
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Chao Liu

3D EM/MPM MEDICAL IMAGE SEGMENTATION USING AN FPGA EMBEDDED
DESIGN IMPLEMENTATION

Master of Science in Electrical and Computer Engineering

Dr. Lauren Christopher

Dr. Maher Rizkalla

Dr. Paul Salama

Lauren Christopher

Brian King 07/20/2011

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of Choose your degree

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

3D EM/MPM MEDICAL IMAGE SEGMENTATION USING AN FPGA EMBEDDED
DESIGN IMPLEMENTATION

Master of Science in Electrical and Computer Engineering

Chao Liu

07/08/2011

3D EM/MPM MEDICAL IMAGE SEGMENTATION

USING AN FPGA EMBEDDED DESIGN IMPLEMENTATION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Chao Liu

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2011

Purdue University

Indianapolis, Indiana

ii

To my family

iii

ACKNOWLEDGMENTS

Foremost, special thanks to my advisor Prof. Lauren Christopher of the Depart-

ment of Electrical and Computer Engineering, for her support of my study. She

helped me on all the time of research and writing of this thesis. I would also like to

thank my committee members Prof. Paul Salama and Prof. Maher Rizkalla; and to

Prof. Brain King for helping on my thesis writing. Thanks to Yan Sun, Weixu Li and

Jim Jirgal who have helped me a lot in my research. For the ultrasound data used to

test these system, thanks to Karmanos Cancer Institute.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . viii

1 INTRODUCTION . 1

2 3D EM/MPM ALGORITHM . 5

2.1 Introduction . 5

2.2 Expectation-Maximization . 8

2.3 3D Maximization of Posterior Marginals 9

3 HARDWARE IMPLEMENTATION ON FPGA 11

3.1 The Structure and Main Work Steps of This System 11

3.2 The Critical Components of This System 12

3.2.1 MicroBlaze Embedded Processor 12

3.2.2 MPM Logic IP . 12

3.2.3 PCI-Express Bus Controller Bridge 18

3.2.4 DMA Transfer Mode . 20

3.2.5 MPMC(NPI) . 20

4 ON BOARD RESULTS AND ANLAYSIS 27

4.1 Hardware Synthesis Resource Analysis 27

4.2 Results Analysis . 29

5 CONCLUSION AND FUTURE RESEARCH 38

5.1 Future Work . 38

5.2 Conclusion . 38

LIST OF REFERENCES . 40

v

LIST OF TABLES

Table Page

3.1 PCIe bridge settings . 18

3.2 External memory storage arrangement 21

4.1 Device utilization summary . 28

vi

LIST OF FIGURES

Figure Page

2.1 3D image model . 5

2.2 3D 6-pixel neighborhood . 6

2.3 Original ultrasound images, breast cancer 8

2.4 Segmentation results . 8

3.1 System architecture . 13

3.2 PLB IPIF block diagram . 14

3.3 PLB IPIF . 15

3.4 Block diagram for algorithm . 15

3.5 Block diagram for MPM . 17

3.6 PCIe on board . 19

3.7 Data rearrangement . 22

3.8 MPMC soft memory controller architecture block diagram 23

3.9 MPMC architecture-specific features 24

3.10 MPMC module interface . 24

3.11 Memory interface connection . 25

4.1 Virtex-6 FPGA feature summary by device 27

4.2 Xilinx development board and Dell workstation 29

4.3 Original Y matrix . 30

4.4 Original Y matrix (hex matrix) . 31

4.5 Software application on PC . 32

4.6 Write to DDR3 . 32

4.7 Read from DDR3 . 33

4.8 Time . 33

vii

Figure Page

4.9 Result of Xilinx hardware segmentation (After 7 MPM iterations) . . . 34

4.10 Result of Xilinx hardware segmentation(EM/MPM both completed) . . 35

4.11 Result of PC software segmentation . 35

4.12 Time comparison between hardware and software for EM/MPM . . . 36

4.13 Time comparison with other 3D image segmentation implemented in hard-
ware . 36

4.14 Results comparison between software and hardware 37

viii

ABSTRACT

Liu, Chao. M.S.E.C.E., Purdue University, August 2011. 3D EM/MPM Medical
Image Segmentation Using An FPGA Embedded Design Implementation. Major
Professor: Lauren Christopher.

This thesis presents a Field Programmable Gate Array (FPGA) based embedded

system which is used to achieve high speed segmentation of 3D images. Segmenta-

tion is performed using Expectation-Maximization with Maximization of Posterior

Marginals (EM/MPM) Bayesian algorithm. In this system, the embedded processor

controls a custom circuit which performs the MPM and portions of the EM algorithm.

The embedded processor completes the EM algorithm and also controls image data

transmission between host computer and on-board memory. The whole system has

been implemented on Xilinx Virtex 6 FPGA and achieved over 100 times improvement

compared to standard desktop computing hardware.

1

1. INTRODUCTION

In recent years, three dimensional images are becoming more and more popular

due to advanced visualization techniques. In the medical area, computed tomography

(CT) and magnetic resonance (MR) are widely used for patient diagnosis. Because it

is difficult for doctors to diagnose and make a treatment plan using only 2D images,

3D image diagnostic equipment such as 3D and 4D ultrasound are widely used. For

tissues surrounded by layers of different texture in some hidden angle, segmented

3D images in the visualization can improve clinical understanding. Therefore, fast

image segmentation is the first step for a good visualization. This thesis describes

the acceleration of 3D image segmentation.

Several image segmentation algorithms have been proposed. After comparing dif-

ferent Bayesian segmentation techniques, the Expectation Maximization /Maximiza-

tion of Posterior Marginals (EM/MPM) algorithm is used because of its improved

performance in noisy images [1,2]. The EM/MPM algorithm combines the EM algo-

rithm for parameter estimation with the MPM algorithm for segmentation [3]. This

algorithm classifies every pixel in an image by assigning a cost to an incorrect seg-

mentation based on the number of incorrectly classified pixels and iteratively finding

the best probabilistic solution which fits the data. However, the processing speed is

an issue that must be overcome. An embedded hardware-software system implements

the algorithm in order to improve throughput on large medical image volumes.

Multimedia technology is popularized in consumer electronics, therefore we see in-

creased use of image processing systems. New products require greater image capacity,

higher image quality, and faster image processing speed. Many image processing sys-

tems are implemented on graphic controllers with Digital Signal Processors (DSP) or

2

PC software. Software instructions in series can not meet the real-time requirement

of high speed image processing. Therefore, additional effort is needed to control DSP

work flow. For the segmentation algorithm, choosing FPGA hardware improves the

speed.

What follows is a review of literature for FPGAs applied to imaging tasks. As

reported in [4], the FPGA improved the speed of medical image processing systems.

Xinxi Zhang, Yong Li, Jinyang Wang, Yulin Chen [5] designed a high-speed image

processing system in their paper. They addressed the need for system integration

and high-speed image processing for a vehicle-loaded computer. Their system realizes

functions of image acquisition, storing, preprocessing, processing and display by using

hardware on a FPGA chip and system software. Using programmable chips, re-

configuration technology, and parallel processing technology, their system has high

integration, quick image processing speed; resulting in strong real-time capability.

But their system does not include image segmentation.

Standard computing architectures are not well suited for parallel processing and

have restricted memory bandwidth for large image volumes. Therefore, a Xilinx

Virtex 6 Field Programmable Gate Array (FPGA) is chosen to improve image pro-

cessing throughput for the segmentation algorithm. Field programmable gate arrays

(FPGAs) provide designers with the ability to create hardware circuits quickly. In-

creases in FPGA configurable logic capacity and decreasing FPGA costs have enabled

designers to incorporate FPGAs more readily in their designs.

FPGA vendors have begun providing configurable soft processor cores that can

be synthesized onto their products. While FPGAs with soft processor cores provide

designers with increased flexibility, such processors typically have degraded perfor-

mance and energy consumption compared to hard-core processors. Roman Lysecky

and Frank Vahid [6] studied the potential of a MicroBlaze soft-core based warp pro-

cessing system to eliminate the performance and energy overhead of a soft-core pro-

cessor compared to a hard-core processor. They demonstrate that the soft-core based

processor yields performance and energy consumption competitive with hard-core pro-

3

cessor, thus expanding the usefulness of soft processor cores on FPGAs to a broader

range of applications. Ralf Joost and Ralf Salomon [7] report that by applying spe-

cific hardware components attached to a soft-core processor, the FPGA uses both

software capabilities and resources for hardware implementation. In our implemen-

tation of the EM/MPM, the MicroBlaze soft core processor from Xilinx performs the

EM calculation and controls the hardware MPM logic.

A key design criteria for our design is the memory and bus interface. External

on-board memory, Double-Data-Rate Three Synchronous Dynamic Random Access

Memory(DDR3 SDRAM) is used to store both the image data from the host computer

and the segmented image results from MPM.

On the Xilinx prototyping board, the data bus transfers between DDR3 and PC

is done using a PCI Express bus. A number of commercial bus technologies for high

speed data transfer have been proposed including: Serial Rapid I/O, 10 Gigabit Eth-

ernet and Peripheral Component Interconnect Express (PCI Express). Heidi Frock,

Mike Geruso and Mark Wetzel [8] reported a survey of these high speed buses and con-

clude that PCI Express is the most promising technology for use in systems because

it provides the best bandwidth and latency. In addition, a Direct Memory Access

(DMA) controller has been applied in our system which provides DMA services to

devices on the Processor Local Bus (PLB). This is important because it transfers

programmable quantity of data between DDR3 and PCI-Express Endpoint without

MicroBlaze processor intervention.

This thesis is composed of 5 chapters. In Chapter 2, the EM/MPM algorithm

is introduced. The basic idea of this algorithm is reviewed. How this algorithm is

implememted and the reason to choose it in this system is analyzed. The theoretical

relationship between EM and MPM algorithm is explained in this chapter, which

helps in understanding the whole system design.

Chapter 3 explains the detailed implementation of the whole embedded system.

Four major modules named MPM, PCIE, MPMC(NPI), EM are described separately.

The EM/MPM implementation is clearly described in this chapter.

4

Furthermore, Chapter 4 shows the experimental results. Compared with PC soft-

ware implementation and with previous simulation results using MPM algorithm, we

see greater than 100 times speed advantages for this embedded system.

Finally, Chapter 5 concludes, confirming the processing speed improvement of the

whole system in the FPGA and outlining future work.

5

2. 3D EM/MPM ALGORITHM

2.1 Introduction

The EM/MPM algorithm is based on the EM algorithm for parameter estimation

and the MPM algorithm for segmentation [3]. In this chapter, system overviews

are provided of the EM and MPM algorithm. For a given 3D image, the source

image grey level data, denoted as Y, are considered a 3D volume of random variables.

For medical images, the model assumes that Y contains Gaussian noise due to the

imaging process, plus the true underlying tissue characteristics. The segmentation

result approximates the true tissues, denoted as X, without noise or distortion, as is

shown in Fig 2.1. This segmentation is also a 3D volume where there is assigned a

class label corresponding to every pixel in the source 3D image. The class label is

taken from a set of N labels. Described here is the optimization process by which we

classify the pixels into the N labels.

Fig. 2.1. 3D image model

6

The EM/MPM algorithm consists of two parts: Expectation-Maximization (EM)

and Maximization of the Posterior Marginals (MPM). The EM algorithm finds the

estimates for Gaussian mean and variance, while MPM classifies the pixels into N

class labels, using the estimated parameters from EM. The basic structure of the

image processing is a 3D neighborhood of pixels. In the 3D image research field, this

forms a mathematical structure called a Markov Random Field (MRF). The MRF is

useful because it guarantees local convergence in iterative algorithms which are based

on it. The 3D 6-pixel neighborhood which we use is: right, left, above, below, front,

and back around a center pixel, as is shown in Fig 2.2.

Fig. 2.2. 3D 6-pixel neighborhood

At the beginning of the segmentation process, a random class label is initialized

into every pixel in X. An evenly distributed vector of means and variances is used to

model noise. Then, the estimate of X (the segmentation output, or class labeling)

is formed by iterating several times through the 3D data. For MPM, convergence is

achieved by choosing the class label that minimizes the expected value of the number

of misclassified pixels, as proved in [9]. For a mixture of Gaussians, in which the

7

random variable Y is dependent on X, the probability density function is modeled in

Equation 2.1:

fY |X(y|x, θ) =
∏
sεS

1√
2πσ2

xs

exp

{
−(ys − μxs)

2

2σ2
xs

}
(2.1)

σ = variance for each class

μ = mean for each class

xs = the center pixel

ys = the source image

Where θ is the vector of means and variances of each class (or tissue type), and

the set S is the 3D volume of pixels with s denoting a single pixel.

Since we are assuming Bayesian dependence, we can use the p(x) to help solve

this equation, resulting in Equation 2.2.

p(x) =
∏
sεS

1√
2πσ2

xs

exp{−(ys − μxs)
2

2σ2
xs

−
∑
[r,s]εC

βt(xs, xr)} (2.2)

C = clique of X

β = weighting factor for amount of spatial interaction

Here, p(x) represents the tissue probable distribution in the 3D volume depending

on the neighborhood class labels. This formulation will favor a class label for a center

pixel that is similar to the largest number of neighboring class labels.

In order to get the approximation of this marginal conditional probability mass

function at each pixel, a Gibbs sampler is used to generate a Markov chain X(t).

After all the pixels have been processed through several iterations, EM uses class

persistence from these iterations to estimate the new means and variances, θ, which is

the input to MPM for the next iterative segmentation. After tens of EM iterations, the

result of EM/MPM algorithm will converge to the highest probability segmentation.

These segmentation algorithms were tested with tomographic ultrasound volumes

from Karmanos Cancer Institute of breast cancer patients. Figure 2.3 and Figure 2.4

show the ultrasound images before and after segmentation.

8

Fig. 2.3. Original ultrasound images, breast cancer

Fig. 2.4. Segmentation results

2.2 Expectation-Maximization

Expectation Maximization (EM) is an iterative procedure for estimation of the

mean and the variance of each segmentation classes. At each iteration, two steps

are performed: the expectation step and the maximization step. First maximization

step is performed, then the segmentation is done in the expectation step, iterating

to find the best log-likelihood of the probability that a particular pixel belongs to

9

one of the k classes [4]. The means and variances are represented by the vector:

θ = (μ1, σ1, . . . , μk, σk). The MPM probability, pxs|Y (k|y, θ (w − 1)), where w is the

number of EM iteration, passed out of the MPM loop, is directly applied in the EM

update Equations for μk, σ
2
k, shown below [1–3].

μk (w) =
1

Nk (p)

∑
sεS

yspxs|Y (k|y, θ (w − 1)) (2.3)

σ2
k =

1

Nk(w)

∑
sεS

(ys − μk(w))
2 pxs|Y (k|y, θ(w − 1)) (2.4)

Where N corresponds to the probability weighted number of pixels in a particular

class:

Nk (w) =
∑
sεS

pxs|Y (k|y, θ (w − 1)) (2.5)

2.3 3D Maximization of Posterior Marginals

At each pixel, the MPM optimization uses the Gaussian distribution of each class

and the class probability of the neighborhood pixels. As in the literature [1,2,4], the

3D pixel neighborhood is defined by the function t (xr, xs), where xs is the center

pixel to be assigned, and xr are the nearest 6 pixel neighbors: up, down, left, right,

next slice, previous slice. This neighborhood prior probability is defined below as the

probability of the segmentation choice of x, given the segmentation choices of the

neighbors.

p (x) =
1

z
exp

⎛
⎝−

∑
{r,s}εC

βt (xr, xs)

⎞
⎠ (2.6)

Z = normalizing value

t (xr, xs) = 0, xr = xs; t (xr, xs) = 1, xr �=xs

The Gaussian and the prior probability are combined in an equation to be opti-

mized by FPGA hardware computational block. This is calculated in the log domain,

10

eliminating constants and exponentials, where the current segmentation estimate, xs,

is computed by:

argmax

⎧⎨
⎩−logσxs −

(ys − μxs)
2

2σ2
xs

−
∑

{r,s}εC
βt (xr, xs)−

∑
{r}εC

γxr

⎫⎬
⎭ (2.7)

11

3. HARDWARE IMPLEMENTATION ON FPGA

This chapter shows the structure of the whole system and introduces the basic

steps of the process. Then, each of main parts of this embedded system are explained

in detail.

3.1 The Structure and Main Work Steps of This System

This system consists of a host PC and an external FPGA development board

(Xilinx ML605). The host PC sends 3D image data to the FPGA development board

through the PCI-Express bus. Then, after FPGA hardware completes the EM/MPM

image segmentation processing, the FPGA sends the new 3D image data back to PC.

Figure 3.1 shows the system structure; and the following are the working steps of this

system:

Step 1: PC sends source image data (y) to PCIe bridge Endpoint through PCI-

Express bus.

Step 2: DMA controller provides Direct Memory Access (DMA) services – trans-

fers programmable quantity of data from PCI-Express Endpoint to DDR3 without

MicroBlaze processor intervention.

Step 3: Microblaze generates initial values for MPM logic IP. And sends them to

MPM through Processor Local Bus (PLB).

Step 4: MPM logic IP gets data from external Memory (DDR3) and then starts

image segmentation processing using MPM algorithm and repeats 7 iterations. At

the same time, hardware accumulators begin calculating component parts of

pxs (k|y, θ (w − 1)) and Nk (w) for EM.

12

Step 5: Microblaze calculates the updated EM θ; computed using equation 2.1

and 2.2 for use as in the next iteration of MPM.

Step 6: Then steps 4-5 are repeated, terminating when the change in θ is less than

a set threshold.

Step 7: DMA controller transfers the results data from DDR3 to PCI-Express

Endpoint without MicroBlaze processor intervention.

Step 8: PC gets the segmented image data from PCIe bridge Endpoint through

PCI-Express bus.

3.2 The Critical Components of This System

3.2.1 MicroBlaze Embedded Processor

The MicroBlaze Embedded processor soft core is a reduced instruction set com-

puter (RISC) optimized for implementation in Xilinx Field Programmable Gate Ar-

rays (FPGAs). It is highly configurable and parameterized to allow selective enabling

of additional functionality [10]. In this system, the processor is responsible for the

overall coordination of all the components. It calculates new means and variances

by using EM algorithm and moves data to and from MPM logic through a Processor

Local Bus (PLB).

3.2.2 MPM Logic IP

MPM logic is the main algorithm calculation engine. The implementation of this

logic in detail is in [4]; especially useful is the Ping-Pong internal memory architec-

ture which is used to solve the memory bandwidth problem. As shown in Figure 3.1,

the MPM logic is created as a custom peripheral IP (Intellectual Property) and con-

nected to the Xilinx core PLB through the IP interface (IPIF). The IPIF is designed

to provide a user with a quick to implement interface between the IBM PLB Bus

and a User IP core [11], as shown in Figure 3.2. The logic end interface Xilinx IP

13

Fig. 3.1. System architecture

Interconnect (IPIC), is common between the PLB IPIF and the user logic IP. This al-

lows user logic IP to use the PLB IPIF for programming control registers. Figure 3.3

shows a block diagram of the PLB IPIF. The diagram also indicates the modules

ports as they relate to the IPIF services. The PLB IPIF provides nine services for

the User, of which, seven can be optioned in or out. The basic element of the design

is the Slave Attachment. This block provides the basic functionality for PLB Slave

operation. It implements the protocol and timing translation between the PLB Bus

14

and the IPIC. In this system, only slave registers (slvreg0, slvreg1...) are used for

data transfer between MicroBlaze and MPM logic IP through IPIC (IP interface) as

shown in Figure 3.3.

Fig. 3.2. PLB IPIF block diagram

From the algorithm analysis, The EM/MPM algorithm diagram is shown in Fig-

ure 3.4. The blocks named Y and Xt are external memory for storing source image

Y and segmentation result Xt. The blocks named EM and Basic Parameter will be

implemented on the on-Board CPU which is named as Microblaze. It can be seen

that each EM iteration calculates the mean and variance of each class based on seg-

mentation results from MPM loops. These new mean and variance are sent to MPM

algorithm as input information for a new segmentation processing at the next EM

iteration.

15

Fig. 3.3. PLB IPIF

Fig. 3.4. Block diagram for algorithm

16

The MPM segmentation process is to minimize the exponential part for every

class with respect to each pixel in Equation 3.1, is named as logpost(k) here:

logpost(k) = −logσxs −
(ys − μxs)

2

2σ2
xs

−
∑
[r,s]εC

βt(xs,xr) (3.1)

The computational block will classify every pixel, assigning it the class label k,

based on smallest (magnitude) logpost(k). This computational core is named MPM

top. It accomplishes the calculation of two important outputs: Accumulators and

Xt out. The Xt out is the current estimated class for each pixel, which represents

the current segmentation of the input. The Figure 3.5 is the core diagram. The

main ports for MPM top are listed below and the ports named “s2p ena”, “beta”,

“class”, “d in”, “m in”, “b in”, “con in”, “atten”, “icm”, “varmean” are from the

previous MPM design [4]. “Accumulator”, “Accumulator(Y)”, “Accumulator(YY)”

are designed for EM convengence and the other ports are designed as interface between

MPM and external memory.

Input:

(1) s2p ena: calculation enable signal. When ena1 = 1, computational block

works.

(2) beta :MPM parameter - weight of spatial interaction (about 2.4 is normal).

(3) class : number of segmentation classes (labels) expected in image

(4) d in: d = 2*v(v is array of N variances (per class)).

(5) m in: array of N means (per class) (and in VarMean case this is slope of line).

(6) b in: array of N variable intercepts in VarMean case.

(7) con in: con = log(
√
2× π × v).

(8) atten: if 0, do not use gamma, else use gamma and scale by atten value.

(9) icm: ICM = 1 if using Besag’s ICM, =0 if using Simulated Annealing for

optimization in MAP; =2 if using MPM.

(10) varmean: = 1 if using variable mean model (LMS fit to a line), = 0 if not

using this method.

(11) app rd data: This provides the output data from read commands.

17

Fig. 3.5. Block diagram for MPM

(12) app rd data end: This active-High output indicates that the current clock

cycle is the last cycle of output data on app wdf data.

(13) app rd data valid: This active-High output indicates that app rd data is

valid.

(14) app full: This output indicates that the MPM is ready to accept commands.

If the signal is deasserted when app en is enabled, the current app cmd and app addr

must be retried until app rdy is asserted.

(15) app wdf full: This output indicates that the write data FIFO is ready to

receive data. Write data is accepted when app wdf rdy = 1’b1 and app wdf wren =

1’b1.

Output:

(1) Xt out: output of this computational block. It illustrates the class with this

central pixel most likely belongs to.

18

Table 3.1
PCIe bridge settings

IPIF BAR High Address 0xafffffff

IPIF BAR Base Address 0xa0000000

Remote PCI device BAR to which IPIF BAR is translated 0x0000000

Power of 2 defining the Size in Bytes of PCI BAR Space 32

Remote PLB device BAR to which PCI BAR is translated 0x90000000

(2) Accumulator: output accumulation to assist in EM sum for mean & variance.

(3) Accumulator(Y): output accumulation to assist in EM sum for mean.

(4) Accumulator(YY): output accumulation to assist in EM sum for variance.

(5) app addr: This input indicates the address for the current request.

(6) app cmd: This input selects the command for the current request.

(7) app en: This is the active-High strobe for the app addr, app cmd, app sz, and

app hi pri inputs.

(8) app wdf data: This provides the data for write commands.

(9) app wdf end: This active-High input indicates that the current clock cycle is

the last cycle of input data on app wdf data.

(10) app wdf mask: This provides the mask for app wdf data.

(11) app wdf wren: This is the active-High strobe for app wdf data.

3.2.3 PCI-Express Bus Controller Bridge

We compared the ML605 Evaluation board’s interfaces: Serial Rapid I/O, 10 Gi-

gabit Ethernet; and the PCI Express (Peripheral Component Interconnect Express).

The PCI Express was chosen as data transfer bus between PC and the board because

it is the highest speed and best bandwidth and latency available. The ML605 Eval-

uation board has an 8-lane PCIe edge connector (Figure 3.6) which performs data

transfers at the rate of 2.5 GT/s.

19

Fig. 3.6. PCIe on board

The PLBv46 Bridge is used to provide transaction level translation of PLB bus

commands to PCIe [12]. The key to realize efficient data transfer is address trans-

lation. PCIe address space is quite different from PLB address space. So in or-

der to access from one address space to another address space, address translation

is needed. PLB Bridge has IPIF base address registers (BARs) and the generics

C IPIFBAR NUM, C IPIFBAR HIGHADDR, C IPIFBAR2PCIBAR, C IPIFBAR,

and C IPIFBAR AS are used to configure the BARs. As is shown in Table 3.1

In this system, “IPIF BAR Base Address” of the PLB address is set as 0xa0000000.

“Remote PCI device BAR to which IPIF BAR is transferred” is set as 0x00000000 in

IPIF BAR column and “Remote PLB device BAR to which PCI BAR is transferred”

is set as 0x90000000 in PCIe BAR column (the base address of DDR3 is 0x90000000).

Then data can be read and writen from PCIe BAR at the address (0x00000000 +

offset) by PC. Under the Windows 7 operating system, Windriver is set as the PCI-

Express driver development tool. Windriver’s PLX Company’s development driver

package [13] can be operated directly and software applications are easily developed.

20

3.2.4 DMA Transfer Mode

DMA is technique used for efficient transfer of data to and from host CPU system

memory. In our system, we choose XPS Central DMA Controller. The XPS Central

DMA Controller operates on the PLB using independent master and slave interfaces.

When the registers of it are being read and writen, it performs as a slave. And when it

is doing DMA operation, it performs as a master [14]. The operation of XPS Central

DMA Controller determined by the values been written into the DMA registers such as

Source Address Register, Destination Address Register, DMA Control Register, etc.

After initiating these registers in our design, we set source address as the PCI-Express

Endpoint base address and set destination address as the DDR3 base address when

the system transfers data from PC to DDR3. Similarly, the source and destination

address are exchanged when the system transfers data from DDR3 to PC.

3.2.5 MPMC(NPI)

Memory arrangement and interface design is very important for this system. So we

choose MPMC instead of original memory interface controller due to its convenience in

embeded system design. From the algorithm analysis above, current segmentation Xt

and original source image Y are volume inputs to this system. Refreshed segmentation

Xt is volume output data of this system. According to the system requirements, every

Xt is assigned with 4 bits (maximum 16 class labels) and every Y is assigned 8 bits

greyscale. Therefore, 12 bits are needed to read in and 4 bits write out per pixel.

From analysis of algorithm, Y of central pixel and Xt of its six neighbors should

be sent to calculation blocks at same time. So the source image volume Y and the

current segmentation field volume Xt are both read in data flows. In order to read

in data more efficiently, Y of Slice(n) is stored with Xt of Slice(n+1) in the same

address. The 3D image size is 128 * 128 * 128, with the external memory storage

arrangement is as follows: First, Xt of Slice(1) is generated randomly and stored in

inner memory on chip; then Y of Slice(1) and Xt of Slice(2) are read in; then Xt of

21

Table 3.2
External memory storage arrangement

Y of Slice 1 Xt of Slice 2

Y of Slice 2 Xt of Slice 3

Y of Slice 3 Xt of Slice 4

... ...

... ...

... ...

Y of Slice 126 Xt of Slice 127

Y of Slice 127 Xt of Slice 128

Y of Slice 128 Xt of Slice 1

Slice(1), Y of Slice(1) and Xt of Slice(2) are sent into sixteen calculation blocks to

get new Xt of Slice(1); Finally when the refreshed Xt of Slice(1) is ready, it will be

sent out to external memory in the same address of Y of Slice(128). This process is

repeated for Y of Slice(2) and Xt of Slice(3). All the slices are processed according to

the order listed in Table 3.2. The advantage to store Y and Xt in this order is that

Y and Xt can be sent into calculation blocks together. Y is needed one slice ahead

of Xt, and this arrangement makes pipelining more efficient. Both Y of central slice

and Xt of back slice will be used in refreshing central pixels. When they are read in

at the same time and Xt of front slice is already kept in inner memory so read-in Y

doesn’t need to wait for Xt of the back slice.

Between external memory and inner memory, there is an interface to rearrange

Xt and Y data to fit the computational cores. At the same time, this interface should

control slice storage of Xt and Y. Figure 3.7 is shows this control process.

The PLBv46 Bridge design provides full bridge functionality between the Xilinx

PLB and user IP. It provides a 32 bit transform. In Figure 3.7, Y1, Y0 refer to Y

of Slice 2 and Slice 1, and Xt1, Xt0 refer to Xt of Slice 2 and Slice 1. Y is 8 bits

22

Fig. 3.7. Data rearrangement

data and Xt is 4bits data. So Y1Y0Xt1Xt0 is 24bits. In order to satisfy the 32 bits

transform, 8 bits of 0s is added.

MPMC is a fully parameterizable memory controller that supports various RAM.

MPMC provides access to memory for one to eight ports, where each port can be

chosen from a set of Personality Interface Modules (PIMs) that permit connectivity

into PowerPC 405 processors and MicroBlaze processors using Processor Local Bus

(PLB)v4.6 and the Xilinx CacheLink (XCL) structures. For low-level direct access to

the memory controller core, a Native Port Interface (NPI) PIM is available for soft

memory controllers [15]. (Figure 3.8)

Virtex6 chip is used in this system, according to MPMC Architecture-Specific

Features (Figure 3.9), MPMC supports 32 bits data tranform to DDR3 memory and

Native Port Interface (NPI) PIM is also available. MPMC supports NPI data widths

of 32 and 64 bits. As is shown in Figure 3.9, this system uses 64 bits data width

and in the NPI logic core all added 0s are cut off; app data then gets 96 bits data

and sends it to MPM (MPM reading process). So the clock frequency ratio of PLB,

23

Fig. 3.8. MPMC soft memory controller architecture block diagram

MPMC and MPM is 1:2:4. Figure 3.10 shows the MPMC Interface of this system.

Port0 connects with PLBv46, Port1 connects with NPI and leave the others inactive.

The MPM and memory interface is connected in Figure 3.11. MPMC controls

DDR3 and the NPI interface is used to connect with MPM. The main ports for

MPMC NPI are listed below:

(1)MPMC RdFIFO Data: Data to be popped out of MPMC read FIFOs. Only

valid a certain number of cycles after MPMC RdFIFO Empty is deasserted.

24

Fig. 3.9. MPMC architecture-specific features

(2)MPMC RdFIFO Empt: When this active high signal, is de-asserted,(0), it

indicates that enough data is in the read FIFOs to assert.

Fig. 3.10. MPMC module interface

25

Fig. 3.11. Memory interface connection

(3)MPMC InitDone: It indicates that initialization is complete and that FIFOs

are available for use.

(4)MPMC Addrack: This active high signal indicates that MPMC has begun

arbitration for address request. Valid for one cycle of MPMC Clk0. MPMC AddrReq

must be deasserted on the next cycle of MPMC Clk0 unless NPI is requesting a new

transfer.

(5)MPMC WrFIFO Empty: This active high signal indicates that there are less

than C MEM DATA WIDTH bits of data in the write FIFO.

(6)MPMC Addr: Indicates the starting address of a particular request. Only valid

when MPMC AddrReq is valid.

26

(7)MPMC RNW: Read/Not Write: 0 = Request is a Write request. 1 = Request

is a Read request. Only valid when MPMC AddrReq is valid.

(8)MPMC Addreq: This active high signal indicates that NPI is ready for MPMC

to arbitrate an address request. This request cannot be aborted. Must be asserted

until MPMC AddrAck is asserted.

(9)MPMC WrFIFO Data: Data to be pushed into MPMC write FIFOs. Only

valid with MPMC WrFIFO Push.

(10)MPMC WrFIFO Be: Indicates which bytes of MPMC WrFIFO Data to write.

Only valid with MPMC WrFIFO Push.

(11)MPMC WrFIFO Push: This active high signal indicates push WrFIFO Data

into write FIFOs. Must be asserted for one cycle of MPMC Clk0. Cannot be asserted

while MPMC InitDone is 0.

27

4. ON BOARD RESULTS AND ANLAYSIS

4.1 Hardware Synthesis Resource Analysis

This system is based on Xilinx Virtex-6 FPGA ML605 Evaluation Kit. It has

XC6VLX240T-1FFG1156 device, 200 MHz oscillator (differential), PCI Express Gen1

8-lane (x8) and Gen2 4-lane (x4), and DDR3 SODIMM (512 MB). It provides a

development environment for system designs that demand high-performance, serial

connectivity and advanced memory interfacing [15]. The basic on-board resource is

shown circled in Figure 4.1.

Fig. 4.1. Virtex-6 FPGA feature summary by device

With MPM computation cores, external memory interface and EM algorithm

implemented on chip, the resource usage in synthesis report is shown in Table 4.1. It is

28

Table 4.1
Device utilization summary

Slice Logic Utilization Used Available Utilization

Number of Slice Registers 55,175 301,44 18%

Number of Slice LUTs 55,865 150,72 37%

Number used as logic 42,263 150,720 28%

Number used as Memory 7,182 58,400 12%

Number of occupied Slices 17,631 37,680 46%

Number with an unused Flip Flop 16,875 56,904 29%

Number with an unused LUT 1,039 56,904 1%

Number of fully used LUT-FF pairs 38,990 56,904 68%

Number of slice register 3,868 301,440 1%

Number of bonded IOBs 74 600 12%

Number of bonded IPADs 4 62 6%

Number of bonded OPADs 2 40 5%

Number of RAMB36E1/FIFO36E1s 170 416 40%

Number of RAMB18E1/FIFO18E1s 3 832 1%

Number of BUFG/BUFGCTRLs 12 32 37%

Number of ILOGICE1/ISERDESE1s 34 720 4%

Number of OLOGICE1/OSERDESE1s 75 720 10%

Number of DSP48E1s 531 768 69%

Number of IODELAYE1s 46 720 6%

Number of MMCM ADVs 2 12 16%

Number of PCIE 2 0s 1 2 50%

shown that all the resource usage is under 70%, which makes on-chip implementation

achievable and scalable.

29

4.2 Results Analysis

The design is based on Xilinx EDK12.1 using Xilinx Vertex6lx240t FPGA. The

Xilinx ML605 development board is plugged in Dell Precision T3500 Workstation

(Figure 4.2). The workstation has an Intel Quad Core Xeon 64bit CPU, 6GB of

RAM. The test case for this system is a 128*128*128 3D medical image. The Y data

and Xt data are 8 bits and 4 bits respectively. In the system, the 128 slice images

are used as input sequence. Every slice does 7 MPM iterations and 50 EM iterations.

The read in and write out clock for external DDR3 memory is set at 200MHz. The

clock for the computational core is 50MHz. The external memory clock for the I/O

interface is limited to 333MHz. The input data are: original image information Y,

prior segmentation Xt for each pixel, and class means and variance for each class.

Fig. 4.2. Xilinx development board and Dell workstation

The software application is developed by Visual Studio 2010 and Windriver. In

this system, first all the image data are saved as 128*128 matrix in a text files (Figure

4.3) then changed to one dimensional matrix with hex format (Figure 4.4) . When

30

Fig. 4.3. Original Y matrix

image processing starts, the first task is to initialize all Y and Xt to external memory.

Figure 4.5 shows the sofware application on PC which is used to send or receive image

data through PCI Express. In the main menu, choose “3. Read/write memory and

IO addresses on the device”. Then choose “5. Write to active address space”, if PC

transfers data to DDR3 (Figure 4.6). And choose “4. Read from active address

space”, if PC receives data from DDR3 (Figure 4.7).

Then after all the Y and Xt are available in external DDR3 memory, the read

in process starts, this is achieved in 0.053742s. Upon being read-in, the Y and Xt

are sent to calculation cores to process. For this 128*128*128 volume 3D image with

7 MPM iterations complete, the time is 0.089619s. Then for EM convergence, the

total segmentation for this size volume is 11.129754s (Figure 4.8). 11 seconds (0.2

31

Fig. 4.4. Original Y matrix (hex matrix)

minutes) of processing time with the hardware acceleration, compared to 23 minutes

on a quad core PC, thus this system achieved a more than 100 times acceleration,

even compared to parallel coding in quad core.

The results can be pulled out to a text file and using IMAGEJ software to export

image. After 7 MPM iterations complete and at the first EM iterarion, using current

32

Fig. 4.5. Software application on PC

Fig. 4.6. Write to DDR3

33

Fig. 4.7. Read from DDR3

Fig. 4.8. Time

34

mean and variance, one slice of the result is shown in Figure 4.9. The final result

after EM convergence is shown in Figure 4.10.

Fig. 4.9. Result of Xilinx hardware segmentation (After 7 MPM iterations)

Figure 4.11 is the final result from the standard desktop computer using software

to process the same data. Two more pairs of results can be shown in Figure 4.14. It

can be concluded from above images that hardware and software results are almost

the same. And after EM convergence, the result is much better than only using MPM.

Based on the results above, the hardware advantage is 100 times the processing speed

of using software on standard desktop computer (Figure 4.12).

The processing time is also compared with the reference literatures shardware

implementations based on alternate 3D segmentation algorithms. The result is shown

in Figure 4.13. Taking the published data from reference [16], they chose 512*512*512

size, so we scaled down their time to 31.35ms (divided their time by 64), in order to

match the 128*128*128 size for comparision to our data set. Although their system

use Virtex II FPGA, after considering the Virtex-6 family consumes 15 percent less

35

Fig. 4.10. Result of Xilinx hardware segmentation(EM/MPM both completed)

Fig. 4.11. Result of PC software segmentation

36

Fig. 4.12. Time comparison between hardware and software for EM/MPM

Fig. 4.13. Time comparison with other 3D image segmentation im-
plemented in hardware

37

Fig. 4.14. Results comparison between software and hardware

power and has 15 percent improved performance over competing Virtex II FPGAs,

it still can be seen that our hardware implementation based on EM/MPM algorithm

makes a signicant acceleration againts both the software implementation and alternate

hardware segmentation.

38

5. CONCLUSION AND FUTURE RESEARCH

5.1 Future Work

Currently our data set is 128*128*128 pixels, which is limited by LUTs and

DSP48s. For larger volume 3D image, we can choose the FPGA with more resource.

In future work, 256*256*128 pixels data set will be used. Xilinx XC6VSX475T is

considered to be chosen. Atlas and attenuation compensation hardware can be added

in the MPM block to improve segmentation accuracy. New GUI interface also will be

designed to replace ImageJ tasks and a software interface which is used to connect

with common medical image programs like Slicer or Visualization Toolkit (VTK) will

be designed.

5.2 Conclusion

A new hardware implementation embedded design for EM/MPM algorithm has

been proposed in this thesis. This system is based on Xilinx ML605 development

board. This new system is designed to accelerate whole image segmentation process

compared to software. Through implementing multiple computational cores on chip

and Microblaze, it has been proved that this embedded system does speed up the

whole 3D image segmentation process by more than 100 times and is an improvement

from the literature by more than 3 times. In Chapter 1, compared with several image

segmentation algorithms applied on 3D image segmentation, implementing EM/MPM

algorithm on hardware was proposed because of its good performance, especially in

noise. Also, it is shown that the hardware-software implementation on FPGA has

several advantages compared to software solution both from processing speed and

39

resource cost aspects. In Chapter 2, the concept of EM/MPM algorithm was briefly

introduced. And in Chapter 3, critical components of this system have been discussed.

Microblaze processor is responsible for the overall coordination of all the components;

MPM logic is the main algorithm calculation engine. MPMC(NPI) is used to control

the external memory and PCI-Express is chosen as data transfer bus between PC

and the board. In Chapter 4, system synthesis report was analyzed and found out

that all the resource cost is controllable and achievable on Xilinx Virtex6 develop-

ment board. Then the image segmentation result is compared to image segmentation

software result. The two results are essentially the same, taking into account the

random variable limitations. This shows that the EM/MPM hardware design was

successfully implemented on FPGA. Finally, the speed comparison between the hard-

ware implementation and the software solution is shown. The hardware speeds up the

whole 3D image segmentation process by more than 100 times compared to software,

and by more than 3 times compared to other hardware segmentation results from the

literature.

LIST OF REFERENCES

40

LIST OF REFERENCES

[1] L. Christopher, E. Delp, C. Meyer, and P. Carson, “3-D bayesian ultrasound
breast image segmentation using the EM-MPM algorithm,” Proceedings of the
IEEE Symposium on Biomedical Imaging, 2002.

[2] L. Christopher, E. Delp, C. Meyer, and P. Carson, “New approaches in 3D
ultrasound segmentation,” Proceedings SPIE and IST Electronic Imaging and
Technology Conference, 2003.

[3] M. L. Comer and E. J. Delp, “The EM/MPM algorithm for segmentation of
textured image: Analysis and further experimental results,” IEEE Transactions
on Image Processing, vol. 9, no. 10, 2000.

[4] Y. Sun and L. Christopher, “3D image segmentation implementation on FPGA
using the EM/MPM algorithm,” IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2010.

[5] X. Zhang, Y. Li, J. Wang, and Y. Chen, “Design of high-speed image processing
system based on FPGA,” Electronic Measurement and Instruments, 2009.

[6] R. Lysecky and F. Vahid, “A study of the speedups and competitiveness of FPGA
soft processor cores using dynamic hardware/software partitioning,” Design, Au-
tomation and Test in Europe, 2005.

[7] R. Joost and R. Salomon, “Hardware-software co-design in practice: A case
study in image,” IEEE Industrial Electronics, IECON 32nd Annual Conference,
2006.

[8] H. Frock, M. Geruso, and M. Wetzel, “A survey of high speed bus technologies
for data movement in ATE systems,” IEEE Autotestcon, 2006.

[9] J. Marroquin, S. Mitter, and T. Poggio, “Probabalistic solution of ill-posed prob-
lems in computational vision,” Journal of the American Statistical Association,
vol. 82, no. 89, 1987.

[10] I. Xilinx, “Microblaze processor reference guide,” Xilinx Document
UG081(v11.1), Xilinx Inc, 2010.

[11] I. Xilinx, “PLB IPIF,” Xilinx Document DS448(v2.02a), Xilinx Inc, 2005.

[12] I. Xilinx, IP LogiCORE PLBv46 RC/EP Bridge for PCI Express. 2010.

[13] Q. Tang, WeimingHou, WeiweiFei, HuizhiCai, and Y. Li, “The design for astro-
nomical digital images’ real-time data acquisition and processing system based
on FPGA and PCI bus,” Testing and Diagnosis, IEEE Circuits and Systems
International Conference, 2009.

41

[14] I. Xilinx, “Logicore IP XPS central DMA controller,” Xilinx Document
DS579(v2.02a), Xilinx Inc, 2010.

[15] I. Xilinx, “Memory interface solution,” Xilinx Document User’s Guide 086(v3.6),
Xilinx Inc, 2009.

[16] P. V.Dillinger, J. Leinen, J. Suslov, S. Patzak, R. Winkler, and H. Schwan,
“FPGA based real-time image segmentation for medical systems and data pro-
cessing,” Real Time Conference, 14th IEEE-NPSS, 2005.

