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ABSTRACT 

 

 

Thomas, N. Luke. M.S.E.C.E., Purdue University, May 2010. A New Approach For 
Human Identification Using The Eye. Major Professor: Yingzi Du.  
 

 

 The vein structure in the sclera, the white and opaque outer protective covering of 

the eye, is anecdotally stable over time and unique to each person.  As a result, it is well 

suited for use as a biometric for human identification.  A few researchers have performed 

sclera vein pattern recognition and have reported promising, but low accuracy, initial 

results.  Sclera recognition poses several challenges: the vein structure moves and 

deforms with the movement of the eye and its surrounding tissues; images of sclera 

patterns are often defocused and/or saturated; and, most importantly, the vein structure in 

the sclera is multi-layered and has complex non-linear deformation. The previous 

approaches in sclera recognition have treated the sclera patterns as a one-layered vein 

structure, and, as a result, their sclera recognition accuracy is not high.  In this thesis, we 

propose a new method for sclera recognition with the following contributions: First, we 

developed a color-based sclera region estimation scheme for sclera segmentation.  

Second, we designed a Gabor wavelet based sclera pattern enhancement method, and an 

adaptive thresholding method to emphasize and binarize the sclera vein patterns.  Third, 

we proposed a line descriptor based feature extraction, registration, and matching method 

that is scale-, orientation-, and deformation-invariant, and can mitigate the multi-layered 

deformation effects and tolerate segmentation error.  It is empirically verified using the 

UBIRIS and IUPUI multi-wavelength databases that the proposed method can perform 

accurate sclera recognition.  In addition, the recognition results are compared to iris 

recognition algorithms, with very comparable results. 
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1.  INTRODUCTION AND LITERATURE REVIEW 

 

 

1.1  Biometrics 

 To prevent further terrorist attacks, our government must be able to properly 

secure its borders, strategic assets (both military and civilian), and sensitive information 

while still honoring the rights of its population.  This is a difficult and complicated task 

— how can one verify a person’s identity with certainty while still honoring their civil 

and personal rights?  How can one do this knowing that there are individuals specifically 

attempting to mislead or defraud the system?   

 

 Biometrics is the identification of humans using intrinsic physiological, 

biological, or behavioral characteristics, traits, or habits.  Biometrics have the potential to 

provide this desired ability — to unambiguously and discretely identify a person’s 

identity — more accurately and conveniently than other options.    

 

 Examples of biometric modalities include face, iris, hand, fingerprint, gait, typing, 

speech, and others.  In general, biometrics can be divided into two broad categories –  

• Physiological biometrics — those that identify an individual from an intrinsic 

physiological or biological trait (ex. face, iris, fingerprint, etc) 

• Behavioral biometrics — those that identify an individual from a behavioral trait (ex. 

gait, typing, etc) 

In general, physiological biometrics are more stable. 

 

 In the past decade, advances in computing power have made automated biometric 

systems realistic alternatives or supplements to traditional security systems.  For users, 

biometric systems can reduce or eliminate the need to retain a key or remember a 
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password, can speed up user throughput, and can be less intrusive.  For example, at a 

border or security checkpoint, a biometric system could provide a high-confidence 

identification of a user while they walk through a checkpoint rather than requiring them 

to stop, produce some identification, and be interviewed by security personnel.  From a 

system standpoint, biometric systems can check much larger databases than are realistic 

with traditional security systems, are more consistent, do not have racial or personal 

biases, and can be cheaper to operate.   

 

 

1.2  Iris Recognition 

 Iris recognition is identification of humans using the iris — the annular, colored 

portion of the eye.  Cooperative iris recognition systems have been practically 

implemented for border control, access control, and other systems.  Recently, there has 

been much interest in expanding the operation of iris recognition into non-cooperative 

situations. 

 

 

1.2.1  Cooperative Iris Recognition 

 Cooperative iris recognition is currently the most accurate biometric modality, 

with large scale implementations currently being used for human identification for border 

control in the United Arab Emirates [1], for the United States Army [2], in airports 

around the world [3], and elsewhere.  Cooperative iris recognition systems are 

characterized by the cooperative nature of the human participants — they are both 

cognizant and compliant in the recognition process.  Most existing commercially 

available iris recognition systems use algorithms originally developed by John Daugman 

[4-7].  These systems require frontal gaze, well-focused, well-centered, high quality 

images of the eye acquired in the near-infrared (NIR) wavelengths. 

 

 In [1], Daugman reports on the results of over 200 billion cross comparisons of 

irises in the United Arab Emirates border control database.  In this paper, he reports that 
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the lowest observed matching score for eye images that were from different subjects was 

in the range of .26, which corresponds to a theoretical false match rate of 1 in 200 billion.  

By changing the decision threshold from .26 to .22, he also reports a theoretical false 

match rate of 1 in 5x1015, which would enable all-to-all matching of a population of 

approximately 70.7 million (slightly more than the total population of the United 

Kingdom) with just a single false accept.  While these results are exceptional, and have 

certainly enabled very accurate positive human identification within constrained 

operational settings with large databases, they are still not adequate for positive human 

identification for the entire population of the United States of America (~304 million as 

of 2008) with similar arbitrarily small false acceptance rates. 

 

 Cooperative iris recognition systems are produced by Iridian, LG, and other 

companies.  Many of these systems require the user to actively position themselves in the 

systems operational area, and follow some instructions given by the system.  An example 

commercial system that has low habituation requirements is the Iris-On-The-Move 

system by the Sarnoff Corporation [8].  This system uses a bank of high definition video 

cameras to acquire video images of users as they walk thru a portal, and extract and 

match the users from their irises.  However, this system still requires both frontal gaze 

eye orientation and near-infrared (NIR) illumination, and is still considered compliant for 

these reasons.   

 

 Figure 1.1 shows four example images from an example cooperative iris 

recognition database — the ICE database [9].  Notice that all the images have high 

signal-to-noise ratio; frontal gaze eye orientation; and very little noise, specularities, or 

occlusion. 
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Figure 1.1  Example cooperative iris images 

 

 

1.2.2  Non-Cooperative Iris Recognition 

 Non-cooperative iris recognition is characterized by the lack of active 

participation by the individuals being identified.  Non-cooperative systems would be 

more convenient for users, more flexible in their deployment, and could be used with 

video surveillance applications.  Some examples of different operating environments that 

would be considered non-cooperative include surveillance, no-habituation systems, and 

long acquisition distance identification systems.  In each of these situations, the users 

may not be aware of the identification system, are not required to actively participate 

with the system, and may have little or no previous experience interacting with the 

system.   
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 The IUPUI Biometrics and Pattern Recognition Lab has developed experimental 

non-compliant iris recognition systems; however, few, if any, commercially available 

non-compliant iris recognition methods exist.  Example, currently theoretical, non-

compliant systems would allow for surveillance of a volume of space, for example a 

border control check point, and would identify each user as they entered the space, 

regardless of their intent to be recognized, their knowledge of the systems existence, or 

specific actions within the systems recognition region.  These types of systems do not 

currently exist in practice, but are the ‘ideal’ goal for the progression of existing systems.  

 

 In the Biometrics and Pattern Recognition Lab at IUPUI, we have designed and 

developed non-cooperative iris recognition systems and components including non-

compliant iris segmentation [10, 11], iris image quality measures [12, 13], and non-

cooperative iris recognition methodologies [14, 15].  Figure 1.6 shows some example 

non-cooperative images from the IUPUI multi-wavelength database.  Note, in particular, 

that the images have more noise, less consistent focus, more iris occlusion, and 

inconsistent frontal gaze eye orientation, as compared to the cooperative iris recognition 

images.  

 

 

1.2.3  Visible Wavelength Iris Recognition 

 Some researchers have worked on implementation of iris recognition with visible 

wavelength images.  This would allow for more broad application of iris recognition to 

non-compliant situations, since it is very technically complicated to provide the necessary 

level of NIR illumination for a non-compliant situation.  However, because dark colored 

iris patterns are not as apparent under visible light as compared to NIR illumination, the 

matching results for visible light iris matching systems have typically been significantly 

worse than comparable results with near-infrared images.  Figure 1.3 shows some 

example images from the UBIRIS database [16], an iris recognition database that was 

acquired in the visible wavelengths using color images. 
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1.2.4  Multiple Wavelength Iris Recognition 

 Recently, some researchers have focused on multiple wavelength or multi-spectral 

iris recognition [17, 18].  These types of systems look to use some of the differential 

information between the multiple acquisition wavelengths to provide more discriminating 

identification results, as opposed to typical systems which use a single acquisition 

wavelength (either NIR, visible, or otherwise).  Currently, the initial results for multiple 

wavelength iris recognition show some promise, however, the most accurate results still 

incorporate the typical NIR illumination used in compliant iris recognition systems. 

 

 

1.2.5  Limitations of Iris Recognition 

 For all the success that iris recognition has had, there are some limitations for iris 

recognition using existing algorithms.  First, for NIR acquired images, it is difficult to 

properly illuminate the subject at a distance of over 20 meters.  Most NIR iris systems 

acquire iris images at a distance of less than one foot, and even systems such as the Iris-

On-The-Move system require an illuminator very close to the subject to provide proper 

NIR illumination.  This is impractical for a surveillance system where the camera-to-

subject distance would be much greater than one foot, and the acquisition volume could 

be very large.   Second, accurate segmentation of the iris boundaries in grayscale near-

infrared illuminated images requires a very high signal-to-noise ratio, and much of the 

discriminating color information that could be used for segmentation is lost.  This makes 

the accurate segmentation of the iris region more difficult than it could be were the 

images acquired in color.  Third, darkly colored irises perform much worse than lightly 

colored irises when identified using existing algorithms in the visible spectrum.  This is 

due to the high absorption of visible light by dark colored irises, so that little of the 

identifying structure of the iris can be imaged and extracted.   
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1.3  Retina Recognition 

 Retina recognition [19, 20] is another eye-based biometric, but it uses the 

structure of the retina, the lining of the inner surface of the eye, to identify people.  

Because the retina is an internal structure of the eye, it is not practical to acquire non-

compliant images of the retina in humans.  From a practical standpoint, acquisition of 

retinal images is typically considered intrusive enough that even for many compliant 

recognition systems it is not practical or ideal. 

 

 Additionally, the vein structure of the retina is not deformed with the movement 

of the eye, and as such retinal vein recognition algorithms are not applicable for sclera 

vein recognition applications [21, 22]. 

 

 

1.4  Sclera Recognition 

 Sclera recognition is identification of a human using the sclera, the ‘white of the 

eye.’  It offers several benefits over other eye-based biometrics that make it well-suited 

for non-compliant recognition situations. 

 

 

1.4.1  The Sclera and Conjunctival Vasculature 

 The sclera is the white and opaque outer protective covering of the eye. The sclera 

completely surrounds the eye, and is made up of four layers of tissue — the episclera, 

stroma, lamina fusca, and endothelium [23].  The conjunctiva is a clear mucous 

membrane, made up of epithelial tissue, and consists of cells and underlying basement 

membrane that covers the sclera and lines the inside of the eyelids1

Figure 1.2

.  In general, the 

conjunctival vascular is hard to see with the naked eye at a distance.   shows an 

image of an eye under visible wavelength illumination with identification of the sclera 

vein patterns. For young children, the blood vessels in sclera area could be blue, but for 

adults, the blood vessels are red in color. The structure of the blood vessels in the sclera 

                                                 
1 http://en.wikipedia.org/wiki/Conjuctiva 



8 
 

are well suited to be used as a biometric — they are an internal organ that is visible 

without undue difficulty and they are anecdotally stable over time and unique for each 

person [23, 24].  Therefore, the vein patterns in the sclera could be used for positive 

human identification.   

 

 In previous works, identification of users using the sclera region has been referred 

to as ‘conjuctival vasculature recognition.’ However, as the conjunctiva is the top-most 

transparent layer of the sclera and images of the sclera region capture more than just this 

top-most layer, it is more accurate to refer to the system as performing ‘sclera 

recognition.’   

 

 
Figure 1.2  The structures of the eye and sclera region 

 

 

1.4.2  Advantages of Sclera Recognition 

 In comparison to iris recognition, sclera recognition offers several benefits, 

especially for non-compliant or non-cooperative situations.  First, sclera recognition does 

not require imaging the eye in the near-infrared wavelengths.  This allows for less 

constrained imaging requirements, including imaging at very long stand-off distances, 

may not require additional illumination, and, perhaps, enable the use of existing imaging 

systems to acquire and match individuals (such as using existing surveillance systems to 
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acquire the images).  Second, sclera recognition does not require frontal gaze images of 

the eye.  For sclera recognition, assuming that the entire sclera region was enrolled for 

matching, off-angle eyes reveal more of the sclera vein pattern for matching.  Thus, even 

an individual who was actively attempting to avoid detection or recognition by looking 

away from the matching system would be unable to avoid presenting a valid biometric 

pattern for identification. 

 

 

1.4.3  Previous Works on Recognition in the Sclera Region 

The eye region has been extensively used for positive human identification by 

using, most notably, the iris and, less so, the retina.  However, little work has been done 

that uses the sclera region for identification. 

 

In [25], Derakhshani et. al. first proposed using ‘conjunctival vascular’ patterns 

for user identification. The conjuctiva is the thin top layer of the sclera region, and the 

conjuctival vasculature is the system of veins and arteries in this layer.  They used 

contrast limited adaptive histogram equalization (CLAHE) to enhance the green color 

plane of the RGB image, and a multi-scale region-growing approach to identify the sclera 

veins from the image background.  For matching, they proposed a multi-level matching 

approach — a coarse approach to sub divide the database, and a fine approach to 

specifically match a user from the preliminary sub-divided segment of the database, as 

found from the course approach.  For the course approach, they utilize Hu’s 7-th skew-

invariant moments [26] to perform preliminary matching.  For the fine approach, as 

described in the paper, they propose 2 methods — a minutiae based approach and a two-

dimensional correlation approach.  In this work, they used a small database of 24 images 

composed of 2 images of the left and right eyes of 6 users.  With manual segmentation, 

they reported 100% matching accuracy for both matching approaches. 

 

Later, in [27], Derakhshani and Ross used a texture-based neural network 

classifier, manual segmentation of the sclera region, and adaptive thresholding and 
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enhancement on the vasculature images.  For matching, they used a single hidden layer 

feed forward neural network with 512 input nodes, 300 hidden nodes, and 50 output 

nodes.  In this work, the authors collected a database of 50 users, with images acquired in 

2 sittings, with a 20 minute lapse in between, at acquisition distances of 1, 5, and 9 feet, 

for 300 total images.  They trained their neural network classifier with the first sitting’s 

data (150 images), and tested with the second sitting.  Their reported results are presented 

in Table 1.1. 

 

Table 1.1  Reported EER’s for Derakshani and Ross [27] 

  Reported EER: 

  

1 Foot 

(50 images) 

3 Feet 

(50 images) 

9 Feet 

(50 images) 

One Eye 6.50% 7.40% 11.00% 

Both Eyes 4.30% 8.80% 9.20% 

 

Most recently, in [28] Crihalmeanu et. al. used an semi-automated k-means 

clustering algorithm to estimate the sclera region from the RGB values of the pixels in 

the color sclera images, and used manual intervention to correct for misclassified 

boundaries (in particular, the lower eyelid boundary).  They proposed a registration 

method that incorporates local affine and global smoothing transformations that locally 

deforms the template image to provide the best registration with the target image.  Using 

the ‘cross-correlation between non-specularity regions’ in the registered images, they 

report an equal error rate around 25%, using their internally acquired database of 50 

users.  In particular, note that this most recent work is the first, and only, that does not use 

manual segmentation to ensure that the sclera regions to be matched are already well 

segmented and registered. 

 

It is important to note that the previous three works have different lead authors, 

but they are all from the same academic group — Ross, Derakhshani, and Crihalmeanu.  

These initial works have shown that the sclera can be used for accurate human 
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identification. As they pointed out in the conclusion of [28], for practical use of the sclera 

vasculature as a biometric identifier there is more work that is necessary.  

 

 

1.4.4  Sclera Recognition Databases 

 Due to the relative ‘newness’ of sclera vein recognition, there are not currently 

any publicly available databases specifically for sclera vein pattern recognition.  

Additionally, since sclera vein patterns are not readily visible under near-infrared 

illumination, the normal illumination for iris recognition algorithms, only iris image 

databases that are acquired under visible light illumination are potentially useful for 

sclera vein recognition applications.  In this research, 2 databases are used – the UBIRIS 

database and the IUPUI multi-wavelength database. 

 

 

1.4.4.1  UBIRIS Database 

 The UBIRIS database [16] is a publicly available database with iris images 

acquired in color.  The database consists of 1877 images acquired from 241 users 

acquired in two sessions.  The images are predominately frontal gaze.  The database is 

available with multiple image resolutions, with the maximum image resolution being 800 

by 600 pixels.  In session 1, noise was minimized and the images were attempted to be 

acquired in focus.  However, in session 2, noise effects were not minimized, ambient 

light was not normalized, and a significant number of the images have very poor focus.  

In both sessions, the images are generally cropped such that the eye is predominately 

centered and the eye region well-cropped in the images.  Some example images from the 

UBIRIS database, session 1, are presented in Figure 1.3.   
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Figure 1.3  Example images from the UBIRIS database, session 1.  

The top row shows good quality images, the middle row shows 
images of mid- to poor- quality, and the bottom row shows poor 

quality images. 

 

 In the session 1 database, the primary difference between good and poor quality 

images is image focus and/or eyelid occlusion.  For some images, the iris and sclera 

region are very poorly focused, which reduces the visual clarity of the image and in many 

cases makes the sclera vein patterns difficult, or impossible, to reliably identify by either 

automatic or manual methods.  Examples of this type of poor image quality can be seen 

in the bottom left and middle images in Figure 1.3.  For the case of significant eyelid 

occlusion, such as the bottom right image in Figure 1.3, even if the image is well-

focused, if there is not enough sclera region visible in the image, one cannot extract 

enough sclera vein pattern to reliably identify the individual. 
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 For the session 2 database, the images are of very poor quality for sclera 

recognition.  Figure 1.4 shows some example images from the session 2 database.  Note 

that the overall image quality is much worse, and much less consistent than in the session 

1 database.  In particular, the focus on the sclera region is very inconsistent, which makes 

the session 2 database very poor for sclera recognition.  Figure 1.5 shows some example 

images from the same user across the two databases.  The top row is an example image 

from the user in the session 1 database, and the bottom row is an example image from the 

same user in the session 2 database.  Note that in the session 2 images, the image quality 

is much worse, and in particular the focus in the sclera region is very poor in the session 

2 images.  

 

 
Figure 1.4  Example images from the UBIRIS database, session 2.  

The top row shows good quality images, the middle row shows 
images of mid- to poor- quality, and the bottom row shows poor 

quality images. 
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Figure 1.5  Example images from the same user in the UBIRIS 

database.  Top row – session 1, bottom row – session 2 

 

 

1.4.4.2  IUPUI Multi-wavelength Eye Database 

 The IUPUI multi-wavelength database is an internally acquired database of video 

images of user’s eye and the surrounding regions with different eye gaze-angles, 

illumination wavelengths, and ambient illumination levels.  The database is composed of 

45 users, with two videos acquired of each user with at least 1 week of time between 

acquisitions.  For each session, 32 videos were acquired – 8 different illumination 

wavelengths (420, 470, 525, 590, 610, 630, 660, and 820 nm), with and without ambient 

illumination, and both the user’s left and right eyes.  For each video, the user was asked 

to direct their gaze to 6 different gaze locations (centered, up, left, left-up, right, and 

right-up) during the video.  Each image was acquired at a resolution of 1280 by 1024 

pixels, with the eye generally centered in the image.  In general, the eye regions are 

around 1000 pixels in width, about 200 pixels more than the UBIRIS database’s 

maximum eye width.  Users were asked to limit the movement of their head, but no 

restraints were used to otherwise limit their movement. 

 

 Figure 1.6 shows example images from the IUPUI multi-wavelength database for 

one user at a wavelength of 525nm with different gaze angles.  Because the images were 
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acquired and focused manually, there is some difference in the detailed level of focus 

between the two sessions for each user and between the left and right sclera regions.   

 

 
Figure 1.6  Example images from the IUPUI multi-wavelength 

database – 6 images from the same user and illumination 
wavelength (525 nm) with different gaze angles 
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 Figure 1.7 shows 8 images of the same user and gaze angle, but with different 

illumination wavelengths.  In particular, note that the sclera vein patterns presentation is 

different with different illumination wavelengths.  In general, the sclera vein patterns are 

most apparent under wavelength 3 (525 nm), the third image from the upper left of the 

figure, which was the reason it was chosen for this work. 

 

 

 

 
Figure 1.7  Example images from the IUPUI multi-wavelength 

database - 8 images of the same user and gaze angle acquired with 
different illumination wavelengths (from upper left: 420, 470, 525, 

590, 610, 630, 660, and 820 nm) 
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Figure 1.7  Continued 

 

 

1.4.5  Sclera Recognition Challenges 

 Sclera recognition has several technical difficulties that make it difficult to 

implement in practice, including:   

• The eye is a moving structure, and the sclera vascular patterns move and are 

deformed with this movement (including the movement of the eye and eyelids, and 

dilation/contraction of pupil).  

• The sclera is reflective, so the sclera patterns may be out-of-focus or saturated. 

• Most importantly, the vascular patterns in the sclera are composed of multiple layers, 

and as a result, there is complicated non-linear deformation of the patterns as the eye 

and/or the surrounding tissues move (such as the eyelids), Figure 1.8 and Figure 1.9. 

 



18 
 

 
Figure 1.8  An example illustration of how different patterns can 

emerge from multiple independent layers 

 

Figure 1.8 shows an example of some of the multitude of patterns that can emerge from 

the interaction of two independently deforming layers.  On the left of Figure 1.8, we 

show two representative vein patterns, M and N, from vein layers X and Y, and then 

some of the myriad of individual layer deformations that these patterns can exhibit.  The 

combination of the two patterns, M and N, due to the individual layer deformations can 

result in many different observable multi-layered non-linear deformations.  Note, in 

particular, that the overall structure of the emergent pattern (crossing points, relation 

between vein landmarks, etc.) can change significantly with the multiple layers’ 

interactions.  Figure 1.9 shows an example of multi-layered deformation of sclera 

patterns from images of a real person. Figure 1.9(a) and Figure 1.9(b) were acquired in a 

sequence of video imagery of an eye within one second. The upper eyelid of the Figure 

1.9(b) is a slightly more open, as compared to Figure 1.9(a).  In the zoomed-in view of 

the sclera patterns, we see that that the vascular pattern is made up of multiple layers that 
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are moving relatively independently.  Specifically, one can see that the ‘curvy’ vein, Y 

(with points A1, B1, and C1) and the ‘smooth’ veins, X1 (with points B2 and C2) and X2 

(with point A2) have different relative positions in the two images.  The ‘smooth’ veins, 

X1 and X2, stay relatively similar in position but their orientation shifts toward the lower 

right portion of the image, while the ‘curvy’ vein, Y, shifts down in Figure 1.9(b) but 

retains its orientation.  Also, the vein structure (where the veins cross and their relation to 

each other) around points A1 and A2 is significantly different between the two images, 

and that the points B1 and B2 are separate in the top image, but are touching in the 

bottom.  Again, this is due to the transition of the ‘curvy’ vein, Y, with respect to the 

straight vein, X1. 

 

 
Figure 1.9  An example of layered non-linear deformations in 

multiple images of the same eye.  In particular, note the areas as 
denoted by the arrows. Both images were acquired in a video 

sequence within one second. 
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2.  OVERVIEW OF PROPOSED SYSTEM 

 

 

2.1  Background of Vein Recognition 

 Vein recognition has been used and studied for personal identification, such as 

finger vein recognition, palm vein recognition, retina vein recognition, and sublingual 

vein recognition. Usually, the veins are described and matched with the assumption that 

the vein pattern is not multi-dimensional, and that the vein patterns will only have global 

translation or scaling [19, 29-35].   

 

 

2.2  Vein Recognition vs. Sclera Recognition   

Because the other previous vein recognition methods assume that the vein 

patterns are not multi-dimensional, these methods are not applicable for sclera vein 

recognition situations.  Specifically, multiple independent layers will pose difficulties 

producing reliable matching results when the typical emergent qualities of the pattern 

(crossing point, relation between close veins, etc) are used for matching.  As shown in 

Figure 1.8 and Figure 1.9, multiple independent layers can create many possible overall 

patterns, and as such the matching system should take this into account.   

 

Previous vein recognition systems do not account for this type of change in the 

pattern, and as such they would not be consistently accurate for sclera recognition.  

Therefore, a new type of system needs to be developed that can account for these types of 

issues to allow for accurate results using sclera recognition. 
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2.3  Proposed Method 

 Figure 2.1 shows a simple block diagram of the proposed system, which is 

composed of 4 major components: sclera segmentation, feature extraction and 

enhancement, feature matching, and the matching decision. 

 

 For the sclera segmentation system, a system is developed that can accurately 

segment the sclera region using color images and does not require training.  The proposed 

system estimates the sclera using the color information in the image, detects the iris and 

eyelid boundaries, and refines them using an active contour method.  The goal of this 

system is to identify and extract the relevant portions of the sclera from the original 

image of the eye region for further processing and identification.  The primary difficulties 

in this section are proper segmentation of the eyelid boundaries, especially the lower 

eyelid boundary near the tear duct, and segmentation of images with very little visible 

sclera region. 

 

The feature extraction and enhancement system uses a bank of Gabor filters to 

extract the vein pattern from the segmented sclera region.  The enhanced vein patterns are 

thresholded using an adaptive threshold, and thinned to a pixel wide skeleton using 

morphological operations.  Finally, a novel line-descriptor method is used to describe and 

store the extracted vein pattern for recognition.  The goal of this section is to reliably 

extract and describe the vein pattern in the sclera for use in identifying the user.  The 

primary difficulties in this section are reliably extracting the vein structure and extracting 

the vein structure for low quality images. 

 

The feature matching system uses a RANSAC-based registration system to 

register the sclera vein templates to achieve translation-, rotation-, and scaling-invariance.  

Then, a pair-wise distance measure is used to match the templates using their line 

descriptor sets.  Finally, the matching score is determined from the weighted matching 

scores, and is used to determine if the two descriptors are a match.  The goal of this 

section is development of a system that can consistently identify users from their 
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extracted vein pattern descriptors in the presence of noise, unusual vein presentations, 

and deformations.  The primary difficulties in this section are addressing the complex 

non-linear deformation of the sclera vein patterns and developing an appropriate 

registration algorithm that does not over-fit and introduce false-matches into the 

matching results of the system. 

 

Each of the preceding systems is described at length in the subsequent sections. 

 

 
Figure 2.1  The proposed system 
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3.  SCLERA SEGMENTATION 

 

 

3.1  Review of Iris Image Segmentation Methods  

  Many researchers have worked on segmentation of the pupil and iris boundaries 

for compliant iris recognition [4, 6-8, 11-14, 36-52] for eye images in the near infrared 

(NIR) wavelengths.  Historical examples include Daugman’s integro-differential operator 

which searches for the optimum set of parameters, 𝑟𝑟, 𝑥𝑥0,𝑦𝑦0 , that describe a circle that 

maximizes the following equation.  

max
𝑟𝑟 ,𝑥𝑥0,𝑦𝑦0

�𝐺𝐺𝜎𝜎(𝑟𝑟) ∗
𝜕𝜕
𝜕𝜕𝑟𝑟
�

𝐼𝐼(𝑥𝑥,𝑦𝑦)
2𝜋𝜋𝑟𝑟

𝑑𝑑𝑑𝑑
𝑟𝑟 ,𝑥𝑥0,𝑦𝑦0

�  (3.1) 

Some researchers have used the circular Hough transform to search an edge detected 

image for the optimal circular representation of the iris or pupil [37, 46].  The circular 

Hough transform uses the accumulation of values in a parameter space to ‘vote’ for the 

most likely set of parameters for an object (such as a line or circle) in the image.  Many 

other, more current, methods have been proposed and tested — active contours or 

‘snakes,’ multi-scale approaches, geodesic active contours, etc.  However, all of these 

methods used for compliant iris recognition require high-quality, frontal-gaze images to 

ensure that the iris and pupil boundaries are circular (or nearly circular) and the eye 

region boundaries are well defined, which may not be valid for sclera recognition 

applications. 

 

In [53-55], Proenca et al. proposed segmentation algorithms for iris images in the 

visible wavelengths with the UBIRIS database. Especially relevant for this work is that 

he segments the sclera as an interim step in segmenting the iris, and uses visible 

wavelength images [54].  Training is necessary in this approach, as it uses a neural 

network for preliminary region classification.  
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 In [54], Proenca segments the sclera as a preliminary step in segmentation of the 

iris boundaries for non-compliant color iris images.  To segment the sclera, he uses a 

neural network classifier using a 20 element feature vector for each pixel in the image.  

The feature vector was composed of �𝑥𝑥,𝑦𝑦,𝐻𝐻0,3,7
𝜇𝜇 ,𝜎𝜎 (𝑥𝑥,𝑦𝑦),𝐶𝐶𝑟𝑟0,3,7

𝜇𝜇 ,𝜎𝜎 (𝑥𝑥,𝑦𝑦),𝐶𝐶𝐶𝐶0,3,7
𝜇𝜇 ,𝜎𝜎 (𝑥𝑥,𝑦𝑦)�.  Where 

(𝑥𝑥,𝑦𝑦) is the pixels position, 𝐻𝐻(∙) is the hue colorplane of the image, 𝐶𝐶𝑟𝑟(∙) is the red 

chrominance colorplane of the image, and 𝐶𝐶𝐶𝐶(∙) is the blue chrominance colorplane of 

the image.  The subscripts indicate the features used (mean and standard deviation) and 

the radii used (0, 3, and 7 pixels). 

 

 For the classification, the neural network was a multi-layered perceptron feed-

forward neural network with a single hidden layer.  They used 20 input neurons, 30 

hidden neurons, and 1 output neuron.  For training they used the back-propagation 

algorithm, and trained with 50,000 randomly selected pixels from 30 training images 

equally distributed between ‘sclera’ and ‘non-sclera.’  Because they were using the sclera 

segmentation as a preliminary step for further segmentation of the iris boundary, they do 

not report the accuracy of the sclera segmentation.   

 

 In [11], Du and Arslanturk proposed a non-cooperative segmentation algorithm 

for video iris images.  This system used a PCA-based clustering algorithm to quickly 

identify the iris pupil center, and a SVD-based conic fitting algorithm to fit a least-

squares conic section to the detected iris and pupil boundary points for non-compliant 

video images. 

 

 

3.2  Review of Previous Sclera Segmentation Methods 

Segmentation of the sclera region is the first step in processing sclera images for 

sclera recognition.  An ideal segmentation algorithm would properly identify only the 

sclera areas that contain useful information for identification, and remove all other areas.  

In particular, proper segmentation is very important for any biometric system — it 

provides the baseline for the systems accuracy.  The “best” biometric identification 
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system cannot provide good accuracy if it is using poorly segmented results.  As such, 

accurate segmentation of the desired region is of utmost importance to the overall 

system’s results. 

 

 As stated earlier, sclera recognition is a relatively new biometric modality, in 

comparison to iris recognition, and as such, there are very few people who have worked 

on segmentation of the sclera region.   Additionally, in comparison to iris segmentation, 

the sclera boundaries exhibit more intra-class variation and retain all of the difficulties 

that are faced in iris recognition — eyelid occlusion, specular reflections, low signal-to-

noise ratio, etc.  One advantage of sclera segmentation, when using color images, is that 

the additional information contained in the color information can be used to mitigate 

some of these issues and difficulties. 

 

In [25], Derakhshani et al. first proposed the use of the sclera vasculature for 

biometric identification, they performed all segmentation manually.  Additionally, in [27], 

they use manual segmentation of the sclera region to specify the region of interests.  In 

this work, they claimed that they used a simple intensity-based routine that further 

segments the sclera region into smaller region of interests, but do not further define this 

process. 
 

In [28], Crihalmeanu et al. presented a semi-automated system for sclera 

segmentation.  They used a k-means clustering algorithm to cluster the color eye images 

into three clusters.  Then, the three clusters were classified as sclera, iris, and background 

by classifying the cluster with the largest Euclidean distance to the RGB origin vector  

[0, 0, 0]𝑇𝑇 .  Similarly, the iris was classified as the cluster with the smallest Euclidean 

distance to the origin, and the background was the remaining cluster.  Then, using these 

clustered regions, the convex hull of the iris region was removed from the convex hull of 

the sclera region to create a mask of the sclera region, and then manual intervention was 

performed to correct, if necessary, for incorrectly segmented portions of the image. 
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Table 3.1 shows the reported percentage of different image classes that required manual 

intervention, with a total of 35% of all images requiring manual intervention.   
 

Table 3.1  Reported percentage of images requiring manual 
correction 

Gaze   % Requiring manual Intervention 

  
 Acquisition 

Distance 
Left Eyes Right Eyes 

Looking Left 
near 45.52% 31.34% 

medium 36.57% 26.87% 
far 32.09% 29.10% 

Looking 
Right 

near 40.30% 41.79% 
medium 39.55% 38.06% 

far 26.12% 32.84% 
 

In particular, they noted the lower boundary between the sclera and 

eyelids/eyelashes as a problematic area to accurately segment.  This area, in particular 

near the tear ducts, is difficult to segment because the sclera in this region tends to be 

very vascular, so the color of the sclera and the color of the eyelid can be very similar.  

Additionally, the vasculature in this area can introduce a level of ‘texture’ in the sclera 

that can make segmenting the eyelid boundary using edge or gradient-based techniques 

difficult.  

 

 

3.3  Proposed Sclera Segmentation Method

 In this work, we proposed a new segmentation method for color images by first 

estimating the sclera region using the best representation between two color-based 

techniques, and then refining the boundary using the Fourier active contour method [7].  

The block diagram of the segmentation algorithm is shown in Figure 3.1, which includes 

image downsampling, conversion to the HSV colorspace, estimation of the sclera region, 

iris and eyelid detection, eyelid and iris boundaries refinement, mask creation, and mask 

upsampling.   
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Figure 3.1  The proposed segmentation system 

 

 

3.3.1  Downsampling the Image 

 To improve the segmentation efficiency, the input image is first downsampled to 

increase processing speed.  For the UBIRIS image database, we downsampled the images 

by a factor of 5, which reduces the image size to 1/25th of its original size. 

 

 

3.3.2  Conversion to HSV colorspace 

 The image is converted from the RGB colorspace to YCrCb colorspace and then 

to the HSV colorspace, to facilitate the use of simple segmentation heuristics in the HSV 

colorspace: 

�
𝑌𝑌
𝐶𝐶𝑅𝑅
𝐶𝐶𝐵𝐵
� = �

. 299 . 587 . 114
−.169 −.331 . 499
. 499 −.418 −.0813

� �
𝑅𝑅
𝐺𝐺
𝐵𝐵
� + �

0
128
128

�  (3.2) 
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�
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⎥
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  (3.3) 

 

 

3.3.3  Estimation of Sclera Area 

 Two approaches were used to find potential sclera areas.  The first approach was 

based on the fact that the sclera area is the ‘non-skin’ area of the eye region. This allows 

for simple heuristics to be used to classify areas in the image as ‘skin’ or ‘not-skin’ as 

described in [56, 57], and then a binary map of the sclera is assumed to be the inverse of 

the skin.  The first color distance map, for natural illumination, is calculated using: 

𝐶𝐶𝐶𝐶𝐶𝐶1 = �1,
𝑅𝑅 > 95,𝐺𝐺 > 40,𝐵𝐵 > 20,

max(R, G, B) − min(R, G, B) > 15
|𝑅𝑅 − 𝐺𝐺| > 15,𝑅𝑅 > 𝐺𝐺,𝑅𝑅 > 𝐵𝐵 

,

0, 𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒

�  (3.4) 

The second color distance map, for flash illuminators, is calculated using: 

𝐶𝐶𝐶𝐶𝐶𝐶2 = �1,
𝑅𝑅 > 220,𝐺𝐺 > 210,𝐵𝐵 > 170,

max(R, G, B) − min(R, G, B) > 15
|𝑅𝑅 − 𝐺𝐺| ≤ 15,𝑅𝑅 > 𝐵𝐵,𝐵𝐵 > 𝐺𝐺 

,

0, 𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒

�  (3.5) 

Then, the sclera map is calculated using the two color distance maps: 

𝑆𝑆1(𝑥𝑥,𝑦𝑦) = �1, 𝐶𝐶𝐶𝐶𝐶𝐶1(𝑥𝑥,𝑦𝑦) 𝑂𝑂𝑅𝑅 𝐶𝐶𝐶𝐶𝐶𝐶2(𝑥𝑥, 𝑦𝑦) = 0  
0, 𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒

�  (3.6) 

 

 A second potential sclera map is designed based on the fact that the sclera area is 

the “white” area of the eye. In other words, the hue of the sclera area should have low hue 

(about bottom 1/3), low saturation (bottom 2/5), and high intensity (top 2/3). Therefore, 

the following heuristic is developed: 

𝑆𝑆2(𝑥𝑥,𝑦𝑦) = �1,
𝑖𝑖𝑖𝑖 𝐻𝐻(𝑥𝑥,𝑦𝑦) ≤ 𝑡𝑡ℎℎ   
𝑎𝑎𝑎𝑎𝑑𝑑 𝑆𝑆(𝑥𝑥,𝑦𝑦) ≤ 𝑡𝑡ℎ𝑑𝑑  
𝑎𝑎𝑎𝑎𝑑𝑑 𝑉𝑉(𝑥𝑥, 𝑦𝑦) ≥ 𝑡𝑡ℎ𝑣𝑣  

  

0, 𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒

�  (3.7) 

With the thresholds calculated using: 
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𝑡𝑡ℎℎ = 𝑎𝑎𝑟𝑟𝑎𝑎 �𝑡𝑡 �min ��𝑝𝑝ℎ(𝑥𝑥) − 𝑇𝑇ℎ

𝑡𝑡
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���  ,   

𝑡𝑡ℎ𝑑𝑑 = 𝑎𝑎𝑟𝑟𝑎𝑎 �𝑡𝑡 �min ��𝑝𝑝𝑑𝑑(𝑥𝑥) − 𝑇𝑇𝑑𝑑

𝑡𝑡

𝑥𝑥=1

���  ,  (3.8) 

and 𝑡𝑡ℎ𝑣𝑣 = 𝑎𝑎𝑟𝑟𝑎𝑎 �𝑡𝑡 �min ��𝑝𝑝𝑣𝑣(𝑥𝑥) − 𝑇𝑇𝑣𝑣

𝑡𝑡

𝑥𝑥=1

���  .   

   

 Here 𝑝𝑝ℎ(𝑥𝑥) is the normalized histogram of the hue image, 𝑝𝑝𝑑𝑑(𝑥𝑥) is the normalized 

histogram of the saturation image, 𝑝𝑝𝑣𝑣(𝑥𝑥) is the normalized histogram of the value image, 

and 𝑆𝑆2(𝑥𝑥,𝑦𝑦) is the binary sclera map. In this way, we generate two binary maps 𝑆𝑆1(𝑥𝑥,𝑦𝑦) 

and 𝑆𝑆2(𝑥𝑥,𝑦𝑦) .  The thresholds 𝑇𝑇ℎ , 𝑇𝑇𝑑𝑑 , and 𝑇𝑇𝑣𝑣  are 1/3, 2/5, and 1/3 respectively. 

Morphological operations are applied to the two binary maps to remove isolated pixels, 

and small regions of contiguous pixels.   

 

 

3.3.4  Convex Hull of Estimated Sclera 

 The convex hull of each of these sclera representations is calculated.  The convex 

hull is the minimal convex set of points that contains the entire original set [58].  It can be 

visualized as the boundary of the set of points that contains all of the points, without 

requiring a concave segment, or as if one were stretching an elastic band around the set of 

points. 

 

 

3.3.5  Color-Based Sclera Region Estimation Scheme  

 The best estimate of the sclera is determined by dividing each individual mask 

into two sections — left and right of the detected pupil center.  The final representation is 

created using the individual portions that are the most homogenous, by minimizing the 

standard deviation of the pixels in the region. 
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𝑟𝑟 = 𝑎𝑎𝑟𝑟𝑎𝑎 �𝑖𝑖 �min � (𝐼𝐼(𝑥𝑥,𝑦𝑦) −𝑚𝑚𝑖𝑖)2

(𝑥𝑥 ,𝑦𝑦)∈𝑆𝑆𝑖𝑖

��,  (3.9) 

where 𝑟𝑟 is the region to be retained, 𝑆𝑆𝑖𝑖  is the ith region, 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the intensity image, and 

𝑚𝑚𝑖𝑖  is the mean intensity of the ith region.  This process is illustrated in Figure 3.2.  Then 

the convex hull of the estimated region is calculated.   

 

 
Figure 3.2  Fusing the sclera representations 

 

 

3.3.6  Iris Segmentation 

 In this research, we focused on sclera recognition using frontal-gaze eyes. To 

improve the segmentation speed, the pupil and iris regions are simply modeled as circular 

boundaries and typical circular iris segmentation methods were used [6, 7, 39, 43, 46, 50, 

59-61], and the convex hull of the iris is removed from each of the estimated sclera 

representations. 
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 Specifically, the pupil and iris regions are segmented using a greedy angular 

search to find the pupil and iris boundaries, and using a least squares circle fitting 

algorithm to fit a circle to the detected boundaries.  An overlapping greedy angular search 

is performed on the edge detected image, which can accurately detect the pupil 

boundaries regardless of gaze direction and eyelid/eyelash occlusion.  The algorithm 

searches along the radial direction at a pre-defined set of angles to estimate the pupil 

boundaries, and then iteratively maps the highest edge value along the angular direction 

for π/2 radians for each of these starting angles.  

 

 
Figure 3.3  Finding the search start points 

 

 Starting at the estimated center of the pupil, the algorithm searches along a radial 

direction for the highest edge value within some radial length range, Eq. 3.10: 
 (𝑢𝑢, 𝑣𝑣) =  𝑎𝑎𝑟𝑟𝑎𝑎 �(𝑥𝑥,𝑦𝑦) �max S(𝑥𝑥,𝑦𝑦) ,𝑤𝑤𝑖𝑖𝑡𝑡ℎ arctan�𝑦𝑦−𝑦𝑦0

𝑥𝑥−𝑥𝑥0
� = 𝜃𝜃 �. (3.10) 

Here, 𝑆𝑆(𝑥𝑥,𝑦𝑦) is the edge detected image, (𝑥𝑥0,𝑦𝑦0) is the estimated pupil center, and 𝜃𝜃 is 

the angular search direction.  Then, using this detected point as the start of the search, the 

algorithm iteratively searches for the highest edge value along the angular direction, 

constraining the possible outcomes to the next pixel in the defined angular direction and 

its two nearest neighbors along the radial dimension, Eq. 3.11. 
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Figure 3.4  Searching along the radial direction 

 

(𝑢𝑢, 𝑣𝑣) =  𝑎𝑎𝑟𝑟𝑎𝑎 �(𝑥𝑥,𝑦𝑦) �max S(𝑥𝑥,𝑦𝑦),
𝑥𝑥 = 𝑥𝑥0 + 𝑟𝑟 cos𝜃𝜃,
𝑦𝑦 = 𝑦𝑦0 + 𝑟𝑟 sin𝜃𝜃,

 𝑟𝑟′ − 1 ≤ 𝑟𝑟 ≤  𝑟𝑟′ + 1
 �, (3.11) 

where  𝑟𝑟 ′ is the previous iteration’s radius.  The search continues for π/2 radians, and 

combine the aggregate results for all initialization orientations.  The final result will be an 

image with each pixel’s value equal to the number of individual radial searches that 

include that particular pixel.  The “majority vote” approach is used to determine which 

pixels to include in the final iris boundary mask, eliminating pixels that were not 

commonly ‘found’ in the search.  Figure 3.5 shows the aggregate results of 5 of these 

individual searches for pupil detection. 

 

 
Figure 3.5  The aggregate of 5 individual radial searches,  

and the result superimposed on the original image 
 

 A least-squares circle is fit to the detected pixels using Kasa’s least squares circle 

fitting algorithm [62]. 

 

3.3.7  Iris and Eyelid Refinement 

 The top and bottom boundaries of the fused sclera region are used as initial 

estimates of the sclera boundaries, and a polynomial is fit to each boundary.  Using the 
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top and bottom portions of the estimated sclera region and the preliminary iris boundary 

as guidelines, the upper eyelid boundary, lower eyelid boundary, and iris boundary are 

then refined using the Fourier active contour method [7].   
 
 A radial derivative, centered on the detected pupil center, is calculated using Eq. 

3.12. 

𝐶𝐶∅(𝑥𝑥,𝑦𝑦) =   ∑ 𝑤𝑤𝑖𝑖𝐼𝐼(𝑟𝑟 + 𝑖𝑖, 𝜃𝜃)𝑎𝑎
𝑖𝑖= −𝑎𝑎 ,  (3.12) 

∅ = tan−1 𝑦𝑦 − 𝑦𝑦0

𝑥𝑥 − 𝑥𝑥0
,  

𝑟𝑟 = �(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2,  

𝑤𝑤𝑖𝑖 = 𝑑𝑑𝑎𝑎𝑎𝑎(𝑖𝑖)(4 − |𝑖𝑖|) , 

 (3.13) 

Where (𝑥𝑥0, 𝑦𝑦0)is the detected pupil center, 𝐶𝐶∅(𝑥𝑥,𝑦𝑦) is the directional derivative, 𝐼𝐼(𝑟𝑟,𝜃𝜃) 

is the original grayscale intensity image using radial coordinates, and 2𝑎𝑎 + 1 is the radial 

filter length.  Figure 3.6 shows an example radial derivative. 

 

 
Figure 3.6  The original intensity image and the radial derivative 

 

 Then, a new derivative region-of-interest, ROI, image is created by normalizing 

the radial derivative image along the estimated eyelid boundary with respect to the eyelid 

boundaries derivative, using Eq. 3.14.   
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𝐶𝐶∅𝑁𝑁𝑁𝑁𝑟𝑟𝑚𝑚 (𝑥𝑥,𝑦𝑦) = 𝐶𝐶∅[𝑥𝑥𝑎𝑎(𝑥𝑥,𝑦𝑦),𝑦𝑦𝑎𝑎(𝑥𝑥,𝑦𝑦)],  

𝑥𝑥𝑎𝑎(𝑥𝑥,𝑦𝑦) = ��𝑦𝑦 −
𝑌𝑌
2
� cos�𝑒𝑒𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥)� +  𝑒𝑒𝑥𝑥(𝑥𝑥)� 

𝑦𝑦𝑎𝑎(𝑥𝑥,𝑦𝑦) = ��𝑦𝑦 −
𝑌𝑌
2
� sin�𝑒𝑒𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥)� + 𝑒𝑒𝑦𝑦(𝑥𝑥)� 

𝑥𝑥 = 1 …𝑁𝑁,𝑦𝑦 = 1 …𝑌𝑌 

 (3.14) 

Where, 𝑒𝑒𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥) is a function that returns the evaluated tangent angle of the nth pixel of 

the pupil boundary, 𝑒𝑒𝑥𝑥(𝑎𝑎) is a function that returns the evaluated x-coordinate of the nth 

pixel of the pupil boundary, 𝑒𝑒𝑦𝑦(𝑎𝑎) is a function that returns the evaluated y-coordinate of 

the nth pixel of the pupil boundary, 𝐶𝐶∅𝑁𝑁𝑁𝑁𝑟𝑟𝑚𝑚 (𝑥𝑥,𝑦𝑦) is the normalized directional derivative, 

𝑌𝑌/2 is the distance to be normalized around the eyelid boundary, and 𝑁𝑁 is the length of 

the eyelid boundary.  Thus, the new normalized derivative has the estimated eyelid 

boundary as the middle row of the image, and the remaining pixels sampled along the 

tangent lines of the estimated boundary.  The region of interest is shown as the red box in 

Figure 3.7, with the green line showing the original estimated eyelid from the sclera 

estimation. 

 

 
Figure 3.7  The eyelid region-of-interest 

 

 

 
Figure 3.8  The optimal path through the eyelid ROI 
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 The iris and eyelid boundaries are refined using a Fourier representation, similar 

to the one implemented in [7].  A dynamic programming approach [58] is used to 

determine a globally maximal path, 𝑝𝑝𝑥𝑥 , through 𝐶𝐶∅𝑁𝑁𝑁𝑁𝑟𝑟𝑚𝑚 (𝑥𝑥,𝑦𝑦) (the red line in Figure 3.8).  

Then, this path is described by computing the Fourier expansion of the data (Eq. 3.15), 

truncating the number of coefficients used to describe the path, and re-computing the 

final boundary from the truncated coefficients (Eq. 3.16). 

𝐶𝐶𝑘𝑘 = �𝑝𝑝𝑥𝑥𝑒𝑒−2𝜋𝜋𝑖𝑖𝑘𝑘𝑥𝑥 /𝑁𝑁
𝑁𝑁−1

𝑥𝑥=0

  (3.15) 

𝑃𝑃𝑥𝑥 =
1
𝑁𝑁
� 𝐶𝐶𝑘𝑘𝑒𝑒2𝜋𝜋𝑖𝑖𝑘𝑘𝑥𝑥 /𝑁𝑁
𝐶𝐶−1

𝑘𝑘=0

  (3.16) 

Where 𝑁𝑁 is length of the path, 𝑝𝑝𝑥𝑥 , 𝐶𝐶 is the number of retained coefficients, and 𝑃𝑃𝑥𝑥  is the 

final path, expressed in the coordinates of the normalized region-of-interest directional 

derivative.  This path must be transformed back to the original coordinate system of the 

original image, using Eq. 3.17.  Figure 3.9 shows an example eyelid boundary after active 

contour refinement. 

𝑃𝑃𝑥𝑥(𝑥𝑥′,𝑦𝑦′) = �𝑃𝑃𝑁𝑁(𝑥𝑥)cos�𝑒𝑒𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥)� +  𝑒𝑒𝑥𝑥(𝑥𝑥),  𝑃𝑃𝑁𝑁(𝑥𝑥) sin�𝑒𝑒𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥)� + 𝑒𝑒𝑦𝑦(𝑥𝑥)� 

𝑃𝑃𝑁𝑁(𝑥𝑥) = �𝑃𝑃𝑥𝑥(𝑥𝑥) −
𝑌𝑌
2
� 

𝑥𝑥 = 1 …𝑁𝑁 

 

 (3.17) 

 
Figure 3.9  The final eyelid boundary after active contour 

representation 
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 In a similar fashion, the iris boundary is modeled as a circle, and then refined 

using the same method as described for the eyelids.  The only major difference is that 

instead of modeling the boundary as a general polynomial, it is modeled as a circle, from 

the original estimate of the iris boundary.  The modified equations required are: 

𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑑𝑑 (𝑥𝑥,𝑦𝑦) =
(𝑥𝑥 − 𝑥𝑥0)2 + (𝑦𝑦 − 𝑦𝑦0)2

𝑟𝑟2   (3.18) 

𝐶𝐶∅𝑁𝑁𝑁𝑁𝑟𝑟𝑚𝑚 (𝑥𝑥,𝑦𝑦) =  𝐶𝐶∅[𝑥𝑥𝑎𝑎(𝑥𝑥,𝑦𝑦),𝑦𝑦𝑎𝑎(𝑥𝑥,𝑦𝑦)], 

𝑥𝑥𝑎𝑎(𝑥𝑥,𝑦𝑦) =  ��𝑦𝑦 −
𝑌𝑌
2
� cos�𝑖𝑖𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥)� +  𝑖𝑖𝑥𝑥(𝑥𝑥)� 

𝑦𝑦𝑎𝑎(𝑥𝑥, 𝑦𝑦) = ��𝑦𝑦 −
𝑌𝑌
2
� sin�𝑖𝑖𝑡𝑡𝑎𝑎𝑎𝑎 (𝑥𝑥)� +  𝑖𝑖𝑦𝑦(𝑥𝑥) � 

𝑥𝑥 = 1 …𝑁𝑁,𝑦𝑦 = 0 …𝑌𝑌, 

 (3.19) 

where, similar to the previous section, 𝑖𝑖𝑡𝑡𝑎𝑎𝑎𝑎 (𝑎𝑎) is a function that returns the evaluated 

tangent angle of the nth pixel of the iris boundary, 𝑖𝑖𝑥𝑥(𝑎𝑎) is a function that returns the 

evaluated x-coordinate of the nth pixel of the iris boundary, 𝑖𝑖𝑦𝑦(𝑎𝑎) is a function that 

returns the evaluated y-coordinate of the nth pixel of the iris boundary.  Additionally, the 

calculated eyelid boundaries are used to limit the iris boundary — i.e., the iris mask 

cannot be above the upper eyelid boundary or vice versa for the lower eyelid boundary.  

Figure 3.10 to Figure 3.12 show the active contour method as applied to the iris. 

 

 
Figure 3.10  The initial estimate of the iris boundary 

 

 
 

Figure 3.11  The optimal path through the normalized radial 
derivative 
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Figure 3.12  The active contour approach applied to the iris 

boundary 

 

 

3.3.8 Creation of the Sclera Mask and Upsampling the Sclera Mask 

Finally, after having refined the upper and lower eyelids and the iris boundaries, 

the detected sclera region is segmented. The mask of the segmentation result is 

upsampled back to the original images size using a simple interpolation method. 

 

 Figure 3.13 shows an example of a segmented sclera image — note that there are 

some areas which are not perfectly segmented.  In reality, perfect segmentation of all 

images is impossible.  Therefore, in this research we focused on designing the feature 

extraction and matching portions of the system so that they are tolerant of segmentation 

error. 

 

 
Figure 3.13  A segmented sclera image
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3.4  Sclera Segmentation Results 

 Manual examination of the segmentation results from the UBIRIS database show 

that 110 images out of 1749 images (6.3% of the images) had noticeable segmentation 

errors.  However for the segmentation results to significantly affect the matching results, 

very little of the sclera region must be segmented.  There were less than 10 images that 

had segmentation errors where a significant portion of the sclera region was not included 

in the segmentation region and the matching results would be affected.  Some 

representative results from the sclera segmentation system are presented below.  In each 

image the area detected as sclera is artificially colored red, and the non-sclera regions are 

colored green, for ease of viewing.   

 

 First, some example well-segmented sclera images are presented in Figure 3.14.  

As described previously in the sclera segmentation system outline, the system aims to 

produce accurate segmentation results, but borders on under segmenting the sclera 

region.  In Figure 3.15, some example poorly segmented images are presented.  In 

particular, note that a majority of the mis-segmented images are problematic near the 

lower eyelid boundary.  As mentioned previously, the lower eyelid boundary tends to be 

very difficult to segment due to a similar color between the eyelid and the very vascular 

sclera region and the level of ‘texture’ that the large amount of vasculature introduces.  

Additionally, there are several images where there are areas that are defined as sclera that 

should obviously not be — isolated areas, areas above the pupil, etc.   
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Figure 3.14  Well segmented sclera regions 

 

 
Figure 3.15  Poorly segmented sclera regions 

 

 For the left-most image in Figure 3.15, the lower left eyelid boundary was 

incorrectly segmented — most likely due to the small color differences between the 

sclera and skin near the lower eyelid boundary.  This particular issue is further covered in 

Section 3.4.1.  For the middle image in Figure 3.15, an isolated region non-sclera region 

was incorrectly segmented as sclera, due to incorrect initial sclera region estimation.  

Finally, for the right-most image in Figure 3.15, the sclera boundary was over-segmented 

due to a combination of some error in the initial sclera region estimation coupled with the 
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active contour following the strongest edge in the region, a vein rather than the lower 

eyelid boundary.  For each of these cases, the sclera segmentation was not ideal, but, as 

one can see, the majority of the sclera region was segmented.   

 

 In each of the above cases, even with the incorrect segmentation, the particular 

images were still able to be identified.  This is accomplished due to the implementation of 

the matching algorithm.  To limit the potential effects of these types of mis-segmented 

regions, the matching algorithm uses the detected vein patterns in the detected sclera 

regions to register the test and target descriptors, but matches are only computed for those 

descriptors in areas that are in common between the two descriptors.  So, for the cases 

where there are erroneous sclera regions selected, the ‘vein patterns’ detected in these 

regions will only potentially affect the matching results if both the test and target 

descriptors both include these mis-segmented images.  This allows for the segmentation 

algorithm to be more generalized and less restrictive, and still not unduly affect the 

overall matching results. 

 

 

3.4.1  Challenging Cases for Sclera Segmentation 

 In this work, the major challenging cases for sclera segmentation were images 

where there was very little sclera region to be segmented and properly segmenting the 

lower eyelid boundary.   Figure 3.16 shows an example image with very little sclera 

region to be segmented.  
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Figure 3.16  An example image with very little sclera region to 

segment 

 

 Figure 3.17 shows an image with a poorly segmented lower eyelid boundary due 

to a small color difference between the sclera and eyelid.  In Figure 3.17, the bottom 

image is a color gradient image, where higher values show larger Euclidean differences 

between that pixel’s RGB color vector and its neighbor pixel’s RGB color vector.  This 

image shows that the color differences between the lower eyelid and sclera are very 

small, due to the low intensity of the pixels in that region in the color gradient image. 
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Figure 3.17  An example image that is difficult to segment due to 

small color differences 

 

 

3.5  Summary 

 In comparison to previous sclera segmentation algorithms, the proposed system 

presents a fully automated sclera segmentation system that can accurately segment the 

sclera region using color images, does not require training, and does not include any 

manual intervention.  It uses a color-based system to estimate the sclera region, and uses 
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this initial estimate to then refine the boundaries adjacent to the sclera (the eyelids and 

iris) using an active contour approach, which has been implemented for any general 

contour.   

 

The experimental results show that the proposed system can accurately segment 

the sclera region.  Manual inspection of the segmentation results of the entire UBIRIS 

database showed that roughly 6% of the images had noticeable segmentation errors.  

However, there were very few (less than 1%) segmentation errors. 
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4.  FEATURE ENHANCEMENT AND EXTRACTION  

 

 

4.1  Review of Image Enhancement Techniques 

 Two general image enhancement techniques that are frequently used to perform 

preliminary image enhancement are contrast stretching and histogram equalization.   

 

 

4.1.1  Contrast Stretching 

Contrast stretching is a linear transformation that increases the dynamic range of 

an image [63].  Typically, this is done such that the lowest intensity value in the input 

image is mapped to an output value of ‘0’, and the highest intensity value in the input 

image is mapped to an output value of ‘1’.  Using this type of simple contrast stretching 

normalizes the range of pixel values, but cannot guarantee consistent results.  Examples 

of cases where this simple type of contrast stretching would be inadequate would be if the 

input image already includes saturated upper and lower pixel values or if there is a small 

outlier saturation region.  Figure 4.1 shows a low contrast image and its histogram.  Note 

how the distribution of pixel values is clustered around 50.  Figure 4.2 shows the low 

contrast image after contrast stretching and its histogram.  The histogram of the contrast 

stretched image is shifted to the right and stretched to encompass the entire range, as 

compared to the original histogram, but it retains the same general shape as the original.  

For this work, simple contrast stretching is not adequate, by itself, for the feature 

enhancement because the features to be enhanced are local, and contrast stretching works 

globally on the image.  However, we used contrast stretching as a preliminary image 

enhancement step before segmentation. 
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Figure 4.1  A low contrast image, and its corresponding histogram 

 

 
Figure 4.2  The low contrast image after contrast stretching, and its 

histogram 

 

 

4.1.2  Histogram Equalization 

 Histogram equalization is an intensity transformation that transforms the 

distribution of the pixels intensity values into a uniform, or nearly uniform, distribution 

[63].  Specifically, this transformation treats the pixel values in the image as a random 

variable, and looks to apply a transformation that transforms the unknown distribution to 

a uniform one.  Figure 4.3 shows the low contrast image after histogram equalization and 

its histogram.  Note that the resultant histogram is much more evenly distributed than the 

original images.  Similarly to contrast stretching, globally applied histogram equalization 

is not adequate for the sclera vein enhancement due to its global operation on the image. 
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Figure 4.3  The low contrast image after histogram equalization, 

and its histogram 

 

 

4.2  Review of Previous Sclera Feature Enhancement and Extraction Techniques 

In [25], Derakhshani et al. first described a vein extraction and enhancement 

technique.  In this work, the authors first enhanced the green colorplane of the image 

using a contrast-limited adaptive histogram equalization technique (CLAHE).  CLAHE is 

a histogram equalization technique that enhances small regions, or ‘tiles’, of the image 

separately and uses bilinear interpolation to limit artificially introduced boundaries 

between adjacent tiles [64].  The authors then use a line and curve detection method, as 

described in [65] to enhance the veins, and then use a region growing approach as 

outlined in [21] to binarize the vein image. 

 

In [27], Derakhshani and Ross also used the CLAHE technique to enhance the 

green colorplane of the sclera images.  For feature extraction, the authors downsampled 

the image to 100x200 pixels, and used the discrete Cohen-Daubechies-Feauveau 9/7 

Wavelet transform (CDF 9/7) to transform the sclera image into the wavelet domain.  The 

authors then used the first 512 wavelet coefficients as the sclera images’ feature vector. 

 

Most recently, in [28], Crihalmeanu et al. also used the CLAHE technique to 

enhance the green colorplane of the sclera image, and used the same line and curve 

detection/enhancement method that was used in the first work. 
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Note that all of these enhancement and extraction schemes proposed specifically 

assume that the sclera vein patterns are one-dimensional and that the vein branch points 

are useful features for matching.  However, as shown earlier, this sclera vein patterns are 

not one dimensional, and in many cases, this choice of features will significantly reduce 

the systems accuracy, in a realistic operational environment. 

 

 

4.3  Proposed Sclera Feature Enhancement and Extraction Method 

 The proposed sclera feature enhancement and extraction method incorporates a 

Gabor filter-based vein enhancement method, and a novel line descriptor to extract and 

describe the vein structure in the presence of noise and deformation. 

 

 

4.3.1  Gabor Filter Vein Enhancement 

Figure 3.13 shows the segmented sclera area, which is highly reflective and hard 

to be accurately focused in the image acquisition process.  As a result, the sclera vascular 

patterns are often blurry and/or have very low contrast. It is important to enhance the 

vascular patterns before feature extraction.  In [66], Daugman shows that the family of 

Gabor filters, which are Gaussian weighted sinusoids, are good approximations of the 

vision processes of the primary human visual cortex. Because the vascular patterns could 

have multiple orientations, in this research, a bank of directional Gabor filters (Figure 

4.4) is used for vascular pattern enhancement:  

where (𝑥𝑥0,𝑦𝑦0) is the center frequency of the filter, 𝑑𝑑 is the variance of the Gaussian, and 

𝜗𝜗 is the angle  of the sinusoidal modulation.  For this work, only the even filter was used 

for feature extraction of the veins.  Experimentally, the even filters response was 

determined to adequately identify the veins, so the odd filter was not used to reduce the 

computational time. 
 

𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜗𝜗, 𝑑𝑑 ) =   𝑒𝑒−𝜋𝜋�
(𝑥𝑥−𝑥𝑥0)2+(𝑦𝑦−𝑦𝑦0)2

𝑑𝑑2 �𝑒𝑒−2𝜋𝜋𝑖𝑖�cos 𝜗𝜗(𝑥𝑥−𝑥𝑥0)+sin 𝜗𝜗(𝑦𝑦−𝑦𝑦0)�, (4.1) 
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Figure 4.4  An example image of a Gabor filter bank with 4 

directions.  The top image is an even filter bank, and the bottom is 
an odd filter bank. 

 

 The image is first filtered with Gabor filters with different orientations and scales: 

𝐼𝐼𝐹𝐹(𝑥𝑥,𝑦𝑦,𝜗𝜗, 𝑑𝑑) =   𝐼𝐼(𝑥𝑥,𝑦𝑦) ∗ 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜗𝜗, 𝑑𝑑)  (4.2) 

where 𝐼𝐼(𝑥𝑥,𝑦𝑦) is the original intensity image, 𝐺𝐺(𝑥𝑥,𝑦𝑦,𝜗𝜗, 𝑑𝑑) is the Gabor filter, 𝐼𝐼𝐹𝐹(𝑥𝑥,𝑦𝑦,𝜗𝜗, 𝑑𝑑) 

is the Gabor filtered image at orientation 𝜃𝜃 and scale 𝑑𝑑.  Both 𝜃𝜃 and 𝑆𝑆 are determined by 

the desired features to be extracted in the database being used.  For example, in the 

UBIRIS database, the typical vein width was around 4 pixels wide, so the filters were 

constructed with a filter bandwidth of 3, 4, and 5 pixels, respectively.  Similarly, it was 

determined experimentally that, for the UBIRIS database, four angular orientations were 

adequate for accurate vein enhancement and extraction.  In a practical system, these 

parameters would be set by examining exemplar data   All the filtered images are fused 

together to generate the vein-boosted image, 𝐹𝐹(𝑥𝑥,𝑦𝑦): 

𝐹𝐹(𝑥𝑥,𝑦𝑦) =   ����𝐼𝐼𝐹𝐹(𝑥𝑥, 𝑦𝑦,𝜗𝜗, 𝑑𝑑)�
2

𝑑𝑑∈𝑆𝑆𝜗𝜗∈𝜃𝜃

  (4.3) 

Figure 4.5 shows the results before and after Gabor enhancement of a sclera vein pattern.  

In Figure 4.5(a), the vein structure in the sclera region is very difficult to see, however, in 

Figure 4.5(b), after Gabor enhancement but before thresholding, the vein structure is 

clearly visible. 
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 An adaptive threshold, based on the distribution of filtered pixel values, is used to 

determine a threshold to binarize the Gabor filtered image, using Eq. 9. 

𝐵𝐵(𝑥𝑥,𝑦𝑦) =

⎩
⎨

⎧
1, 𝐹𝐹(𝑥𝑥,𝑦𝑦) >  argmin

𝑡𝑡
�𝑡𝑡 ���𝑝𝑝𝑒𝑒𝑑𝑑𝑎𝑎𝑒𝑒 (𝑥𝑥) − 𝑇𝑇𝑝𝑝

𝑡𝑡

𝑥𝑥=1

���

0, 𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒

�, (4.4) 

where 𝐵𝐵(𝑥𝑥, 𝑦𝑦) is the binary vein mask image, 𝐹𝐹(𝑥𝑥, 𝑦𝑦) is the vein-boosted image, and 

𝑝𝑝𝑒𝑒𝑑𝑑𝑎𝑎𝑒𝑒 (𝑥𝑥) is the normalized histogram of the non-zero elements of 𝐹𝐹(𝑥𝑥,𝑦𝑦).  In practice, 

the zero elements of the filtered image are a significant portion of the image, and in 

general, the vascular patterns have higher magnitude than the background. Therefore, 𝑇𝑇𝑝𝑝  

is selected to be 1/3. Figure 4.5(c) shows a representative result after thresholding 

 

 
(a) segmented sclera region 

 

 

 
(b) after Gabor enhancement (vein-boosted image) 

Figure 4.5 (a-d)  Vein patterns – before and after Gabor 
enhancement 
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(c) after thresholding (binary vein image) 

 

 

 
(d) after morphological operations (binary vein skeleton) 

Figure 4.5 (a-d)  Continued 

 

Then, small simply connected regions in the binary mask image are removed if 

their volume is below a threshold, as calculated below. 

 

 

Algorithm for adaptive removal of small connected regions: 

• Label the connected binary regions in the veinMask image 
• Sort the veinMask elements in order of increasing region size 
• Calculate the slope of the set of ordered veinMask elements, 𝑣𝑣𝑒𝑒𝑖𝑖𝑎𝑎𝐶𝐶𝑎𝑎𝑑𝑑𝑘𝑘𝑣𝑣𝑒𝑒 

o 𝑑𝑑𝑒𝑒𝑁𝑁𝑝𝑝𝑒𝑒(𝑎𝑎 + 1) = 𝑣𝑣𝑒𝑒𝑖𝑖𝑎𝑎𝐶𝐶𝑎𝑎𝑑𝑑𝑘𝑘𝑣𝑣𝑒𝑒(𝑎𝑎) − 𝑣𝑣𝑒𝑒𝑖𝑖𝑎𝑎𝐶𝐶𝑎𝑎𝑑𝑑𝑘𝑘𝑣𝑣𝑒𝑒(𝑎𝑎 + 1) 
• Calculate the area threshold 

o 𝑑𝑑𝑖𝑖𝑠𝑠𝑒𝑒𝑇𝑇ℎ𝑟𝑟𝑒𝑒𝑑𝑑ℎ =  𝑣𝑣𝑒𝑒𝑖𝑖𝑎𝑎𝐶𝐶𝑎𝑎𝑑𝑑𝑘𝑘𝑣𝑣𝑒𝑒�argmin𝑡𝑡��∑ 𝑑𝑑𝑒𝑒𝑁𝑁𝑝𝑝𝑒𝑒(𝑎𝑎) − .2 ∗𝑡𝑡
𝑎𝑎=1

𝜎𝜎𝑑𝑑𝑒𝑒𝑁𝑁𝑝𝑝𝑒𝑒 (𝑎𝑎)��� 
• Remove elements with size less than calculated size threshold 
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4.3.2  Vascular Pattern Extraction: Line Segment Descriptor 

 Due to physiological status of a person (for example, fatigue or non-fatigue, eye 

irritation, etc.), the vascular patterns could have different thicknesses at different times, 

due to the dilation and constriction of the veins. Therefore, vein thickness is not a stable 

pattern for recognition. In addition, some very thin vascular patterns may not be visible at 

all times or in all situations. In this research, binary morphological operations are used to 

thin the detected vein structure down to a single-pixel wide skeleton, and to remove the 

branch points.  This leaves a set of single-pixel wide lines that represents the vein 

structure.  Figure 4.5(d) shows the vein skeleton after binary morphology.  These lines are 

then recursively parsed into smaller segments.  This is done until the line’s maximum size 

ensures that the line segments are nearly linear, a property that is useful in feature 

extraction.  In this work, the lines were parsed down to a size of 5 pixels.  This small line 

segment size is small enough, in comparison to the matching distance, that the specific 

starting location of the line segment does not pose a significant cause of error for 

matching.  For each segment, a least-squares line is fit to each segment. 

 

 These line segments are then used to create a template for the vein structure.  The 

segments are described by three quantities – the segments angle to some reference angle 

at the pupil center, the segments distance to the pupil center, and the dominant angular 

orientation of the line segment.  The total descriptor for the sclera vein structure is the set 

of all of the individual segments’ descriptors.  Note that this implies that, while each 

segments descriptor is of a fixed length, the overall descriptor for a sclera vein structure 

can vary.  Figure 4.6 shows a visual description of the descriptor. 
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Figure 4.6  The sketch of parameters of segment descriptor 

 

 The descriptor is 𝑆𝑆 =  (𝜃𝜃 𝑟𝑟 ∅)𝑇𝑇 .  The individual components of the line 

descriptor are calculated as: 

𝜃𝜃 = tan−1 �
𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑝𝑝
𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑝𝑝

�,   

𝑟𝑟 = ��𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑝𝑝�
2

+ �𝑥𝑥𝑒𝑒 − 𝑥𝑥𝑝𝑝�
2

,  
(4.5) 

 

and ∅ = tan−1 �
𝑑𝑑
𝑑𝑑𝑥𝑥

𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑒𝑒 (𝑥𝑥)� ,   

Here  𝑖𝑖𝑒𝑒𝑖𝑖𝑎𝑎𝑒𝑒 (𝑥𝑥) is the polynomial approximation of the line segment, (𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) is the center 

point of the line segment, �𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝� is the center of the detected pupil, and 𝑆𝑆 is the line 

descriptor.  Additionally, the pupil center, �𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝�, is stored with all of the individual line 

descriptors. 
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4.4  Sclera Feature Enhancement and Extraction Results 

 

 

4.4.1  Challenging Cases in Sclera Feature Extraction and Enhancement 

 In Figure 4.7, we show an example case where the sclera region is out of focus, 

and therefore the sclera vein pattern cannot be properly and reliably extracted. 

 

 

 

 

 

 
Figure 4.7  An example image with very poor focus that cannot 

properly extract the vein patterns 
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Figure 4.7  Continued 
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 In Figure 4.8 we show an example image with a large area of the sclera that is 

saturated, and therefore cannot extract the sclera patterns. 

 

 
Figure 4.8  An image with a large saturated region in the sclera 
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Figure 4.8  Continued 

 

 

4.5  Summary 

 In this section, a Gabor filter-based method is proposed that can extract the vein 

patterns from the sclera images.  The Gabor enhanced images are thresholded using a 

variable threshold, and the resultant binary image is thinned using morphological 

operations.  Finally, a descriptor is created from the extracted linear vein structure to be 

stored and used for future matching. 

 

 The proposed system can robustly extract the vein pattern from non-ideal-quality 

sclera images.  In comparison to previous sclera vein pattern enhancement and extraction 

techniques, the proposed system is completely automated and does not require any 

training or manual intervention.  Most importantly, the proposed system presents a 

descriptor for the sclera vein pattern that is discriminating and unique, but can also 

describe the vein patterns in the presence of the previously mentioned multi-layered, non-

linear deformation that the sclera vein patterns exhibit. 
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5.  SCLERA MATCHING 

 

 

 The proposed sclera matching method uses a RANSAC-type registration 

algorithm to register the sclera vein descriptors, and the proposed sclera template 

matching method.  The proposed sclera matching method is capable of matching the 

sclera vein patterns even in the presence of noise and deformations. 

 

 

5.1  Review of General Matching Schemes 

 Many matching schemes have been proposed and used for previous biometric and 

pattern recognition applications.  Some historical examples of matching schemes are 

presented, along with justification for their use or disuse. 

 

 

5.1.1  Hamming Distance 

 Hamming distance is a distance measure for binary strings that measures the 

amount of similarity between two strings by measuring the number of bits that must be 

changed to make the two strings equivalent [67].  It is a common distance metric for 

biometrics, for instance Daugman’s iris recognition algorithms.  However, for this work, 

it is not used, because the feature vectors used are not binary. 

 

 

5.1.2  Euclidean Distance 

 Euclidean distance (Eq. 5.1) is the distance between two vectors, and is 

commonly used as a simple metric for how similar two vectors are [68].  In this work, it 

is used as the primary measure of how similar two features are. 
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𝑑𝑑𝑒𝑒𝑢𝑢𝑒𝑒𝑒𝑒𝑖𝑖𝑑𝑑 = ‖𝒙𝒙1 − 𝒙𝒙2‖2 = (𝒙𝒙1 − 𝒙𝒙2)𝑇𝑇(𝒙𝒙1 − 𝒙𝒙2)  (5.1) 

Where 𝑑𝑑𝑒𝑒𝑢𝑢𝑒𝑒𝑒𝑒𝑖𝑖𝑑𝑑  is the Euclidean distance between the vectors, 𝒙𝒙1 and  𝒙𝒙2. 

 

 

5.1.3  Spectral Angle Measure 

 Spectral angle measure (Eq. 5.2) is a commonly used measure of similarity in 

hyperspectral and multiple spectrum imaging that measures the similarity between 

hyperspectral signatures [69].   

𝑆𝑆𝑆𝑆𝐶𝐶(𝒔𝒔, 𝒔𝒔′) = cos−1 � 〈𝒔𝒔,𝒔𝒔′〉
‖𝒔𝒔‖‖𝒔𝒔′‖

�,  (5.2) 

Where 𝒔𝒔 and 𝒔𝒔′ are the spectral signatures of two pixel vectors, 〈𝒔𝒔, 𝒔𝒔′〉 = ∑ 𝑑𝑑𝑒𝑒𝐿𝐿
𝑒𝑒=1 𝑑𝑑𝑒𝑒′, and  

‖𝒔𝒔‖ = [∑ (𝑑𝑑𝑒𝑒)2𝐿𝐿
𝑒𝑒=1 ]

1
2 .  However, since our system does not use multiple spectrum 

information, this measure is not used. 

 

 

5.1.4  Information Distance 

 Information distance, or mutual information, (Eq. 5.3) is a measure of the 

dependence between two random variables [70], and can also be used as a distance metric 

for feature vectors. 

𝐼𝐼(𝑋𝑋;  𝑌𝑌) = 𝐻𝐻(𝑋𝑋) − 𝐻𝐻(𝑋𝑋|𝑌𝑌) = �𝑝𝑝(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑁𝑁𝑎𝑎 �
𝑝𝑝(𝑥𝑥,𝑦𝑦)
𝑝𝑝(𝑥𝑥)𝑝𝑝(𝑦𝑦)�

𝑥𝑥 ,𝑦𝑦

  (5.3) 

Where 𝐼𝐼(𝑋𝑋;  𝑌𝑌) is the mutual information between the two random variables 𝑋𝑋 and 𝑌𝑌 , 

𝐻𝐻(𝑋𝑋) is the entropy of 𝑋𝑋, 𝐻𝐻(𝑋𝑋|𝑌𝑌) is the conditional entropy of 𝑋𝑋 conditioned on 𝑌𝑌, 𝑝𝑝(𝑥𝑥) 

is the probability that the random variable 𝑋𝑋 takes on value 𝑥𝑥, 𝑝𝑝(𝑦𝑦) is the probability that 

the random variable 𝑌𝑌  takes on value y, and 𝑝𝑝(𝑥𝑥, 𝑦𝑦)  is the joint probability that the 

random variables, 𝑋𝑋 and 𝑌𝑌, take on the respective values 𝑥𝑥 and 𝑦𝑦. 
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5.2  Review of Previous Sclera Matching Techniques 

 In [25], Derakhshani et al. propose a multi-level classification system, 

incorporating both coarse and fine level matching algorithms.  They propose to use the 

course matching to choose some subset of the database for more accurate fine level 

matching.  For the coarse matching, they utilized Hu’s affine transformation invariant 

moments as descriptive features for the binarized vein patterns [26].  In particular, they 

utilized the 7th moment as the feature, with a reported classification error of 3.47% of all 

possible matches.  For the fine matching, they propose using a minutiae-based matching 

scheme utilizing the vascular branching points.  They do not describe, in detail, their 

minutiae-based matching algorithm, but report that, with their small database of 6 

subjects, they achieved 100% matching accuracy. 

 

 In [27], Derakhshani and Ross use a single hidden layer feed forward neural 

network for matching.  The neural network had 512 input nodes, 300 hidden nodes, and 

50 output nodes, and used the scaled conjugate gradient algorithm.  Note that this 

network topology is based on the database size (1 output node per user, among other 

considerations), and as such its computation time will increase dramatically as the 

database size is increased. 

 

 In [28], Crihalmeanu et al. report that they used the “cross-correlation between 

regions of the sclera that do not include the specular reflections from both images.”  They 

do not provide any specific information on the particular implementation, and report an 

EER of ~25%. 
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5.3  Proposed Sclera Matching Technique 

 

 

5.3.1  Sclera Template Registration 

 When acquiring the eye images, the eyelids can have different shapes, the iris 

location can vary, the pupil size can be different, and the eye may be tilted with respect to 

the camera. The camera-to-object distance and camera zoom can also vary. All of these 

factors could affect the size, the location, and the observed patterns of the acquired sclera 

region in the image. It is important to take these variances into account in a sclera 

matching algorithm. Therefore, the first step is to perform Sclera region-of-interest, or 

ROI, registration to achieve global translation-, rotation-, and scaling-invariance. In 

addition, due to the complex deformation that can occur in the vein patterns, it is 

desirable to have a registration scheme that is robust and exhaustive, but does not unduly 

introduce false accepts by over-fitting.  Most importantly, as we discussed in Section 1, 

the sclera vascular patterns deform non-linearly with the movement of the eye, eyelids, 

and the contraction/dilation of the pupil. As a result, the segments of the vascular patterns 

could move individually, and this must be accounted for in the registration scheme.  

 

 A new method based on a RANSAC-type algorithm was developed to estimate 

the best-fit parameters for registration between the two sclera vascular pattern 

descriptors.  RANSAC, or random sample consensus, is an iterative model-fitting method 

that can robustly fit to a model, even given noise [71].  To limit potential false accepts 

due to over-fitting, the patterns are registered as a set of points – the centers of the line 

segments that make up the template.  The optimal registration used is the one that 

minimizes the minimum distance between the templates.  This reduces artificially 

introduced false accepts because it does not register the patterns using the same 

parameters used for matching, so the optimal registration and optimal matching can, and 

probably will, be different for templates that should not match.  For the registration 

algorithm, it randomly chooses two points – one from the test template, and one from the 

target template.  It also randomly chooses a scaling factor and a rotation value, based on 
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apriori knowledge of the database.  Practically, these parameters would be determined for 

the specific implementation — expected stand-off distance, capture volume, expected 

user’s motion, etc.  For instance, one could calculate the expected variance of the sclera 

size using the stand-off distance and capture volume.  Using these values, it calculates a 

fitness value for the registration using these parameters.  The two descriptors, 𝑆𝑆𝑥𝑥𝑖𝑖  and  𝑆𝑆𝑦𝑦 , 

are: 

𝑆𝑆𝑥𝑥𝑖𝑖 = �
𝜃𝜃𝑥𝑥𝑖𝑖
𝑟𝑟𝑥𝑥𝑖𝑖
∅𝑥𝑥𝑖𝑖

�  and  𝑆𝑆𝑦𝑦𝑦𝑦 = �
𝜃𝜃𝑦𝑦𝑦𝑦
𝑟𝑟𝑦𝑦𝑦𝑦
∅𝑦𝑦𝑦𝑦

�  (5.4) 

The fitness is calculated using the following equations. 

 

 First, an offset vector, Eq. 5.5, is created using the shift offset and randomly 

determined scale and angular offset values. 

𝜑𝜑0 = �

𝑥𝑥𝑁𝑁
𝑦𝑦𝑁𝑁
𝑑𝑑𝑁𝑁
∅𝑁𝑁

�  (5.5) 

Where: 

𝑥𝑥𝑁𝑁 =  𝑟𝑟𝑥𝑥𝑖𝑖 cos 𝜃𝜃𝑥𝑥𝑖𝑖 − 𝑟𝑟𝑦𝑦𝑦𝑦 cos 𝜃𝜃𝑦𝑦𝑦𝑦  

𝑦𝑦𝑁𝑁 =  𝑟𝑟𝑥𝑥𝑖𝑖 sin 𝜃𝜃𝑥𝑥𝑖𝑖 − 𝑟𝑟𝑦𝑦𝑦𝑦 sin𝜃𝜃𝑦𝑦𝑦𝑦  

 

 
 

The fitness of two descriptors is the minimal summed pairwise distance between the two 

descriptors given some offset vector, 𝜑𝜑0, calculated using Eq. 5.6. 

𝐶𝐶�𝑆𝑆𝑥𝑥 , 𝑆𝑆𝑦𝑦� =   argmin
𝜑𝜑0

𝐶𝐶��𝑆𝑆𝑥𝑥 ,𝑆𝑆𝑦𝑦 ,𝜑𝜑0 �  

 
(5.6) 

where 

𝐶𝐶��𝑆𝑆𝑥𝑥 ,𝑆𝑆𝑦𝑦 ,𝜑𝜑0� = � 𝑚𝑚𝑖𝑖𝑎𝑎𝐶𝐶𝑖𝑖𝑑𝑑𝑡𝑡�𝑖𝑖(𝑆𝑆𝑥𝑥𝑖𝑖 ,𝜑𝜑0),𝑆𝑆𝑦𝑦�
𝑥𝑥𝑖𝑖∈𝑇𝑇𝑒𝑒𝑑𝑑𝑡𝑡

  (5.7) 

Where 𝑖𝑖(𝑆𝑆𝑥𝑥𝑖𝑖 ,𝜑𝜑0) is the function that applies the registration given the offset vector to a 

sclera line descriptor. 
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𝑖𝑖(𝑆𝑆𝑥𝑥𝑖𝑖 ,𝜑𝜑0) =  

⎝

⎜
⎛

cos−1 �
𝑟𝑟𝑥𝑥𝑖𝑖 cos 𝜃𝜃𝑥𝑥𝑖𝑖+𝑥𝑥𝑁𝑁

𝑑𝑑𝑁𝑁𝑟𝑟𝑥𝑥𝑖𝑖
�

𝑟𝑟𝑥𝑥𝑖𝑖 cos 𝜃𝜃𝑥𝑥𝑖𝑖+𝑥𝑥𝑁𝑁
cos(𝜃𝜃𝑥𝑥𝑖𝑖 + ∅𝑁𝑁)

∅𝑥𝑥𝑖𝑖 ⎠

⎟
⎞

  (5.8) 

Finally, the minimum pairwise distance is calculated using: 

𝑚𝑚𝑖𝑖𝑎𝑎𝐶𝐶𝑖𝑖𝑑𝑑𝑡𝑡�𝑆𝑆𝑥𝑥𝑖𝑖 , 𝑆𝑆𝑦𝑦� =  argmin
j

�d�𝑆𝑆𝑥𝑥𝑖𝑖 , 𝑆𝑆𝑦𝑦𝑦𝑦 ��  (5.9) 

With the distance between two points calculated using: 

d�𝑆𝑆𝑥𝑥𝑖𝑖 , 𝑆𝑆𝑦𝑦𝑦𝑦 � = ��xxi − xyj�
2

+ �yxi + yyj�
2
  (5.10) 

where, 𝑇𝑇𝑒𝑒𝑑𝑑𝑡𝑡 is the set of descriptors in the test template, 𝑇𝑇𝑎𝑎𝑟𝑟𝑎𝑎𝑒𝑒𝑡𝑡 is the set of descriptors 

in the target template, (𝑥𝑥𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑥𝑥𝑖𝑖 ) is the first point used for registration, �𝑥𝑥𝑦𝑦𝑦𝑦 ,𝑦𝑦𝑦𝑦𝑦𝑦 � is the 

second point, 𝜑𝜑0  is the set of offset parameter values, 𝑖𝑖(𝑆𝑆𝑥𝑥𝑖𝑖 ,𝜑𝜑0)  is a function that 

modifies the descriptor with the given offset values, 𝑑𝑑 is the scaling factor, and ∅ is the 

rotation value.  The algorithm performs some number of iterations, recording the values  

𝜑𝜑0  for that are minimal in 𝐶𝐶�𝑆𝑆𝑥𝑥 ,𝑆𝑆𝑦𝑦�. 

 

 

5.3.2  Sclera Template Matching 

 As discussed previously, it is important to design the matching algorithm such 

that it is tolerant of segmentation errors.  In general, the edge areas of the sclera may not 

be segmented accurately; therefore the weighting image (Figure 5.1) is created from the 

common regions of the two registered sclera masks — i.e., only regions that are included 

in the segmented sclera regions of both images are used for matching.  Then, the interior 

pixels of the mask are set to 1, pixels within some distance of the boundary of the mask 

to .5, and pixels outside the mask to 0.   

 

 This allows for a matching value between two segments to be between 0 and 1, 

and allows for weighting the matching results based on the segments that are near the 

mask’s boundaries.  This reduces the effect of segmentation errors, in particular for under 

segmentation of the boundary between the sclera and eyelids.  For this work, the width of 
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the boundary of the mask was set to the average width of the lower eyelid boundary in 

the database, in an attempt to reduce the effect of mis-segmented results near this 

boundary. 

 

 
Figure 5.1  The weighting image 

 

 After the templates are registered, each line segment in the test template is 

compared to the line segments in the target template for matches.   

𝑚𝑚�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑦𝑦 � =  

⎩
⎨

⎧
𝑤𝑤(𝑆𝑆𝑖𝑖)𝑤𝑤�𝑆𝑆𝑦𝑦 �,

  𝑑𝑑�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑦𝑦  � ≤ 𝐶𝐶𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 ℎ  
𝑎𝑎𝑎𝑎𝑑𝑑

�∅𝑖𝑖 − ∅𝑦𝑦 � ≤ ∅𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 ℎ
 

0, 𝑒𝑒𝑒𝑒𝑑𝑑𝑒𝑒

�  (5.11) 

where  𝑆𝑆1 and 𝑆𝑆2 are two segment descriptors, 𝑚𝑚(𝑆𝑆1, 𝑆𝑆2) is the matching score between 

segments 𝑆𝑆1 and 𝑆𝑆2 , 𝑑𝑑(𝑆𝑆1,𝑆𝑆2 ) is the Euclidean distance between the segment descriptors 

center points (from Eq. 5.10), 𝐶𝐶𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 ℎ  is the matching distance threshold, and ∅𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 ℎ  is 

the matching angle threshold.  The matching thresholds, 𝐶𝐶𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 ℎ  and ∅𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒 ℎ , were both 

determined empirically to be 5 pixels and 10̊ , respectively.  𝑤𝑤(𝑆𝑆𝑎𝑎) is the weight of the n-

th segment, and is equal to 1, .5, or 0 if 𝑆𝑆𝑎𝑎  is in the white, grey, or black areas of the 

mask, respectively. 

 

 If there is a non-zero matching score, the segments are removed from future 

comparisons (one from the test and one from the target templates), and the matching 

result is recorded.  The total matching score, 𝐶𝐶, is the sum of the individual matching 

scores divided by the maximum matching score for the minimal set between the test and 

target template (Eq. 5.12).  That is, one of the test or target templates has fewer points, 
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and thus, the sum of its descriptors weights sets the maximum score that can be attained.  

This is necessary to normalize the matching scores due to the variation in the number of 

extracted segments in the descriptors.  Specifically, this means that the matching score is 

a measure of the percentage of matches that are possible for the given pair of templates.  

If this were not done, images with eyelid occlusion would automatically receive a lower 

matching score as opposed to those without eyelid occlusion, which is not reasonable for 

any practical biometric system. 

𝐶𝐶 =  
∑ 𝑚𝑚�𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑦𝑦 �(𝑖𝑖 ,𝑦𝑦 )∈𝐶𝐶𝑎𝑎𝑡𝑡𝑒𝑒 ℎ𝑒𝑒𝑑𝑑

𝑚𝑚𝑖𝑖𝑎𝑎�∑ 𝑤𝑤(𝑆𝑆𝑖𝑖),𝑖𝑖∈𝑇𝑇𝑒𝑒𝑑𝑑𝑡𝑡 ∑ 𝑤𝑤�𝑆𝑆𝑦𝑦 �,𝑦𝑦∈𝑇𝑇𝑒𝑒𝑑𝑑𝑡𝑡 �
,  (5.12) 

where 𝐶𝐶𝑎𝑎𝑡𝑡𝑒𝑒ℎ𝑒𝑒𝑑𝑑 is the set of all pairs of matches, 𝑇𝑇𝑒𝑒𝑑𝑑𝑡𝑡 is the set of descriptors in the test 

template, 𝑇𝑇𝑎𝑎𝑟𝑟𝑎𝑎𝑒𝑒𝑡𝑡 is the set of descriptors in the target template. 

 

 The proposed matching scheme allows for a multitude of potential changes in the 

vascular pattern and allows for multiple independent vein patterns to be matched.  

Additionally, it allows for overlapping vein patterns to be matched even as they change 

independently, where matching schemes that retain and use the ‘crossing points’ of the 

patterns could be problematic with this type of deformation.  

 

 

5.4  Sclera Matching Results 

 

 

5.4.1  Example Individual Matching Result 

 An example matching result is shown as Figure 5.2.  This shows two vein 

templates (in blue and red), and matching results in green.  Note that one of the templates 

is artificially and intentionally shifted to allow the matching results to be more easily 

seen.  Additionally, the author acknowledges that this image is somewhat difficult to see, 

due to the small size of the individual segments, but it is retained to show that the entire 

sclera region is matched.  Further examples will show more readable examples showing 

particular sections of the matching. 
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 Figure 5.3 shows the original images used in Figure 5.4, and the segmented and 

enhanced vein patterns (before thresholding or morphological operations).  The images 

(a) and (b) are from the same user, and image (c) is from a different user. 

 

 Figure 5.4 shows two zoomed in matching results — the top matching result is for 

two separate images from the same user (which should match), and the bottom shows 

matching results from two separate images of two separate users (which should not 

match).  In each of the examples in Figure 5.4, the first user’s first image (in red in the 

images) is matched to 2 other images (in blue in the images) — one of which it should 

match to (from the same user), and one that it should not (from a different user).  The 

images in the middle of the figure are blown up for ease of viewing.  The images show 

the two vein patterns, and the green lines indicate where matches were found.  The color 

of the green lines indicates the strength of the match, a more bright tone is a stronger or 

more confident match, and duller tones indicate less strong matches.  As the matching 

results on the right of the image show, the matching results correspond with the ground 

truth of the particular matching results. 
 
 



66 
 

 

  

Fi
gu

re
 5

.2
  E

xa
m

pl
e 

m
at

ch
in

g 
re

su
lts

.  
Th

e 
te

st
 v

ei
n 

pa
tte

rn
s a

re
 in

 re
d,

 th
e 

ta
rg

et
 

pa
tte

rn
s a

re
 b

lu
e,

 a
nd

 th
e 

sh
or

t g
re

en
 li

ne
s i

nd
ic

at
e 

m
at

ch
es

 b
et

w
ee

n 
tw

o 
se

gm
en

ts
. 

 



67 
 

 

 

 

 

(a
) 

 
 

 
 

 
(b

) 
 

 
 

 
 

(c
) 

Fi
gu

re
 5

.3
  T

he
 o

rig
in

al
 im

ag
es

, a
nd

 th
e 

G
ab

or
 e

nh
an

ce
d 

im
ag

es
 u

se
d 

fo
r t

he
 m

at
ch

in
g 

ex
am

pl
e 

in
 F

ig
ur

e 
5.

4.
  T

he
 G

ab
or

 e
nh

an
ce

d 
im

ag
es

 a
re

 p
ai

re
d 

w
ith

 th
e 

or
ig

in
al

 im
ag

es
 

ab
ov

e 
th

em
.  

Fr
om

 le
ft 

to
 ri

gh
t: 

(a
) u

se
r 1

, i
m

ag
e 

1;
 (b

) u
se

r 1
, i

m
ag

e 
4;

 (c
) u

se
r 2

, i
m

ag
e 

1 

 
 

 

 



68 
 

 

 

 

Fi
gu

re
 5

.4
  E

xa
m

pl
e 

m
at

ch
in

g 
re

su
lts

. (
a)

 T
he

 sc
le

ra
 p

at
te

rn
s a

re
 w

el
l m

at
ch

ed
 fr

om
 2

 
im

ag
es

 o
f t

he
 sa

m
e 

pe
rs

on
. (

b)
 T

he
 sc

le
ra

 p
at

te
rn

s a
re

 n
ot

 m
at

ch
ed

 fr
om

 2
 im

ag
es

 o
f 

di
ff

er
en

t p
er

so
ns

.  
Th

e 
re

d 
an

d 
bl

ue
 p

at
te

rn
s a

re
 th

e 
te

st
 a

nd
 ta

rg
et

 u
se

rs
 p

at
te

rn
s, 

an
d 

th
e 

gr
ee

n 
lin

es
 in

di
ca

te
 m

at
ch

es
 fo

un
d.

 

 



69 
 

5.4.2  UBIRIS Database Matching Results 

 The overall matching results were computed for an all-to-all similarity matrix.  

For this work, the first session of the UBIRIS database was used, which includes 1214 

images from 241 users.  The second session of the database was excluded because those 

images were not acquired with sufficient quality to extract the sclera vein patterns.  Using 

the 1205 images (99.26% of the database) that were able to be segmented in the UBIRIS, 

session 1, database there are over 1.4 million cross-comparisons with an equal error rate 

of 3.38% and an ROC error area of 2.04%.  The distribution of genuine and imposter 

matching scores for the UBIRIS-session 1 database is shown in Figure 5.6(a).  Note that 

the genuine and imposter distributions are well separated in general, with the exception of 

a spike in the genuine and imposter distribution at a matching value of 1.  This is due to 

the matching algorithm assigning a matching value of 1 to those matches with less than 

20 matching segments, but with a matching percentage greater than 5%.  This keeps poor 

quality images with very small extracted vein patterns from having arbitrarily high 

matching results. 

 

 Very poor quality images, such as those in the third row of Figure 1.3, tend to 

have very few extracted vein patterns. These images are removed from the ‘image quality 

control’ matching results, by using a threshold 𝑇𝑇 to remove images with a number of 

matching segments less than 𝑇𝑇.  For the UBIRIS database (session 1), sixty six (66) of 

1205 images are removed (5.48% of the total number of images) due to very poor quality 

An example of a specific image that is of such poor quality to be unrecognizable, due to 

very few extracted veins and poor image quality, is shown in Figure 5.5. 
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Figure 5.5  An example image of a poor quality image with few 

extracted veins.  Note that the vein structure was morphologically 
dilated for ease of viewing. 

 

 With the image quality control (by excluding those images with a number of 

matches less than 𝑇𝑇), the calculated equal error rate is reduced to 1.03% and the ROC 

error area to 0.14%.  Figure 5.6(b) shows the genuine and imposter distributions after 

image quality control.  The ROC curves for both the entire database and after image 

quality control is shown in Figure 5.7. 
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(a) 

 

 

 
(b) 

Figure 5.6  (a) The distribution of matching scores for the entire 
database.  (b) The distribution of matching scores for the database, 

after image quality control.   
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 Figure 5.7  The ROC curves for the system.  Note that the y-

axis is scaled from 90-100% for ease of viewing. 

 

 Finally, we give matching results for the entire UBIRIS database.  In this case, 

1732 images were able to be segmented and matched (92.2%), with a calculated EER of 

20.71% and an ROC error area of 16.64%.  Figure 5.8 shows the distribution of matching 

scores for the entire UBIRIS database, and Figure 5.9 shows the ROC curve for the entire 

UBIRIS database.  These results have much lower accuracy than the previously reported 

results and it is primarily due to the fact that the UBIRIS database, session 2, is of very 

poor quality (Figure 1.4 and Figure 1.5).  The second session was specifically intended to 

simulate very poor quality non-compliant image acquisition, and as such, has very poor 

focus, large saturation regions, and other noise.  As mentioned earlier, the UBIRIS 

database was not originally intended to be used for sclera recognition, so much of the 

data, especially the session 2 data, is not of adequate quality for high-confidence sclera 

recognition.  However, noting these issues, the imposter distribution in Figure 5.8 is still 

well clustered, which implies that with better quality data, and perhaps better registration, 

the proposed system could perform with similar accuracy as in the other reported results. 
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Figure 5.8  The distribution of matching scores for the entire 

UBIRIS database 

 

 

 
Figure 5.9  The ROC curve for the entire UBIRIS database 
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 The EER and ROC error area of matching the UBIRIS images from session 1 to 

session 2 are 36.64% and 27.29%, respectively.  Figure 5.10 shows that the imposter 

distribution remains well-clustered as in previous experiments.  However, the average 

matching score for genuine matches is significantly lower (~20%, excluding the peak at 

1%).  Figure 5.11 shows the ROC curve for matching session 1 to session 2 of the 

UBIRIS database.  The EER and ROC error area of matching session 2 to session 2 of the 

UBIRIS database are 17.53% and 23.60%, respectively.  Figure 5.12 shows the 

distributions of matching scores when matching session 2 to session 2, and Figure 5.13 

shows the ROC curve.  When comparing session 2 to session 2, we can see that the 

average genuine matching score (of the lower cluster in the genuine distribution) is 

almost 20 points higher (from ~40% in Figure 5.12 to ~20% in Figure 5.10) as compared 

to matching across the sessions. 

 

 These results demonstrate that the UBIRIS database, session 2, is of very poor 

quality for sclera recognition.  This is not surprising, as the database was not acquired 

with the intention of being used for sclera recognition.  Note, however, that one can see 

that the imposter distribution is very similar even when matching across the sessions.  

This means that, even if the matching results are low, the system will not have an 

arbitrarily high false accept rate, as none of the experiments have any significant imposter 

scores above a threshold of around 20%. 
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Figure 5.10  The distribution of matching scores for session 1 

matched to session 2 of the UBIRIS database 

 

 

 
Figure 5.11  The ROC curve for session 1 matched to session 2 of 

the UBIRIS database 
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Figure 5.12  The distribution of matching scores for session 2 

matched to session 2 of the UBIRIS database 

 

 

 
Figure 5.13  The ROC curve for session 2 matched to session 2 of 

the UBIRIS database 
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5.4.3  Matching Results for IUPUI Multiple Wavelength Database 

 For the IUPUI multi-wavelength database, results are presented for the left eyes.  

For the left eyes, an all-to-all comparison of the left eyes of the users was calculated, with 

a total of 178 images.  Two frontal-gaze images were manually selected from the 525nm 

videos for each user, and manual segmentation was used to segment the sclera region. 

 

 For the left eye case, there was a calculated EER of 4.78%, with an ROC error 

area of 2.49%.  Figure 5.14 shows the distribution of matching scores for the left eye 

case, and Figure 5.15 shows the ROC curve.  These results are somewhat lower than for 

the UBIRIS database, which seems counter-intuitive given that the images were manually 

selected and segmented.  However, due to the more significant noise and focus problems 

inherent in the non-compliant nature of the IUPUI multi-wavelength database, the overall 

quality of the images is less consistent than in the UBIRIS database, which could account 

for the somewhat less accurate results.  Additionally, since the total number of images 

used is much smaller, a few poor quality images have a stronger influence in the overall 

matching results, as compared to the much larger UBIRIS database. 
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Figure 5.14  The distribution of matching scores for the IUPUI 

multi-wavelength database, left eyes only 

 

 

 
Figure 5.15  The ROC curve for the IUPUI multi-wavelength 

database, left eyes only.  Note that the y-axis is scaled from 85-
100% for ease of viewing. 
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5.4.4  Challenging Cases for Sclera Matching 

 For sclera matching, there were three major cases that caused matching difficulty.   

• Images with incorrectly extracted vein patterns 

• Images with very small sclera regions, and similarly few detected veins 

• Images that were not properly registered 

 

 For the first two problems, the issues create difficulties in properly matching all 

extracted veins in the sclera region, and for the last, it creates problems in properly 

matching sclera patterns.   

 

 First, for any images, like those discussed in Section 4.4.1, where the vein pattern 

was not able to be reliably extracted due to poor image quality, the matching results may 

not be consistent due to the inconsistency of the extracted vein patterns. 

 

 In the following images, we present an example of an image with a very small 

sclera region, and a particular matching case where it resulted in an artificially high 

matching score for a matching scenario that should not have matched.  First, in Figure 

5.16 we show the original test image, in Figure 5.17 we show the target image, and in 

Figure 5.18 we show the matching results.  Note that in the matching results, the 

percentage of matching segments is arbitrarily high because of the small sclera region, 

and therefore the small number of extracted and possible segments. 
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Figure 5.16  The test image and the detected sclera veins for the 

small sclera region case 
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Figure 5.17  The target image and the detected sclera veins for the 

small sclera case 
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Figure 5.18  The matching result for the small sclera case 

 

 Lastly, in the following figures we present an example of a pair of images that 

should match, but were not properly registered.  As a result, the images had a low 

matching score that indicated that they should not match, when, in fact, their ground truth 

was that they should match.  In Figure 5.19 we show the test image, in Figure 5.20 we 

show the target image, and in Figure 5.21 we show the matching results.  In this 

particular case, these two images are from the same user, and therefore, should match.  

Due to the mis-registration of the two sclera patterns, the matching score was 7%, 

significantly under a typical matching threshold of 16%, for the UBIRIS database.  In this 

case, the proper registration would have required that the blue descriptor be moved up to 

correspond better with the red pattern.  Most likely, these two patterns’ detected iris 

centers were significantly different, and as such the proper registration was outside of the 

search range for the registration algorithm. 
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Figure 5.19  The test image from the mis-registration example 
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Figure 5.20  The target image from the mis-registration example 
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Figure 5.21  The matching results from the mis-registration 

example 

 

 

5.5  Summary 

 In this section, sclera vein descriptor registration and matching algorithms are 

presented.  The registration algorithm is a RANSAC-type algorithm that searches for the 

optimum set of registration parameters that minimizes the summed pairwise distance 

between the two templates to be registered.  This is the first sclera registration system to 

be presented or proposed that can robustly register the sclera vein patterns even with their 

inherent multi-layered, non-linear deformation.  A matching algorithm is proposed that 

allows for matching in the presence of the same deformation.  Overall, a comprehensive 

system is presented for matching sclera vein patterns acquired under non-compliant 

situations. 

 

 Results for both the UBIRIS and IUPUI multi-wavelength databases are 

presented.  The distribution of matching scores for both databases experimentally 



86 
 

demonstrates that the sclera vein pattern is appropriate for use as a biometric identifier – 

i.e., the matching distributions for imposter and genuine matches are significantly 

separable.  Equal error rates were calculated to be 3.38% for the UBIRIS database, 

session 1, and 4.78% for the IUPUI multi-wavelength database, using left eyes at 525nm 

illumination.  These results are significantly more accurate than previously reported 

results for sclera recognition — for example, 3.38% EER for the proposed system with 

automatic segmentation and a large database compared to ~25% EER with semi-

automated segmentation and a much smaller database.  This is the first work that presents 

the results for sclera recognition using a publicly available database to allow for 

repetition and direct comparison to other methods.  The results, for the largest 

experiment, presented represent over 1.4 million cross-comparisons of sclera images 

which is significantly larger than the largest previous experiment, which included under 

twenty-three thousand total cross-comparisons.   

 

 These results show a significant improvement over the existing state-of-the-art 

sclera recognition matching algorithms, and could make sclera recognition a viable 

alternative for non-compliant recognition applications. 
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6.  COMPARISON TO IRIS RECOGNITION IN VISIBLE WAVELENGTHS 

 

 

6.1  Comparison of Results 

 

 

6.1.1  Comparison with UBIRIS Database 

To give a performance reference for these matching results as compared to other 

biometric modalities using the same database, we compare our results using the proposed 

sclera recognition system to those reported by Proenca and Alexandre in [55] for visible 

wavelength iris recognition.  For their system, the selected 800 images from the UBIRIS 

database (42.6% of the entire database), however, they do not report how they selected 

the 800 images.  They partition the iris into 6 separate regions, encode the individual 

regions using Daugman’s method as outlined in [4], and utilize a score fusion scheme to 

minimize the effect of noise (due to the non-compliant nature of the data).  Table 6.1 

compares equal error rates (EER) and the receiver operating curve (ROC) error area for 

two of their reported methods and the proposed method, to show the validity of sclera 

vein recognition in relation to a more established biometric modality, iris recognition.  

Note, however, that both of these results suppose poor quality data (such as would be 

expected in a non-compliant or surveillance biometric system), an operational 

environment that Daugman’s algorithms were not originally intended or designed to be 

used.  As such, these results are not intended to propose that sclera recognition could 

provide similar results to iris recognition using high quality, near-infrared acquired, and 

compliant iris/eye images.  Table 6.2 shows the False Rejection Rates (FRR) for the 

proposed system at different set False Acceptance Rates (FAR). 
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Table 6.1  Comparison of EER’s for different matching modalities 
and methods on the UBIRIS database 

Modality Method 
# of Images 

Used 

EER 

(%) 

ROC Error 

(%) 

Iris Proenca and Alexandre [55] 800 2.38 1.73 

Iris Daugman [55] 800 3.72 3.21 

Sclera Proposed – without  image quality control 1205 3.38 2.04 

Sclera Proposed – with  image quality control 1139 1.03 0.14 

 

 

Table 6.2  FRR for given FAR’s for the proposed method 

Modality Method 

# 

Images 

Used 

FRR (%),  

FAR=1.0% 

FRR (%),  

FAR=0.1% 

FRR (%),  

FAR=0.01% 

Sclera 
Proposed – without  

image quality control 
1205 4.21 5.89 9.53 

Sclera 
Proposed – with  

image quality control 
1139 1.14 2.72 5.15 

 

 This shows that for low quality, visible light images, sclera recognition can be 

used with comparable matching results to iris recognition technologies.  Additionally, it 

could be used in conjunction with iris recognition, face recognition, or other facial 

biometric modalities to provide higher accuracy and confidence in the matching results. 

 

 

6.1.2  Comparison with IUPUI Multiple Wavelength Database 

 For the IUPUI multi-wavelength database, results were computed using both 

Daugman’s 2-D Gabor [6] and Masek’s Log-Gabor [72] iris recognition systems that 

were programmed in-house using Matlab.  All images were hand selected, and hand 

segmented.  The results for the left eyes with wavelength three (525nm) illumination 

from this database is presented in Table 6.3. 
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Table 6.3  Comparison of proposed method versus iris recognition 
methods for wavelength 3 of the IUPUI multi-wavelength database 

Method 
# Images 

Used 
EER 

FRR (%), 

FAR=1.0% 

FRR (%), 

FAR=0.1% 

FRR (%), 

FAR=0.01% 

Iris - 

Gabor(LogPolar) 
178 8.49 22.83 38.30 50.38 

Iris - 

LogPolar(LogGabor) 
178 13.64 28.11 35.47 47.74 

Sclera - Proposed 178 4.78 9.71 11.43 12.00 

 

 

6.2  Summary 

 To give a comparison of the proposed system to more established biometric 

modalities, the proposed systems results on two databases are compared to iris 

recognition on those same databases.  First, the proposed system is compared to state-of-

the-art visible wavelength iris recognition results using the UBIRIS database, with very 

comparable results.  Second, the proposed system’s results are compared to benchmark 

iris recognition algorithms, Daugman’s 2-D Gabor and Masek’s log-Gabor algorithms, 

using one wavelength of the IUPUI multi-wavelength database.  In comparison to these 

benchmark iris recognition algorithms, the proposed sclera recognition algorithm was 

significantly more accurate. 
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7.  CONCLUSION 

 

 

 In this work, a completely automated system was developed that can accurately 

identify individuals using their sclera vasculature patterns, with potential 

implementations as either a uni-modal configuration or as a multi-modal configuration 

with another biometric modality.  The system can use visible light acquired images — 

which can be acquired at longer distances and in more varied operational environments 

than traditional iris recognition systems.  The system uses a biometric modality, the 

sclera vasculature, which is well-suited to non-compliant situations — it is easily imaged 

in the visible frequencies, is difficult to hide or disguise, is difficult to forge, and is highly 

unique. 

 

 This type of visible light acquired biometric system has the potential to expand 

the operational range of biometric systems in surveillance and non-compliant situations.  

These types of implementations could significantly increase the ability to maintain public 

security while being unobtrusive and user-friendly.   

 

 A new color-based sclera segmentation system was developed that uses a color-

based sclera estimation scheme along with an active contour refinement to segment the 

sclera region.  In addition to being used for sclera recognition, the sclera segmentation 

system could also be used as an intermediary step in color iris segmentation, similar to 

[53], for use in non-compliant iris recognition systems.  Currently, to the authors 

knowledge, this is the only system that can accurately segment the sclera region without 

manual intervention or training. 
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 A Gabor filter based vein enhancement and extraction system was developed, 

along with a novel line descriptor method for vein template generation.  This system can 

robustly enhance the vein structure, and can describe the multi-layered structure of the 

veins in a way that can be identified, even with the complex, layered, non-linear 

deformation that the vein structure undergoes. 

 

 A matching scheme was developed to register and match the developed line 

descriptors.  The registration algorithm can register the line descriptors without over-

fitting (thus limiting the false acceptance rate), while still accommodating the 

aforementioned sclera vein pattern deformations.  Additionally, when compared to the 

existing state-of-the-art implementations of iris recognition algorithms in the visible 

frequencies, the proposed system performed with similar results (3.38% EER for the 

proposed system vs. 2.38% for iris recognition). 

 

 Finally, in comparison to the previous sclera recognition algorithms, the proposed 

method has been tested and verified on a much larger scale — for example, the UBIRIS 

database’s all-to-all comparison results include more than 64 times the total number of 

individual comparisons of the largest similar previous work (~1.4 million to ~23 

thousand).  The proposed system is entirely automated, where all previous works were 

either entirely manual or included very significant manual components or intervention.  

While an exact comparison cannot be provided due to the internal databases used in 

previous works, in comparison to the most recent and most comparable results presented 

in [28] (i.e., the largest database with the least manual intervention), the proposed system 

had an EER of 3.38% without image quality control as compared to the previous 

algorithms reported results of ~25% EER. 

 

 Both the UBIRIS database and the IUPUI multi-wavelength databases were used 

to provide experimental results, which show that the proposed sclera recognition method 

can achieve better results than previous sclera recognition algorithms and comparable 

recognition accuracy to state-of-the-art iris recognition algorithms, with the same visible-
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light, low-quality images. This shows that sclera vein recognition is very promising to be 

used as a primary biometric method in the near future for non-compliant or surveillance 

biometric identification or in parallel with existing primary biometric modalities, namely 

iris and face recognition.  

 

 To the best of the author’s knowledge, this is the first system fully automated 

sclera recognition system.  Lastly, the presented results incorporate much larger 

experiments than previous works, and are the first to provide results for sclera recognition 

using a publicly available database. 

 

 

7.1  Future Works 

 The sclera segmentation algorithm could be refined.  The accuracy of the 

segmentation results could be better, especially around the lower eyelid boundary near 

the tear ducts.  Additionally, it may be useful to have a segmentation algorithm that was 

equally capable on either color or grayscale images to allow for broader implementation 

in existing biometric and surveillance systems. 

 

 The registration algorithm could be improved by incorporating a 3-D model of the 

eye.  Especially when using unconstrained eye images, it is important to have a robust 

and efficient registration algorithm that can account for the 3-dimensional nature of the 

eye.  Currently, the author believes that a possible obstacle to lower EER’s is performing 

more consistent registration of sclera vein templates when acquired at different times, 

with different postures, stand-off distances, etc. 

 

 Algorithms that can create a ‘whole eye’ template from multiple images, or video, 

of the eye at different gaze angles could be developed, and the appropriate changes to the 

registration algorithms to allow matching using them.  The goal of this type of biometric 

modality is to provide non-compliant and unconstrained matching, and to allow this, it 
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might be useful for the system to be able to match an individual with little or no 

constraints on the gaze angle of the eye. 

 

 An algorithm that is able to estimate, and match, the individual constituent veins 

from the template could be developed.  The author believes that the algorithms accuracy 

might be improved if the matching algorithms registered and matched each of the 

constituent veins in the template individually.  Additionally, this may allow the 

deformation of individual vein structures to be used as a biometric identifier for liveness 

tests, fraud detection/prevention, and identification.  Care must be taken to ensure that 

this type of registration/matching does not over-fit the identifier, as both the false-

acceptance rate and the false-rejection rate are important in practical systems. 

 

 Lastly, before any practical deployment of the proposed system, the proposed 

algorithms could be tested on a larger scale – using millions of sclera images, for 

instance.  The scale that would be useful for pre-deployment tests is not practical, either 

from a time or cost standpoint, for an academic work, but it could be useful to debug any 

issues that may exhibit themselves when the proposed system is implemented on a larger 

scale. 
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