im1=im1.vol;

Lx_min=mins(1);

Ly_min=mins(2);

Lz_min=mins(3);

Lx_max=mins(1)+length(bim(:,1,1))-1;

Ly_max=mins(2)+length(bim(1,:,1))-1;

Lz_max=mins(3)+length(bim(1,1,:))-1;

im1=im1(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

check=im1./9+bim;

im1(check<1)=0;

[rl1,cl1,vl1] = ind2sub(size(im1),find(check == 1));

L_holes=length(rl1);

if L_holes>0

fix_path=[’/net/age3/ADNI_Hippo_FSL/freesurfersub/’,...

mask_files(m).name(1:end-13),’/’,’New_map/’];

path1=[fix_path,’rposterior_rightippo_r.nii’];

if exist(path1)

ob1=[fix_path,’rposterior_right_1hippo_r.nii’];

cmd=[’mv ’, path1, ’ ’, ob1];

system(cmd);

pause(10);

end

fix_holes = dir(sprintf(’%s/rposterior_right*.nii’,fix_path));

fix_length=length(fix_holes);

for m_1=1:fix_length

loadme=[fix_path,fix_holes(m_1).name];
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tempk=load_nifti(loadme);

all_value{m,m_1}=tempk.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

end

for i=1:L_holes

[value,label]=max([all_value{m,1}(rl1(i),cl1(i),vl1(i)),...

all_value{m,2}(rl1(i),cl1(i),vl1(i)),all_value{m,3}(rl1(i),...

cl1(i),vl1(i)),all_value{m,4}(rl1(i),cl1(i),vl1(i)),...

all_value{m,5}(rl1(i),cl1(i),vl1(i)),...

all_value{m,6}(rl1(i),cl1(i),vl1(i)),...

all_value{m,7}(rl1(i),cl1(i),vl1(i)),...

all_value{m,8}(rl1(i),cl1(i),vl1(i))]);

im1(rl1(i),cl1(i),vl1(i))=label;

end

end

roi=im1;

DIM=size(roi);

roi = reshape(roi,DIM);

% make a work area so that all border voxels belong to the background

d = DIM+2; w = zeros(d);

w(2:d(1)-1,2:d(2)-1,2:d(3)-1) = roi;

temp_w=w;

temp_w(w~=0)=1;

% identifiy significant vertices (each vertice connects 8 adjacent voxels)

[xs, ys, zs] = meshgrid(1:d(1)-1,1:d(2)-1,1:d(3)-1);

len = prod(size(xs));

xs = reshape(xs,len,1);

ys = reshape(ys,len,1);

zs = reshape(zs,len,1);

nbsum = zeros(d);

inds = get_1d_ind(xs,ys,zs,d);
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nbsum(inds) = sum([temp_w(inds),...

temp_w(get_1d_ind(xs+1,ys, zs, d)),...

temp_w(get_1d_ind(xs, ys+1,zs, d)),...

temp_w(get_1d_ind(xs+1,ys+1,zs, d)),...

temp_w(get_1d_ind(xs, ys, zs+1,d)),...

temp_w(get_1d_ind(xs+1,ys, zs+1,d)),...

temp_w(get_1d_ind(xs, ys+1,zs+1,d)),...

temp_w(get_1d_ind(xs+1,ys+1,zs+1,d)),...

]’);

vertinds = find(nbsum~=0 & nbsum~=8);

[xs1,ys1,zs1] = get_3d_ind(vertinds,d); % significant ones

vnum = length(vertinds);

if check_alignR==1

vertices = [xs1,ys1,zs1]; % remove the margin of the work area

vertices1 = vertices;

check_alignR=check_alignR+1;

else

vertices = [xs1,ys1,zs1];

[P,M] = align_icp(vertices,vertices1);

vertices=P;

end

% identify square faces on the surface

vertinds = get_1d_ind(xs1,ys1,zs1,d); % values of x, y, z could be 0

verts(1:prod(DIM+1)) = NaN;

verts(vertinds) = 1:vnum;

tempind1 = find(temp_w(inds)==1 & temp_w(get_1d_ind(xs+1,ys,zs,d))==0);

faceind{1} = inds(tempind1);

tempind2 = find(temp_w(inds)==1 & temp_w(get_1d_ind(xs,ys+1,zs,d))==0);

faceind{2} = inds(tempind2);

tempind3 = find(temp_w(inds)==1 & temp_w(get_1d_ind(xs,ys,zs+1,d))==0);
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faceind{3} = inds(tempind3);

tempind4 = find(temp_w(inds)==0 & temp_w(get_1d_ind(xs+1,ys,zs,d))==1);

faceind{4} = inds(tempind4);

tempind5 = find(temp_w(inds)==0 & temp_w(get_1d_ind(xs,ys+1,zs,d))==1);

faceind{5} = inds(tempind5);

tempind6 = find(temp_w(inds)==0 & temp_w(get_1d_ind(xs,ys,zs+1,d))==1);

faceind{6} = inds(tempind6);

faces = [];

for i = 1:6

[x,y,z] = get_3d_ind(faceind{i},d);

v1s = verts(get_1d_ind(x,y,z,d));

switch i

case 1

v2s = verts(get_1d_ind(x,y-1,z,d));

v3s = verts(get_1d_ind(x,y-1,z-1,d));

V5s = verts(get_1d_ind(x,y,z-1,d));

templabel=[x,y,z];

case 2

v2s = verts(get_1d_ind(x,y,z-1,d));

v3s = verts(get_1d_ind(x-1,y,z-1,d));

V5s = verts(get_1d_ind(x-1,y,z,d));

templabel=[templabel;[x,y,z]];

case 3

v2s = verts(get_1d_ind(x-1,y,z,d));

v3s = verts(get_1d_ind(x-1,y-1,z,d));

V5s = verts(get_1d_ind(x,y-1,z,d));

templabel=[templabel;[x,y,z]];

case 4

v2s = verts(get_1d_ind(x,y,z-1,d));

v3s = verts(get_1d_ind(x,y-1,z-1,d));
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V5s = verts(get_1d_ind(x,y-1,z,d));

inds2=get_1d_ind(xs+1,ys,zs,d);

idx2=inds2(tempind4);

x1=0;y1=0;z1=0;

[x1,y1,z1]=ind2sub(d,idx2);

templabel=[templabel;[x1,y1,z1]];

case 5

v2s = verts(get_1d_ind(x-1,y,z,d));

v3s = verts(get_1d_ind(x-1,y,z-1,d));

V5s = verts(get_1d_ind(x,y,z-1,d));

inds2=get_1d_ind(xs,ys+1,zs,d);

idx3=inds2(tempind5);

x1=0;y1=0;z1=0;

[x1,y1,z1]=ind2sub(d,idx3);

templabel=[templabel;[x1,y1,z1]];

case 6

v2s = verts(get_1d_ind(x,y-1,z,d));

v3s = verts(get_1d_ind(x-1,y-1,z,d));

V5s = verts(get_1d_ind(x-1,y,z,d));

inds2=get_1d_ind(xs,ys,zs+1,d);

idx4=inds2(tempind6);

x1=0;y1=0;z1=0;

[x1,y1,z1]=ind2sub(d,idx4);

templabel=[templabel;[x1,y1,z1]];

end

faces(end+1:end+length(x),:) = [v1s; v2s; v3s; V5s]’;

end

lx=templabel(:,1);

ly=templabel(:,2);

lz=templabel(:,3);
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tempim=zeros(length(w(:,1,1)),length(w(1,:,1)),length(w(1,1,:)));

tempim(2:d(1)-1,2:d(2)-1,2:d(3)-1)=im1;

lxl=length(lx);

L_label=[];

for g=1:lxl

L_label(g)=tempim(lx(g),ly(g),lz(g));

end

temp_faces=[faces(:,1);faces(:,2);faces(:,3);faces(:,4)];

[count, bin] = histc(temp_faces, unique(temp_faces));

lc=length(count);

verind_table=zeros(lc,1);

tempim=[];

verind_table=[];

parts=[’/net/age3/ADNI_Hippo_FSL/freesurfersub/’,...

mask_files(m).name(1:end-13),’/’];

sw1=[parts,’rposterior_Left-Hippocampus.nii’];

sw2=[parts,’rposterior_Right-Hippocampus.nii’];

sw3=[parts,’rposterior_lefthippo_r.nii’];

if exist(sw1)

ob1=[parts,’rposterior_left_1hippo_r.nii’];

cmd=[’mv ’, sw1, ’ ’, ob1];

system(cmd);

pause(10);

end

if exist(sw2)

ob2=[parts,’rposterior_right_1hippo_r.nii’];

cmd=[’mv ’, sw2, ’ ’, ob2];

system(cmd);

pause(10);

end
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if exist(sw3)

ob1=[parts,’rposterior_left_1hippo_r.nii’];

cmd=[’mv ’, sw1, ’ ’, ob1];

system(cmd);

pause(10);

end

tempim0=zeros(length(bim(:,1,1)),length(bim(1,:,1)),length(bim(1,1,:)));

for m_1=1:fix_length

[m_1name,m_1add]=strtok(fix_holes(m_1).name,’.’);

loadme=[parts,m_1name,’.nii’];

tempk=load_nifti(loadme);

tt=tempk.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

tempim0=tt./max(max(max(tt)))+tempim0;

end

tempim0=tempim0./(max(max(max(tempim0)))+1);

tt1=tempim0+bim;

[rl1,cl1,vl1] = ind2sub(size(im1),find(tt1 < 1)); %% tt1<1 delete

[rl2,cl2,vl2] = ind2sub(size(im1),find(tt1 == 1)); %% tt1==1 holes

L_holes=length(rl2);

L_clean=length(rl1);

for m_1=1:fix_length

[m_1name,m_1add]=strtok(fix_holes(m_1).name,’.’);

loadme=[parts,m_1name,’.nii’];

tempk=load_nifti(loadme);

tm1=tempk.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

loadme2=[fix_path,fix_holes(m_1).name];

tempk2=load_nifti(loadme2);

tm2=tempk2.vol(Lx_min:Lx_max,Ly_min:Ly_max,Lz_min:Lz_max);

for g=1:L_clean

tm1(rl1(g),cl1(g),vl1(g))=0;
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end

for g=1:L_holes

tm1(rl2(g),cl2(g),vl2(g))=tm2(rl2(g),cl2(g),vl2(g));

end

tempim{m_1}=zeros(length(w(:,1,1)),length(w(1,:,1)),length(w(1,1,:)));

tempim{m_1}(2:d(1)-1,2:d(2)-1,2:d(3)-1)=tm1;

tempim{m_1}=tempim{m_1}./max(max(max(tempim{m_1})));

for g=1:lxl

L_label1{m_1}(g)=tempim{m_1}(lx(g),ly(g),lz(g));

end

verind_table{m_1}=zeros(lc,1);

verind_table_C{m_1}=zeros(lc,1);

for g=1:lxl

verind_table{m_1}(faces(g,:),1)=verind_table{m_1}(faces(g,:),1)+L_label1{m_1}(g);

verind_table_C{m_1}(faces(g,:),1)=verind_table_C{m_1}(faces(g,:),1)+1;

end

verind_table{m_1}=verind_table{m_1}./verind_table_C{m_1};

end

for g=1:lc

[value,label(g)]=max([verind_table{1}(g),verind_table{2}(g),verind_table{3}(g),...

verind_table{4}(g),verind_table{5}(g),...

verind_table{6}(g),verind_table{7}(g),verind_table{8}(g)]);

end

promap=verind_table;

verind_table=label’;

saveto1=[’/net/age3/ADNI_Hippo_FSL/submat/’,...

mask_files(m).name(1:end-11),’_V5_fix.mat’];

bim=temp_w;

mins=mins-1;
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face_table=L_label’;

save(saveto1,’bim’,’mins’,’verind_table’,’face_table’,’vertices’,’faces’,’promap’);

end

h = figure;

saveto=[’/net/age3/ADNI_Hippo_FSL/subpics_V5/’,mask_files(m).name(1:end-4),’_V5_ver’];

hold on;

subplot(2,2,1);title(strrep(mask_files(m).name(1:end-4),’_’,’-’));

vertnum = size(vertices,1);

facenum = size(faces,1);

patches = patch(’faces’, faces, ’vertices’, vertices, ...

’FaceVertexCData’, verind_table, ...

’FaceColor’, ’inter’, ’EdgeColor’, ’none’, ’FaceAlpha’, 1);

FaceAlpha

material([.3 .4 .2 10]);

lighting phong;

axis image;

box on;

view(37.5, 30);

subplot(2,2,2);title(strrep(mask_files(m).name(1:end-4),’_’,’-’));

vertnum = size(vertices,1);

facenum = size(faces,1);

patches = patch(’faces’, faces, ’vertices’, vertices, ...

’FaceVertexCData’, verind_table, ...

’FaceColor’, ’inter’, ’EdgeColor’, ’none’, ’FaceAlpha’, 1);

material([.3 .4 .2 10]);

lighting phong;

axis image;

box on;

view(217.5, 30);

subplot(2,2,3);title(strrep(mask_files(m).name(1:end-4),’_’,’-’));
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vertnum = size(vertices,1);

facenum = size(faces,1);

patches = patch(’faces’, faces, ’vertices’, vertices, ...

’FaceVertexCData’, verind_table, ...

’FaceColor’, ’inter’, ’EdgeColor’, ’none’, ’FaceAlpha’, 1);

FaceAlpha

material([.3 .4 .2 10]);

lighting phong;

axis image;

box on;

view(37.5, 210);

subplot(2,2,4);title(strrep(mask_files(m).name(1:end-4),’_’,’-’));

vertnum = size(vertices,1);

facenum = size(faces,1);

patches = patch(’faces’, faces, ’vertices’, vertices, ...

’FaceVertexCData’, verind_table, ...

’FaceColor’, ’inter’, ’EdgeColor’, ’none’, ’FaceAlpha’, 1);

FaceAlpha

material([.3 .4 .2 10]);

lighting phong;

axis image;

box on;

view(217.5, 210);

saveas(h, saveto, ’fig’);

hold off;

close(h);

end

return;

%

% convert 1d index to 3d index
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%

function [xs, ys, zs] = get_3d_ind(is, d)

xs = mod(is-1, d(1))+1;

ys = mod((is-xs)/d(1), d(2))+1;

zs = (is-xs-(ys-1)*d(1))/(d(1)*d(2))+1;

return;

%

% convert 3d index to 1d index

%

function is = get_1d_ind(xs, ys, zs, d)

is = (zs-1)*d(1)*d(2) + (ys-1)*d(1) + xs;

return;


