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ABSTRACT

Tiwari, Nikhil M.S.E.C.E., Purdue University, May 2015. Integrated Wireless Sensor
System for Efficient Pre-Fall Detection. Major Professor: Maher E. Rizkalla.

The life expectancy of humans in todays era have increased to a very large extent

due to the advancement of medical science and technology. The research in medical

science has largely been focused towards developing methods and medicines to cure

a patient after a diagnosis of an ailment. It is crucial to maintain the quality of

life and health of the patient. It is of most importance to provide a healthy life to

the elderly as this particular demographic is the most severely affected by health

issues, which make them vulnerable to accidents, thus lowering their independence

and quality of life. Due to the old age, most of the people become weak and inefficient

in carrying their weight, this increases the probability of falling when moving around.

This research of iterative nature focuses on developing a device which works as a

preventive measure to reduce the damage due to a fall.

The research critically evaluates the best approach for the design of the Pre-Fall

detection system. In this work, we develop two wearable Pre-Fall detection system

with reduced hardware and practical design. One which provides the capability of

logging the data on an SD card in CSV format so that the data can be analyzed, and

second, capability to connect to the Internet through Wifi. In this work, data from

multiple accelerometers attached at different locations of the body are analyzed in

Matlab to find the optimum number of sensors and the best suitable position on the

body that gives the optimum result.

In this work, a strict set of considerations are followed to develop a flexible, prac-

tical and robust prototype which can be augmented with different sensors without

changing the fundamental design in order to further advance the research. The perfor-
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mance of the system to distinguish between fall and non-fall is improved by selecting

and developing the most suitable way of calculating the body orientation. The dif-

ferent ways of calculating the orientation of the body are scrutinized and realized to

compare the performance using the hardware. To reduce the number of false positives,

the system considers the magnitude and the orientation to make a decision.
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1. INTRODUCTION

Fall in elder population of the age 65 and above has become a very frequent occurrence

which has complex ramifications such as disabilities, loss of self-confidence, insecu-

rities, financial losses and even death. In this advanced medical era where the life

span of individual are long, there is a dire need to maintain the quality of life of the

elderly. As the population keeps getting older the possibility of fall keeps increasing

as the body gets fragile and the muscles start to weaken. The processes of aging is

inevitable so there is a need to find a preventive measure to reduce falls. The work in

ref [1] studied 1158 subjects for the risk of fall in people of the age 71 and above, who

were staying in the community with demographic and medical characteristics factors

of health care, cognitive, functional, psychological, and social functioning consider-

ations. The study took the record of the number of days before the subjects were

admitted into a nursing facility for a long period of time in the span of three years.

The subjects were grouped into four categories: subjects with no fall, subjects who

had one fall without serious injury, subjects with two or more falls without serious

injuries, and subjects with at least one fall and a serious injury. A total of 133 people

that represents 12.1 percent were admitted to a nursing facility for a long duration.

The study showed that the risk of admission to a nursing facility increased at large

for people who fell compared to people without any falls. The result of the study

concluded that falls are an important factor of admittance in a nursing facility and

systems that prevent falls may therefore delay or reduce the chances of nursing home

admissions.
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1.1 Advantages of Fall Detection

There are several researches in progress for detecting falls after they have happened

which would only inform about the fall but will not prevent it. Even to monitor an

elderly person there is a need of personal attention and proper data collection in

order to continue further development and analysis which is mostly done manually

by a caretaker, which can be flawed due to human error. The other difficulty is to

record and monitor individuals continuously at different places which is very hard

to do. If the fall has occurred, the only measure which can be taken is to rush the

emergency services to the particular address, in which case the person can be provided

with medical aide soon, but rather there can be a system which can detect a fall before

it occurs, and this may act as a preventive measure. It would take time to come up

with a complete solution which is perfect, but as progress is made in iterations, there

can be a safety device system which can be efficient for commercial use. There is also

a need of proper information about the falls, thus this system can record real time

data about the ambulatory activities 24∗7 at remote location which could be of great

help in building advanced Pre-Fall detection systems.

1.2 Literature Survey of Fall Detection

There is a large amount of research done and is in work with different fundamentals

to develop a perfect system which would either detect a fall before it happens or detect

a fall after it has occurred. There are multiple number of papers that are working on

different ways to detect falls, some of them deal with the detection of falls after they

occur and some on detecting the fall during the transition between balanced posture

and the fallen posture that is during the fall. The other approach is to detect the

fall before it happens. In order to detect the fall during its transition there is a need

to understand the details of the pattern of falls. The first step in detecting a fall is

by sensing the changes of the body position. There are multiple concepts applied to

differentiate falls and normal activities using different electronic systems.



3

A Portable Pre-impact Fall Detector uses Inertial Sensors to detect a Fall before it

occurs. The system uses tri-axial accelerometer and tri-axial angular rate sensor. For

the data logger and for running the algorithm, the system here uses a Pocket PC(HP

iPAQ h5550), the system can log 20 hours of data from the 3DM-G nine channel of

12 bit data stream at 57 Hz from each channel. In order to connect the Pocket PC to

the sensors, LabVIEW 7.0 was used. The whole system is encased in a waist bag [2].

There were some research groups who tried to work with machine learning in order

to predict the fall before it had occurred but was too complex to build for a portable

embedded system with minimum hardware requirements [3]. Shan et al. [3] used

feature selection and support vector machine to detect the fall earlier. A tri-axial

accelerometer was used to measure the movement of the body and algorithms were

used to select a proper feature which would give the maximum amount of difference

between Activity of Daily Living (ADLs) and falls. The system used a STMicro-

electonics LIS3LV02QD accelerometer to measure the acceleration of the body and a

NEC 78K0547 Micro-controller as the brain of the system which executes the algo-

rithm to detect the fall. The Micro-controller communicated with a PC which logged

the data sent to it, using a wireless transmitter connected to the system. To transmit

the data, a pair of Nordic Semiconductor nRF2401 wireless modules were used.

This research [4] deals with validating and developing an algorithm which uses

2D- information. The 2 Dimensions here are the trunk angular velocity(α) and trunk

angle(ω). This work simulated unexpected slip-induced falls to validate and build the

algorithm. The system uses an Inertia-Link Inertial Measurement Unit(IMU) which

is put close to the sternum to measure the orientation, acceleration, and the angular

velocity in 3-D, sampled at 100 Hz. Another sensing system which uses six-camera

(ProReflex MCU 240) infrared motion capture to sense the position in 3-D, of the

reflective marker and is also sampled at 100 Hz. To identify the falling motion, the

position of the vertical marker was measured. Analysis was performed on the data

set which was collected from the experiments to determine the discriminant function

F (α, ω) for the algorithm. The threshold is not associated with the physical sense
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but as a composite score of integrated values. To determine the optimal value of the

threshold for the algorithm 1, the ratio of sensitivity to specificity is used.

Some researchers have been working on the concept of using Smart-phone for de-

tecting falls [5], [6], [7], some of which were specifically using android mobile operating

system due to its openness. Yi Hi et al. [5] made use of the built-in accelerometer

that collected the movement of the body to classify it into five categories i.e. vertical

activity, lying, sitting or standing without movement, horizontal movement, and fall.

The system used the other facilities provided by the device like sending Multimedia

Messages (MMS) when a fall is detected which includes other information about the

location, and the time at which it occurs.

Fang et al. [6] used the android platform to built a fall detection algorithm on

the smart-phone alerting few selected contacts in an event of a fall. This study also

analyzed the trade-offs between sensitivity and specificity, and provided information

about the power consumption of the device. Tiwari et al. [8] used the android platform

but let the user reduce any falls positives by touching the screen or responding in

case of any falls positives. Sposaro et al. [7] worked on the same android platform

and provided additional feature of sending a SMS to a pr-specified contact when a

fall is detected and when the user gets a response back from the contact when the

application puts the phone on speaker and let the user conforms the fall only, then

the emergence services summoned.

Cheng et al. [9] looked into the Surface Electromyography and Acceleration in

order to get information for classifying the activities, and detected the falls. To

distinguish between different intervals of activity, the system used Histogram Negative

Entropy, and in order to determine the posture of the subject, acceleration vector is

used. This also helps in defining dynamic gait activities and dynamic transitions.

The hidden Markov model was employed to identify the dynamic gait activities while

the acceleration amplitude was used to detect falls. There are three major category

of systems differentiated on the basis of the sensing mechanisms, those are Computer

Vision based [10], Acoustic and Ambient sensor based, and wearable sensor method.
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Each one of the methods have it’s drawbacks and benefits [11], [12], [13], [14]. The

approach with Computer Vision based systems is versatile but costly and confined

to an indoor facility where the system was installed [15], [16]. In comparison, the

approach using acoustic provides cost effectiveness but has its own drawbacks like

inefficiencies due to external noise [17], [18].

Most of the previous research concentrated on detecting falls and not on pre-falls.

One of the important concerns when developing any embedded system is the amount

of hardware, which should be minimal in order to reduce cost, size and weight as it

is to be carried by the subject. Narasimhhan [19] used a skin-contact sensor which

consisted of a tri-axial accelerometer, a micro-controller and a low energy Blue-tooth

transceiver. The algorithm took into account two variables, the magnitude variation,

to tell if an impact has occurred and angle to check if the direction is horizontal, and

confirm that the fall has occurred. The activity is then measured using a threshold

to designate the fall. The sensor used here was a Bosch BMA250 digital tri-axial

accelerometer. The accelerometer sampled the data at 125 Hz with a resolution of

10 bits and a range of ±4g for each axis. The system worked with a microcontroller

on the subject, which ran the algorithm and sent the signal when a fall was detected,

using a low power Bluethooth transceiver.

Bevilacqua [20] used an approach on the lines of Vision based fall detection. Pro-

vided all the benefits and drawbacks of vision based approach. The research distin-

guished falls by evaluating the contraction and expansion speed of the volume of the

object, using a concept of Human Bounding Box and also taking into account the

position of the subject in space. The system worked on two inputs from a RGB-D

camera and Microsoft Kinect device. The system used IR depth sensor and a RGB

camera both of 640×480 resolution at 30 fps from PrimeSense which also provided the

software library. As the system worked on the Microsoft Kinect IR sensor there was a

limitation on the range of view and depth which comes to 3.5m specified by Microsoft.

The range was also a factor of the environment and the illumination condition, thus

providing inconsistent results.
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Prado-Velesco et al. [21] put forward a strategy called divide and conquer to de-

tect the occurrence of a fall. The system that was developed for fall detection was

unobtrusive and not user friendly. As the system had to be worn by the subject for

long durations, it should be designed with a level of comfort. The understanding

of the real world fall pattern was limited to some extent and very complex as there

were unlimited number of factors to be considered in real world scenarios. The study

suggested that this complexity cannot be addressed by using rigid analysis of accel-

eration. The system was based on an adaptive algorithm in order to differentiate

between impact and non-impact activities. The study showed that there is a range

of threshold which provides a balance between specificity and sensitivity. The study

also showed that the threshold can be reached by tuning during normal daily activi-

ties. The system had two layered architecture, the intelligent accelerometer sticking

plaster (IASP), and the wearable base station connected to a smart-phone. Both

systems were connected by wireless personal area network using a free media access

control (MAC). The complexity of this system, and the increased hardware was a

huge drawback and would not bring fall detection to commercial market.

There are some researches focusing on developing different designs for the fall de-

tection systems so that the system can be worn comfortably without any obstruction

in daily living. This particular approach is very important as the system may be

worn on for long durations in different scenarios, such as while taking bath, etc. The

system should also be capable of handling impacts and be resistant to water as it

will be worn on at all times. Very few researches have taken considerations of these

facts. Bourke et al. [22] developed a vest consisting of the fall detection system. Their

approach for the fall detection was threshold and posture recognition based, the two

conditions that were checked before making the decision. The system used a Freescale

MMA7261QT tri-axial accelerometer, MSP430 microprocessor a Micro SD card and a

Bluetooth module. The accelerometer data is sampled at 100Hz and filtered using 1st

order analogue low-pass RC filter. This system was fixed onto the vest which would

be worn on by subjects of different sizes. To solve the issue, the vest was made in
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different sizes. Although the approach of using a vest to fix the system comfortably

on the subject was promising, but the robustness of the system was still minimum as

it could not be worn while in the shower.

Igual et al. [23] surveyed the fall detection research classifying the technique into

two categories, context-aware systems which consisted of sensors implemented in the

surrounding of the subject rather than on the user, giving a comfortable and free

environment for the user, but limiting the mobility to a specific area such as a room

or a clinical facility. The other drawback was the privacy, as these systems mostly

used video based mechanisms to detect the changes of the posture. The 2nd category

was the wearable devices which included sensors worn by the subject. There were

two sub-categories, one fell under the machine learning algorithms and second were

threshold based. The machine learning approach provided good results but with

increased complexity of hardware and software, whereas the threshold based approach

gave average results, depending upon the execution of the design with benefits like

simplicity of the design.

There are great opportunities in all of the above approaches with different draw-

backs. The threshold based system with inherent simplicity provides a more viable

option in order to develop commercially appealing systems which have the potential

for mass usage. In all of the above approaches, none of them could fully accommodate

the patients needs.

1.3 Feature of Wireless Devices

The importance of connecting systems to a centralized hub such as the Internet

is undeniable as it gives a freedom to retrieve and manipulate the data from any-

where in the world. The Pre-Fall detection system can also be used to acquire data

from subjects in real time and store it in a centralized place to be used for further

analysis. Due to the advances in Internet speeds and WiFi technologies many of the

systems can communicate with each other to leverage maximum benefit. This level of
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communication between systems gives endless possibilities for their applications. The

information about the surrounding from different connected devices gives great con-

trol of the environment which adds to the capacity of regulation. Another advantage

of the Internet of Things is that the devices can be managed or controlled through

applications built in the smart-phones. The data which is sent to website can be used

by the smart-phone to inform individuals of the ongoing situations miles away, and

may even give control over the situation by giving authority to induce changes.

1.4 Embedded Sensor Applications and Benefits

Any fall detection system requires information about the physical quantities such

as temperature, position, acceleration, pressure, humidity, altitude, orientation etc.

and the changes of the system relative to the surrounding needs to incorporate sen-

sors in the system. The electronic devices can detect electrical signals only, but the

physical quantities are not in this natural form, so they have to be converted in the

form that can monitor these physical quantities, the sensors perform these transfor-

mation and provide the electronic machinery with the electrical equivalent. In all the

applications in the home, automobile, aviation, medicine, manufacturing etc. devices

need to be aware of the changes in the surrounding either to control, measure, or

store the information that is acquired by the sensors. The need of sensors requires

the chips to be versatile in every aspect from electrical to physical and mechanical

stand point. The advancements in fabrication technology help achieve many required

traits giving a low cost solution with superior precision and accuracy. The latest fab-

rication technique makes it easy to add more number of transistors on the same die

which gives more real estate for adding complex logic. Apart from the benefit of size,

the reduction of the transistor gate length reduces the power dissipation too, which

is one of the basic requirements of any mobile device which runs either on battery

or solar energy. There are a few common forms of processing like filtering, analog

to digital conversion which are to be performed on the data provided by the sensors,
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and normally is taken care of by the micro-controllers, but due to the optimum usage

of chip real estate, these processes can be accomplished on-chip by adding compu-

tational engines that reduce the burden on the micro-controller. Another benefit is

that we can add multiple sensors on one chip that may further reduce the complexity,

power consumption, size, and cost of the device.

Few of the widely used sensors are Accelerometers and Gyroscopes which give

the information about the movement to the system. Any hardware which requires

this information, linear or angular, will need to include these sensors. These sensors

are fabricated with different technologies and these varieties have there benefits and

drawbacks, depending on the use and the type of systems which incorporate them.

The selection of a proper type is very important for a perfect design as it affects the

project’s complexity and compatibility.

1.4.1 Types of Accelerometers

1. Capacitive: these types of accelerometers register acceleration due to the

change in the distance between two plates of a capacitor.

2. Piezoelectric: These accelerometers work on the principle of Piezoelectric

effect. There are Crystals which generate electricity on one side when pressure

is applied on the other two faces of the crystal.

3. Piezoresistive: The working is similar to Piezoelectric accelerometer, but this

strain gage is used, provide variation in acceleration due to change in resistivity.

4. Hall Effect: This works on the principle of change in the magnetic field due

to change in acceleration.

5. Magnetoresistive: These accelerometers work similar to the Hall Effect ac-

celerometers but measure the change in resistance due to a magnetic field which

intern is represented as acceleration.
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6. Heat Transfer: There is a single heat source around with thermo resistors

was placed equally spaced so the temperature gradient is symmetrical until a

change in acceleration occurs.

7. MEMS-Based: Micro-Electro Mechanical System Based accelerometers. These

contain small Electro-Mechanical components which read the acceleration. This

is the latest in sensor technology.

1.4.2 Types of Gyroscopes

Gyroscopes are sensors which measure the change in angular rate. There are many

types of gyroscopes depending upon the basic technology used to develop them. Three

basic types are:

1. Spinning Mass: This type of gyroscopes works on the principle of conservation

of angular momentum. There is a spinning wheel within frictionless gimbals

which resists the change in its angular momentum and measures the change in

angular rate.

2. Optical: This type of gyroscopes uses optical principles such as Sagnac effects

to measure the angular rate change.

(a) Fiber Optical Gyros.

(b) Ring Laser Gyros.

3. Vibratory: Most of all MEMS gyroscops are based on these principles.

(a) Vibratory Coriolis Angular rate Sensor.

(b) Basic Planer Vibratory Gyro.
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1.5 Serial Communication

There are few constraints in the design of embedded systems as the purpose of

these devices are to be mobile, low power, small in size, reliable, convenient etc. and

due to this fact there are different technologies developed to fulfill these requirements.

The Embedded system is a group of devices communicating with each other providing

relevant information required for the completion of a task. The different devices are

communicating in a serial manner bit by bit, either in a synchronized fashion or an

asynchronous way, depending upon the protocol and the device. The reason to have a

serial communication is to reduce the number of wires and ports on a processor or any

communicating device. For these reasons two of the serial communication protocols

have been extensively used due to their benefits;

1. Inter Integrated Communication (I2C)

2. Serial Peripheral Interface (SPI)

3. Universal Asynchronous Receiver Transmitter (UART)
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2. HARDWARE

2.1 Arduino Board

Arduino is an open-source electronics hardware platform based on easy to use

hardware and software. There are variety of hardware vendors developing Arduino

Boards with different types of Micro-Controllers. The following are a few types of

Micro-Controllers which are supported by the Arduino platform.

1. ATMega328 clocked at 8 or 16 MHz

2. ATMega1280 clocked at 16 MHz

3. ATMega2560 clocked at 16 MHz

4. ATMega32U4 clocked at 16MHz

5. SAM3X

2.2 Arduino Uno

Arduino UNO is a board built around the ATMega328 Micro-Controller. It has

14 I/O pins with configurable functions, and 6 of which can be used as Pulse Width

Modulated (PWM) output, and 6 analog inputs. The ceramic resonator runs at 16

MHz, and it has a USB (Universal Serial Bus) connection to communicate with the

PC, a power jack, an ICSP header, and a reset button. It contains everything needed

to support the Micro-Controller, and it can be connected to a computer with a USB

cable for programming or powering the board. It can also be powered by a AC-to-

DC adapter or battery to get started. The UNO differs from all preceding boards,

in that it does not use the FTDI USB-to-serial driver chip. Instead, it features
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the Atmega16U2 (Atmega8U2 up to version R2) programmed as a USB-to-serial

converter. The Version R3 is used in this Prototyping. Figure 2.1 shows the Arduino

board with its components.

Figure 2.1.: Arduino UNO

2.3 ATMega328

The Atmel ATMega328 is an 8-bit AVR RISC-based microcontroller which com-

bines a 32KB ISP flash memory and read-while-write capability, 1KB EEPROM,

2KB SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three

flexible timer/counters with compare modes, internal and external interrupts, serial

programmable USART, a byte-oriented 2-wire serial interface, SPI (Serial Peripheral

Interface) port, 6-channel 10-bit A/D converter (8-channels in TQFP and QFN/MLF

packages), programmable watchdog timer with internal oscillator, and five software

selectable power saving modes.
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Table 2.1.: Features of the Arduino UNO

Microcontroller ATmega328.

Operating Voltage 5V.

Input Voltage (recommended) 7-12V.

Input Voltage (limits) 6-20V.

Digital I/O Pins 14 (of which 6 provide PWM output).

Analog Input Pins 6.

DC Current per I/O Pin 40 mA.

DC Current for 3.3V Pin 50 mA.

Flash Memory 32 KB (ATmega328) of which 0.5 KB used by bootloader.

SRAM 2 KB (ATmega328).

EEPROM 1 KB (ATmega328).

Clock Speed 16 MHz.

The device operates between 1.8-5.5 volts. By executing powerful instructions in

a single clock cycle, the device achieves throughputs approaching 1 MIPS per MHz,

balancing power consumption and processing speed. Table 2.1 shows the features

of the Arduino UNO and table 2.2 shows the key parameters of the ATmega328

micro-controller, and figure 2.2 shows the pin diagram of the system.

2.4 MPU6050

The MPU-6050 is the worlds first, and has, only 6-axis MotionTracking device

made for low power, low cost, and high performance need of gadgets like tablets and

wearable sensors.

The MPU-6050 combines a 3-axis accelerometer and a 3-axis gyroscope on one

silicon die and also contains an onboard Digital Motion Processor (DMP) for process-

ing complex 6-axis MotionFusion algorithms. The device can access any other sensor
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Figure 2.2.: PIN Layout of ATMega328

external to the device using the auxiliary IC bus interface, which helps reduce the load

on the system processor. The MPU-6050 is packaged in 4x4x0.9 mm QFN packaging.

Figure 2.3 shows the block diagram of the serial communication between a 3-axis

compass, MPU6050, and an application processor. Figure 2.4 detail the connection

between the Arduino UNO and the MPU6050 Inertial Measurement Unit.

The MPU-6050 has both fast and slow motions precision tracking. The device

consists of a user-programmable gyro full-scale range of 250, 500, 1000, and 2000/sec

(dps) and full-scale user-programmable accelerometer range of 2g, 4g, 8g, and 16g.
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Table 2.2.: Key Parameters of ATMega328

Parameter Value

Flash (Kbytes): 32 Kbytes

Pin Count: 32

Max. Operating Freq. (MHz): 20 MHz

CPU: 8-bit AVR

Max I/O Pins: 23

Ext Interrupts: 24

SPI: 2

TWI (I2C): 1

UART: 1

ADC channels: 8

ADC Resolution (bits): 10

ADC Speed (ksps): 15

Analog Comparators: 1

Figure 2.3.: MPU-6050 Serial Communication

2.5 ADLX345

ADXL345 is a digital accelerometer which is thin, light, and low power consump-

tion device. The ADXL345 supports SPI (3 wire and 4 wire Communication) and I2C

Serial Communication Interfaces. The acceleration data provided by the ADXL345

is 13-bit in resolution at ±16g as two’s compliment 16-bit data. The accelerometer

is suitable for a mobile device as it requires very low power. The device can measure
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Figure 2.4.: MPU-6050 Arduino Connections

change in tilt with minimum changes as low as 1 degree, due to its high resolution

of 4mg/LSB as well as the dynamic acceleration resulting from motion and shock.
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The device provides Two-User programmable Interrupts which can be mapped to

special functions like activity detection, free fall sensing, and tap sensing. The device

provides a FIFO (First-in-First-out) buffer to reduce the host processor’s work, and

can be mapped to the interrupts. The Features of ADXL345 are:

Figure 2.5.: Functional Block Diagram of ADXL345

• Ultra Low Power

• Power consumption scales automatically with bandwidth

• User-selectable resolution

• FIFO technology minimizes host processor load

• double tap detection

• Activity/inactivity monitoring
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2.6 CC300 WiFi Module

CC3000 is a Wireless Network Processor designed by Texas Instruments which

provides low power, low cost, and wireless access to the Internet. It is compatible with

most low power MCU’s and thus it became device of choice for embedded projects.

The CC3000 has a complete TCP/IP stack, SPI communication interface running at

Figure 2.6.: CC3000 Breakout Board

16MHz to communicate with the host processor, and compliant with IEEE 802.11

b/g, WEP, WPA/WPA2 security modes, and an on-board WiMAX Antenna. The

CC3000 breakout board and the architecture of the API are shown in figures 2.6 and

2.7 respectively.
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Figure 2.7.: CC3000 user API
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3. SYSTEM DESIGN

3.1 Hardware Design

The Hardware model consists of an ATmega328P working at the center of the

system. The MPU6050 and the ADXL345 communicate with the ATmega328P with

I2C at the default speed of 100 kHz.

The accelerometer in MPU6050 is configured to work in the range of 8g and the

gyroscope is configured to work in the range of 250 degrees/s. The ADXL345 is also

configured to work in the range of 8g.

The IMU (Inertial Measurement Unit) and the accelerometer both have ADCs

(Analog to Digital Converters) and the sampling rate for the ADC in ADXL345 is

kept at 50 Hz as it results in lower power consumption and fulfills the requirements.

The minimum sampling rate in MPU6050 is 1000 Hz for the accelerometer and gyro-

scope which is being used. Figure 3.1 gives the fall detection system design, and the

schematic of the system is followed in figure 3.2.

3.2 Software Design

3.2.1 Initialization

The first step in the program loads the required libraries needed for the suc-

cessful execution of the program. The libraries included Wire, I2Cdev, ADXL345,

MPU6050, Kalman,SPI, SFE CC3000, SFE CC3000 Cliet, and math. The Wire li-

brary gives access to basic functions required for establishing communication using

the I2C protocol. The I2Cdev library uses the functions in Wire library to build the

read and write function for the I2C protocol. The ADXL345 library gives access to

read and write functions which work on the registers of the ADXL345. The MPU6050
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library provides these functions for the IMU.

The Kalman library provides the basic architecture required to utilize the Kalman

filter within the system. The SPI library is used to build communication between

the CC3000 WiFi Module and the ATmega328P using the SPI (Serial Peripheral

Interface) protocol. The SFE CC3000 and SFE CC3000 Cient library provide the

basic TCP/IP stack access required to construct a successful WiFi channel. The

math library is required to do complex mathematical computations.

3.2.2 Setup

The second step is the setup, in which the Macros, global variables and the config-

uration is performed. The class objects of Kalman, MSP6050, ADXL345 and CC3000

are initialized. There are four functions declared, those are, Kalman, getG, getG1

and workdone. Kalman function performs the calculation of the angles from the ac-

celerometer and gyroscope data. The MPU6050 is configured to a full scale range of

2g for the accelerometer and 250 degrees/s for the gyroscope, the in-built filters are

configured to 260 Hz for accelerometer and 256 Hz for the gyroscope with a sampling

rate of 8 kHz.

The getG and the getG1 functions take the raw data values and convert them

to gs. The workdone function performs major part of the calculation. The input

to the workdone function are the g values from the getG and getG1 functions. The

algorithm is shown in the form of a flow chart in figure 3.3.

3.2.3 Calculations

The Loop is the main function which calls the other function and keeps running

infinitely. The MPU6050 works in different configurations in the loop function as it

is configured to a full scale range of 8g as per the requirements.

The sampling rate for the accelerometer and the gyroscope is 1 kHz. To per-

form this function the gyroscope configuration (GYRO CONFIG) register and the
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accelerometer configuration (ACCEL CONFIG) register values have to be changed.

The 4th and the 3rd bit of both GYRO CONFIG and ACCEL CONFIG i.e. FS SEL

[1:0] and AFS SEL [1:0] are changed to decimal value 0 and 2 respectively. The same

changes are made to the ADXL345 by using the setRange() function.

A delay is added in the next instruction for the accelerometers to stabilize as

the range is being changed in every loop. After the accelerometers have stabilized

the acceleration and gyroscope data is read from the device registers, these values are

passed to the Kalman() function, which gives the angle of the body in two dimensions

and the workdone function which calculates the features. If the thresholds are met,

the data is passed to the postdate() function which posts the data on the server.

3.3 Design For Test and Data logging

The hardware design for the test and data logging involves an SD card shield

from SparkFun electronics which is compatible with the Arduino UNO. The SD Card

Shield uses SPI (Serial Peripheral Interface) to communicate with the Arduino UNO.

The breakout board for the SD card is shown in figure 3.4. The accelerometer and

gyroscope readings from the Arduino UNO are sent to the SD Card after computing

the features and storing them onto the SD card for further analysis. The SD Shield

requires the SPI and the SD libraries to send the data from the Arduino to the SD

card as in figure 3.5. The microSD card implements a FAT16 or FAT32 file system

which limits the file’s size but may be enough for text data logging.

3.3.1 Datalogging Process

The SD card can log data at the sampling rate and save it for future analysis in

different formats such as text, and .csv (Comma Separated Values) file format. The

SD library provides many methods to work on the files in the SD card. The data

from the accelerometer and the gyroscope is collected through the I2C interface and

is in the raw format. In the raw form, the accelerometer, and gyroscope readings
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give the values of acceleration and angular velocities from all three axes respectively.

These readings are used to extract the features required for the algorithm and store

them in the SD card. There is another variable ”FALL”, which stores the status of

the fall occurrence. The ”FALL” variable is ZERO if no fall is detected and ONE if

fall is detected. The angle information for the two axes are also recorded along with

the other features. Figure 3.6 and 3.7 detail the test system and the data logging

algorithm respectively.
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Figure 3.3.: Fall Detection Flow Chart
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Figure 3.4.: SD Shield for Data logging
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Figure 3.7.: Flow chart for testing and data logging system
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4. COMPUTATIONAL MODEL

4.1 Feature Extraction

4.1.1 Acceleration

Acceleration is a vector quantity which holds the direction and magnitude. Ac-

celerometer calculates the acceleration in three dimensions with the acceleration vec-

tor containing the direction and the magnitude as the length of the vector. The

acceleration from the accelerometer is the addition of two components, one is the

gravitational acceleration, and the second is the body acceleration. For further com-

putational analysis these components have to be separated as BA (Body Acceleration)

and GA (Gravity Acceleration) components according to [24]. Below are the equa-

tions used to calculate the angle between the acceleration vector and the three axes.

Ax = arctan(
x√

y2 + z2
) (4.1)

Ay = arctan(
y√

x2 + z2
) (4.2)

Az = arctan(
z√

x2 + y2
) (4.3)

The angles are calculated based on the gravitational acceleration frame of ref-

erence as the accelerometer reading in the static state gives the magnitude of the

gravitational vector. The accuracy of the angles in static or dynamic states will be

uncertain as the acceleration vector will be influenced by the body acceleration.
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4.1.2 Angular Velocity

The gyroscope provides the angular velocity (Av) which is the derivative of the

angular position (Ap).

Av =
dAp

dt
(4.4)

The angular position can be obtained by taking an integration of the angular velocity

over time.

Ap(t) =
∫ t

0
Av(t)dt (4.5)

The Roll and Pitch can be computed by using the above formula, integrating over

the period (Ts), and giving the angular movement in 2D. The computational formula

for the Pitch (φ) and Roll (θ) measurement are below.

θ =
t∑
0

Avx(t)Ts (4.6)

φ =
t∑
0

Avy(t)Ts (4.7)

4.1.3 Signal Vector Magnitude (SVM)

The Signal Vector Magnitude (SVM) is the quantity of the acceleration vector.

The fundamental assumption to check for fall is the change in the magnitude of

acceleration as the human subject’s body acceleration vector will be in the direction

of the gravity vector, resulting in a rapid decrease in magnitude during the fall and

before the impact with ground at which the quantity will peak. This feature is

calculated according to Karatonis et al. [24]

SVMi =
√
x2i + y2i + z2i (4.8)

The SVMi is the ith sample calculated using the ith samples of the acceleration values

on the x, y and z-axis.
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4.1.4 Signal Magnitude Area (SMA)

The Signal Magnitude Area (SMA) is another feature required to determine the

fall. The quantity is the integration of the three varying components of the acceler-

ation vector averaged over the sampling period summed together to clearly describe

the static position and the dynamic position of the patient [24].

SMA =
1

t
(
∫ t

0
x(t)dt+

∫ t

0
y(t)dt+

∫ t

0
z(t)dt) (4.9)

The x(t), y(t) and z(t) are the acceleration measurements in the three axes.

4.2 Complimentary Filter and Kalman Filter

The output from the accelerometer and the gyroscope have errors and give more

accurate outputs in different scenarios. The data from these sensors have to be fused

in order to get a proper angular position.

4.2.1 Inaccuracies in Accelerometers

Figure 4.1.: Angle output without translational motion
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Figure 4.2.: Angle output with translational motion

The angle measured using an accelerometer is accurate until there are no other

accelerations acting on the accelerometer other than the gravitational field. In the

pre-Fall detection system, the acceleration due to the body is also accounted for by the

accelerometer adding another part of translational motion to the total acceleration

thus giving out inaccurate output [25]. According to [25], figure 4.2 and 4.3 show the

angular measurements for two scenarios, one with no translational motion, and the

other with translational motion. The result shows that the error is induced by the

translational motion.

4.2.2 Inaccuracies in Gyroscopes

The gyroscopes raw data is the angular velocity which is converted to angular

position by integrating the gyroscope output. There are many types of gyroscopes

built using different technologies but the output has low or high amounts of bias error

which also gets integrated when converting the angular velocity to angular position.

This change in output gradually sums up, giving a drift in the angular as shown

in figure 4.3. The [25] empirically showed this variation by comparing the encoder

output with the integrated angular velocity from the gyroscope.
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Figure 4.3.: Drift error due to Integration

Figure 4.4.: Graph of the output from the Hardware

Figure 4.4 shows the output from the hardware. Which shows the angle calculated

by using the different types of techniques discussed. The yellow line shows the drift

of the output calculated using the gyroscope, and the lawn green line shows the
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fluctuation of the output calculated by using the accelerometer. The red and the blue

line in the graph are the outputs of the Kalman and the complimentary filter, which

give a very similar output.

4.2.3 Complimentary Filter

The Complementary Filter combines the data from the accelerometer and the

gyroscope and provides accurate results with minimum complexity and computational

requirements as compared to Kalman filter. The ease of implementation on a small

micro-controller with limited computational power makes it an ideal choice in the

system.

The accelerometer gives more accurate when there are minimum number of forces

other than the gravity acting on it. The performance of the accelerometer is best

at the static or lower frequency. The gyroscope when in stationary position drifts

due to the integration of errors and provide better results at higher frequencies thus

performing complementary to the accelerometer. The complementary low pass filters,

the accelerometer data, and high passes of the gyroscope data, have outputs multiplied

with gains that are summing to unity.

Gg +Ga = 1 (4.10)

where Gg is the gain for gyroscope and Ga is the gain for the accelerometer angle

value. The gain for each quantity can be fine tuned depending on the application and

the accuracy of the result. The complementary filter implementation is shown below

with the gain values calculated by manual tuning.

compAX = 0.93 ∗ (compAX + gXrate ∗ dt) + 0.07 ∗ roll (4.11)

compAY = 0.93 ∗ (compAY + gY rate ∗ dt) + 0.07 ∗ pitch (4.12)

The angles from the gyroscope are calculated by integrating the output over time

and the accelerometer angles, Roll and Pitch, are calculated by the formulas given in

equations (4.11) and (4.12).
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4.2.4 Kalman Filter

The Kalman filter is used in many high precision cases like aerospace, etc. The

Kalman filter gives more accurate results than the complementary filter in most cases,

but at the expense of complexity and computational inefficiency. The Kalamn filter in

this research is used just for comparison and not in the prototype, as it is very difficult

to implement in 8-bit micro-controller. Although the Kalman filter gives accurate

results on the ATmega328P, the portability and the simplicity of the algorithm has

to be maintained for general use.
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5. THE PRACTICAL MODEL

5.1 Introduction

The system is designed in two configurations. One of the prototype consists of

a Wifi breakout board from Sparkfun, which is connected to the serial peripheral

interface bus, and provided a gateway to the Internet. The second prototype uses a

SD card to store the data. Although both systems use the same sensors to gather

inputs, the wearable fall detection system provide flexibility in terms of collecting

data.

To reduce the hardware, data was collected by 5 wireless Z-star accelerometers,

connected on the neck, stomach, back, knee, and calf. A software on the PC collected

the data in an Excel sheet, to which the sensors sent the data. The sensors sent the

data through Bluetooth which requires a lot of energy. As the sensors were operated

on a battery, the sensor’s range of communication reduces as the battery power is

reduced. To make the process of collecting the data on the system itself, an SD card

is installed. The system can be worn by a patient for a long duration and collect the

data in real time. Figure 5.1 shows the format of data collected on the SD card.

The data from the Wifi can be sent to a server, local or remote. To show the

functionality of the Wifi capability, the data is sent to an open-source remote server

“Data.Sparkfun.com”. The data can be sent to a computer with a server running

on it. There are multiple open-source severs and databases available for building a

practical application. The figure 5.2 shows an example of the data sent to the server.
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Figure 5.1.: Data in Excel sheet from the Hardware

5.2 The Portable System

The wearable fall detection system is a device worn by a patient, so it has to

be designed to suit its purpose. To make the system comfortable, it should be in a

form which makes it unobtrusive. After analyzing the data collect from 5 sensors at

5 different locations, 2 sensor location on the waist proved to be suitable for both,

position and efficiency. This enabled the device to be designed in the form of a belt,

making it comfortable and unnoticeable.

5.2.1 The Diagram

Figure 5.3 shows the design before the prototype was realized. The sensors are

attached in the front and the back of the persons body. The sensor in the front pro-

vides the orientation information of the patient by using the data from the gyroscope

and the accelerometer.
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5.2.2 The Belt Device

Figure 5.4 shows the first prototype on the bread board, which has the Wifi

module, and figure 5.5 shows the system produced in the form of a belt. The alternate

design can be a System on Chip (SoC) which can be attached through clips on any

belt or trouser. The wires in this systems case are not flexible but can be made

adjustable for different sizes of patients. The system depends on the orientation of

the body to make a decision, thus it is imperative to have the system placed properly

on a patient. There is a high probability for the belt being oriented in a wrong

way, due to the variation in size of the patient. The system solves this problem by

calibrating itself to a zero position every time the system is worn.

5.3 Device Evaluation

5.3.1 Power Consumption

To improve the power consumption of the device, all design aspects are kept

simple. The most simplistic approach to calculate the orientation is used, so as to

implement it on a low power micro-controller. The sensors are configured to consume

minimum power. The ADXl345 requires minimum power when it is configured at 50

hz, which is sufficient for the system to detect a fall.

5.3.2 High Speed

The complete duration of fall lies between 250 to 300 ms, and the system can

detect a fall 160 to 200 ms before the impact. Considering the time required by the

code to calculate the SVM, SMA, and the orientation, the system computes each value

in 40 ms. This gives the system enough time to deploy any protection mechanism.
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5.3.3 Complexity

The device consists of many components, each component should be efficient to

make the system work properly. To fulfill the requirements the system should be

simple and correct. To reduce the complexity of the system, many approaches have

been analyzed and compared.
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Figure 5.3.: Pre-realization design of the prototype

Figure 5.4.: First Prototype
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Figure 5.5.: Final Prototype
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6. DESIGN CONSIDERATIONS AND OPTIMIZATION

The Pre-Fall detection system is a wearable device meant to be worn through out

the day by the patient supposedly in a monitored environment, thus the design of

the wearable system should be comfortable, easy to wear and remove, robust, power

efficient and accurate. The wearable system should be clutter free with least possible

modules, providing enough computational power and adequate aspects of information

required to give proper result.

6.1 Sensor Optimization

Data was collected using three sensors as shown in fig 6.2. The sensor placements

was based on previous work using the thresholds calculated by the rattle software.

Using the same threshold value the sensor combinations were used to find the optimum

Figure 6.1.: Three Sensor Placement Accuracy Graph

pair of sensors and the best location for the placements of the sensors. The Sensors are

numbered according to the fig 6.2. Sensors S4 and S5 are not taken into consideration

due to the too much noise found in the output and the position on the body.
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Figure 6.2.: Sensor Placement

The evaluation of the figures 6.3 and 6.4 provides very close results from the three

sensors and the combination of the two sensors. Although sensors S1 and S3 provide

the optimum accuracy for the placement, sensor S1 creates clutter and inconvenience

and thus the Sensors S2 and S3 combination proves to be the best suitable placement

acording to the design considerations.
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Figure 6.3.: Graph of accuracy of Sensor S1

Figure 6.4.: Graph of Accuracy of Sensor S2
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Figure 6.5.: Graph of Accuracy of Sensor S3

Figure 6.6.: Graph of Accuracy of Sensor Combination S1 and S2
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Figure 6.7.: Graph of Accuracy of Sensor Combination S2 and S3

Figure 6.8.: Graph of Accuracy of Sensor Combination S1 and S3
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7. RESULTS AND DISCUSSIONS

7.1 Test Results Without using Angle Thresholds

The Tests were performed on 4 male and 3 females. The protocols involved the

four directions of fall i.e. Front, Back and sideways, the Activities of Daily living

were chosen so as to cover the activities which come close to fall activities. The

ADL(Activities of Daily Living) included are, siting down, standing up, walking and

climbing up and down the stairs. Figures 7.1 and 7.2 give the sensitivity and specificity

of the system.

7.2 Fall Pattern Detection

The System was able to detect the fall within 150 to 200ms before the impact

occurs which gives enough time for the protection mechanism to react and provide

protection. Figure 7.3 gives the pattern of the SMA and SVM values from the two

accelerometers and shows the point where the fall is detected and the peak which is

a point of impact of the subject with the ground. Each sample has a time difference

of 40ms between each other.

7.3 Normal Activity Data results

Normal activities were performed which had the highest probability of false posi-

tives, like climbing down the stairs, climbing up the stairs, walking and sitting down.

The complete set of activities were performed continually with the system worn.

There were a very high number of false positives in the complete experiment mostly

because of the very close threshold values to make sure there are no missed positives.

The graph shows the points where the false positives were detected. Figures 7.4 and
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Figure 7.1.: Sensitivity of the System without Angle Threshold

Figure 7.2.: Specificity of the System without Angle Threshold

7.5 give the pattern with and without false positives.

Figure 7.5 shows the pattern with angle thresholds included in the algorithm. The

output of the system is free from any false positives as the angle threshold provides a

second check for the fall detection system, improving the overall performance of the

system.
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8. CONCLUSION

The designed system is minimalistic and practical and can be used commercially after

further extensive testing. The system provides close to 100% specificity and sensitivity

after the inclusion of the the second decision parameter which is the orientation of

the body. The system also provides hardware and software framework for wireless

connectivity which can be used in unlimited ways to develop applications.

As the work in an ongoing process, to further increase the efficiency of the system

there is a need of a convenient way to gather data. The system provides the data

logging capability with the SD card module attachment. The Software for the data

logger provides data in the raw form and the calculated values which can be analyzed

using any analysis tool as it gives the file in common CSV format.
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9. FUTURE WORK

In order for the System to provides the hardware and software framework for web and

mobile applications, an improved algorithm should consider more Physical Activity

scenarios in order to increase the performance of the system. The addition of the

WiFi module provides opportunity to connect and enhance the systems capability in

unlimited ways.

The whole system can be built on a single SOC for improving the power efficiency,

reducing size, and cost, and making the design more feasible to commercialization on

a larger scale.

Further data collection and analysis can help reducing the number of sensors and

help reduce the complexity and the cost of the system.

The data can be collected in a database which can then be used to provide informa-

tion about the daily activity of the user, and can be displayed on a mobile application

of the caretaker so as to be aware of the safety of the patient at all times.
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A. APPENDIX

A.1 Code for the Wifi Application

#inc lude ”Wire . h”

#inc lude ”I2Cdev . h”

#inc lude ”ADXL345 . h”

#inc lude ”MPU6050 . h”

#inc lude ”Kalman . h”

#inc lude ”math . h”

#inc lude <SPI . h>

#inc lude <SFE CC3000 . h>

#inc lude <SFE CC3000 Client . h>

#inc lude <Progmem . h>

#d e f i n e SMA FORM(x , y , z ) ( abs ( x ) + abs ( y ) + abs ( z ) )

#d e f i n e SVM FORM(x , y , z ) ( s q r t ( square ( abs ( x ) ) +

square ( abs ( y ) ) + square ( abs ( z ) ) ) )

#d e f i n e LED PIN 13

#d e f i n e CC3000 INT 2

#d e f i n e CC3000 EN 7

#d e f i n e CC3000 CS 10

#d e f i n e IP ADDR LEN 4

ADXL345 a c c e l ;

MPU6050 acc e l gy ro ;

Kalman kalmanX ;
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Kalman kalmanY ;

f l o a t divRange = 4 0 9 6 . 0 ;

f l o a t divRange1 = 6 4 . 0 ;

f l o a t Gforce [ 3 ] ;

f l o a t Gforce1 [ 3 ] ;

f l o a t SMA;

f l o a t SVM;

f l o a t SMA1;

f l o a t SVM1;

i n t 1 6 t ax , ay , az ;

i n t 1 6 t gx , gy , gz ;

i n t 1 6 t axx , ayy , azz ;

i n t valx , valy , va l z ;

i n t valx1 , valy1 , va l z1 ;

double accX , accY , accZ ;

double gyroX , gyroY , gyroZ ;

double gyroXangle , gyroYangle ;

double compAngleX , compAngleY ;

double kalAngleX , kalAngleY ;

u i n t 3 2 t t imer1 ;

u i n t 8 t i2c Data [ 1 4 ] ;

bool b l i nkS ta t e = f a l s e ;

char a p s s i d [ ] = ”NOKIA Lumia 920 1459 ” ;

char AP password [ ] = ”N4t89#55”;

unsigned i n t AP secur i ty = WLAN SEC WPA2;

unsigned i n t timeout = 30000 ;

char Server [ ] = ” data . sparkfun . com ” ;
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SFE CC3000 w i f i =

SFE CC3000(CC3000 INT , CC3000 EN , CC3000 CS ) ;

SFE CC3000 Client c l i e n t = SFE CC3000 Client ( w i f i ) ;

const S t r ing publ ic Key = ”WGqyEmoZ75f6ynVAlxM1” ;

const S t r ing pr ivate Key = ”XRogBvDj47Foj8EXak9w ” ;

const byte NUM FIELDS = 4 ;

const S t r ing f i e ld Names [NUM FIELDS] =

{”sma” , ”svm” , ” xangle ” ,” yangle ”} ;

S t r ing f i e l d D a t a [NUM FIELDS ] ;

const i n t t r i g g e r P i n = 8 ;

const i n t l i g h t P i n = A0 ;

const i n t swi tch Pin = 5 ;

S t r ing name = ” Nikh i l ” ;

boolean newName = true ;

void kalaman ( ) ;

void getG ( ) ;

void getG1 ( ) ;

void workdone ( ) ;

void setup ( ){

Wire . begin ( ) ;

S e r i a l . begin (115200 ) ;

setupWiFi ( ) ;

pinMode ( t r i gge rP in , INPUT PULLUP) ;

pinMode ( switchPin , INPUT PULLUP) ;

pinMode ( l i ghtP in , INPUT PULLUP) ;
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S e r i a l . p r i n t l n (” I n i t i a l i z i n g ” ) ;

a c c e l . i n i t i a l i z e ( ) ;

a c c e l gy ro . i n i t i a l i z e ( ) ;

S e r i a l . p r i n t l n (” Test ing ” ) ;

S e r i a l . p r i n t l n ( a c c e l . t e s tConnect ion ( )

? ”ADXL345 s u c c e s s f u l ” : ” f a i l e d ” ) ;

S e r i a l . p r i n t l n ( a c c e l gy ro . te s tConnect ion ( )

? ”MPU6050 s u c c e s s ” : ”MPU6050 f a i l ” ) ;

pinMode (LED PIN , OUTPUT) ;

de lay ( 1 0 0 ) ;

a c c e l gy ro . getMotion6(&ax , &ay , &az , &gx , &gy , &gz ) ;

accX = ax ;

accY = ay ;

accZ = az ;

#i f d e f RESTRICT PITCH

double r o l l = atan2 ( accY , accZ ) ∗ RAD TO DEG;

double p i t ch =

atan(−accX / s q r t ( accY ∗ accY + accZ ∗ accZ ) )

∗ RAD TO DEG;

#e l s e // Eq . 28 and 29

double r o l l = atan ( accY / s q r t ( accX ∗ accX + accZ ∗ accZ ) )
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∗ RAD TO DEG;

double p i t ch = atan2(−accX , accZ ) ∗ RAD TO DEG;

#e n d i f

kalmanX . setAngle ( r o l l ) ;

kalmanY . setAngle ( p i t ch ) ;

gyroXangle = r o l l ;

gyroYangle = p i t ch ;

compAngleX = r o l l ;

compAngleY = pi t ch ;

t imer1 = micros ( ) ;

}

void loop ( ){

double e l a p s e = 0 ;

kalaman ( ) ;

a c c e l gy ro . s e tFu l lSca l eAcce lRange (MPU6050 ACCEL FS 8 ) ;

a c c e l . setRange ( ADXL345 RANGE 8G ) ;

de lay ( 1 0 ) ;

a c c e l . g e t A c c e l e r a t i o n (&axx , &ayy , &azz ) ;

valx1 = axx ;

valy1 = ayy ;

va l z1 = azz ;

a c c e l gy ro . g e t A c c e l e r a t i o n (&ax , &ay , &az ) ;

va lx = ax ;

valy = ay ;

va l z = az ;
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workdone ( ) ;

i f ( ! d i g i t a lRead ( t r i g g e r P i n ) )

{

// Gather data :

f i e l dData [ 0 ] = St r ing ( i n t (SVM) ) ;

f i e l dData [ 1 ] = St r ing ( i n t (SMA) ) ;

f i e l dData [ 2 ] = St r ing ( i n t ( kalAngleX ) ) ;

f i e l dData [ 3 ] = St r ing ( i n t ( kalAngleY ) ) ;

// Post data :

S e r i a l . p r i n t l n (” Post ing ! ” ) ;

postData ( ) ;

de lay ( 1 0 ) ;

}

// e l a p s e = micros ()− t imer1 ;

// S e r i a l . p r i n t l n ( e l a p s e ) ;

}

void kalaman ( )

{

// read raw a c c e l measurements from dev i ce

a c c e l gy ro . s e tFu l lSca l eAcce lRange ( 0 ) ;

de lay ( 1 0 ) ;

a c c e l . g e t A c c e l e r a t i o n (&axx , &ayy , &azz ) ;

a c c e l gy ro . getMotion6(&ax , &ay , &az , &gx , &gy , &gz ) ;

accX = ax ;
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accY = ay ;

accZ = az ;

gyroX = gx ;

gyroY = gy ;

gyroZ = gz ;

double dt = ( double ) ( micros ( ) − t imer1 ) / 1000000;

t imer1 = micros ( ) ;

#i f d e f RESTRICT PITCH

double r o l l = atan2 ( accY , accZ ) ∗ RAD TO DEG;

double p i t ch =

atan(−accX / s q r t ( accY ∗ accY + accZ ∗ accZ ) )

∗ RAD TO DEG;

#e l s e

double r o l l = atan ( accY / s q r t ( accX ∗ accX + accZ ∗ accZ ) )

∗ RAD TO DEG;

double p i t ch = atan2(−accX , accZ ) ∗ RAD TO DEG;

#e n d i f

double gyroXrate = gyroX / 1 3 1 . 0 ;

double gyroYrate = gyroY / 1 3 1 . 0 ;

#i f d e f RESTRICT PITCH

i f ( ( r o l l < −90 && kalAngleX > 90) | |

( r o l l > 90 && kalAngleX < −90)) {

kalmanX . setAngle ( r o l l ) ;

compAngleX = r o l l ;
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kalAngleX = r o l l ;

gyroXangle = r o l l ;

} e l s e

kalAngleX = kalmanX . getAngle ( r o l l , gyroXrate , dt ) ;

i f ( abs ( kalAngleX ) > 90)

gyroYrate = −gyroYrate ;

kalAngleY = kalmanY . getAngle ( pitch , gyroYrate , dt ) ;

#e l s e

i f ( ( p i t ch < −90 && kalAngleY > 90)

| | ( p i t ch > 90 && kalAngleY < −90)) {

kalmanY . setAngle ( p i t ch ) ;

compAngleY = pi t ch ;

kalAngleY = pi t ch ;

gyroYangle = p i t ch ;

} e l s e

kalAngleY = kalmanY . getAngle ( pitch , gyroYrate , dt ) ;

i f ( abs ( kalAngleY ) > 90)

gyroXrate = −gyroXrate ;

kalAngleX = kalmanX . getAngle ( r o l l , gyroXrate , dt ) ;

#e n d i f

gyroXangle += gyroXrate ∗ dt ;

gyroYangle += gyroYrate ∗ dt ;

// gyroXangle += kalmanX . getRate ( ) ∗ dt ;

// gyroYangle += kalmanY . getRate ( ) ∗ dt ;

compAngleX = 0.93 ∗ ( compAngleX + gyroXrate ∗ dt )
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+ 0.07 ∗ r o l l ;

compAngleY = 0.93 ∗ ( compAngleY + gyroYrate ∗ dt )

+ 0 .07 ∗ p i t ch ;

// Reset the gyro ang le when i t has d r i f t e d too much

i f ( gyroXangle < −180 | | gyroXangle > 180)

gyroXangle = kalAngleX ;

i f ( gyroYangle < −180 | | gyroYangle > 180)

gyroYangle = kalAngleY ;

b l i nkS ta t e = ! b l i nkS ta t e ;

d i g i t a l W r i t e (LED PIN , b l i nkS ta t e ) ;

}

void workdone ( ){

u i n t 8 t ra t e ;

r a t e = acce l gy ro . getFul lSca leAcce lRange ( ) ;

// S e r i a l . p r i n t l n ( ra t e ) ;

getG ( ) ;

getG1 ( ) ;

SMA1 = SMA FORM( Gforce1 [ 0 ] , Gforce1 [ 1 ] , Gforce1 [ 2 ] ) ;

SVM1 = SVM FORM( Gforce1 [ 0 ] , Gforce1 [ 1 ] , Gforce1 [ 2 ] ) ;

SMA = SMA FORM( Gforce [ 0 ] , Gforce [ 1 ] , Gforce [ 2 ] ) ;

SVM = SVM FORM( Gforce [ 0 ] , Gforce [ 1 ] , Gforce [ 2 ] ) ;
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i f (SVM1 <= 0.744 && SMA1 <= 0.9197

&& SVM <= 0.8182 && SMA <= 0.9297 ){

S e r i a l . p r i n t l n (” f a l l de tec ted ” ) ;

} ;

}

void getG (){

Gforce [ 0 ] = valx /divRange ;

Gforce [ 1 ] = valy /divRange ;

Gforce [ 2 ] = va l z /divRange ;

}

void getG1 (){

Gforce1 [ 0 ] = valx1 /divRange1 ;

Gforce1 [ 1 ] = valy1 /divRange1 ;

Gforce1 [ 2 ] = va lz1 /divRange1 ;

}

void postData ( )

{

i f ( ! c l i e n t . connect ( se rver , 80) )

{

// Error : 4 − Could not make a TCP connect ion
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S e r i a l . p r i n t l n (F(” Error : 4 ” ) ) ;

}

c l i e n t . p r i n t (”GET / input / ” ) ;

c l i e n t . p r i n t ( publicKey ) ;

c l i e n t . p r i n t (”? p r i va t e key =”);

c l i e n t . p r i n t ( privateKey ) ;

f o r ( i n t i =0; i<NUM FIELDS; i++)

{

c l i e n t . p r i n t (”&”);

c l i e n t . p r i n t ( f ie ldNames [ i ] ) ;

c l i e n t . p r i n t (”=”);

c l i e n t . p r i n t ( f i e l dData [ i ] ) ;

}

c l i e n t . p r i n t l n (” HTTP/ 1 . 1 ” ) ;

c l i e n t . p r i n t (” Host : ” ) ;

c l i e n t . p r i n t l n ( s e r v e r ) ;

c l i e n t . p r i n t l n (” Connection : c l o s e ” ) ;

c l i e n t . p r i n t l n ( ) ;

whi l e ( c l i e n t . connected ( ) )

{

i f ( c l i e n t . a v a i l a b l e ( ) )

{

char c = c l i e n t . read ( ) ;

S e r i a l . p r i n t ( c ) ;

}

}
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S e r i a l . p r i n t l n ( ) ;

}

void setupWiFi ( )

{

Connect ionInfo c o n n e c t i o n i n f o ;

i n t i ;

// I n i t i a l i z e CC3000 ( c o n f i g u r e SPI communications )

i f ( w i f i . i n i t ( ) )

{

S e r i a l . p r i n t l n (F(”CC3000 Ready ! ” ) ) ;

}

e l s e

{

// Error : 0 − Something went wrong during CC3000 i n i t !

S e r i a l . p r i n t l n (F(” Error : 0 ” ) ) ;

}

// Connect us ing DHCP

S e r i a l . p r i n t (F(” Connecting to : ” ) ) ;

S e r i a l . p r i n t l n ( a p s s i d ) ;

i f ( ! w i f i . connect

( ap s s id , ap s e cu r i t y , ap password , t imeout ) )

{

// Error : 1 − Could not connect to AP

S e r i a l . p r i n t l n (” Error : 1 ” ) ;
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}

S e r i a l . p r i n t l n (” Connected ! ! ” ) ;

// Gather connect ion d e t a i l s and pr in t IP address

i f ( ! w i f i . ge tConnect ionIn fo ( c o n n e c t i o n i n f o ) )

{

// Error : 2 − Could not obta in connect ion d e t a i l s

S e r i a l . p r i n t l n (F(” Error : 2 ” ) ) ;

}

e l s e

{

S e r i a l . p r i n t (F(”My IP : ” ) ) ;

f o r ( i = 0 ; i < IP ADDR LEN ; i++)

{

S e r i a l . p r i n t ( c o n n e c t i o n i n f o . i p a d d r e s s [ i ] ) ;

i f ( i < IP ADDR LEN − 1 )

{

S e r i a l . p r i n t ( ” . ” ) ;

}

}

S e r i a l . p r i n t l n ( ) ;

}

}

A.2 Code for the Data logger

#inc lude ”Wire . h”

#inc lude ”I2Cdev . h”

#inc lude ”ADXL345 . h”

#inc lude ”MPU6050 . h”
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#inc lude ”Kalman . h”

#inc lude ”math . h”

#inc lude <SD. h>

#d e f i n e SMA FORM(x , y , z ) ( abs ( x ) + abs ( y ) + abs ( z ) )

#d e f i n e SVM FORM(x , y , z ) ( s q r t ( square ( abs ( x ) )

+ square ( abs ( y ) ) + square ( abs ( z ) ) ) )

#d e f i n e OUTPUT READABLE ACCELGYRO

#d e f i n e LED PIN 13 // ( Arduino i s 13 , Teensy i s 6)

ADXL345 a c c e l ;

MPU6050 acc e l gy ro ;

Kalman kalmanX ;

Kalman kalmanY ;

i n t c a l s e l =1;

i n t f a l l = 0 ;

i n t id ;

i n t CS pin = 8 ;

f l o a t divRange = 4 0 9 6 . 0 ;

f l o a t divRange1 = 6 4 . 0 ;

f l o a t Gforce [ 3 ] ;

f l o a t Gforce1 [ 3 ] ;

f l o a t SMA;

f l o a t SVM;

f l o a t SMA1;

f l o a t SVM1;

i n t 1 6 t ax , ay , az ;

i n t 1 6 t gx , gy , gz ;
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i n t 1 6 t axx , ayy , azz ;

i n t valx , valy , va l z ;

i n t valx1 , valy1 , va l z1 ;

double accX , accY , accZ ;

double gyroX , gyroY , gyroZ ;

double gyroXangle , gyroYangle ;

double compAngleX , compAngleY ;

double kalAngleX , kalAngleY ;

double CalX , CalY ; // Cal ibarated Values

double OffsetX , OffsetY ;// o f f s e t va lue s

u i n t 3 2 t t imer ;

double S t e p s i z e = 0 . 0 ;

u i n t 8 t i2cData [ 1 4 ] ;

bool b l i nkS ta t e = f a l s e ;

void kalaman ( ) ;

void getG ( ) ;

void getG1 ( ) ;

void workdone ( ) ;

void c a l i b r a t e ( ) ;

void setup ( ){

Wire . begin ( ) ;

f a l l = 0 ;

TWBR = ( (F CPU / 400000L) − 16) / 2 ;

i2cData [ 0 ] = 7 ;

i2cData [ 1 ] = 0x00 ;

i2cData [ 2 ] = 0x00 ;
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i2cData [ 3 ] = 0x00 ;

S e r i a l . begin (115200 ) ;

S e r i a l . p r i n t l n (” I n i t i a l i z i n g Card ” ) ;

pinMode ( CS pin , OUTPUT) ;

i f ( ! SD. begin ( CS pin ) )

{

S e r i a l . p r i n t l n (” Card Fa i l u r e ” ) ;

r e turn ;

}

S e r i a l . p r i n t l n (” Card Ready ” ) ;

// i n i t i a l i z e dev i c e

S e r i a l . p r i n t l n (” I n i t i a l i z i n g I2C dev i c e s . . . ” ) ;

a c c e l . i n i t i a l i z e ( ) ;

a c c e l gy ro . i n i t i a l i z e ( ) ;

// v e r i f y connect ion

pinMode (LED PIN , OUTPUT) ;

// c o f e from kalaman

delay ( 1 0 0 ) ; // Wait f o r s enso r to s t a b i l i z e

F i l e l o g F i l e = SD. open (”LOG. csv ” , FILE WRITE ) ;

i f ( l o g F i l e )

{

l o g F i l e . p r i n t l n (” , , , , , , , ” ) ;

S t r ing header =

”Time , SVM, SMA, SVM1, SMA1, Xangle ,

Yangle , Fa l l Detec t ed ” ;
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l o g F i l e . p r i n t l n ( header ) ;

l o g F i l e . c l o s e ( ) ;

S e r i a l . p r i n t l n ( header ) ;

}

e l s e

{

S e r i a l . p r i n t l n (” Couldn ’ t open log f i l e ” ) ;

}

/∗ Set kalman and gyro s t a r t i n g ang le ∗/

ac c e l gy ro . getMotion6(&ax , &ay , &az , &gx , &gy , &gz ) ;

accX = ax ;

accY = ay ;

accZ = az ;

#i f d e f RESTRICT PITCH

double r o l l = atan2 ( accY , accZ ) ∗ RAD TO DEG;

double p i t ch =

atan(−accX / s q r t ( accY ∗ accY + accZ ∗ accZ ) )

∗ RAD TO DEG;

#e l s e

double r o l l = atan ( accY / s q r t ( accX ∗ accX + accZ ∗ accZ ) )

∗ RAD TO DEG;

double p i t ch = atan2(−accX , accZ ) ∗ RAD TO DEG;

#e n d i f

kalmanX . setAngle ( r o l l ) ;

kalmanY . setAngle ( p i t ch ) ;
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gyroXangle = r o l l ;

gyroYangle = p i t ch ;

compAngleX = r o l l ;

compAngleY = pi t ch ;

t imer = micros ( ) ;

i n t c a l s e l =1;

}

void loop ( ){

kalaman ( ) ;

i f ( c a l s e l == 1){

delay ( 1 0 0 0 ) ;

OffsetX = kalAngleX ;

OffsetY = kalAngleY ;

c a l s e l = 0 ;

}

CalX = kalAngleX − OffsetX ;

CalY = kalAngleY − OffsetY ;

S e r i a l . p r i n t l n (CalX ) ;

S e r i a l . p r i n t l n (CalY ) ;

S e r i a l . p r i n t l n ( OffsetX ) ;

S e r i a l . p r i n t l n ( OffsetY ) ;

a c c e l gy ro . s e tFu l lSca l eAcce lRange (MPU6050 ACCEL FS 8 ) ;

a c c e l . setRange ( ADXL345 RANGE 8G ) ;

de lay ( 1 0 ) ;

a c c e l . g e t A c c e l e r a t i o n (&axx , &ayy , &azz ) ;

valx1 = axx ;
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valy1 = ayy ;

va l z1 = azz ;

a c c e l gy ro . g e t A c c e l e r a t i o n (&ax , &ay , &az ) ;

va lx = ax ;

valy = ay ;

va l z = az ;

workdone ( ) ;

F i l e l o g F i l e = SD. open (”LOG. csv ” , FILE WRITE ) ;

i f ( l o g F i l e )

{

l o g F i l e . p r i n t ( S t e p s i z e ) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t (SVM) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t (SMA) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t (SVM1) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t (SMA1) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t (CalX ) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t (CalY ) ;

l o g F i l e . p r i n t ( ” , ” ) ;

l o g F i l e . p r i n t l n ( f a l l ) ;

l o g F i l e . c l o s e ( ) ;

}

e l s e
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{

S e r i a l . p r i n t l n (” Couldn ’ t open log f i l e ” ) ;

}

S t e p s i z e = ( double ) ( micros ( ) − t imer )/1000000 ;

// Increment ID number

f a l l = 0 ;

id++;

}

void kalaman ( )

{

// read raw a c c e l measurements from dev i ce

a c c e l gy ro . s e tFu l lSca l eAcce lRange ( 0 ) ;

de lay ( 1 0 ) ;

a c c e l . g e t A c c e l e r a t i o n (&axx , &ayy , &azz ) ;

a c c e l gy ro . getMotion6(&ax , &ay , &az , &gx , &gy , &gz ) ;

accX = ax ;

accY = ay ;

accZ = az ;

gyroX = gx ;

gyroY = gy ;

gyroZ = gz ;

double dt = ( double ) ( micros ( ) − t imer ) / 1000000;

t imer = micros ( ) ;
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#i f d e f RESTRICT PITCH

double r o l l = atan2 ( accY , accZ ) ∗ RAD TO DEG;

double p i t ch =

atan(−accX / s q r t ( accY ∗ accY + accZ ∗ accZ ) )

∗ RAD TO DEG;

#e l s e

double r o l l = atan ( accY / s q r t ( accX ∗ accX + accZ ∗ accZ ) )

∗ RAD TO DEG;

double p i t ch = atan2(−accX , accZ ) ∗ RAD TO DEG;

#e n d i f

double gyroXrate = gyroX / 1 3 1 . 0 ;

double gyroYrate = gyroY / 1 3 1 . 0 ;

#i f d e f RESTRICT PITCH

i f ( ( r o l l < −90 && kalAngleX > 90) | | ( r o l l > 90

&& kalAngleX < −90)) {

kalmanX . setAngle ( r o l l ) ;

compAngleX = r o l l ;

kalAngleX = r o l l ;

gyroXangle = r o l l ;

} e l s e

kalAngleX = kalmanX . getAngle ( r o l l , gyroXrate , dt ) ;

i f ( abs ( kalAngleX ) > 90)

gyroYrate = −gyroYrate ;

kalAngleY = kalmanY . getAngle ( pitch , gyroYrate , dt ) ;

#e l s e

i f ( ( p i t ch < −90 && kalAngleY > 90) | | ( p i t ch > 90
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&& kalAngleY < −90)) {

kalmanY . setAngle ( p i t ch ) ;

compAngleY = pi t ch ;

kalAngleY = pi t ch ;

gyroYangle = p i t ch ;

} e l s e

kalAngleY = kalmanY . getAngle ( pitch , gyroYrate , dt ) ;

i f ( abs ( kalAngleY ) > 90)

gyroXrate = −gyroXrate ;

kalAngleX = kalmanX . getAngle ( r o l l , gyroXrate , dt ) ;

#e n d i f

gyroXangle += gyroXrate ∗ dt ;

gyroYangle += gyroYrate ∗ dt ;

// gyroXangle += kalmanX . getRate ( ) ∗ dt ;

// gyroYangle += kalmanY . getRate ( ) ∗ dt ;

compAngleX =

0.93 ∗ ( compAngleX + gyroXrate ∗ dt ) + 0 .07 ∗ r o l l ;

compAngleY =

0.93 ∗ ( compAngleY + gyroYrate ∗ dt ) + 0 .07 ∗ p i t ch ;

i f ( gyroXangle < −180 | | gyroXangle > 180)

gyroXangle = kalAngleX ;

i f ( gyroYangle < −180 | | gyroYangle > 180)

gyroYangle = kalAngleY ;

S e r i a l . p r i n t (”Kalaman Angle X−a x i s : ” ) ;
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S e r i a l . p r i n t ( kalAngleX ) ;

S e r i a l . p r i n t (”\ t ” ) ;

S e r i a l . p r i n t (”\ t ” ) ;

S e r i a l . p r i n t (”Kalaman Angle Y−a x i s : ” ) ;

S e r i a l . p r i n t ( kalAngleY ) ;

S e r i a l . p r i n t (”\ t ” ) ;

S e r i a l . p r i n t (”\ r\n ” ) ;

de lay ( 2 ) ;

b l i nkS ta t e = ! b l i nkS ta t e ;

d i g i t a l W r i t e (LED PIN , b l i nkS ta t e ) ;

}

void workdone ( ){

u i n t 8 t ra t e ;

r a t e = acce l gy ro . getFul lSca leAcce lRange ( ) ;

S e r i a l . p r i n t l n ( ra t e ) ;

getG ( ) ;

getG1 ( ) ;

f o r ( i n t i =0; i <3; i ++){

S e r i a l . p r i n t (”G−MPU ” ) ;

S e r i a l . p r i n t l n ( Gforce [ i ] ) ;

}

f o r ( i n t i =0; i <3; i ++){

S e r i a l . p r i n t (”G−ADLX ” ) ;
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S e r i a l . p r i n t l n ( Gforce1 [ i ] ) ;

}

SMA1 = SMA FORM( Gforce1 [ 0 ] , Gforce1 [ 1 ] , Gforce1 [ 2 ] ) ;

SVM1 = SVM FORM( Gforce1 [ 0 ] , Gforce1 [ 1 ] , Gforce1 [ 2 ] ) ;

SMA = SMA FORM( Gforce [ 0 ] , Gforce [ 1 ] , Gforce [ 2 ] ) ;

SVM = SVM FORM( Gforce [ 0 ] , Gforce [ 1 ] , Gforce [ 2 ] ) ;

i f (SVM1 <= 0.744 && SMA1 <= 0.9197 && SVM

<= 0.8182 && SMA <= 0.9297 ){

S e r i a l . p r i n t l n (” f a l l de tec ted ” ) ;

f a l l = 1 ;

}

}

void getG (){

Gforce [ 0 ] = valx /divRange ; Gforce [ 1 ] = valy /divRange ;

Gforce [ 2 ] = va l z /divRange ;

}

void getG1 (){

Gforce1 [ 0 ] = valx1 /divRange1 ;

Gforce1 [ 1 ] = valy1 /divRange1 ;

Gforce1 [ 2 ] = va lz1 /divRange1 ;

}


