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PREFACE

Currently there are no eye gaze tracking systems in automobiles, primarily because

such systems require gaze calibration. This is not very user friendly and commercial

car manufacturers shy away from such a solution. Furthermore there are a lot of other

technical issues such as efficient placement of cameras, camera cost, robust tracking,

feature extraction, excessive head movements of drivers.

As a result, in this thesis we strive to build and design a robust eye gaze tracking

system. Over the course of the research we have examined all the various modules

that comprise of such a system and have addressed a variety of issues to improve the

system robustness to the extent possible.
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ABSTRACT

Rajabather, Harikrishna K. M.S.E.C.E., Purdue University, May 2011. An Adaptive
Eye Gaze Tracking System for Use in an Automobile. Major Professor: Sarah Koskie.

One of the biggest hurdles to the development of an effective driver state monitor

is the that there is no real-time eye-gaze detection. This is primarily due to the

fact that such systems require calibration. In this thesis the various aspects that

comprise an eye gaze tracker are investigated. From that we developed an eye gaze

tracker for automobiles that does not require calibration. We used a monocular

camera system with IR light sources placed in each of the three mirrors. The camera

system created the bright-pupil effect for robust pupil detection and tracking. We

developed an SVM based algorithm for initial eye candidate detection; after that the

eyes were tracked using a hybrid Kalman/Mean-shift algorithm. From the tracked

pupils, various features such as the location of the glints (reflections in the pupil from

the IR light sources) were extracted. This information is then fed into a Generalized

Regression Neural Network (GRNN). The GRNN then maps this information into

one of thirteen gaze regions in the vehicle.
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1. INTRODUCTION

1.1 Background Overview

Currently a lot of research aims to allow the commercialization of autonomous ve-

hicles. This research ranges from control systems for autonomous motion, to sensors,

to Human Machine Interaction (HMI).

HMI research on autonomous vehicles is very important because the driver deter-

mines the success of a commercial autonomous vehicle. If the driver does not have

a pleasant experience he/she will not purchase such a system. Secondly due to the

current state of highway infrastructure these systems will be limited in their abilities,

hence they are called semi-autonomous systems. As a result the driver will have to

be in the control loop of the system and will have to be aware of the road conditions.

Finally, in order to avoid liability, commercial car companies want systems that keep

the driver in the loop and systems that are aware of the driver’s state.

This has lead to a lot of research that seeks to make the HMI experience pleas-

ant, efficient and natural. There is also research on the control algorithms for the

autonomous vehicles to work in a manner that provide a comfortable driving experi-

ence for the driver. However the twin constraints of keeping the driver constantly in

the loop and alerting the driver to the driving situation, while providing the driver

with a pleasant experience makes the development of such systems very hard. This is

because such a HMI system must be aware of the driver’s current status (with respect

to drowsiness, focus on the road, alertness, etc.). Such a system would need some sort

of feedback from a very robust Driver State Monitor (DSM) system. Such a system

should identify drowsiness, eye gaze and other measures of driver state through a

computer vision based system.
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Unfortunately there is currently no robust DSM system that can provide all eye

gaze information. One reason is that eye gaze mapping currently requires calibration.

In this thesis the problem of eliminating calibration for eye gaze mapping is explored.

Background research on existing DSM systems, eye gaze mapping and tracking sys-

tems and computer vision technology are reviewed. From that a robust eye gaze

tracking system is developed.

1.2 Existing Research on Driver State Monitoring

The literature describes many attempts to quantify driver state. There have also

been attempts to develop computer vision based DSM systems. One easily com-

putable driver state metric is the PERCLOS index [1], which is the gold standard for

driver drowsiness prediction. [2], [3] and [4] attempt to quantify face-pose (forward or

not). Furthermore they have developed algorithms that can discern face pose without

prior calibration. [5] investigated the correlation between head pose, head movement

and eye gaze, in particular for lane change.

Most DSM systems in the literature determine face-pose and calculate eye closure

which can be used for drowsiness detection [2], [3] and [6]. [4] developed a stereo

camera system that can perform eye gaze detection in a laboratory setup, but their

system requires extensive prior calibration. Two main reasons that there is no reliable

commercial DSM system that incorporates eye gaze tracking are:

• Calibration: Almost all eye tracking systems perform calibration to make

them accurate. Commercial automotive companies shy away from any solution

that requires calibration.

• Image quality: Gaze calibration requires high definition camera systems.

However with today’s camera costs decreasing, this may not be a problem much

longer.
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1.3 Thesis Overview and Areas of Focus

In order to build a robust gaze tracking system for use in vehicles, the following

topics are of interest:

• Vehicle Regions of Interest: Based on functionality, regions in the car were

identified as being of interest to the HMI.

• Human Facial Anatomy: Unique properties of the human face include spatial

relationships among various facial features, including eyes, nose and mouth, as

well as the anatomy of the human eye and its optical properties. The relation

between gaze, head pose and head movement patterns in an automobile are also

of interest.

• Image Acquisition: Various image acquisition systems were examined, such as

monocular, stereo, multiple camera systems. The minimum resolution required

to extract pupil features was determined through experimentation. Constraints

on locations where these image acquisition systems could be placed were quan-

tified. Finally based on these constraints, the ideal locations to place image

acquisition systems in the simulator (and vehicles in general) were identified.

• Initial Eye Detection: Algorithms to detect initial eye candidates were re-

searched.

• Eye Tracking: Various computer vision tracking techniques were examined in

order to determine the most robust eye tracking algorithm under various head

movements.

• Face Pose: The relation to face pose and gaze was studied.

• Gaze Detection and Calibration: Many different eye gaze techniques and

calibration techniques were studied. From that an algorithm that required no

calibration was developed.
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The next few sections discuss the current state of research in each of the above

mentioned areas of focus. Furthermore the work done in this thesis with respect to

these areas will also be briefly discussed in these sections.

1.3.1 Vehicle Regions of Interest

Early in the research it was found that it is more useful to provide to the HMI

systems a region of interest (ROI) than a coordinate in the 3D space. Furthermore

it became evident that if gaze is classified by ROIs then gaze mapping requires less

accuracy, making calibration easier. The main regions of interest are indicated in

Figure 1.1.

Fig. 1.1. Regions of interest in the car

The ROIs are areas that traditionally provide information about the driving scene

to the driver, for example forward view, the dashboard cluster and the mirrors. From
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subject testing in the simulator it was found that these were also the regions that

drivers tends to look at the most. If the driver was looking at any point other than

those specified in Figure 1.1 then the driver was generally not paying any attention.

The areas indicated in red are the primary ROIs, the areas indicated in blue are

secondary ROIs. Secondary ROIs are regions that are harder to map using the gaze

mapping function.

1.3.2 Human Facial Anatomy

A lot of eye trackers and eye gaze detection systems use the unique features of the

human eye and the human face to improve efficiency, so there is a wealth of research

on how to utilize these features for gaze calibration and detection.

The human eye and the face have many interesting features. [7] talks about the

optical properties of the human eye in great detail. [8] and [4] take advantage of the

bright eye effect for eye tracking. Meanwhile [9] did research on how lighting and

facial orientations affect the intensities of bright eyes. [4] discusses the relationship

between eyes and how this can be used to discern face pose.

[10] developed robust algorithms to extract glints from the human eyes based

the unique intensity patterns of the human eye that allows them to perform such an

operation. [4] also uses this property for initial eye detection. [11] uses the relationship

between the human eye and other facial features to develop a gaze tracking algorithm.

In this thesis, we combine these techniques to design eye detection, tracking, face

pose discerning and gaze mapping algorithms.

1.3.3 Image Acquisition

There are two ways to perform image acquisition. The first way is to use a single

monocular camera, then perform 3D projection during image processing [12]. The

other way is to use a stereo camera. The main difference between these two systems

is that the 3D stereo camera makes it easier to establish the real world coordinates
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of the eye pupil candidates and the resultant gaze mapping functions are easier to

compute. However in vehicles the potential locations where stereo cameras can be

placed are limited.

Apart from the gaze mapping difference, the rest of the eye gaze tracking system is

similar for both techniques. Both these techniques use an even/odd image acquisition

system [8]. The even image induces the bright eye effect in one image and the odd

image leaves the pupil black. The subtraction of these two images make the extraction

of the eye pupil regions easier. Hence the stereo camera system is just an extension

of the monocular camera system when it concerns image processing and eye tracking.

1.3.4 Initial Eye Detection

There has been a lot of past work using geometric constraints of the eye, [13],

[14], [15] and [16]. These researchers use appearance-based methods such as circle

and ellipsoid matching, where a generic eye model is used to sequentially search the

image for eyes. [16] used deformable templates to increase accuracy during sideways

motion. [17], [18] used a Radial Basis Function (RBF) Neural Network (NN) classifier,

but it is trained for the frontal view face image only.

Literature specific to gaze tracking systems points to several downsides to eye

detection techniques that use geometric features of the eye such as length of iris, size

of sclera and other spatial features. These features are not accurate under excessive

head movements, during eye closure, during occlusion and these features are varied

across the population. [19], [20] used State Vector Machines (SVM) to detect the eye,

taking advantage of the unique intensity pattern around the eye to perform pattern

classification.

In this thesis we compare the SVM [19] and K-Nearest Neighbor(KNN) [21] tech-

niques using a variety of training data.
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1.3.5 Eye Tracking

Most eye tracking techniques use brute force methods such as pattern recognition

or template matching from frame to frame [2], [8] and [15]. This is not very efficient

and takes a lot of computational processing time.

The other approach is to use some sort of image tracking technique. [22] used a

Kalman filter [23] to track eye features from frame to frame. [19] used a hybrid of

the Kalman filter and Mean-shift tracking [24] techniques to track eye features from

frame to frame. The Kalman filter helped predict the position of the eye in the next

frame. If the Kalman filter did not work then Mean-shift was used. This technique

speeds up processing and is fairly robust compared to generic tracking algorithms.

However, under quick head movements this technique does not work effectively.

We built and compared various eye tracking techniques. We modified [19]’s algo-

rithm by using a second order dynamic system for the Kalman state equation.

1.3.6 Face Pose

Face pose estimation is important because it is used for gaze calibration and for

providing driver state information, when gaze mapping is not available. There are a

number of techniques that quantify and measure face pose. Face pose can be esti-

mated using model-based techniques, appearance-based techniques or feature-based

techniques. Model-based approaches typically recover the face pose by recreating the

3D face model [25] and [4]. Appearance-based techniques use view-interpolation to

try to create a relationship between face appearance and orientation [26]. According

to [4], appearance-based techniques are less accurate than model-based techniques

because appearance-based techniques use pattern recognition from a set of sample

images to interpolate gaze. Feature-based approaches determine face pose using a

subset of facial features. A lot of feature-based techniques use the Viola-Jones tech-

nique [27]. The following correlations were established between 3D face pose and the

properties of pupils [4]:
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• The distances between pupils decrease as the pupils rotate away from the frontal

orientation.

• The ratio of the pupil intensities is approximately 1 when the face pose is

frontal. This increases or decreases as the pupils rotate away from the frontal

orientation.

• The size of the pupil decreases as it rotates away or as the head moves vertically

up or down.

In our thesis we incorporated some of the work done by [4] to perform simple face

pose estimation.

1.3.7 Eye Gaze Detection and Calibration

There has been a lot of work surrounding eye-gaze tracking and eye-gaze mapping

for general HMI. However little work has been done on eye gaze trackers for use in

automobiles. [4] developed a DSM system that included eye gaze detection; however,

this technique required calibration. [28] gives an overview of eye-gaze tracking and

the most common techniques used today.

The most common eye tracking techniques are either 2-D mapping based gaze

estimation techniques (see [4], [11], [29] and [30]) or 3-D gaze estimation techniques

(see [12], [31] and [32]). Calibration for most of these techniques involves looking at

predefined points in the real world space.
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2. ANATOMY OF THE HUMAN EYE AND FACE

2.1 Introduction

Unique characteristics of the human eye include the intensity patterns of the

eyes [19], the structural relationships between the eyes and nose [33], [34] and the

optical properties of human eyes [35]. This chapter discusses unique properties of the

human face, the anatomy of the human eye, its optical properties, how it reacts under

infra-red (IR) light, and finally how computer vision can be used to take advantage

of these properties.

2.2 Anatomy of the Human Eye

Fig. 2.1. Anatomy of the Human Eye

Figure 2.1 shows the anatomy of the human eye and its optical properties. The

eye ball is made up of two spheres [35]. The smaller segment called the anterior is

transparent and constitutes one-sixth of the volume of the eyeball. Its radius is about

8 mm. The larger segment, is called the posterior, is opaque and forms five-sixths of

the volume of the eye ball. Its radius is about 12 mm.
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The anterior pole of the eye is the center of curvature of the transparent segment

or cornea. The posterior pole is the center of the posterior curvature of the eyeball.

The optic axis is defined as a line connecting these two poles, as shown in Figure 2.1.

The fovea is the center of the retina. This is the region that has very high color

sensitivity. The eye ball orients itself so that the light from the object it is currently

viewing falls on the fovea. The visual axis is the line connecting the object being

viewed to the center of the fovea. This axis goes through Ocornea, the eye’s nodal

point, as shown in Figure 2.1. The fovea is located slightly away from the anterior

pole, thus the optical and visual axes meet at the point of intersection (Ocornea),

making an angle κ between them. This angle should be the same for both eyes and

is approximately 5o [12], [35].

It is important to note that the optical axis will not be measured. Instead the

papillary axis, which connects the center of the pupil with Ocornea, will be measured.

This axis is very close to the optical axis and can be used to approximate the optical

axis [12].

2.2.1 Glint Formation

When light passes through the eye, the boundary of the cornea acts like a reflective

surface. Therefore, if a light source is placed in front of the eye, the reflection from

the external surface of the cornea is captured as a very bright spot in the eye image

as shown in Figure 2.2. This is also known as the glint.

Fig. 2.2. Glints in the Eye



11

To better understand the orgin of the glint, the optical properties of the human

eye need to be discussed. The cornea can be modeled as a convex mirror with radius

R. The focal point is F , and the center of curvature, Ocornea (also center of the

cornea), is shown in Figure 2.3. If a light source is placed in front of the eye, the

cornea will produce a virtual image of the light source.

Fig. 2.3. Formation of the virtual image

The virtual image is the imaginary location from which the light diverges. Thus

the glints seen in Figure 2.2 are the virtual images of the light source. The reflection

law of convex mirrors establishes that the virtual light position (behind the cornea) is

determined only by the location of the mirrors and the actual position of the lights.

Hence it is independent of the observer.

The importance of the glints is that they help estimate the location of the Ocornea

which determines the papillary axis. From that we can estimate the visual axis.

Bright Eye Effect

The bright eye effect shown in Figure 2.4 is created when the eye is illuminated

by an IR source emitting light along the camera’s optical axis [19]. At the near IR
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wavelength, pupils reflect almost all IR light they receive along the same path. Since

this path is parallel to the camera’s optical axis, the camera captures the bulk of the

light, if the light source is placed very close to the camera as in Figure 3.5 producing

the bright eye effect.

Fig. 2.4. Bright-eyes effect

2.3 Effect of IR Light on Human Eyes

IR light is below the visual spectrum for the human eye, hence it does not cause

discomfort to the driver. Furthermore, we can block visual light using an IR bandpass

filter, making image processing and feature extraction much easier.

The more important effect of IR light on human eyes is that under IR illumination

the iris has an unique intensity pattern. Thus regardless of the color of the iris,

eyes have a similar intensity under IR light. This helps with feature extraction.

Figure 2.5(a) shows an eye under IR illumination while Figure 2.5(b) shows an eye

under visible light.



13

(a) Eye pattern under IR illu-

mination

(b) Eye pattern under visible

light illumination

Fig. 2.5. Eyes under IR and visible light illuminations
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3. SYSTEM OVERVIEW

3.1 Introduction

This chapter gives an overview of the software and hardware models and how the

various sections are related to each other. The adaptive eye gaze tracking software

system consists of three major parts: the pattern recognition module that extracts the

eye features, the eye tracking module, and finally the gaze mapping module (which

consists of the calibration and mapping). The hardware system consists of the camera

for image capture, the LEDs for gaze mapping and the embedded system module.

3.2 Software Model Overview

As seen in Figure 3.1 the system performs software initialization upon start up.

Once the software is initialized, it calls the pattern recognition module. In this module

the system scans each frame for potential eye candidates. Once at least a positive

eye candidate is identified we initialize the tracker.

The tracker initializes the hybrid Kalman/mean-shift algorithm. Details about

the eye and its position relative to other facial features are taken into account. If

both the eye candidates are found then the tracker tries to figure out which is the left

eye and which is the right eye. Once the tracking module is initialized the system

moves to the next phase. It is important to note that the system will not return to

the pattern recognition and tracker initialization modules unless it loses track of both

the eye candidates.

The eye tracking module consists of the eye tracker algorithm and also the robust

feature extraction algorithm. The eye tracker tracks the eye candidates from frame

to frame. In the meantime the feature extractor uses a robust technique to get the
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Fig. 3.1. Software System Overview

locations of the pupil centers, the velocity and acceleration of the eyes, the iris radii,

and the X/Y locations of all the gli nts in the pupils. The Eye Tracker outputs one
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region within which the pupil of a particular eye could potentially be, and this region

is passed to the feature extractor. If both eyes are being tracked then the left eye will

be used as the primary eye for gaze mapping, else the right eye will be used.

If only one eye is tracked then after extracting the features and mapping the

gaze using that eye, a quick eye detection technique is used to find the second eye.

Furthermore this eye detection technique also updates the locations of other facial

features such as the nose and mouth as in [33].

The gaze mapping system has two parts: the calibration module and the mapping

module. The calibration is done only once each time the system is activated. During

calibration, gaze mapping is not performed, although face pose information can still

be used to discern driver state information. Once the system is calibrated, gaze

mapping commences. The eye tracker module passes glint positions, pupil positions

and the papillary diameter to the gaze mapping module. Based on this information

the gaze mapper can provide the real world Cartesian coordinates (X,Y,Z) of where

the driver is looking. This information is matched with one of the ROIs.

3.2.1 Key System Requirements

The key requirements for the system are listed below:

• Real-Time performance: The system has to be real-time. Hence the need to

make sure that the image processing is efficient. The system currently processes

30 Frames Per Second (Fps) and the size of the frame is 1200×720 pixels.

• Robustness: The system has to be robust; it has to work with large head

movements, extreme poses, and eye region occlusion.

• Accuracy: As described in the introduction, this system does not have to be

as accurate as gaze mapping systems for other purposes; however, it has to

correctly identify the ROI in the vehicle.
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• Modularity: The eye tracker and gaze calibration systems are modular in

software design to allow the easy switch between 2D and 3D gaze mapping.

Furthermore the gaze mapper can be easily integrated with other DSM (Driver

State Monitor) modules such as eye closure and distraction meters.

• No need for Prior Calibration: This is the most important feature which

has been implemented. The biggest hurdle to commercial implementation of

Eye Gaze Trackers is the requirement for calibration.

3.2.2 Integration with other Vehicle Systems

This system can easily be integrated with other vehicular systems via the Con-

troller Area Network (CAN). Supervisory control and the lane centering systems

would benefit the most from this eye gaze tracker. Table 3.1 below shows the infor-

mation this system will provide periodically over CAN.

Table 3.1
Data Provided by Eye Gaze Tracker

# Data

1 ROI viewed by Driver

2 Eyes currently tracked

3 Face Pose Direction

4 Eye Closure Data

It is important to note that it is easy to add other DSM modules to the eye gaze

tracking system and create a complete DSM system, which would provide and inform

the vehicle the driver’s status with respect to driver state.
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3.3 Hardware Model Overview

The camera model (for 3D stereo vision, two cameras using the same configuration

are used) is based on the work done by [8] and [19]. This model allows the creation

of bright and dark eye images as shown in Figure 3.2. The ability to create even and

odd image alternatively reduces image processing complexity and makes the system

more accurate.

(a) Odd Image (b) Even Image

Fig. 3.2. Even/Odd Image

Morimoto’s design shown in Figure 3.3, involved two rings of LEDs [8]. When the

outer layer is lit up it creates the odd image. When the inner layer is lit up it creates

the even image. The inner layer of LEDs is aligned with the Z-axis of the camera.

As a result the pupil reflects the light back directly to the camera creating the bright

pupil effect.

Fig. 3.3. Morimoto’s Camera Design
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3.3.1 Camera Circuit Design

The setup used in this research is slightly different as seen in Figure 3.4. In

Morimoto’s design the outer ring of LEDs was used to light up the face. However,

the design implemented in this research does not utilize the outer ring, instead LEDs

are placed at strategic locations around the vehicle. The placement of the LED’s in

different locations also help with gaze calibration. This is similar to the method of

by [36], who placed four sets of LEDs at the corners of a target area and then used

the glints from the LEDs to help with eye gaze detection. The experimental hardware

system is shown in Figure 3.4 below. Figure 3.5 below shows the camera in greater

detail.

Fig. 3.4. Lab test bed with external LEDs

The four red circles in Figure 3.4 represent the camera, embedded hardware system

to control the even/odd oscillations and the two reference LEDs that are used for gaze

mapping. Circles 1 and 3 represent LEDs; circle 2 is the camera system; Circle 4 is the

hardware that communicates serially with the software system, via an opto-coupler

that turns the LED’s around the camera on and off to create the even/odd image

sequence.



20

Fig. 3.5. Camera Used in Research

If a 3D stereo-vision system is used, making gaze mapping easier, but restricting

areas where the cameras can be placed in the vehicle, both cameras have to have the

circuit set up as shown if Figure 3.5. This will enable both the camera systems to

observe the bright pupil effect.

The LEDs used have an IR-wavelength of 860nm. [8] suggested using different

wavelength LEDs to enhance different types of glints. As a result different LEDs

ranging from 750nm to 920nm were tested. However no difference in pixel intensity

or pattern was observed.

3.3.2 Camera and LED Placement in Vehicle

LEDs were placed on each of the three mirrors in the vehicle. In the test-bed the

LEDs were in the center of the mirrors as shown in Figure 3.6. This location was

found to give the most accurate results. In the simulator, LEDs were placed in each

of the three mirrors as shown in Figures 3.7 to 3.9

Fig. 3.6. Ideal placement of LEDs in the mirrors
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Fig. 3.7. LEDs on the driver side mirror

Fig. 3.8. LEDs on the passenger side mirror

Fig. 3.9. LEDs on the rear view mirror

Placement of the camera is tricky. The most important constraints to consider

when placing the camera in the vehicle are:

• Camera should ALWAYS be positioned below the driver’s head: This

is done to reduce occlusion. We noticed that if the camera is placed above the

driver’s head then eyelashes greatly obstruct the view of the eye. In addition,

if the driver is looking down the eye will not be seen. Figure 3.10 shows where

the camera should be placed with respect to the human head. The Z-axis of the
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camera should ideally make an incident angle of θ = 30o with the X/Y plane of

the human head.

Fig. 3.10. Angle between the Z-axis of the camera and the X/Y Plane
of the human head. Ideally θ = 30o

• Camera should be far enough from the eye to allow for the bright eye

effect to work: This point is relevant to the image acquisition system used in

this research, which uses the bright eye effect to extract the eyes. Sometimes if

the driver is too close to the camera system, then the bright eye effect does not

work very well because some LEDs take a longer time to diffuse the IR light

waves until they are traveling parallel to the Z-axis of the camera.

• Camera should be able to capture full length of driver’s lateral head

movement: The driver’s movements are restricted in a car due to seating

arrangements. The maximum sideways movement of the human head can be

quantified. The camera should have a wide angle lens (or be positioned far

enough from the eyes) to take advantage of this.

• Camera should be able to track at least one eye for all the ROI’s: For

every ROI in the vehicle at least one of the eyes should be visible to the camera

when the driver is looking at that particular ROI.
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• Minimize occlusion from hands and steering wheel: The camera must be

placed in an area where the hands cannot block its view. If this is not possible

then at least interference must be minimized, and quantified.

• Stereo Camera Constraint: The stereo cameras must be parallel to each

other in order to have a good solution. This adds a further constraint on where

they can be placed.

Figure 3.11 shows camera locations in the simulator that satisfy the constraints

above. The advantages and disadvantages of each of these positions are as follows:

• Location 1: Entertainment console

Advantages: All ROIs can be viewed, minimum interference from hands

Disadvantages: Interference from hands on rare occasions, no stereo camera

implementation

• Location 2: Far side of the vehicle dash

Advantages: All ROIs can be viewed, no interference from hands, can be used

for stereo camera solution

Disadvantages: If the driver is too short their face may not be visible very well

• Location 3: Dashboard cluster

Advantages: All ROIs can be viewed, driver is always visible, can be used for

stereo camera solution

Disadvantages: Lots of interference from hands, dashboard cluster is usually

a priority for other HMI indicators

• Location 4: On top of dashboard cluster

Advantages: Good frontal and upward view, Minimum interference from
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hands, can be used for stereo camera solution

Disadvantages: No downward view for short people, interference from hands

on rare occasions

• Location 5: Two cameras on the side frames (multiple view solution)

Advantages: All ROI can be viewed, no interference from hands

Disadvantages: Multiple cameras add computational complexity

Fig. 3.11. Potential locations to place the camera in the simulator
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4. IMAGE PROCESSING

The main objective of image processing in this research is to make it easier to highlight

the eye regions and extract other features. This chapter covers the initial set of image

processing techniques performed on the image frames after they are acquired from

the image acquisition system.

4.1 Overview

Figure 4.1 is the image processing state diagram, it can be seen that image pro-

cessing is performed sequentially. Initially the even and odd images are extracted,

then the odd image is subtracted from the even image. The odd, even, and subtracted

images are shown in Figure 4.2. The subtracted image goes through a morphological

operation called top-hat, which brings out the bright eye regions in the image frame.

Next the image is thresholded. The thresholding operation is followed by a rectangu-

lar dilation operation creating a binary image with blobs. These blobs can be used

as masks for eye tracking or as input regions for eye detection.

4.1.1 Image Subtraction and Top-hat Morphology

After the odd image is subtracted from the even image, the subtracted image,

shown in Figure 4.2(c), displays the bright pupil region, making it stand out com-

pared to the rest of the face. The subtraction operation also reduces background noise

reducing the need for further image processing to clean up the image. So [8] and [19]

directly performed adaptive thresholding on the subtracted image to extract the bi-

nary image with blobs. In general, adaptive thresholding is sufficient but in the rare

case the bright eye effect is not sufficiently prominent, the resulting subtracted image
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Fig. 4.1. Eye region extraction maximization

will not have a distinct bright white region. Hence a top-hat morphology operation

is employed with a cross-shaped kernel of size 10x10 pixels. Top-hat morphology is

a image processing technique that enhances regions that are brighter than their sur-

rounding regions. Figure 4.3 shows the image after passing through the morphology

top-hat operation.
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(a) Odd Image (b) Even Image

(c) Subtracted Image

Fig. 4.2. Even/Odd and Subtracted Image

Fig. 4.3. Eye region after extraction maximization using the top-hat operation

The main drawback with the top-hat operation is that even relatively dark regions

will get brighter if their surrounding regions are even darker. Hence the image must

be thresholded to reduce noise and to convert it to a binary image.

4.1.2 Thresholding and Dilation

The morphed image is thresholded in order to create a binary image that will

contain the eye blobs (along with a few other similar looking blobs). After dilation

this image can be used as a mask for eye tracking or for eye detection. Another reason
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to threshold the image is to eliminate noise, especially noise pixels generated by the

top-hat operation. The thresholded image for Figure 4.3 is shown in Figure 4.4.

Fig. 4.4. Thresholded Image

The thresholded image then goes through a dilation operation. This operation

uses a square kernel of size 10x10 pixels. Blob regions that are equal to or greater

than the kernel size are grouped in a rectangle, while smaller regions are ignored as

shown in Figure 4.5.

Fig. 4.5. Final Dilated blob Image

4.2 Summary

The techniques employed above highlight the eye regions used for eye detection

and tracking. They are very reliable and robust under most conditions. Thus they

provide an effective eye gaze detection system.

It is important to note that this procedure is performed on all image frames, hence

it takes the bulk of the computational processing time. There are numerous ways to

reduce this processing time. Examples include performing background subtraction

and decreasing the resolution.
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5. INITIAL EYE DETECTION

5.1 Introduction

Initial eye detection is very important in any eye tracking system. It is important

not only for initializing the system by getting the initial eye candidates, but also to

obtain new candidates if the tracker loses track of the eyes. This algorithm has to be

robust enough that if the image processing module provides a positive eye candidate,

the module should be able to identify it as an eye despite variation in head pose or

partial occlusion of the eyes.

We replicated the State Vector Machine (SVM) based model of [19] and compared

their approach with a baseline pattern recognition technique called the K-Nearest

Neighbor (KNN) approach. Input data was collected from a variety of candidates,

under various face poses and occlusions.

5.2 State Vector Machines

SVM [20] is a classification technique meant to distinguish between just two

groups. Input vectors that are not linearly separable are non-linearly mapped to

a higher-dimensional feature space. In this feature space a linear decision surface

is constructed. Special properties of the decision surface ensure high generalization

ability of the learning machine. Kernels that map input vectors to a higher dimension

can be chosen arbitrarily, however the most common kernels used are Gaussian and

polynomial. The SVM creates a discriminant function

G(x) = ω · φ(x) + ωo, (5.1)
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where ωo is the distance to the hyperplane from the origin, and φ(x) is the kernel

function used to map a set of input feature vectors x to a higher dimensional space,

and ω is the normal of the hyperplane.

If the decision function is greater than zero, then it is in class one (positive class),

else if it is less than zero it is in class two (negative class). The function should ideally

never equal zero, since a hyperplane should always maintain a minimum distance from

the learning vectors that are at the extremities as showing in Figure 5.1.

Fig. 5.1. SVM Hyperplane

During training the objective is to increase the optimal margin on either side of

the optimal hyperplane. The distance between the optimal margin and the optimal

hyperplane is

G(x) =
1

|ω|
. (5.2)

Thus by minimizing ω the margin can be increased, thereby reducing generalization

errors. ω can be minimized by constructing the functional
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L(ω, α) =
1

2
ωωT −

∑
i

αi(yi(ω
Tφ(xi) + ωo)− 1), (5.3)

which is minimized with respect to ω and maxmimized with respect to α. Equation 5.3

can be reformulated as

L(α) =
n∑
k=1

αi −
1

2

n∑
k,j

αiαjyiyjφ
T (xi)φ(xj), (5.4)

maximizing α, subject to the constraints

∑
αiyi = 0, (5.5)

and

C ≥ αi ≥ 0. (5.6)

C is an arbitrary upper limit on the Lagrangian. The purpose of this limit is to act

as a relaxation limit for the optimization algorithm. In general the higher the value

of C, the higher the error rates. In practice the value of C is usually chosen by trial

and error.

5.3 K Nearest Neighbor

The K Nearest Neighbor (KNN) technique (see [21], [37]) is one of the simplest and

most robust pattern classification techniques. It works by comparing a potential test

sample with its K nearest neighbors in the feature space. Usually euclidean distance

is used as a distance metric.

Given a vector x0, the task of the classifier is to predict the class of x0. The

KNN algorithm tries to find x0’s nearest neighbors and then uses a majority vote to

determine the class of x0. This algorithm is very useful for binary classification. The

main thing to notice is that unlike SVM, the KNN technique does not have arbitrary

weights that can be modified.

The main drawback of the KNN system is that all samples must be cached in

memory, creating a big burden on system resources.
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5.3.1 3-NN Algorithm

The 3-NN attempts to locate the 3 closest neighbors, then it uses a majority vote

to classify the input vector x0. Since this algorithm uses the weights of only the first

three closest neighbors, it is faster than the regular KNN; however, it is generally less

accurate.

5.4 Image Processing and Module Overview

Figure 4.1 shows how to extract eye candidate regions. The binary image is

passed to the eye detection module. Geometric constraints are applied to all blobs in

the binary image. Successful candidate images are normalized to a 40× 40 pixel area

around the corresponding odd image. Pattern recognition is performed for each of the

eye candidate images. If they pass these two steps then we perform feature extraction

on these images. This process is repeated until we have gone through all potential

blobs or until we have extracted the position of both the eye images. Figure 5.2 gives

an overview of this process.

Figure 5.3 shows a sample image with potential eye candidates. After applying

geometric constraints, only the four blobs highlighted in blue circles are passed to the

pattern recognition algorithms.

5.5 Training Data

A total of 100 training images were acquired from 10 subjects. There were 50

positive data samples and 50 negative data samples. The positive eye images were

40x40 pixel areas centered around the pupils. The images were taken with various

head poses. The negative images were non-eye image data that could potentially

be mistaken for an eye after image processing. This included noses and other facial

features. Figure 5.4 shows some of the positive eye image samples. Figure 5.5 shows

the corresponding negative eye image samples.
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Fig. 5.2. Pattern Recognition Module Overview

(a) Binary Image (b) Corresponding Odd Image

Fig. 5.3. Initial Eye candidates

These 1600 pixels are the input features. These pupils are fed into the SVM as a

1600 input vector feature space. The training algorithm takes two matrices, X and

Y as inputs.
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Fig. 5.4. Positive Eye Sample

Fig. 5.5. Negative Eye Sample

• X is the set of positive and negative eye images. Each row is a separate input

vector (eye image). Thus this matrix has 1600 columns. The number of rows

depends on the size of the training sample.

• Y is a 1-dimensional matrix. Each corresponding row in the X matrix, is

assigned either +1 representing a positive sample or −1 representing a negative

sample.

Based on these values, and the equations and constraints provided, a quadratic

programming based algorithm is used to train the SVM.

5.6 Results

The objective of the main SVM experiments was to figure out the optimal C and σ

values that would minimize the number of negative images being classified as positive
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eye images. A number of C and σ values, were tested on a sample of 70 images

(35 positive and 35 negative). Table 5.6 shows how many negative eye images were

rejected by the SVM classifier with the indicated C and σ value. Table 5.6 shows

how many positive eye images were accepted by the SVM classifier. From the tables

it can be seen that the classifier with values C = 0.1 and σ = 3 rejects the most non

eye images and also classifies the most positive eye images.

Table 5.1
Number of Negative Eye Images Rejected, with sample size 35

C
σ

σ = 1 σ = 2 σ = 3

C = 0.05 29/35 28/35 27/35

C = 0.1 28/35 29/35 35/35

C = 0.2 28/35 28/35 20/35

Table 5.2
Number of Eye Images Accepted, with sample size 35

C
σ

σ = 1 σ = 2 σ = 3

C = 0.05 29/35 35/35 34/35

C = 0.1 29/35 34/35 34/35

C = 0.2 29/35 34/35 35/35

The KNN and 3-KNN classifiers were trained using the same input X and Y

matrices. The test samples were run on both. Table 5.6 shows that a high number

of negative eye images were classified as positive eye images. For the KNN to work

more accurately, more training sample images are required.

The KNN gives an accurate picture of the efficiency of the system because the

accuracy of its classification represents how well it was trained. This is unlike the

SVM whose weights can be modified arbitrarily to maximize rejection on the training
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Table 5.3
KNN & 3-KNN results. Sample Size is 35

Negative eye images rejected Positive eye images accepted

3NN 29/35 29/35

KNN 28/35 29/35

samples. Unfortunately the KNN would not be a very efficient solution for a real-

time system; however, it can be used to determine the optimal SVM hyperplane

coefficients.

In order to choose ideal SVM coefficients that would be practical for a real-world

eye-detection application the training samples and the test samples should include:

• eyes from subjects of a variety of ethnicities,

• images taken as close to and as far as possible from the camera, and

• eyes looking at each of the ROIs for the three different face poses (forward, left

and right).

A KNN classifier would then be trained and tested on these samples. The SVM

coefficients that give a similar result to the KNN provide a practical classifier. Ideally

the system should be trained for a large number of eye samples satisfying the criteria

above.

5.6.1 Summary

In this chapter a SVM algorithm was developed for initial eye detection. We

noticed that the SVM hyperplane coordinates that produced similar results to the

KNN algorithm during training of the sample set, had improved performance on the

larger dataset compared to SVM hyperplane coordinates that were optimized on the
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training dataset. We also presented a set of criteria for choosing optimal training and

testing samples.
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6. EYE TRACKING

6.1 Introduction

There are numerous image processing techniques for tracking objects. The hybrid

Kalman/Mean-shift algorithm of [19] was found to be efficient for large data sets,

because its running times were faster than other techniques and tracked well under

facial deformations. The other methods used to track the eyes were either brute force

(shape and template matching techniques) or pattern recognition techniques are not

very efficient when the data sets are large, for example 1200×720 as in our case.

We used [19]’s hybrid Kalman/mean-shift algorithm as a baseline, to which we

compared, various computer vision tracking algorithms such as mean-shift and con-

tinuously adaptive mean-shift (cam-shift). Based on these comparisons we concluded

that the hybrid Kalman/mean-shift algorithm was an efficient tracking scheme. How-

ever our Kalman filter differed from that of [19]. The Kalman’s state equations were

modified to a second order system (inclusion of acceleration parameters), which in-

creased the efficiency and accuracy of the tracker.

6.2 Computer Vision Tracking Techniques

Computer vision techniques can be split between tracking algorithms such as

Mean-shift tracking and prediction algorithms such as the Kalman Filter. Tracking

algorithms find the most probable region that represents the object being tracked in

the next consecutive frame. They are usually recursive solutions. Prediction algo-

rithms usually predict the location of an object based on knowledge about the system,

e.g. equations of motion. They need a distance measure that can locate the exact
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region being tracked in the next consecutive frames. The sub sections below describe

the different tracking and prediction techniques.

6.2.1 Mean-shift Algorithm

The mean-shift algorithm [24] is a robust, iterative, appearance-based object-

tracking algorithm. It uses the mean-shift analysis technique to find the target can-

didate in the next consecutive frame (p̂) that has similar pixel density probability to

the eye model region in the current frame (q̂).

The mean-shift analysis technique is very similar to kernel density estimation [38],

which uses a kernel function, e.g. Gaussian distribution, that assigns weights to a

set of data points (pixel values in a window). Mean shift then seeks to estimate

the gradient (direction of change) of the data distribution. To create a mean-shift

vector that will point to where the mean-shift window will move to next and then

reiterate this process. When the difference in pixel density probability between the

eye model image region q̂ and the target region p̂ is below a threshold, we say that

their probability distributions match.

The probability of the intensity for a particular bin in a histogram of the region

in a particular image frame, is computed by

p̂u(y) =

nh∑
i=1

k(‖y − xi
h
‖2)δ[b(xi)− u]

nh∑
i=1

k(‖y − xi
h
‖2)

, (6.1)

where h is the window size, δ is the Kronecker delta function, k is a kernel function

(e.g. Gaussian or rectangular), b(xi) is the index of the histogram bin for the par-

ticular pixel intensity value xi. u identifies the bin for which the probability is being

calculated, and y represents the pixel at the center of the Mean-shift window. Both
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q̂u(y) and p̂u(y) are calculated using Equation 6.1. From the probability distributions

of the m bin histogram the Bhattacharyya coefficient ρ(y) is calculated as

ρ(y) = ρ[p̂y, q̂] =
m∑
u=1

√
p̂uq̂u. (6.2)

Then the distance between the two distribution is defined as

dist[p̂y, q̂] =
√

1− ρ[p̂y, q̂]. (6.3)

The objective is to bring the distance below some threshold value ε, as described

below. The Mean-shift algorithm consists of the following steps:

1. Calculate the eye model in the current region q̂ using Equation 6.1.

2. Initialize the target location y0 in the next image frame by centering it at

the same location as the current eye model region. Then compute p̂y from

Equation 6.1.

3. Assign weights wi to each pixel location xi in the region based on its current

intensity according to

wi =
m∑
u=1

δ[b(xi)− u]

√
q̂u
p̂u
. (6.4)

4. The new location of the eye target (y1) is

y1 =

nh∑
i=1

xiwig(‖y0 − xi
h
‖2)

g(‖y0−xi
h
‖2)

, (6.5)

where the mean-shift vector g(x) is obtained from the kernel gradient function

as g(x) = −k′(x).

5. If the distance between the two windows is less than the chosen threshold then

stop, else go back to step 2.

Mean shift is a very robust algorithm, especially if the movement of the eye is

not very fast. The practical usage of this algorithm depends on many factors that
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weigh accuracy vs. efficiency, including the threshold ε, the maximum number of

iterations allowed, and the search window size. Using a larger search window and a

larger number of iterations usually improves tracking. However, with a large search

window there is a possibility that the mean-shift algorithm will track a non-eye region

that has a similar intensity profile.

Cam-shift

The cam-shift algorithm is very similar to the mean-shift algorithm. The difference

is that the ROI dynamically changes from frame to frame as the size of the object

changes. Cam-shift is used widely for face tracking and in applications where the

region tracked can change in size significantly, but still occupy a significant portion

of the image frame.

6.2.2 The Kalman Filter

Kalman filtering is a method that predicts the most probable next state. The

Kalman Filter was first used in image contour tracking by [23]. The basic idea is that

the next estimate (location of the object being tracked) is a weighted combination of

the previous measurement based on their uncertainties.

The theory behind the Kalman filter can be explained using a 2D scalar process.

Assume that x1 and x2 are uncertain measurements, with a Gaussian distribution,

with means x̄1 and x̄2, and standard deviations σ1 and σ2. Hence x̄12, the prediction

of the next state,is a weighted combination of the two prior input measurements,

x̄12 =

(
σ2
2

σ2
1 + σ2

2

)
x1 +

(
σ2
1

σ2
1 + σ2

2

)
x2. (6.6)

Once the next value is measured the posterior value x̂2 is

x̂2 = x̂1 +K(x2 − x̂1), (6.7)

where

K =
σ̂2
1

σ̂2
1 + σ2

2

, (6.8)
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x̂2 is a weighted sum of the current measurement and all previous measurements. If

the uncertainty of the current measurement is low then its contribution is large. If the

current measurement is noisy then the covariance σ2
2 will be high and the contribution

of the current measurement to the sum will be low.

The contribution of the current uncertainty covariance σ̂2
2 to the system uncer-

tainty σ̂2
1 is

σ̂2
2 = (1−K)σ̂2

1. (6.9)

Kalman filters in motion tracking can be modeled as dynamic systems, [4], [19]

and [22] used first order Kalman filters for eye tracking. To improve accuracy we used

a second order system. The horizontal and vertical components of the eye’s position

in the next frame are

ct+1 = ct + uct +
1

2
act, (6.10)

and

rt+1 = rt + urt +
1

2
art. (6.11)

ct and ct+1 are the vertical components or column positions of the eye in the

current and next image frame. uct is the vertical component of the velocity (column

axis). urt is the horizontal component of the velocity (row axis), act and art are the

vertical and horizontal components of the acceleration.

The vertical and horizontal components of the eye’s velocities in the next frame

are

uc(t+1) = uct + act, (6.12)

and

ur(t+1) = urt + art. (6.13)

The dynamic state equation representing the second order system is

Xt+1 = ΦXt +Wt, (6.14)
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Xt+1 is the state of the system in the next time instant (next frame), Xt is the current

state of the system (current frame), Φ is the state transition matrix, and Wt is the

system perturbation. The current state of the system can be described as

Xt =



ct

rt

uct

urt

act

art


, (6.15)

and the state transition matrix as

Φ =



1 0 1 0 1/2 0

0 1 0 1 0 1/2

0 0 1 0 1 0

0 0 0 1 0 1

0 0 0 0 1 0

0 0 0 0 0 1


. (6.16)

The system perturbation is normally distributed as

Wt ≈ N(0, Q), (6.17)

and the system noise covariance as

Q =



16 0 0 0 0 0

0 16 0 0 0 0

0 0 4 0 0 0

0 0 0 4 0 0

0 0 0 0 2 0

0 0 0 0 0 2


. (6.18)

The system noise is due to the random nature of the driver’s head movement and the

assumptions made in the second order dynamics equations that represent the system.
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These values were chosen by trial and error based on the test subjects. The estimated

row and column values have an uncertainty of 16 pixels, while the horizontal and

vertical velocities have an uncertainty of 4 pixels. Finally the horizontal and vertical

accelerations have an uncertainty of 2 pixels.

Since the camera system provides the row/column location of the eye feature in

each image frame, the feature extraction model estimates the row/column (X/Y axis)

position of the eye. We denote the measured input vector by

Zt = (ĉt, r̂t). (6.19)

Then the measurement model for the Kalman Filter is

Zt = HXt + Vt, (6.20)

where the current state Xt, current input vector Zt are related by H, which is

H =

 1 0 0 0 0 0

0 1 0 0 0 0

 . (6.21)

Vt is the measurement uncertainty which is normally distributed

Vt ≈ N(0, R), (6.22)

where the measurement error covariance matrix is

R =

 6 0

0 6

 . (6.23)

This noise is due to inefficiencies in the image capture and image processing tech-

niques. The value of R which means the camera system has a measurement error of

6 pixels was chosen by trail and error.

Furthermore in more than one dimension, the covariance σi of the state xi becomes

the covariance matrix Σi for state vector Xi. The covariance matrix was initialized

to
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Σ0 =



100 0 0 0 0 0

0 100 0 0 0 0

0 0 25 0 0 0

0 0 0 25 0 0

0 0 0 0 4 0

0 0 0 0 0 4


, (6.24)

assuming no cross-correlation. The diagonal elements can be viewed as indicating the

relative magnitudes of uncertainty in the states.

The goal of Kalman filtering is to estimate the tracked pupil location in the next

frame. The Kalman prediction involves two steps: a prediction step followed by an

update step.

• Prediction Step

In the prediction step, the Kalman filter estimates both the location of the

pupil in the next frame and the uncertainty associated with the estimate. The

estimated state is

X−t+1 = ΦXt, (6.25)

and the error in the estimation is

Σ−t+1 = ΦΣtΦ
t +Qt. (6.26)

The feature extraction algorithm will now use the row and column values in

X−t+1, along with a search window whose dimensions are

Width = 50Σ−t+1(1, 1), (6.27)

and

Height = 50Σ−t+1(2, 2). (6.28)

The minimum search window size used is 50× 50 pixels. The larger the uncer-

tainty, the larger the resulting search window.
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• Update step

Once we extract the pupil locations we update the Kalman model, creating the

posterior state estimate Xt+1. This estimate incorporates both prior estimate

X−t+1 and the measured pupil position zt+1. The Kalman gain Kt+1 determines

the extent to which each of the two values contribute to the calculation of Xt+1.

The new gain is

Kt+1 =
Σ−t+1H

T

HΣ−t+1H
T +R

, (6.29)

where the estimated error measurement is Σ−t+1 and the actual measurement

noise is R. The posterior state estimate and the posterior error covariance

matrix estimate are then given by

Xt+1 = X−t+1 +Kt+1(Zt+1 −HX−t+1), (6.30)

and

Σt+1 = (I −Kt+1H)Σ−t+1. (6.31)

The beauty of the Kalman filter is that each new measurement is used to improve

the existing model. After the Kalman filter has run for a long time, new measurements

that are not in the historical motion path are considered noise and do not change the

estimate very much,

6.2.3 Modeling System Noise

In our application the system noise is essentially the uncertainty associated with

the driver’s motion. The system has no knowledge of where the eyes are going to

move next, thus we use a constant noise in Equation 6.18.

Of course this is an oversimplification: the driver’s facial and eye movements over

time do follow a path. There are two potential ways in which the system noise model

could be improved:
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1. Expressing noise as a function of velocity: Under normal circumstances

the head follows a path. Thus the uncertainty in predicting its location in the

next time instant is much less than when the face is stationary. The faster the

eye moves, the more likely its location in the next time instant will lie on the

current path, because it is harder to change direction at a higher velocity.

We attempted to model the noise as a function of velocity; however the frame

rate of (30Fps) the camera system used was too low. We estimate that a frame

rate of 60 Fps would suffice.

2. Noise estimation based on movements among ROIs: A signification

portion of head movements were from one ROI to another, especially the three

mirrors and the front driving scene. Certain paths among ROIs are more com-

mon than others. This probability could be modelled.

6.3 Kalman/Mean-shift Hybrid

The basic idea behind the hybrid algorithm is that if the search window is larger

than a pre-determined minimum area, in this case 70 × 70 pixels, then we augment

the tracking system by including a Mean-shift.The result of the estimation step is fed

into the mean-shift algorithm so that when there are large random head movements

we can easily keep track of the eyes (and track face pose).

6.4 Results

The mean-shift, cam-shift and Kalman/mean-shift algorithms were tested on a

set of images that contained both small and large head movements. Specific tests are

described below.
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6.4.1 Mean-shift under Various Search Window Sizes

This section presents results from using two search windows; 50×50 and 100×100

pixels. Figure 6.1 shows a set of frames under the 50×50 pixel search window. Fig-

ure 6.2 shows the same set of frames with the larger 100 ×100 pixel search window.

It can be seen that the 50×50 search window works fine when the eye movements

are small; however, during large eye movements the tracker loses track of the eye.

With the larger window of 100 ×100 pixels the tracker does not lose the eye. How-

ever the 100×100 pixel requires more computational processing time, not only for

the mean-shift tracking but also during feature extraction. Furthermore the larger

window occasionally tried to jump to the other eye, or track a non-eye region that

had an intensity similar to the eye region.

(a) Frame 8 (b) Frame 9 (c) Frame 10

(d) Frame 11 (e) Frame 12 (f) Frame 13

(g) Frame 14 (h) Frame 15 (i) Frame 16

Fig. 6.1. Mean-shift with a window of 50×50 pixels
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(a) Frame 8 (b) Frame 9 (c) Frame 10

(d) Frame 11 (e) Frame 12 (f) Frame 13

(g) Frame 14 (h) Frame 15 (i) Frame 16

Fig. 6.2. Mean-shift with a window of 100×100 pixels

6.4.2 Cam-shift

Next, a cam-shift tracking algorithm was applied to the same set of image frames

as in Figures 6.1 and 6.2. As mentioned before the tracking window in the cam-

shift algorithm changes dynamically. Figure 6.3 shows the results of the cam-shift

operation. It can be seen from Figure 6.3 that cam-shift does not work well under large

eye movements. Furthermore the window of the eye region is different in each frame.

The main purpose of using cam-shift was to provide a reliable dynamic window around

the papillary/iris region of the eye. However cam-shift does not do this, because the

window size is too small for the cam-shift algorithm. Also it often mistakes larger

black areas as the pupil.
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(a) Frame 8 (b) Frame 9 (c) Frame 10

(d) Frame 11 (e) Frame 12 (f) Frame 13

(g) Frame 14 (h) Frame 15 (i) Frame 16

Fig. 6.3. Cam-shift algorithm

6.4.3 Hybrid Kalman/Mean-shift algorithm

Figure 6.4 shows the hybrid Kalman/Mean-shift algorithm tracking eyes. It can

be seen from Figure 6.4 that the algorithm is robust to head movement. Both eyes

are tracked and the search windows are generally centered on the eyes. This is very

helpful for the feature extraction algorithms.

Table 6.4.3 below shows the number of corrections required for each of the three

techniques, applied to a set of 120 frames. These frames had large head movements

and small head movements. All three systems lost track of the eye occasionally.

However, the cam-shift technique required more corrections that the others. This is

a result of the tendency of the cam-shift algorithm expecting the size of the region

tracked to change from frame to frame.
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(a) Frame 1 (b) Frame 2 (c) Frame 3

(d) Frame 4 (e) Frame 5 (f) Frame 6

(g) Frame 7 (h) Frame 8 (i) Frame 9

(j) Frame 10 (k) Frame 11 (l) Frame 12

Fig. 6.4. Hybrid Kalman/Mean-shift under regular head movement

Table 6.1
Tests on eye frames tracked, with sample size 120

Tracking Technique No of corrections First missed frame

Mean-shift (100 pixel window) 26 45

Cam-shift 55 15

Hybrid Kalman/Mean-shift 12 49

6.5 Chapter Summary

The purpose of the eye tracker is to effectively track the eyes from frame to

frame using available processing time. A hybrid Kalman/mean-shift algorithm was
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developed and its performance compared with that of baseline mean-shift, cam-shift

algorithms. The three systems were compared based on the effectiveness of tracking

eyes from frame to frame.

The experiments showed that the hybrid Kalman/mean-shift algorithm, using a

second order dynamic system was the most efficient of those tested. This algorithm

minimized the mean-shift tracking window, reduced the number of mean-shift itera-

tions and provided windows to the feature extractor that made it easy to extract eye

features.
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7. FEATURE EXTRACTION

7.1 Overview

Feature extraction involves two steps: extracting pupil features and extracting

glints (if any). The pupil features that are extracted are shown in Table 7.1. Glint

features that are extracted are shown in Table 7.2.

Table 7.1
Features extracted and calculated from the pupil

# Feature

1 Location of the pupil center

2 Length of eye region

3 Radius of the iris

4 Velocity of the pupil

5 Acceleration of the pupil

Table 7.2
Glint features extracted

# Feature

1 location of each of the glints

2 radius of the glints

The pupil feature-extraction module is given a potential region within which the

pupil may exist. The module has two separate techniques through which it can

try and locate a pupil. The first technique takes advantage of the bright pupil (even)
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image. The second technique uses the dark pupil (odd) image. Once a pupil’s features

have been extracted, the iris region (using the odd image) is thresholded in order to

extract a set of bright image blobs (the glints). A flow chart for this module is shown

in Figure 7.1.

Fig. 7.1. Pupil/Glint feature extraction overview

There are two reasons, that glint features should be extracted only when the

velocity of the eye is below a threshold:

1. The gaze vector can only be defined when the eyes are fixed.
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2. The bright (even) and dark (odd) pupil’s locations do not match.

7.2 Pupil Extraction

The eye tracker module provides the pupil extraction module a region in which

the pupil could potentially be. There are two ways of extracting the location of the

pupil; if the bright pupil exists then a series of image processing steps can extract its

location. Otherwise the dark pupil can be extracted. However using the dark pupil

tends to return much higher false positives.

7.2.1 Bright Pupil Extraction Technique

In bright pupil extraction, the image region undergoes a smoothing process. This

blurs the image, which reduces noise along with the resolution of the image, and the

papillary region has a single intensity value.

Once the image has been smoothed, it is thresholded, based on the histogram

profile of the region. This creates a binary image containing a single blob, which is

usually the pupil region. After applying the geometric constraints shown in Table

7.3, the eye region is extracted. The geometric constraint is used because in rare

circumstances there are multiple blobs corresponding to multiple light reflections on

the sclera. The information extracted are the center and the radius of the pupil. From

this we can calculate the current velocity and the acceleration of the pupil. Figure 7.2

shows the various steps involved in extracting the pupil region. Figure 7.3 shows the

efficiency of the same process despite a bad frame capture.

7.2.2 Dark Pupil Extraction

If the bright eye pupil extraction module cannot find a suitable pupil candidate,

then the dark eye pupil extraction technique is applied.
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(a) Bright Eye Image (b) Smoothed Image

(c) Thresholded Image

Fig. 7.2. Bright eye pupil extraction

The dark pupil extraction technique works by putting the dark pupil image through

an erosion process. Erosion is an image processing operation which finds the local

minimum over a region defined by a kernel. Then it replaces all the pixels in a given

region with that minimum value. This brings out the dark regions by suppressing

the lighter brighter regions. In the context of dark pupil extraction, the dilation

operation enhances all dark regions (pupil, eyebrows and nasal regions) as shown in

Figure 7.4(b).

The eroded image is then put through a histogram equalization process. This

further increases the contrast in the image as shown in Figure 7.4(c). The next step

is to threshold the image, then extract the blobs and perform edge detection. These



57

(a) Poor quality bright Eye

Image

(b) Smoothed Image

(c) Thresholded Image

Fig. 7.3. Bright eye pupil extraction on a poor quality image

blobs candidates are put through geometric tests to be described in section 7.2.3. The

most successful candidate’s location and radius are extracted.

7.2.3 Geometric Constraints Applied to Pupil Candidates

Numerous geometric constraints are applied to the pupil candidate blobs. These

include the baseline max/min pupil radius constraints (static constraints) and the

dynamic constraints based on the face pose, the distance between the pupils, and

the pupil radius in the previous frame. The baseline minimum and maximum pupil

radii are calculated based on parameters of the image acquisition system used such

as camera resolution, lens, maximum and minimum distance between pupil and cam-
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(a) Dark eye image (b) Eroded and

Smoothed Image

(c) Histogram

Equalized Image

(d) Image with eye

circle

Fig. 7.4. Dark eye pupil extraction

era. The default values used in our analysis are shown in Table 7.3. The dynamic

constraints are itemized below:

• If the horizontal velocity is positive and the face pose is either forward or left,

then the current iris radius must be less than or equal to its previous value.

• If the horizontal velocity is positive and face pose is right, then the current iris

radius must be greater than or equal to its previous value.

• If the horizontal velocity is negative and face pose is either forward or right, the

current iris radius must be less than or equal to its previous value.

• If the horizontal velocity is negative and face pose is left, the current iris radius

must be greater than or equal to its previous value.
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Table 7.3
Default static constraints for pupil radius

Constraint Value

Max pupil radius 30 pixels

Min pupil radius 4 pixels

7.3 Glint Extraction

If pupil features are successfully extracted and the velocity of the pupil is less than

5 pixels per frame, then the glint extraction module is called. The glint extraction

module uses technique similar to those of [10]. The dark eye image is thresholded and

all blobs having the radius of the iris are extracted. Figure 7.5(a) shows the initial

iris region with two glints and Figure 7.5(b) shows the same region after thresholding.

(a) Iris region with

glints

(b) Glints after

thresholding

Fig. 7.5. Glint extraction

The reason the system does not extract glints unless the velocity of the eye is less

than 5 pixels per frame is that the papillary location of the bright and dark eye pupils

do not match from the two images. This is because the driver is moving their head

from one gaze point to another. The velocity constraint value of 5 pixels per frame

was chosen by trail and error.
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7.4 Chapter Summary

The feature extraction module extracts the various pupil features required for eye

detection, tracking and gaze mapping. If the velocity of the pupil is less than the

threshold velocity, then the glint extraction module extracts the features of all the

glints in the eye.
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8. GAZE MAPPING

8.1 Introduction

As indicated in the literature review numerous eye gaze mapping systems have

been developed in the context of human computer interaction. Most of these algo-

rithms are used for assisted reading on computer screens. This requires high accuracy

and the level of head movements are small. In the context of automotive applications,

less accuracy is required but head motion may be large.

We selected three algorithms that seemed suited to automotive applications. These

were the 3D gaze mapping technique of [7], the one circle algorithm of [11] and the

ROI mapping algorithm of [39]. Based on the work of [12] and [11] a calibration

sequence was devised, in which LEDs were placed on each of the three mirrors and as

the driver looked at each mirror, the calibration sequence would update itself based

on a new point of view.

After testing a sample of subjects it became evident that glint patterns in the eye

were similar for all subjects on each ROI. In general there was a correlation between

the glint patterns and where the subjects were looking. Using this information, a 2D

neural network based approach was developed that maps the gaze based on face pose

and glint positions on the pupil. This is very similar to the work done by [39]. This

system can be used to generate an automatic calibration sequence for a proposed 3D

gaze mapping system developed by [7].
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8.2 Overview of Gaze Mapping Algorithms

The one circle, the 3D gaze mapping, and the ROI mapping algorithms are suited

for automotive applications because they allow head movements and the calibration

procedures are simple enough that we can try and eliminate them.

8.2.1 One Circle Algorithm

The one circle algorithm uses a 2D back projection technique very similar to that

used in most other monocular eye gaze systems. Such a system requires calibration

if accuracy is important. However the one circle algorithm differs from other 2D

back projection algorithms in that it does not use glints to map gaze. Instead the

one circle algorithm uses the distance between the pupil/iris center and the edges of

the eye as shown in Figure 8.1. P1 and P3 are corner points; P2 and P4 are local

maxima on the eyelids. Since the angle between the visual axis and the optical axis

is constant, the relative position of the pupil center can provide an adequate estimate

of the optical axis.

Fig. 8.1. Eye with corners highlighted

The main problem with this algorithm is that it is hard to extract the contour of

the eyelids via image processing, so it is hard to extract the points P1, P2, P3 and P4.

Furthermore under facial rotation the shapes of the facial features change. Another
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disadvantage of this algorithm is that it is not very robust under head movement,

because it requires recalibration.

However it was noticed that the ratio of the X and Y axes of the ellipse that

models the pupil indicates whether the driver is looking up or down, left or right with

respect to facial pose. This can be used to enhance gaze region mapping and will be

discussed in further detail below.

8.2.2 3D Gaze Mapping Algorithm

3D gaze mapping works by calculating the visual axis ~Vp from the optical axis ~Vo

using

~Vp = MT ~Vo, (8.1)

where MT is the transpose of the orthonormal rotation matrix. Nine predefined

points are required to calibrate M. Various techniques for calculating (~Vo) can be

found in [7].

8.2.3 ROI Mapping Algorithm

[39] devised a Generalized Regression Neural Network (GRNN) algorithm that

mapped eye gaze into eight adjacent eye regions. They used an IR light source to

create a glint. Based on the glint’s position and other eye features, the GRNN maps

the eye gaze into one of the eight regions. This algorithm is very robust to head

movements.

8.3 Gaze Mapping in Automobiles

The forward view of the vehicle was split into 13 non-uniform Eye Gaze Regions,

as shown in Figure 8.2, Table 8.3 details which part of the forward view each gaze

region represents. The blue rectangles are the primary ROIs that we attempt to

successfully identify. It is important to notice the the blue rectangles also include a
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margin of two inches around the ROIs as an error margin. The red rectangles include

all other regions.

Fig. 8.2. Eye Gaze Regions in the Simulator

Table 8.1
Gaze Regions

Region Area it represents

1 Driver Side mirror - ROI1

2 Region above driver side mirror

3 region between front view and driver side mirror

4 Front view - ROI2

5 Steering wheel and dashboard

6 Rear view mirror - ROI3

7 console view

8 Passenger front view

9 Area above passenger side mirror

10 Passenger Side Mirror - ROI4

11 Area below passenger side mirror

12 Area below driver side mirror

Eye glint patterns under various face poses were observed for the four main ROIs.

It soon became evident that the glints form a unique pattern for each ROI.
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The initial idea was to train a simple pattern recognition algorithm such as a feed

forward NN or KNN classifier to obtain a calibration sequence. The output of the

pattern recognition algorithm would be the gaze point that could be used to update

one of the generic gaze mapping algorithms. The 3D gaze mapping algorithm would

work for four calibration points, but would not be very accurate.

It soon became apparent that the GRNN mapping technique similar to that of [39]

could be used to map the various gaze regions in the vehicle. The gaze was mapped

to regions of interest using a trained GRNN, while the calibration process involved

retraining the algorithm for each new user.

8.3.1 Generalized Regression Neural Networks

Generalized Regression Neural Networks (GRNNs) [40] are probabilistic neural

networks. The GRNN uses the training sample to estimate the response at new

points. The output is estimated using a weighted average of the training cases, where

the weighting is related to the distance of the training point from the current point

being estimated, so that points nearby contribute most heavily to the estimate, as

with the KNN classifier. The general GRNN structure, shown in Figure 8.3 consists

of four layers: the input layer, the hidden layer, the summation layer and the output

layer. The input layer has 14 nodes, one for each input. The hidden layer has one

node for each training sample. There are 2 nodes in the summation layer and 12

nodes in the output layer. The primary advantages of GRNNs over other NNs are

that they do not need a lot of training samples and that training samples can be

clustered into nodes in the hidden layer; so that only 12 nodes are needed.

The objective of GRNN is to estimate the dependent variable Y based on the

observed values of independent variable X. In this case the independent variable is

the input gaze information vector shown in Equation 8.4, while the dependent variable

is the scalar gaze region to which it maps. The dependent and independent variables

are related by a Probability Density Function (PDF). The beauty of a GRNN is that
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Fig. 8.3. Structure of a GRNN

the underlying PDF does not need to be known. Instead, by using estimators similar

to the ones proposed by Parzen, the PDF can be estimated from the training samples.

In this system the distance between the input vectors and the training samples is

D2
i = (X −X i)T (X −X i). (8.2)



67

The weight of each sample input X to a trained input Xi is calculated by finding

the exponential value of the distance between them, which is calculated using Equa-

tion 8.2. The estimated independent variable Ŷ is calculated from an observation X

according to

Ŷ (X) =

n∑
i=1

Y ie

(
− D2

i
2σ2

)

n∑
i=1

e

(
− D2

i
2σ2

) . (8.3)

The value of σ is estimated by trial and error. If the estimate for σ is very large, then

the dependent value Ŷ will be the mean of all the training data (mean of observed

Yi). As σ goes to zero the estimated dependent value Ŷ takes the value of the closest

Yi. We choose σ to be 0.4.

8.3.2 GRNN Training and Gaze Calibration

The input data vector provided to the gaze calibration is

X =



∆rgd

∆cgd

∆rgr

∆cgr

∆rgp

∆cgp

Rpupils

θ

r

c



, (8.4)

where ∆rgd and ∆cgd are the relative positions of the glint due to the driver side

mirror, ∆rgr and ∆cgr are the relative positions of the glint due to the rear view

mirror, ∆rgp and ∆cgp are the relative positions of the glint due to the passenger side

mirror, Rpupils gives the ratio of the radii of the two eyes (a measure of head pose), r is
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the row value of the pupil center, and c is the column value of the pupil center. Thus

the input vector incorporates the relations between the glints and face orientation.

Gaze Mapping

When input vector X is fed into the trained GRNN, it returns the region Y

where the gaze is currently fixated. The regions are identified by number as shown

in Table 8.3 so

Y ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} . (8.5)

The relative positions of the glints with respect to the pupil center and the other

glints are more important than the actual locations of glints in the image frame. In

order to adapt the GRNN for each user, the gaze mapping algorithm retrains itself

using correctly mapped Xinput vectors. This retraining is performed once for each

ROI.

Initial GRNN Training

From Figure 8.4 it can be seen that most of the training vectors Xi and Yi are

sampled in the gaze regions that are not ROIs. Furthermore most of the vectors

represent gaze points that are in the relative center of these regions. By training

heavily on the non-ROI regions false positives are reduced. In addition, because the

system retrains itself based on the first few positive ROI classifications, the system

maximizes positive classification on the ROI.

During training, the mean of each of the twelve regions is found using the K-means

algorithm that is the basis of the KNN classifier. The K-means algorithm provides

the twelve sample vectors Xi corresponding to gaze region Yi. Each one of these

twelve sample vectors corresponds to a hidden node in the GRNN.
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Fig. 8.4. Sample gaze points taken for training

8.4 Results

Overview of Results

Tests were performed on four ROIs. The first test was to determine how well a

sample of gaze points (8 for each ROI) could be mapped to its corresponding ROI.

The results are shown in Table 8.4.

The strong positive results are due to the fact that there is an IR light at three of

the four ROIs. Hence the relative positions of the glints along with face pose can show

a strong correlation to that ROI. Most of the training was done using gaze points

from other regions. As a result the distances to these points were high. On top of

that the first point from each corresponding ROI was used to retrain the GRNN as

mentioned above.

This technique has a margin of error of about 2 inches from the boundaries. Eight

gaze points are taken that are within 2 inches of the boundary of each ROI. Figure 8.4

shows the results. It is important to notice at the ROI with the highest error is the

front view. This is due to two reasons, the first being that the area is large, as a result

more likely to produce errors. The second reason is that it does not have a distinct

IR light to create a strong glint feature set as do the other ROIs, the ROI requires

all the features to have a relative set of glint reflections.
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Table 8.2
Mapping Gaze Points to their corresponding ROI

ROI Correctly classified Misclassified

ROI1 - Driver Side Mirror 8 0

ROI2 - Front View 8 0

ROI3 - Rear view Mirror 7 1

ROI4 - Passenger Side Mirror 6 2

Due to the position of the IR LEDs, the error margins on the boundaries of each

of the ROIs are not uniform. Boundary regions that are closer to the IR LEDs have a

significantly smaller error margin. In order to show this, two gaze points were taken

from each of the boundaries of the ROIs (hence 8 points). Due to the position of the

LEDs in each of the ROIs, gaze points above the LEDs are correctly classified. Gaze

points that are on the far side of each mirrors could not be mapped (eyes were out

of range due to extreme facial rotation) so they are not classified. As for the other

points they have a high level of misclassification.

Table 8.3
Gaze Points within 2 inches from corresponding ROI boundaries

ROI Correctly classified misclassified

ROI 1 - Driver Side Mirror 3 5

ROI 2 - Front View 1 7

ROI 3 - Rear view Mirror 5 3

ROI 4 - Passenger Side Mirror 3 5

The final set of tests was a series of gaze points that were greater than 2 inches

from a particular ROI. About 16 points were used for each ROI. The objective of the

test was to see how many of those points would be misclassified as being in the ROI.
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Table 8.4
Gaze points more than 2 inches from the corresponding ROI boundary

ROI correctly classified misclassified

ROI 1 - Driver Side Mirror 13 3

ROI 2 - Front View 15 1

ROI 3 - Rear view Mirror 11 5

ROI 4 - Passenger Side Mirror 12 4

8.5 Discussion

The GRNN based eye gaze mapping system provides several benefits but has

certain limitations.

Benefits of current solution

Our solution maps to the correct ROI with a high degree of accuracy, uses a

monocular system, and is robust to head movements.

The system can also be used as a calibration procedure for other eye tracking

systems. Every time a new point in a ROI is provided, it can be used to recalculate

the mapping matrix M used in Equation 8.1.

Limitations of current solution

One of the primary limitations of the current system is that there is a relatively

large uncertainty, especially when the driver is looking at the boundaries between

the regions. There are numerous ways in which this uncertainty can be reduced, for

example by improving the camera system to capture images more quickly and clearly.

Also the LEDs can be placed in a manner that optimizes their radiance on the driver

face region, helping create more precise glints. Of course using a higher number of



72

training samples would also improve performance. These additional samples should

ideally be chosen from boundary regions.

8.6 Summary

Four regions of interest were identified and LEDs placed in each of these regions.

Based on their placement and facial rotation a GRNN was used to map the gaze into

each of those regions. Tests indicated a strong positive match.
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9. SUMMARY

Every aspect of developing a computer vision based gaze mapping system was ex-

plored, including camera placement in vehicles, image processing, eye detection, eye

tracking, feature extraction and gaze mapping. Eye-gaze mapping systems have not

been used in vehicles primarily because they need calibration which is time-consuming

and difficult. In this thesis we present an eye-gaze mapping system suitable for use

in a DSM system. Contributions include the insight that it is more important to

map eye-gaze to regions in the forward view rather than to specific points and the

development of a GRNN based system that allows eye-gaze to be mapped to twelve

such regions.

The image acquisition system consisted of a monocular camera with multiple

light sources. The mapping system could be applied using multiple cameras, but at

additional cost. The camera system created bright pupils that allowed eye regions to

be easily extracted with simple image processing. The IR light sources created glints

used for gaze mapping.

A SVM classification technique, based on a hybrid Kalman/mean-shift tracker,

was used to track eye images from frame to frame for initial eye detection. A feature

extractor extracts the glints and other eye information to be used for gaze mapping.

The gaze mapping function uses a GRNN to map the input eye feature information

into one of twelve regions identified as part of the research process. This system

retrains itself for the first few successfully mapped gaze points, thus it optimizes itself

for the current user. The system can also be used as a calibration procedure for a 3D

mapping function.
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10. RECOMMENDATIONS

The system can be improved in many ways. Several simple hardware upgrades would

increase the efficiency of the system, especially with respect to feature extraction. To

improve eye detection and tracking, better training and system noise modeling could

be incorporated. These would also improve the GRNN system used in gaze mapping.

Finally the system as a whole can be improved by incorporating standard face pose

modeling techniques.

10.1 Hardware Recommendations

A good hardware system can reduce noise during image processing and improve

efficiency. The camera system used directly affects the quality of the image frames. In

addition, stereo camera systems can be used making eye gaze and face pose mapping

computationally easier. Apart from the camera systems, the LEDs used can also be

upgraded, using better quality LEDs will produce sharper glint reflections, improving

gaze mapping.

10.1.1 Camera System

We used an off-the-shelf Microsoft View-cam. This model has limited capabilities.

A camera, with a higher frame count, more exposure and better zoom lens capabilities,

would improve performance.

The second recommendation would be to use a stereo imaging system. With a

3D system, the face pose and gaze mapping become much easier. Numerous such

systems are available and a lot of work has been done on stereo camera calibration

??.
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10.1.2 LEDs and Embedded Circuit

In this thesis the LEDs were hand fashioned and the serial communication system

was not optimized for the frame speed of 30 Fps. The LED circuits should be designed

to optimize their illumination of the facial region to produce the best quality glint

images.

10.2 Eye Detection and Tracking

Improving eye detection and eye tracking will result in better gaze mapping by

providing more reliable eye region images. Also improving eye tracking also reduce

overall computational time. Improving gaze mapping will reduce the number of false

positives making the system more efficient.

10.2.1 Eye Detection

The SVM-based system for eye detection needs a much higher number of training

subjects. Having three separate classifiers, one for frontal view and two for side views

would also reduce the rejection rates. The only drawback to adding these classifiers

would be the tripling of the run time; but the SVM is a fast algorithm so this would

not be prohibitive.

10.2.2 Eye Tracking

Dynamic modeling of system noise would make the tracking algorithm more effi-

cient. Also a higher sampling rate would make the hybrid Kalman/Mean-shift algo-

rithm more efficient. Even doubling the rate would be expected to yield noticeable

improvement.
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10.3 Gaze Mapping

The GRNN based system can also be improved significantly if boundary areas are

reclassified as new regions and if more training samples are used.
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