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ABSTRACT

Amiri, Delaram. MSECE, Purdue University, December 2015. Bilateral and Adaptive
Loop Filter Implementations in 3D-High Efficiency Video Coding Standard. Major
Professor: Mohamed El-Sharkawy.

In this thesis, we describe a different implementation for in loop filtering method

for 3D-HEVC. First we propose the use of adaptive loop filtering (ALF) technique

for 3D-HEVC standard in-loop filtering. This filter uses Wienerbased method to

minimize the Mean Squared Error between filtered pixel and original pixels. The

performance of adaptive loop filter in picture based level is evaluated. Results show

up to of 0.2 dB PSNR improvement in Luminance component for the texture and 2.1

dB for the depth. In addition, we obtain up to 0.1 dB improvement in Chrominance

component for the texture view after applying this filter in picture based filtering.

Moreover, a design of an in-loop filtering with Fast Bilateral Filter for 3D-HEVC

standard is proposed. Bilateral filter is a filter that smoothes an image while pre-

serving strong edges and it can remove the artifacts in an image. Performance of the

bilateral filter in picture based level for 3D-HEVC is evaluated. Test model HTM- 6.2

is used to demonstrate the results. Results show up to of 20 percent of reduction in

processing time of 3D-HEVC with less than affecting PSNR of the encoded 3D video

using Fast Bilateral Filter.
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1. INTRODUCTION

High Definition (HD) videos are increasingly finding their way into technology and

using HD videos in different applications is growing rapidly.

There is a challenge for technology experts that how can they transmit videos

without sending all the information and that was the time concept of video compres-

sion became an important subject. Compression is beneficial because it can decrease

usage of data storage space or transmission capacity. On the other hand, compressed

data should be decompressed to be used which needs extra processing time and/or

expensive hardware for fast decompression.

Video compression can be either lossy or lossless. In lossless transmission, typically

bits are reduced by eliminating statistical redundancy meaning that the amount of

wasted spaces and repeated information will be reduced without losing data. Lossy

video compression finds the unimportant information and removes it. Lossy video

compression encodes an approximation of data content using reduced amount of orig-

inal data. The amount of possible data reduction in lossy compression is more con-

siderable than lossless compression techniques most of the times. Lossy compression

used in multimedia data (e.g. audio, images and video) has different applications,

such as streaming media and voice over IP in Internet telephony.

Since lossy video and image compression encodes an approximation of data, qual-

ity of reconstructed multimedia data after decompression is not as high as the original

data. Therefore, improving the quality of encoded video with minimum cost in com-

plexity of hardware design and minimum running time is an essential challenge. In

this thesis we first implement an algorithm that can improve the quality of multiview

test sequences while running the encoder faster.
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One of the methods to measure the numerical measures is PSNR (peak signal to

noise ratio) to compare the compression techniques. This method improves the PSNR

encoded by 3D HEVC video compression standard up to 2.1 dB in depth view.

On the other hand, adding new algorithm to the anchor test model increases the

running time. So, improving the quality of encoded video without increasing encoder

running time is a big challenge for designers. Therefore, we modify the implemented

method to decrease the running running time with minimal changes in quality of

encoded video. In other words, we implement an optimal method that improves

the quality of encoded video with faster process compared to the anchor test model.

Results indicates up to 20 percent of reduction in encoding process.

For better understanding, with a 2013-model laptop using a single core and single

thread of an Intel Core i5-3210M CPU processor clocked at 2.50 GHz for encoding

an anchor 3D HEVC HM 6.2 encoder version the following is observed. To test the

anchor test model, we encoded a multiview test sequence, meaning that 3 videos out

of 7 videos with their corresponding depth data are encoded. This type of multi-

view test sequences was recorded as medium detailed scene with 7 cameras of 5cm

spacing. Encoding 8 frames in each video of 3 videos with 8 frames of corresponding

depth data approximately requires 2729.279 seconds (e.g. 45 minutes and 48.279 sec-

onds). Therefore, encoding multiview test sequences because of their large amount of

data compression is very slow. One solution to decrease the encoding time is to use

supercomputers with high speed processors and CPUs which can be very expensive.

On the other hand, improving software algorithms in encoder/decoder for higher

speed can be cheaper and more efficient. In this thesis we implement an algorithm that

can reduce the running time up to 20 percent (e.g. 545.85 seconds or 9 minutes and

9.85 seconds reduction for the mentioned test condition) reaching 2183.4232 seconds

(36 minutes and 36.38 seconds) of encoding processing time and improve the quality

of the encoded multiview test sequence at the same time.
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In this chapter, the general requirements for the development of video coding

features are described including an overview of previous video coding standards and

overview of HEVC as a new standard and explanation of how HEVC encoder works.

In order to deeply discuss in the subject without overload of definitions, some of the

terms will be used in this chapter and will be defined in coming sections and chapters.

Sections of loop filter and deblocking filter are discussed briefly and will be explained

more in forthcoming sections. Aim and scope of the thesis is explained at the end of

introduction and proposed algorithm with the results and application considerations

are covered in the next chapters.

1.1 Video Compression Standards

Since the early 1990s, the improvement of video coding standards has been di-

rected toward two purposes:real-time video communication and distribution or broad-

cast of video content. The main design of all major video compression standards since

H.261 follows what is defined as block-based hybrid video coding method. In hybrid

coding, each block of a picture can be coded as intra picture (considered as coded

in an intra coding mode), without using other pictures of the video sequence as a

reference. It is temporally predicted (defined as an inter coding mode), where the

prediction signal is formed by a block of an already coded picture.

The recent method is defined as motion-compensated prediction and represents

the concept of utilizing the large amount of temporal redundancy in video sequences.

The complete intra-coded block is processed using transform coding for exploiting

spatial redundancy. First, a linear transform is applied to the input signal which ob-

tains the transform coefficients, then transform coefficients are coded together with

side information such as coding modes and motion parameters. Although all con-

sidered standards pursue the same basic design, but they are different in various

features which leads to an improved coding efficiency from one standard to the next

generation. After H.264/MPEG-4, AVC was the second video coding standard that
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was jointly developed by ITU-T VCEG and ISO/IEC MPEG [4], [5]. High Efficiency

Video Coding (HEVC) is the name of the current joint standardization project. A

common question is what is the benefit of using HEVC over the previous standards.

Generally, it is hard to judge the benefit of a video compression algorithm on a

tool-by-tool basis, as the acceptable algorithm is reflected by an appropriate com-

bination of tools. For example, introduction of larger block structures has impact

on motion vector compression, but should be followed by fusion of larger trans-

form structures as well. Using a configuration for HEVC that is close to settings

of H.264/MPEG-4 AVC, the bit-rate savings ranges from around 30% to nearly 67%

in HEVC, depending on the video sequence. The average bit-rate reduction over

all the sequences tested was 49.3%. The subjective benefit for HEVC seems to ex-

ceed the benefit measured using PSNR, and the benefit is greater for low bit rates,

higher-resolution video content and low-delay application encodings [6].

1.2 HEVC as a New Standard

The High Efficiency Video Coding (HEVC) standard is the recent joint video

project of the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Mov-

ing Picture Experts Group (MPEG) standardization organizations,working together

known as the Joint Collaborative Team on Video Coding (JCT-VC) [7]. JCT-VC is

tasked to work with 3D HEVC extensions; and for work on 3D video topics for mul-

tiple standards including 3D video extensions for HEVC in particular, they formed

a team known as the Joint Collaborative Team on 3D Video (JCT-3V). JCT-3V has

developed a 3D extension to HEVC to support 3D- displays using a similar coding

process as HEVC standard.
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The wide coverage of high definition (shortly as HD) video content and displays is

developing toward variety of applications of UHD video services, as well as increasing

applications of high-quality video services to mobile devices resulted in request for a

new video coding standard in 2009 called HEVC. A complete video coding system of

HEVC is sectioned to four blocks [8]:

Source

Source of video sequence is the output in a digital form. It may be followed by

the following processing time.

Pre-Processing

Operation on the uncompressed video sequence such as changing color format,

color correction and modification or denoising is considered as a part of this

coding block.

Encoding

Transforming the input video to a coded bit-stream. The purpose of encoding

is to form a compressed version of the input video sequence to be ready for

transmission through a channel to a receiver.

Transmission

Packaging the bit-stream to a correct format and transmission over the chan-

nel. Transmission includes transmitting and receiving from the receiver side,

along with channel coding for loss protection and security purposes. In some

cases feedback from from the receiver to the transmitter is needed to control

encoder configuration for real time requirements. Feedback can be useful for

the applications that retransmission request in the case of lost data.
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Decoding

Transforming the received bit-stream to a reconstructed video. Video encoding

can be lossy compression to reach the desired transmission bit-rate which makes

the decoded video to be an approximation of the input video. If unrecoverable

transmission losses happen, decoder uses methods to recover the corrupted video

sequence.

Post-Processing

Operation on the reconstructed video in the decoder side of coding is for en-

hancement or adaptation of the sequence for the display. Post processing block

includes color correction, re-sampling or trimming or special modifications and

effects can be done.

Display

Presentation of the video to be viewed. Video sequence should be converted to

a correct color format to be displayed. Output timing of frames are of the video

is an essential task of reach the intended visual effectiveness.

The processing stages described above shows a simplified video coding system.

Since all the implementation and focus is on encoder side of coding system we will

describe encoding block of HEVC in forthcoming section.

The encoder stage of a coding system first transforms the input video sequence to

a bit-stream that has packet oriented structure in which encoded data is hierarchically

organized. The encoder should generate a bit-stream to the application needs such

as selection of encoding tools.

The optimization of the encoder control decision is an important task of encoder

design. On the picture level, selecting the coding tool and bit allocation for regions

of frames should be chosen carefully. Two separate encoders using the same video

coding features may construct different video qualities [8].
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HEVC kept the main hybrid coding structure of previous video compression stan-

dards such as H.264/AVO. An important difference between HEVC and previous

standards is the use of adaptive quadtree structure based on a coding tree unit (CTU)

instead of a macroblock in previous standards.

In general, the quadtree coding architecture is defined by splitting the image into

blocks and units. A CTU (coding tree units) contains coding tree blocks (CTB with

the size of 64 × 64, 32 × 32, or 16 × 16) and syntax defining coding data and block

subdivision. In other words, a block in hybrid coding contains an array of samples

and sizes, while a unit contains information regarding one luma and corresponding

chroma blocks along with syntax related to the blocks and units that needs to be

coded. CTBs are divided into smaller partitions called coding units (CUs). Note that

sub partition of CTB into four smaller areas are called quadtree. These sub partions

are called coding units (CUs).This subdivision results in coding unit (CU) leaves with

coding blocks (CB). Each CU is divided into prediction units (PUs) for either inter

or intra prediction with various sizes of 64 × 64 down to 4 × 4. In addition, each

CB is divided in to prediction blocks (PB) and transform blocks (TB) Sub partition

of The prediction residual is then coded using transform units (TUs with the size of

4 × 4, 8 × 8, 16 × 16 and 32 × 32). This adaptive size method is especially suitable

for high resolutions, such as 4k × 2k which is a desired resolution for some HEVC

applications. Figure 1.1 shows an example of CB and TB quadtree structure.

Moreover, partitioning modes for dividing a CB into PBs are demonstrated in

Figure 1.2. All partitioning modes specifying how to split a CB into PBs are shown

in Figure 1.2.
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Fig. 1.1. Details of 4k× 2k sequence Traffic showing the coding block
in white and nested transform block in red structure after using quad-
tree partitioning [12]

Fig. 1.2. Prediction block division has Inter-coded CUs using all
modes while intra-coded CUs can use only the first two modes [9].
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The HEVC encoder, uses simple tree-pruning algorithms to estimate the optimal

partitioning in a distortion sense [10], [11]. The HEVC standard uses a block-based

hybrid coding architecture, combining motion-compensated prediction and transform

coding with high-efficiency entropy coding. In contrast to previous video coding

standards, it applies a flexible quad-tree coding block partitioning structure that

enables the efficient use of large and multiple sizes of coding blocks. In addition,

HEVC employs developed intra prediction and coding, adaptive motion parameter

prediction and coding, and improved version of Context-adaptive binary arithmetic

coding (CABAC) entropy coding. Block-diagram of the HM encoder is shown in

Figure 1.3. The input video is first divided into blocks called coding tree units (CTUs),

that is broadly equivalent to that of macroblocks in previous standards. The coding

unit (CU) applies a region using the same prediction mode (intra, inter or skip) and

it is demonstrated by node leaf of a quadtree structure. The prediction unit (PU)

uses a region sharing equal prediction information. The transform unit (TU), used by

another quadtree, defines an area having the same transformation information [12].
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Fig. 1.3. Block Diagram of HEVC Encoder [9].
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1.3 Video Coding Layer and Encoder of HEVC

The HEVC standard is designed for different purposes such as being efficient in

coding process, ease of transport system integration and data loss resilience, as well

as applying parallel processing design in system implementation. Later on, the main

specifications of the design to reach the mentioned aims along with the encoding

process that would generate the bitstream is described [9]. The video coding layer

of HEVC applies the same hybrid concept (inter/intra picture prediction and 2-D

transform coding) used in previous video compression standards since H.261. HEVC

is a hybrid video encoder using both motion-compensated prediction and transform

coding with high-efficiency entropy coding, creating a bit stream as shown in Figure

1.3. Encoding algorithm starts with:

First, divide picture into block-shaped areas, with the exact block partitioning

would be signaled to the decoder. The first picture called the reference picture is

coded using intra-picture prediction. Intra picture uses some prediction of data within

the same picture (or random access point of frame) and it finds the closest region to

the block.

Intra picture prediction is used to eliminate correlation within regions of the same

picture. The main idea of intra prediction is that texture of a frame region is similar

to the regions within the same frame.Intra prediction is applied when there is no

picture for inter prediction or inter prediction is less efficient than intra prediction.

Remaining frames of a video or between random access points will be inter picture

coded. Inter picture method is typically used for most blocks. Inter picture tries to

find a block similar to the one encoding on a previously encoded pictures, referred to

as a reference picture.

The basic idea of inter prediction is that a significant region of a picture content

including objects moves in a scene. From frame to a frame only small changes between

the scene content are seen due to motion. If this motion is used for prediction, the

scene can be represented using motion vectors and a prediction error signal. The
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motion vectors shows how picture regions should move from the reference picture to

the current picture to make the prediction. The prediction error signal has the part

of the picture that was not possible to be described by the motion vector model.

The encoding process of inter-picture prediction includes choosing data related to

the reference picture and motion vector (MV) to be done for predicting each block.

The encoder and decoder apply exactly the same inter-picture prediction signals using

motion compensation (MC) including the MV and mode decision data.

The best motion parameters are chosen and encoded using merge mode and adap-

tive motion vector prediction (AMVP) mode, in which motion predictors are selected

and explicitly coded among several candidates.

For better efficiency of motion-compensated prediction, non-cascaded interpola-

tion structure with 1D FIR filters are used. A filter with seven or eight taps is used

to generate the samples of half-pel and quarter-pel luma samples. A 4-tap filter is

applied for chroma interpolation.

Inter or intra prediction eliminates the correlation within frames or between frames

of a video sequence. The difference between prediction signal and the the current block

contains the regions of the original signal that could not be predicted using inter or

intra prediction methods. Prediction stage helps to reduce the correlation of signals

but still it can be compressed. The difference between the original block and its

prediction (inter or intra prediction) is transformed using a linear spatial transform.

Transformation on the remaining part of residual signal makes the resulted coeffi-

cients to be less correlated. In this method, Karhunen-Loave Transform (KLT) is used

for the optimum decorrelation and energy compaction of the residual signal [13].The

transform coefficients are scaled and quantized. The quantization process is functions

like a mapping to covert the signal amplitudes to a predefined set of quantized values.

Quantization is definitely a nonlinear- lossy operation that can not be inverted.

Careful control setting of quantizer in a current frame and the coded frames in a

video sequence the amount of removed unrelated information can be optimized.
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Transform coefficients are entropy coded, and transmitted afterwards with the

prediction information. In-loop filtering in encoder design is used to enhance the

reconstruction quality of the picture for display. Since it is placed within a loop,

the improvement affects both the quality of current output pictures and reference

pictures for prediction unit. Therefore loop filtering has a strong effect on the overall

performance of the video coding scheme.

From the decoder perspective after receiving bit stream, inverse scaling creates

quantized transform coefficients. Next, quantized transform coefficients are inverse

transformed to find the residual signal. The residual signal is then added to the

prediction, and the result of that addition will be sent to into one or two loop filters

to smooth out artifacts induced by block-wise processing and quantization.

The final result picture representation is stored in a picture buffer to be used

for the prediction of further pictures. Video material to be encoded by HEVC is

expected to be the input as progressive scan imagery. Context adaptive binary arith-

metic coding (CABAC) is used for entropy coding. HEVC applies similar CABAC

scheme to that of H.264/MPEG-4 AVC. Note that CABAC in HEVC has multiple

improvements for its throughput speed (especially for parallel-processing coding de-

signs) and its compression performance, and to decrease its memory requirements for

implementation.

1.4 Overview of 3D HEVC as an Extension to HEVC Standard

Stereoscopic displays are among the one of many 3D displays that can be viewed

with special glasses. In contrast, auto-stereoscopic displays emit view-dependent

pixels and do not require glasses for viewing [14]. JCT-3V has developed 3D extension

to HEVC to support auto-stereoscopic displays. PSNR is the relation of the mean

squared error between the original and the reconstructed video.
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Since the quality of 3D displays is essential for us and PSNR is a common used

quality measure in video coding, we are interested to improve the PSNR in 3D-HEVC

standard.

3D HEVC encoding process starts with splitting the signal into rectangular blocks

called coding tree units (CTUs), predicted from previously decoded data. In encod-

ing process, block transformation based on integer approximation of discrete cosine

transformation, quantization and coding of the transform coefficients are applied.

3D-HEVC encoding process uses block-based hybrid coding architecture, combining

motion-compensated prediction and transform coding with high-efficiency entropy

coding. Therefore, visible discontinuities in the reconstructed images, known as block-

ing boundaries, at the block boundaries are formed. Block-transform coding of the

prediction error followed by coarse quantization is the major reason of blocking arti-

facts [15]. One of the approaches to improve the blocking artifacts is in-loop filtering.

Since the filter is placed within the loop, improving artifacts effects not only the qual-

ity of the output pictures but also the reference pictures for prediction when coding

current pictures. Therefore, loop filters have an essential impact on the performance

of the video coding scheme [8].

1.5 In Loop Filtering

In loop ltering is a part of HEVC standard to remove artifacts from an image.

Two types of loop filter can be used: the first type uses linear filters on a region

of a picture or a complete picture. In the selected region the filter can be applied

as a convolution with the finite impulse response (FIR) in the spatial domain or

multiplication in the frequency domain. Filter parameters can be defined on the

encoder side according to optimization solution for filter coefficients such as using

a Wiener Filter method. The second type is applied on a local spatial domain of a

picture. Based on the local features the filter is applied on small set of samples. HEVC

deblocking filter uses the same concept. In addition to H.264/AVC which includes an



15

in-loop Deblocking Filter, HEVC employs a Deblocking Filter similar to the one used

in H.264/AVC. A deblocking filter operates on block boundary structures that are

made by block-wise motion compensated prediction and block-wise coding of residual

signal. Quantization of residual results in visibility of edges in these blocks. In order

to reduce the impact of deblocking filter is applied on a region across prediction and

transform blocks. The strength of the debocking filter is based on the amount of

blockiness in the boundaries.

In loop filtering in 3D-HEVC is the same as HEVC adding SAO and ALF as two

new filters compared to H.264/AVC. These filters reduce the block artifacts caused by

prediction, transform, and quantization process in coding. Since, in-loop filtering is

used as a feedback for the reference picture, reference pictures will have better quality

for motion- compensated prediction.

In this thesis, an adaptive loop filtering in picture based for both depth and texture

view used for loop filtering and their PSNRs is reviewed. Adding ALF filter, not only

improves the average PSNR in luminance component of texture and depth but also

PSNR improvement in chrominance components is observed which results in better

quality compared to anchor test model.

On the other hand, a fast bilateral filter in picture based for texture view is im-

plemented and added to in-loop filtering block to reduce the artifacts in encoding

process. This implementation is discussed in detailed in next chapter and it is rec-

ommended to apply both Adaptive Loop Filter and Fast Bilateral Filter together for

an optimal solution of running time and quality in 3D HEVC.

1.6 Deblocking Filter

In encoding process, the input video is first divided into blocks called coding tree

units (CTUs), that is broadly equivalent to that of macroblocks in previous standards.

The coding unit (CU) applies a region using the same prediction mode (intra, inter

or skip) and it is demonstrated by node leaf of a quadtree structure. The prediction
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unit (PU) uses a region sharing equal prediction information. The transform unit

(TU), used by another quadtree, defines an area having the same transformation

information [12]. Blocking artifacts are known as objectionable visible discontinuities.

To remove these blocks and improve the quality of the video, adaptive low-pass filters

are applied relative to the boundary level of change. Block based boundaries are

caused by different types of blocks such as TUs, CUs and PUs. Deblocking filter is

based on a decision made to turn on or off. After deciding to use the filter, encoder

applies strong or weak filtering based on the pixel gradients over the boundaries.

Thresholds to determine whether to apply the filter or not are based on Quantization

Parameter table.

1.7 Aim of the Thesis

The main purpose of this thesis is to reduce the processing time of 3D HEVC

encoder by implementing Fast Bilateral Filter and improve the video quality by im-

plementing Adaptive Loop Filter. A second aim is to evaluate the impact of proposed

algorithm on the quality and changes of running time of the output and compare their

results to the results of the original algorithm of 3D HEVC.

In this thesis, we first implement adaptive loop filter in picture based in loop

filtering design. PSNR and running time of proposed method is evaluated in the

first section of Chapter two. We will see that using ALF improves the quality (that

is defined by PSNR) and increases the running time. In the second section, we

implement fast bilateral filter with adaptive loop filter to decrease the running time

of encoding compared to implementation of ALF alone. Results demonstrate the

improvement of quality compared the anchor test model. We will show that this

implementation is an optimal design for in loop filtering block in the sense of quality

and running time.
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Note that improving the quality of a video is not costless, cost of this implemen-

tation is higher bitrate and more bandwidth for transmitting the signal. In other

words, bitrate control what is related to video quality and the file size.

Implemented algorithm is evaluated relative to bitrate changes and the quality

versus the bitrate is demonstrated in graphs and efficiency of mentioned algorithm is

discussed in results section.
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2. DESIGN DESCRIPTION OF FILTERS

2.1 Overview of Adaptive Loop Filter in HEVC

2.1.1 ALF Core Techniques

This section describes ALF core techniques employed in HTM 6 in 3D-HEVC,

the filter shape of ALF is a combination of nine-7-tap cross shape and three-3-tap

rectangular shape, as showed in Figure 2.2. Every square in Figure 2.2 is equivalent to

a pixel. In other words, 19 pixels are used to form a filtered shape with corresponding

value for the sample of 9 pixel positions, and coefficient coding. As can be seen from

Figure 2.2, the filter shape is symmetric which results in finding the coefficients for 9

samples and use the same coefficients for the remaining samples, except the middle

sample, that will decrease the number of coefficient calculation to half [16]. Other

ALF shapes are discussed in [17], where the concept of using diamond filters is shown.

Diamond shapes can be selected among 5 × 5, 7 × 7 or 9 × 7 depending on the rate

distortion cost [17]. In other words, 13 to 39 filter coefficients need to be calculated

using diamond shape, while implemented symmetric filter shape in Figure 2.2 only

requires 9 filter coefficients. This filter shape reduces the number of multiplications

and complexity significantly resulting in decrease of running time compared to using

diamond shapes.

In our implementation, after deblocking filter and sample adaptive offset filters,

ALF is applied to the reconstructed signal. The filter is adaptive because filter coeffi-

cients are signaled in the bitstream. In the coding process, coefficients are calculated

based on the original picture content an distortion of the reconstructed image [18].

The Wiener filter minimizes the mean square error between the desired images, also

known as the original image, and the filtered image, which is the input of the ALF
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filter, leading to higher PSNR. Figure 2.1.1 shows the implementation of ALF in

HEVC encoder. ALF filter is applied after Deblocking Filter and Sample Adaptive

Offset Filter to remove artifacts. Since the output of ALF filter will affect the en-

coding process, improving PSNR in an image will result in higher PSNR of the video

sequence.

ALF can be used for the sequence of coded pictures of a view which is referred to

as the texture view and/or corresponding depth information referred to as depth view.

The ALF can be used in picture based level in which picture-level filter coefficients

are in a picture-level header.

In the picture-based ALF, filter coefficients are derived using the current pic-

ture [19]. Although this encoding process needs to access the entire current picture

multipasses to derive the best coefficients, which leads to slower process of filtering

the image compared to LCU-based filtering. On the other hand, results shown bet-

ter improvement in PSNR for picture based ALF compared to LCU-based method.

The following setting are applied to the ALF for the highest PSNR achieved by 3D-

HEVC. First, ALF LCU-based or picture-based are to be picture based. Second, ALF

is enabled for both texture and depth view.



20

Fig. 2.1. Block Diagram of HEVC Encoder with ALF filter [9]
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2.1.2 Wiener Filter Equation

To implement ALF filter, several notations are introduced:

Filtered signal: f [k], where k = (x, y) is a pixel position (2.1)

Original signal: t[k] (2.2)

FIR filter with N coefficients: {h0, h1, h2, . . . , hN−1} (2.3)

In order to form the filter shape of Figure 2.2 on the to-be-filtered signal, an offset

variable ki in Equation 2.4 is defined.

Filter shape: {k0, k1, k2, . . . , kN−1} , where ki = (xi, yi) (2.4)

Filtered signal is the result of multiplying the filter coefficients with the filtered shape

of the image.

Filtered signal: f [k] =
N−1∑
i=0

hit[k + ki] (2.5)

The Wiener filter deals with Minimum Sum of Squared error between the desired

signal and the filtered signal, SSE equation can be written as:

Sum of squared error: SSE =
∑
k

{f [k]− d[k]}2 (2.6)

After substituting f [k] in Equation 2.6, SSE is:

SSE =
∑
k

N−1∑
i=0

(hi · t[k + ki]− d[k])2 (2.7)

In order to minimize SSE, the partial derivatives of SSE with respect to hi are cal-

culated and the derivatives will equalized to zero in Equation 2.7. That is,

∂ (SSE)

∂ (hi)
= 0

So this implies,

∂
(∑

k

(∑N−1
j=0 (hjt[k + kj]− d[k])2

))
∂(hi)

= 0.
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Hence, ∑
k

(
N−1∑
j=0

N−1∑
i=0

2t[k + kj](hit[k + ki]− d[k])2

)
= 0. (2.8)

Substitution in Equation 2.8,

∑
k

(
N−1∑
j=0

N−1∑
i=0

t[k + kj]t[k + ki]

)
=
∑
k

(
N−1∑
j=0

t[k + kj]d[k]) (2.9)

Considering index i as the number of columns and j as the number of rows, Equation

2.9 can be written as a multiplication of matrixes:

T · ~h = ~D (2.10)

where T = [aij] , aij =
∑

k (t[k + kj]t[k + ki]), ~h = [hj] and ~D =
∑

k t[k + kj]d[k]

As can be seen from Figure 2.2, there are 19 filter coefficients which will be replaced

by hj s . These coefficients are called cj s and j ranges from 0 to 18 . Since the filter

coefficients are symmetric, we need to find c0 to c9 by column elimination,

T · ~c = ~D (2.11)

where T = [aij] , aij =
∑

k (t[k + kj]t[k + ki]), ~h = [hj] , ~D =
∑

k t[k + kj]d[k] and

i, j = {0, 1, · · · , 9}.

The Wiener-Hopf equations in a matrix form can be derived, as shown in Equation

2.11. In this equation, there are two terms in the left side of equation. The first

term is the auto-correlation matrix showed as T related to the to-be-filtered signal.

Second term is the coefficient vector showed as ~c in Equation 2.11. The right side of

Equation 2.11 is the cross-correlation vector showed as ~D. Cross Correlation between

the original signal and the to-be-filtered signal. In order to calculate the optimal filter

coefficients, Gaussian elimination method is used to solve Equation 2.11 [19].
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Fig. 2.2. ALF filter shape in HM 6 test model [19]

2.1.3 Virtual Boundary Processing

As can be seen from Figure 2.2, ALF filter shape consist of 9 × 7 cross with

3× 3 square. Therefore, ALF is formed from 7 taps in the vertical and 9 taps in the

horizontal direction, with a total of nineteen taps for this filter. In other words, the

memory bandwidth requires 19 times of the number of samples in one image in the case

that is no local buffer. For ALF implementation on chip, to prevent the increase in

memory bandwidth, six line buffers can be invested. Note that line buffers need large

chip areas design, especially for high resolution videos. To avoid the implementation

of large chips, virtual boundary (VB) processing [20] is introduced for ALF. The idea

of VB processing is the fact that during filtering one pixel on one region of a VB, pixels

on the other region of the virtual boundary cannot be used. Meaning that, if ALF

filter is placed at the center of the pixel to be filtered, passes a VB, process of filtering

will be modified to prevent applying pixels on the other side of the virtual boundary.

The concept of virtual boundary and ALF filtering process are shown in the Figure

2.3. C9 is the coefficient for the to-be-filtered pixel in the original image and it is in

the center of ALF filter. Virtual boundary is shown in the figure as a red line in the

center. In this figure, C0 to C9 are original filter coefficients and C0’-C9 are updated
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filter coefficients after passing the VB. In the case that ALF is filtering a pixel and it

is not crossing the VB, original filter coefficients (C0-C9) are used to filter the pixels.

On the other hand, assuming that adaptive loop filter shape of the to-be-filtered pixel

crosses the virtual boundary, updated filter coefficients (C0-C9) will be calculated.

Updated filter coefficients are chosen depending on placement of the to-be-filtered

pixel in the original image and will be applied in the filtering process. Mentioned

method does not need local line buffer in pixel filtering process. Considering the

deblocking filter in HEVC, virtual boundary of luma component is located 4 pixels

above the horizontal LCU boundary. Moreover, the virtual boundary of the the

chroma component is placed 2 pixels above the horizontal LCU boundary [19].

Fig. 2.3. Virtual Boundary Processing of ALF [19]
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2.1.4 Syntax Design

Information to filter coefficient parameters and data related to signaling on or off

the filter are coded and transmitted through with the bitstream. As can be seen in

Figure 2.4, picture level header known as APS contains the information related to

the filter coefficient parameters. Slice data stores the data related to the filter on/off

control flags with LCUs. Since the filter coefficient parameters should be signaled

for both luminance and chrominance components, picture level on and off control

flags along with the number of luma filters and the calculated adaptive loop filter

coefficients are stored in the coefficient parameters. Maximum of sixteen luma filters,

one chroma component Cb filter, and one Cr filter in each image can be signaled.

Adaptive loop filter on or off control flags are applied for better choice of adaptation

depending on the situation to use the ALF filter or not. Furthermore, on or off control

flags on slice-level or LCU level filter can be used. Slice header includes filter on or off

control flags for luminance and two components of chrominance. In some cases, the

referenced APS of the slice is lost which is considered as a slice parsing problem. In

order to solve this challenge, signaling slice level filter on or off control flag is applied

where the coding system will decide to apply ALF or not [21]. Now we consider two

modes of slice level on or off flag. While the flag is signaled to be on, LCU-level filter

on/off control flags are interleaved in slice data and coded with LCUs. If the flag

is signaled as off, LCU-level filter on/off control flags will not be coded and all slice

LCUs are considered off for adaptive loop filter [19].

Fig. 2.4. Locations of ALF parameters in the bitstream [19]
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2.1.5 Filter Coefficients

As discussed previously, filter coefficients are calculated by solving Wiener-Hopf

in Equation 2.11. These coefficients are floating numbers, and they can have a large

range. Note that implementation of a variable with a floating point value with a large

range in syntax design is difficult [22]. To avoid this difficulty, the filter coefficient

fractional part and the filter coefficient range must limit to a certain number. As an

example, filter coefficients in the fractional part is limited to 8-bits in HEVC HM-

7.0. Therefore calculated filter coefficients are quantized with maximum of 8 bits. For

non-center filter coefficients (i.e. coefficients other than C9 the filter coefficient) range

in [−1.0, 1.0). For the filter coefficient located in the center i.e. C9 usually has larger

value than the other coefficients ranges in [0.0, 2.0). Considering mentioned two con-

ditions, filter coefficients can be showed using integers in software implementations.

For hardware applications, a single ten bit register is sufficient to save and process

a single filter coefficient. Note that coefficients near the center position can possibly

have large values, when compared to others. Since correlation between neighbor pix-

els is higher compared to further coefficients, larger values for near coefficients are

calculated and chosen. Consider that reduction of C9 distribution can be achieved

using prediction calculated by the other coefficients applying Equation 2.12 [19]:

∆C9 = C9(28 −
8∑
j=0

2Cj) (2.12)

Where ∆C9 shows its prediction error, and 28 is representation of 1.0 with 8-bit

fractional precision.

To exploit different distributions of coefficients, filter coefficients are calculated by

applying Kth order Exponential Golomb codes. As shown in Table 2.1.5, different K

values are chosen for different ALF coefficients. The shortest codeword for zero value

of coefficient is chosen. The second shortest codeword for coefficient magnitude one

is chosen, and so on. Each sign related to non zero coefficient is demonstrated by one

sign bit.
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Table 2.1.
K Values For Different Filter Coefficients

Filter Coefficient Coefficient Value K

C0 -256 to 255 1

C1 -256 to 255 2

C2 -256 to 255 3

C3 -256 to 255 4

C4 -256 to 255 3

C5 -256 to 255 1

C6 -256 to 255 3

C7 -256 to 255 3

C8 -256 to 255 5

C9 0 to 511 0

2.1.6 Testing Adaptive Loop Filter in 3D-HEVC

ALF was an option for 3D HEVC in test model 6. However, it was removed after

version HM-7. In this thesis, we will see the impact of using ALF in quality of a video

by measuring and comparing PSNR of a video using modified test model and anchor

test model. The performance of the proposed method is illustrated under different

bases on the resulting image quality and changes in processing time. The peak signals

to noise ratio shows the quality of decoded video relative to the original video, and

PSNR is defined as:

PSNR = 10 log10

(
R2

MSE

)
Where R is the maximum fluctuation in the original picture. As an example, if the

input is a floating point picture type, then R is one. In the case of 8-bit unsigned

integer picture type, R is 25, and so on.
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The MSE is:

MSE =

∑
m

∑
n | I1(m,n)− I2(m,n) |2

MN

M and N are the number of rows and columns in the input images, I1 and I2 shows

the original and filtered signal.

For implementation of filters, we used HM 6.2.The aim of the HM encoder is

generally to employ a reference for HEVC encoder implementation. In order to test

the technologies and develop the encoder or decoder, HM encoder is beneficial as a

test platform.

The HM, implemented in C++, is not for providing commercialized HEVC en-

coder. The HM encoder runs significantly slowly and it needs a large computer cluster

for implementation. Note that the HM encoder possibly runs slower than ideal in a

lot of cases. Recently, some encoding time considerations have been received while

developing HM software.

Previously, version 0.7 of HM required maximum of 100 hours to encode a 10 sec-

ond video. After improving the running time, up to 20 hours reduction was observed

in later versions. The HM encoder is built based on a rate-distortion quantization

process optimization. The JCT-VC common test conditions introduced a few config-

urations for encoder to be applied in tests. These configurations are [12]:

All intra (AI)

All images are encoded with I slices.

Random access (RA)

A pyramidal structure with a randomly selected picture approximately every

one second is used as a picture reordering. Mentioned configuration simulates

what we use in a broadcasting environment.

Low-delay with B slices (LB)

In this mode, just the first frame is encoded using I slices and random selection

of pictures and picture reordering are not used. This configuration simulates

what we use in a videoconferencing environment.
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The 3D video test set consisted of 4 sequences with the video component in 4:2:0

chroma format: 4 with a progressive HD resolution of 1024 by 768 luma/depth sam-

ples with 30 fps. Multiview test sequences called: Balloons, Kendo, Newspaper and

Lovebird1 are shown in table 2.1.6 and their features are described.
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2.1.7 Results

All 4 sequences were evaluated in a test scenario: with ALF implementation in

picture-based level, video and depth component of 3 views {V0, V1, V2} were coded

and the changes in PSNR is evaluated. Test model of HTM 6.2 was used for ALF

implementation. Tables 2.3, 2.4, 2.5, and 2.6 show the results of average improvement

in PSNR of Y, U and V components using adaptive loop filtering method in picture-

based for both depth and texture view.

In this implementation, Inter-view is restricted to the given QP for the indepen-

dent view and QP + 3 for all dependent views. The QP offset ∆QPD for the depth

QPD in relation to the Video QP (QPD = QP + ∆QPD) was fixed based on sub-

jective assessments and varies from ∆QPD = 0 for video QP = 51 at lowest quality

up to ∆QPD = 9 for video QP ≤ 32 at high quality. With these settings, the same

encoder configuration is used for all sequences and rate points [24]. Different value

of QP was tested for texture inter-view including 30, 35 and 40 with corresponding

inter-view QP depth of 39, 42 and 45.

Luminance(Y component) is a weighted sum of the three colors of light used in

color displays such as televisions which are Red, Green and Blue and it is related

to the brightness of a video. In scientific terms, the brightness of light is measured

in terms of luminance. Chrominance (U and V components) is the signal used in

video systems to show the color information of the picture. Research studies shows

that the human eye and brain are more sensitive to changes in brightness detail than

color [25].

This concept means that improvement in luminance component is more impor-

tant than chrominance and will have more effective for human visual system. ALF

filter shows higher improvement in luminance component compared to chrominance.

Results show up to 2.1 dB improvement in depth and 0.2 dB improvement in texture

of luminance component of test sequences.
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In all test sequences, ALF has better improvement in luminance component of

depth compared to the texture which concludes that ALF is useful for the applications

that accuracy of depth map is important and ALF can significantly enhance the depth

of the video.

There is a question of why ALF can improve the quality of a video. Recall formula

of PSNR defined in section 2.1.6. There is a logarithmic relation between PSNR and

MSE of original and filtered image. A decrease in MSE results in an increase in

logarithmic increase in PSNR. Previously, we discussed that the main purpose of

ALF filter, which is based on Wiener Filter, is to minimize MSE. Therefore, it makes

sense that we observe an increase in PSNR of a video using ALF.

The Balloons video sequence has less details compared to Kendo, Newspaper and

Lovebird1. We see that the improvement in Balloons texture is more significant,

which makes sense because we more details leads to having more edges and higher

frequencies in an image and it is more difficult for a filter to reduce MSE between

original and filtered image with higher details. So generally, ALF can be more efficient

in the sense of higher quality and less running time changes for less detailed video

sequences.

Table 2.3 shows that Balloons sequence with medium details can reach up to 0.7

dB improvement in luminance depth and 0.2 dB improvement in texture. On the

other hand, chrominance component shows maximum of 0.1 dB improvement in all

tested QPs. Also, average bitrate changes shows maximum of 13% and minimum of

0.4% increase which is the result of improving the quality of videos. As can be seen,

encoder running time increases in Balloons sequence by increasing QP. The lowest

encoding time with the highest PSNR for Ballooons in Table 2.3 is observed while

inter-view QP of texture equals to 35 and QP in depth equals to 42. Balloons has the

lowest increase in running time among all the four sequences because of less details.

Now we will take a closer and detailed look at the changes of PSNR relative to

the changes of bitrate. Graph 2.5 shows average of Y-PSNR on Y-axis and average

bitrate in X-axis. We discussed previously that three videos (Video1, Video2, Video3)
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Table 2.3.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Balloons video sequence

Balloons

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture 0.24 0.07 0.07 30 0.4% 1%

Depth 0.72 0 0 39 5.5%

Texture 0.24 0.06 0.1 35 0.8% 1%

Depth 0.49 0 0 42 6.3%

Texture 0.17 0.12 0.12 40 12.12% 4%

Depth 0.67 0 0 45 13.39%

among the multi-view videos were encoded with their corresponding depths (Depth1,

Depth2, Depth3). 6 sub-graphs in 2.5 show higher quality while using ALF filter

compared to the anchor test model.

Comparison of subjective video quality ALF in Balloons video sequence is showed

in the Figure 2.6 with corresponding depth view in Figure 2.7. In this experiment the

inter-view QP is 30 for texture and 39 for the depth and results of encoded images

can be seen. Kendo video sequence in 2.4 shows that encoder running time can vary

from 1 to 4 percent and highest PSNR and lowest running time is observed while QP

equals to 35. As we discussed earlier, since Kendo has higher details compared to

Balloons, less PSNR improvement is observed. Bitrate in depth view of Kendo test

sequence is increased up to 27 percent in and minimum os 0.1 percent is observed in

texture view. Detailed changes of PSNR relative to the changes of bitrate is shown

in Figure 2.8. Results indicate that when bitrate is not very high or very low the

quality improvement can be in maximum value and higher improvement is shown

compared to the video but note that higher PSNR improvement results in higher

bitrate. Comparison of subjective video quality ALF in Kendo video sequence is

showed in the Figures 2.9 with their corresponding depth view in Figure 2.10 while

inter-view QP is 30 for the texture and 39 for the depth.
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Fig. 2.5. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Balloons video sequence

Lovebird1 in table 2.5 the highest improvement of Y PSNR in depth among all the

test sequences. Approximately, 0.1 dB improvement in luminance of texture is seen.

Highest quality improvement is reached for inter-view QP texture of 35 and depth QP

of 42. Lovebird1 shows the lower Detailed changes of PSNR relative to the changes of

bitrate is shown in Figure 2.11. Results indicate that when bitrate is not very high or

very low the quality improvement can be in maximum value and higher improvement

is shown compared to the video but note that higher PSNR improvement results

in higher bitrate. Comparison of subjective video quality ALF in Lovebird1 video

sequence is showed in the Figures 2.12 with their corresponding depth view in Figure
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Table 2.4.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Kendo video sequence

Kendo

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture 0.15 0.03 0.07 30 0.1% 1%

Depth 0.72 0 0 39 13.6%

Texture 0.19 0.06 0.08 35 1.6% 1%

Depth 0.8 0 0 42 14.7%

Texture 0.09 0 0.1 40 0.2% 4%

Depth 1.9 0 0 45 27.2%

Table 2.5.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Lovebird1 video sequence

Lovebird1

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture 0.16 0.04 0.05 30 0.34% 2%

Depth 1.04 0 0 39 1.7%

Texture 0.16 0.06 0.08 35 1.2% 3%

Depth 2.3 0 0 42 8.9%

Texture 0.13 0.06 0.03 40 1.7% 2%

Depth 2.1 0 0 45 8.3%

2.13 while inter-view QP is 30 for the texture and 39 for the depth where one of thee

coded videos is shown as an example. The last detailed video test sequence is shown

in Table 2.6. Newspaper video sequence reaches the highest quality while inter-view

QP texture of 35 and depth QP of 42. Bitrate percentage increases from 0.1 percent in

texture to 12 percent in depth view. Detailed changes of PSNR relative to the changes

of bitrate is shown in Figure 2.14. Results indicate that not very significant Y-PSNR

improvement compared to the previous video test sequences is achieved because this
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Table 2.6.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Newspaper video sequence

Newspaper

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture 0.15 0.05 0.05 30 0.1% 2%

Depth 1.79 0 0 39 7.3%

Texture 0.15 0.04 0.05 35 0.08% 5%

Depth 2.0 0 0 42 10.3%

Texture 0.12 0.06 0.05 40 3.6% 2%

Depth 0.5 0 0 45 12.2%

test sequence is more detailed than the previous sequences. A significant change is

observed for the depth of third coded video while for a constant bitrate around 150

bits/second around 2.5 dB improvement is reached. Comparison of subjective video

quality ALF in Balloons video sequence is demonstrated in the Figure 2.15 with the

depth view in Figure 2.16 while inter-view QP is 30 for the texture and 39 for the

depth where one of thee coded videos is shown as an example. QP is a quantization

parameter to quantize transform coefficients in encoder. The higher the value of QP,

the higher the compression and distortion. We can see that for higher QPs, there will

be more distortion in images, so using ALF will not improve the quality of video.

All four test sequences show that best Quantization Parameter for the highest

PSNR is while inter-view QP texture is 35 and depth QP is 42. As can be seen,

where the general encoder running time increased by 1 to 5%, showing that picture-

based ALF can make the process of encoding slower but improve PSNR in luminance

and chrominance components.

In the next section we propose an algorithm to make encoding process faster and

more efficient for the applications that quality and time processing is an important

issue.
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(a) Input picture of Balloons test sequence.

(b) Reconstructed picture using ALF.

(c) Reconstructed picture using original software.

Fig. 2.6. Comparison of subjective video quality ALF in Balloons video sequence.
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(a) Input depth view of Balloons test sequence.

(b) Reconstructed depth view using ALF.

(c) Reconstructed depth view using original software.

Fig. 2.7. Comparison of subjective depth view quality ALF in Bal-
loons video sequence.



39

Fig. 2.8. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Kendo video sequence
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(a) Input picture of Kendo test sequence.

(b) Reconstructed picture using ALF.

(c) Reconstructed picture using original software.

Fig. 2.9. Comparison of subjective video quality ALF in Kendo video sequence.



41

(a) Input depth view of Kendo test sequence.

(b) Reconstructed depth view using ALF.

(c) Reconstructed depth view using original software.

Fig. 2.10. Comparison of subjective depth view quality ALF in Kendo
video sequence.
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Fig. 2.11. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Lovebird1 video sequence
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(a) Input picture of Lovebird1 test sequence.

(b) Reconstructed picture using ALF.

(c) Reconstructed picture using original software.

Fig. 2.12. Comparison of subjective video quality ALF in Kendo video sequence.
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(a) Input depth view of Lovebird1 test sequence.

(b) Reconstructed depth view using ALF.

(c) Reconstructed depth view using original software.

Fig. 2.13. Comparison of subjective depth view quality ALF in Love-
bird1 video sequence.



45

Fig. 2.14. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Newspaper video sequence
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(a) Input picture of Newspaper test sequence.

(b) Reconstructed picture using ALF.

(c) Reconstructed picture using original software.

Fig. 2.15. Comparison of subjective video quality ALF in Newspaper
video sequence.
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(a) Input depth view of Newspaper test sequence.

(b) Reconstructed depth view using ALF.

(c) Reconstructed depth view using original software.

Fig. 2.16. Comparison of subjective depth view quality ALF in News-
paper video sequence.
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2.2 Fast Bilateral Filter

2.2.1 Overview of Deblocking Filter in HEVC

Blocking is an artifact that is cause by two sources: Inter predicted using motion

compensation or intra predicted from a spatial neighborhood result in forming blocks

of picture. Intra or inter prediction effects block based parts where the boundaries

of the neighboring blocks are not significantly related. Therefore, the blocks of pic-

ture after prediction becomes visible.In addition,block transform process of transform

coding in HEVC leads to forming blocking artifacts. Increase in amount of quanti-

zation makes the block boundaries between neighboring transform more visible due

to reconstruction of the independent neighboring blocks [8]. Deblocking filter is used

to reduce the artifacts resulting from independent coding blocks. This filter first fil-

ters the vertical edge using horizontal filter. Afterwards, a horizontal edge is filtered

using vertical filtering. Deblocking filtering is applied to 8 × 8 block boundaries. A

questionable design process of deblocking filtering is to decide whether or not to filter

a special block boundary and to decide on choosing either a normal or a strong filter

to be applied. Deblocking is applied on a block boundary when all of the following

conditions are fulfilled: 1) the block boundary is either a prediction unit or trans-

form unit boundary; 2) the boundary strength is greater than zero; and 3) changes

of signal on both sides of a block boundary is below a threshold [15]. According to

Figure 2.17 if Equation 2.13 is satisfied, filtering for the first four lines is turned on

and strong/weak filter selection process is applied:

dp0 + dq0 + dp3 + dq3 < β (2.13)

On the other hand if conditions 2.14 and 2.15 are met, strong filter is used for the

first four lines,

2(dp0 + dq0) < (β/4),

| p30 − p00 | + | q00 − q30 |< (β/8)

and | p00 − q00 |< (2.5tC)

(2.14)
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Fig. 2.17. Red boxes represent pixels involving in filter on/off decision
and strong/weak filter selection [26]

2(dp3 + dq3) < (β/4),

| p33 − p03 | + | q03 − q33 |< (β/8)

and | p03 − q03 |< (2.5tC)

(2.15)

If conditions 2.16 and 2.17 are met, strong filter is used for filtering of the second 4

lines. Otherwise, weak filter is used.

2(dp4 + dq4) < (β/4),

| p34 − p04 | + | q04 − q34 |< (β/8)

and | p04 − q04 |< (2.5tC)

(2.16)

2(dp7 + dq7) < (β/4),

| p37 − p07 | + | q07 − q37 |< (β/8)

and | p07 − q07 |< (2.5tC)

(2.17)
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Where,

dp0 =| p20 − 2p10 + p00 |

dp3 =| p23 − 2p13 + p03 |

dp4 =| p24 − 2p14 + p04 |

dp7 =| p27 − 2p17 + p07 |

dq0 =| q20 − 2q10 + q00 |

dq3 =| q23 − 2q13 + q03 |

dq4 =| q24 − 2q14 + q04 |

dq7 =| q27 − 2q17 + q07 |

Threshold β and tC used in filter on/off decision, strong and weak filter selection

and weak filtering process are derived based on value of two neighboring blocks with

common block edge [26].

2.2.2 Overview of Fast Bilateral Filter

This section describes Fast Bilateral Filter method used for 3D-HEVC for in-loop

filtering implementation. Bilateral filter is a nonlinear filter that smoothes an image

during which it preserves the strong edges. Since Bilateral Filter can eliminate the

artifacts in an image, it can be used as a part of in-loop-filtering block in 3D-HEVC.

In Bilateral Filter, a pixel is replaced by a weighted average of its neighbors. The

idea is that since neighbor pixels are probably correlated, due to small variation in an

image, it is reasonable to find the mean of the near pixels. In contrast, noise corrupting

near pixels are less correlated, so impact of noise will be reduced by averaging the

neighbors. This Bilateral Filtering process can be slow [27]. Bilateral Filter outputs

each pixel as a weighted average of its neighbors. Table 2.7 summarizes the notations

for this filter. In bilateral filter, the weight assigned to each neighbor decreases with

the distance in the image plane and the distance on the intensity axis. Using a
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Table 2.7.
Notation Used for Bilateral Filter

S spatial domain

‖ x ‖ L2 norm of vector x

⊗ convolution operator

Gσ 1D Gaussian

Ib result of the bilateral filter

R range domain

p ∈ S pixel position

gσs,σr 3D Gaussian

σs, σr Gaussian parameters(space and range)

W b normalization factor
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Gaussian filter with a one dimensional Gσ as a decreasing function, and considering

an imageI, the result Ib of the bilateral filter is defined by:

Ibp =
1

W b
p

∑
q∈S

Gσs (‖ p− q ‖)Gσr (| Ip − Iq |) Iq (2.18)

W b
p =

∑
q∈S

Gσs (‖ p− q ‖)Gσr (| Ip − Iq |) (2.19)

The parameter σs shows the size of pixels surrounding a filtered pixel, and σr shows

how much a neighbor pixel is down-weighted due to the a intensity difference. W b

normalizes the sum of the weights. A signal processing approach for the Fast Bilateral

Filter is used to approximate Bilateral Filter function. In this method, a homogeneous

intensity allows us to obtain the normalization termW b
p as a homogeneous component.

both sides of Equation 2.18 by W b
p . Rewriting the equations using vectors:W b

pI
b
p

W b
p

 =
∑
q∈S

Gσs (‖ p− q ‖)Gσr (| Ip − Iq |)

Iq
1

 (2.20)

WhereGσs andGσr are Gaussian functions, I the input image, S is the spatial domain,

and Ib the filtered image after applying the bilateral filter. As we know, the Bilateral

Filter replaces each pixel with a weighted neighbor pixels called Wq:W b
pI

b
p

W b
p

 =
∑
q∈S

Gσs (‖ p− q ‖)Gσr (| Ip − Iq |)

IqWq

Wq

 (2.21)

Considering calculation of (WqIq,Wq) to each pixel q, we define the filtered pixels as

linear combinations of their neighbor pixels. Basic idea of using this method is similar

to homogeneous coordinates used in geometry projective. Adding a new coordinate

linearize the calculations. Dividing by W b is done at the last step. Vector (WI,W )

as a two dimensional vector is called the homogeneous intensity [27].

As mentioned previously, this method introduces a new coordinate called intensity

of the signal to keep track of the intensity and improve the accuracy of filtering an

image. Extra dimension ξ and the intensity I for each pixel is used. We consider

the Kronecker symbol δ(ξ) (δ(0) = 1, δ(ξ) = 0 otherwise) and the intensity ranging
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within the R . Now, we rewrite Equation 2.21 using δ(ξIq) so that the terms are

canceled when ξ 6= Iq,W b
pI

b
p

W b
p

 =
∑
q∈S

∑
ξ∈R

Gσs (‖ p− q ‖)Gσr (| Ip − ξ |) δ (ξ − Iq)

IqWq

Wq

 (2.22)

We rewrite the Equation 2.22:W b
pI

b
p

W b
p

 =
∑
q∈S

∑
ξ∈R

Gσs (‖ p− q ‖)Gσr (| Ip − ξ |)

δ (ξ − Iq) IqWq

δ (ξ − Iq)Wq

 (2.23)

The product GσsGσr defines a separable Gaussian kernel on S ×R. The right side of

the formula shows the convolution of Gaussian kernel and (wi, w) :

(wbib, wb) = gσs,σr ⊗ (wi, w) (2.24)

Where gσs,σr shows the separable Gaussian kernels of GσsGσr on S ×R.

Fast Bilateral algorithm is summarized as the following. In this filter, image I,

Gaussian parameters σs and σr and sampling rates ss and sr are the inputs for this

algorithm and output is the filtered image Ib. In the following, wd is the down sampled

weights and id is the down sampled intensity.

1. Initialize all wdid and wd values to 0.

2. Compute the minimum intensity:

Imin , min
(x,y)∈S

I(X, Y )

3. For each pixel (X, Y ) in spatial domain S with an intensity I(X, Y ) in the range

R,

a) Find the homogeneous vector (wi, w):

(wi, w) , (I(X, Y ), 1)

b) Calculate the down-sampled pixel coordinates,

(x, y, ξ) ,

([
X

Ss

]
,

[
Y

Ss

]
,

[
I(X, Y )− Imin

Sr

])



54

c) Update the down-sampled S ×R spacewdid(x, y, ξ)
wd(x, y, ξ)

 ,

wdid(x, y, ξ)
wd(x, y, ξ)

+

wi
w


4. Convolve (wdid, wd) with a 3D Gaussian g whose parameters are σs/ss and σr/sr

(wbdi
b
d, w

b
d) , (wdid, wd)⊗ g

5. For each pixel (X, Y ) ∈ S with an intensity I(X, Y ) ∈ R

Ib(X, Y ) ,
W bIb(X, Y )

W b(X, Y )

All the above steps lead the fast bilateral filter to keep track of intensity and use a

3D Gaussian considering intensity as an additional coordinate to the pixel position.

In this method, down-sampled signal is convolved with the Gaussian kernel instead

of the whole image without affecting the quality of the image. Mentioned fact helps

the process of filtering to be faster than bilateral filtering. For evaluation of Fast

Bilateral Filter technique in a professional environment, an eight mega pixel picture

is processed. In this implementation, a running time of 2.5s is obtained. An image

with DVD resolution, which is 576× 320 ' 0.2 mega pixel, a running time of about

57ms near the 40ms is required to reach real-time performances, which is a 25Hz

frame rate. If we run fast bilateral filter on machine with an AMD Opteron 252 at

2.6MHz and 1MB of cache, the running time is 38ms. In other words, FBF algorithm

software implementation can reach real-time video processing [27].

2.2.3 Implementation of Bilateral Filter in 3D-HEVC

Figure 2.18 shows the encoder block diagram of this implementation, which con-

tains four in-loop filtering blocks: fast bilateral filter (FBF), deblocking filter (DF),

sample adaptive offset (SAO), and Adaptive Loop Filter (ALF). The encoder shown

in Figure 2.18 picture is split into block-shaped regions. The reference picture is
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coded using intra-picture prediction which uses the closest data related to the region

of the reference image. The encoding process of inter-picture prediction choses data

related to the reference frame and motion vector (MV) to be done for predicting each

block.

Afterwards, the residual between the original block and its prediction (inter or

intra prediction) is transformed using a linear spatial transform. The transform co-

efficients are quantized, entropy coded, and sent with the prediction information to

the decoder.

The quantized coefficients are inverse quantized and inverse transformed and

would be reconstructed to be used in prediction unit. reconstructed signal is also

sent to the in-loop filtering to be smoothed.

After in-loop filtering the picture will be saved in a picture buffer to be used for the

prediction of further pictures. As can be seen, loop filter is functioning as a feedback

for prediction unit. Since loop filter can remove the artifacts, it has an important

role in the quality of the image and improving the quality of the reference picture

results in improvement of dependent coded pictures. In this implementation, FBF is

located at the first stage of filtering process to reduce artifacts for each picture. Note

that DF uses predefined filters. In contrast, sample adaptive offset and adaptive loop

filter exploit the original pixels of the current picture to decrease the mean difference

between the original pixels and the reconstructed pixels. In other words, SAO filter is

adaptive in the sense that it adds an offset and uses a finite impulse response (FIR)

filter, with coded additional data signaling filter coefficients and the offset values.

Adaptive loop filter is applied at the the end of post processing filtering of every

picture. ALF is considered as a method to detect and remove artifacts formed by the

previous coding blocks [19].

Strong Deblocking Filter affects three pixels using four pixels on each side of the

block boundary. On the other hand, weak Deblocking Filter affects at most two pixels

using three pixels on each side of the block boundary. This concept means that the

more the use of the strong filter the slower the process of coding. In order to speed
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Fig. 2.18. HEVC Encoder Implementation with Fast Bilateral Filter
and Adaptive Loop Filter [19].

up the coding process,removing the artifacts using Fast Bilateral Filter just before

applying Deblocking Filter is an effective method. Fast bilateral filter replaces each

pixel in the image with its weighted neighbor pixels and smoothes images without

effecting the strong edges which causes neighbor pixels to be more correlated.

Moreover, block boundaries in images show larger variation in neighbor pixels.

Therefore, Fast Bilateral Filter removes the block boundaries to some extend which

causes thresholds of block boundaries taking place in weak Deblocking Filter most

of the times. As discussed above, this process reduces choosing strong Deblocking

Filter forcing the encoder time to reduce up to 20% with minimal change in PSNR and

quality of the video. The concept of using bilateral filter was demonstrated previously

in HEVC design [28]. In this implementation, the main idea is to implement an
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adaptive bilateral filter along with adaptive loop filter that can improve the quality

with benefit of bitrate reduction.

2.2.4 Testing Fast Bilateral Filter in 3D-HEVC

Proposed algorithm uses FBF just before Deblocking Filter and it removes the

artifacts as much as possible which helps choosing weak Deblocking Filter and it

reduces using strong DF leading to faster process of encoding. Later, the Sample

Adaptive Offset is applied and finally ALF is used to increase PSNR of video. PSNR

is defined previously in Section 2.1.6.

For implementation of filters we used HM 6.2. The aim of the HM encoder is to

provide a reference implementation of an HEVC encoder, useful as a test platform

for evaluating technologies and for independent encoder or decoder development.

For more information please see Results section of Adaptive Loop Filter design.

The 3D video test set consisted of 4 sequences with the video component in 4:2:0

chroma format: 4 with a progressive HD resolution of 1024 by 768 luma/depth samples

with 30 fps. Multiview test sequences are called: Balloons, Kendo, Newspaper and

Lovebird1 are shown in table 2.1.6 and their features were described.

2.2.5 Results

Encoder was evaluated in a test scenario: with FBF and ALF implementation in

picture-based level, video and depth component of 3 views V0, V1, V2 were coded

and the changes in PSNR and coding running time is evaluated. Test model of HTM

6.2 was used for implementation. Tables 2.8, 2.9, 2.10, and 2.11 show the results of

average changes in PSNR of Y, U and V components using ALF in picture-based for

both depth and texture view and Fast Bilateral Filter in pictured based for texture

view. The 3D video of 4 multiview test sequences called: Balloons, Kendo, Newspaper

and Lovebird1 described previously was used to test the results.
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As can be seen from the Table 2.8, encoding time decreased up to 20 percent for

test sequences. The most impact has on Balloons because Balloons has less details

compared to Kendo, Lovebird1 and Newspaper. Since Bilateral Filter preserves strong

edges, test sequences with more details will not be effected smoothing Bilateral Filter

and more number of strong DFs will be used instead of weak ones. It means that

processing time for more detailed images does not decrease as much as edgy images.

Table 2.8 shows that texture luminance quality is reduced for 0.1 dB compared to

use ALF alone. Chrominance component does not change at all for depth or texture

view of video sequences.

Proposed algorithm in paper [28] uses an adaptive bilateral filter and adaptive loop

filter in HEVC coding. Results show that proposed algorithm can reach maximum

of 7 percent bitrate reduction, while PSNR improvement is maximum of 0.2 dB [28].

Our proposed method uses the concept of an approximation of bilateral filter known

as fast bilateral filter instead of bilateral filter and extending to 3D-HEVC encoder.

In other words, our method is used for both depth and the texture view of a multi-

view test sequence, improving the PSNR up to 2 dB and maximum of 12 percent

reduction in bitrate.

Implementation of using other non linear filters such as trilateral filter along with

adaptive loop filter in HEVC encoder is demonstrated in [29]. Using trilateral filter

and adaptive loop filter improves the Y-PSNR with a maximum of 0.1, while our

proposed method improves the Y-PSNR up to 0.2 dB in texture and 2 dB in depth

view. Proposed algorithm in [29] increases running time ranging from 20 percent to 33

percent while our proposed has a superiority in running time decrease, ranging from 2

to 20 percent depending on the quantization parameter and multiview test sequence.

In our proposed method, a maximum of 20% reduction in encoding time is observed

for Balloons while inter-view QP for texture is 30 and for the depth is 39. Results show

that bitrate for discussed algorithm is decreased up to 1.8 percent and generally not

much of change in bitrate is observed. In other words, this implementation is optimal

in the sense of bitrate changes. Detailed changes of PSNR relative to the changes of
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Table 2.8.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Balloons video sequence

Balloons

Y (dB) U(dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture -0.1 0 0 30 0.1% -20%

Depth 0.1 0 0 39 -1.8%

Texture -0.1 0 0 35 -0.6% -10%

Depth 0.2 0 0 42 2.1%

Texture -0.1 0 0 40 -0.6% -7%

Depth 0.5 0 0 45 1.5%
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bitrate is shown in Figure 2.19. Results indicate that Y-PSNR is improved compared

using FBF with ALF in depth view compared to using ALF alone. Comparison of

Fig. 2.19. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Balloons video sequence

subjective video quality ALF in Balloons video sequence is showed in the Figure 2.20

with corresponding depth view in Figure 2.21. In this experiment the inter-view QP

is 30 for texture and 39 for the depth and results of encoded images can be seen. As

can be seen from the figure, the color intensity is closer to the original input picture

compared to the anchor test model. Therefore, this algorithm can increase the quality

of the encoded videos. Also, in depth view we can see the block artifacts are much

more reduced compared to the anchor test model. Kendo video sequence results is
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depicted in Table 2.9. Up to 0.1 dB improvement is observed compared to using ALF

for in-loop filtering design. Maximum of 6 percent reduction in running time can

be seen and there is not much of difference in reduction of encoder time relative to

changes of QP. All the chrominance component of texture and depth stayed the same

which shows that this method reduces encoding time without affecting the quality

compared to design of ALF. Table 2.9 indicates that bitrate either does not change

or it is reduced by 2 percent which means that this algorithm is optimal for Kendo

test sequence.

Table 2.9.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Kendo video sequence

Kendo

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture -0.2 0 0 30 0.3% -5%

Depth 0.1 0 0 39 -2.2%

Texture -0.1 0 0 35 -0.4% -5%

Depth -0.1 0 0 42 0.2%

Texture 0.1 0 0 40 -1.5 %-6%

Depth 0.1 0 0 45 -0.3%

Detailed changes of PSNR relative to the changes of bitrate is shown in Figure 2.22.

Results indicate that when bitrate is not very high or very low the quality improve-

ment can be in maximum value and higher improvement is shown compared to the

video but note that higher PSNR improvement results in higher bitrate. Comparison

of subjective video quality ALF in Kendo video sequence is showed in the Figure 2.23

with their corresponding depth view in Figure 2.24 while inter-view QP is 30 for the

texture and 39 for the depth.

Previously, we discussed that using ALF improves PSNR of the images. Since

FBF does not reduce the quality of an image it can be used as a way to process

coding of pictures faster. In other words, this implementation is optimal because
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first it improves the quality of coding pictures compared to the original encoder and

second, it process the encoding faster and third, it does not increase the bitrate.

Lovebird1 is demonstrated in Table 2.10. This test sequence does not show any

changes in PSNR of texture or depth. Instead, maximum of 10 percent of encoding

time reduction is observed while inter-view QP for texture is 40 and for the depth is

45. Bitrate changes is very small in Lovebird test sequence up to 1 percent bitrate

reduction is observed.

Table 2.10.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Lovebird1 video sequence

Lovebird1

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time %

Texture 0 0 0 30 0.2% -2%

Depth 0 0 0 39 0.4%

Texture 0 0 0 35 0% -7%

Depth 0 0 0 42 -0.3%

Texture 0 0 0 40 -1% -10%

Depth 0.1 0 0 45 0.9%

Detailed changes of PSNR relative to the changes of bitrate is shown in Figure

2.25. Results indicate that not much of changes in quality is observed compared to

ALF implementation but bitrate can be reduced up to 1 percent in texture view.

Comparison of subjective video quality of proposed algorithm in Lovebird1 video

sequence is showed in the Figures 2.26 with their corresponding depth view in Figure

2.27 while inter-view QP is 30 for the texture and 39 for the depth where one of thee

coded videos is shown as an example. As can be seen, the brightness and color of

encoded video using proposed algorithm is more closer to the input video sequence

compared to the anchor test model. In addition, the block artifacts in depth view after

implementing the proposed algorithm is less visible than the original encoder. The

Newspaper test sequence in Table 2.11 shows reduction in PSNR of the luminance
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component of texture and depth for 0.3 dB. On the other hand, PSNR for chrominance

component does not change. This test sequence does not change very much in encoder

time processing. A maximum of 3 percent of reduction in time while QP of inter-view

for texture is 35 is observed.

Table 2.11.
Average PSNR changes in Luminance and Chrominance components
with different QP Values for Newspaper video sequence

Newspaper

Y (dB) U (dB) V (dB) Inter-view QP Bitrate % Encoder Time%

Texture -0.2 0 0 30 0.2% -2%

Depth -0.2 0 0 39 1.3%

Texture -0.2 0 0 35 -0.1% -3%

Depth -0.3 0 0 42 -10%

Texture -0.1 0 0 40 0.1% -3%

Depth -0.3 0 0 45 -12.3%

Comparison of subjective video quality ALF in Balloons video sequence is demon-

strated in the Figure 2.29 with the depth view in Figure 2.30 while inter-view QP is

30 for the texture and 39 for the depth where one of thee coded videos is shown as

an example. Generally, using Fast Bilateral Filter with ALF reduces the running

time of encoder from 2 to 20 percent compared to implementation of ALF by itself.

In addition, PSNR can either be decreased or increased minimally for different test

sequences compared to using ALF filter. This can be helpful for the applications that

running time is essential. Although we observed reduction in the quality of the image

compared to implementation of ALF alone, combination of ALF and FBF improves

the quality compared to the anchor test model while it reduces the running time.
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(a) Input picture of Balloons test sequence.

(b) Reconstructed picture using proposed algorithm.

(c) Reconstructed picture using original software.

Fig. 2.20. Comparison of subjective video quality ALF in Balloons video sequence.
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(a) Input depth view of Balloons test sequence.

(b) Reconstructed depth view using proposed algo-

rithm.

(c) Reconstructed depth view using original software.

Fig. 2.21. Comparison of subjective depth view quality of proposed
algorithm in Balloons video sequence.
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Fig. 2.22. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Kendo video sequence
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(a) Input picture of Kendo test sequence.

(b) Reconstructed picture using proposed algorithm.

(c) Reconstructed picture using original software.

Fig. 2.23. Comparison of subjective video quality of proposed algo-
rithm in Kendo video sequence.
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(a) Input depth view of Kendo test sequence.

(b) Reconstructed depth view using ALF.

(c) Reconstructed depth view using original software.

Fig. 2.24. Comparison of subjective depth view quality ALF in Kendo
video sequence.
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Fig. 2.25. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Lovebird1 video sequence.
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(a) Input picture of Lovebird1 test sequence.

(b) Reconstructed picture using proposed algorithm.

(c) Reconstructed picture using original software.

Fig. 2.26. Comparison of subjective video quality of propose algorithm
in Kendo video sequence.
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(a) Input depth view of Lovebird1 test sequence.

(b) Reconstructed depth view using proposed algo-

rithm.

(c) Reconstructed depth view using original software.

Fig. 2.27. Comparison of subjective depth view quality of proposed
algorithmin Lovebird1 video sequence.
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Fig. 2.28. Average PSNR in three encoded videos with corresponding
depth views relative to bitrate for Newspaper video sequence
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(a) Input picture of Newspaper test sequence.

(b) Reconstructed picture using proposed algorithm

(c) Reconstructed picture using original software.

Fig. 2.29. Comparison of subjective video quality of proposed algo-
rithm in Newspaper video sequence.
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(a) Input depth view of Newspaper test sequence.

(b) Reconstructed depth view using proposed algo-

rithm.

(c) Reconstructed depth view using original software.

Fig. 2.30. Comparison of subjective depth view quality of proposed
algorithm in Newspaper video sequence.
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3. APPLICATION CONSIDERATION

The results show that the proposed algorithm is adaptive in the sense that based on

the application different settings of Bilateral Filter and Adaptive Loop Filter can be

used. Three settings are suggested for different applications.

• If a low complexity is needed where quality (higher PSNR) and processing time

is not an important issue for an application such as small devices the Adaptive

Loop Filter and Fast Bilateral Filter can be signaled off. As discussed previously,

the design of original test model with just two in-loop filters including Sample

Adaptive Offset and Deblocking Filter, which is shown in Figure 1.3. This

design has the lowest complexity with the minimum quality compared to other

settings.

• If the quality is the most important aspect where running time and the com-

plexity is not an essential issue, we suggest signaling the Adaptive Loop Filter

to be on and Fast Bilateral filter to be off shown in Figure 2.1.1.

Above design has three in-loop filtering which first filters an image using SAO

and then DF removes the artifacts and at the end ALF minimizes the Minimum

Square Error to increase PSNR of the video. ALF filter has higher impact on

the depth and it has been observed up to 2dB improvement in the quality of

encoded video. As discussed, this setting has higher complexity compared to

the first setting, in Section 2.1.3, we have discussed that ALF can be designed

using virtual boundary to avoid the memory bandwidth increase.
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Note that implementation of ALF requires larger chip design and longer pro-

cessing time because of finding the optimum solution for the coefficients which

increases the running time resulting in more complexed design of encoder com-

pared to the previous settings. This fact will make the maximum quality with

1-5 percent of increase in running time of encoding multiview video sequences

• If both high quality and low running time are important, signaling FBF and

ALF filter to be on is suggested. This setting lets the running time to decrease

up to 20 percent compared to the second setting.

Although setting can decrease the quality of video up to 0.1 dB in luminance

component of texture compared to using ALF alone, but still the PSNR will

increase compared to the anchor test model which was discussed in the first

setting. In-loop filtering design of mentioned procedure includes first using

FBF to remove artifacts due to block partitioning and then filtering images

using DF and SAO and using ALF as the last stage of in-loop filtering. Using

FBF and ALF filter compared to the previous settings lead the encoder to be

more complex. Although this design has the highest complexity, it has the

optimal running time and optimal PSNR. So, using ALF and FBF together is

recommended for in-loop-filtering design. Implementation of the algorithm for

HEVC encoder was shown in Figure 2.18.
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4. CONCLUSION AND FUTURE WORK

The work described in this thesis is concerned with the development adaptive in-loop

filtering design for 3D-HEVC. The idea of designing new in-loop-filtering was consid-

ered because in-loop filtering is the last stage of encoding in HEVC and improvement

in quality of an image can improve the total performance. As we mentioned previ-

ously, since the filter is placed within a loop, the enhancement not only affects the

quality of the output pictures but also the reference pictures. Loop filters have a

strong effect on the overall performance of the video coding scheme.

In this thesis, a new model consisting of design of two filters was proposed to

reach the optimal running time and quality. An investigation of Fast Bilateral Filter

and Adaptive Loop Filter was presented together to implement 3D-HEVC encoder.

Interesting features of the proposed algorithm was described and the method was

shown to be effective and improved in PSNR compared to the anchor test model.

To reach the maximum PSNR, it is suggested to use the Adaptive Loop Filter.

Adaptive Loop Filter is based on Wiener Filter. The main purpose of ALF is to

minimize the Mean Square Error. Since MSE is related to PSNR directly as MSE

decreases, PSNR is increased logarithmic. Using Adaptive Loop Filter reached up to

2.1 dB of improvement in luma component of depth and up to 0.8 dB improvement

in texture. Chroma component does not show much of difference in PSNR. Running

time of ALF filter increases 1 to 5 percent compared to anchor test model which can

be neglected if real time encoding is not very important subject.

Later on, design of Fast Bilateral Filter with Adaptive Loop Filter was proposed

for in-loop filtering in encoder. This design seems to be the optimal solution since the

running time decreases up to 20 percent and PSNR decreases up to 0.1 dB compared

to using ALF filter.
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Fast Bilateral Filter is an approximation of Non-linear Bilateral Filter that keeps

track of intensity. In this method, intensity is considered a homogeneous coordinate

added to the pixel position to be used in 3D-Gaussian filtering. Fast Bilateral Filter

smooths and image and removes the block artifacts of an image which can reduce

using of strong Deblocking Filter and uses weak Deblocking Filter resulting in faster

processing of encoding. Strong DF uses at most three pixels in the neighbor of a

to-be-filtered pixel while weak DF changes at most two neighbor pixels which is the

reason of fast encoding in the proposed method.

Although the results have showed the effectiveness of the in-loop filtering design,

it could be further developed in a number of ways:

Extending the algorithm to run on the decoder

The proposed algorithm was implemented and tested on the HEVC encoder. It

is recommended to implement the proposed algorithm and observe the changes

for the decoder.

Using a Block based Fast Bilateral Filter

The Fast Bilateral Filter which was used for this implementation was picture

based, which means that it filters the whole image. It is suggested to implement

a block based Bilateral Filter. This method seems to be faster than picture-

based method since the whole image will not be filtered.

Considering Implementation of other nonlinear filters

The proposed method uses Bilateral Filter as a main idea to implement a Fast

Bilateral Filter. It is recommended to implement other types of nonlinear filters

for different applications. For example, non linear filters can be designed to

improve PSNR of reconstructed video even better than implementation of ALF.
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APPENDIX. PROCESS OF BUILDING HEVC STREAM

The main idea of this thesis is to encode the video with HM-6.2 and produce the HEVC

stream. In this process Adaptive Loop Filter is implemented and the resulting frames

are compared to the frames of encoding HEVC Test Model anchor (HM-6.2). HM is

provided as a source code to build on different platforms.Windows based of Visual

Studio Command Prompt (2010) is the tools used. In addition, a Linux version of

software is available for use. System should have few YUV mutiview test sequences

and as input and YUV Player to view the encoded video. The following steps show

encoding the video with HM-6.2 [30].

1. Download the source code

Download the source code with the desired version of 3D HEVC [1].

2. Build it!

Start Visual studio command prompt. Change the directory to encoder located

in trunk/build directory and build HM vc10.This version is latest version of

visual studio(2010) offered by HM test model.

% msbuild /p:Configuration=Release HM vc10.sln

3. Encode it!

You can find the sample of configuration files in cfg folder. After copying any

configuration file to the folder where the TAppEncoder.exe is located, you can

run the encoder. Note that in configuration file settings related to the name of

the input yuv file and other settings such as QP can be set. TAppEncoder.exe

is located in Trunk/bin/vc10/win32/release. Enter the following command in

Command Prompt 2010 window:

%TAppEncoder.exe -c test.cfg
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4. Output in YUV player Using the above steps we can encode a YUV input

file and it creates out.hevc, which is the HEVC stream. The final output is a

YUV file which is decoded from the HEVC stream and the output of calculating

PSNR and other information can be stored in a text file.


