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ABSTRACT

Anjilivelil, Aja M.S.E.C.E, Purdue University, August 2015. Modeling, Simulation,
and Optimization of Traffic Intersections using Petri nets. Major Professor: Lingxi
Li.

With the increasing number of vehicles on the road and the amount of time people

spend driving their vehicles, traffic control and management has become an impor-

tant part within logistics. Effective traffic control would involve traffic signal control

and control over vehicle movement. Since Petri nets are versatile enough to repre-

sent traffic signals and traffic flow, it has become an important tool in urban traffic

control. Many traffic systems are modeled using hybrid Petri nets. Chapter 1 briefly

talks about traffic management systems and previous related work in the area of traf-

fic control. Chapter 2 is a basic background on various Petri nets used in the study.

The section also uses examples to demonstrate the working of Petri nets. Chapter 3

introduces the need for optimization in various industry. And then, it discusses dif-

ferent steps involved in optimizing a process. Chapter 4 discusses the existing model

of two one-way intersection. In an effort to understand the model better, simulations

are also carried out. Then, drawbacks of the existing model are discussed. This paves

way for a new, improved, and realistic version of two one-way intersection. Various

optimization steps discussed in Chapter 3 is used to optimize traffic light of the im-

proved model. And then, a comparison between existing model and improved model

is carried out. Chapter 5 expands the study of traffic models by connecting two dif-

ferent one-way intersection through a road (thus making it a network). Optimization

and simulation of the connected-intersection model is also carried out. Chapter 6 is

the summary which will provide a brief overview about each chapter.
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1. INTRODUCTION

The number of vehicles on the road has steadily increased ever since automotive in-

dustry began to prosper. During early ages, traffic control was established mainly

through traffic signals and signs. But with the increasing number of people/vehicles

in cities/towns, traffic control and management required the use of much more so-

phisticated tools. Hence a lot of research have been carried out by independent

organizations and/or government agencies in the field of traffic control ever since.

1.1 Traffic management

Earliest form of traffic management consisted of traffic signals and signs. But

later on, as number of vehicles on road increased tremendously, various sophisticated

algorithms and tools had to be used to accomplish the task. And much time have been

spent on the research about optimizing these tools and algorithms. In an attempt to

understand them better, a brief discuss about various traffic management strategies

have to be carried out. There are couple of popular traffic management strategies in

use. In its simplest form, traffic management in recent time consist of an optimization

algorithm aiming to improve one or two key factors affecting traffic (namely duration

of green signal and length of queue). A brief discussion about them is carried out

later in this chapter.

According to the techniques used to manage the traffic, traffic management can

be classified into two. (i) fixed time strategy (ii) traffic-response strategy. Fixed

time strategy requires knowledge about existing layout of the intersections, roads

connecting them, stop signs within an area, etc. to carry out its task. It also requires

an optimization algorithm. The technique studies traffic pattern of the area (during

peak time and otherwise). And this data is used to solve the optimization algorithm.
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Based on the data, algorithm will come up with (i) optimum duration of green light

(ii) optimum phase plan: total number of phases in a traffic cycle, vehicle movement

from which direction should be allowed during a phase, which phase should follow

the current phase etc. (iii) offset: time difference between various traffic signals in

the area. However, the main draw back of such a system is that, it is not adaptive

to current traffic situations. For instance, if there is an accident in the area, then the

system will behave the exact same way it behaved before (duration of traffic light and

offset won’t change because of the accident). Hence, such type of traffic management

is not advised for high traffic areas. Because any deviation from normal scenario would

create inefficiency in the system. However, this method is perfect for low traffic roads

because it does not require the use of any additional tools. The method will work well

if you have an algorithm and the knowledge about traffic pattern. TRANSYT (Traffic

Network Study Tool) [2] is a system which employs fixed timed strategy. Its main

purpose is to determine signal timing and optimization. It features a generic algorithm

which optimizes signal duration/phase plan/offsets. CRONOS [11] is another traffic

management tool which uses fixed time strategy.

Traffic response strategy, on the other hand is an interactive system. This offers

up-to-date traffic information and thus ensures predictability and reliability under

all circumstances. This method also requires the knowledge of existing system lay-

out (roads, intersections etc.). In addition to that, it employs sensors/detectors at

every traffic signal/link/intersection. The data collected by the sensors are used

to determine performance parameters (optimum duration of traffic lights). Since

data collected by the sensors are live, the performance parameters calculated will be

based on the current situation. And hence, the system is effective under all circum-

stances. SCOOT (Split Cycle Offset Optimization Technique) [1] is a leading tool

which manages traffic using current data. The data collected by sensors/detectors

within SCOOT controlled area is analyzed and based on that, necessary changes are

made to traffic signal duration. And thus vehicles don’t have to wait in queue for

long. Since it responds to traffic fluctuations automatically, the technique is proven
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to reduce traffic delays considerably. Another example of an adaptive traffic control

system is SCATS (Sydney Coordinated Adaptive Traffic System). This system is

similar to SCOOT in the fact that it requires the knowledge of existing layout and

it employs sensors to detect current traffic situation at a traffic signal. In addition,

SCATS also maintains a library of solutions. So when SCATS encounters a scenario,

it automatically selects a plan/solution from a library (of solutions) in response to

the current traffic problem. Even though traffic-response strategy is highly effective,

because of the added cost (of sensors/detectors), this technology is used only in high

traffic areas.

In recent years, traffic management and control have expanded to addresses en-

vironmental issues, allocating the use of infrastructure to cars, bikes and, foot traffic

and to various other areas. Many intelligent transportation systems (ITS) are capable

of performing some of these tasks already.

1.2 Thesis contributions

Petri net is a modeling language which could be used to represent time driven

or event driven systems. The simplicity with which a system could be represented

using Petri net have made them a popular modeling tool in the field of ITS (intelligent

transportation systems) , manufacturing etc. Many traffic systems have been modeled

using Petri nets. The fact that Petri nets can represent both traffic signals and vehicle

flow effectively, made the modeling of the traffic intersection easy and simple.

Optimization is a mathematical concept which involves selecting the best scenario

out of a few choices. Engineering industry have been using optimization for a long

time. In Engineering, optimization process is mainly used to maximize the output

of a process while minimizing the effort. Optimization of traffic signals have been

researched quiet a lot. And optimization of a traffic signal which was modeled using

Petri net was the inspiration for this thesis.
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This thesis mainly discusses traffic intersections which are modeled using Petri

nets. Two one-way intersection have been chosen for simplicity. Work in this the-

sis mainly concentrates on three specific models. First model is the existing system

(system which have fixed cycle time i.e, duration of red/green/yellow periods are con-

stant). This is the base model. In this, vehicles arrive and depart the intersection at

a constant rate. Working of the model have been discussed and then simulations have

been carried out for better understanding of the model. Mathematical studies and

objective function describing such a model have also been discussed. An algorithm

to calculate the objective function value have been developed as a part of this thesis.

Finally, in order to overcome the flaws of the existing model, we move on to the model

proposed by Vandzquez, Sutarto, Boel, and Silva [8].

In reality, since traffic does not arrive or depart at an intersection at constant

rate, the existing model is not much accurate. Vandzquez, Sutarto, Boel, and Silva [8]

proposes a model much more realistic. In the new model, traffic arrival and departure

at the intersection occurs in bursts. The burst happens when traffic light at the

upstream intersection turns from red to green. At this time, all vehicles will leave

the upstream intersection at once. Hence it arrives the downstream intersection as

a burst. After a while, when majority of vehicles from upstream intersection have

reached the downstream intersection, the burst will start to decay. And finally when

all the vehicles have reached downstream intersection, the burst will die. This thesis

explains the working of such a model. Mathematical formulas have been deduced to

calculate the objective function of the model. In an effort to optimize such a traffic

model (duration of green signal), an algorithm have been developed. Results of both

the algorithms have been compared to analyze their performance quantitatively.

Third and final model is the model of a traffic system with two intersections

connected through a road/link. Each one of the intersection have a traffic signal to

control it. Like previous models, this model was also developed using Petri net. This

model is a combination of the two previously discussed models. And hence, algorithms

used to optimize previous models have been modified to optimization the new traffic
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model. To understand the working of the new model, simulations have been carried

out as well. And finally, all models are compared to analyze their performance.

1.3 Thesis organization

This thesis is divided into six chapters. First chapter is a small introduction.

It explains inspiration for the work. And it also gives an overview of forthcoming

chapters. Chapter 2 is an introduction to the technology which is used in this study:

Petri nets. It starts by explaining basic definitions and notation of Petri nets. Later,

in the chapter, simple examples are used to explain their properties and dynamics.

Different types of Petri nets (hybrid Petri net, timed hybrid Petri net) which are used

in the thesis is also explained in this chapter. Their additional features and working

are illustrated as well. Since much of the work in this thesis deals with optimization of

traffic signals, Chapter 3 is an introduction to optimization process. Chapter explains

various steps involved in optimizing a process. Thus Chapter 3 is a overview of process

which is used to optimize our problem. Chapter 4 starts by explaining the model of a

basic one-way traffic intersection (the intersection is controlled only by traffic light).

Dynamics of the model is explained, followed by the simulations of the model. The

model is studied mathematically, so that major parameters affecting its performance

could be identified. These parameters are used to formulate the objective function.

And then, an algorithm to evaluate its objective function is developed. Discussion

then moves on to traffic intersection model proposed by Vandzquez, Sutarto, Boel, and

Silva [8]. Working of the model is explained in order to understand the model better.

Parameters affecting its performance are also identified. In an effort to optimize

the traffic signal, mathematical deductions are carried out to obtain an objective

function. Based on the working of the model, a program is developed to obtain an

optimum value for the model. And finally, simulations of the model is also carried out.

Chapter 5 expands the single intersection model by connecting two different single

intersections. The Petri net model of connected-intersection is explained. Simulation
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of the model is also done. Then, traffic signal of the connected-intersection model is

optimized by using the algorithms developed for the previous models. And finally,

Chapter 6 is the conclusion. It summarizes all the work. And then presents with

suggestions for future work.
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2. INTRODUCTION TO PETRI NETS

2.1 Definition

Petri net was discovered by Carl Adam Petri for describing chemical processes. A

Petri net (place/transition net) is a mathematical modeling language which could be

used for describing/representing a system. It is a weighted directed bipartite graph

consisting of two nodes namely (i) places (ii) transitions. These nodes are connected

to each other by weighted directed arcs. So given a set N , a Petri net could be

represented by,

N = (P, T,A,W )

where,

• P is finite set of places. Places are typically represented by circles.

P = {p1, p2, p3.....}

• T is finite set of transitions. Transitions are represented as bars.

T = {t1, t2, t3....}

• A is set of arcs which connects various nodes, i.e an arc connects a place to a

transition or a transition to a place.

A ⊆ (P × T )U (T × P )

It is important to note that an arc never runs between two similar nodes, i.e

there will not be a connection between two places or two transitions through a

single arc.

• W is set of positive integers which represents the weight of the arc connecting

various nodes. Every arc has a weight attached to it. If no weight is mentioned
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for an arc, then weight is assumed to be one. Thus no arc has zero weight. And

if weight of an arc between two nodes is more than one, then it indicates that

there are multiple arcs between those nodes. For example, if an arc from p1 to

t1 has a weight two, then it means that there are two arcs (each of weight one)

between p1 and t1. The two arcs (each of weight one) could be replaced with a

single arc of weight two.

W = {1, 2, 3.....}

The place from which an arc runs to a transition is called an input place of the

transition. I(tj) is used to represent the set of input places to transition tj. So,

I(tj) = {piεP | (pi, tj)εA}

The places to which an arc runs from a transition is called output place of the tran-

sition. O(tj) is used to represent output places of the transition tj. So,

O(tj) = {piεP | (tj, pi)εA}

similarly,

I(pi) = {tjεT | (tj, pi)εA}

O(pi) = {tjεT | (pi, ti)εA}

represents input and output transitions to and from places. Fig. 2.1 shows a simple

Petri net. Various nodes and components of the Petri net are as follows:

P = {p1, p2, p3}

T = {t1, t2, t3}

A = {(p1, t1) , (p1, t2) , (t1, p2) , (p2, t3) , (t3, p3) , (t2, p3)}

W = {1, 1, 2, 1, 1, 1}

I(t1) = {p1}, I(t2) = {p1}, I(t3) = {p2}

I(p1) = φ, I(p2) = {t1}, I(p3) = {t2, t3}

O(t1) = {p2}, O(t2) = {p3}, O(t3) = {p3}

O(p1) = {t1, t2}, O(p2) = {t3}, O(p3) = φ
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Fig. 2.1. A simple Petri net.

Since Petri net is a pictorial representation, it is quiet easy to deduce all the infor-

mation and thus to understand its working. It is this simplicity which makes it a

popular modeling tool. Following sections will discuss about Petri nets in detail.

2.2 Petri net marking

Petri net offers a graphical representation for step wise evolution of the system.

In order to capture the evolution/change in the state of the system, Petri net uses

a mechanism called tokens. Graphically, tokens are the finite number of black dots

inside a place in the Petri net. Any distribution of tokens over the place will represent

marking of the Petri net. Typically, marking of a Petri net is a column vector (known

as marking vector) with each element of the vector representing tokens in the corre-

sponding place. So m(pi) represents the number of tokens in place pi. If a place does

not have any tokens, then a zero will be entered in its place in the marking vector.

And hence, number of elements in the marking vector will be equal to number of

places in the Petri net. In Fig. 2.1 the initial marking of the system m0 is [1 0 0]T .
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2.3 Petri net dynamics

A transition tjεT is said to be enabled if the number of tokens in each input place

(pi) of transition tj is greater than or equal to the weight of the arc which connects

place pi to transition tj, i.e transition tj is enabled if and only if:

m(pi) ≥ W (pi, tj) ∀ piεI(tj) (2.1)

Below example demonstrates Petri net dynamics. In Fig. 2.2, transition t1 has three

Fig. 2.2. Petri net dynamics (a).

input places. The number of tokens in p2 is less than the weight of arc connecting p2

and t1. So, even though p1 and p3 satisfy the equation 2.1, t1 is not enabled because

p2 does not satisfy equation 2.1.

Fig. 2.2 could be modified to increase the number of tokens in p2. In Fig. 2.3,

number of tokens in all the input places are greater than or equal to weight of the

arc connecting the places to transitions. Hence they satisfy the equation 2.1. And

so, transition t1 is enabled.

Dynamics of a Petri net changes when an enabled transition fires. A transition

can fire anytime after it becomes enabled. And when a transition tj fires, following

changes take place:
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Fig. 2.3. Petri net dynamics (b).

• From each input place pi, it removes as many tokens as the weight of the arc

connecting the input place pi to transition tj.

• To each output place p0, it deposits as many tokens as the weight of the arc

connecting the transition tj to place p0.

It is worth to note that, while firing a transition, the number of tokens removed from

an input place need not be same as the number of tokens deposited to output place.

Tokens removed and deposited depends on the weight of the arc connecting places and

transitions. So the total number of tokens may not be conserved during this process.

In Fig. 2.3, after transition t1 fires, the markings of the places will be m(p1) = 0,

m(p2) = 0, m(p3) = 0, m(p4) = 1. Now, the input places don’t have any tokens

left. So transition t1 is not enabled anymore (by default, weight of the arc from place

to transition is one. Since places don’t have any more tokens, equation 2.1 is not

satisfied and hence transition t1 is not enabled). In short, for a Petri net to fire once,

at least one of the input place should have at least one token. Also, it is important

to note that if a place serves as an input to more than one transition, then there is

a good chance that more than one transition might be enabled at a particular time.

However, only one among them will fire at a time. This might lead to some conflict
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among transitions. More details about such conflict is discussed in the forthcoming

section. For now, let’s consider an example to demonstrate Petri net evolution.

Fig. 2.4. Petri net firing.

1. Initial marking m0 = [1 0 0 1]T .

2. Use equation 2.1 to find out enabled transitions. Here transitions t1 and t3 are

enabled. But only one transition will fire at a time.

3. Let transition t1 fire.

(a) When transition t1 fires, it will

i. Remove one token from place p1 (input place).

ii. Deposit one token each at p2 and p3 (output places).

(b) The new marking will be [0 1 1 1]T .

(c) Use the marking from previous step and equation 2.1 to determine all the

enabled transitions. Transition t2 is the only transition which satisfies the

equation 2.1. Hence t2 is the only enabled transition.
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(d) Transition t2 will fire. During the process, it will

i. Remove one token from place p2 (input place).

ii. Deposit one token at place p4 (output place).

(e) The new marking will be [0 0 1 2]T .

(f) Use the marking from previous step and equation 2.1 to determine all the

enabled transition. None of the transitions are enabled.

4. Let transition t3 fire.

(a) When transition t3 fires, it will

i. Remove one token each from p1 and p4 (input places).

ii. Deposit one token to place p3 (output place).

(b) The new marking will be [0 0 1 0]T .

(c) Use the marking from the previous step and equation 2.1 to determine all

the enabled transitions. None of the transitions are enabled.

5. End.

Since none of the transitions are enabled any more, no transitions will fire. And so,

that will conclude the dynamics of Petri net in Fig. 2.4. The above process can be

pictorially represented as shown in Fig. 2.5. It is called a reachability tree. It captures

all the possible states which could be reached from the initial state. Reachability tree

in Fig. 2.5 is very specific to the particular initial marking of [1 0 0 1]T . The Petri

net in Fig. 2.4 will have different reachability tree for another initial condition. For

example, if m(p2) = m(p3) = m(p4) = 0 and m(p1) = 1 then reachability tree would

be as shown in Fig. 2.6.
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Fig. 2.5. Reachability tree.

Fig. 2.6. Reachability tree with different initial marking.

2.4 Incidence matrices

Given a Petri net with n places and m transitions, we can uniquely define three

n ×m matrices namely (i) output incidence matrix (ii) input incidence matrix (iii)

incidence matrix.
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Output incidence matrix, B+, is an n ×m matrix which captures the weight of

the arc from a transition tj to place pi. If there is no arc from transition tj to place

pi then b+
ij will be zero. So for Fig. 2.4,

B+ =


0 0 0

1 0 0

1 0 1

0 1 0


Input incidence matrix, B−, is an n×m matrix which captures the weight of the

arc from place pi to transition tj. If there is no arc from place pi to transition tj then

b−ij will be zero. So for Fig. 2.4,

B− =


1 0 1

0 1 0

0 0 0

0 0 1


And finally incidence matrix B = B+ −B−. So for Fig. 2.4,

B =


−1 0 −1

1 −1 0

1 0 1

0 1 −1


Note that incidence matrices do not talk about tokens at all. It is a structural

property. And it is independent of state of the system. These three matrices are very

important for a Petri net because, state of a Petri net can be uniquely determined

from these matrices.

2.5 State equation of a Petri net

As discussed previously, one way to analyze a Petri net is by using reachability

tree. It will give all possible states which could be reached from the initial state. But
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analyzing a system using reachability tree will be a much more difficult task when the

Petri net under consideration is large and complicated. Under such circumstances it

is better to use state equation to find the marking of a system. This method finds

out all the markings using a mathematical equation. Since markings are found out

algebraically, the process is much easier and faster. The relationship between two

concurrent/consecutive marking in a Petri net is established through state equation.

If a Petri net has n places and m transitions then the state equation can be defined

as:

Mk+1 = Mk +B.Xk (2.2)

where,

• Mk+1 is an n×1 vector. It captures marking of the Petri net at time step k+1.

• Mk is an n× 1 vector. It captures the marking of the Petri net at time step k.

• B is incidence matrix.

• Xk is an m × 1 vector called firing vector. This vector has only one non-zero

entry per step. And the non-zero entry will be 1. The non-zero entry will

indicate the transition which will fire next.

So for the Fig. 2.4, marking at time step one when t1 fires would be,
1

0

0

1

+


−1 0 −1

1 −1 0

1 0 1

0 1 −1

×


1

0

0

 =


0

1

1

1


And after that, since t2 is enabled, t2 will fire. Marking after t2 fires will be,

0

1

1

1

+


−1 0 −1

1 −1 0

1 0 1

0 1 −1

×


0

1

0

 =


0

0

1

2
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Since this is an algebraic method, it is much easier to find out all the markings using

basic mathematics softwares. And hence this is a much more popular choice to find

out all the markings of a Petri net.

2.6 Continuous Petri net

So far we discussed Petri nets which are event-driven. Such Petri nets change

their state upon the occurrence of a discrete event. And hence they are called discrete

Petri nets. But most physical systems changes their state with respect to time. For

example vehicle movement, water flow, etc. Such systems cannot be represented

using a discrete Petri net. We use continuous Petri net to represent such systems.

Continuous Petri nets are time-driven. And unlike discrete Petri nets, their dynamics

change with time. Major differences between a discrete Petri net and continuous Petri

net are:

1. Places in a continuous Petri net are represented by double circle. And transi-

tions are represented by rectangular box.

2. The number of tokens in a place need not be an integer. It could be any positive

real number.

3. Weights of the arc need not be integers. Any positive real number could be the

weight of an arc connecting continuous nodes.

4. A continuous transition has enabling degree (q). Enabling degree (q) has to be

greater than zero. And a continuous transition tj is q-enabled in a marking mk

if, for each input i to transition tj,

q = min

(
mk(pi)

B−(pi, tj)

)
5. Continuous transitions have firing rates associated with them. If the firing rate

associated with a transition tj is α, then the transition tj will fire α tokens/unit

time. Consider the Fig. 2.7 below:
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Fig. 2.7. Continuous Petri net.

• Here transition t1 is 2-enabled and transition t2 is 1.3-enabled.

• Let firing rate of t1 be 0.2. Then, when t1 fires, 0.2 tokens will be removed

from p1 and p2.

• 0.2 tokens will be deposited in p3. Therefore marking after t1 fires will be

[1.8 2 1.5]T .

6. Since markings in a continuous Petri net changes constantly, a firing sequence

would indicate a series of successive markings. And so there will be infi-

nite number of reachable marking for a continuous Petri net. And it is not

possible to capture all reachable state in a reachability tree. Instead macro

marking is used to capture general marking of a continuous Petri net. If

a Petri net has n places, then it will have a maximum of 2n macro mark-

ings. A macro marking of a continuous Petri net with n places would be

[0 0 0]T , [m1 0 0]T , [0 m2 0]T , [0 0 m3]T , [m1 m2 0]T , [m1 0 m3]T ,

[0 m2 m3]T , [m1 m2 m3]T . Macro markings of continuous Petri net in Fig.

2.7 is shown in Fig. 2.8. Since it is not possible for m2 to reach zero, the macro

marking which has m2 = 0 won’t be considered.
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Fig. 2.8. Macro marking of continuous Petri net.

7. State equation of a continuous Petri net is,

M = M0 +B.X (2.3)

where,

• M0 is the initial marking.

• B is the incidence matrix.

• M is the marking which could be reached from M0.

• X is the firing vector. Non-zero element (representing firing transition) in

the firing vector X, will be the firing rate of the corresponding transition.

So unlike discrete transition, non-zero element in X can be any positive

real number.

2.7 Hybrid Petri net

So far we have discussed discrete Petri nets and continuous Petri nets. Discrete

Petri net is used to represent discrete event. While continuous Petri net is used to
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represent a continuous process. But most process in the real world is a combination

of discrete and continuous events. For example, a process trying to represent vehi-

cles moving in and out of a 4-way intersection require both discrete and continuous

nodes (discrete node to capture traffic lights and continuous nodes to capture vehicle

movement). Such Petri net which uses discrete nodes and continuous nodes are called

hybrid Petri nets. A hybrid Petri net is a sextuple. And it could be defined as:

Q = (P, T, Pre, Post,m0, h)

where,

• P = {pd, pc}. Set of all discrete and continuous places.

• T = {td, tc}. Set of all discrete and continuous transitions.

• Pre = input incidence matrix. B−.

• Post = output incidence matrix. B+.

• m0 = initial marking.

• h = hybrid function which indicates whether the node is a discrete node or

continuous node. pd represent discrete places while pc represent continuous

place. Likewise, tc, td represents continuous and discrete transitions respectively.

It is important to keep in mind that, in a hybrid Petri net the condition

B+(pd, tc) = B−(pd, tc) (2.4)

has to be satisfied at all the time. i.e an arc connecting a continuous transition to a

discrete place must have the same weight as the arc which connects the discrete place

to a continuous transition.

Since hybrid Petri net is a combination of continuous and discrete nodes, the

enabling condition of a transition (whether continuous or discrete) vary depending
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on the type of transition. For example, if the transition is discrete, then the enabling

condition is same as the one described in equation 2.1, which is,

m(pi) ≥ W (pi, tj) ∀ piεI(tj)

But if the transition is continuous, the enabling condition depends on the input place.

If the input place is discrete, then the enabling condition is,

m(pdi ) ≥ B−(pdi , t
c
j) ∀ discrete place pd to continuous transition tc.

And if the input places is continuous, then enabling condition is,

m(pci) > 0 ∀ continuous input place pc to continuous transition tc.

And also, an enabled continuous transition is said to be strongly enabled if marking

of every continuous input places is greater than zero. Else it is called weakly enabled.

The evolution/state equation of a hybrid Petri net is described by the equation:

Mk+1 = Mk +B.s (2.5)

All the terms of the equation 2.2 and equation 2.5 are the same, except that the

components of firing vector in equation 2.2 are integers while those in equation 2.5

could be any positive real number. So for a hybrid Petri net, the non-zero element in

the firing vector will indicate the transition which will fire. And if the transition is a

continuous transition then, non-zero number will be the firing rate of the transition.

While modeling a system using hybrid Petri net, it is often advised to number all

the discrete nodes before continuous nodes. That way, while creating the incidence

matrix, all discrete nodes will appear before continuous nodes.

2.8 Timed Petri net

While using a Petri net to represent a system, the state of the system will be

usually associated with the place of the Petri net and changes to the state (or an

event) will be associated with the transition. If the system remains in a particular
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state for sometime, it is important to associate the duration of the state with the

place. Similarly, if there is a delay associated with an event, then it has to be taken

care by the transition. Such Petri nets with time/delay associated with place and/or

transition is called is timed Petri net. The time/delay could be associated with

discrete nodes or continuous nodes.

If the delay associated with the place is dA then the token in the place must remain

in the place for a duration of dA time units before allowing firing of the transition

associated with the place. If dA is the time associated with a transition, then the

transition will fire dA time units after it has become enabled. If no delay is associated

with a transition, then it will fire as soon as it becomes enabled. And if the delay

associated with a place/transition is zero, then it is usually not specified.

Petri nets with deterministic delays associated with them are called deterministic-

timed Petri net. If the delay follows a probability distribution, then the Petri net

is called stochastic-timed Petri net. For such Petri nets, the time associated with

transition tj could be a random variable X with exponential distribution function.

2.9 Timed hybrid Petri net

As discussed in previous section, if there is time associated with the nodes of a

Petri net, then the Petri net is called timed Petri net. Similarly, if there is time

associated with nodes of a hybrid Petri net, then the hybrid Petri net is called timed

hybrid Petri net. Such Petri nets have timed delays associated with place and/or

transitions. Structure of timed hybrid Petri net is defined as,

Q = (P, T, Pre, Post,m0, h, λ)

The only new component in the definition of a timed hybrid Petri net (compared to

hybrid Petri net) is λ. Rest of the parameters have the same definition as before.

In a timed hybrid Petri net, if the transition is discrete then λ is a positive integer

represented by di. And di is the time associated with the discrete transition. The

discrete transition will wait for di time units before firing, once it has become enabled.
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If di = 0, then the discrete transition will fire as soon as it becomes enabled. If the

transition is continuous, then λ is positive real number represented by Ui. And Ui

is the maximum flow rate of the continuous transition. Ui is an important factor in

determining the maximum firing speed of the continuous transition. Because, for a

continuous transition, maximum firing speed is calculated from maximum flow rate

by the equation shown below:

Vi = Ui×D(ti,m
d
k) (2.6)

where,

• Vi = maximum firing speed.

• Ui = maximum flow rate of the continuous transition.

• D(ti,m
d
k) = enabling degree of the continuous transition ti. If the continuous

transition ti has n discrete input places, then the enabling degree of transition

ti is the least number of tokens which will be transfered in one transaction.

If the continuous transition does not have any discrete place as input , then

the transition will fire at infinite speed. In order to avoid that, continuous

transitions of a timed hybrid Petri net will always have at least one discrete

place as its input.

The state equation of a timed hybrid Petri net is slightly different from that of a

hybrid Petri net. Starting with the characteristic equation, for a timed hybrid Petri

net,

s(t) = n(t) +

∫ t

0

v(u)du (2.7)

where,

• n(t) is the firing vector. This vector will have zero as its entry for every con-

tinuous transition. Only one element in the vector will have a non-zero entry.

That entry will indicate the discrete transition which will fire.
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• v(u) is the firing speed of the continuous transitions. This vector will have zero

as its entry for every discrete transition. Non-zero entry could be any positive

real number and it indicates the firing speed of continuous transition which will

fire.

And hence the state equation at time t for a timed hybrid Petri net is,

m(t) = m(0) +B

(
n(t) +

∫ t

0

v(u)du

)
(2.8)

where,

• m(0) is marking at time t = 0.

• B is the incidence matrix. If all the discrete nodes are numbered before contin-

uous nodes, then B can be summarized as B =

 BD BDC

BCD BC

.

Where BD captures weight of arcs among discrete nodes, BC captures weight of

arcs among continuous nodes, BCD captures weight of arcs between continuous place

and discrete transition and BDC captures weight of arcs between discrete place and

continuous transition. But since equation 2.4 has to be satisfied, BDC will always be

zero. Hence incidence matrix can be further reduced to B =

 BD 0

BCD BC

.

Below example of the timed hybrid Petri net will give a good understanding about

its working. At time t= 0, discrete transition t1 and continuous transition t3 are

enabled. Note that continuous transition t3 is strongly enabled. Transitions t2 and t4

are not enabled because p2 does not have any tokens. Since t1 and t3 are enabled at

the same time, discrete transition will be eligible to fire (whenever a continuous and

discrete transitions are enabled at the same time, firing of discrete transition takes

precedence over continuous transition). But since there is a delay associated with

t1 (d1 = 90), tokens from p1 will not be transfered to p2 till t = 90. So at t = 0,

transition t3 will fire. And firing will move tokens from p3 to p4 at 2 tokens/time

unit. Hence at the end of t = 35 time units, all tokens from p3 will be successfully
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Fig. 2.9. Timed hybrid Petri net.

transfered to p4. And p4 will have 140 + 70 = 210 tokens. From t = 35 to t = 90 no

transitions will fire because,

• p3 does not have tokens, so t3 won’t fire.

• t4 and t2 won’t fire because there is no token at p2.

• t1 won’t fire because it is waiting for t = 90.

When t = 90, token from p1 will be transfered to p2. Hence transitions t2 and t4 will

become enabled. Since both transitions are active at the same time, firing of t2 takes

precedence. But since there is a delay with t2 (d2 = 90), t2 won’t fire until t = 180.

So t4 will fire at t = 90. Since v4 = 2, two tokens will be moved at a time from p4 to

p3. After 90 time units, a total of 180 tokens will be transfered to p3 from p4. When

t = 180, transition t2 will fire. Hence there will be no token at p2 (so t4 and t2 will no

longer be active). But t1 and t3 will become enabled. Transition t1 will fire only at

time t = 270. So t3 will fire at t = 180. And after 90 time units, 180 tokens would be

transfered to p4 from p3. So at the end of t = 270, t1 will fire (moving one token from
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Fig. 2.10. Marking of timed hybrid Petri net (discrete node).

Fig. 2.11. Marking of timed hybrid Petri net (continuous node).

p1 to p2) and p4 will again have 210 tokens (180 + leftover 30 from previous cycle).

This process will continue.

All of the above sections introduces various Petri nets and their basic properties.

But, in depth details about Petri net and it’s working could be found in [3–7].

2.10 Conflict in a Petri net

As mentioned in some of the previous sections, if a place serves as input to two

transitions, then there is a good chance that both the transition will be enabled at

the same time. But in a Petri net, only one transition will fire at a time. Such a

situation will result in a conflict. Conflict will arise to determine the transition which
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will fire first. In Fig. 2.4, at the initial marking [1 0 0 1]T transitions t1 and t3

are enabled. But only one will fire at a time. Nothing could be told with certainty

as to which one will fire first. Both transitions have equal chances of firing first.

However, if there is a conflict between a continuous transition and a discrete

transition, then the discrete transition takes precedence over continuous transition.

In most cases, conflict among discrete transitions could be resolved by assigning delays

to the transition. For example, if two discrete transitions are enabled by a place at

the same time, then both will have equal chance of firing first. But if the designer

wants t1 to fire before t2, then associating a delay with t2 will make sure that t1 will

always fire first.

2.11 Simulation tool

Simulation is an important technique in understanding the behavior of a model

during design phase. Only after the simulation of a model yields satisfactory results,

the design process is carried forward. For simulating Petri nets described in this

thesis, we use a tool called SimHPN. It is a MATLAB embedded software. The

tool allows simulation of timed hybrid Petri net under different server semantics. To

simulate a model, the tool requires knowledge of B+, B−, initial marking (m0), firing

rate (λ) of the transition, and the type of transition. These data could be given to the

tool in many ways. It could be entered directly to SimHPN GUI, it could be given

in the form of an input file or it could be entered from MATLAB prompt. Once the

data is entered, the model could be simulated from SimHPN GUI. The simulation

result (marking of a place or flow of a transition) could be seen in the GUI. The result

could also be exported as a file. More information regarding SimHPN could be found

at [10].
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3. OPTIMIZATION

3.1 Objective

Optimization is a mathematical concept. It involves the process of selecting best

available option from a set of options, under certain circumstances. In most situations

an optimization problem involves maximizing or minimizing an objective function,

subject to certain parameters. This is done by developing an optimization algorithm

and repeating it multiple times (under various circumstances) till the desired result

is achieved. A typical optimization problem can be represented as:

min f(x)

Subject to g(x) ≥ 0

3.2 Optimal problem formulation

Whenever there is scope to streamline a process and thus to increase its efficiency,

an optimization problem arises. Simplest form of optimization process would involve

comparing few solutions (formulated from prior knowledge of the problem). Further

investigation is carried out regarding the feasibility of each solution. For each solution,

the underlying objective function value is estimated. The estimates are compared to

determine the best solution.

It is difficult to come up with a simple formulation process for all the problem,

because the underlying function of the optimization problem and its design parame-

ters vary from problem to problem. Thus we can only come up with a general model.

The model must be solved using an algorithm for an optimal solution. Below flow

chart shows various steps involved in an optimal design/solution formulation.
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Fig. 3.1. Optimization process flow chart.

3.3 Design variables

First step in an optimal design problem is determining design variables. All vari-

ables which affect the process we are trying to optimize are good contenders for design

variables. But only a few variables are highly sensitive to the proper execution of the

design. These variables are selected as design variables. And these variables are

varied during the design process.

It is always best to choose as few design variables as possible. The rest of the

variables which affects the design (but still have minor impact on the design) is kept

constant or they are varied in accordance to the design variable. At the end of the

process, depending on the solution, the optimization process might be altered to

include/delete/modify the existing design variables.
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3.4 Constraints

In general, constraints represent some form of relationship between various param-

eters. In an optimization process, constraints indicate relationship between design

variables and other parameters (which are not chosen as design variables). There is

no exact rule about the number and nature of constraints that could be used in the

optimization process. It varies from process to process. In most cases, there are two

types of constraints (i) equality constraints (ii) inequality constraints. Out of the two,

inequality constraints are the most commonly used constraints. Because inequality

constraints are more relaxed. These type of constraints use inequality operator to ex-

press the relation between design variables and parameters which affect the process.

≥, <,> and, ≥ are the most commonly used inequality constraint operators.

An example for an inequality constraint would be: in an internal combustion

engine, during the compression and ignition stroke the pressure build up around the

cylinder should be less than or equal to the maximum pressure of the material. This

constraint could be translated into mathematical equation as,

P (x) ≤ Pallowable

Another example would be: while designing a second order system, the natural fre-

quency of oscillation should be greater than or equal to 3Hz. The constraint could

be translated as,

f(x) ≥ 3

On the other hand, equality constraints use equality operator to express relation

between design variables and parameters which affect the process. And so, the func-

tional relationship has to exactly match a value. An example of such a constraint

would be: rise time of a system has to be 3 time units. So the constraint could be

represented as,

tr = 3 (3.1)
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Since equality constraints are more difficult to work with, they are often relaxed and

transformed into inequality constraints. For example, equation 3.1 could be made

into an inequality constraint as shown below,

tr < 4

tr > 2

3.5 Objective function

Objective function represents the process which we are trying to optimize. Most

objective functions are expressed in terms of mathematical expressions. And the ob-

jective function represent the process in terms of design variables. In short, objection

function is the mathematical representation of the process which is being optimized.

And the main purpose of the optimization process could be minimization or maxi-

mization of the objective function. Example of an objective function would be,

min(x2 + 1)

General examples of objective functions would be: minimize cost, maximize efficiency,

minimize time etc.

Most objective functions are minimization function. However, a maximizing func-

tion can be converted into minimizing function by multiplying the objective function

by −1. Similarly, a minimizing function can be converted into maximizing function

by doing the same process. But converting a minimizing function into maximizing

function is seldom used.

Even though most process can be expressed in terms of mathematical expression,

in some cases, certain processes might have to be approximated in order to get a

mathematical expression. Designers are known to make assumptions while formu-

lating objective function. As long as the assumptions are true, such approximations

does not affect optimization. And technically, more than one objective function could

be optimized at a time. But such optimization process tend to be complex. Hence, to
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make such optimization process simpler, the most important function will be chosen

as objective function and the other functions will be included as a constraints.

3.6 Variable bounds

During the optimization process, the value of design variables are varied. So there

is a good chance that the design variables will grow to extremes. In order to avoid

such a situation, each of the design variables are varied within bounds (lower bound

and upper bound). For example, while designing the controller for a second order

system, if one of the design variable is rise time, tr, then during optimization process,

rise time will be varied within bounds. So, rise time will always stay within a lower

bound and an upper bound. Varying rise time within bounds makes sure that the

controller doesn’t take too long to respond to a situation.

tLr ≤ tr ≤ tUr

Although it is not mandatory to have variable bounds for each design variable, it is

often a good practice to vary them within bounds. After finding the optimal solution,

if the design variable does not fall within the variable limits, then the limits could be

adjusted and the rest of the process could be continued.

If there are n design variables, then we can summarize the optimization problem

as,

Minimize f(x)

Subject to g(x)j ≥ 0 for j = 1, 2....j

h(x)k = 0 for k = 1, 2....k

xLi ≤ xi ≤ xUi for i = 1, 2....n

3.7 Optimization algorithm

Algorithm used to optimize a process depends mainly on the function which is

being optimized. However, objective functions can be broadly classified into:
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• Linear progrmming (LP): such objective function will be a linear function. And

the constraint set will contain linear terms. Solution to such problems could be

found out by searching through a finite number of feasible points.

• Non-linear programming (NLP): objective function and/or the constraints set

of such function will contain non-linear terms.

There is no single algorithm which will solve all optimization problem. The opti-

mization algorithm to be used depends on the problem at hand. Since all the prob-

lems/algorithms are vastly different from each other, there are number of ways to

classify optimization algorithms. Few of them are discussed below.

• Single variable optimization algorithm: as the name suggests, these algorithms

will optimize an objective function which has only one variable. The function

will be of the form,

min f(x)

Different values of x (in an objective function) will yield different local max-

imum, local minimum, global maximum, global minimum. To find out these

values, a single valued optimization algorithm will only search in one dimen-

sional space. And the algorithm will either use the value of objective function to

guide the search process (direct search) or it will use the derivatives of objective

function to guide the search process (gradient search).

• Multi variable optimization algorithm: these algorithms will optimize an ob-

jective function with multiple design variables. And hence such algorithms will

have to search in multiple dimensions. And as in previous case, the search can

be a direct search or a gradient search. In many applications involving multi

variable optimization, single variable optimization algorithms are used to search

for optimum value in one dimension.

• Constrained optimization algorithm: in this method, algorithm will try to opti-

mize the objective function in the company of constraints. Based on the number
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Fig. 3.2. Graphical representation of an objective function.

of dimensions (in space) in which search for optimum value is being carried out,

this type of algorithm can employ single and multi variable algorithms simulta-

neously. If an optimization problem has n design variables and m constraints,

then,

– Primal method: search for optimum value occurs in n − m dimensional

space.

– Penalty method: searches for optimum value in n dimensional space.

– Dual and cutting plane method: searches for optimum value in m dimen-

sional space.

– Lagrangian method: searches in n+m space.

There are many other optimization algorithms which does not fall into any of these

categories. Details about them can be found in Chong, Zak [15].
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4. HYBRID PETRI NET MODEL OF A TRAFFIC

INTERSECTION

With the increasing amount of vehicles on the road, traffic control and traffic safety

is an important aspect of transportation system. Introduction of traffic signs and

signals have improved the safety of the system considerably. But controlling traffic

during peak hours still remains a complicated issue. Major factor contributing to the

problem is, lack of communication among traffic lights. Traffic light at one intersection

do not convey the traffic volume to the traffic light at nearby intersection. Since

traffic lights don’t communicate with each other, the system won’t work at its full

efficiency. And as a result people lose a lot of time waiting at the intersection. For

instance, if there are no vehicles waiting at an upstream intersection, there won’t

be any vehicle traveling from upstream intersection to downstream. Even then, the

signal at downstream intersection would hold the traffic for a fixed time interval. If

somehow the traffic signals were communicating to each other, then duration of signal

at downstream intersection could have been reduced. And the process would have

saved valuable time of vehicles waiting to cross the intersection. In this chapter, we

will try to understand the traffic model in place. Following that, we will develop an

algorithm which will optimize the duration of traffic signal.

A Petri net model which captures traffic flow and traffic signal uses continuous as

well as discrete nodes. While continuous nodes capture vehicle flow, discrete nodes

are used to capture signal change. Since the traffic signals hold their state for certain

time, the discrete nodes (which represent the signals) are usually timed nodes. Fig.

4.1 shows an intersection of two one-way street controlled by one traffic light. The

discrete nodes p1, p2, p3, p4, t1, t2, t3, t4 captures the signal change. A token in p1 would

indicate that intersection I is active (signal is green). And during this time intersection

II will be inactive (signal is red). A token in p3 would indicate that intersection II
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Fig. 4.1. Petri net model of two one-way intersection.

is active and intersection I is inactive. A token at p2/p4 would indicate yellow/red

period for intersection I/II respectively. So during this period, no queue will be served.

The transitions t1, t2, t3, t4 represent the switching of traffic signals. These transitions

have deterministic time delays associated with them. Because of the deterministic

time delay, their input places will remain active for the duration of delay.

The continuous nodes p5, p6, p7, p8, t5, t6, t7, t8 represent vehicles moving in and

out of the intersection. Tokens in places p6, p8 represent vehicles waiting at the

signal to cross the intersection. And transitions t5, t6, t7, t8 enables vehicle arrival and

departure to and from the intersection. Queue I will be active only when transition

t6 is enabled. And transition t6 will be enabled only if there is a token at p1 (green

signal for intersection I). Thus vehicles waiting at queue I will move towards the

intersection only when its signal is green (p1 has tokens). Similarly vehicles waiting

at queue II will move towards the intersection only when its signal is green (p3 has

tokens). Tokens at p5, p7 replicate vehicles coming to intersection from upstream.
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Since p5 and p7 always have token in them, their corresponding transitions will be

always active. Hence vehicles will arrive at the intersection continuously at a constant

rate (depending on the firing rate of t5 and t7). And finally, the incidence matrices

of the model are,

B+ =



0 0 0 1 0 1 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0



and B− =



1 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


4.1 Background and related work

Lefeber, Rooda [9] studied a model similar to Fig. 4.1. Their model consists of

two queues being served by a single server. And in their model, the arrival rate and

service rate of the queues were constant. If you consider their model to Fig. 4.1,

the tokens in p6, p8 could be regarded as two queues and the traffic signal can be

considered as a single server. The arrival rate of tokens to p6 and p8 is constant

(depends on the firing rates of t5 and t7) and the departure rate of tokens are also

constant (firing rate of t6 and t8). The result of the study was characterized as the

optimal steady state periodic orbit with cost function,

J =
1

Tss

∫ Tss

0

[x1(τ) + x2(τ)]dτ (4.1)

where,

• x1 and x2 represents the queue (marking of p6 and p8).

• Tss is the period of the orbit.
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Since characteristics of model in Fig. 4.1 is similar to the model studied by Lefeber,

Rooda [9], equation 4.1 will represent the objective function of the process defined by

Petri net in Fig. 4.1. However, switching of traffic signal is modeled by discrete nodes,

so the calculation of cost function has to be modified accordingly (cost function in

the equation 4.1 is a continuous function. But switching of signal is not a continuous

function. It is a discrete function). In order to accomplish this, cost function is

calculated for each discrete state.

For example, when p1 = 1 (transition t1 is enabled). And if firing rates of t5, t6, t7, t8

are λ5, λ6, λ7, λ8 respectively, then marking of places p6 and p8 could be computed by,

m(p6) = (λ6 − λ5)∆t+ pprev6 (4.2)

m(p8) = λ7∆t+ pprev8 (4.3)

where,

• ∆t is the time duration for which the system will remain the same discrete state.

• pprev6 , pprev8 are the initial values of p6 and p8. [m(p6),m(p8)].

And so, the cost function can be written as,

∆J =

∫ ∆t

0

W

m(p6)

m(p8)

 dt = w1

∫ ∆t

0

m(p6)dt+ w2

∫ ∆t

0

m(p8)dt

where w1 and w2 are some optimization weights.

If w1 = w2 = 1, then,

∆J =

∫ ∆t

0

W

m(p6)

m(p8)

 dt =

∫ ∆t

0

m(p6)dt+

∫ ∆t

0

m(p8)dt

And from equations 4.2 and 4.3,∫ ∆t

0

m(p6)dt =

(
λ6 − λ5

2

)
(∆t)2 + (pprev6 )∆t∫ ∆t

0

m(p8)dt =
λ7

2
(∆t)2 + (pprev8 )∆t
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Similarly, the cost function could be calculated for all discrete states. Once calculation

for all cost functions are determined, we can write an algorithm to sum up all the

above mentioned steps.

Begin algorithm

1. Define the firing rates of all the continuous transition. Define time delays for all

the discrete transitions. Define working variables and initialize arrays and flags.

for all t ≤ T do

2. Find the enabled discrete transitions.

3. Find the remaining time at the current discrete state: ∆t.

4. Determine firing time of the current enabled discrete transition.

5. Calculate the markings (queues) of m(p6),m(p8) during time ∆t.

6. Calculate the incremental cost: ∆J .

7. Update cost function J = J + ∆J .

8. Update the firing time t = t+ ∆t.

9. Fire the enabled discrete transition.

end for

10. Calculate the cost function, J(τ) = 1
T
.J

End algorithm

So far, determination of current discrete state and evaluation of cost function were

done separately. But those two processes could be combined into a single process.

Both processes when combined together can be elaborated as:

• Define the firing rate for continuous transitions as (λ5, λ6, λ7, λ8). And define

the time delays for discrete transitions as (θ1, θ2, θ3, θ4). Define current time

t = 0, cost function Jac = 0, marking of place p1 = 1, and cycle time T . And

then, initialize/define necessary flags and define arrays.

• While t ≤ T , do,

– Determine the discrete place which has token. The place which has token

will enable the corresponding discrete transition. Since only one discrete



40

place will have token at a time, there will be only one enabled discrete

transition at a time. And thus, this process makes sure that only one in-

tersection will be active at a time.

Once current discrete state has been determined, the delay associated with

current discrete state has to be looked at, because the newly enabled tran-

sition will fire only after a specific time interval (θ, it is a timed discrete

transition).

Update the firing time of the enabled transition as: current time + delay

associated with the transition. So,

– if p1 = 1, then,

∗ Enabled transition = 1

∗ firing time = t+Delays[j]

Do the same check for p2, p3, and p4 in order to find out current enabled

discrete transition and to determine their firing time. Once the current

discrete state is determined, compute the markings [m(p6),m(p8)] and,

cost function using equation 4.2, 4.3 as example.

if p1 = 1 then,

m(p6) = (λ6 − λ5)∆t+pprev6

m(p8) = λ7∆t+pprev8

J6 =

(
λ6 − λ5

2

)
(∆t)2+(pprev6 )∆t

J8 =
λ7

2
(∆t)2+(pprev8 )∆t

if p3 = 1 then,

m(p6) = λ5∆t+pprev6

m(p8) = (λ8 − λ7)∆t+ pprev8

J6 =
λ5

2
(∆t)2 + (pprev6 )∆t

J8 =

(
λ8 − λ7

2

)
(∆t)2 + (pprev8 )∆t
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if p2 or p4 = 1 then,

m(p6) = λ5∆t+ pprev6

m(p8) = λ7∆t+ pprev8

J6 =
λ5

2
(∆t)2 + (pprev6 )∆t

J8 =

(
λ7

2

)
(∆t)2 + (pprev8 )∆t

– Update cost function as Jac = Jac + J6 + J8.

– Reset temporary cost functions to zero. J6 = J8 = 0.

– Update current time as t = t+ ∆t.

– Mark the transition which fired as not an enabled transition. And make

the downstream discrete transition as an enabled transition. So, if enabled

transition is t1 then, set p1 = 0 and p2 = 1. Carry out the same process

for p2, p3, and p4.

• End loop.

• Evaluate the final cost. J = Jac
T

.

Below example demonstrates working of the algorithm with an example. If the delays

of discrete transitions are θ1 = 20, θ2 = 5, θ3 = 40, θ4 = 5. And the rates of the

discrete transitions are λ1 = 1, λ2 = 3, λ3 = 1, λ4 = 3. Previous markings of p6, p8

are 10 and 20 respectively. And let cycle time, T = 70. For the initial condition

p1 = 1, transition t1 is enabled. At time t = 0, transition t1 is enabled. Delay

associated with t1 is 20 time units. Since, only one transition is enabled at a time,

duration of the current state = delay of the enabled transition. Hence ∆t = 20.

m(p6) = (3− 1)20 + 10 = 50

J6 =
(3− 1)

2
202 + (10× 20) = 600

m(p8) = (1× 20) + 20 = 40

J8 =

(
1

2

)
202+(20× 20) = 600
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At the end of 20 time units, t1 will fire and the process will transfer one token to p2.

Hence t1 won’t be enabled anymore. Since p2 has a token, t2 will be enabled. And

the delay of t2 is five time units. At t = 20, p2 = 1, ∆t = 5 time units. So,

m(p6) = (1× 5) + 10 = 15

J6 =

(
1

2

)
52 + (10× 5) = 62.5

m(p8) = (1× 5) + 20 = 25

J8 =

(
1

2

)
52 + (20× 5) = 112.5

Five time units after, transition t2 will fire. As a result of that, one token will be

transferred from p2 to p3. So t2 is no longer enabled. But t3 is enabled. Delay

associated with t3 is 40. So, at t = 25, p3 = 1, ∆t = 40.

m(p6) = (1× 40)+10 = 50

J6 =

(
1

2

)
402+(10× 40) = 1200

m(p8) = (3− 1)40+20 = 100

J8 =
(3− 1)

2
402+(20× 40) = 2400

At the end of t = 25 + 40 = 65 time units, t3 will fire. Hence one token will be

transfered from p3 to p4. Thus t3 won’t be enabled anymore. But t4 will be enabled.

And delay of t4 is five. So,

m(p6) = (1× 5)+10 = 15

J6 =

(
1

2

)
52+(10× 5) = 62.5

m(p8) = (1× 5)+20 = 25

J8 =

(
1

2

)
52+(20× 5) = 112.5

Five time units after t4 has become enabled, the transition will fire. Thus there won’t

be anymore token at p4. Instead, the token will be available at p1. Thus t1 will be

enabled again. And this cycle will continue.
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Cost function value is the weighted sum of J ’s incurred during each discrete state.

So, in this case, J = (600+600+62.5+112.5+1200+2400+62.5+112.5)
70

= 5150
70

= 73.5714. To verify

the result, program is executed for the same parameters. Below picture shows the

result of execution.

Fig. 4.2. Optimization result of constant arrival model.

4.2 Simulation results

In an effort to better understand the model behavior, Petri net model of the

intersection (shown in Fig. 4.1)is simulated. Some of the simulation results are

shown in this section.

Fig. 4.3 is the simulation result which shows arrival of vehicles at intersection I.

It shows that vehicles arrive at the intersection at constant rate. The arrival rate of

vehicle at intersection I, in this model, depends on firing rate of t5. Same is the case

for intersection II. Arrival at intersection II happens at constant rate. Hence graph

of t7 will yield the same result.

Fig. 4.4 is the simulation showing the flow of vehicle at intersection II (i.e t8).

Transition t8 has two input places (i) continuous place p8 (ii) discrete place p3. Place
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Fig. 4.3. Result depicting constant arrival rate.

Fig. 4.4. Result showing departure of vehicle from intersection.

p8 will always have tokens in it. So firing of t8 depends on presence of token at p3. And

p3 will have token in the place only at specific intervals of time. Hence t8 will fire only

during those intervals. This is the reason for discontinuity in the graph of a continuous

transition. And ultimately, since t8 is a continuous transition, flow from the transition

occurs continually. Hence the flow is in the form of increasing/decreasing ramp instead

of a discrete waveform. Simulation of t6 will also give similar result.
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Fig. 4.5. Result showing duration of traffic light.

Simulation in Fig. 4.5 shows the duration of a traffic light (i.e m3). Since p3 is a

discrete place (with discrete input and output transition), graph will be in the form

of a rectangular block (standard discrete waveform, having values one or zero). There

is a delay associated with t3, this will make the token to stay in p3 till the delay time

elapses. So for the duration of delay, graph will indicate one token in m3. When the

delay time elapses, token will be transfered to next place. And hence the graph will

indicate zero token. The width of the graph depends on the delay associated with

the transition t3. Same can be expected from the graph of m1.

Fig. 4.6 shows the flow of t1. Since the transition is discrete, it will generate a

standard discrete waveform. Transition will fire only when t1 is enabled. In addition,

it will wait for delay associated with t1 to elapse. After that, the transition will fire.

And the process will allow flow of token from p1, through t1, to p2. Since it allows

the flow of one token while firing, the waveform will be narrow. Same form of graph

could be expected for the flow of t2, t3, t4 as well.
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Fig. 4.6. Result showing firing of transition.

4.3 Traffic intersection with exponential arrival rate

As mentioned before, the arrival rate and service rate in Fig. 4.1 is constant. But

in most situations, traffic intersections are controlled by traffic lights. And intersec-

tions are connected to each other through roads. Hence vehicles departing from one

intersection will arrive at the neighboring intersection a little while later. When the

traffic signal at the intersection turns from red to green, all the vehicles waiting to

cross the intersection will leave the intersection. Since all vehicles starts leaving the

intersection together, they all arrive at the neighboring intersection together. And

hence, the traffic does not arrive at an intersection at a constant rate. It happens in

batches (a batch arrives at an intersection shortly after the traffic light at upstream

intersection turns green). So in an effort to make the traffic model more realistic,

Vandzquez, Sutarto, Boel, and Silva [8] came up with a new model. Their model is

shown in Fig. 4.7. The difference between model in Fig. 4.7 and model in Fig. 4.1 is

in section I. Place p5 of model (in Fig. 4.1) is replaced with section I in new model

(in Fig. 4.7). There are two discrete places pe, pne and two timed discrete transition

t9, t10 in the new section. A token in pe means, transitions t9 and t1 are enabled.

During this time, vehicles from upstream intersection will arrive at intersection 1



47

Fig. 4.7. Petri net model of two one-way intersection with exponential arrival rate.

with an arrival rate of λ. Since t9 is a timed discrete transition, after a certain time

θ9 (delay associated with t9) token from t9 will be removed and will be deposited at

pne. When this happens t1 and t9 will no longer be enabled (vehicles won’t arrive

at intersection 1). But at this time transition t10 will become enabled. No vehicle

from upstream will arrive at intersection 1 during this time. If the deterministic time

delay associated with t10 is θ10, then θ10 time units after t10 became enabled, token

will be removed from pne and it will be deposited back at pe. And this cycle repeats.

The whole process characterizes vehicles arriving at the intersection in batches. Be-

cause, the only time when vehicles are allowed to arrive at the intersection is when

t9 is enabled (for a duration of θ9) as opposed to vehicles arriving continuously at

the intersection (shown in Fig. 4.1). And if the arrival rate is λ1, then the total

number of cars arriving at the intersection from upstream will be θ9λ1. The arrival at

intersection 2 in the new model still occurs continuously and at a constant rate. The
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author has deliberately kept the arrival at constant rate to keep the model simple.

Vehicle arrival at intersection 2 will occur in batches if p4 is replaced with section I.

Since the model in Fig. 4.1 have constant arrival rate and the model in Fig. 4.7 do

not have a constant arrival rate, equation 4.1 will not represent an optimal behavior

of model shown in Fig. 4.7. In addition, the model in Fig. 4.1 has only one discrete

structure (traffic light). And hence the discrete transitions will always fire in the

following order t1, t2, t3, t4, t1, t2.... But for model in Fig. 4.7, there are two different

discrete structures (traffic light, section I). Transition firing can follow many sequence.

For example t9, t5, t6, t10, t9, t7, t8.... or t5, t9, t6, t10, t7, t8... or t5, t9, t6, t7, t8, t10..... The

transition firing sequence depends on the delay of the signal t5 and t7. And this

uncertainty associated with transition firing sequence makes it harder to come up

with a mathematical expression to represent the process.

4.4 Optimization of the signal

Since the firing sequence is not fixed for the model, a mathematical expression to

represent the model is difficult to fabricate. Hence the optimal periodic orbit cannot

be represented by the equation 4.1. In order to optimize the process of Fig. 4.7, we

have to optimize the duration of traffic light (θ5, θ7). In order to optimize the process,

we follow the same optimization steps mentioned in Chapter 3. So starting from the

first step,

• Design variables - since we are trying to optimize duration of traffic signal, it is

fair to make the assumption that θ5, θ7 are the major parameters affecting the

optimization process. Hence θ5, θ7 are chosen as design variables.

• Constraint - there are not many parameters affecting the optimization process

(other the duration of traffic signals). And the only constraint on the duration

of traffic light (design variable) is that, it should be integers. i.e θ5,θ7 should be

integers.
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• Variable bounds - during the optimization process, θ5,θ7 will be varied within

bounds. In other words, there exist a minimum value and a maximum value

within which design variables(θ5,θ7) are varied. So Vandzquez, Sutarto, Boel,

and Silva [8] has defined control value as,

cs = {(θ5, θ7)εN ×N |θmin5 ≤ θ5 ≤ θmax5 , θmin7 ≤ θ7 ≤ θmax7 }

• Objective function - it is the cost function which we are trying to optimize

J(T, θ5, θ7) =
1

T

∫ T

0

W

m(p1)

m(p2)

 dt (4.4)

where,

– m(p1), m(p2) are length of the queues.

– T is the fixed time horizon.

For a fixed time horizon T , and queue length m(p1) and m(p2), the design variables

(θ5,θ7) are varied while computing the cost function in equation 4.4. Each time the

cost function values are compared to find out the minimum cost value. And the

minimum cost value determines optimal duration (θopt5 , θopt7 ).

Thus given the time horizon T and current markings m(p1) and m(p2), the process

will improve the duration of traffic signal over an interval of [current time, T time

units from current time]. And also, the cycle time is not constant (because it depends

on the values of (θ5 and θ7) obtained). The cost function of the model is computed

for many combinations of (θ5, θ7). Hence the computational cost is high. In order to

reduce that, the value of incremental cost function J(T + ∆T ) − J(T ) is calculated

(where ∆t is the time interval for which the system will remain in the same discrete

state). Below process illustrates the calculation of cost function.

Let (θ5, θ6, θ7, θ8, θ9, θ10) be the delays of transitions (t5, t6, t7, t8, t9, t10). And let

the delay values be (20, 4, 35, 4, 10, 30) and m(p5) = m(pe) = 1 i.e, transitions t1, t5,

t9 are enabled. But min(θ5, θ9) = min(20, 10) = 10. So the system will remain in
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the same discrete state for 10 time units (after that the system will move to another

discrete state). During this time, marking of p1 and p2 will change and it will follow a

deterministic pattern. For instance if (λ1, λ2, λ3, λ4) are the firing rates of transitions

(t1, t2, t3, t4), and if ∆t ≤ tc then the change in marking during ∆t can be calculated

by,

m∆t(p1) = (λ1 − λ2)∆t+m0(p1)

But if ∆t > tc, then,

m∆t(p1) =
λ1

λ2

+

(
1− λ1

λ2

)
e−λ2(t−tc)

where ∆tc is the time required by the first queue to reach a value of one. So,

tc =
(1−m0(p1))

λ1 − λ2

and thus, the incremental cost function (as in previous model) is,

∆J =

∫ ∆t

0

W

m(p1)

m(p2)

 dt = w1

∫ ∆t

0

m(p1)dt+ w2

∫ ∆t

0

m(p2)dt (4.5)

But, if ∆t > tc∫ ∆t

0

m(p1)dt =
λ1 − λ2

2
(∆t)2 +m0(p1)∆t+

λ1

λ2

(∆t− tc) +

((
λ1

λ2
2

)
− 1

λ2

)
(eλ2(tc−∆t) − 1)

(4.6)

And if ∆t ≤ tc then, markings can be found out by,∫ ∆t

0

m(p1)dt =
λ1 − λ2

2
(∆t)2 +m0(p1)∆t

and since arrival rate at intersection 2 is kept constant,∫ ∆t

0

m(p2)dt =
λ3

2
(∆t)2 +m0(p2)∆t (4.7)

will hold true under all circumstances.

Similarly, the expressions for markings [m(p1),m(p2)] and cost function (J) can

be found out for all possible discrete states. Once the expressions are obtained,
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an optimization algorithm can be designed to minimize the cost function (and thus

determine the optimum signal duration). The algorithm will sum up all the above

mentioned steps.

Begin algorithm

1. Define the firing rate for the continuous transition. Define the time delays for

the discrete transitions. Define t = 0, T , Jac = 0.

for all t ≤ T do

2. Find the enabled discrete transitions.

if enabled-trans = t5 or t7 then

3. Generate a random delay for t5 and t7.

end if

4. Determine the firing time of all the enabled transitions.

5. Find the transition which will fire first(transition with the lowest firing time,

from previous step, will fire first).

6. Determine ∆t. Transition will remain in the same discrete state during ∆t.

7. Calculate the markings (queues) of m(p1),m(p2) during ∆t.

8. Calculate the incremental cost: ∆J . If enabled transition is t5 or t7, do a

linear search to determine the lowest ∆J . If the current ∆J is the lowest, set

delays of t5 and t7 as optimum signal duration.

9. Update the firing time t = t+ ∆t.

10. Fire the enabled discrete transition.

end for

11. Calculate the cost function, J(τ) = 1
τ
.Jac

End algorithm

So far determining all discrete states, and calculation of the corresponding cost

functions were done separately. But those two processes could be integrated into one

as shown below:
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• Define the firing rate for continuous transitions as (λ1, λ2, λ3, λ4). Define the

time delays for discrete transitions as (θ6, θ8, θ9, θ10). Define current time t = 0,

cost function Jac = 0, cycle time T . Initialize necessary flags and define arrays.

• While t ≤ T , do,

– Determine the discrete places which has token. The place which has token

will enable the corresponding discrete transition.

– There will be multiple enabled transitions. If enabled transition is t5 or t7

then, randomly select a delay value (for t5 and t7) within an upper limit

and lower limit. Let the randomly selected delays be θ5 and θ7.

– Update the firing time of all the enabled transition as current time + delay

associated with the transition. So,

– if p5 = 1, then,

∗ Enabled transition[i] = 5

· firing time [i] = t + θ5. This is the time at which this transition

will fire.

· i = i+ 1

Do the same check for p6, p7, p8, pe and, pne.

– Compare firing time of all enabled transitions (determined in previous

step). Transition with the lowest firing time will fire first. Rest of the

transitions will fire later.

– ∆t = firing time − t. System will remain in the same discrete state for

the duration of ∆t.

After the current discrete state is established, compute markings [m(p1),m(p2)],

and cost function using equation 4.5, 4.6, 4.7 as example.

if p5 = 1 then,

– pcur2 = λ3∆t+ pprev2
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– J2 = λ3
2

(∆t)2 + (pprev2 )∆t

if pe = 1 then,

∗ compute tc =
1−pprev1

λ1−λ2

if ∆t ≤ tc then,

· pcur1 = (λ1 − λ2)∆t+ pprev1

· J1 = λ1−λ2
2

(∆t)2 + (pprev1 )∆t

if ∆t > tc then,

· pcur1 = λ1
λ2

+
(

1− λ1
λ2

)
e−λ2(t−tc)

· J1 = λ1−λ2
2

(∆t)2+(pprev1 )∆t+ λ1
λ2

(∆t−tc)+
(
λ1
λ22
− 1

λ2

)
(eλ2(tc−∆t)−1)

else (i.e, if pe is not equal to 1)

∗ pcur1 = λ2∆t− pprev1

∗ J1 = λ2
2

(∆t)2 − pprev1 ∆t

Similarly, if p7 = 1 then,

– pcur2 = (λ4 − λ3)∆t+ pprev2

– J2 = λ4−λ3
2

(∆t)2 + (pprev2 )∆t

if pe = 1 then,

∗ compute tc =
pprev1 −1

λ1

if ∆t ≤ tc then,

· pcur1 = (λ1)∆t+ pprev1

· J1 = λ1
2

(∆t)2 + (pprev1 )∆t

if ∆t > tc then,

· pcur1 = 1
λ1

+
(

1− 1
λ1

)
e−λ1(t−tc)

· J1 = λ1
2

(∆t)2 + (pprev1 )∆t+ 1
λ1

(∆t− tc) +
(

1
λ21
− 1

λ1

)
(eλ1(tc−∆t)− 1)

And finally, if p6 or p8 = 1 then

∗ pcur2 = (λ3)∆t+ pprev2
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∗ J2 = λ3
2

(∆t)2 + (pprev2 )∆t

if pe = 1 then,

· compute tc =
pprev1 −1

λ1

if ∆t ≤ tc then,

pcur1 = (λ1)∆t+ pprev1 and

J1 = λ1
2

(∆t)2 + (pprev1 )∆t

if ∆t > tc then,

pcur1 = 1
λ1

+
(

1− 1
λ1

)
e−λ1(t−tc) and

J1 = λ1
2

(∆t)2 + (pprev1 )∆t+ 1
λ1

(∆t− tc) +
(

1
λ21
− 1

λ1

)
(eλ1(tc−∆t)− 1)

– Update cost function as Jac = Jac + J1 + J2. And reset temporary cost

functions to zero. J1 = J2 = 0.

– Update current time as t = t+ ∆t.

– Mark the transition which fired as not an enabled transition. And make

the downstream discrete transition as an enabled transition. So if enabled

transition = 5 then, set p5 = 0 and p6 = 1. Do the same for p6, p7, p8, pe,

and pne.

• End loop.

• Evaluate the final cost. J = Jac
T

.

The above process captures the vehicle movement in a more realistic manner.

Hence the algorithm will have a better value for cost function. Below example illus-

trates the working of algorithm. If the delays of discrete transitions are θ6 = 5, θ8 =

5, θ9 = 10, θ10 = 30 (note that delays associated with transition t5 and t7 are not

mentioned here. Because those are the parameters which we are trying to optimize.

And they will be randomly chosen by the algorithm). And if the rates of the discrete

transitions are λ1 = 1, λ2 = 3, λ3 = 1, λ4 = 3. And if, previous markings of p1, p2

are 10 and 20 respectively. Let the initial condition be p5 = 1 and pe = 1 (t5 and t9

are enabled).
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Whenever t5 is enabled, algorithm choses a random value as the delay for t5. For

instance, let the random delay for t5 be 17. Since two transitions are enabled at a

time, the transition with minimum delay will fire first. Delay associated with t9 = 10.

So min[17, 10] = 10. Hence t9 will fire first. And current discrete state will have a

duration of ∆t = 10.

At t= 0. p5 = 1, pe = 1. So,

p2 = (1× 10) + 20 = 30

J2 =

(
1

2
× 100

)
+ (20× 100) = 250

Tc =
(1− 10)

(1− 3)
= 4.5

Since ∆t > Tc

J1 =

(
1− 3

2

)
× 102 + (10× 10) +

1

3
(10− 4.5) +

(
1

9
− 1

3

)
(e3(4.5−10) − 1)

=− 100 + 100 + 1.8333 + 0.2222 = 2.0555

After 10 time units, t9 will fire. Token from pe will be moved to pne. Hence pe won’t

be enabled any more. Transition t5 have been active for 10 time units now. So the

remaining delay for t5 = 17−10 = 7. Now transitions t5 and t10 are active at the same

time. Delay associated with both transitions (7 and 30 for t5 and t10 respectively) are

compared. Transition with minimum delay will fire first. So, t5 will fire before t10.

At t= 10, p5 = 1, pne = 1. Transition t5 will fire first. Hence duration of the current

state will be ∆t = 7.

p2 = (1× 7) + 20 = 27

J2 =

(
1

2

)
72 + (20× 7) = 164.5

Since pe has no token during this time, t1 is not enabled. Hence no change will happen

to the p1 or J1. Seven time units after, t5 will fire (one token from p5 will be moved

to p6). So now, the enabled transitions are t10 and t6. But t10 have been active for

seven time units now. The remaining delay for t10 = 30 − 7 = 23 and θ6 = 5. So



56

∆t = min[23, 5]. At t = 17, p6 = 1, pne = 1. Since transition t6 has the minimum

delay it will fire first. Hence duration of current discrete state will be ∆t = 5.

p2 = (1× 5) + 20 = 25

J2 =

(
1

2

)
52 + (20× 5) = 112.5

There will not be any change as far as p1 and J1 are concerned (t1 is not enabled). At

the end of t = [17 + 5] = 22 time units, t6 will fire, transferring one token from p6 to

p7. So transitions t7 and t10 will become enabled. And as of now, t10 have been active

for 7 + 5 = 12 time units. So the remaining delay of t10 is 30 − 12 = 18 time units.

Delay associated with t7 will be randomly generated by the system. In this case let it

be 37. Min[θ7, θ10] = min[37, 18] = 18. Remaining time at the current discrete state

is ∆t = 18.

At t = 22, p7 = 1, pne = 1. Duration of current state is ∆t = 18.

p2 = (3− 1)18 + 20 = 56

J2 =
(3− 1)

2
182 + (20× 18) = 684

At the end of t = 22+18 = 40 time units, t10 will fire. During this process, one token

will be transferred from pne to pe. Thus only t9 and t7 will be enabled. But t7 have

been active for 18 time units. Remaining delay of t7 is 37 − 18 = 19 time units. So

duration of current discrete state will be min[19, 10] = 10.

At t = 40, p7 = 1, pe = 1. And ∆t = 10.

p2 = (3− 1)10+20 = 40

J2 =
(3− 1)

2
102+(20× 10) = 300

Tc =
(10− 1)

1
= 9

Since ∆t > Tc

J1 =

(
1

2

)
102 + (10× 10) +

(
1

1

)
(10− 9)+

(
1

1
− 1

1

)
(e1(9−10) − 1) = 151
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At the end of t = 40 + 10 = 50 time units, t9 will fire. Hence one token will be moved

from pe to pne. So t9 will no longer be enabled. But t7 and t10 will become enabled. At

this time t7 have been active for [18 + 10] = 28 time units. So the remaining delay of

t7 is 37− 28 = 9 time units. And duration of the current state will be min[9, 30] = 9.

At t = 50, p7 = 1, pne = 1 and ∆t = 9.

p2 = (3− 1)9+20 = 38

J2 =
(3− 1)

2
92+(20× 9) = 261

And the cycle will continue till time (t) reaches cycle time (T ). During the process,

computed cost function values are summed up. And the last step of the algorithm is

to compute the final cost value. J = 1
T
× sum of cost function value incurred during

each discrete state. If the above algorithm was executed for a cycle time (T ) of 55

Fig. 4.8. Program result of the illustrated example.

time units (and for the delay, firing rate values mentioned in the example), then cost

function value would be,

J = 35.001009

Cost function value generated by a program (based on the above algorithm) is shown

in Fig. 4.8. The program was executed for the same parameters (as used in the
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example). But the delay values of 17 and 37 for t5, t7 respectively, does not yield

minimum value for cost function. Those values were chosen for illustrative purposes.

Since the working of algorithm have been established, we can go ahead and execute it

to find out optimal duration of traffic lights. As mentioned above, the algorithm will

Fig. 4.9. Optimization of two one-way intersection with exponential arrival rate.

select random duration values for t5, t7 and will compare the cost function value for

each discrete state. Duration (θ5, θ7) with least cost function value will be the optimal

signal duration value. Fig. 4.9 shows the result when algorithm was executed to find

the optimum signal duration. And the duration of traffic signal which resulted in

minimum cost function value of 23.1468 is 14 and 19 for t5 and t7 respectively. Table

compares the result of both the algorithms. Comparison results clearly establishes

Table 4.1.
Optimization results of models (a).

Arrival/departure rate Cost function value Signal duration

Constant rate 73.5714 20,40

Exponential rate 23.1468 14,19
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the fact that, model in Fig. 4.7 has much better result than model in Fig. 4.1. Cost

function value and duration of signal is better for the model with exponential arrival

rate. Hence implementation of the model would save valuable time.
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5. HYBRID PETRI NET MODEL OF TWO

INTERSECTIONS

Till now we were discussing optimization of a traffic signal at an intersection with-

out implementing any new tools. Optimization of the model was solely based on

mathematical deductions and calculations. The model with exponential arrival and

departure rate improved the cost function value considerably. But work was mainly

concentrated on just one intersection. In an effort to expand the model and manage

the traffic of a wider area, another model has been designed. This chapter explains

the working of new model in detail.

5.1 Model of two connected intersections

The new model is bigger in the sense that it has two separate intersections con-

nected through a road/link. This way the new model is capable of controlling traffic of

two different intersections. The first intersection where it controls the traffic is called

upstream intersection, while the second intersection is called downstream intersec-

tion. Data of upstream intersection is used to optimize the signal duration of the new

model. Fig. 5.1 shows the new Petri net model of the connected intersection. For the

purpose of keeping it simple, model depicts one way streets. The upstream intersec-

tion is very much similar to model shown in Fig. 4.1. So the arrival and departure of

vehicles at this intersection occurs at a constant rate. Places p1, p2, p3, p4 represent

the traffic signal of upstream intersection. And the vehicle flow at this intersection is

represented using nodes p12, p14, t11, t12, t13, t14. Downstream intersection is also mod-

eled in a similar manner. Nodes p7, p8, p9, p10 represent the traffic signal while nodes

p17, p19, t15, t16, t17, t18 represent vehicle flow. Since vehicle flow is a continuous event,

continuous node are used to model the event. On the other hand, discrete nodes
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Fig. 5.1. Petri net model of two intersections connected through a link.

are used to model traffic signal because signal change happens at specific intervals

of time. Upstream intersection is connected to downstream intersection through a

road. All vehicles leaving upstream intersection will pass through this road to reach

downstream intersection. But it serves a very important role in the model. This road

introduces a delay. And it uses a combination of discrete and continuous nodes to

accomplish the task.

Vehicles (tokens) leaving upstream intersection will reach place p5 through transi-

tions t12 and t14. When vehicles reach p5 transition t5 becomes enabled. But there is

a delay associated with the transition. If delay of t5 is θ5, then vehicles from upstream

intersection will accumulate at p5 for a period of θ5 time units. After that, a token

will be released to p6. This makes t6 enabled, thus allowing the movement of tokens

(vehicles) from p5 to p15. From there all vehicles will reach downstream intersection,

p17, through t15 like a burst. So vehicles will depart from upstream intersection at

constant rate. But the link (consisting of nodes p5, p6, t5, t6) will alter the process so

that vehicles will arrive at downstream intersection in form of a burst.



62

Departure of vehicles from upstream intersection happens at constant rate. So,

the switching delays of upstream intersection will be constant. But arrival of ve-

hicles at downstream intersection happens in bursts. So, switching delays of the

downstream intersection could be optimized using the same algorithm discussed in

previous chapter. Since upstream intersection is much similar to model shown in Fig.

4.1, we can use algorithm for constant arrival rate model to calculate the parameters

of the intersection. These parameters can be used as input to downstream intersec-

tion while optimizing the signal duration of the downstream intersection. Following

steps explains how the process is carried out.

Begin algorithm

1. Write a function which will calculate the parameters of model shown in Fig. 4.1.

Since vehicles arrive and depart at constant rate in this model, the traffic signal

will have fixed delay. So, this function will calculate number of vehicles leaving

the intersection based on fixed delay and constant arrival rate. This function will

have no input arguments. But it will have two output arguments. For example:

ConstantModel();

2. Write a function which will calculate the optimum switching delay based on the

model shown in Fig. 4.7.

Since vehicles arrive as bursts in this model, the traffic signal duration will be

optimized based on the input parameters. So this function will have two input

arguments and two output arguments. For example: ExpModel(p12, p14);

3. Start main program.

4. Call function to calculate the parameters of model shown in Fig. 4.1. For

example: [p12, p14] = ConstantModel();

Duration of traffic light is constant, so number of vehicles leaving the intersection

could be calculated by mathematical deductions discussed in the constant arrival

rate algorithm. That will be the output of this function.

5. Call function to calculate the optimum switching delay, based on the model

shown in Fig. 4.7. For example: [D5, D7] = ExpModel(p12, p14);
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This function will determine the optimum switching delay based on the input pa-

rameters determined by previous function for a fixed time horizon T .

6. Apply the optimum delay to the system.

7. Calculate the parameters (markings, cost function etc.) of the downstream

intersection based on the switching delay and exponential arrival rate.

8. After certain time, Tupd (lower than T ), go to step 4.

End algorithm

So the process will estimate the parameters based on model in Fig. 4.1 (constant

arrival rate model). And then it will optimize the signal duration based on exponential

arrival rate model (Fig. 4.7). Because of the use of exponential arrival rate algorithm

to optimize the signal, the system will have much better cost function and signal

duration. And the process will keep updating the signal duration very often. Thus

based on the data from upstream intersection, it will optimize the signal duration of

downstream intersection. In other words, based on data from one point, the algorithm

will predict the behavior of the system elsewhere. And the optimization of neighboring

intersection does not require any added tools. Optimization is achieved through

mathematical calculations. This makes the process cost effective as well. Fig. 5.2

Fig. 5.2. Cost function value of two intersections connected through a link.
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shows the cost function obtained by following the above method. The result shows

an improvement in cost function value and a much better value for signal duration.

Table 5.1 compares the result obtained for the connected-intersection model,

one-intersection model with exponential arrival/departure rate and, one-intersection

model with constant arrival/departure rate for the same initial conditions. Since

the algorithm used to optimize the signal of connected-intersection model is same

as the one discussed for exponential arrival rate model, the resulting signal duration

will be comparable to the signal duration of exponential arrival rate model. And for

the same reason, cost function values of exponential arrival/departure rate model and

connected-intersection model will be significantly less than constant arrival/departure

rate model.

Table 5.1.
Optimization results of models (b).

Arrival/departure

rate

Cost function value Signal duration

Constant rate 73.5714 20,40

Exponential rate 23.1468 14,19

Exponential rate

for connected-

intersections

40.9353 19,19

5.2 Simulation results

In order to better understand the working of connected intersection model, sim-

ulations of the model were carried out. This section explain the simulation results.

However, simulations of upstream intersections are not shown since they are already

shown in previous chapter.
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Fig. 5.3. Result showing working of link.

Since p5 is fed by continuous transitions, marking of p5 will increase continuously.

This is shown by the steep curve in the graph. When the marking reaches one, t5

will become enabled. But it will wait for delay time (associated with t5) to elapse.

Once it has elapsed, one token will be transferred to p6. Since p5 is a continuous

transitions, it will have fractional amount of token left in it (even after the firing of

t5). Now, p6 has one token. And p5 also has fractional amount of token. This will

enable t6. Depending on the firing rate of t6, tokens will be removed from p5 and p6.

Since t6 is a continuous transition, number of tokens will decrease continually at p5

and p6. When t6 finishes transferring all token of p6 to p15, t6 won’t be active any

more. So tokens from p5 won’t be transfered to p15. Hence tokens inside p5 will start

accumulating. And the cycle will continue.

The Fig. 5.4 shows arrival of vehicles at downstream intersection (p17). Vehicles

leave upstream intersection at constant rate. But link/road connecting it to down-

stream intersection will convert the constant arrival rate to exponential arrival rate.

So the arrival at downstream intersection happens in burst. This is supported by the

graph. When vehicles starts arriving at downstream intersection, the graph will start

to rise exponentially. After it reaches a maximum value, it will start to decrease grad-

ually (indicating that almost all vehicles from upstream have reached downstream and
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Fig. 5.4. Result showing arrival of vehicles at downstream intersection.

the burst is getting over). So the curve will continue decaying. And when the next

burst arrives, the curve will rise exponentially and the cycle will repeat.

Fig. 5.5. Result showing departure of vehicles at downstream intersection.

Since vehicles arrive at downstream intersection in bursts, the number of vehicles

at downstream intersection will rise from zero and it will keep on increasing till it

reaches a peak value. Then the number of vehicles will begin to decrease gradually.

So, for the same reasons mentioned for the previous graph, the exponential nature

of vehicle arrival will be retained at the downstream intersection. Depending upon
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the presence of token at p7, t16 will become enabled only at specific intervals. Spikes

shown in the graph indicate time intervals during which t16 was enabled. Vehicles

will cross the intersection only during those intervals.
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6. CONCLUSION

Modeling and simulation is an important way of knowing system behavior even before

putting the system to use. It helps to understand system behavior (under various

circumstances) before actually making/using the system. Field of engineering uses

modeling and simulation extensively. And Petri net is one such modeling tool. It

is a popular tool because of its simplicity (systems modeled using Petri nets are

represented graphically) and versatility (it can represent discrete as well as continuous

events efficiently).

6.1 Summary

This thesis deals with Petri net models of traffic intersections and optimization

of traffic signals. Chapter 1 is an introduction to thesis. Motivation for selecting

the research area, work on related topics and preview of what has been done were

explained in the chapter. Since majority of the work concentrates on Petri nets,

Chapter 2 explains basics of Petri net. Definitions, notations, and working of Petri

nets were illustrated using examples. Different types of Petri nets used in the work,

and their properties were also discussed. Much of the work in this thesis also deals

with optimization of traffic signal. And so, Chapter 3 was an overview about opti-

mization process. It explained various steps involved in optimizing a process. Later

on in the thesis, these steps were used to optimize traffic signal.

Chapter 4 started by explaining a two one-way intersections controlled by a traffic

signal. Two different Petri net structures were used in this model. First one was

a discrete structure (used to model traffic signal) while the second one was a con-

tinuous structure (used to model vehicle movement). Simulations of the model were

carried out to understand its working. In this model, arrival and departure of vehicle
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occurred at constant rate. Mathematical description of the system was discussed and

a program was developed to evaluate the mathematical function. But there were

major flaws to the assumptions made in the model. To rectify the flaws, a new model

was discussed. New model replicate arrival and departure of vehicles as occurring in

bursts. This was a much more realistic approach. Working of the new model was

discussed in detail. Mathematical deduction and programs were developed to eval-

uate the objective function of the model. The new model was optimized using the

program developed. Chapter 5 extends the traffic model by connecting two differ-

ent intersections via road. And this model was also simulated to better understand

its working. Optimization of traffic signal had been carried out by combining the

algorithm developed for the previous model.

6.2 Conclusion

Petri net is an efficient modeling tool. The fact that it is versatile and simple

makes it a popular choice in traffic system modeling. While a hybrid Petri nets could

be used to represent different events happening in the system, a timed hybrid Petri

net could be used to induce time delay to various nodes of the model. The idea

of vehicle arrival and departure occurring in an exponential manner (rather than at

constant rate) helped make the system more real time and efficient. And hence such

a model will have much better cycle time (duration of red/green/yellow light). With

the implementation of this model, vehicles at the intersection will wait for shorter

amount of time. And most importantly, the cycle time is not fixed. It varies from

cycle to cycle. And hence wait time of vehicle at the intersection will also vary after

each cycle.

Optimization is an important process in engineering. It helps to make sure that a

system operates at its maximum possible efficiency under varying circumstances. Op-

timization of signal duration have made the traffic intersection model more efficient.

Optimization process helped to make sure that vehicles at the intersection do not
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spend too much time waiting to cross the intersection. And further more, the same

optimization algorithm have been used to optimize signal duration of a connected

downstream intersection. Thus, the optimization algorithm improved the signal du-

ration of one intersection, in addition, it improved the signal duration of a connected

intersection without the use of any additional tool.

6.3 Future work

There is much room for expansion of the model shown in Fig. 4.7, Out of the

two one-way intersection shown, vehicles arrive and depart at one intersection in an

exponential manner while arrival and departure at the second intersection happens at

constant rate. Second intersection could be modified to make arrival and departure at

that intersection in exponential manner. This could be done by keeping intersection 1

intact while replacing intersection 2 with burst model. This model will be much more

closer to real-time scenario. Further more, the model could be expanded by making

the one-way streets into two-way street and thus model could represent two two-way

intersection. The situation would prompt the use of burst model multiple times. Same

could be done for model shown in Fig. 5.1. Model could be expanded to accommodate

exponential arrival and departure at both sections of the upstream intersection. This

would result in much more accurate data for downstream intersection. And also,

one-way streets could be modified to two-way streets. Finally the model in Fig. 5.1,

could be modified to connect it to multiple intersections. This would tackle traffic

problems of much wider area. The same process used to optimize the model in Fig.

5.1, could be used to optimize each signal.
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