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ABSTRACT

Salve, Rima MSECE, Purdue University, August 2014. PV Based Converter with
Integrated Battery Charger for DC Micro-grid Applications. Major Professor: Dr.
Euzeli Cipriano dos Santos.

This thesis presents a converter topology for photovoltaic panels. This topology

minimizes the number of switching devices used thereby reducing power losses that

arise from high frequency switching operations. The control strategy is implemented

using a simple microcontroller that implements the proportional plus integral control.

All the control loops are closed feedback loops hence minimizing error instantaneously

and adjusting efficiently to system variations. The energy management between three

components, namely, the photovoltaic panel, a battery and a DC link for a microgrid

is shown distributed over three modes. These modes are dependent on the irradiance

from the sunlight. All three modes are simulated. The maximum power point tracking

of the system plays a crutial role in this configuration as it is one of the main challenge

tackled by the control system. Various methods of MPPT are discussed and the

Perturb and Observe method is employed and is described in detail. Experimental

results are shown for the maximum power point tracking of this system with a scaled

down version of the panel’s actual capability.
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

The sun has been useful to mankind in more ways than one. Solar energy in it’s

passive form has been made use of for centuries. Later, solar energy was used to heat

water for household purposes. Despite these uses, the use of solar energy that actively

provides usable electricity is a relatively new idea. A few decades ago, the idea of using

solar energy to power homes seemed to be a farfetched thought. But rapid progress

has been made over the past few years in order to make this idea a practical and

viable option [1]. Todays solar photovoltaic power electronics systems have changed

the image of utilizing solar energy, being limited to the drawing board [2]. These

systems can be used over a variety of applications, right from powering a mobile

phone to powering your home. Another important factor that needs consideration is

the cost of installation of this photovoltaic system [3]. It has reduced drastically over

the years. Where a system would have cost in the range of $12 per watt of energy

produced in 1988, it now costs a third of that price in 2013 [4]. Though all of the

above factors that make solar energy seem like an attractive option, there are still

issues concerning the efficiency of the photovoltaic panels.

1.2 The Photovoltaic cell and it’s evolution

The development of photovoltaic or solar cell technology began in 1839 by a French

physicist Antoine-Cesar Becquerel [5]. Becquerel observed the photovoltaic effect

while experimenting with a solid electrode in an electrolyte solution when he saw a

voltage develop when light fell upon the electrode. The first genuine photovoltaic

cell was built around 1883 by Charles Fritts, who used junctions formed by coating
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selenium with an extremely thin layer of gold. This was followed by the first silicon

photovoltaic cell developed by Russell Ohl in 1941, with only a fraction of improve-

ment in efficiency than selenium cells. The beginning of the modern photovoltaic cell

was in 1954 when Bell Laboratories used diffused silicon p-n junction. The electrons

and holes are generated through light at the interface of pn junctions, separated by

the electrical field across the pn junction, and collected through external circuits. In

principle, the single crystalline silicon semiconductor can reach 92% of [6] the the-

oretical attainable energy conversion, with 20% conversion efficiency in commercial

designs [7] [8]. However, because of the considerably high material costs, thin-film

solar cells have been developed to address the product costs. Amorphous silicon is

a candidate for thin-film solar cells because its defect energy level can be controlled

by hydrogenation and the band gap can be reduced so that the light-absorption

efficiency is much higher than crystalline silicon. The problem is that amorphous

silicon tends to be unstable and can lose up to 50% of its efficiency within the first

hundred hours. So, the photovoltaic cell is an all-electrical device, which produces

electrical power when exposed to sunlight and connected to a suitable load. Due to

the absence of moving parts inside the PV module, the wear-and-tear is very low.

This significantly improves the lifetime of the module. Nonetheless, the power gen-

eration capability may be reduced to 75%-80% of nominal value due to ageing [9].

Today, commercial roof products are available that operate at approximately 15%

efficiency. Bridging the gap between single-crystalline silicon and amorphous silicon

is the polycrystalline-silicon film, for which a conversion efficiency of around 18% is

obtained. Compound semiconductors, such as gallium arsenide (GaAs), cadmium

telluride (CdTe), and copper indium gallium selenide (CIGS), receive much attention

because they present direct energy gaps, can be doped to either p-type or n-type, have

band gaps matching the solar spectrum, and have high optical absorbance. These de-

vices have demonstrated single-junction conversion efficiencies of 16%32%. Although

those photovoltaic devices built on silicon or compound semiconductors have been
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achieving high efficiency for practical use, they still require major breakthroughs to

meet the long-term goal of very-low cost [10] [11] [12].

A typical PV module is made up of around 36 or 72 cells connected in series,

encapsulated in a structure made of aluminium and tedlar. A PV array is formed by

connecting multiple cells in series. This configuration benefits from a high voltage of

about 25V to 45V across the terminals. But the weakest cell determines the current

seen at the terminals. This results in a reduction in the available power. As opposed

to the series connection, the parallel connection solves the problem of the weakest

link, but the voltage seen at the output is rather low.

1.3 Power Distribution Systems

1.3.1 Radial System

A traditional power distribution system is characterized by radial topology [13]. In

this system, separate feeders radiate from a single substation and feed the distributors

at one end only. The figure shows a single line diagram of a radial system for d.c.

and a.c. distribution respectively [14]. The radial system is employed only when

power is generated at low voltage and the substation is located at the center of the

load [15]. This is the simplest distribution topology having a low initial cost but

suffers from the following drawbacks [16]. The end of the distributor nearest to

the feeding point will be heavily loaded. The consumers are dependent on a single

feeder and single distributor, hence any fault in the feeder or distributor cuts off

supply to the consumers who are on the side of the fault away from the substation.

Another drawback is that the consumers at the distant end of the distributor would

be subjected to a serious voltage fluctuation when the load on the distributor changes.

As a result, this system is used to short distances only.
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(a) Electrical model with current and voltage defined

(b) Electrical characteristics of PV cell when exposed to a given

amount of sunight

Fig. 1.1. Electrical model and characteristics of a photovoltaic (PV) cell

1.3.2 Ring Main System

Here, the primaries of distribution transformers form a loop. The figure shows

the single line diagram of ring main system for a.c. distribution [15]. This system

has certain advantages like lesser voltage fluctuations at consumers terminals. This

system is also very reliable as each distributor is fed via two feeders. In the event that

a fault occurs on any section of the feeder, the continuity of supply is maintained.
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1.3.3 Interconnected System

In the case where the feeder ring is energised by two or more generating stations

or substations, it is called an inter-connected system [15]. The advantages of this
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system is that it increases the service reliability. It reduces reserve power capacity

and increases efficiency of the system as any area fed from one generating station

during peak load hours can be fed from the other generating station [17].
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Unidirectional power flow systems to supply end loads have now been replaced

by new and complex systems with multiple distributed sources, active functions and

bidirectional power flow capability [18] [19].

1.4 Power Converters in Power Distribution Systems

The contribution of power converters in power distribution systems is still ar-

guable where improving system controllability, reliability, size and efficiency is con-

cerned. Only a small part of the sunlight that reaches the PV system is converted

isot useful electricity due to the inefficiency and failure-prone components used in

most PV systems today [20]. High cost and lower reliability of the power converters

become barriers if power electronics is used as direct, one to one, replacement for

the existing electromechanical equipment. However, if the whole power distribution

system were designed as a system of controllable converters, the overall system cost

and reliability could actually improve [18]. In the past, power electronics converters

have been mostly employed for local power conversion from an infinite source to meet

dynamic energy demands of a specific load. Today, high reliability applications such

as hospitals, datacom centers, and semiconductor industry, has spawned the devel-

opment of super-reliable local power distribution systems with the extended use of

power electronics converters. These systems include multiple primary and secondary

energy sources, several levels of energy storage and back-up, and numerous active

loads, all interfaced through electronic power converters [21]. All of the emerging

alternative and renewable energy sources are interfaced to the existing power systems

through power electronics converters due to their very different dynamic character-

istics. Policy and regulatory initiatives [22] have guaranteed the use of renewable

energy systems from consumer premises to centralized plants, advancing global en-

ergy sustainability and independence. Distributed power generation systems based

on renewable energy sources have been considered by the exponential growth of both

wind turbines and photovoltaic generation systems.
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1.5 Role of Power Electronics in Renewable Energy Systems

About 40 % of the world’s power needs are currently met by electrical energy

and that proportion is expected to rise as countries cut carbon emissions and shift

to renewable energy sources [23]. All the systems and products involved in convert-

ing and controlling the flow of electrical energy comes under the umbrella of power

electronics [24]. In the case of renewable energy systems, a set of various power elec-

tronics components are required in order to convert the energy from one stage into

another stage to the grid. This has to be done with the highest possible efficiency

while maintaining the lowest cost possible and to keep a superior performance. As

Fig. 1.5. Power electronics system with the grid, load/source, power
converter and control

discussed in [9], there are three types of single-phase PV inverters. A general block

diagram is shown below. It consists of PV array, PV inverter, controller and grid. PV

inverters can be central inverters, string inverters or module integrated inverter [25].
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Fig. 1.6. General schematic for single-phase grid connected photovoltaic systems

1.5.1 Central Inverters

On the DC side, the single central inverter is connected to the PV plant (greater

than 10kW) arranged in many parallel strings. These inverters produce high efficiency

and low specific cost. Nonetheless, module mismatching and partial shading condi-

tions give rise to decreased energy yield. The biggest drawback is that the failure of

the central inverter results in the whole PV plant being out of operation.

1.5.2 String Inverters

The arrangement of the PV plant is similar to that of the central inverter. Here,

each of the PV strings is assigned to a designated inverter, the so-called string inverter.

This is highly beneficial when it comes to the maximum power point tracking of each

PV string. This increases the energy yield.

1.5.3 Modulated Integrated Inverters

This system makes use of one inverter for each module. This topology optimizes

the adaptability of the inverter to the PV characteristics as each module has its own

maximum power point tracker. Although this inverter optimizes the energy yield, it

has a lower efficiency than the string inverter.
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1.6 Photovoltaic System Configurations

In order to generate large amounts of electricity, the PV modules are connected

together to form arrays. This array is further connected with system components

such as inverters to convert the DC power produced in to AC electricity for use of

the consumer. This PV inverter for PV systems performs many functions.

• Converts generated DC power into AC power compatible with the utility

• Contains the protective fuctions that monitor grid connections and the PV

source as well as is capable of isolating the PV array if grid problems occur

• Monitors the terminal conditions of the PV module(s) and contains the maxi-

mum power point tracking for maximizing the energy capture

1.7 Literature Review for Single Input Double Output DC-DC Converter

Many applications demand a converter with a bidirectional power flow capability

to handle energy flowing from or to the source. The main focus of this thesis a

converter with a configuration that allows this bidirectional power flow capability.

The major applications of a dc-dc converter is in battery charging/discharging devices,

uninterruptible power supplies, hybrid electric vehicle and renewable energy [26] [27].

1.7.1 Bidirectional multi-level dc-dc converter

In [28], the authors propose a bidirectional multi-level dc-dc power conversion

system with multiple dc sources. In this, the output level can be changed almost

continuously without any magnetic components. One of the major benefits of this

magnetic-less system is that very high temperature operation is possible in comparison

to conventional solutions.
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1.7.2 High Power Current Sensorless Bidirectional 16-Phase Interleaved

DC-DC Converter for Hybrid Vehicle Application

In [29], the authors have proposed a new 16 phase interleaved bidirectional dc/dc

converter is developed featuring smaller input/output filters, faster dynamic response

and lower device stresses than conventional designs, for hybrid vehicle applications.

Here the converter is connected bwtween the ultracapacitor pack and the battery

pack in a multisource energy storage system of a hybrid vehicle. In the case of

multiphase interleaved converters a current control loop in each phase is required to

avoid imbalanced current between phases. This gives rise to increased system cost and

control complexity. This paper proposes operation of the converter in discontinuous

conduction mode (DCM) to minimize imbalancce current and remove current control

loop in each phase.

1.7.3 Bidirectional DC-DC buck converters with single-input double-output

This section will make a comparison between a direct and a proposed solution

in [30]. A conventional single-input single-output dc-dc buck converter comprises of

switch and diode power devices as well as inductive and capacitive elements. The

direct solution for a single-input double-output converter is replicating the conven-

tional arrangement. This implies doubling the number of components with respect

to the single-input single-output converter.

From figure 1.8 it is clear that the direct solution comprises of four switches, and

two inductors.

[31] proposes a single-inductor dual output switching converter topology that is

able to independently regulate two output voltages. Besides making use of only one

inductor, the solution uses four power switches. This is beneficial due to the reduction

of one inductor.

A further improvement is made in [32] where a three switch dc-dc converter with

two outputs is presented.
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The topology that is proposed in [30] is shown in figure 1.9 for both bidirectional

and unidirectional application of single-input double-output dc-dc buck converter. It

can be observed from this that in these circuits, a power switch and diode is eliminated

when compared to the direct solution as shown in Figure 1.8.

1.8 Proposed Bidirectional Converter

This configuration proposes a bidirectional single-input double-output dc-dc con-

verter which uses three power switches along with two low pass filters. This converter

has eight possible switching states as a combination of the three switches. A detailed

explanation of this topology will be given in Chapter 3.
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(a) DC-DC power converter system configuration

(b) topology of the dc-dc converter mod-

ule

Fig. 1.7. DC-DC power conversion system configuration and converter cell topology
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(a) Bidirectional DC-DC buck converter with single-input double-

output

(b) Unidirectional DC-DC buck converter with single-input double-

output

Fig. 1.8. Direct solution for bidirectional and unidirectional dc-dc
buck converter with single-input double-out
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(a) Bidirectional DC-DC buck converter with single-input double-

output

(b) Unidirectional DC-DC buck converter with single-input double-

output

Fig. 1.9. Proposed solution for bidirectional and unidirectional dc-dc
buck converter with single-input double-out
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2. CONTROL STRATEGIES

2.1 Introduction

This chapter will discuss the role of control engineering and its importance in a sys-

tem. Further it will give an overview of the different types of control systems/schemes

and controllers that are commonly used today. A detailed description of the various

methods employed for the control of the PV panel will be given.

2.2 Control Engineering

Control engineering or control systems engineering is the engineering discipline

that applies control theory to design systems with desired behaviour [33]. The goal of

control engineering is to improve, or in some cases enable, the performance of a system

by the addition of sensors, control processors, and actuators. The sensors measure or

sense various signals in the system and the operator commands; the control processors

process the sensed signals and drive the actuators, which affect the behaviour of the

system [34]. Figure 2.1 represents a variety of control systems right from an aircraft

to an industrial process to a large electric power generation and distribution system.

The signals can be transmitted digitally or via analog electrical signals. They can

also be in the form of mechanical linkages or pneumatic lines. A control system can

be of different types. Feedback, feed forward, cascade, open loop control system to

name a few.

2.3 Types of Controllers and Implementation

There are different types of controllers that can be used depending on the appli-

cation [35]. They can vary widely in effectiveness and complexity. Controllers can
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Fig. 2.1. Control System Schematic

be linear or non-linear depending on the type of system they are used to control.

Linear systems are a mathematical model of a system based on the use of a linear

operator [36]. They have one equilibrium point at the origin. Non-linear systems are

those that do not follow the principle of superposition, have multiple isolated equilib-

rium points and may exhibit properties such as limit cycle, bifurcation and chaos [37].

The control processor is responsible for the implementation of the signal processing

algorithm specified by the controller. Commercially available control processors can

be used but are generally restricted to logic control and specific types of control laws.

To implement a wide variety of control laws, general purpose digital signal processing

(DSP) chips are made use of. These chips can implement complex control laws.

2.3.1 Linear Controllers

Linear controllers comprise of the proportional (P), proportional plus integral

(PI), proportional plus derivative (PD) and proportional plus integral plus derivative

(PID). These are the simpler of the linear controllers and find their applications in

many industries [38]. More sophisticated controllers include the linear quadratic regu-



18

lator (LQR), the linear quadratic Gaussian (LQG), and the estimated-state-feedback

controller. This thesis implements the simple linear controllers.

2.3.2 Non Linear Controllers

Many well-developed techniques for analysing nonlinear feedback systems are

available [39]. A few being describing function method, phase plane method, lya-

punov stability analysis and many more [40]. These methods will not be discussed as

the focus of this thesis is on the application of linear controllers.

2.4 Maximum Power Point Tracking Methods

As discussed in Chapter 1, various methods are employed for maximum power

point tracking (MPPT). [41] [42]. These methods range from simply controlling one

parameter, to more complex methods where several parameters are controlled [43] [44].

Every method has certain advantages as well as disadvantages. The most suitable

method for a specific application can be chosen depending on which parameter of the

system can be compromised and which parameter is critical.

2.4.1 Constant Voltage Method

This is the simplest algorithm among the MPPT control methods [45]. The op-

erating point of the PV array is, each nth step, kept near the maximum power point

or MPP by regulating the array voltage and matching it to a fixed reference voltage

VREF equal to the VMMP of the characteristic PV module or another pre-valuated

best voltage value [46]. This method does not provide very accurate tracking.
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YES

NO

NO YES

Fig. 2.2. Constant Voltage Method

2.4.2 Short-Current Pulse Method

This method achieves the maximum power point by giving a reference current

IREF to the power converter controller [47]. In fact, the optimum operating current

for maximum output power is proportional to the short-circuit current ISC under

various conditions of irradiance level S as follows [48].

IREF (S) = k1.ISC(S) ; where k1 is a proportional constant

2.4.3 Open Voltage Method

The Open Voltage (OV) method is based on the observation that the voltage VMPP

is always close to a fixed percentage of the open-circuit voltage VOV . This technique

uses 76 % of VOV as reference value VREF (obtain maximum output power).
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NO
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YES

Fig. 2.3. Short-Current Pulse Method

NO

YESNO

NOYES

YES

Fig. 2.4. Open Voltage Method

2.4.4 Incremental Conductance Method

The Incremental Conductance (IC) algorithm is based on the observation that the

following equation holds at the maximum power point [49] [50]: (dIPV /dVPV )+(IPV /VPV )=0;
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where IPV and VPV are the PV array current and voltage, respectively. When op-

erating point in the P-V plane is to the right of the maximum power point, it is

verified (dIPV /dVPV )+(IPV /VPV ) < 0, whereas when it is to the left of the maxi-

mum power point it is (dIPV /dVPV )+(IPV /VPV ) ≥ 0. The maximum power point

can thus be tracked by comparing the instantaneous conductance IPV /VPV to the

incremental conductance (dIPV /dVPV ). The Incremental Conductance method offers

good performance under rapidly changing atmospheric conditions.

YES

NO YES

NO

NO YES

NO YES YES NO

Fig. 2.5. Incremental Conductance Method

2.4.5 Perturb and Observe Method

The Perturb and Observe (P&O) method is the method used in this proposal

[51] [52] [53]. This method is used as it is the optimum method which is widely

used for maximum power point tracking. The method gets its name from how its

working principle. This algorithm perturbs the voltage of the PV panel and measures

or observes the corresponding power changes. The pertubance in voltage is done by

varying the duty cycle. The aim is to follow the power v/s voltage curve and maintain
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the power at its peak for a given amount of sunlight on the PV panel. If the power

increases, the voltage will be continued to change in the same direction. This goes on

till the power starts to decrease. This indicates that the peak power point has passed

and hence the curve has to be tracked in the opposite direction in order to achieve

the maximum power point once again. Figure 2.6 gives a step by step algorithm.

NO YES

Fig. 2.6. Perturb and Observe Method

1. Measure voltage from the PV panel.

2. Measure current from the PV panel.

3. Find the power by calculating the product of voltage and current.

4. Store this power and compare it with the previous power calculated.

5. If the derivative of this difference is greater than zero, the voltage has to be

increased.

6. If the derivative of this difference is less than zero, the voltage has to be de-

creased.

7. Repeat steps 1 through 6.
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2.5 Inconsistencies In Analysis of Widely Used Control Methods

The Incremental Conductance (IncCond) method is one of the most commonly

used methods for maximum power point tracking. Another method that is widely

used is the Perturb & Observe method, commonly known as the P&O method. It is

interesting to note a few inconsistencies between these two methods. As mentioned

in [54], many papers claim that the P&O method oscillates as steady state. This

issue was said to be resolved in [55] and [56] wherein it is showed that it can be made

to converge at steady state. This issue is not a problem with the standard IncCond

algorithm. Another consistency that is brought to our notice in [54] is in regard to

the needed sensors. [57] states that 4 sensors are needed for the IncCond method,

which is more than that neede for P&O method. This is contradicted in [58] where

it is stated that the same number of variables are measured in both the methods.

Despite all these inconsistencies, it is true that the IncCond method is slightly more

complex than the PO method. This is one of the main reasons for choosing P&O

method for the MPPT in this thesis. A detailed description of the P&O method is

given in Chapter 3.
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3. POWER ELECTRONICS CONVERTER

3.1 Introduction

This chapter provides a detailed explaination of the power electronics converter

used. As mentioned in Chapter 1, this converter is a single-input double-output

converter. It has three power switches and two low pass filters. This reduction in

power devices used, makes a significant impact on the power loss associated with

the switches. The pulse width modulation strategy for each mode is explained for

the control of the duty cycle that resutls in the switching of the power switches.

Further, the modification made to this configuration is explained which is the focus

of this thesis. This configuration works in different modes, the details of which are

explained in detail.

3.2 Bidirectional dc-dc converter

The converter proposed in [30] is a single-input double-output converter. Figure

3.1 shows the circuit diagram of this congifuration.

Fig. 3.1. Proposed bidirectional DC-DC converter



25

There are three switches S1, S2, and Ss. A binary variable is associated with each

switch. This gives a total of eight switching states arising from the combination of

these three switches. Many of these states are forbidden. A prohibited state is one

which creates a situation of either a short circuit or one in which the switches would

have to absorb (or dissipate) the inductive energy instantly. Hence these states are

to be avoided. The switching states are given in 3.1.

Table 3.1
Topological states obtained with the states of the power switches

States q1 q2 qS TS

1 0 0 0 -

2 0 0 1 -

3 0 1 0 -

4 0 1 1 TS-3

5 1 0 0 -

6 1 0 1 TS-1

7 1 1 0 TS-2

8 1 0 1 -

During TS - 1 [see Fig 3.2], the input provides energy to both the loads as well as

to the inductors L1 and L2. In this case both the inductors will be charged.

During TS -2 [see Fig 3.3], the input provides energy to load 1 and current iL2

flows through S2, transferring some of its stored energy to the load 2. In this case,

L1 will be charged and L2 will be discharged.

During TS -3 [see Fig 3.4], the current iL1 flows through Ss and S2, while iL2 flows

through S2 transferring part of its stored energy to loads 1 and 2, respectively. In

this case both the inductors L1 and L2 will be discharged.

Notice from Fig 3.3 that the time related to energy transfer from source to load

1 is always higher than the time related to energy transfer fro source to load 2. This
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Fig. 3.2. TS - 1

Fig. 3.3. TS - 2

Fig. 3.4. TS - 3

being said, it is not possible to charge L2 without charing L1. This gives rise to a

significant implication i.e. output voltage Vo1 ≥ Vo2.



27

3.3 Proposed modification for use of Photovoltaic panel in the configu-

ration

A crutial modification proposed in this configuration is the replacement of the

voltage source Vs with a photovoltaic panel. This modification gives rise to a number

of aspects that need to be monitored and controlled. This thesis will focus on these

control and power aspects that arise due to the inclusion of the photovoltaic panel.

The Figure 3.5 shows the modification to the proposed solution given in [30]. Here the

Fig. 3.5. Proposed modification to the solution given in [30]

input energy is provided by the photovoltaic panel instead of a constant DC voltage

source. The primary aim of this modification is to maximize the energy from the

photovoltaic panel [59] [60] [61] and minimize the energy drawn from the grid. In

this case, a rechargable battery is load 1 and the DC link is load 2. The control

scheme makes sure that the battery voltage is maintained along with a constant DC

link voltage. Since the source of energy is not constant, several modes can be made

in terms of the control aspect in order to achieve the two goals mentioned above.
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The different modes are as follows:

1. Mode 1

• PV supplies energy to the battery and the DC link.

2. Mode 2

• Battery supplies energy to the DC link. PV non-functional.

3. Mode 3

• Grid contributes to energy transferred to the DC link and charging of the

battery. PV non-functional.

3.3.1 Mode 1 - PV to battery and DC link

This mode is as shown in Figure 3.5. Here the converter operates as a buck

converter. This mode operates when the PV is exposed to sunlight and becomes the

source of energy for the charging of the battery as well as supplying energy to the

DC link. This mode will usually be during the day time when maximum sunlight is

available. The aim of the power electronics converter in this mode is to act as a buck

converter that transfers energy from the PV to the battery and DC link.

Pulse Width Modulation

The states of the three switches S1, S2 and Ss are controlled with the help of a

proportional plus integral controller. The pulse width modulation strategy is such

that it prohibits the situation of the forbidden states as listed in Table3.1. The

switching frequency is set at 20kHz. The gating signals for switches S1 and S2 is

directly controlled by the controller. The state of the switch Ss is dependent on the

state of the switches S1 and S2. This is done to avoid the situation of the forbidden

states. A OR gate is used to generate the gating signal for switch Ss. The inputs
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Fig. 3.6. Pulse width modulation strategy for mode 1

to this OR gate is the complement of the gating signal for switch S1 and the direct

output for the gating signal for switch S2. As a result, the states of the three switches

is never same hence avoiding a short circuit.

Control

Two proportional plus integral controllers are used in this mode. One controller is

aimed at the maximum power point tracking of the PV panel. The second controller

is aimed at maintaining a constant voltage across the battery. The maximum power

point tracking of the PV panel is done by the Perturb & Observe Method described

in Chapter 2. This is a closed loop controller.
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It reads the power from the PV panel as an input. The control logic is as explained

for the Perturb & Observe method. This output becomes the input for the pulse width

modulation thereby generating the gating signal for switch S1.

3.3.2 Mode 2 - Battery to DC link

This mode is as shown in Fig the PV panel is not functional. The converter works

as a boost converter. The source of energy is provided by the battery that has been

maintained at a specific voltage during Mode 1 operation. This mode is operational

during low light conditions when the power generated from the PV panel is very low.

The converter in this case works as a boost converter. Figure 3.7 shows the circuit

diagram for Mode 2 operation.
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Fig. 3.7. Mode 2 Circuit Diagram
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Pulse Width modulation

The Pulse Width modulation strategy is same as the one employed in mode 1.

Here also, the three switches have to avoid a short circuit condition thereby all three

cannot be ON at any given point of time. The control aspect varies slightly from

mode 1. This is explained in the next section.

Control

In this mode, there are two closed loop controls.

• Bottom loop

Figure 3.8 shows the control strategy for the capacitor voltage. The output of

this controller is given to the gate signal of switch S2.
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Fig. 3.8. Control loop for switch S2

This loops aims at maintaining a constant voltage across the capacitor Vc. The control

strategy is given in Fig. It comprises of two proportional plus integral controllers.

The first controller compares the capacitor voltage with a set refernce voltage. The

output of the first proportional plus integral controller forms the input to the second

controller. This vaue is compared to the current IDC coming from the battery and

flowing through the inductor. The output of this controller is used for the pulse width

modulation to control the duty cycle by the gating signal of the bottom switch S2.
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• Top loop

Figure 3.9 shows the control strategy for the load voltage. The output of this

controller is given to switch S1. This loop aims at maintaining a voltage across
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Fig. 3.9. Control loop for switch S1

the DC link. This value is set by the user which is usually 45V for DC micro

grid applications. Here there is only one proportional plus integral controller

that has its input as the error signal calculated from the difference of the set

reference voltage and the actual DC link voltage at the micro grid. This signal

generates the pulse width modulation to control the top switch S1.

3.3.3 Mode 3 - Grid to battery

This mode aims at charging the battery in absence of the PV panel. This condition

will arise when the battery is discharged and the light exposure reduces, thereby

making the PV panel non functional. The converter works as a simple buck converter.

Pulse Width Modulation

The pulse width modulation strategy used for this mode is different than the one

used for modes 1 and 2. The top switch S1 is always kept OFF. This keeps the PV
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panel and the capacitor Vc disconnected from the circuit. The states of the switches

S2 and Ss is always complementary in order to avoid the situation of a short circuit.

Control

One proportional plus integral controller is used in this mode. The actual voltage

across the battery is measured and compared with the set voltage at which the battery

is desired to be charged. The output of this controller is then used for the pulse width

modulation as discussed in the previous to modes.
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4. SIMULATION AND EXPERIMENTAL RESULTS

4.1 Introduction

This chapter gives the simulated results for each mode. The circuit digram for each

mode along with the detailed analysis of the simulation results is also given. Further,

the hardware employed for experimental results is described. The experimental results

are analyzed and compared to the simulation results and theoretical expectations in

order to validate the configuration.

4.2 Simulation Results

This section deals with the simulation results for the three modes. Every mode is

discussed individually. All simulations have been done using PSIM Version 9.2 .

It is important to note that for the purpose of simulation, all the components

used are ideal. Also, the pulse width modulation is simulated using comparators

and digital gates. The control logic is implemented with the use of a dynamic link

library block. This control logic is written in C. The use of dynamic link libraries or

DLLs helps promote modularization of code, code reuse, efficient memory usage, and

reduced disk space. Therefore, the operating system and the programs load faster,

run faster, and take less disk space on the computer [62].

The parameter values for the purpose of simulation are as follows:

• L1 = 10mH

• L2 = 5mH

• DC link or microgrid voltage = 45 volts

• Battery reference voltage = 24 volts
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• Capacitance in parallel with the PV panel = 1000uF

• PI gains for MPPT controller : Kp = 2, Ki = 200

• PI gains for battery voltage : Kp = 5.5, Ki = 20

4.2.1 Mode 1 - PV to battery and DC link

This mode involved all three components i.e. the PV, the battery and the load

at the DC link. This mode will be operational during the day time when the PV is

the main source of energy. The aim of this mode is to utilize maximum energy from

the PV in order to charge the battery and also to supply energy to the load at the

DC link. Both these aims need to be fufilled while ensuring maximum power point

tracking of the PV.

In this simulation, a triangular wave input is given to simulate varying sunlight.

The aim of this is to test the control strategy for the maximum power point tracking

as well as to test if the voltage across the battery is maintained at a specified voltage.

Figure 4.1(a) shows the power delivered by the panel for a set of incident light and

temperature parameters. This power is varied within a range of 250W with a trian-

gular input of 1Hz. From Figure 4.1(a) (bottom) it can be verified that the maximum

power output follows the maximum theoretical power output of the PV. This proves

that the maximum power point tracking is achieved for the PV even with varying

input conditions. Further, from Figure 4.1(b) it is seen that the voltage across the

battery is maintained at a constant voltage of 24 volts. Apart from this, the voltage

across the load at the DC link follows the voltage at the output of the PV. Thereby,

all the goals of this mode are met. Another important point to note is the inductor

current. This converter is meant to operate in continuous conduction mode as can be

seen from Figure 4.1(c).
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4.2.2 Mode 2 - Battery to DC link

This mode does not involve the PV. As described in Chapter 3, this mode of

operation will take place when there isn’t enough sunlight available and the battery

will supply energy. Here, the control strategy is such that the capacitor voltage is

controlled, threrby maintaining a specific voltage across the load at the DC link.

From Figure 4.2 it is observed that the voltage at the DC link is maintained at a

constant vaue of 45 volts. Also, the voltage across the capacitor is maintained at 50

volts as specified to the controller. This verifies Mode 2 operation.

4.2.3 Mode 3 - Grid to battery

This mode is in operation when the battery is not charged as well as the PV is

not functional. The aim in this mode is to recharge the battery using the energy from

the grid. From Figure 4.3 it is clear that the voltage across the battery is maintained

at 24 volts. This implies that the control for this mde is working and it is verified.

4.3 Hardware

This section gives the details of the hardware that is used for the experimental set

up. The specifications of every component is described along with how it has been

used for getting the experimental results.

4.3.1 Photovoltaic panel

The photovoltaic panel used is a Goliath 140 Watt solar panel module. This panel

has the following specifications :

• Nominal output voltage = 12 volts

• Operating voltage (Vmp = 17.8 volts)

• Operating current (Imp = 7.87 volts)
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• Open circuit voltage (Voc = 21.7 volts)

• Weight = 28 pounds

• Dimensions = 59 x 28 x 3.2 inches

All these parameters are measured under standard test conditions of 1 sun. This

means the light intensity is equivalent of 1 sun that amounts to 14,000 watts of lamps

placed at a distance of 1 meter from the panel. Light intensity is measure in watts

per square meter and power is measured in watts. For experimental purposes and due

to the restrictions of space in the laboratory, lamps are used to irradiate the panel.

These lamps are equivalent to a tenth of the sun’s energy. They are equivalent to

1400 watts. Hence all values are a tenth of the standard test conditions that are given

in the panel specifications.

4.3.2 Microcontroller

The microcontroller used to implement the control logic is the Microchip dsPIC33F

J64MC802. This is a 28 pin SPDIP chip with 6 analog input pins. MPLAB IDE along

with a C compiler is used for debugging and programming the chip. All the propor-

tional plus integral controllers required in this set up are implemented using Euler’s

method as the digital format is used for computation of the control logic. The chip

reads the appropriate voltage and current values from its analog input pins. The

control logic processes these values and the output is given as the trigger signals for

the three IGBTs. The internal PWM module of the chip is used. Supply to this chip

is gien from the battery to avoid disruption in supply to the chip and thereby , the

entire control system.

4.3.3 IGBT, IGBT Driver & Interfacing Board

The switches employed are IGBTs as shown in Figure 4.5(a). The IGBTdrivers

used in this set up are the CONCEPT 2SC0108T2A0-17 (Figure 4.5(b). An interme-
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diate board is utilized to interface the controller board with the IGBT driver board.

This board is shown in Figure 4.5(c). The purpose of this board is to route the ap-

propriate control signals coming from the main controller board to the correct pins

of the IGBT driver board.

4.3.4 Controller Board

This board has been specially designed for this set up. It houses the microcon-

troller, two current sensors and the voltage regulator and other peripheral compo-

nents. Analog or digital inputs can be given to the microcontroller via this board.

Also, the trigger signal for the IGBTs is also given by this controller board after it

processes the variables according to the logic programmed on the chip. Figure 4.7

shows the assembled board.

4.3.5 Lamps

As the experimental set up is indoors, lamps are used to substitute sunlight. In

this set up four lamps are used summing up to 1400 watts. These are placed at

a distance of 1 meter from the panel to simulate irradiance equivalent to the light

intensity of a tenth of the sun.

4.3.6 Battery

A 12 volt rechargable battery is used. It is the AJC D18S. This battery is used to

supply power to the microcontroller and the two current sensors onboard the controller

board. The voltage is dropped down to a suitabe value by the use of a voltage divider.
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4.3.7 Current Sensors

Two current sensors are used in this set up. One sensor is used to measure the

current output of the PV panel. The second sensor is used to measure the battery

current. The current sensor used is the ACS756 by Allegro Microsystems.

4.3.8 Oscilloscope

A power oscilloscope is used to measure the voltages and currents accurately. The

oscilloscope used here is the DS07014B by Agilent Technologies as shown in Figure

4.9.

4.3.9 Load Resistors

Load resistors capable of high power dissipation are used. This is shown in Figure

4.10.

4.3.10 Capacitor

A capacitor bank is used to include 1000uF of capacitance in the circuit. This

capacitor is connected in parallel to the PV panel.This is shown in Figure 4.11.

4.4 Experimental Results

The experimental results are taken at varying loads of 5Ω, 10Ω and 20Ω. This is

done to test the Maximum Power Point Tracking logic of the controller in Mode 1.

The results of with and without the Maximum Power Point Tracking are compared

to show the advantage of the controller as against its absence.

The Table 4.1 shows the results with and without the MPPT for the different

resistor values.
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Table 4.1
Voltage, Current and Power values for the system with and without
Maximum Power Point Tracking

Load Resistance (Ω) Parameter Without MPPT With MPPT

5 Voltage (V) 3 7.5

Current (A) 0.5 0.45

Power (W) 1.5 3.375

10 Voltage (V) 5 8.5

Current (A) 0.5 0.4

Power (W) 2.5 3.4

20 Voltage (V) 8 13

Current (A) 0.38 0.26

Power (W) 3.04 3.45

From the Table 4.1, it is clear that with the MPPT controller, the power is always

maintained at approximately 3.4 watts. This verifies that the MPPT controller is

working with any varying load. The results given in the table are shown in Figure

4.12. The power is calculated as the product of the voltage (green) and current

(yellow) values.

Another way of testing whether the MPPT controller is functional is to check the

duty cycle of the trigger signal generated by the controller. For different values of

load, this duty cycle changes as per the control logic, but yet maintains the maximum

power output. This is shown in Figure 4.13.
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(a) Maximum Power Point Tracking

(b) Battery and DC link/microgrid voltage

(c) Inductor Current

(d) Power delivered from PV panel to the microgrid and battery

Fig. 4.1. Mode 1 Simulation Results
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(a) Capacitor Voltage

(b) DC link or microgrid voltage

Fig. 4.2. Mode 2 Simulation Results

Fig. 4.3. Mode 3 Simulation Result: Voltage across the Battery
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Fig. 4.4. Photovoltaic Panel

(a) IGBT (b) IGBT Driver

(c) Interfacing Board

Fig. 4.5. IGBT, IGBT Driver and the Interfacing Board
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Fig. 4.6. Battery D18S

Fig. 4.7. Controller Board

Fig. 4.8. Current Sensor ACS756
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Fig. 4.9. Oscilloscope

Fig. 4.10. Load Resistors

Fig. 4.11. Capacitor bank
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(a) 5 Ω

(b) 10 Ω

(c) 20 Ω

Fig. 4.12. Voltage (green) and Current (yellow) readings for 5Ω, 10Ω and 20Ω load.
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(a) 5 Ω

(b) 10 Ω

(c) 20 Ω

Fig. 4.13. Duty Cycle (green) for 5Ω, 10Ω and 20Ω load.
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5. FUTURE WORK, IMPROVEMENTS AND

CONCLUSION

5.1 Future Work

This model for the converter is not fully tested. From the three modes, only Mode

1 is tested for experimental results. Simulation results show that all three modes can

operate to give desired results. These three modes need to be tested individually.

Once this stage gives satisfactory results, all the three modes need to be combined

in order to test the entire system in different irrandiance conditions. Also, various

combinations of situations needs to be simulated in order to test if the system can

switch between modes by itself. This makes it a smart system.

5.2 Improvements

A number of improvements can be made to the current system in order to make

it more user friendly and also to make it a better prototype for testing purposes.

1. Addition of an external display to monitor variables on the microcontroller: This

makes it easier to make changes to certain parameters without disconnecting

the chip from the board and connecting it to a computer.

2. Addition of an external keypad: This would enable the user to change values of

the PI controller gains online and see its resulting changes.

3. Addition of an amplifier on the main controller board: This is a helpful feature

when the irrandiance on the panel is very low and calibration of the correspond-

ing current levels becomes difficult.
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5.3 Conclusion

Renewable energy is growing and gradually, solar power has been entering the

residential market. As stated in [63], since the 1970s, when the first PV system for

a residence was installed, there have been 150,000 PV installations as per industry

experts. Also, federal and state rebates help promote the use of solar power. An

average American hosuehold uses 10,000kilowatts of electricityper year. Residential

photovoltaic systems are groups together to form an array and create about 3kWh

to 10kWh systems. A 5kWh system generates an average of 6,000 kilowatts per

year. With a system as describe in this thesis, the excess energy generated can have

the utility company credit the user if excess energy is generated. More efficient solar

panels are being developed in order to capture maximum energy from the sun. Despite

all these benefits, cos remains the single barrier for homeowners.
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6. SUMMARY

The aim of this thesis is:

• To replace the constant DC source with a photovoltaic panel.

• To implement maximum power point tracking of the photovoltaic panel.

• To simulate the various modes of operation for this configuration under different

irradiance and power demanding situations.

• To design a general purpose board in order to test all the three modes experi-

mentally.

All of these goals have been met and the results are shown and analyzed.
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