
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Yan Sun

3D Image Segmentation Implementation on FPGA using EM/MPM Algorithm

Master of Science in Electrical and Computer Engineering

Lauren Christopher

Maher E. Rizkalla

Paul Salama

Lauren Christopher

Yaobin Chen 12/07/2010

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:

For the degree of Choose your degree

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Printed Name and Signature of Candidate

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

3D Image Segmentation Implementation on FPGA using EM/MPM Algorithm

Master of Science in Electrical and Computer Engineering

Yan Sun

12/07/2010

3D IMAGE SEGMENTATION IMPLEMENTATION ON FPGA USING

EM/MPM ALGORITHM

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yan Sun

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2010

Purdue University

Indianapolis, Indiana

ii

To my family

iii

ACKNOWLEDGMENTS

Foremost, I would like to express my sincere gratitude to my advisor Prof. Lauren

Christopher of the Department of Electrical and Computer Engineering, for the con-

tinuous support of my study and research, for her patience, motivation, enthusiasm,

and immense knowledge. Her guidance helped me in all the time of research and

writing of this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Paul Salama and Prof. Maher Rizkalla for their encouragement, insightful comments,

and hard questions.

My sincere thanks also goes to Prof. Brain King, for offering the great help on

my thesis writing.

My love also goes to Yuhui Sheng, Yu Ding, Chenyuan Feng, and Jinming Shao,

my best friends. Without their support, I even can not got the opportunity to come

to USA and continue my study. They are always besides me. And I know they will

be there forever.

Last but not the least, I would like to thank my family: my parents Xiaobin Sun

and Weiwei Li, for giving birth to me at the first place and supporting me spiritually

throughout my life.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . vi

ABSTRACT . vii

1 INTRODUCTION . 1

2 3D EM/MPM ALGORITHM . 4

2.1 Introduction . 4

2.2 3D Maximization of Posterior Marginals 5

2.3 Expectation Maximization . 6

3 HARDWARE IMPLEMENTATION . 8

3.1 Computational Cores . 8

3.2 Parallel Cores Implementation . 12

3.3 Two Important Hardware Architecture Design 13

3.3.1 Introduction . 13

3.3.2 PingPong Structure . 14

3.3.3 Step Structure . 16

4 External MEMORY INTERFACE DESIGN 24

4.1 Introduction . 24

4.2 Memory Arrangement . 24

4.2.1 External Memory (DDR3) Analysis 24

4.2.2 Inner Memory Analysis . 26

4.2.3 Interface Controller Design 27

5 RESULTS: SYNTHESIS AND SIMULATION 30

5.1 Hardware Synthesis Resource Analysis 30

5.2 Simulation Results Analysis . 32

6 CONCLUSION AND FUTURE RESEARCH 40

v

Page

6.1 Conclusion . 40

6.2 Future Work . 41

LIST OF REFERENCES . 42

vi

LIST OF FIGURES

Figure Page

3.1 Block Diagram for Algorithm . 9

3.2 Computational Core Diagram . 10

3.3 Parallel Computational Cores Implementation 12

3.4 PingPong Structure in RAMs . 15

3.5 RAM Occupation at Beginning and after First Iteration 17

3.6 Transformation Records during Seven Times Process 18

3.7 Transformation Results after First Slice being Produced 19

3.8 Inner RAM Occupation after S(8.1) being Produced 20

3.9 Inner RAM Results when S(2.7) is Produced 21

3.10 Inner RAM Results in Following Steps 22

3.11 Following Steps after First Slice being Sent Out 23

4.1 External Memory Storage Arrangement 25

4.2 Memory Interface Design and Data Rearrangement 28

4.3 Calculation Part and Memory Interface Connection 29

5.1 Xilinx Virtex 6vLX240Tff1156-2 on-chip Resource 30

5.2 Resource Usage Report . 31

5.3 Read-in Process Starts . 33

5.4 First Xt Comes Out . 33

5.5 First Slice Calculation Finishes . 34

5.6 Simulation Result for First Slice in External Memory 35

5.7 First Iteration Result of Xilinx Hardware Segmentation 36

5.8 First Iteration Result of PC Software Segmentation 37

5.9 Hardware Processing Speed Comparison with Software 38

5.10 Processing Speed Comparison with Literature Hardware Implementations 39

vii

ABSTRACT

Sun, Yan. M.S.E.C.E., Purdue University, December 2010. 3D Image Segmentation
Implementation on FPGA using EM/MPM Algorithm. Major Professor: Lauren
Christopher.

In this thesis, 3D image segmentation is targeted to a Xilinx Field Programmable

Gate Array (FPGA), and verified with extensive simulation. Segmentation is per-

formed using the Bayesian algorithm of Expectation-Maximization with Maximiza-

tion of the Posterior Marginals (EM/MPM). This algorithm segments the 3D image

using neighboring pixels based on a Markov Random Field (MRF) model. This it-

erative algorithm is designed, synthesized and simulated for the Xilinx FPGA, and

greater than 100 times speed improvement over standard desktop computer hardware

is achieved. Three new techniques were the key to achieving this speed: Pipelined

computational cores, sixteen parallel data paths and a novel memory interface for

maximizing the external memory bandwidth. Seven MPM segmentation iterations

are matched to the external memory bandwidth required of a single source file read,

and a single segmented file write, plus a small amount of latency.

1

1. INTRODUCTION

Due to its significant advantages in visualization, 3D images are becoming more and

more popular in several aspects of our lives. On the one hand, in the medical area,

because of the complexity and diversity of human organs as well as the unpredictable

location of lesions, it is difficult to obtain accurate and complete tissue segmenta-

tion from 2D images. On the other hand, 3D images offer us three perpendicular

planes simultaneously which can be rotated and translated in order to get accurate

information and the suitable view the doctors need. For tissues surrounded by layers

of different texture in some hidden angle, segmented 3D images in the visualization

can improve clinical understanding. Therefore, segmented 3D images can help doc-

tors view 3D rendered tissues and organs for diagnosis, treatment planning, and even

surgical assistance in the operating room.

Several 3D image segmentation algorithms have been published recently. Among

them, the Expectation-Maximization with Maximization of the Posterior Marginals

(EM/MPM) algorithm is a good segmentation strategy, especially in noisy data [1]

[2] [3]. The EM/MPM algorithm is a combination of EM algorithm for parameter

estimation and MPM algorithm for segmentation. The MPM algorithm at first clas-

sifies every pixel and assigns a cost to the number of misclassified pixels, and then

minimizes the cost to get segmentation of image. The EM algorithm iteratively es-

timates the model parameters to get the best probabilistic solution which is closest

to the true value of model parameters. High resolution pixel volumes in 3D images

results in Gigabytes of data to process. So the standard computing architectures are

not well suited to the task due to fixed memory bandwidth and large instruction set

overhead.

Because of the large data volume of 3D images and the iterative processes of

pixel-based segmentation algorithm, on-chip system implementation for this 3D im-

2

age segmentation algorithm is proposed. Hardware implementations on FPGA and

Application Specific Integrated Circuits (ASICs) have distinct advantages especially

for a specific task with large data sets. On-chip systems can have significant paral-

lelism to optimize repeated data processing. Some 3D medical imaging tasks have

been mapped to hardware in the research literature. Li [4] presented a brick caching

scheme for 3D medical imaging aiming at speeding up the processing on an FPGA.

His work implied that parallel memory access and brick pre-fetching can be possi-

ble, but some ideas were left for future study. Others use a PCI-board with 8 RISC

processors to do 3D image analysis. A parallel processor array for filtered back pro-

jection was developed in [5] to speed up processing. I.Goddard et al. [6]did high-speed

cone-beam reconstruction based on embedded systems approach and S.Coric et al. [7]

did parallel-beam back projection which is implemented in an FPGA platform for

medical imaging. Accelerated volume rendering and tomographic reconstruction are

demonstrated by B.Cabral [8] using texture mapping hardware. K.Mueller et al. [9]

did fast and accurate three-dimensional reconstruction from cone-beam projection

data using algebraic methods in his PhD dissertation. P.V.Dillinger [10] et al. pro-

pose a parallelizable 3D grey-value structure code for image segmentation on FPGA

which can process segmentation in real time. K.J.Shanthi et al. [11] used histogram

for image segmentation and implement this algorithm on FPGA which renders the

algorithm more useful for real time application. S.B. Malarkhodi et al. [12] did the

image segmentation work using Expectation-Maximization algorithm based on Ga-

bor filter. Then they developed and coded the whole architecture using VHDL (very

high speed hardware description language) to implement the design on SPARTAN-3E

FPGA. M.A.Salem et al. [13] proposed a hardware implementation of the 2D wavelet

transform which can reduce the computing power and memory requirements for video

segmentation and movement detection. However, hardware implementation has its

own limitations. First of all, although on-chip system can implement several process-

ing cores to accelerate large volume data calculation, the speed of the I/O interface for

the large volume data transmission is the greatest speed limitation for whole system.

3

Secondly, there are limitations for on-chip resources on different sizes of FPGA. For

example, some FPGAs contain numerous DSPs but less on-chip memory for users.

Some contain more memory resources but fewer look up tables (LUTs) on chip. So

the balance of the different on-chip resources and the best arrangement of internal

and external memory to minimize resource cost are the design challenges.

The work described in this thesis is important for the following reasons. First,

this research is the first hardware FPGA implementation of the EM/MPM algorithm.

Second, the method of parallel processing the volume data is unique. By generating

multiple computational cores on chip, the on-chip data pipelining and parallelism

handles the overlapping pixel neighborhoods automatically. Third, the new method

of optimizing the iterative algorithm between on-chip and off-chip memory lowers the

overall memory bandwidth and increases the processing speed by minimizing external

memory accesses.

In chapter 2, the EM/MPM algorithm is reviewed. A global view and analysis

of the algorithm motivates the design choices for implementation. Also the relation-

ship between EM and MPM algorithm is shown in this chapter, which can help to

understand the on-chip design a lot in a overall view.

In chapter 3, the overall hardware plan is presented. Two efficient on-chip struc-

tures named Pingpong and step structure are described. These are the key novel

parallel hardware implementations. The detailed MPM algorithm implementation is

described in this chapter.

Then the hardware memory interface design is described in chapter 4. Due to

the large volume of data in 3D images, both internal FPGA and external on-board

memory is necessary. This design minimizes external memory accesses.

Furthermore, the simulation and synthesis results are in Chapter 5. Compared

with software implementation, the advantages of hardware implementation can be

seen in both simulation and on-board segmentation results.

Finally, Chapter 6 concludes showing the advantages both in speed and cost of

the 3D image segmentation in the FPGA platform.

4

2. 3D EM/MPM ALGORITHM

2.1 Introduction

For a given 3D image, the source image grey level information is considered a

3D volume of random variables, Y. For medical images, the model assumes that Y

contains Gaussian noise due to the imaging process, plus the true underlying tissue

characteristics. The segmentation result approximates the true tissues, denoted as

X, without noise or distortion. This segmentation is also a 3D volume where there is

assigned a class label corresponding to every pixel in the source 3D image. The class

label is taken from a set of N labels. Described here is the optimization process by

which we classify the pixels into the N labels.

The EM/MPM algorithm consists of two parts: Expectation-Maximization (EM)

and Maximization of the Posterior Marginals (MPM). The EM algorithm finds the

estimates for Gaussian mean and variance, while MPM classifies the pixels into N

class labels, using the estimated parameters from EM. The basic structure of the

image processing is a 3D neighborhood of pixels. In the 3D image research field, this

forms a mathematical structure called a Markov Random Field (MRF). The MRF is

useful because it guarantees local convergence in iterative algorithms which are based

on it. The 3D 6-pixel neighborhood which we use is: right, left, above, below, front,

and back around a center pixel.

A random class label is initialized into every pixel in X at the beginning of the

segmentation process, and an evenly distributed vector of means and variances is

used. Then, the estimate of X (the segmentation output, or class labeling) is formed

by iterating several times through the 3D data. For MPM, convergence is achieved by

choosing the class label that minimizes the expected value of the number of misclassi-

fied pixels, as proved in [3]. The probability density function (or likelihood function)

5

of a mixture of Gaussians, in which the random variable Y is dependent on X, is

modeled in following Equation:

fY |X(y|x, θ) =
∏
s∈S

1√
2πσ2

xs

exp

{
−(ys − μxs)

2

2σ2
xs

}
(2.1)

θ is the vector of means and variances of each class (or tissue type), and the set

S is the 3D volume of pixels with s denoting a single pixel.

Since we are assuming Bayesian dependence, we can use the p(x) to help solve

this equation, resulting in Equation 2.2. Here, p(x) represents the tissue probable

distribution in the 3D volume depending on the neighborhood class labels. This

formulation will favor a class label for a center pixel that is similar to the largest

number of neighboring class labels.

In order to get the approximation of this marginal conditional probability mass

function at each pixel, a Gibbs sampler is used to generate a Markov chain X(t).

After all the pixels have been processed through several iterations, EM uses class

persistence from these iterations to estimate the new means and variances of the

Gaussian models which is the input to MPM for the next iterative segmentation.

After tens of EM iterations, the result of EM/MPM algorithm will converge to the

highest probability segmentation.

2.2 3D Maximization of Posterior Marginals

The Equation 2.2 is used for MPM. The 3D pixel neighborhood is defined by the

function t(xr, xs), where xs is the center pixel, and xr are the nearest 6 pixels: up,

down, left, right, front, and back.

The MPM optimization is used to segment images. This is accomplished by

choosing a class label for every pixel in the estimate of X which can maximize the

marginal probability mass functions in Equation 2.2.

6

pXt|Y (x|y, θ) =
∏
s∈S

1√
2πσ2

xs

exp

⎧⎨⎩−(ys − μxs)
2

2σ2
xs

−
∑

[r,s]∈C
βt(xs, xr)

⎫⎬⎭ (2.2)

β : weighting factor for amount of spatial interaction

C : clique of X

y : source image

μ and σ : mean and variance for each class

The Gibbs sampler is the formulation used to create a Markov chain from the

iterations. The Gibbs implementation in MPM is to choose a class label xs = k, by

using the uniform random variable ξ, compared to the neighborhood local posterior

distribution p(xt) from Equation 2.2.

The Gibbs sampling becomes:

if (ξ < p1) then xt = class label 1 (2.3)

if (p1 < ξ < p1 + p2) then xt = class label 2

if (p1 + p2 < ξ < p1 + p2 + p3) then xt = class label 3

...

MPM and EM have strong interrelationship, but MPM iterations are the majority

of the computational processing, therefore the use of dedicated hardware is targeted

to this algorithm. For each iteration of EM, the MPM iterates seven to ten times.

MPM therefore is the target for parallelism and improved processing speed.

2.3 Expectation Maximization

EM is used to estimate parameter θ. For each iteration, two phases are imple-

mented: the expectation step and the maximization step. First, the EM algorithm

estimates the Gaussian hyper-parameters: θ as shown in the classic EM Equation 2.4.

Q(θ, θ̂(p− 1)) = EY,̂θ(p−1) {log f(y|x, θ)}+ EY,̂θ(p−1) {log p(x|θ)} (2.4)

7

Then estimation of θ is obtained from maximizing Q(θ, θ̂(p − 1)). In our 3D

segmentation problem, the parameter vector, θ = (μ1, σ
2
1, μ2, σ

2
2, · · · , μN , σ

2
N), con-

tains the statistics, means and variances, of the mixture probability density function,

f(Y |X) with the usual assumption of independent and identically distributed Gaus-

sian random variables for each pixel.

8

3. HARDWARE IMPLEMENTATION

From the algorithm analysis, The EM/MPM algorithm diagram is shown in Figure

3.1. All the blocks in grey will be implemented in hardware; the blocks in red are

external memory for storing source image Y and segmentation result Xt. The EM

algorithm in blue will be implemented on the on-Board CPU which is named as

Microblaze . It can be seen that each EM iteration calculates the mean and variance

of each class based on segmentation results from m MPM loops. These new mean

and variance are sent to MPM algorithm as input information for a new segmentation

process at the next EM iteration.

3.1 Computational Cores

The MPM segmentation process is to minimize the exponential part for every

class with respect to each pixel in Equation 3.1 which is named as logpost(k) here:

logpost(k) = −log σxs −
(ys − μxs)

2

2σ2
xs

−
∑

[r,s]∈C
βt(xs, xr) (3.1)

So the computational block will classify every pixel, assigning it the class label

k, based on smallest (magnitude) logpost(k). This computational core is named

cal cell. It accomplishes the calculation of two important outputs: logpost(k) and

Xt out. The Xt out is the current estimated class for each pixel, which represents the

current segmentation of the input. The Figure 3.2 is the core diagram.

The main ports for cal cell are listed here, some other ports are from top level

and not listed:

Input:

(1) ena1: calculation enable signal. When ena1 = 1, computational block works.

9

X(t)
--memory

xt(dd)(j)(i) : 4 bits
indicating which
class this pixel

belong to

Compare :

Need to N counters to
record times for

every class.

6 neighbor pixels
of x(dd)(i)(j) :
4 bits/pixel * 6

pixels

Calculate :

con(k), d(k),

Func(con(k),d(k))=
log post(k)

Sort :

Find the minimum
log post(k)

EMin
-- memory

m: array of N class
mean (4 bits/ class *

16 class)

v: array of N class v
(4 bits/ class * N

class)

m : 4 bits* N class
v: 4 bits* N class

Y
--memory : initialized

mm : 8 bits/pixel

mm : 8 bits

Basic para
--memory : initialized

4 bits
atten : 2 bits,
n (number of

process) : 4 bits,
N (number of
classes) :4 bits

�

� , atten, n, N=classes

k : 4 bits this k make the log post (k) minimum
Refresh the X(t) memory by new k

Counter :

Decide which pixel is
being processed now.

i, j, dd be initialized
Which pixel is processed

now -- address

Which pixel is processed
now -- address

Which pixel is processed
now -- address

Block Diagram EM

EM
Numbers of each class has been

chosen

Fig. 3.1. Block Diagram for Algorithm

10

clk

ena
class

gamma[0-7]
beta

con[0-15]

mm
m[0-15]

tempmean[0-7]
v[0-15]

atten

varmean

rst

row_ind
col_ind

frameatlas
xt0~5

prior0~15
compare

clk
ena

xt0~5

row_ind
col_ind

frameatlas
logpost_cal

ena
class

gamma
beta

con
prior
mm
m

tempmean
d

cal_num
atten

varmean

logpost

...

clk

logpost[0-15]

clk

ena1

class
xt_out2

clk

exp_cal

logpost

ena
flag

sum_cal

clk
ena

exp[0~f] sum
xt_cal2

clk
ena

x
exp[0~f]

...

pnGenCore
clk
rst
ena

Log_
delay4

module3_top

logpost_cal_top

class xt_cal1

clk
ena1

logpost[0-15]

xt_out1

logpost[0-15]

row_ind tempmean
_cal

clk
ena1

B[0-7]

tempmean[0-7]
m[0-7]

logpost
_delay

clk
class

logpost[0-15]

dd_logpost[0-15]

d_logpost[0-15]

cal_cell

clk

ena2

class

gamma[0-7]

beta

con[0-15]

mm

m[0-15]

b[0-7]

v[0-15]

atten

varmean

rst

row_ind

col_ind

frameatlas

xt0~5

logpost

xt_out

icm

ena1

Fig. 3.2. Computational Core Diagram

(2) ena2: output enable signal. When ena2 = 1, outputs are validated.

(3) row ind, conl ind,frameatlas: signals refer to row addresses, column ad-

dresses and slice addresses correspondingly. They are all outputs of ram cell in

which all the addresses are rearranged.

11

(4) xt0 - xt5: class labels of six neighboring pixels of current central pixel. They

are read in from outside memory.

Output:

(1) logpost: output of this computational block. It illustrates cost function of

every class.

(2) Xt out: output of this computational block. It illustrates the class with this

central pixel most likely belongs to.

Here are also several sub-block to compose this computational core:

(1) tempmean cal: it computes the value of tempmean.

(2) logpost cal top: it is composed of two sub parts: logpost cal (16 parallel

blocks) and compare.

logpost cal: it computes the value of logpost.

compare: it computers the value of 16 prior(k) parallel. These prior(k) are

inputs for logpost cal.

(3) Xt cal1: when icm=0, sort to find smallest logpost(k) among logpost(0) to

logpost(k − 1) and creates the Xt out.

(4) module3 top: it is composed of several sub parts:

pnGenCore: IP core of Xilinx which generate 4 bits random number.

exp cal: it calculates exponential function. It is hard to implement exponential

calculation into hardware. We approximate this exponential calculation using four

lines to fit the exponential curve in four different ranges.

Xt cal2:when icm=1, calculate Xt out.

As is shown in Figure 3.2 and comments above, the computational core computes

the functions in the MPM algorithm. It classifies every pixel in Y according to its

neighborhood in X, and the brightness value of Y according to a Gaussian model.

12

Fig. 3.3. Parallel Computational Cores Implementation

3.2 Parallel Cores Implementation

One of the most important advantages of hardware implementation is that several

copies of the computational cores can be implemented in parallel. These multiple

parallel cores improves the processing speed according to the number of cores. So

considering the Xilinx chip hardware resources, there are sixteen computational cores

implemented in this system.

Computational core cal cell executes all the calculation functions for every pixel.

Sixteen cal cell are implemented in Xilinx FPGA parallel which process sixteen pixels

at the same time. Figure 3.3 shows this parallel structure in the FPGA.

As is shown above, the data to classify sixteen pixels is read in at once. That

is, Y of sixteen central pixels (black circles), and the current estimate, Xt, of their

segmented neighbors from same slice and front/back slices (white circles and dia-

monds). After these are read in, the data are grouped into sixteen sets of 7 pixels

each (corresponding to the sixteen black circles with the 6 neighbors in the diagram

13

above) and sent to multiple computational cores to calculate the new segmentation

of those sixteen central pixels.

3.3 Two Important Hardware Architecture Design

3.3.1 Introduction

Our targeted algorithm MPM has three characteristics:

First of all, 6 neighboring pixels are involved in a certain central pixel’s calculation.

These 6 neighbors are in the same slice but in different rows from the central pixel,

the right and left neighbors are in the same slice but indifferent column from the

central pixel, and the front and back neighbors are in different slices but in same rows

and columns from the central pixel. At the same time, every pixel is a neighbor for

every other neighbor pixel.

Secondly, in order to converge the optimization, every pixel needs to be processed

for seven to ten times in per EM iteration. In addition, every MPM iteration for

one pixel involves this center pixel itself and its 6 neighbors refreshed from the last

iteration.

Thirdly, there are a significant number of pixels in one 3D image and every pixel

needs to be processed for seven to ten times. So we must pass a large quantity of

data into or out from the chip. Therefore external memory is imperative. However,

I/O speed is a bottleneck for most on-chip designs.

According to the characteristics mentioned above, three specific designs are cre-

ated. The first one is called step structure. This step structure is aimed at the

neighborhood calculation in MPM algorithm and partly decreases frequency of data

exchange between internal and external memory. The second one is called PingPong

structure. This design with step structure helps minimize the data exchange through

I/O and saves the memory space both in internal and external memories.The third

one is to take advantage of hardware to implement parallel processing by multiple

14

computational cores. The detailed implementation is related to multiple usages of

RAMs.

3.3.2 PingPong Structure

According to the algorithm, 6 neighbors of a central pixel should be processed to

the same MPM iteration level when they are used to refresh the central pixel to next

level of MPM calculation. On the other hand, these 6 pixels will be used respectively

in other groups of the neighborhood system. One choice is storing all the pixels in

external memory and reading in and processing them one by one. After all the slices

have been processed and written out, the 1st MPM calculation is finished for all

pixels. The same process must be done for next several MPM loops. This method

is obvious and intuitive. It can guarantee all the pixels are processed at the same

level during every loop. But actually, this kind of process is technically inefficient.

Because if MPM loops are processed for 7 times that means all the slices will be read

in and written out for 7 times. However, as we know, frequent external RAM data

access would result in low system processing speed.

In order to avoid frequent access to external memory, a new PingPong structure

is created. This structure sets two groups of block RAMs - group RAMA and RAMB

on chip. These RAMA and RAMB can hold 7 slices respectively. So my design is to

treat these two RAMs as two PingPong players. The pixel data Xt on first 7 slices

is read in from external memory and after it is processed for the first time,the result

will be stored in RAMB. Then RAMB will be treated as the source memory, 7 slices

data will be read out from RAMB and after second process, they will be stored in

RAMA. Alternatively, RAMA will be used as source memory and RAMB will be the

stored memory in third process. Then back and forth until all the 7 slices finishing 7

MPM loops. Any slice being processed for seven times will be considered as the final

segmentation result in this EM iteration and sent out to external memory. Obviously,

15

Fig. 3.4. PingPong Structure in RAMs

Pingpong structure guarantees that each slice will be read in and sent out once even

they need to be processed for seven times in one MPM loop.

Figure 3.4 shows the PingPong structure used in this hardware implementation.

Initially, the original data are read in and processed for the 1st time then stored in

RAMB. At the 2nd time, data are read in from RAMB then processed once and

then saved in RAMA. Now RAMA data is considered as the source data. The same

procedure will be executed repeatedly until the 7th iteration is reached. This tech-

nique significantly reduces the data exchange between internal and external memory

by keeping intermediate results on-chip. Finally, when the 7th iteration result is ob-

tained it is written into the external memory. After the latency period of 7 iterations,

the data transfer from external memory is continuous at one slice update per iteration.

That is to say, any slices numbered S(n.1) to S(n.6)will be considered as intermediate

results and transferred between inner memories. Any intermediate results will not

be sent to external memory until S(n.7)is generated as the final result. Therefore we

can process seven MPM segmentation iterations, matched to the external memory

16

bandwidth required of a single source file read, and a single segmented file write, plus

a small amount of latency.

3.3.3 Step Structure

In this segmentation algorithm, the slice relevance and volume data exchange be-

tween internal and external memory make it difficult to accelerate processing speed.

Slice relevance refers to the 3D neighborhood. While the central pixel is in process,

the algorithm uses four pixels in the same slice and two pixels located in the previous

slice and next slice. At the same time, the iterative nature of the algorithm means

that a pixel that is processed for n iterations will be needed for the n+1 iteration.

Using the previous segmentation result is a common property of optimization iter-

ative convergence. This property is used in 3D image segmentation (and other 3D

algorithms) and is difficult to parallelize in hardware because of the iterative nature

and the neighborhood structure. Parallel cells in hardware help increase processing

speed. But here, because of slice relevance, we can’t group all the slices and assign

them to parallel cells as separate tasks.

In order to use parallel calculation cells to speed up processing in hardware, a step

structure is proposed here to deal with the slice relevance and iterative requirements.

First of all, original slices are marked sequence starting from S(1) to S(n) along with

the time (or spatial) horizon. At the very beginning, xt and y of first 2 slices are

read in and sent to multiple calculation cells to process. After being processed one

iteration, the first result slice is transferred to RAMB named as S(1.1). Here S(1.0)

and S(2.0) will be held in inner rams. Then S(3.0) is read in and sent to multiple

calculation cells to produce S(2.1) with S(1.0). This process continues until S(8.0) is

read in. When S(7.1) is generated by S(6.0) and S(8.0) and stored in RAMB, it is

considered first 7 slices are processed for the first time.Obviously, each slice should

approach to S(n.7) when it has been processed and is ready to be sent to the external

memory. Following RAM content figure shows RAM occupation at very beginning

17

Very beginning: After first time:

(from out memory to RAMB)

RAM A RAM B RAM A RAM B

0 0 0 �1.1

0 0 0 �2.1

0 0 0 �3.1

0 0 0 �4.1

0 0 0 �5.1

0 0 0 �6.1

0 0 0 �7.1

Fig. 3.5. RAM Occupation at Beginning and after First Iteration

and when first 7 slices are processed once. Where S(n.0) is the original data of slice.

S(n.m) is the n slice which has been processed for m times.

As is shown above, after being processed one iteration, the first result slice is

transferred to RAMB named as S(n.1).The most important point is when S(8.0) is

read in and S(7.1) is generated, reading new xt from outside memory is stopped. For

the next iteration, RAMB is considered as source memory. S(2.1) is used to generate

S(1.2) and this S(1.2) is stored in RAMA, S(1.1) and S(3.1) are used to generate S(2.2)

and this S(2.2) is stored in RAMA, then in the final step of second iteration, S(5.1)

and S(7.1) are used to generated S(6.2) and this S(6.2) is stored in RAMA. Basically,

the strategy is using PingPong structure of two RAMs to hold all the intermediate

results in inner RAMs. Following figure shows the data transformation between inner

RAMs for first 7 slices.

18

Very beginning: After first time:

(from out memory to

RAMB)

After second time:

(from RAMB to RAMA)

RAM A RAM B RAM A RAM B RAM A RAM B

0 0 0 �1.1 �1.2 �1.1

0 0 0 �2.1 �2.2 �2.1

0 0 0 �3.1 �3.2 �3.1

0 0 0 �4.1 �4.2 �4.1

0 0 0 �5.1 �5.2 �5.1

0 0 0 �6.1 �6.2 �6.1

0 0 0 �7.1 0 �7.1

After third time:

(from RAMA to RAMB)

After fourth time:

 (from RAMB to RAMA)

After third time:

(from RAMA to RAMB)

RAM A RAM B RAM A RAM B RAM A RAM B

�1.2 �1.3 �1.4 �1.3 �1.4 �1.5

�2.2 �2.3 �2.4 �2.3 �2.4 �2.5

�3.2 �3.3 �3.4 �3.3 �3.4 �3.5

�4.2 �4.3 �4.4 �4.3 �4.4 �4.3

�5.2 �5.3 �5.2 �5.3 �5.2 �5.3

�6.2 �6.1 �6.2 �6.1 �6.2 �6.1

0 �7.1 0 �7.1 0 �7.1

After sixth time:

(from RAMB to RAMA)

After seventh time:

(from RAMA to RAMB)

RAM A RAM B RAM A RAM B

�1.6 �1.5 �1.6 �1.7

�2.6 �2.5 �2.6 �2.5

�3.4 �3.5 �3.4 �3.5

�4.4 �4.3 �4.4 �4.3

�5.2 �5.3 �5.2 �5.3

�6.2 �6.1 �6.2 �6.1

0 �7.1 0 �7.1

Fig. 3.6. Transformation Records during Seven Times Process

19

m = 7 �1.7

m = 6 �1.6 �2.6

m = 5 �1.5 �2.5 �3.5

m = 4 �1.4 �2.4 �3.4 �4.4

m = 3 �1.3 �2.3 �3.3 �4.3 �5.3

m = 2 �1.2 �2.2 �3.2 �4.2 �5.2 �6.2

m = 1 �1.1 �2.1 �3.1 �4.1 �5.1 �6.1 �7.1

RD_IN �1 �2 �3 �4 �5 �6 �7 �8

Fig. 3.7. Transformation Results after First Slice being Produced

As is shown in Figure 3.6, 7 slices held in inner RAMs are processed to different

levels because of slices relevance. The remaining slices have only been processed

partially (since we need new slice data). So the maintenance of the slice relevance is

necessary: because the front and back slice which have been processed for m times

are needed to refresh the central slice for m+1 times, so S(n.m) then can be processed

only if S(n-1.m-1)and S(n+1.m-1) are available.

Next, this different extent processeing is used to solve the iterative and neigh-

borhood structure issues in this particular algorithm. Figure 3.7 shows this different

extent of processing in a horizontal way which is like a step. Where: m: MPM

iteration number.

As is shown in Figure 3.7, from bottom to up and from left to right, 1st slice

is processed for 7 times and ready to be sent out to external memory. 2nd slice is

processed for 6 times, 3rd slice is processed for 5 times and ect. That is to say, from

very beginning, there are 28 slice-processes for first 7 slices until 1st slice is processed

20

After seventh time:

(from RAMA to RAMB)

After �7.1 is sent out

and�8.1being produced:

RAM A RAM B RAM A RAM B

�1.6 �1.7 �1.6 �8.1

�2.6 �2.5 �2.6 �2.5

�3.4 �3.5 �3.4 �3.5

�4.4 �4.3 �4.4 �4.3

�5.2 �5.3 �5.2 �5.3

�6.2 �6.1 �6.2 �6.1

0 �7.1 0 �7.1

Fig. 3.8. Inner RAM Occupation after S(8.1) being Produced

to the end. After 1st slice being finished and sent out, 9th slice is read in and produces

S(8.1) with S(7.0). Then this S(8.1) will be send to RAMB to make up valid left by

S(1.7). Let’s continue think about RAM occupation. Figure 3.8 shows the result

after S(8.1) being produced and next iteration being processed to every slice in inner

RAMs.

After S(8.1) making up valid of S(1.7), RAMA and RAMB are considered as

source ram alternatively per slice. S(7.2) is produced by S(8.1) and S(6.1) and stored

in RAMA; S(7.2) is produced by S(8.1) and S(6.1) and stored in RAMA S(3.6) is

produced by S(2.5) and S(4.5) and stored in RAMA; S(2.7) is produced by S(1.6)

and S(3.6) and sent out. Following figure shows next step when S(2.7) is ready.

When S(2.7) is sent out, S(9.1) is produced by S(8.0) and S(10.0) then make up

valid of S(2.7). Figure 3.9 shows changes in RAMA and RAMB in following few steps.

21

After seventh time:

(from RAMA to RAMB)

After �7.1 is sent out

and�8.1being produced:

When�2.7 is ready to be sent

out

RAMA RAMB RAMA RAMB RAMA RAMB

�1.6 �1.7 �1.6 �8.1 �1.6 �8.1

�2.6 �2.5 �2.6 �2.5 �2.6 �2.7

�3.4 �3.5 �3.4 �3.5 �3.6 �3.5

�4.4 �4.3 �4.4 �4.3 �4.4 �4.5

�5.2 �5.3 �5.2 �5.3 �5.4 �5.3

�6.2 �6.1 �6.2 �6.1 �6.2 �6.3

0 �7.1 0 �7.1 �7.2 �7.1

Fig. 3.9. Inner RAM Results when S(2.7) is Produced

22

After �7.1 is sent out

and �8.1 being

produced:

When�2.7 is ready to be

sent out

When �9.1 is produced

and stored in RAMB

RAMA RAMB RAMA RAMB RAM A RAM B

�1.6 �8.1 �1.6 �8.1 �1.6 �8.1

�2.6 �2.5 �2.6 �2.7 �2.6 �9.1

�3.4 �3.5 �3.6 �3.5 �3.6 �3.5

�4.4 �4.3 �4.4 �4.5 �4.4 �4.5

�5.2 �5.3 �5.4 �5.3 �5.4 �5.3

�6.2 �6.1 �6.2 �6.3 �6.2 �6.3

0 �7.1 �7.2 �7.1 �7.2 �7.1

When�3.7 is ready to

be sent out

When �10.1 is produced

and stored in RAMB

When�4.7 is ready to be

sent out

RAMA RAMB RAMA RAMB RAM A RAM B

�8.2 �8.1 �8.2 �8.1 �8.2 �8.1

�2.6 �9.1 �2.6 �9.1 �9.2 �9.1

�3.6 �3.7 �3.6 �10.1 �3.6 �10.1

�4.6 �4.5 �4.6 �4.5 �4.6 �4.7

�5.4 �5.5 �5.4 �5.5 �5.6 �5.5

�6.4 �6.3 �6.4 �6.3 �6.4 �6.5

�7.2 �7.3 �7.2 �7.3 �7.4 �7.3

Fig. 3.10. Inner RAM Results in Following Steps

23

�7 �1.7 �2.7 �3.7 �4.7

�6 �1.6 �2.6 �3.6 �4.6 �5.6

�5 �1.5 �2.5 �3.5 �4.5 �5.5 �6.5

�4 �1.4 �2.4 �3.4 �4.4 �5.4 �6.4 �7.4

�3 �1.3 �2.3 �3.3 �4.3 �5.3 �6.3 �7.3 �8.3

�2 �1.2 �2.2 �3.2 �4.2 �5.2 �6.2 �7.2 �8.2 �9.2

�1 �1.1 �2.1 �3.1 �4.1 �5.1 �6.1 �7.1 �8.1 �9.1 �10.1

RD_IN �1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11

Fig. 3.11. Following Steps after First Slice being Sent Out

It is obvious that every slice in inner RAM is refreshed to a successively deeper

iteration number (m). Any slice refreshed 7 times is considered as finished and sent

out. Figure 3.10 shows the steps after S(1.7) was sent out in a horizontal way which

is like a step.

As is shown above, When the 1st slice is sent out what remains are the other

intermediate slices, the processes will continue. The 2nd slice will be ready after

S(8.1) to S(3.6) (in bold cells in Figure 3.11, from bottom to up) are produced. After

filling in the diagonal in above figure continuously, then another 6 intermediate results

and one final slice segmentation are produced, and every slice is considered ready to

be sent out to external memory. Any intermediate results from T(1) to T(7) are

kept in inner memory. This process of 7 times loops for every slice can be done with

one time read-in and one time write-out, which decreases the frequency of access to

external memory and avoids unnecessary I/O transfers.

24

4. EXTERNAL MEMORY INTERFACE DESIGN

4.1 Introduction

Memory arrangement and interface design is very important for this project. On

one hand, almost every 3D image involves a huge amount of data which needs to

be exchanged between external and internal memory. On the other hand, I/O speed

is always a bottleneck for the processing speed of hardware. So an efficient memory

arrangement and an effective memory interface controller are critical for system speed.

From the algorithm analysis above, current segmentation Xt and original source

image Y are volume inputs to this system. Refreshed segmentation Xt is volume

output data of this system. According to the system requirements, every Xt is as-

signed with 4 bits (maximum 16 class labels) and every Y is assigned 8 bit greyscale.

Therefore, 12 bits are needed to read in and 4 bits write out per pixel.

4.2 Memory Arrangement

Because of the large amount of data is involved in this algorithm, external memory

is necessary. Using our two novel hardware designs, an inner memory which can hold

several slices of Xt is also needed.

4.2.1 External Memory (DDR3) Analysis

From analysis of algorithm, y of central pixel and xt of its six neighbors should

be sent to calculation blocks at same time. So the source image volume Y and the

current segmentation field volume Xt are two read in data flows. In order to read in

data more efficiently, Y of S(n) is stored with Xt of S(n+1) in the same address.For

25

Y of �1 Xt of �2

Y of �2 Xt of �3
Y of �3 Xt of �4

……
……
……

Y of �126 Xt of �127
Y of �127 Xt of �128

Y of �128 Xt of �1

Fig. 4.1. External Memory Storage Arrangement

example, the 3D image is 128*128*128, the external memory storage arrangement is

as follows.

At very beginning, Xt of S(1) is generated randomly and stored in inner memory

on chip. Y of S(1) and Xt of S(2) are read in. Xt of S(1), Y of S(1) and Xt of S(2)

are sent into sixteen calculation blocks to get Xt of S(1.1) which is sent and stored

in RAMB. Then Y of S(2) and Xt of S(3) are read in. Y of S(2), Xt of S(1), Xt

of S(2) and Xt of S(3) are sent into sixteen calculation blocks to get Xt of S(2.1).

All the slices are processed according to the order listed in Figure 3.11. After S(1.7)

which is refreshed Xt of S(1) is ready, it will be sent out to external memory in the

26

same address of Y of S(128). After S(2.7) which is refreshed Xt of S(2) is ready, it

will be sent out to external memory in the same address of Y of S(1). There are

two advantages to store Y and Xt in this order. First, mixing Y and Xt in same

address can avoid frequent changes of addresses of DDR3. This is because staggered

Y and Xt sends the whole data into calculation blocks together at one time. Here we

avoid changing the addressing randomly because it will cause latency in reading and

writing process of DDR3. Second, Y is kept one slice ahead of Xt. This arrangement

makes pipelining more efficient. Both Y of central slice and Xt of back slice will be

used in refreshing central pixels. When they are read in at the same time and Xt of

front slice is already kept in inner memory so read-in Y doesn’t need to wait for Xt

of back slice.

4.2.2 Inner Memory Analysis

In order to avoid high frequency external memory accesses, some inner memory

are designed on chip. Here are four parts of inner memory as follows:

(1) Inner memory for step structure and PingPong structure:

(2) slices for Xt(Step structure) * 2 (PingPong structure). As is shown in Figure

3.3, in order to make computation pipeline more efficient, neighbors of central pixels

should be sent to computation blocks at the same time. So here the PingPong struc-

ture RAMs are doubled in order to read in all neighbors in central slice during one

clock cycle:

(3) slices for Xt (Step structure) * 2 and (PingPong structure) * 2

(4) There will be a buffer for 2 slices of Y. To maximize the pipeline calculation

we designed so that the computation blocks never stop. However, we do not want

the read-in process stop when Xt is written out. So this buffer holds Y to keep the

computation pipeline working when Xt is written out.

When Xt of S(n-1) and S(n) are read in,they are kept in two RAMs until S(n+1)

is read in. Then S(n) is processed and S(n-1) will be replaced by S(n+1). These two

27

little RAMs which hold two slices of Xt is like a ball-server for PingPong structure.

So other 2 slices for Xt are added here.

4.2.3 Interface Controller Design

Between external memory and inner memory, there is an interface to rearrange

Xt and Y data to fit the computational cores. At the same time, this interface should

control slice storage of Xt and Y. Figure 4.2 is shows this control process.

The calculation system and memory interface is connected as as in Figure 4.3.

The detailed data controller working process is like Figure 4.2. At very beginning,

Xt of S(1) is generated randomly and stored in RAM S(n-1). Xt of S(2) and Y of

S(1) are read in together and sent to the Pixels-Grouper. Then S(1.1) is produced

and stored to RAMB. Next, Xt of S(3) and Y of S(2) are read in together. These Xt

of S(3) and Y of S(2) are sent to the Pixels Grouper with Xt of S(2) and Xt of S(1).

And then Xt of S(3) will replace S(1) to wait for the next Xt read in.

When the process is approaching, S(n,6), the read-in Y of S(n,6) is stored in those

two Y buffer RAMs. It is obviously that in next step, Xt of S(n,7) is written out and

read-in process will stop. So at this time, computation cores will use the stored Y in

6 iteration of every slice to keep pipelining.

28

...

...

S n-1

Sn

y1y0xt1xt0

Data-width 24bits

y3y2xt3xt2
Addr_fifo

Data_fifo
Data-bus-width

48bits

Addr-bus-width
31bits

Clk

Clk_Read-in

wea

web

Xt_ram
Sn is central wea=0

web=1
Sn+1 is central wea=1

web=0
Sn+2 is central wea=0

web=1

Write-after-read mode

Pixels
Grouper

Sn Y and Sn+1 Xt

When wea=0 web=1
Sn: central xt

Sn-1: front xt then refreshed
to next xt

Sn+1: back xt
When wea=1 web=0

Sn+1: central xt
Sn: front xt then refreshed to

next xt
Sn+2: back xt

The newest read-in Xt:
always be back slice

For every first time,
initiate~

1.1 2.1 7.1 1.2 2.2 6.2 1.6 2.6 1.7 8.1 7.2 6.3 5.4 4.5 3.6 2.7 9.1

Y1

store read

Xt to the out
memory

Y2

store
read

Every 6th process to every slice, store
Y use block ram

Eight computation
blocks

Read in Data

Sn+1

Fig. 4.2. Memory Interface Design and Data Rearrangement

29

Previous result is used as input for next MPM

Fig. 4.3. Calculation Part and Memory Interface Connection

30

5. RESULTS: SYNTHESIS AND SIMULATION

5.1 Hardware Synthesis Resource Analysis

Our simulation work is based on Xilinx Virtex 6vLX240Tff1156-2. The basic

on-board resource is shown highlighted in the bold box in Figure 5.1.

With 16 computation cores and external memory interface implemented on chip,

the resource usage in synthesis report is shown in Figure 5.2.

It is shown that all the resource usage is under 70%, which makes on-chip imple-

mentation achievable and scalable.

Fig. 5.1. Xilinx Virtex 6vLX240Tff1156-2 on-chip Resource

31

Selected Device : 6vlx240tff1156-2

Slice Logic Utilization:
Number of Slice Registers: 43043 out of 301440 14%
Number of Slice LUTs: 51005 out of 150720 33%
Number used as Logic: 43587 out of 150720 28%
Number used as Memory: 7418 out of 58400 12%
Number used as RAM: 372
Number used as SRL: 7046

Slice Logic Distribution:
Number of LUT Flip Flop pairs used: 59366
Number with an unused Flip Flop: 16323 out of 59366 27%
Number with an unused LUT: 8361 out of 59366 14%
Number of fully used LUT-FF pairs: 34682 out of 59366 58%
Number of unique control sets: 450

IO Utilization:
Number of IOs: 385
Number of bonded IOBs: 385 out of 600 64%

Specific Feature Utilization:
Number of Block RAM/FIFO: 4 out of 416 0%
Number using FIFO only: 4
Number of BUFG/BUFGCTRLs: 6 out of 32 18%

Fig. 5.2. Resource Usage Report

32

5.2 Simulation Results Analysis

Our test case for simulation is a 128*128*128 3D medical image. The Y data and

Xt data are 8 bits and 4 bits respectively. For the simulation case, we just show the

first slice, 7th MPM iteration result.

The simulation work based on Modelsim SE6.2 using Xilinx Vertex6lx240t FPGA.

The read in and write out clock for external DDR3 memory is set at 200MHz. The

clock for the computational core is 100MHz. Two requirements should be considered

when choosing the clock frequency. First is the limitation from I/O interface. For

this Xilinx Virtex6 development board, the external memory access clock limitation

is 333MHz. So the memory interface clock for accessing external memory should be

below 333MHz. Another requirement is that the computational clock should be less

than half of the external memory clock to guarantee the continuity of computational

pipeline process. Due to the DDR3 timing, there is half a clock period to read-in data

from external memory and half a clock to write out the result to external memory.

From Equation 3.1, the input data are: original image information Y, prior seg-

mentation Xt for each pixel and class means and variance for each class. In the

simulation all the data are changed to hex format and saved in a text file.

When simulation starts, the first task is to initialize all Y and Xt to external

memory. Figure 5.3 shows that after all the Y and Xt are available in external DDR3

memory, the read in process starts, this is achieved in about 66μs.

Upon being read-in, the Y and Xt are sent to calculation cores cal cell to process.

Then in 88.25μs, the renewed first iteration Xt, which is also the segmentation result

for first 16 pixels, is sent out. After that, the computational process is pipelined and

the segmentation results then will come out one pixel per computational clock circle.

It can be seen from the address accumulation signal, the segmentation for the first

slice is finished in 396μs. This is compared to our calculation by hand of is about

376μs. The difference is coming from the external memory address delay during DDR3

page transition. From the simulation data, we can conclude that, for this 128*128*128

33

Fig. 5.3. Read-in Process Starts

Fig. 5.4. First Xt Comes Out

34

Fig. 5.5. First Slice Calculation Finishes

volume 3D image with 7 MPM iterations complete, there is 0.3ms latency followed

by each subsequent slice available every 0.072ms. Total time for the complete volume

with 7 MPM iterations is 9.5ms. For normal EM convergence, we would have 20 of

these cycles, making the total segmentation for this size volume approximately 200ms.

Scaling up to a typical size of medical image, 512*512*512, we would have about 12

seconds (0.2 minutes) of processing time with the hardware acceleration, compared

to 25 minutes on a quad core PC, thus we have achieved a 100 times acceleration.

From the result, we can see that there are still a timing difference between our

expectation and simulation result. This difference comes from the detailed external

memory in read-in and write-out processes. To further improve this, we can increase

the fifo size slightly for Y or decrease slightly the computational clock frequency.

After first slice is sent out, the result can be seen under memory tab in Modelsim

platform as shown in Figure 5.6. The contents are the final segmentation result for

slice 1 using current mean and variance.

We can pull out the result to a text file and using IMAGEJ software to export

image, the result is shown in Figure 5.7. Figure 5.8 is first iteration result from the

35

Fig. 5.6. Simulation Result for First Slice in External Memory

36

Fig. 5.7. First Iteration Result of Xilinx Hardware Segmentation

standard desktop computer using software to process the same data. We can conclude

from above images that hardware and software results are almost the same. Based

on the simulation result, we compare processing time between our implementation on

hardware and on standard desktop computer executing software. The result is shown

in Figure 5.9. It can be concluded that the hardware advantage is 100 times the

processing speed. Also, the processing time is compared with the referenced hardware

implementations based on different 3D segmentation algorithms. The result is shown

in Figure 5.10. Taking the published data from reference [10], we scaled down the time

to 31.35ms, in order to match the 128x128x128 size. It can be seen that our hardware

implementation based on EM/MPM algorithm makes a significant acceleration.

37

Fig. 5.8. First Iteration Result of PC Software Segmentation

38

Comparison of Bayasian Segmentation speed on:

Windows PC: Intel Quad Core2

Linux: High performance Computing Center (IU)

Xilinx FPGA

Fig. 5.9. Hardware Processing Speed Comparison with Software

39

0

500

1000

1500

2000

2500

3000

3500

4000

Our Implementation with EM/MPM Implementation on FPGA with
Wavelet-based Segmentation [10]

Implementation on FPGA with
Texture Mapping Hardware [8]

Time Costing Comparison with Other 3D Image
Segmentation Implemented on Hardware

9.5ms 31.25ms

3500ms

Fig. 5.10. Processing Speed Comparison with Literature Hardware Implementations

40

6. CONCLUSION AND FUTURE RESEARCH

6.1 Conclusion

In this thesis we have proposed a new hardware implementation design for EM/MPM

algorithm based on Xilinx Virtex6 development board. This new hardware structure

is designed to accelerate whole image segmentation process compared to software.

Through implementing multiple computational cores on chip and designing a good

I/O interface to avoid I/O speed limitations, it has been proved that our hardware

design does speed up the whole 3D image segmentation process by at least 100 times

and is an improvement from the literature by more than 3 times.

In Chapter 1, we have reviewed several image segmentation algorithms. Specif-

ically we compared algorithms applied on 3D image segmentation and we chose

EM/MPM algorithm to implement in hardware because of the good performance,

especially in noise. Also, we showed that the hardware implementation has several

advantages compared to software solution both from processing speed and resource

cost aspects.

In Chapter 2, we briefly introduced the concept of EM/MPM algorithm and

pointed out that MPM will be the main part on hardware based on the nature of

algorithm itself.

In Chapter 3, we have discussed the characteristics of MPM algorithm and based

on these characteristics, PingPong Structure and Step Structure are proposed. Ping-

Pong structure targets on-chip iterative processing, and Step structure reduces the

I/O interface between on-chip and external memories. Multiple parallel computa-

tional cores are implemented on hardware which process the image concurrently and

accelerate the processing speed significantly.

41

In Chapter 4, we have proposed a new I/O interface design which can help reduce

external memory access with the step structure. I/O interface speed limitation is

always the bottleneck for speeding up hardware processing speed, especially for large

data volume involving processing. Our original design successfully solved this problem

and made the data read-in and write-out process excute smoothly without stopping

the pipelined computational processes on chip.

In Chapter 5, We have analyzed hardware synthesis report and found out that

all the resource cost is controllable and achievable on Xilinx Virtex6 development

board. Then the hardware image segmentation simulation result is compared to

image segmentation software result. We showed that the two results are essentially

the same, taking into account the random variable limitations. This shows that

the EM/MPM hardware design was successfully implemented on chip and had the

predicted result. Finally, the speed comparison between the hardware implementation

and the software solution is proposed. It is shown that the hardware speeds up the

whole 3D image segmentation process by more than 100 times compared to software,

and by more than 3 times compared to other hardware segmentation results from the

literature.

6.2 Future Work

All the results shown above are either theoretical design analysis and simula-

tion based on Xilinx design platform ISE12.1. Currently we use an image size of

128*128*128 pixels, which is limited by on-chip RAM size. For larger volume 3D im-

age, we can choose the FPGA with more on-chip RAM resource. In future work the

design, including the EM algorithm in embedded software, will be implemented on

Xilinx hardware. We are now working on including the MPM algorithm as a hardware

core which is accessed by the on-chip embedded Microblaze RISC processor. The pro-

cessor will perform the EM algorithm. The entire system, EM in on-chip embedded

software and MPM hardware module, will be tested for accuracy and speed.

LIST OF REFERENCES

42

LIST OF REFERENCES

[1] L. A.Christopher, E. J.Delp, C. R.Meyer, and P. L.Carson, “3D Bayesian ul-
trasound breast image segmentation using the EM-MPM algorithm”, in IEEE
Trans. Proceedings of the IEEE Symposium on Biomedical Imaging, 2002.

[2] L. A.Christopher, E. J.Delp, C. R.Meyer, and P. L.Carson “New approaches in
3D Ultrasound segmentation”, in Proceedings SPIE and IST Electronic Ima ging
and Technology Conference,2004.

[3] M. L.Comer and E. J.Delp,“The EM-MPM algorithm for segmentation of tex-
tured images: Analysis and further experimental results”, in IEEE Trans. Image
Processing, vol.9, no.10, 2000.

[4] J.C.Li, R.Shekhar and C.Papachristou,“A “brick” caching scheme for 3D medical
imaging”, Biomedical Imaging:Nano to Macro, pp. 563-566,April,15 18, 2004.

[5] T.Schmitt, D.Fimmel,M.Kortke and et al.,“High-speed cone-beam reconstruc-
tion an embedded systems approach”, Computer Aided Systems theory-
EUROCAST’99,pp.127-141,Springer,2000.

[6] I.Goddard and M.Trepanier, “High-speed cone-beam reconstruction an embed-
ded systems approach”, in Proceeding SPIE Medical Imaging,vol.4681,pp.483-
491,2002.

[7] S.Coric,M.Leeser,E.Miller,et al., “Parallel-beam backprojection:an FPGA im-
plementation optimized for medical imagine”, in Proceedings of the 2002
ACM/SIGDA tenth international symposium on Field-progammable gate arrays,
pp.217-226,2002.

[8] B.Cabral, N.Cam, and J.Foran, “Accelerated volume rendering and tomographic
reconstruction using texture mapping hardware”, in Proceedings of the 1994 sym-
posium on volume visualization,pp.91-98,1994.

[9] K.Mueller, “Fast and accurate three-dimensional reconstruction from cone-beam
projection data using algebraic methods”, PhD dissertation.The Ohio State Uni-
versity,1998.

[10] P. V.Dillinger, J.F. Leinen, J. Suslov, S. Patzak, R. Winkler, H. Schwan, “FPGA
based real-time image segmentation for medical systems and data processing”,
Real Time Conference, 14th IEEE-NPSS,2005.

[11] K.J.Shanthi, L.R.Ashok, A.S.Anandu, B.Das, “FPGA Implementation of Im-
age Segmentation Processor”,Emerging Trends in Engineering and Technology
(ICETET), pp.364 - 367, 2009.

43

[12] S.Malarkhodi, R.S.D.W.Banu, M.Malarvizhi, “VLSI implementation of uterus
image segmentation using multi-feature EM algorithm based on Gabor filter:
FPGA implementation of uterus image segmentation using multi-feature EM
algorithm based on Gabor filter”, Computing Communication and Networking
Technologies (ICCCNT), 2010.

[13] M.A.Salem, M. Appel, M. Winkler, F. Meffert, “FPGA-based Smart Camera
for 3D wavelet-based image segmentation”, Distributed Smart Cameras, ICDSC,
2008.

[14] Xilinx, Memory Interface Solution, User’s Guide 086.

[15] Xilinx, “Virtex-6 FPGA Integrated Block for PCI Express (V 1.0)”, User’s Guide
671,October, 2010.

[16] Rao and Navneet, “Accelerating System Designs Requiring Hign-Bandwidth
Connectivity with Targeted Reference Designs”, Xilinx White Paper 359
(v1.0),December,2009.

