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ABSTRACT

Jiang, Pingge. MSECE, Purdue University, December 2013. A new approach for
pedestrian tracking and status analysis. Major Professor: Eliza Du.

Pedestrian and vehicle interaction analysis in a naturalistic driving environment

can provide useful information for designing vehicle-pedestrian crash warning and

mitigation systems. Many researchers have used crash data to understand and study

pedestrian behaviors and interactions between vehicles and pedestrian during crash.

However, crash data may not provide detailed pedestrian-vehicle interaction informa-

tion for us.

In this thesis, we designed an automatic pedestrian tracking and status analy-

sis method to process and study pedestrian and vehicle interactions. The proposed

pedestrian tracking and status analysis method includes pedestrian detection, pedes-

trian tracking and pedestrian status analysis modules.

The main contributions of this thesis are: we designed a new pedestrian tracking

method by learning the pedestrian appearance and also their motion pattern. We

designed a pedestrian status estimation method by using our tracking results and

thus helped estimate the possibility of collision.

Our preliminary experiment results using naturalistic driving data showed promis-

ing results.
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1. INTRODUCTION

1.1 Background

Vehicle-pedestrian crashes are often fatal and have serious consequences [1–3]. In

the United States, 4280 pedestrian were killed in traffic crashes in 2010, with around

70,000 injuries according to the National Highway Traffic Administration (NHTSA).

In Europe, more than 30,000 people were killed on the road in 2011 based on the

European Commission data [4]. In Asia, more than 130,000 deaths reported in India

alone with more than 25 percent being pedestrians [5]. Recently, the crash numbers

in Asia are increasing every year with more and more vehicles on the road [6].

There are various factors that contributed to the vehicle-pedestrian accidents,

including careless drivers and pedestrians, speeding, bad weather, low illumination,

and/or poor road design, etc. [7,8]. Reducing vehicle-pedestrian crashes and improv-

ing pedestrian safety becomes an important research topic.

Many researchers have used crash data to understand and study pedestrian behav-

iors during crashes. These results have been used in the development of regulations

and laws [6], improvement of road design [9–11], development of active transporta-

tion systems with some crash warning/mitigation capability [12–14], and various ed-

ucational programs to raise awareness of transportation safety among the general

population [15,16].

However, there are many limitations and challenges just by using the crash data.

First of all, accident situations can be very complicated and beyond what we can

describe in the accident records, it is difficult to get the comprehensive knowledge of
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the whole process. Also, the information we get from accident data may not appli-

cable for everyone. Some of the accidents may only be able to happen in particular

situations.

On the other hand, naturalistic driving data can provide us comprehensive infor-

mation by recording what has happened. It provides objective information about the

driving environment, pedestrian behavior and vehicle-pedestrian interaction for every

minute and also the whole process of potential accidents.

Pedestrian behavior can give us a lot of information on what the pedestrian is

likely to do in the future and help us to improve the accuracy of collision prediction.

In order to learn pedestrian behavior and fully understand the collision scenarios, we

hired 110 cars to collect naturalistic driving data for a one year period. Until now, we

have collected more than 90 terabytes of data with around 400,000 videos and over

33,333 driving hours. Pedestrian status learning is an important basis of pedestrian

behavior analysis. To handle such a large amount of data, it would be desirable to

have an automatic way for estimating pedestrian status. In this thesis, we proposed

a new pedestrian tracking algorithm to help us efficiently determine the pedestrian

status distribution.

1.2 Challenges

Its a quite challenging task to process the large-scale naturalistic driving data on

account of the following reasons:

• Complex driving environment. Varying road types, weather and illumination

conditions make it difficult to accurately recognize the pedestrians and their

behavior changes, especially with low contrast or complex environment back-

grounds. Figure 1.1 shows some driving environment examples.



3

Fig. 1.1. Various driving environment

• Complex pedestrian appearance/viewpoint. The appearance of pedestrians in

naturalistic driving data is constantly changing. The difference of size, height

and pose make it difficult to accurately track the people. Also the same pedes-

trian captured from different viewpoints may not look the same. Figure 1.2

shows some pedestrians in our database.

Fig. 1.2. Different pedestrian appearance/viewpoint
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• Complex data quality. Sometimes data quality is not good for feature extrac-

tion. Blurred images of pedestrians make it very hard to detect even for human

eyes. Figure 1.3 shows some example of blurred pedestrians in the videos.

Fig. 1.3. Blurred pedestrians in the videos

1.3 Summary of contributions

The main contributions of our work are summarized as:

• We developed a new robust pedestrian tracking algorithm based on feature and

motion learning for monocular vision.

• We proposed pedestrian status estimation method based on pedestrian tracking

results and real-time GPS information.

• We developed a pedestrian pre-collision analysis method, which can help esti-

mate the possibility of collision by evaluating the vehicle-pedestrian relation-

ship.
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1.4 Organization

The thesis is organized as follows: Chapter 2 introduces our naturalistic data

collection and analysis process. Chapter 3 provides background information about

pedestrian classification and pedestrian tracking. In Chapter 4, we propose the feature

matching and motion learning based pedestrian tracking method. In Chapter 5, we

present experiment results. Finally, Chapter 6 draws the conclusion and discuss about

the future work.
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2. NATURALISTIC DATA COLLECTION AND

ANALYSIS

2.1 Apparatus

In this project, we installed a DOD GS600 camera on each subject vehicle to

collect the naturalistic driving data. Three types of data were collected: video, GPS

location information and G-sensor acceleration information. In this study, the videos

are set to be 5 minutes long and each will have corresponding log files to save GPS

and G-sensor information during the period. DOD GS600 camera is a 1200 wide angle

lens camera with 720 ∗ 1280 resolutions, 30 frames per second. Figure 2.1 shows a

sample video frame. From the left top corner of the frame, we can get current time

and data, real-time GPS information and current car velocity. Also, we will have the

log files with recorded GPS and G-sensor information as shown in Figure 2.2 and

Figure 2.3.
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Fig. 2.1. Sample frame of our recorded videos

Fig. 2.2. Sample GPS log

Fig. 2.3. Sample G-sensor log
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2.2 Data collection

We recruited 110 cars in the Indianapolis area for a one years naturalistic driving

study that began in 2012. The study participants span a wide range of age, education,

vehicle model and driving habits to make the collected data varied and informative.

We installed the DOD GS600 on each vehicle behind the rear-view camera. It records

the real-time GPS information, G-sensor acceleration information and high-resolution

videos. We developed several tools and algorithms to automatically and efficiently

process the large amount of data.

For each human subject, we assigned several SD cards to save the video and log

files from their driving and they return the cards to us every weekend. Managing

the large amount of data is not a trival task. We developed an automatic data

management tool to help us collect and classify different kinds of data. Figure 2.4

shows the user graphic interface of the data manage tool.

Fig. 2.4. Graphic user interface for data management
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The capabilities of the data management tool are:

• Properly store and organize information, such as hard drive location, data type,

process date, etc. We separate the video files, GPS log files and G-sensor files

for each human subject based on data acquisition date. The file names are

changed to a fixed 18 digits structure: 3 digits car information, 6 digits record

date information, 4 digits record time information and 5 digits index. The

structure is shown as in Figure 2.5.

Fig. 2.5. Filename structure

• Properly record, calculate and organize information related to each car such as

recorded mileage, recorded time, etc. For every 5 minutes of video, we find the

corresponding GPS information and calculate the mileage the car drove in this

period.

• Provide accurate information for human subject payment.

• Create logs; such as mileage log, daily log, car log, overall log, etc. Several logs

are automatically created to record our process. The car log will be created

and record the driving information for each car, including the videos, GPS and

G-sensor logs, data type, record and process date, time and mileage. Daily

log and overall log are focusing on the data for all the cars we process in one

day/one period and regardless which car it comes from. Mileage log will record

the calculated mileage information of each car, including the total mileage and

total driving time we processed, data record date and data process date. Count

log indicates remain us how many files weve processed.

• Separate the files that are public and non-public.
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2.3 Data processing

Fig. 2.6. Data processing steps

Figure 2.6 shows the overall chart of data processing steps before our pedestrian

status analysis. After collecting the naturalistic driving data, we designed the cate-

gorization algorithms to automatically classify the driving scenarios into several cat-

egorizations, which include location categorization, time categorization and weather

categorization, etc. Different categorization will result in different pedestrian appear-

ance probability and potential conflict probability. Based on this information, an

automatic pedestrian detection algorithm is developed to detect the pedestrians in

the videos. No automatic pedestrian system can achieve 100% accuracy thus the

results are verified and processed by reductionists. The tasks of reductionists in-

clude verifying the correctly detected pedestrians and eliminating the falsely detected

frames and repeatedly detected pedestrian using our frame reduction tool.

2.3.1 Data categorization

The collected data (including video files and relevant data files) will be firstly cate-

gorized based on the GPS, G-sensor and data information etc. the categorization will

focus on classifying the driving event, driving location and weather condition which

will help to improve the efficiency in pedestrian recognition. The overall architecture

is shown in Table 2.1.
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Table 2.1 Categorization architecture [17]

Category Characteristics Designed method

Low probability of

pedestrian (freeway,

rural places, high-

way and suburb ar-

eas, etc.)

Low pedestrian ap-

pearance probability;

high FAR

Pedestrian constrains

based fast algorithm

High probability of

pedestrian (down-

town, communities,

schools, shopping

areas, etc.)

High pedestrian ap-

pearance probability;

high FRR

Feature based classi-

fication

Two kinds of locations are categorized: locations with a low chance to see pedes-

trians, such as highway, rural and suburb; and locations with a high chance to see

pedestrians, such as downtown, shopping malls and school area. Before doing pedes-

trian tracking, we label the locations by GPS information.

1) Low probability location pedestrian detection

For the locations with low chance to see pedestrian, such as highway and rural

area, backgrounds are not as complicated as the urban area. Thus, we use background

subtraction method to efficiently generate the binary foreground as regions of interest.

2) High chance location pedestrian detection

For the locations with a high chance to see pedestrians, such as downtown and

schools, more complicated feature based descriptor is needed. We use feature descrip-

tors to represent the searching area and use trained classifiers to determine whether

it is pedestrian or not.
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2.3.2 Categorization based automatic pedestrian detection

Our lab, Yang et al. designed the categorization based automatic pedestrian

method [17] to process the large-scale naturalistic driving data to detect pedestrians.

Figure 2.7 shows the diagram of the pedestrian detection method.

Fig. 2.7. Pedestrian detection diagram [17]

For the situations with low pedestrian appearance probability or vehicle is stopping

or slow moving, we will first extract the ROIs for further classification from the

background. We observed from the acquired test data that the top (sky) and bottom

part (dash board) of the frame cannot include any pedestrian information; therefore

we can omit these two regions to improve efficiency. We slide the search window in

this area with the prior knowledge of the pedestrian, such as size, position, aspect

ratio, etc. And use the silhouette matching method to match a pedestrian with

an existing template. The binary template matching algorithm is sufficient for our

objective here since in these scenarios, the chance of pedestrian appearance is very

low and the variance of pedestrian shape and appearance is very limited.
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For the situations with high probability of pedestrian appearance, we will use a

new pedestrian detection method based on Histogram of Oriented Gradient and Ker-

nel based Extreme Learning Machine to improve the efficiency and accuracy. HOG

is a popularly used pedestrian detector. It relies on computing the overlapping local

oriented histograms by learning the distribution of intensity gradients and edge direc-

tions. The computed distribution of histograms will be concatenated and trained by

Support Vector Machine. A number of positive (patches containing pedestrian) and

negative training samples (random selected patches without pedestrian) are used to

train the classifier to determine the decision boundary between them. After training,

the classifier processes unknown samples and decides the presence or absence of the

object based on which side of the decision boundary the feature vector lies.

2.3.3 Frame verification and reduction

The goal of this step is to verify the correctness of pedestrian detection results and

eliminate the repeated pedestrians in same scenarios. As the pedestrian detection

algorithm is based on frame domain, it will output the detection results for every

frame detected with pedestrian. Our trained data reductionists will check each frame

to confirm if there was a pedestrian or not. Also for the frames with the same

pedestrian in the same scenario, the reductionists will choose the middle frame to

represent the whole scenario. We developed a graphic user interface to help the

reductionists to choose the frames and automatically record the results in the log.

2.3.4 Pedestrian tracking and pedestrian status analysis

Pedestrian tracking and pedestrian status analysis algorithms are the main con-

tribution in this thesis. The pedestrian found with the detection algorithms is the

target pedestrian to track. We proposed a feature and motion based pedestrian track-
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ing method to locate the pedestrian in every frame of video. The tracking results are

used for vehicle-pedestrian relationship analysis and thus help us to estimate the

pedestrian status in the particular scenarios.

2.3.5 Summary

We introduce the overall steps of our data collection and analysis. The data

collection is accomplished by a high resolution camera with GPS and G-sensor infor-

mation. We develop a data management tool to efficiently organize the large amount

of data. Then, categorization based pedestrian detection system is performed to de-

tect pedestrians in our collected videos. We categorize the data into two categories

with high and low pedestrian appearance probability respectively and apply different

pedestrian tracking method for each category. Reductionists verify the pedestrian

detection quality and select the desired scenarios for pedestrian tracking. We propose

a feature and motion based pedestrian tracking method in this thesis to accurately

predict pedestrian location. Pedestrian statuses are analyzed based on tracking re-

sults.
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3. REVIEW OF PEDESTRIAN TRACKING METHODS

Many researchers have proposed different methods in pedestrian tracking. Markus

et al. summarized the pedestrian tracking methods into three steps: search Region of

Interest (ROI), to hypothesis pedestrian location and improve efficiency; pedestrian

classification/registration, to determine pedestrian characteristics; and tracking.

Fig. 3.1. Pedestrian tracking steps

3.1 Search ROI

The general way for existing ROI search method is based on sliding windows at all

possible scales and locations in the image [18]. It performs feature matching and clas-

sification inside each window [19]. The computational cost of searching throughout

the image is often too high for implementation. A number of ways are investigated

to improve the efficiency.

Search ROI by moving objects detection. Searching moving objects in the

video is a very efficient way in finding pedestrians. Background subtraction method

is popularly employed in surveillance approaches for static cameras. For example,

Elzein et al. [20] computed the variation between two consecutive frames to find the

different area as the candidate pedestrian location and ROI will only within the pixels
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higher than a pre-set threshold. Ennzweiler et al. [21] also used the moving object

detection method to find ROI, but he extended its application to moving cameras by

using optical flow technique. The regions with unique motion flow were selected.

Search ROI by feature detection. A serious problem of motion detection

method is that they will miss the standing or slow moving pedestrians. Thus the ap-

proach based on coupling window sliding with feature classifiers is proposed. Shashua

et al. [22] filtered out most of the search windows with less distinctive properties and

incompliance with the specified pedestrian constrains before performing pedestrian

detection, and only a small number of windows were left per frame. Violat et al. [23]

used several Haar-like appearance and motion filter to select the possible regions of

interest.

3.2 Pedestrian classification/registration

Once the ROIs are obtained, feature matching and pattern classification meth-

ods will be applied for pedestrian classification and registration. Many researches

have designed feature-based pedestrian classification/registration methods in the past

decades. The development has experienced several stages: 1) model/template match-

ing. 2) discriminative feature matching. 3) component-based matching. And 4)

multimodal feature matching

Fig. 3.2. Pedestrian classification/registration methods

Model/template matching. Model/template matching method has wide appli-

cations. The advantage of model/template matching method in pedestrian matching

is it can eliminate the influence from various clothing and luminance. For example,

Gavrila et al. [18] applied a coarse-to-fine template matching method to find the best
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matches of the pre-defined models. He built a hierarchical architecture offline to la-

bel several kinds of shape templates. The matching step involves measure Chamfer

distance between the templates with candidate windows. Pedestrian location will be

found when the distance within a specified threshold. Later on, Enzweiler et al. [21]

made it more robust and accurate by constructing shape and texture models sep-

arately. However, such models require large amount of examples to cover all the

possible shapes of pedestrian.

Discriminative feature matching. It is difficult to apply model/template

matching directly without exploiting the appearance features of the pedestrian. Thus,

discriminative feature models are attracting more attention. Papageorgiou et al. [24]

first proposed to use the Haar-wavelet to extract the local shape and structure, only

invariant features are captured by computing the derivative of two different regions.

Later, Dalal et al. [25] proposed to classify a human by Histogram of Oriented Gradi-

ents (HOG), which represents local edge structure by calculating gradient and orien-

tation within multiple overlapping blocks and concatenate together. HOG achieved

promising results in human detection and has become a classic human descriptor.

Similar gradient histogram based approaches are also developed. Wu et al. [26] de-

veloped a class of feature which is called Edgelet features, which use the gradient and

orientation of short segmentations of edge to represent the components of pedestrian.

Some other interesting point based pedestrian representation methods are also inves-

tigated. For example, Leibe et al. [27] used the Scale-Invariant Feature Transform

(SIFT) method to find the local interesting points, and the appearance and structure

information around the points were used to find the similar regions.

Component-based matching. Component-based approaches are also used to

address the general problems. These kinds of methods decompose the complex pedes-

trian structure into several parts and make it easier to address their training and

matching steps. Mohan et al. [28] proposed to separate the human body into four

parts: face, leg, right arm and left arm. And detect them separately by feature
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matching. Ramanan et al. [29] also used several parts of people (torso, arm, leg and

head) to detect people, but alternatively, he focused on statistical point of view by

collecting a dense of patches for each part and generate hypothesis model.

Multimodal feature matching. Nowadays, more works are investigating on

incorporating texture, color, structure, statistical features and descriptive features

together to explore the best combination of the features. Wojek et al. [30] proposed

to use Shapelets and HOG to descriptor pedestrian and the output was better than

any single feature. Local structure, HOG and model based approaches are proposed

by Xu et al. [31] to efficiently detect sudden crossing pedestrians.

3.3 Pedestrian tracking

After pedestrian classification and registration, the next step is to infer trajectory

information for the target pedestrians. Although extensive work has been done in

recent years, its still a challenge task to track the pedestrian accurately throughout

the video by monocular cameras. Some researchers predict pedestrian location in

videos as frame-by-frame matching and detection. We call it tracking-by-detection.

Another popular way is use geometry and dynamics for location prediction.

Tracking-by-detection. Tracking-by-detection is based on pedestrian detection

in each frame and calculates the distance between newly detected pedestrian and

pedestrian in previous frames. Ramanan et al. [29] proposed to find several pre-

defined body parts for each frame and collect together for clustering. Each cluster

was used as training samples for specific model construction. The pedestrian location

was determined when all parts can meet feature and structure matching criteria. Wu

et al. [26,32] proposed to use Bayesian framework, by combing appearance similarity

measurement and probabilistic inference to decide whether two responses from two

frames belong to the same person.
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Dynamic tracking. Dynamic tracking is a kind of tracking method that predicts

moving trajectories based on position measurement, motion learning and prediction.

Mean-shift, Kalman filter and particle filter are the commonly used motion prediction

methods in tracking. Meuter et al. [33] proposed to use unscented Kalman filter,

which is a kind of non-linear Kalman filter to project the movement of vehicle and

pedestrian. Pedestrian location and walking speed were updating frame by frame to

realize location prediction.

3.4 Unique challenges of our research

Most of the existing pedestrian tracking algorithms are designed based on the

public database, which may only include limited scenarios and pedestrian appearance

with very small amount of data. But naturalistic driving data has all the situations

we may meet in our daily life, unexpected scenarios and driving environments will be

shown in our database. These methods were not designed to work on such diverse

backgrounds and large-scale data sets. In this research, we propose feature and motion

based method to robustly track pedestrians at different scenarios.

We introduce the previous work of each steps of pedestrian tracking. In the ROI

searching step, we introduce moving objects detection and feature detection. This

step is aimed to find the candidate pedestrian location before performing tracking

algorithm and thus improve the efficiency. the model/template matching, discrimina-

tive feature matching, component-based matching and multimodal feature matching

algorithms are introduced in the pedestrian classification/registration step, the perfor-

mance is improving gradually. Finally, two kinds of tracking methods are introduced

based on state-of-art tracking literatures. Our tracking method takes advantage of

previous work but more robust and suitable for our naturalistic driving data.
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4. PROPOSED TRACKING AND STATUS ANALYSIS

METHOD

4.1 Preprocessing

The Preprocessing Module first categorizes the driving environment based on GPS

and G-sensor information. We will separate the videos with different weather condi-

tions, driving environments, pedestrian appearance probability, etc. Then the video

with low luminance will be enhanced by using Power-law before pedestrian detection.

4.2 Feature and motion based pedestrian tracking

The commonly used three stage pedestrian tracking method is also adopted in our

algorithm, which include ROI search, pedestrian registration and pedestrian track-

ing. However, since naturalistic driving data shares more complex background, more

various pedestrian appearance and more unpredictable scenarios, we did a lot of im-

provements at each step to make it more robust and accurate. On one hand, we

extracted the most stable features from the pedestrian and weaken the influence of

background and moving limbs. On the other hand, we take use of both feature

matching and motion learning method to provide better outputs.
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Fig. 4.1. Proposed pedestrian tracking algorithm

Figure 4.1 shows the diagram of the pedestrian tracking module, which includes:

1) Pedestrian segmentation. We separate pedestrian into three parts (head, body

and legs) by using the Anatomical Properties [34]. 2) Search region of interest. Fast

video leap segmentation method [35, 36] is used here to quickly find the candidate

pedestrian location in the consecutive frames. 3) Feature fusion. We use the covari-

ance matrix method [37,38] to fuse multiple features of the pedestrian. 4) Histogram

learning. This step is a supplement of feature covariance representation to overcome

its disadvantages. 5) Feature matching. We compare the feature of pedestrian with

feature of environment to determine if the candidate region is a pedestrian or not. 6)

Window selection. Several candidate windows will be selected after previous steps.

Two window selection methods will be discussed to determine the final pedestrian

location by feature matching algorithm. 7) Kalman Filter learning and update. This

step draw the motion pattern of the pedestrian, help to check the accuracy of feature

matching results, determine pedestrian size and also predict motion model.
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4.2.1 Analysis of pedestrian location in videos

Before designing pedestrian tracking algorithm, the transformation between pedes-

trian location on ground plane and image plane should be investigated. We grouped

the scenarios into two classes to better understand the transformations in different

cases: 1) subject vehicle is moving straight. Pedestrian is walking, running, playing

or standing in the right or left side of the vehicle and his or her moving direction is

parallel to the vehicle. 2) Subject vehicle is turning right or left. Pedestrian is walk-

ing, running, playing or standing on the right or left side of the vehicle and moving

either along the traffic way or cross the street.

Figure 4.2 to Figure 4.5 illustrates some of the scenarios. For Figure 4.2, the

pedestrian is moving along the traffic way and vehicle is moving straightly. The cor-

responding pedestrian location change in the video frames is shown in the bottom

right image. As shown in the figure, pedestrian location will move from middle of the

frame to the right if the pedestrian is on the right side of the vehicle. Pedestrian size

will increase as their distance become shorter. If the pedestrians initial location is on

the opposite side, say the left side of the vehicle, we can infer that the correspond-

ing pedestrian location change should be exactly the mirror inverse of Figure 4.2.

Figure 4.3 illustrates when the pedestrian is walking across the street and vehicle is

stopping. Pedestrian will move from right to left in the frame sequences as we ex-

pected. Figure 4.4 shows the scenario when the vehicle is turning left and pedestrian

is walking on the right side of the vehicle or just standing at the right corner of the

intersection. For this situation, the corresponding pedestrian locations in each frame

are shown as the bottom right image of Figure 4.4. The pedestrian will firstly on the

very left side of the frame, and as the vehicle turning left, pedestrian location will go

to the right side of the frame. Figure 4.5 shows when the vehicle is turning right and

pedestrian is going to cross the street from the left side of the vehicle or just standing
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on the left corner of the intersection. From the corresponding location distribution,

we can find that the motion pattern is similar to the case in Figure 4.4 and just the

difference in moving direction.

Fig. 4.2. Vehicle is driving straight and pedestrian is walking along traffic way

Fig. 4.3. Vehicle is stopping and pedestrian is crossing the road
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Fig. 4.4. Vehicle is turning left and pedestrian is on the right side of vehicle

Fig. 4.5. Vehicle is turning right and pedestrian is on the right side of vehicle
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4.2.2 Pedestrian segmentation

Part-based pedestrian learning method has proven its superiority in several liter-

atures Andreas et al. proposed a two stage part-based pedestrian method and found

that false positive were lower than whole body based method [39]. Andrei et al.

proposed part-based pedestrian detection method with edge and orientation features

to handle difficult database [40]. This kind of methods construct templates or fea-

ture vectors for each part separately and detect pedestrian in an unknown frame by

combing several detectors. The outcomes are always better than just learning the

whole pedestrian. However, the problem for implying existing part-based tracking

technique on our naturalistic driving data is that the human parts are not guaran-

teed to be observable or detectable, which will lead to many mistakes. One way to

overcome this problem is to search the most constant parts from the pedestrian and

do feature matching, while weaken or ignore the inconstant parts. We take advantage

of Anatomical Properties to separate the pedestrians into three parts as shown in

Figure 4.6 (a): head, which covers top 13% of the total height of the person, body

which covers 39% of the total height, and legs which covers 48% of the total height.

The red line in Figure 4.6(b) shows the anatomical properties implemented in our

naturalistic driving data. This may not be exactly accurate for all cases. However,

as shown in the example, its an efficient way to separate the three parts in general

situations. Body part is a more consistent part of the whole body across consecutive

frames that we can use to perform feature matching.
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Fig. 4.6. Sample pedestrian appearance model

In order to minimize the influence of background and random moving arms, we

also used a one-dimensional Gaussian filter on the body region to emphasize the

middle area while weaken the edge area. Figure 4.7 shows some examples of the

pedestrian in our naturalistic driving data. Body is the most consistent part either

in color or structure.

Fig. 4.7. Sample pedestrian in our naturalistic data

The appearance of legs may change nonlinearly for a moving pedestrian. Its quite

challenging to match legs. However, legs may provide some useful information if

we get confused by just matching body region. On one hand, we match the color

information from the legs or trousers as a prerequisite for region of interest searching.
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On the other hand, we attempt to learn periodic appearance model for legs. In this

research, we use an adaptive motion model to represent the legs. Let the current set

of legs appearance models to be S, which include all the previous models we learned.

After we get our tracking results at time t, we will first calculate the distance between

current observation A and all the previous models in S to find the min distance. If we

can find that the min distance is less than a threshold, we will update the appearance

model set S with our new observation. Otherwise, a new appearance model will be

added to S. Figure 4.8 shows the appearance variation of the legs part of a pedestrian

we tracked.

Fig. 4.8. Periodic appearance of legs

4.2.3 Search ROI

Region of interest (ROI) predetermination can help to get rid of unnecessary

regions for searching as we mentioned before. At present, we extracted the cloth

color information and try to extend out to find the whole cloth region in the frames.

We innovatively used the fast video leap segmentation method in this step to help us

efficiently find out the candidate regions.

Fast video leap segmentation

Fast video leap segmentation is a kind of method that finds similar regions based

on color and structure information. The final segmentation is the groups of pixels

that satisfy specific special and Chroma constraints. In particular, the related pixel
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sets P1 and P2, also called as equivalent regions between two images, are recognized

iff: 1) P1 and P2 are Chroma similar. 2) P1 and P2 are adjacent based on some

special threshold T but not necessary contiguous (i.e. they can be neighbors in a

T*T window centered on P1 or P2). The definition of Chroma similar in color images

are based on evaluating the maximum difference between two pixels in three channels

as:

max(|R1 −R2| , |G1 −G2| , |B1 −B2| ) ≤ α (4.1)

α is a threshold which may differ for different datasets.

If we define all the pixels in a region with 2*2 tiles with color information (RGB),

order information (pixel ID) and structure information (region size, location and

shape). The steps to find the similar regions are:

1. Search exactly in the same location of the initial segment. We extract the

features in this new region to compare with the previous region features. If the result

cannot meet our requirement, then:

2. We will widen the search window to include all the tiles containing the pixels

segmented in the previous frame. The same criteria for this region. If match is still

not available, then:

3. The search will widened again to include the neighbor tiles for matching until

matching is obtained.

Leap segmentation for searching ROI

Although in consecutive frames the pedestrian location may not change dramati-

cally, we have no idea about the pedestrian status, direction or speed. Leap segmen-

tation method can help find the interesting regions more efficient than sliding search

window randomly around the previous location. In our implementation, we initially

learn the pixel information in the first frame and quickly exploit the similar regions

in the consecutive frames by the steps we discussed in previous section.
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Figure 4.9 shows the results by implementing video leap segmentation method

on our dataset. Figure 4.10 shows the matching results for a frame sequence in the

video as Figure 4.9. We can find that if the color of pedestrian cloth is obvious and

distinctive from the background, leap method is good enough to track the pedestrian.

However, with unknown environment information and pedestrian color information,

leap segmentation is not a reliable method for pedestrian tracking. If the cloth color of

the pedestrian is very similar to the background, or say, by using equation 4.1 a large

area will be segmented, we cannot determine the exact pedestrian location. Thus,

other features should be used to track the pedestrian. We use leap segmentation

method in the first step because of its time efficiency and give us a rough idea about

where the pedestrian should be.

Fig. 4.9. Leap segmentation results for a sample frame sequence
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Fig. 4.10. Leap matching results

4.2.4 Feature matching scheme

As mentioned before, the body part is more consistent and reliable for feature

information among consecutive video frames. Just searching the corresponding body

part in the consecutive frames may be good enough if the pedestrian is not obscured

and the body area provides distinct feature information, like edges and color. How-

ever, if the pedestrian is far away or body part gives low contrast with the background,

it may fail in finding the most similar regions. To overcome this problem, we also

use surrounding patches within radius R instead of learning the pedestrian alone.

As shown in Figure 4.11, the body part is labeled as foreground. The surrounding

patches of the environment with the same size are labeled as background. The num-

ber of background patches can depend on the complexity of the environment. All the

features and labels of the patches are combined as training data and will be used to

find the region in the subsequent frame with shortest distance in feature matching.
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Fig. 4.11. Example patches used for background analysis (note the patches will be

more than what is shown in the example)

The frame rate is 30 per second and we need to extract the pedestrian location

in each frame. Pedestrian location wont change dramatically in that short period of

time if pedestrian speed and vehicle speed are normal. We try to find an optimal

radius to make sure the pedestrian location in the next frame will fall in the range of

the environment patches we selected.

However, if the pedestrian or vehicle is moving very fast, using the same radius

as slow moving scenarios may not be a wise choice. We use adaptive radius for

environment patches selection for this kind of scenarios. On one hand, radius is

adapted with the size change of pedestrian, shaper changes of pedestrian size will

lead to shaper changes of radius. On the other hand, pedestrian and vehicle speed

are made into consideration. Larger radius will be adopted for fast moving scenarios.
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The matching scheme we proposed in this thesis is based on comparing the can-

didate region with the previous body patch and all the environment patches. If

the distance between current region and previous body patch belong to the smallest

(threshold determined by experiment) distances, we say this region should be the can-

didate new body location. To determine if current window is the target pedestrian,

we will use following criterion:

patch =

 1, Dp−B < minβDp−E

0, else
(4.2)

whereDp−B is the distance between current patch and previous body patch, minβDp−E

is the th minimal distance between current patch and previous environment patches.

As shown in Figure 4.12, the window in (b) will compare with all the selected patches

in previous frame (a), the resulting distances are indicated on each patch. If the

distance to the previous body patch can meet our criterion, the window will be

selected.

Fig. 4.12. Compare a new window with patches in previous frame

Usually, more than one candidate windows are left after this feature matching

step and can hardly provide us the final pedestrian location. Two window selection

methods will be introduced in the following sections.



33

4.2.5 Feature fusion by covariance matrix

Covariance matrix feature representation has attracted a lot of attentions since

2006. Several works have been done by using covariance matrix, such as object recog-

nition (Tuzel et al. [38]), covariance tracking (Wu et al. [41]) and action recognition

(Guo et al. [42]). The advantage of covariance matrix is it provides a natural way to

fuse high-dimensional feature vectors which maybe correlated. It use only (d2+d)/2

different values to represent the high dimensional features and also reduce the influ-

ence of noise in the process of calculating the covariance. We use covariance matrix

to combine color and structure feature together for matching.

Feature representation

Given a region R with m*n number of pixels, and its feature mapping F, which,

F (x, y) = M(R, x, y) (4.3)

where (x,y) is the location of each pixel. They are directly associated with the feature

vectors. M is the feature mapping function and can include color, magnitude and

orientation, etc. The number of features in M corresponds to the dimension of F,

denoted by d.

Note that its not true that more features will get better results or vice versa. The

optimal feature combination we found for our datasets are:

F (x, y) = (x, y, I (x, y) , Ix (x, y) , Iy (x, y) , U (x, y) , V (x, y))T (4.4)

Here x, y denote the coordinates of the pixel. They are directly associated with

the feature vectors. I(x, y) denotes the pixel intensity in grayscale at (x, y). Ix and Iy

are the gradient in the horizontal and vertical directions respectively. Gradient will

be calculated for three channels and the channel with largest norm will be selected
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for that pixel. The gradients give us the edge and structure information. U and V

provide the color information derived from the LUV color model since it provides

more constant color information than the RGB model under different illumination.

Thus for each pixel, we collected the location, structure and color information.

Figure 4.13 shows the feature representation architecture. We use large red boxes

on the image to represent each pixel for visualization.

Fig. 4.13. Feature representation

Within,

• Y (x, y) = 0.299 ∗R (x, y) + 0.587 ∗G (x, y) + 0.114 ∗B (x, y) ;

• dI(x,y)
x

= I (x+ 1, y)− I (x− 1, y) ;

• dI(x,y)
y

= I (x, y + 1)− I (x, y − 1) ;

• U (x, y) = −0.14713 ∗R (x, y)− 0.28886 ∗G (x, y) + 0.436 ∗B (x, y) ;

• V (x, y) = 0.615 ∗R (x, y)− 0.51499 ∗G (x, y)− 0.10001 ∗B (x, y) ;

For the constructed m ∗ n ∗ d feature matrix, we calculate the covariance matrix as:

C =
1

m ∗ n

mn∑
k=1

(fk − µr) (fk − µr)
T (4.5)
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where (µr) represents the mean vector of the corresponding feature and fk is the

d dimensional feature vectors inside the region. In our experiment, the result of

covariance matrix is a 5*5 matrix, the diagonal of the entries are the variance of each

feature and the non-diagonal entries are the correlation between the features.

Distance measurement

The next step is to measure the distance between two covariance matrixes. Co-

variance matrix does not lie in Euclidean space, but we can make it lie in vector space

by using log-covariance matrices. Thus we use the Log-Euclidean Riemannian Matric

(LEARM) [43] proposed by Arsigny et al. [44] to calculate their distance:

D (Ci, Cj) = ∥log (Ci) − log (Cj) ∥2 (4.6)

As the size and appearance of moving pedestrian may vary overtime, its necessary

to adapt these changes. The fastest way to update these changes is to find the mean

value of selected previous states. At time T, we calculate the covariance matrix Ck

and accumulate the entire previous covariance matrix in the Riemannian space:

C = exp

(
T∑

k=1

log (Ck)

)
(4.7)

4.2.6 Local histogram learning

It may not be sufficient to use covariance matrix alone in our real life implementa-

tion as it only represents the variance and correlation between each feature, the results

cannot be guaranteed if no specific features are provided. Several kinds of situations

will lead to very small covariance distance, such as large area overlapping, small fea-

ture correlation distance, etc. Figure 4.14 shows the situation that two patches with

nearly 50% similar area lead to small covariance distance.
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Fig. 4.14. Two regions with small covariance distance but not similar

To overcome this problem, we propose to use local histogram as an additional

matching criterion for two patches. The local histogram takes advantage of summa-

rizing local color information of an image and concatenating together to represent the

whole image. This method is originally used in face recognition and has proven its

good performance [45,46].

We first normalize the patches to the size in previous frame, then separate them

into 8 by 8 blocks and calculate the histogram of each block, the final image histogram

is combing the sub histograms together (as shown in Figure 4.15). The similarity of

two color histogram is calculated by using chi-square equation [47]:

d (h1, h2) =

√√√√1/2
k∑

m=1

[h1 (m)− h2 (m)]2

h1 (m) + h2 (m)
(4.8)

where h1,h2 are two histograms respectively.
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Fig. 4.15. Local histogram of two regions

We have done the feature matching steps. Unfortunately, more than one patch

will be left after these efforts. We need to go further to determine the final pedestrian

location. The pedestrian tracking algorithm needs to solve two problems: 1) if the

selected regions are representing a pedestrian or a non-pedestrian. 2) if the selected

regions are representing the same pedestrian. We have solved the second problem in

the previous sections, the next is to verify the human structure within the patches.

Figure 4.16 gives us an example of how the left patches look like.

Fig. 4.16. Sample patches selected
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4.2.7 Window selection with association of HOG

Fig. 4.17. Location selection scheme

Figure 4.17 shows how we determine the final pedestrian location based on the

selected patches. We can find two kinds of results after the feature matching: 1)

a bunch of windows are surrounding the target pedestrian we are trying to track.

2) more than one group of windows are surrounding several locations, which means

some other locations are very similar to the pedestrian. Before demonstrating two

methods to deal with the results, we will first introduce some more details about

HOG descriptor.

Histogram of Oriented Gradient (HOG)

Histogram of Oriented Gradient (HOG) is firstly proposed by Dalal et al. [25] and

is popularly used in pedestrian detection area. The idea of HOG is that people can be

well characterized by the distribution of local intensity gradient and edge directions.

HOG use histogram of gradient and orientation as the robust feature to represent

people in an image. Given an image, HOG can be calculated by following steps:

compute gradient, weighted into special and orientation cells, contrast normalization

over overlapping spatial blocks and collect HOG over the detection window.
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• Compute gradient of the original image. The magnitude and orientations can

be calculated by:

magnitude : mag =
√
g2x + g2y (4.9)

orientation : angle = arctan

(
gy
gx

)
(4.10)

gy and gx are gradients in y and x directions respectively, with:

gx = I (x+ 1, y)− I (x− 1, y) (4.11)

gy = I (x, y + 1)− I (x, y − 1) (4.12)

• Normalize the image to be 128*64

• Divide the image into several 16*16 blocks with overlap ratio 50%. The over-

lapping is to ensure consistency across the image (Figure 4.18 (a)).

• For each block, we will calculate 256 magnitude and orientations. 64 of them

will be assigned to each cell.

• Quantize the orientation into 6 bins, so the correlation between the orientations

and bins would be as Figure 4.18(b).
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Fig. 4.18. Image blocks and bins

• To get the histogram of each block, we will calculate the voted histogram of

each cell separately. 64 orientations in the cells mean 64 votes for each 6 bins,

and the votes will be their magnitude with Gaussian weight. The concatenated

histogram will be the final block histogram.

• The block histogram will be normalized before constructing the orientation

histogram of the whole image. L2-norm is used in this experiment ( is a very

small value to be non-zero):

v =
v√

||v||22 + τ 2
(4.13)

• Finally, all the vectors computed from the blocks are concatenated to represent

the whole image as Figure 4.19. From our specified parameters during the

process, the dimension of HOG descriptor is 2520. The 2520 dimensional HOG

descriptors are trained by linear support vector machine for classification.
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Fig. 4.19. HOG descriptor

Window selection by finding the region with highest vote

In this section, we discuss the feasibility of window selection by finding the highest

vote region. After the previous feature matching step, we still have several candidate

patches that meet our requirements. As shown in Figure 4.16, the blue windows on

the frame are the candidate patches we selected (only indicated the body part). For

this case, the simplest way is to give the same weight for each candidate window and

vote for the entire region they located in. The region with the highest vote should be

used as the central part of the pedestrian body.

However, not all the candidate patches are eligible for voting. Some patches are

definitely not representing human but they share similar features as we get from the

pedestrian in the previous frame. They also hold one vote to decide the pedestrian

location and will affect the accuracy. To deal with this problem, we use HOG pedes-
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trian detection with lower threshold to delete some non-pedestrian patches before we

use the voting method. By using HOG descriptor, we can get rid of these patches to

minimize their influence.

Window selection by clustering the candidate patches

Not all situations are suitable with voting method due to: 1) some background may

share similar features as the pedestrian and attracts as many attentions as pedestrian.

2) Some mistaken windows sift the good result. Figure 4.20 shows an example for

this situation. Obviously two groups of candidate patches in this example and they

focus on two different regions separately. The upper groups of windows only have

two members but their voting will make the tracked pedestrian location higher than

the exact location. We use clustering method to separate them into two groups and

find two potential pedestrian locations based on these groups. The final location will

be determined by comparing their similarity to the previous pedestrian we tracked.

Fig. 4.20. Grouped candidate windows
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4.2.8 Motion learning

We propose to use a Kalman filter for motion learning. Kalman filter is the optimal

minimum mean squared error(MMSE) estimator and has been widely used in object

tracking issues [48, 49]. Since real life scenarios can hardly be projected in linear

functions, we prefer to use the unscented Kalman filter for our motion learning. The

unscented Kalman filter is an extension of the linear Kalman filter based on the scaled

unscented transformation [50]. It shows a superior performance in our pedestrian

tracking problems compare to the linear Kalman filter.

Kalman filter can measure the movement based on learning the previous moving

patterns and give us a prediction of current status. We suppose to use Kalman filter

for three reasons: 1) check our feature matching results 2) adapt the size change of

pedestrian in video frames efficiently 3) the motion model analyzed here will be used

as part of behavior analysis system. It is not easy to adapt the size change of the

pedestrian in the video clips just by feature matching method, and its kind of time

consuming even if we can adjust it by searching each human structure time by time

after each tracking cycle. However, the projection algorithm in Kalman filter provides

us an efficient way to measure the size of pedestrian at the same time of calculating

their speed and location. Here we will introduce the idea of Kalman filter and its

implementation in our system.
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Kalman filter update

The Kalman filter cycle is shown as Figure 4.21.

Fig. 4.21. Kalman filter cycle

Kalman filter deals with the discrete-time controlled process that described by a

linear system as:

x̂ (k + 1 | k) = Fx̂ (k | k) +Q (4.14)

p̂ (k + 1 | k) = F p̂ (k | k)F T (4.15)

where x̂ (k | k) is the current state. F is the transform function which predicts next

state from previous state. p̂ (k | k) is current covariance matrix. Q represents the

process noise and assumed to be white and normal probability distribution. Suppose

we want to model a straight walking pedestrian in the video, x̂ (k | k) will provide us

all the pedestrian information: location, speed and acceleration if he is not in constant

speed. F will provide us the mathematical way to calculate the next pedestrian state.
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In most cases, we cannot observe all the parameters in x̂ (k | k). Instead of measure

x̂ (k | k) directly, we develop a measurement vector ẑ:

ẑ (k)= H (k) x̂ (k + 1 | k) + E (4.16)

where H(k) helps to convert the state parameters in x̂ (k | k) to measurable and

observable vectors. The random vector E is the measurement noise and also to be

Gaussian normal distribution. By error propagation law, we can infer the measure-

ment covariance s as:

sk+1 = H (k) p̂ (k + 1 | k)HT (k) (4.17)

In order to derive the Kalman filter update equations, we try to find a relation-

ship between the posterior state estimation x̂ (k + 1 | k), prior estimation x̂ (k | k),

measurement prediction hatz (k) and actual observation z (k). Thus, we define the

justification equation as:

x̂ (k + 1 | k + 1) = x̂ (k + 1 | k) +K (k) v (4.18)

where K(k) is a weight and v is called measurement residual and defined as:

v = z (k)− ẑ (k) (4.19)

This equation helps us to predict the state from the previous state and the dif-

ference between our observation and mathematically calculated prediction. The goal

for Kalman filter is to find the optimize weight for this equation so to minimize the

error propagation. In order to minimize the posteriori error covariance, we combine

the previous equations and calculate optimize K(k) by the following relationship:

min
(
E
[
|x (k)− x̂ (k|k)|2

])
= min (tr( p̂ (k | k))) ⇒∂ tr(p̂ (k | k))

∂kk
= 0 (4.20)
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which as a result, K(k) is in the form of:

K (k) = p̂ (k + 1 | k)HT (k) s(k)−1 (4.21)

The updated covariance p̂ (k + 1 | k + 1) is:

p̂ (k + 1 | k + 1) = (I − k (k)H (k)) p̂ (k + 1 | k) (4.22)

Introduction of Unscented Kalman Filter

The fundamental of unscented transform is that a small set of points with known

mean and covariance are good enough to represent the distribution of random vari-

ables [51], which make it easier to express the relationship between the datasets in

the form of equations. Given a set of random variables x with mean x and covari-

ance Px, we can calculate the substitute points (sigma points) χi for a nonlinear

function,z = f(x), according to:

χ0 = x (4.23)

χi = x−
(√

(L+ λ) px

)
(i) i = 1, ..., L (4.24)

χi = x+
(√

(L+ λ) px

)
(i) i = L+ 1, ..., 2L (4.25)

where λ is a scaling factor by λ = α2(L + K) − L. The parameter determines

the distribution of sigma points around the mean x and is set to a small positive

value(ex. 1e− 3). K is the second scaling parameter which is usually set to k >= 0.(√
(L+ λ) px

)
(i) is the ith row of the matrix square root of (L+ λ)Px. The weight

distributed to each sigma points are calculated by:
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w
(m)
0 =

λ

L+ λ
(4.26)

w
(c)
0 =

λ

L+ λ
+
(
1− α2

)
(4.27)

w
(m)
i = w

(c)
i =

1

{2 (L+ λ)}
i = 1, ..., 2L (4.28)

Finally the sigma points are propagated through the nonlinear function f to cap-

ture the weighted mean and covariance for z:

z =
2l∑
i=0

w
(m)
i f (χi) (4.29)

pz =
2l∑
i=0

w
(c)
i {f (χi)− z} {f (χi)− z}T (4.30)

Implementation of UKF in our tracking algorithm

In this section, we describe the implementation of unscented Kalman filter in

our tracking system. We assume that the road surface and the optical axis of the

camera are parallel and the camera will be fixed on the vehicle. The GPS information

recorded in real time will be used to analysis the movement of vehicle (i.e. speed and

direction). The state vector in our system is given by x = [x, y, Vc, Vp, h, w] with the

vehicle velocity Vc, pedestrian velocity Vp , pedestrian location, pedestrian height h

and pedestrian width w in image plane.

We project the 3D scene view to 2D image plane based on the pinhole camera

model, thus get the equation relationship between the vectors in the way of:

r ∗


x

y

1

 =


f 0 cx

0 f cy

0 0 1

 [R | t]


X

Y

Z

1

 (4.31)
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Where (x, y) denotes the image coordinates of the pedestrian, r is the coefficient

that converts pixel value to physical value. f is the focus length of the camera, (cx, cy)

is the center of the image. Matrix [R|t] represents the rotation of the vehicle, i.e.

the direction change of the vehicle; it can be calculated from the GPS information.

[X
′
, Y

′
, Z

′
] is the world coordinate of the pedestrian. Knowing the time interval t and

initial distance between vehicle and pedestrian (we will go in detail of their calculation

in the next section), we can get the pedestrian location of world coordinate in the

new frame, thus update our image projection. We denote the non-linear projection

as: statet|t−1 = f(statet−1).

The transformation H in our algorithm is used to extract the observable vectors

, tracking results will be used as the observation vector zt, scaling factor λ equals:

λ = (α2 − 1) ∗ L.

Then:

• Calculateχi, w(m), w(c) from Equation 4.23 to 4.28

• The weighted mean and covariance of predicted state can be calculated by:

xt|t−1 =
2l∑
i=0

w
(m)
i f (χi) (4.32)

pxt|t−1
=

2l∑
i=0

w
(c)
i

{
f (χi)− xt|t−1

}{
f (χi)− xt|t−1

}T
(4.33)

• The observable vectors and their distribution can be found as:

ẑt|t−1 =
2l∑
i=0

w
(m)
i H (f (χi)) (4.34)

pzz =
2l∑
i=0

w
(c)
i

{
H(f (χi))− ẑt|t−1

}
{H(f (χi))− ẑt|t−1}

T
(4.35)

• After these steps, the data association and state update can be accomplished

by:

pxz =
2l∑
i=0

w
(c)
i

{
f (χi)− xt|t−1

}
{H(f (χi))− ẑt|t−1}

T
(4.36)
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Kt = pxzp
−1
zz (4.37)

x̂t|t = xt|t−1 +Kt

(
zt − ẑt|t−1

)
(4.38)

pt|t = pxt|t−1
−KtpzzK

−1
t (4.39)

4.3 Pedestrian status and pre-collision analysis

Fig. 4.22. Pedestrian status and pre-collision anlysis diagram

4.3.1 Pedestrian speed and pedestrian-vehicle relationship analysis

Figure 4.22 illustrates the diagram of the status analysis process, which includes

Vertical distance estimation Module, Horizontal distance estimation Module, Pedes-

trian status estimation Module and Collision possibility estimation module.
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Fig. 4.23. Pedestrian-vehicle interaction

Fig. 4.24. Pedestrian-vehicle distance estimation

Figure 4.23 shows the pedestrian-vehicle interaction in our data. Figure 4.24

shows the schematic diagram of the imaging geometry. Pedestrian status in front

of the vehicle can be easily estimated if we know the status of the vehicle, camera

parameters and the pedestrian location in each frame. Vehicle speed can be calculated

based on the GPS information the camera recorded. After getting the pedestrian size
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in two frames and their time interval, we can easily get the distance between the

vehicle and pedestrian by solving the two equations:

DV =
DV

′ ∗H
y1

(4.40)

DV − Vc ∗ t =
DV ′ ∗H

y2
(4.41)

where Dv is the distance between the vehicle and pedestrian, DV ′ is the camera focus

length, H is the height of the pedestrian, Vc is the velocity of the vehicle, t is the time

interval between the two frames and y1, y2 are the height of the pedestrian shown in

the pixel domain in two frames respectively.

Once we get the value of Dv, the horizontal distance between the pedestrian and

vehicle can be obtained by:

DV

DV ′
=

DH

|xc − x| ∗ s
(4.42)

where s is the ratio between object length and pixel length.

Thus, we can get the relationship between the pedestrian and vehicle. By cal-

culating the pedestrian-vehicle distance with known time interval t, we can estimate

the pedestrian status (walking, running or standing) and pedestrian-vehicle relation

(in front of vehicle or just in side of vehicle), and if they will hit together or not.
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4.3.2 Collision probability projection

Fig. 4.25. Scenarios for pedestrian pre-collision analysis

Several kinds of scenarios will be discussed in this section to correlate our tracking

and status analysis results with the pedestrian pre-collision analysis system. Fig-

ure 4.25shows some scenarios in our naturalistic driving data. Four kinds of pedes-

trians moving direction are presented. Pedestrian 1 and pedestrian 2 are crossing

the street from two directions, pedestrian 3 and pedestrian 4 are just walking along

the traffic way, either toward the vehicle or backward the vehicle. The collision will

happen unless: 1) at the same location and 2) at the same time. We will discuss the

feasibility for analyzing potential pedestrian-vehicle crashes based on these scenarios.
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Fig. 4.26. Pedestrian is crossing the street

Figure 4.26 illustrates how we analysis the possibility of collision for pedestrian

1 in Figure 4.25. For this situation, we can get the pedestrian speed, horizontal and

vertical distance between pedestrian and vehicle at the beginning based on tracking

and status analysis results. Vehicle speed can be extracted from the GPS information

and pedestrian direction can be learned from the frame sequence. We suppose the

speed of pedestrian and vehicle are constant (no deceleration) and calculate the time

for vehicle driving d2 distance and the time for pedestrian walking d1 distance. If

they cannot get to the collision point at the same time, no possible collision will

happen. Otherwise, the driver should be warned to brake.
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Fig. 4.27. Pedestrian is walking along the street

Figure 4.27 shows another scenario. Pedestrian is walking along the street and

vehicle is moving straightly. Initially the vertical distance between the pedestrian

and vehicle is d. By tracking the pedestrian in each frame, we can easily get the

result that pedestrian is always along the street and horizontal distance almost keep

constant. The possibility of collision is very low even if pedestrian is detected nearby

the vehicle.



55

5. EXPERIMENT RESULTS

In the previous chapters, we introduced the overall approach for proposed pedes-

trian tracking and pedestrian status analysis. Specifically, we used the dynamic fea-

ture matching and motion learning method to track the pedestrian. Then, based

on the tracking results, we can get the pedestrian motion information, pedestrian-

vehicle location information and also the vehicle motion information from the GPS.

This information can be used for: 1) pedestrian status estimation. Pedestrian speed

in intersections will be calculated to infer if the pedestrian is walking, running or

standing. 2) Estimate the possibility of potential conflict. Pedestrian speed, vehicle

speed and initial pedestrian-vehicle distance can be used to evaluate if they will hit

without warning.

Our performance evaluation was based on our naturalistic driving data. First, for

each video sequence, we divided them into 150 frame segments. We specify pedestrian

location and pedestrian size in one of the frames and extract pedestrian information

from this frame. Completely tracking the pedestrian consists of two separate programs

with different projection methods: one tracks the pedestrian forward from the frame

we specified to the end; the other tracks the pedestrian backward from the frame

we specified to the first frame. All the tracked location information is saved for the

pedestrian-vehicle relationship analysis.

In the pedestrian status estimation step, we projected the pedestrian coordinates

in image domain to ground plane to learn the distribution of pedestrian speed by

collecting a large amount of data for different scenarios and learn the pedestrian

status. Also, we find the pedestrian status can be used for potential collision analysis,

thus, we extended our work for possibility of collision estimation.
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5.1 Pedestrian tracking performance analysis

We evaluated our pedestrian tracking algorithm on the naturalistic driving videos.

The details about the data collection process are discussed in the Chapter 2.

In the tracking, we set the color threshold α to be 30 for leap segmentation.

Smaller α may help to get a more specific and accurate ROI in many cases, but

could also miss some useful areas, especially when the illumination changes. For

normal pedestrian size and vehicle speed, we used 30 patches around the specified

pedestrian body to represent the environment. For high vehicle speed or close up

pedestrians, adaptive numbers of patches are selected, with the overlapping criteria

between each of patches not larger than 1/2. We used the paper specified parameters

for constructing HOG descriptor to classify pedestrian and non-pedestrian. All the

image patches are normalized to 128*64 and separate to 16*16 tiles proportionally.

We tested our pedestrian tracking algorithm on more than 2000 videos with various

kinds of scenarios and driving environments. The performance evaluation is based

on comparing the spatial overlapping rate between tracking output and the ground

truth. Overlapping rate is calculated by finding the common area between tracked

window and ground truth window, accurate tracking result is obtained when the rate

is higher than a pre-defined threshold [52]. The threshold we defined is 15% for our

performance evaluation. False positive rate (FPR) is calculated by dividing number

of false positive frames by total number of frames with pedestrian, true positive rate

(TPR) is calculated by dividing number of true positive frames by total number of

frames with pedestrian.

5.1.1 Pedestrian tracking performance for 2000 videos

In Table 5.1, we evaluated our tracking performance for all the 2000 videos and

categorized them into four classes: excellent, which accurately tracked more than 90%

of the frames with pedestrian in the video; very good, which accurately tracked more
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than 60% of the frames with pedestrian in the video; fair, which tracked around 30%

of the frames; and poor, which tracked less than 30%. We mark the tracking results

by red boxes and the actual pedestrian location by yellow boxes.

Table 5.1 Tracking performance for 2000 videos

Excellent Very

good

Fair Poor

Percentage 40.59% 22.34% 28.42% 8.65%
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Fig. 5.1. Sample excellent tracking frame sequence (every 4 frames with red boxes

as tracked pedestrian location, blue boxes as tracking mistakes and yellow boxes as

missed pedestrian)

Figure 5.1 shows an example of excellent tracking frame sequence (150 frames).

The pedestrian is walking along the traffic way and vehicle is driving straight. The

tracking performance is good in this example and pedestrian window size is also

adapted perfectly throughout the video. The false positive rate in this video is 0%

and true positive rate is 100%.
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Fig. 5.2. Sample vary good tracking frame sequence (every 4 frames with red boxes

as tracked pedestrian location, blue boxes as tracking mistakes and yellow boxes as

missed pedestrian)

Figure 5.2 shows the very good tracking frame sequence. The vehicle is turning

left and there is a pedestrian standing on the right side of the vehicle. The tracking

program stopped after 41 frames (total frame number with pedestrian is 55). Two

reasons lead to pos. rejection: 1. Pedestrian viewpoint changed dramatically when

the vehicle is turning. 2. Obvious distortion on the side of the frames due to our wide

lens camera. The false positive rate is 0% and true positive rate is 75%.
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Fig. 5.3. Sample good tracking frame sequence (every 4 frames with red boxes as

tracked pedestrian location, blue boxes as tracking mistakes and yellow boxes as

missed pedestrian)

Figure 5.3 shows the example of good tracking sequence. The pedestrian is walking

cross the street. At the beginning tracking is good but stopped after the pedestrian

was obscured by utility pole. Currently our algorithm is based on frame-by-frame

tracking and mistake on any frame will affect the following frames. The false positive

rate is 2% and true positive rate is 50%.
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Fig. 5.4. Sample poor tracking frame sequence (every 4 frames)

Figure 5.4 shows the sample poor tracking sequence. Its a night scenario, vehicle

is stopping and pedestrian is running from left to right. The illumination is extremely

inconstant in this scenario. Pedestrian can just be tracked in several frames among

the 150 frames. Although some night scenarios can be tracked accurately, night vision

is still a challenge task for tracking because its illumination variation. Pedestrian even

cannot be detected clearly by human eyes in the dark. Also, the camera does not

have night vision capability and does not perform well in night. The false positive
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rate for this video is 216%, which is calculated by dividing number of frames with

false alarm (106 frames) with number of frames with pedestrian (49 frames) . True

positive rate for this video is 5.4%.

5.1.2 Tracking performance comparison

Fig. 5.5. Tracking results by leaps method for excellent tracking category (every 4

frames with red boxes as tracked pedestrian location, blue boxes as tracking

mistakes and yellow boxes as missed pedestrian)
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Figure 5.5 shows the tracking results by using the leaps method. The results

show that when the pedestrian is relatively small in the fames, leaps method is not

sensitive and false rejection rate is high. The leaps method is a very efficient tracking

method when the color of pedestrian is distinctive from the background. Thus, in

this scenario, when the pedestrian size becomes bigger, the tracking performance is

good. The false positive rate is 0% and true positive rate is 63.6%.

Fig. 5.6. Tacking results by covariance matrix for excellent tracking category (every

4 frames with red boxes as tracked pedestrian location, blue boxes as tracking

mistakes and yellow boxes as missed pedestrian)
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Figure 5.6 shows the tracking results by just using covariance matrix. The pedes-

trian can be accurately tracked in the example excellent video and true positive rate

is 100%.

Fig. 5.7. Tracking results by leaps method for very good tracking category (every 4

frames with red boxes as tracked pedestrian location, blue boxes as tracking

mistakes and yellow boxes as missed pedestrian)

Figure 5.7 shows the leap tracking results for the very good category example

video. In this scenario, the color of pedestrian is not as distinctive to the background

as the previous pedestrian. The pedestrian can be tracked at the beginning, but
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become inaccurate in the following and finally stopped. Color information is not

reliable without structure and other information in this scenario. The false positive

rate is 9.2% and true positive rate is 29%.

Fig. 5.8. Tracking results by covariance matrix for very good tracking category

(every 4 frames with red boxes as tracked pedestrian location, blue boxes as

tracking mistakes and yellow boxes as missed pedestrian)
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Figure 5.8 shows the covariance tracking results for example video in very good

category. Pedestrian cannot be tracked accurately after several frames and pos. re-

jection is high. Without the histogram constrain, some non-pedestrian windows are

selected as candidate window and affect the final results.

Fig. 5.9. Tracking results by leaps method for fair tracking category (every 4 frames

with red boxes as tracked pedestrian location, blue boxes as tracking mistakes and

yellow boxes as missed pedestrian)
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Figure 5.9 shows the leap tracking results for the example fair tracking category.

The false positive rate is very high in this scenario because when the pedestrian is

obscured by the utility pole, the similar color of pole and pedestrian make it hard for

leap to classify them. The search window stopped on the pole throughout the video.

Fig. 5.10. Tracking results by covariance matrix for fair tracking category (every 4

frames with red boxes as tracked pedestrian location, blue boxes as tracking

mistakes and yellow boxes as missed pedestrian)
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Figure 5.10 shows the results of just using covariance matrix for the example video

in fair tracking category. The results are better than just using leap tracking but still

have high false positive rate in this scenario.

Fig. 5.11. Tracking results by leaps method for poor tracking category (every 4

frames with red boxes as tracked pedestrian location, blue boxes as tracking

mistakes and yellow boxes as missed pedestrian)

Figure 5.11 shows the leap tracking results for the example video in poor tracking

category. The true positive rate is almost 0. As mentioned before, leaps method is

highly depend on the color information and is not a good tracker in this scenario.
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Fig. 5.12. Tracking results by covariance matrix for poor tracking category (every 4

frames with red boxes as tracked pedestrian location, blue boxes as tracking

mistakes and yellow boxes as missed pedestrian)

Figure 5.12 shows the covariance matrix tracking for the example video in poor

tracking category. Its also very challenging to accurately track the pedestrian in this

scenario.
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5.2 Pedestrian speed calculation and status analysis

Among the tracked 2,000 videos, around 1,200 videos are eligible for pedestrian

status analysis because many of them do not have interaction between pedestrian

and vehicle. We extracted pedestrian location, pedestrian size in frame domain and

vehicle speed, calculate vertical distance changes and horizontal distance changes by

projection during time interval T we specified.

Fig. 5.13. Walking pedestrian for status analysis

Figure 5.13 shows the result when the pedestrian is walking across the road. The

vehicle is driving straight and going to stop at the intersection. The vertical dis-

tance Dv in the initial frame is calculated as 8.56 meters, horizontal distance DH is

1.45 meters. Based on our tracking result, we calculated the average speed of the

pedestrian is 1.43 m/s. The speed we calculated manually is 1.36 m/s. The accuracy

rate is 95%. This shows that the automatic method generates reasonably good result.
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Fig. 5.14. Running pedestrian for status analysis

Figure 5.14 illustrates the result when the pedestrian is running. It happened in

front of a shopping mall. The pedestrian is crossing the street with a high speed.

Our tracking method has a good performance on this situation and we extracted the

pedestrian location in each frame. The moving speed of the pedestrian is calculated as

4.4 m/s., while the speed we calculated manually is 4.1m/s. The accuracy rate is 93%.
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Fig. 5.15. Standing pedestrian for status analysis

Figure 5.15 shows another scenario when there is a person standing on the road.

Its really close when the vehicle is passing by the pedestrian. But since the pedestrian

is always standing beside the right side of the vehicle, he will be safe. Our tracking

step also helps to detect the pedestrian location in each frame, and we find that the

horizontal distance (DH) is almost constant throughout the video. Thus, we can

automatically get the information that the pedestrian is standing.
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5.2.1 Pedestrian speed distribution by different location

Fig. 5.16. Pedestrian speed distribution at crosswalk scenarios

The distribution of pedestrian speed at crosswalk is shown in Figure 5.16. More

than 40 percent of pedestrians are walking between 1 to 1.5 m/s in this scenario.

Equally around 17% pedestrians are walking at 1.5 to 2 m/s and 2 to 2.5 m/s. Around

10% pedestrian are walking between below 0.5 m/s. Most pedestrians in this category

are just standing beside the road and waiting to cross the street. No scenarios with



74

speed 2.5 to 3 m/s are found in our tested data. The mean speed in this situation is

1.62 m/s and standard deviation is 0.69.

Fig. 5.17. Pedestrian speed distribution at intersection scenarios

Figure 5.17 shows the pedestrian speed distribution in intersection. Its a rela-

tively normal distribution with centered at 1 to 1.5 m/s. Vehicle may go straight,

turn left and turning right at intersection, while pedestrian also share more freedom

at intersection than other locations. Thus, more complicated and various scenarios

can be found in this situation. Besides the normal pedestrian speed, 0.5 to 1 m/s and
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1.5 to 2 m/s are also very common. Very slow speed (below 0.5 m/s) and very high

speed (above 3 m/s) can also be found at this location. The mean speed is 1.52 m/s

and standard deviation is 0.64.

Fig. 5.18. Pedestrian speed distribution at middle block scenarios
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Figure 5.18 shows the pedestrian speed at middle block. 1.5 to 2 m/s shares the

largest percentage. Also, its very interesting that the percentage of speed around 2

to 3 or more meter per second is very high, some pedestrian are running and the

others are walking with high speed. Without crosswalk or traffic control, people are

intended to cross the street with relatively higher speed.

Table 5.2 shows the comparison of mean and standard deviation for pedestrian

speed in different location. The result suggests that pedestrian will increase speed

when they are in road. Their intention to cross the street may lead to a higher speed.

Table 5.2 Mean and standard deviation of pedestrian speed

Mean Standard deviation

Cross walk 1.62 0.69

Intersection 1.52 0.64

Middle block 1.73 0.8

5.3 Possibility of collision estimation

After pedestrian tracking and pedestrian status estimation, we can further per-

form collision analysis. The GPS information can be used for vehicle speed estimation;

video can be used for pedestrian location detection and pedestrian speed estimated as

we have discussed in the sections 4.2.1 to 4.3.1. We will use the method we introduced

in section 4.3.2 for pre-collision analysis.
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Fig. 5.19. Pedestrian is walking cross the street with potential conflict

Figure 5.19 shows the scenario when pedestrian is walking cross the street. At

the beginning of the video, we get the vehicle velocity as 17 mph from the GPS in-

formation, vertical distance between pedestrian and vehicle is 8.7 meters, horizontal

distance between pedestrian and vehicle is 1.75 meters. We assume the pedestrian

speed is constant during that short period of time, thus we calculated the average

pedestrian speed is 1.35 m/s based on the first 20 frames. If the vehicle still keeps

driving with the initial speed, it will take 1.14 seconds to drive to the collision point.

During the same time, pedestrians walking distance is around 1.5 meters, make the

vertical distance zero and horizontal distance around 0.25 meters. Its a very danger-

ous distance for the pedestrian.
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Fig. 5.20. Pedestrian is walking along the traffic way without potential conflict

Figure 5.20 shows the scenario when pedestrian is walking along the traffic way.

The vehicle speed is 4 mph based on GPS information. At the beginning of the

video, we calculated the vertical distance from the pedestrian to vehicle is 22 meters,

the horizontal distance is 7 meters. During the 5 seconds video, we learned that

the horizontal distance between pedestrian and vehicle is almost constant, thus no

collision will happen.
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6. CONCLUSION AND FUTURE WORK

In this thesis, we designed a new pedestrian tracking and status analysis method

for naturalistic driving data. To robustly track pedestrians, we separate pedestrians

into head, body and leg sections, and use body section as the main region for feature

matching, since it is more stable and constant during the whole video. We also give

a lower weight for legs and learn their color, and periodic movement pattern. In

feature matching, we use leaps method to efficiently find the interesting area, and

then use covariance matrix and histogram to find the most similar area in the current

frame. The candidate regions are grouped by voting or clustering method to help us

determine the final pedestrian location by feature matching method. We also used

the Unscented Kalman Filter in the last tracking step to efficiently determine the

pedestrian size and also check our feature matching accuracy.

By using the pedestrian tracking results, we designed an algorithm for pedes-

trian status and pre-collision analysis. We calculated pedestrian speed for several

kinds of scenarios and discussed their difference. This information helps us analyze

pedestrians status in different scenarios. We also discussed the collision possibility

analysis by combining the tracked pedestrian location, pedestrian speed and the GPS

information.

We evaluated around 2000 videos for pedestrian tracking analysis using our nat-

uralistic driving data. The experimental results show that our proposed method is

very promising with better performance than leap and covariance matrix tracking

methods.
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We also used the tracking results to analyze the pedestrian speed using the natu-

ralistic driving data. We found those pedestrians are generally walking faster in the

middle blocks than in crosswalks and intersections.

Designing an accurate pedestrian safety system still needs a lot of work. This

thesis provides us a good basis for future work. In the future, the tracking algorithm

can be improved to be more adaptive to different illumination. Second, we need to run

more data and acquire more information about the distribution of pedestrian speed

and pedestrian status in different scenarios. Third, it will be ideal if our tracking

algorithm can work in real-time.
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