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a, b exponential system parameters; the inverse of time constants.

αn, βn the minimum and maximum values, respectively, of an.

An constant coefficients of exponential functions in the time domain.

an the ordered coefficients of the characteristic equation.

bn−1 the first computed value in an Routh–Hurwitz array, see equation

(4.20).

e exponential constant, natural logarithm base; ≈ 2.71828 . . .

g the acceleration due to gravity, 9.8 m
s2

γ, λ in this work, unknown factors which determine αn = γ · an and

βn = λ · an.

γMUP in this work, a measure of the maximum uniform percentage

change that a system can experience while remaining stable; see

equation (4.49).

∈ is a member of

∞ infinity

K a constant gain, as in a transfer function.

κ in this work, a combination of an useful for determining stability;

see equation (4.33).

λTOT in this work, a measure of total parametric instability tolerance;

see equation (4.47).

m the order of a transfer function numerator; the number of zeros.

m mass

j the imaginary number unit, j2 = −1
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N the order of a transfer function denominator; the number of poles.

ω radial frequency; the imaginary magnitude of a complex number.
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s the complex frequency variable, s = σ + jω

t time, the variable of the time domain.

τn a time constant; a measure of system responsiveness.

v velocity

x position

ξ in this work, the jerk.
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RADAR Radio D irection And Ranging
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GLOSSARY

Bode Plot The Bode Plot provides a two graphs that describe the frequency

response of a transfer function. The first graph shows the magni-

tude of the response vs. frequency. The second shows the phase

shift of the response vs. frequency.

Controller The part of a system which is added to correct the operation of

a plant, usually through feedback techniques.

∆v ”Delta vee” is the difference in velocity. This might be the dif-

ference in velocity for one particular vehicle between two times,

or it may be the instantaneous difference in velocity between two

vehicles.

Feedback The technique of taking a portion of the output of a system

and applying it to the input in some combination with the in-

put signal—usually subtraction. If the output is modified by a

transfer function before being applied to the input, the feedback

is said to be non-unity feedback.

Laplace

Transform

An integral transform from the time domain with variable t to

the complex frequency domain with variable s = σ+ jω, for some

σ and ω. The integral is defined thus:

F (s) =

∫ ∞
0

f(t)e−stdt
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Lookup

Table

A control system which relies on a matrix of precalculated gain

values which are selected by indexing one or more measurable

conditions of the system. Also called gain scheduling. Such a

system can be exceptionally robust, as its parameters are well

known. Since no on-the-fly calculations are required, it switches

and reacts very quickly to changing conditions.

MatLAB A suite of software produced by Mathworks, Inc. which provides

tools for creation and manipulation of matrices, systems of equa-

tions and engineering solutions.

Partial

Fraction

Expansion

A collection of algebraic techniques which separate a ratio of poly-

nomials into a sum of ratio terms having denominators which are

all the factors of the original denominator. This is particularly

useful when employing linear transformations such as the Laplace

transform, as the resultant terms may be transformed indepen-

dently and often with the use of a table.

PID Proportion, Integral, Derivative; A control system where the er-

ror signal is formed as a linear combination of the input, the out-

put, the derivative of the output, and the integral of the output.

The design of such a system involves determining the appropriate

value of the coefficients of combination—a process called tuning.

Plant The part of a system which is to be controlled, having an input

and an output and generally described by a transfer function.

RC filter A basic passive system which provides a frequency-based modu-

lation of signals which pass through it. It is composed of at least

one resistor(R) and one capacitor(C) and is characterized by the

product of the value of these components.
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Root

Locus

A single graph which shows, for a transfer function, the path

(locus of points)which is followed by the poles as they move to

the zeros in the complex plane, as some parameter, usually K, is

varied. The N−m poles which do not have associated zeros move

to a virtual zero at infinity.

SID System Identification; An order-reduction method involving the

approximation of a system’s response as a lower-order transfer

function. The time constants of this new function then become

the identity of the system, e.g.: a (0.5, 0.002) system...

Simulink A programming environment inside MatLAB which provides a

graphic user interface for the creation of models and for running

simulations.

Summing

Junction

A point of intersection of two or more signals which produces an

output signal as a combination of the sum of some inputs and the

difference of others.

Transfer

Function

A mathematical representation of a system in the complex fre-

quency domain as the ratio of two polynomials, G(s) = num(s)
den(s)

,

satisfying the relationship Y (s)
R(s)

= G(s) where Y (s) and R(s) are

the output and input of the system, respectively. The m roots of

the numerator polynomial are referred to as zeros, whereas the N

roots of the denominator polynomial are called poles. The roots

may be simple; having only a real part, or be complex ; having

both a real part and an imaginary part.
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Vector A mathematical construct composed of a magnitude and a di-

rection, occurring in some n-space of n ≥ 2. A vector may be

represented by a magnitude and an angle, ~x =
√

26 45◦, or by the

lengths projected on the axis of the space, ~x = [1, 1].
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ABSTRACT

Meadows, Alexander David. M.S.E.C.E., Purdue University, May 2012. Plant Error
Compensation And Jerk Control For Adaptive Cruise Control Systems. Major
Professor: Lingxi Li.

Some problems of complex systems are internal to the system whereas other prob-

lems exist peripherally; two such problems will be explored in this thesis. First, is the

issue of excessive jerk from instantaneous velocity demand changes produced by an

adaptive cruise control system. Calculations will be demonstrated and an example

control solution will be proposed in Chapter 3. Second, is the issue of a non-perfect

plant, called an uncertain or corrupted plant. In initial control analysis, the adaptive

cruise control systems are assumed to have a perfect plant; that is to say, the plant

always behaves as commanded. In reality, this is seldom the case. Plant corruption

may come from a variation in performance through use or misuse, or from noise or

imperfections in the sensor signal data. A model for plant corruption is introduced

and methods for analysis and compensation are explored in Chapter 4. To facilitate

analysis, Chapter 2 discusses the concept of system identification—an order reduc-

tion tool which is employed herein. Adaptive cruise control systems are also discussed

with special emphasis on the situations most likely to employ jerk limitation.
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1. INTRODUCTION

Before delving into the topics of jerk limitation and plant corruption, it is important

to appreciate some of the background information. Specifically, we will investigate the

types of systems explored for control and the nature of our dynamic model simulation.

We will then discuss some of the analytical techniques used to facilitate solutions.

This work deals specifically with adaptive cruise control(ACC ) systems in passen-

ger vehicles. For the purpose of analysis and test, a simulation environment called

Simulink is used. Simulink is a part of Mathworks’ MatLAB, a matrix-based pro-

gramming and development environment. The simulation uses mathematical models

to predict the behavior of systems from the very simple, like an RC filter, to the very

complex, such as, the adaptive cruise control systems we are discussing here. The

model used for simulation is the same as was used in previous work by Yao Zhai [1].

Fig. 1.1. A generic control system with negative feedback.

In control system theory, a controlled system is described as being comprised of a

plant, a controller, and in most cases, a feedback loop with a summing junction. In a

feedback system, the output of the system is compared to the input and an error signal

is produced which is used to adjust the process accordingly [2]. In general, a system

with negative feedback is a stable choice for control [3]. A generic closed-loop, negative

feedback controlled system diagram is depicted in Figure 1.1. This type of control,
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Table 1.1
Parts of a generic controlled system.

Term Function

Y (s) System Input

e(s) Error Signal

Gc(s) Controller Transfer Function

G(s) Plant Transfer Function

H(s) Feedback Transfer Function

occurring between the summing junction and the plant is specifically called cascade

compensation [3]. In such a diagram, the input signal of each functional block enters

from the left and the output emerges from the right. Note that such a diagram may

represent an abstraction from the true reality of the system—each plant or controller

may be recursively represented by a diagram such as this. The feedback function,

H(s), could be any transfer function, but in the most basic diagrams, H(s) = 1.

A system diagram with a non-unity feedback can be rearranged through various

identity properties to produce an equivalent unity feedback system diagram—this is

important for analysis techniques which are predicated on such a system [3]. With

unity feedback, the error signal input of the controller is simply e(s) = R(s)− Y (s).

In other words, the error is formed as the difference between the output and the input.

The controller is designed to minimize this error signal. In a simplified example, with

a traditional cruise control system, perhaps the car is traveling at 65 mph when the

set button is pressed. The input of the system becomes the current speed and the

error signal is e(s) = 65−65 = 0. Farther down the road, if the car goes up a hill and

its speed decreases to 60 mph, the new error signal is e(s) = 65−60 = +5, as a result,

the control system would issue an acceleration command to the plant, increasing the

vehicle speed to match the new set speed. When the car has passed the summit

and is going down a hill, its speed increases to 70 mph. The new error signal is
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e(s) = 65 − 70 = −5, as a result, the control system would generate a deceleration

command to the plant, decreasing the vehicle speed to match the new set point.

As this work uses a complex dynamic model, a system identification will be derived

to expedite simulation and allow a more fundamental understanding of the interaction

of the plant and the controller. Using a system ID model will also allow analytical

solutions for the controller. System identification will be described in detail in Chapter

2, along with a demonstration of its application to a part of the model.

1.1 Adaptive Cruise Control Systems

Adaptive cruise control systems have been on the market for many years. The

first such system was the LIDAR-based “Preview Distance Control” system produced

by Mitsubishi Motors Corporation on their 1995 Diamante [4]. Most systems were

originally available specifically on higher-end vehicles such as the Volvo S60, Audi

A8, and BMW 7 Series but are becoming increasingly popular on mid-level cars

such as the Ford Taurus [5] [6] [7]. Although many complex control systems exist,

industry still tends toward the more simple and arguably more reliable lookup table

for implementation in most systems because they can be defined based on steady state

operating conditions which allow transient responses to subside and leave derivatives

at zero [8]. Disadvantages of lookup table controllers are that it is computationally

intensive, requiring the calculation of a number of linear controllers, and that it

has no guarantee of non-linear stability [9]. The inputs are then used to estimate

values for operating states falling between those previously calculated on a static test

bed [8]. After lookup table control systems, the most logical choice for control is the

PID controller, or one of its derivatives. Although PID controllers are as familiar to

industry as lookup tables, their primary drawback is the necessity to tune the control

parameters ahead of time to achieve reasonable functionality. The process of tuning

is tedious; algorithms exist but do not provide significant reductions in work time.
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Adaptive cruise control systems are a further controlled extension of the traditional

cruise control systems with which nearly all car owners are familiar. Whereas a

standard cruise control system follows an operating point velocity equal to the user-

defined set point, an ACC system has an operating point which varies according to the

parameters of the system. Referring back to Figure 1.1, the traditional cruise control

system is the plant and the adaptive cruise control system is the controller. In such

a system, the user selects the initial set point for velocity. Absent perturbations to

the car-road system, ACC functions as traditional cruise control. The system may be

disturbed in several different ways, such as: driver alertness, road surface conditions,

visibility, route curviness, or lead car velocity. Only systems responding to lead car

velocities are commercially available, with other disturbance systems the subject of

research and development [10] These are the ACC systems considered here. In such

a system, when a lead vehicle with lower velocity presents itself in front of the ACC-

equipped follow vehicle, the system controls the velocity set point of the follow vehicle

until the velocities reach parity and the vehicles have a prescribed separation distance.

Figure 1.2 shows a block diagram for a generic ACC system.

Fig. 1.2. A simplified, generic adaptive cruise control system diagram.

As described, the system must have certain sensors beyond those found in tradi-

tional systems. Most important to our discussion is a sensor which detects the relative

distance and relative speed of any lead vehicle which is directly in front of the ACC-

equipped vehicle. The system most commonly used for this purpose is RADAR. Other
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possible systems would include LIDAR or machine vision systems. While the primary

purpose of this sensor is to determine the separation distance, the relative velocity

combined with the vehicle velocity can also determine the lead vehicle velocity. The

ACC system employs certain switching logic which moves between two fundamental

modes of operation [1]. In the primary mode, ACC maintains a velocity—much like

traditional cruise control. When necessitated by the presence of a slower lead car,

the ACC system changes to headway management mode. In this mode, velocity is

controlled to maintain the distance relationship with the lead vehicle at the distance

set point. At rest, this system provides feedback as to the separation distance and

relative speed. An example of follow vehicle distance management is the two–second

rule we hear from our parents—“stay far enough behind the lead car so that it takes

you two seconds to get to where they are now.”

Table 1.2
Adaptive cruise control velocity adjustment cases.

1. Overtake: The follow vehicle overtakes a slower lead vehicle initially beyond

the range of the detection sensor.

2. Cut In: A vehicle merges into the lane in front of the follow vehicle at a

distance less than the maximum range of the distance sensor.

3. Lane Departure: The slower lead vehicle leaves the lane and the follow vehicle

resumes the user-initiated set point.

4. Velocity Change: A change in the lead vehicle velocity when the follow car

is already in a state of controlled velocity.

Given such a system, the follow vehicle velocity is adjusted under four general

cases detailed in Table 1.2. In the first case, the transition is usually gentle, provided

the distance sensor has sufficient range capabilities. The second case can result in an

unpleasant velocity adjustment, if the ∆v between the vehicles is too great, or the
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cut-in range is too small. The transition in the third case is generally smooth and is

also functionally equivalent to the follow vehicle leaving the lane of the lead vehicle.

The final case may result in an increase in velocity or a decrease in velocity.

Jerk limitation will be applied to the system under the auspices of the final case.

In the first and third cases, the velocity may easily be controlled to maintain the

jerk under a predetermined maximum value, as there are no other constraints on

the system. In the second case, there are two constraints, lead velocity and the

initial separation. The combination of these two constraints presents a complexity

beyond the scope of this analysis. In one case, a car merges in front of the follow car

with enough separation and velocity that a control scenario can be applied to bring

velocities to parity. In the other case, the car merges in with insufficient separation

and velocity to apply control and a collision will occur. With two possible outcomes

for the same scenario we are not constrained to a solution. In the final case, we have

but one constraint, the lead vehicle velocity. The first case is conceptually equivalent

to the fourth case for a lead vehicle initially positioned at the maximum range of the

sensor, traveling at the velocity of the follow car, and which immediately executes a

velocity change. Presumably, this would be a deceleration event, as an acceleration

would remove it from the ACC system’s area of effect. Applying jerk limitation in

this final case will therefore yield more acceptable results. We will explore some of

the requirements and approaches to jerk control in such a circumstance in Chapter 3.

An adaptive cruise control system responds to predetermined perturbations in its

environment. In most cases, as mentioned, this has to do with the relative velocities

of nearby vehicles. In a purely theoretical system, such as a simulation (even where it

is based on real world values), the models behave in an ideal sense. In reality, small

variations occur in any signal. In a mechanical signal, such as the power transmitted

through a transmission, this may be a small error introduced due to the backlash in a

set of gears. In an electrical signal, this may be a small DC offset produced by driving

under high voltage electrical wires. In a fluid system, this may be due to expansion

or contraction of the fluid or the system components with a change in heat, such as
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from winter to summer. In all these cases, one cannot predict the exact behavior of

the system for every possible environmentally-introduced error. In the abstraction of

the system to be considered as a single plant, we must address the variations in the

system and determine if we can maintain stability of a system. Such variations in a

plant are called plant corruption. This will be explored in Chapter 4 along with a

look at the limitations on stability.

1.2 Previous Work

This thesis follows the work produced by Yao Zhai in his thesis entitled “Design of

Switching Strategy for Adaptive Cruise Control Under String Stability Constraints”

[1]. In his work, Zhai proposed a new control strategy for ACC systems by using a plot

of range vs. range-rate. A control system was developed and applied in the dynamic

model in Figure 1.3 which simulates vehicle dynamics. Zhai also addressed the issue

of string stability in his work. String stability involves analysis of the propagation of

error velocities from the lead car to end car in a platoon of vehicles all employing ACC

systems. The vehicle dynamics block from Zhai’s model is used for simulation in this

Fig. 1.3. An annotated example of the single vehicle model with ACC
control used in Yao Zhai’s thesis work [1].

work, applying the same set of parameters to describe the vehicle as in his work. The

switching logic block in Figure 1.3 selects different control algorithms based on the
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characteristics of the three internal inputs (velocity, position, and acceleration) and

the three external inputs (velocity set point, lead vehicle velocity, and lead vehicle

position). Based on these inputs, a velocity demand is calculated and the current

velocity is subtracted to created a ∆v or dv. This dv is applied to a final dv–throttle–

brake controller which generates the throttle and brake signals provided as inputs to

the vehicle dynamics model [1]. This controller will also be used in this work and is

depicted in Figure 1.4. An important feature of this controller is that it guarantees

that the ACC system will never apply signals to the throttle and brake commands

simultaneously. This practice is mirrored by practical driving skills in modern vehicles

Fig. 1.4. The dv–Throttle–Brake controller used in Yao Zhai’s thesis work
applies positive dv to the throttle and applies rectified negative dv to the
brake with zeros applied otherwise [1].

with one peculiar exception, the original Saab 92, employing a two-stroke engine where

fuel and lubricating oil are mixed, required drivers to apply the brakes but maintain

some throttle to prevent the engine from seizing while going down long hills [11].

For analysis of his model, Zhai determines a representative system identification

model. While he calculates the first time constant graphically, he employs the Mat-

LAB System Identification toolbox to find the second time constant. In this paper,

the topic of system identification will be explored more thoroughly with surprising

results. A graphical, time-domain approach to finding second order complex system

models will be described and applied.
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1.3 The Dynamic Model

The dynamic model inherited from Yao Zhai is implemented in Mathworks’ Mat-

LAB software, specifically in the Simulink modeling suite. The model incorporates

various vehicle dynamics such as the specific parameters of the gasoline engine, the

differential and the tires. The vehicle model was developed in Japan by Kohakugawa

and later used and expanded in his thesis by Yao Zhai [1].

The dynamic vehicle model has two inputs, throttle and brake. The input is

a continuous value between 0 and 1 activating that aspect of the model. As was

discussed, control signals are only provided to one input or the other. The primary

output of the model is the vehicle velocity. There are also two secondary outputs,

which are merely the derivative and integral of the primary output, acceleration and

position, respectively. This dynamic model acts as a test bed for control schemes and

allows for complex scenarios of multiple vehicles to be tested [1]. The choice to use

this model was predicated on previous work in the department [1].

Fig. 1.5. The highest level of the dynamic model, is similar in appearance
to the generic control system of Figure 1.1.

The highest level of the dynamic model used in this thesis is shown in Figure

1.5 for comparison to the generic controlled system of Figure 1.1. Figures 1.6 and

1.7 provide a glimpse at successively lower levels of the model to give the reader an

idea of the complexity of the dynamic model. An understanding of the specifics of



10

Fig. 1.6. The main layer of the dynamic model shows much greater com-
plexity than a standard transfer function.

Fig. 1.7. An expanded view of the Longitudinal Vehicle Dynamics module
of the dynamic model, depicted in Figure 1.6 shows multiple feedback
loops.

these models is neither the topic of this thesis, nor required to understand the content

presented.

The dynamic model simulates a four–wheel drive vehicle with a gasoline engine.

The context of this research is the control of jerk derived from the velocity output of
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the model as a result of inputs from an adaptive cruise control system. As such, the

method by which those inputs were generated, while interesting, is not germane to

the discussion of how they will be processed for jerk limiting. We need only know the

shape of the signals to investigate the topic accurately. The dynamic model produces

reasonable data for this analysis.

1.4 Chapter Summary

We have discussed a fundamental understanding of what comprises a controlled

system. As in Figure 1.1, it is a plant, a controller and a feedback loop. We also have

considered that a system such as this may exist inside a particular block of the system

diagram. We have explained the broad operational parameters of an adaptive cruise

control system and listed the primary disturbances to such a system in Table 1.2.

We have discussed the nature of our dynamic model. Finally, we have introduced

the three primary topics of discussion for this thesis: System Identification, Jerk

Compensation, and Plant Error Compensation.
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2. SYSTEM IDENTIFICATION

System identification, often abbreviated as system ID or SID, is an analysis technique

used to provide a simplified mathematical model for a complex system. This technique

relies on the fact that the response of a linear system can be represented as a sum of

exponential functions of different time constants.

y(t) = A0 + A1e
− t
τ1 + A2e

− t
τ2 + ... =

N∑
n=0

Ane
− t
τn (2.1)

In creating the system ID, we will choose the An terms and the τn terms. The A0

depends on the type of input to the system. Since we will be using a step input, A0 =

1, as will be shown in greater detail below. Our model will be in the complex frequency

domain. Using the Laplace transform, it is simple to determine the frequency domain

model [3] [12] [13] [14] [15]. In evaluating a signal, we might use foreknowledge to

predict the order of the system. For example, in an electrical system containing only

a resister and a capacitor we would create only a first order model. If we know

the system is more complex, we naturally may predict the necessity of a model of

greater order. The process of model generation may be applied recursively to generate

successively higher–order models [16]. As we wish to simplify our model, yet maintain

a measure of the true response, a second order system will be sufficient. For a second

order system with A0 = 1, we will have only the first two exponential terms. It may

appear as follows.

Y (s) =
1

s
+

A1τ1

τ1s+ 1
+

A2τ2

τ2s+ 1
=⇒ (A1 + A2)τ1τ2s+ (A1τ1 + A2τ2)

(τ1s+ 1)(τ2s+ 1)
(2.2)

Since A1 and A2 are arbitrary values, we may simplify by selecting a convenient

relationship between the two, A2 = −A1. Our frequency domain model then simplifies

to:

Y (s) = A1
τ1 − τ2

(τ1s+ 1)(τ2s+ 1)
(2.3)
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At this point, we recognize that we have an equation with a constant gain and a

response which depends on the values of the two time constants τ1 and τ2. A final

simplification is made by defining A1 = K
τ1−τ2 , and we arrive at our general second

order system ID equation with two simple roots:

Y (s) =
K

(τ1s+ 1)(τ2s+ 1)
(2.4)

At this point, we may freely choose the gain K to be any stable value, since

this represents only the addition of an inline amplifier in our design and would not

affect its control. Knowing this, we might select an initial value of 1 for K and

dispense with any formality in determining the coefficients An while determining τn.

Analytical techniques may be applied later to determine an ideal value for K, such as

the Routh–Hurwitz criteria and the root locus—both of which are discussed below [3].

2.1 First Order SID Methods

There are several methods employed to construct a system ID model—both man-

ual and automated. Determination of the time constants can involve a grey box pro-

cess where some functionality of the system is known, or may be applied to a black box

system where the internal workings are wholly unknown. For manual determination,

a direct graphing technique may be applied. MatLAB provides a system ID toolbox

which determines time constants and generates models of various types, such as state

space models, system ID models, grey-box models and output-error models.

This work uses manual exponential curve matching, to obtain a better under-

standing of the function of the system. This involves determining the dominant time

constant and then subtracting that exponential function from the data and repeat-

ing as many times as the order to which we would like to have our model. For the

first couple of time constants, this process provides an approximation to the response

which is comparable to automated methods. We begin the process by introducing a

step input to our dynamic model and recording the output as in Figure 2.1.
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Fig. 2.1. The step response of the dynamic model.

It is the nature of a simple time constant to equal the number of seconds required

by a system to change by 63.2% of the applied signal. Consider Equation (2.5). When

t = 0, f(0) = 1 − 1 = 0. After τ seconds have passed, t = τ , f(τ) = 1 − e−1 = 1 −

0.368 = 0.632 [1].

f(t) = 1− e
−t
τ (2.5)

Knowing this, we measure the first time constant from the plot; subtracting the start

time of the step from the time we achieve our target value, a first time constant of

0.864 seconds. Next, we generate data using the following equation with t0 equal to

our delay of one second (note the beginning of the step input) and our A1 = 1.

f(t) = 1− e−
(t−t0)
(0.864) (2.6)
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For appearances, we have zeroed f(t) before t = 1. Again, the leading “1−” term

is a result in the time domain of applying a step input in the frequency domain—this

will be discussed in greater detail. It is apparent in Figure 2.2 that this function is a

close fit to the data, as expected.

Fig. 2.2. Matching the exponential generated from the first time constant
to the dynamic model data shows great similarity.

The next step in the process is to subtract the fitted curve from the data to obtain

a difference signal. The difference signal can be a measure of how accurately we have

matched the signal and is used in the next step for a second order system ID. We

can see in Figure 2.3 that the difference is small, however if we want to quantify the

match, something more rigorous is required.
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Fig. 2.3. The difference between the dynamic model and the first order
system ID.

We may consider that our difference signal represents a vector, ~x, where each

point in time plots the distance from our signal to the dynamic model data. One

method of comparison would be to determine the magnitude of such a vector, called

the norm [12]. There are many different norms, but the most commonly used is

the 2-norm, also called the Euclidian norm [12]. The 2-norm is simply the square

root of the inner product of the vector with itself as shown in Equation (2.7). For

our difference plot, the formula yields a 2-norm of 0.0637. We can use this method
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to evaluate if successive orders of system identification produce signals which better

match our data.

‖ ~x ‖2:=
√
~x′~x =

(
n∑
i=1

| xi |2
)1/2

(2.7)

2.2 Higher Order SID Methods

If we require a closer fit to the workings of the plant than first order, it will be

necessary to perform further analysis on the difference signal [16]. Next, we look at

the structure of the data signal in greater detail. Figure 2.4 depicts this difference at

an enlarged scale.

Fig. 2.4. The difference between the dynamic model and the first order
system ID, scaled.
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Figure 2.4 shows the residual response is of the form of a decaying sinusoid and

possibly another function of longer wavelength. Though not visible in this plot, the

second function appears to be an over-damped exponential with a smaller amplitude

but a larger time constant. The structure of a decaying sinusoid in the time domain

becomes a complex double pole in the frequency domain [3] [14]. Equations (2.8) &

(2.9) show the time-domain forms of a decaying sinusoid and cosinusoid, respectively,

labeled as the second indexed term.

f(t) = A2e
− (t−t0)

τ2 sinω(t− t0) (2.8)

f(t) = A2e
− (t−t0)

τ2 cosω(t− t0) (2.9)

While we expected from previous work to have two real roots as in Equation (2.15),

we can see that it is more accurate to use a complex root to account for the decaying

oscillations in Figure 2.4 [1]. It can be shown that the supposition of Equation (2.1)

is still valid, namely that the function may be reduced to exponentials, by considering

that sines and cosines may be expressed as exponentials for complex time constants,

where θ = ωt. [13].

sin θ =
ejθ − e−jθ

2j
(2.10)

cos θ =
ejθ + e−jθ

2
(2.11)

Making the necessary substitutions and simplifying, we arrive at a sum of exponentials

by substituting Equation (2.11) into Equation (2.9).

f(t) = A2e
− (t−t0)

τ2

(
1

2
ejω(t−t0) − 1

2
e−jω(t−t0)

)
(2.12)

=
A2

2

(
e
− (t−t0)

τ2 ejω(t−t0) − e−
(t−t0)
τ2 e−jω(t−t0)

)
(2.13)

= Ȧ2

(
e

(− 1
τ2

+jω)(t−t0) − e(− 1
τ2
−jω)(t−t0)

)
(2.14)

In this case, we have pulled the 1
2

into A2, since it remains an arbitrary constant.

This exponential form is useful to illustrate that we are still in compliance with our

assumptions, but it is needlessly complex for our application. Instead, we return
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to the form of Equation (2.9). The practical application of this form involves first

determining the frequency ω of the cosinusoid and then the time constant τ2. Counting

approximately 16 half cycles in 1 second, we can estimate ω = (16/2)·2·π ≈ 50.3.

Through experimental matching, an actual value of 49.965 was determined. Further,

imagining a decaying exponential bounding the data and working similarly, the 63.2%

decay time is estimated at 0.3s. Again, experimental matching determines the actual

value at 0.394s. With the subtraction of the sinusoid term in Figure 2.5, a marked

improvement is shown. What is left is another decaying sinusoid and some other

longer time constant contribution. Our 2-norm value for this data is 0.03049. At this

point, the goal of finding the parameters of a second order system ID is achieved and

like a great artist, we must know when to stop. Common convention in modeling

is to create a model which is sufficiently complicated to provide adequate data and

no more complicated [15]. One measure for the necessary complexity in modeling a

system is to consider the degrees of freedom minus the constraints [15]. Our dynamic

model of Figure 1.5 has only two inputs, throttle and brake, suggesting a second order

model as a primary goal in our system identification.

To determine experimentally, the best fit values for τ2 and ω, a space is defined, the

2n-b-ω space. For compactness in subsequent formulae and by convention, we define

b = 1
τ2

[3] [14]. In this space, we can plot points which represent the 2-norm of the

difference of our system ID model from the dynamic model data. These points form

a surface as shown in Figure 2.6 plotting 50451 values at a resolution of 0.01. The

general shape is a paraboloid. To find the best fit for our second order model, we find

the minimum of the surface. High frequency noise in the original plot makes it difficult

to appreciate the overall shape. This is alleviated by running ten successive passes of

a 3 by 3 gaussian low-pass filter to smooth the image for display purposes [17].
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Fig. 2.5. The difference between the dynamic model and the second order
system IDs, scaled.

2.3 The SID Transfer Function

To use our system ID in simulation and to perform analysis on it, we must deter-

mine the transfer function; the complex frequency plane representation of the system.

We can determine it from the time-domain response. For compactness, we make the

substitutions, a = 1
τ1

and b = 1
τ2

. The first term is an artifact of the input signal and

is omitted. All the terms are left positive since any required polarity will be explicit

in the constants and it is assumed that t = t− t0 for clarity. In the convention of sys-

tem engineers, the time domain transfer function is labeled as g(t) and the frequency
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Fig. 2.6. The 2n-b-ω space with 10x Gaussian filtering shows a paraboloid
function.

domain equivalent as G(s). Initially, the function is left as a generic, second-order

system with one purely-real and one complex pole, as in Equation (2.15).

g(t) = A1e
−at + A2e

−bt cosωt (2.15)

To derive the specific transfer function in the complex frequency domain, we apply

the Laplace transform term-by-term using a lookup table [3]. This yields the sum

of terms in Equation (2.16) which is the partial fraction expansion of the system’s

transfer function.

G(s) = A1
1

s+ a
+ A2

s+ b

(s+ b)2 + ω2
(2.16)
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Collecting terms and simplifying generates Equation (2.17).

G(s) =
[A1 + A2]s2 + [A2·a+ b(2A1 + A2)]s+ [A1(b2 + ω2) + A2(a·b)]

(s+ a)((s+ b)2 + ω2)
(2.17)

Great simplification occurs when we choose the relationship (as above) that A2 =

−A1. There may exist numerous different models that would fit the data; this simpli-

fication merely selects a subset of those possible models for which these A parameters

have the prescribed relationship. The substitution and some simplification leaves us

with Equation (2.18).

G(s) = (A1(b− a)
s+ ( b

2−a·b+ω2

b−a )

(s+ a)((s+ b)2 + ω2)
(2.18)

Just as in Equation (2.15), we will replace the constant gain term with K = A1(b−

a) = A1
τ1−τ2
τ1τ2

. This final substitution yields the generic second order system ID

transfer function with one complex pole, Equation (2.19).

G(s) = K ·
s+ ( b

2−a·b+ω2

b−a )

(s+ a)((s+ b)2 + ω2)
(2.19)

Table 2.1 lists the actual parameters determined for the acceleration system, and

Equation (2.20) shows the specific transfer function for our acceleration system. Fi-

nally, Figure 2.7 shows the response of our transfer function to a step input, compared

to the response of the dynamic model.

Table 2.1
Second order system ID parameters for acceleration system.

a 1.157 τ1 0.864

b 2.54 τ2 0.394

ω 49.9 K 1.383

G(s) = 1.383 · s+ 1803

(s+ 1.157)((s+ 2.54)2 + (49.9)2)
(2.20)
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Fig. 2.7. The second order system ID with one complex pole is a very
close fit to the dynamic model data.

2.4 System Identification in Complex Systems

For a more complex system, the response to a step up may be different from

that of a step down. This is the case particularly if different systems are responsible

for actuation in the plant, such as in automobiles. The acceleration system in most

automobiles is comprised of the internal combustion engine, the transmission, the

trans–axles and the wheels. The braking system is comprised of the wheels, the

brake shoes, the brake cylinders, and the master cylinder. This second system has a

much faster response, since it must overcome the velocity of the vehicle very quickly

to achieve a very short stopping distance. Because the two systems will never be
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applied simutaneously, they are decoupled from each other and each may be addressed

independently. By applying the same techniques used for the acceleration system, I

determined a second order system ID function for the braking system. The parameters

are listed in Table 2.2 and the transfer function is listed in Equation (2.21). In this

instance, the simplification applied before, A2 = −A1, did not result in a reasonable

response and so both were set equal to 1. As a result, the system ID has a pair of

complex zeros.

Table 2.2
Second order system ID parameters for braking system.

a 4.41 τ1 0.227

b 5.60 τ2 0.179

ω 50.65 K 8.735

G(s) = 8.735 · s2 + 10.6s+ 1310

(s+ 4.41)((s+ 5.60)2 + (50.65)2)
(2.21)

The response of the second order system ID function is compared to the dynamic

model in Figure 2.8. The second order difference is shown in Figure 2.9. Having

collected a system ID for both the acceleration and braking systems, it may be in-

teresting to see how the model compares to both. This is plotted in Figure 2.10.

There are some challenges in trying to represent the system with a system ID

approximation. In practice, if the response to each case is important to the control

design, it is most efficacious to consider two separate system ID approximations in-

dependently. In the case of our system, we look at one approximation of the braking

system and one approximation of the acceleration system. Figure 2.10 shows a plot

of the total response of the dynamic model to a step acceleration at 1s and a step

deceleration at 11s. Plotted with the response of the dynamic model are the responses
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Fig. 2.8. The second order system ID fits the dynamic model data rea-
sonably well.

of the acceleration SID2 and the braking SID2 introduced above. Notice that each

system ID is accurate only in the case of the operation for which it was designed.

2.5 Chapter Summary

We have now explored the method of system identification and its application to a

part of the problem at hand. The system ID is an important tool in system analysis.

For a given model of great complexity, the system ID can provide a large reduction

in order, even a selection of order for analysis. For an unknown system, a model of a

given order may be created by analysis of recorded data. The successful creation of a
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Fig. 2.9. The second order system ID error for the deceleration system,
scaled.

system ID model depends on proper determination of time constants and gain. There

are automated techniques that will yield good results for time constants. There are

also manual curve-fitting techniques that yield reliable results.

In subsequent chapters, we will use the system ID model derived here for analysis

and compensation of the jerk in Chapter 3. We also will use this transfer function to

explore plant corruption through the method of uncertain parameters in Chapter 4.
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Fig. 2.10. When a plant has two distinct transition characteristics, they
can be analyzed as separate system ID functions.
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3. JERK COMPENSATION

Humans do not have the capacity to sense velocity. The sensation of walking down the

aisle in a bus and walking down the aisle in a plane feel equivalent to walking down

the street—yet the relative velocities between these situations are quite high. What

is perceived is acceleration—the rate of change of velocity. Acceleration is measured

in g, m
s2

, ft
s2

, or mph
s

.

Without special equipment used by fighter pilots and stunt pilots, a forward accel-

eration of ≈ 17g and a negative acceleration of ≈ 12g of negative acceleration without

losing consciousness [18]. This magnitude of acceleration force is seldom experienced

in an automobile. The acceleration record for one quarter mile was set by a drag racer

at 4.801 seconds, which is equivalent to only 3.6g [19] A study from the University of

California, Berkeley suggests that a comfortable limit for acceleration in a vehicle is

±2 m
s2

, approximately ±4.5mph
s

or ±0.2g [20].

The absolute magnitude of acceleration is not the only concern when it comes to

comfort, however. We must also consider the smoothness of the acceleration. When

the rate of change of the acceleration is smooth, the sensation is comfortable; when

the rate of change is choppy, the sensation is uncomfortable. Examples of these are

the smooth acceleration of a train from the station to cruising speed vs. the sudden

deceleration from braking to avoid a collision. The rate of change of acceleration is

aptly named the ‘jerk’ and is denoted in this paper as ξ [8].

v =
dx

dt
(3.1)

a =
dv

dt
=

d2x

dt2
(3.2)

ξ =
da

dt
=

d2v

dt2
=

d3x

dt3
(3.3)
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Equations (3.1) through (3.3) show convenient derivations for the jerk. The same

University of California, Berkeley study suggests that a comfortable limit for jerk is

±5 m
s3

, which is equivalently ±11.2mph
s2

or ±0.5g
s

[20]. Anyone who gets motion sick in

a car is familiar with the jerk. The sensations produced by going around a sharp turn

or suddenly descending a hill are associated with a lateral jerk as compared to the

direction of travel. For the ACC system, we are most concerned with the jerk which

occurs in the same direction as the travel of the car, but the possibility for discomfort

is similar.

As discussed in Chapter 1, it is of interest to approach the control of jerk during

the fourth case of Table 1.2, velocity change. In the context of this situation, the follow

car, equipped with the active ACC system, is initially traveling at some velocity v0

at t0. The lead car is also initially traveling at v0, thus the system is in equilibrium

with a parity in velocity between lead and follow vehicles. At some time, t1 > t0, the

lead car executes a velocity change to some new velocity, v0 + ∆v.

vfollow = v0 (3.4)

vlead = v0 + ∆v (3.5)

vlead − vfollow = ∆v (3.6)

This ∆v can be measured directly by the ACC system’s sensor, such as radar or

ultrasonic range finding systems. If x1 and x2 are distance measurements at successive

times t1 and t2, then ∆v may be calculated from either of the following formulae.

∆v =
x2 − x1

t2 − t1
=

∆x

∆t
(3.7)

∆v = lim
∆t→0

∆x

∆t
=
dx

dt
(3.8)

Although the lead car would actually follow some curving change in velocity, just

like our model was demonstrated to do in response to a step change, it is assumed

that the change in velocity results in a step change in ∆v. This presents a worst case

scenario for velocity demand violating our jerk limits under normal circumstances.

It is this velocity demand which forms the step change input to the ACC system.
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3.1 The Ideal “Constant” Jerk Response

In design of a system, it is important to start with some goal in mind. Our goal

is to limit the jerk to no more than ±5 m
s3

, but let us consider the shape of such

a signal [20]. A better understanding is obtained by considering the response of a

system which always has a jerk of this magnitude or zero, such as in Figure 3.1.

Compare this to the velocity profile of a system with constant acceleration of ±2 m
s2

Fig. 3.1. The velocity, acceleration and jerk profiles of an ideal constant
jerk system.

as in Figure 3.2. You can see that a controlled jerk presents as a rounded shape

in the corners in the velocity plot. The constant acceleration provides a fixed slope

in the velocity plot. Our objective in applying control to the jerk will be to cause

the sharp transitions as in the constant acceleration system to be rounded out to a

closer approximation of the shape of the constant jerk system, while maintaining the
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Fig. 3.2. The velocity and acceleration profiles of an ideal constant accel-
eration system.

maximum slope of the constant acceleration system. The response of the plant will

then be this value at most.

Parallel work into this type of signal is found as the goal of motor controllers,

many of which are designed with a constant jerk system for determining the velocity

profile. An advantage that motor controllers have over ACC systems, however, is

knowledge of the future state of the motor. The motor is restricted to one degree of

freedom and often the final position is known at the time of the velocity command.

An ACC system can know the current velocity demand, but cannot predict the end

position of the vehicle. In the case of the motor controller, knowing the end point of

position, the maximum permissible jerk, and the maximum velocity of the motor, an

acceleration profile is generated. The acceleration would present either as a triangle,

or as a rhombus—depending on the maximum rate of acceleration for the motor and

the rotation distance of the demand.
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3.2 Derivations of a Jerk Compensation Network

Design of a compensation system can be most readily accomplished using one of

two analytical techniques, the Bode Plot and the Root Locus. The Bode Plot provides

two graphs, a plot of the system gain vs. frequency and a plot of the system phase

shift vs. frequency. The Root Locus is a single graph which shows, for a transfer

function, the path (locus of points) which is followed by the poles as they move to

the zeros in the complex plane, as some parameter, usually K, is varied. Examples

of these plots for the acceleration and braking system identification models are in

Appendix B.

To prevent jerk in the output of the plant, we must prevent signals that would

create jerk. Once a signal that creates jerk has been applied, it is too late to prevent

the jerk. Therefore, we must address the shape of the applied velocity profile. We

accomplish this by placing a compensator between the demand and the plant. This

type of compensation is called input compensation [3]. The system arrangement is

shown in Figure 3.3. The dynamics of our compensator must provide a slow transition

to acceleration and velocity.

Fig. 3.3. The input compensator modifies the properties of the demand
signal to control the jerk in the output.

There are three potentially viable approaches to accomplish our goal. The first is

the analytical solution. A transfer function that provides the desired response forms

the compensator. The second approach is the dynamic solution. A complex arrange-

ment of functional blocks, mathematical comparisons, and mathematical operations

which dynamically calculates the response forms the compensator. A fast transition
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in any signal is associated with a high frequency component of the signal [13]. Our

goal may therefore be accomplished with the use of a low pass filter [14]. The final

approach is a blending of the two. We will now investigate each of these solutions.

Table 3.1 presents the design requirements for the jerk-limiting input compensator.

Goals 1 and 2 are readily achievable though analysis but provide conflicting results

with goals 3 and 4. A higher multiplicity of filter will limit the maximum jerk, but

introduces a longer delay. As the responsiveness goes up, so to does the maximum

acceleration. Goal 5 requires careful consideration and will dictate what can be

achieved for the other goals.

Table 3.1
Design goals for the jerk-limiting input compensator.

1. Limit the Jerk to ±5 m
s3

.

2. Limit the acceleration to ±2 m
s2

.

3. Minimize the delay.

4. Maximize the responsiveness.

5. Provide control for an appropriate step magnitude.

3.2.1 An Analytical Solution

The primary merits of the analytical solution are the simplicity of construction

and analysis. For a low pass filter on the input, an arrangement of resistors and

capacitors can be used to form a simple low pass filter. In proper arrangement, a

filter of nth order will have a transfer function as in Equation (3.9).

Gc(s) =

(
1
RC

)n(
s+ 1

RC

)n (3.9)
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Table 3.2
The response of the acceleration system to various step input magnitudes
with filters of n multiplicity and -3db point at 5hz.

Step Magnitude (m
s
)

n Metric 0.45 4.5 13.4 Delay (s)

1
accel. 0.58 5.81 17.26

1.16
jerk 7.33 73.76 221.28

5
accel. 0.32 3.23 9.70

1.73
jerk 0.66 5.86 16.54

9
accel. 0.25 2.59 7.73

1.83
jerk 0.34 3.83 9.97

accel. in m
s2

; jerk in m
s3

Such a filter is simple and well understood. The price of simplicity is a gradual roll-off

of response at a rate of n·20dB per decade after the -3dB point of the filter compared

to active filters. Also, this filter is passive, the amplitude of the output depends on

the input, as do the amplitude of successive derivatives. Thus the degree to which

the jerk and acceleration are limited by such a filter depends on the size of the step

change in the velocity demand. The -3dB point is set by the combination of resistor

and capacitor values selected. For purposes of comparison, we initially choose a value

of 5hz for the product. Table 3.2 shows a comparison of the maximum acceleration

of the acceleration system in response to various magnitudes of step inputs filtered

through RC filters of several multiplicities.

It should be clear from the table that the response of each filter is proportional to

the magnitude of the input. Also, the higher-order filters provide more limiting for a

given input. In the final column of the table, we see another trade-off which must be

considered. The higher-order filters have a longer delay in the time required to reach

10% of the applied signal. Now we consider the location of the n-pole in Table 3.3.
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Table 3.3
The response of the acceleration system to various step input magnitudes
with filters of multiplicity 5 and -3db points at several locations.

Step Magnitude (m
s
)

pc Metric 0.45 4.5 13.4 Delay (s)

0.5
accel. 0.04 0.43 1.30

5.27
jerk 0.02 0.12 0.34

1
accel. 0.08 0.85 2.56

2.80
jerk 0.05 0.41 1.17

2
accel. 0.16 1.60 4.83

1.54
jerk 0.14 1.37 3.99

accel. in m
s2

; jerk in m
s3

Clearly, there is a relationship between the pole location and the performance of

the filter. A pole closer to the origin has better limiting, but a longer delay. A linear

relationship exists between the magnitude of the step signal and the output of the

acceleration system. Therefore, choices must be made in the design of the compen-

sator. We therefore consider the normal operating parameters of an ACC system.

Under normal operating conditions, we can take our requirement directly from the

US interstate highway system. Some interstate highways have both a minimum and

maximum speed. While not all states have the same speed limits, the ranges are close

enough that we may take the difference of the minimum and maximum of nearly any

example to get a good basis for a potential step change. The most common speed

limit on interstate highways in the US is 70mph with an associated minimum of

40mph. This yields a step change of 30mph for an ACC set at the maximum velocity

overtaking a vehicle at the minimum velocity. In SI units, this is ≈ 13.4m
s
. Several

combinations of pole location and multiplicity may give the parameters we require.

Table 3.4 shows a comparison of some such filters.
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Table 3.4
The response of the acceleration system to a 13.4m

s
step magnitude with

filters of various multiplicity and -3db points at several locations.

Multiplicity (n)

pc Metric 5 9 13

0.75
accel. 1.94 1.39 1.14

jerk 0.70 0.32 0.21

1
accel. 2.56 1.85 1.52

jerk 1.17 0.58 0.37

1.3
accel. 3.27 2.39 1.97

jerk 1.91 0.91 0.58

accel. in m
s2

; jerk in m
s3

Examining the diagonal values, it is clear that we can find several combinations

providing the response we require. Minimizing n, reduces the number of components,

so we might choose a filter with n = 5 and pc = 0.75, the response of which is shown

in Figure 3.4. The acceleration system with this filter takes 12.6 seconds to close to

2% of the final value of the step change. From Tables 3.2 and 3.3 we can infer that

the acceleration and jerk maximums will be inside our limit for smaller step changes,

however the time required to reach the applied step within 2% will be the same for any

magnitude. This leads back to the question of responsiveness. If we wish to maintain

the acceleration and the jerk within the limits at the maximum step magnitude, we

sacrifice responsiveness when using an RC filter.

3.2.2 A Dynamic Solution

It is possible to achieve more acceptable solutions for acceleration and jerk limi-

tation while maintaining almost the maximum possible responsiveness. The trade-off
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Fig. 3.4. The plant response for a 13.4m
s

step demand using a filter with
a 5-pole at pc = 0.75.

for such a system is complexity. Figure 3.5 depicts a dynamic solution which limits

the jerk and acceleration values effectively while giving a very good response and low

delay for a variety of step magnitudes in demand. The velocity demand is applied at

input one and the two limits are constant values at the left. An enable is produced by

a difference between the velocity of the generated profile at output one and the veloc-

ity demand. The enable is saturated at a value of 1. A 50% attenuation is required

to limit the jerk in the second half of the acceleration cycle, when the acceleration

saturation limiter disengages and creates a sharp transition as deceleration occurs

close to the demand magnitude. A polarity control generates positive jerk in the first

half of the acceleration cycle and negative jerk in the second half of the cycle. An
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integrator (1
s
) then produces an acceleration curve which the acceleration saturation

limiter saturates at the specified, constant limit. The dead–zone management group

forces the acceleration to zero when the generated profile meets the velocity demand.

The final integrator produces the generated velocity demand in Figure 3.6.

Fig. 3.5. A dynamic model which limits the acceleration and jerk in an
acceleration system for a variety of step magnitudes in demand.

Using the dynamic solution to generate acceptable profiles yields the improved

performance shown in Table 3.5. A comparison of this data to that determined for

RC filters shows not only a great improvement for the 13.4m
s

step magnitude, but also

a response which is faster for smaller step demands and not significantly slower for

larger demands. There are two values for jerk in this table that slightly exceeds the

limit, for a step of 4.5m
s

and 8.9m
s
. The maximum jerk in every case occurs near the

transition to the final value. The point of maximum jerk occurs near the 10 second

line, but is not obvious in the profile. Modification of the dynamic solution could

provide better results in jerk limiting; particularly in regard to the corner created by

the transition away from saturation limiting in the acceleration. The step demand,

generated profile and acceleration system response are shown in Figure 3.6.
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Fig. 3.6. The profile generated by a dynamic model limits both the accel-
eration and the jerk at very near the limits.

3.2.3 Two Hybrid Solutions

Possibly, the most desirable solution would combine aspects of the RC filter design

and the dynamic design. Starting from either, we might consider the specific limita-

tions of the design and whether something could be done to mitigate these, using the

other type.

The primary limitation in the RC filter is that we sacrifice responsiveness to small

demands in order to limit the acceleration and jerk in large demands. Two possible

solutions are to use a rate limiter on the output of the filter to limit the acceleration

or to use a switching system to change the parameters of the filter.
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Table 3.5
The dynamic solution has very good metrics for a variety of step magni-
tudes

Step Magnitude (m
s
)

Metric 4.5 8.9 13.4 17.9 22.4

Accel. 1.98 2.01 2.01 2.01 2.01

Jerk 5.01 5.14 4.78 4.83 4.92

Delay (s) 1.90 2.20 2.46 2.70 2.93

Response (s) 4.69 6.60 8.82 11.0 13.2

accel. in m
s2

; jerk in m
s3

In the first case, an installed rate limiter is set to limit the rate of transition of

the filter output to the maximum permissible acceleration. The filter may then be

selected to have a faster response, reducing the delay and increasing the jerk toward

the limit. Such a system is depicted in Figure 3.7 with the responses of a limited and

unlimited filter in Figure 3.8. The use of a filter with multiplicity n = 3 and n-pole

located at pc = 0.85 has a response of 11 seconds. This and additional metrics of the

system are described in Table 3.6.

Table 3.6
An n=3 filter with pc=0.85 response to a 13.4m

s
step demand with and

without a rate limiter.

Metric Natural Rate Rate-Limited

Accel. 2.66 2.00

Jerk 1.85 4.56

Delay 1.66 1.79

Response 9.33 9.34

accel. in m
s2

; jerk in m
s3
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Fig. 3.7. A hybrid RC filter can be designed with a more responsive output
while controlling acceleration through the use of a rate limiter.

Fig. 3.8. The acceleration system response to an RC filter with and with-
out rate limiting.

The second case of hybrid system for RC filter compensators involves switching

between different RC filters based on the magnitude of the demand. Each individual
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compensator might also employ rate limiting. Such a system might appear as in

Figure 3.9.

Fig. 3.9. A hybrid RC filter compensator array with individual filter
compensators designed to optimize the response to various magnitudes of
step demand.

3.3 Complete Profile Example

Now we investigate the response of a vehicle to the application of a realistic velocity

demand. In Figure 3.10, the uncompensated vehicle responds to an applied velocity

profile. The profile consists of a velocity ramp to 33.5m
s

(75mph), followed by a

decrease to 20.1m
s

(45mph), and finally an increase to 26.8m
s

(60mph). In response

to this profile, the magnitude of the vehicle’s acceleration peaks at 13.3 m
s2

and the

jerk peaks at 13.1 m
s3

. Applying the analytical jerk and acceleration limiting input

filter to the acceleration and braking systems of the vehicle yields the response in

Figure 3.11 for the same input profile. For this compensated system, the magnitude

of acceleration peaks at 1.80 m
s2

and the jerk peaks at 0.66 m
s3

.

3.4 Chapter Summary

The jerk of a system, ξ = d3x
dt3

, is a measure of the smoothness of the ride, and

hence the comfort. To maintain an acceptable level of comfort, the jerk should be
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Fig. 3.10. The vehicle response to a realistic velocity demand show viola-
tions of acceleration and jerk comfort criteria.

limited in magnitude to less than ±5 m
s3

, according to the University of California at

Berkeley [20]. In practice, many systems which limit jerk also must limit acceleration.

The University of California at Berkeley suggests ±2 m
s2

as a limit on acceleration. Jerk

limit systems may range in complexity from the simple, analytical design employing

passive RC filter network to a complex, active dynamic design. Both approaches

have merit and both have disadvantages. A practical approach to mitigation of some

of these deficiencies is to construct a hybrid system which maintains some of the

simplicity of the analytical approach while gaining a measure of the faster response of

the dynamic design. Finally, a realistic velocity demand profile is used to demonstrate

the effectiveness of analytical jerk compensation.
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Fig. 3.11. The vehicle response to the same realistic velocity demand
with analytical acceleration and jerk limiting filters for acceleration and
braking systems shows acceptable results even at magnified scale.
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4. PLANT ERROR COMPENSATION

In a corrupted plant, an unwanted signal called noise is introduced into the system.

The noise may occur in various parts of the system. There may be an additive

noise signal at the error signal, at the output, in the feedback loop, a gain noise

in the plant, or in the feedback path. The first two types of additive noise are

functionally equivalent by a factor of the transfer function of the plant. Noise may

represent incidental electrical interference or a malfunction of internal components.

Additionally, noise in the feedback path may be due to fluctuations in the precision

of the range finding or velocity sensors of an ACC system.

4.1 Modeling a Corrupted Plant

As discussed earlier, a plant may be represented by a transfer function. In the case

of this complex plant, there are two transfer functions, one for each velocity aspect

of the plant. As the stability of a plant depends on the location of the poles in the

complex plane, we need only be concerned with how plant corruption affects these

loci [3]. It is for this reason that plant corruption can be explored as a vacillation

in the coefficients of the characteristic equation of the system. These departures

from the expected values may be due to noise factors or variability of sensors as

mentioned, or the result of loading that occurs on the system, such as changes to

wheel dynamics when snow or ice cling to them [9]. The characteristic equation is

obtained by setting the denominator of the closed-loop transfer function equal to

zero [3]. The closed–loop transfer function has the form: T (s) = G(s)
1+G(s)

, where G(s)

is the open-loop transfer function. If G(s) is expressed as P (s)
Q(s)

, where P (s) and Q(s)

are the numerator and denominator polynomials of G(s), respectively, it follows that

the characteristic equation is Q(s) + P (s) = 0 [3]. With the equation normalized, it
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will be of the form in Equation (4.1), where the an are combinations of the coefficients

of P (s) and Q(s).

ans
n + an−1s

n−1 + an−2s
n−2 + ...+ a0 = 0 (4.1)

Corruption of the plant causes each of the an terms to fall inside some range, αn ≤

an ≤ βn [3]. By determining the limits of the range, we begin to shape the problem.

Next, we test if the plant is stable for this range of each parameter. While it is

possible to generate an infinite number of polynomials that will fit in this range,

we cannot hope to solve each for its stability. Fortunately, there is a method for

testing stability of any order of polynomial using only the limits of the parameter

variation, and not every combination of parameter [3] [21]. For a 3rd characteristic

equation, this method yields the so-called Kharitonov polynomials of (4.2) through

(4.5), named after the Russian professor, Vladimir L. Kharitonov who provided the

theorem [21].

q1(s) = s3 + α2s
2 + β1s+ β0 (4.2)

q2(s) = s3 + β2s
2 + α1s+ α0 (4.3)

q3(s) = s3 + β2s
2 + β1s+ α0 (4.4)

q4(s) = s3 + α2s
2 + α1s+ β0 (4.5)

For our transfer functions, we will initially consider a ±2% drift in parameters and

how this affects our system. From the acceleration SID transfer function of Equation

(2.20) we derive the characteristic Equation (4.6).

s3 + 6.237s2 + 2503.7s+ 5302 = 0 (4.6)

Now, we create a table of its coefficients and their parametric variation. Applying
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Table 4.1
The parameters and the limit of their variation for a 2% uncertain accel-
eration system.

n αn an βn

2 6.1 6.2 6.3

1 2453.6 2503.7 2553.8

0 5196 5302 5408

our acceleration system parameter ranges to Equations (4.2) through (4.5), yields the

following polynomials:

q1(s) = s3 + 6.1s2 + 2553.8s+ 5408 (4.7)

q2(s) = s3 + 6.3s2 + 2453.6s+ 5196 (4.8)

q3(s) = s3 + 6.3s2 + 2553.8s+ 5196 (4.9)

q4(s) = s3 + 6.1s2 + 2453.6s+ 5408 (4.10)

Now, returning to the issue of stability—if the systems described by these poly-

nomials are stable, then the system will be stable in the full range of variation of its

parameters. We have previously discussed the root locus as a means of determining

stability, now we will further examine stability as determined by the Routh–Hurwitz

criterion. This test is a fast method of determining stability of a system by organizing

the coefficients of the characteristic equation of the transfer function into a special

form called a Routh–Hurwitz array, or RH diagram [3] [15].

The rows of the diagram are labeled with the decreasing orders of s, starting

with the largest order. The arrangement of coefficients starts in the first row with

the coefficient of the largest term and proceeds across with every second coefficient

remaining. The second line begins with the coefficient of the second highest order and

proceeds in the same fashion. The remaining rows are completed down to the s0 row

by forming a 2× 2 matrix of the coefficients which occur above and just to the right
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of each missing term. The missing term is assigned as the determinant of this matrix

divided by the negative of the term just above the missing one. Missing terms in the

2×2 matrix are treated as zeros. The stability of the system is assured if there are no

zeros or sign changes in the first column of terms in the array. Now let us construct

our arrays for the acceleration system, in Table 4.2. From this collection of arrays,

Table 4.2
Routh–Hurwitz Arrays for Polynomials of Uncertain Parameters in Ac-
celeration.

Polynomial q1(s)

s3 1 2553.8

s2 6.1 5408

s1 1667.2 0

s0 5408

Polynomial q2(s)

s3 1 2453.6

s2 6.3 5196

s1 1628.8 0

s0 5196

Polynomial q3(s)

s3 1 2553.8

s2 6.3 5196

s1 1729 0

s0 5196

Polynomial q4(s)

s3 1 2453.6

s2 6.1 5408

s1 1567 0

s0 5408

we can see that there are no sign changes or zeros. Thus the Routh–Hurwitz criteria

are satisfied and our acceleration system is stable under a 2% change of parameters.

Now we will investigate the braking system. As before, we find our transfer

function from Equation (2.21), and calculate our characteristic equation in (4.11).

Using this, we create a table of its coefficients and their parametric variation in Table

4.1.

s3 + 24.3s2 + 2738.8s+ 22894.7 = 0 (4.11)
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Table 4.3
The parameters and their variations for a 2% uncertain braking system.

n αn an βn

2 23.8 24.3 24.8

1 2684.0 2738.8 2793.6

0 22436.8 22894.7 23352.6

Again, we apply the braking system parameter ranges to Equations (4.2) through

(4.5) and generate four polynomials:

q1(s) = s3 + 23.8s2 + 2793.6s+ 23352.6 (4.12)

q2(s) = s3 + 24.8s2 + 2684.0s+ 22436.8 (4.13)

q3(s) = s3 + 24.8s2 + 2793.6s+ 22436.8 (4.14)

q4(s) = s3 + 23.8s2 + 2684.0s+ 23352.6 (4.15)

Finally, we apply the Routh–Hurwitz criteria as before in Table 4.4. Seeing no sign

changes or zeros in the first column, we know the system is stable. Thus the Routh–

Hurwitz criteria are also satisfied by our braking system, which is stable under a 2%

change of parameters.

4.2 Physical Parameter Change in the Model

We have shown how changes in the coefficients of the characteristic equation may

be addressed to determine stability in a system. Now let us briefly consider how

changes in a physical parameter of the model may affect the characteristic equation.

One physical parameter of the model which will change in regular use is the mass.

We will consider a range of values in two cases, multiplicative and additive. First,

consider a model instability created by a 2% margin of error in our measurement of

this mass as a multiplicative error akin to the error in a sensor. For additive error,
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Table 4.4
Routh–Hurwitz Arrays for Polynomials of Uncertain Parameters in Brak-
ing.

Polynomial q1(s)

s3 1 2793.6

s2 23.8 23352.6

s1 1812.4 0

s0 23352.6

Polynomial q2(s)

s3 1 2684

s2 24.8 22436.8

s1 1779.3 0

s0 22436.8

Polynomial q3(s)

s3 1 2793.6

s2 24.8 22436.8

s1 1888.9 0

s0 22436.8

Polynomial q4(s)

s3 1 2684

s2 23.8 23352.6

s1 1702.8 0

s0 23352.6

we consider a case of increased loading by adding occupants. The average mass of a

human male resident of the United States is 86.6 kg [22]. The cases of the addition

of one to six passengers are considered. The base mass of our model vehicle is 1500

kg. An automated process was used to generate a second order system ID model for

each case and the coefficients of the characteristic equation were computed. These

values and the bn−1 value for each characteristic equation are in Table 4.5. Table 4.6

shows the range of variation of each parameter and the percentage variation of the

maximum deviation. This same process may be followed for any adjustable physical

parameter of the model with similar results.
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Table 4.5
The effect of physical parameter variation on the coefficients of the charac-
teristic equation, as generated by an automated modeling program. Also,
the bn−1 values of each.

Type Mass(kg) a3 a2 a1 a0 bn−1

Base 1500.0 1 4.60 2687.6 6251.2 1328.7

+2% 1530.0 1 4.56 2659.0 6119.4 1317.8

-2% 1470.0 1 4.63 2717.0 6389.8 1339.8

1 Passenger 1586.6 1 4.49 2606.4 5878.3 1297.8

2 Passenger 1673.2 1 4.39 2530.3 5532.7 1269.4

3 Passenger 1759.8 1 5.06 2494.7 5295.3 1447.5

4 Passenger 1846.4 1 5.16 2448.4 5046.2 1471.1

5 Passenger 1933.0 1 5.08 2405.4 4823.8 1455.8

6 Passenger 2019.6 1 5.00 2376.6 4635.8 1449.1

Table 4.6
The range of values for variation of the coefficients of the characteristic
equation due to physical parameter variation in the model.

an min. base max. variation(%)

a3 1 1 1 ±0

a2 4.39 4.60 5.16 +12.24/-4.62

a1 2376.6 2687.6 2717.0 +1.09/-11.57

a0 4635.8 6251.2 6389.8 +2.22/-25.84

4.3 Stability Limits on Plant Corruption Through Parameter Drift

Based on these stabilities, even in the face of plant corruption, we should inves-

tigate the range of stability of our plant. To accomplish this, we first revisit our

parameters from Tables 4.1 and 4.1, and replace our αs with an unknown factor γ
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times an, and replace our βs with some λ times an. Both are defined in the ranges of

(4.16) and (4.17).

0 < γ ≤ 1 (4.16)

1 ≤ λ <∞ (4.17)

αn = γ · an (4.18)

βn = λ · an (4.19)

Table 4.7
The parameters and their variations for a variably uncertain system.

n αn an βn

2 γ · a2 a2 λ · a2

1 γ · a1 a1 λ · a1

0 γ · a0 a0 λ · a0

It should be clear by inspection of Tables 4.2 and 4.4 that the only term which

might affect stability in this system is the first term of the s1 row, as that is the only

term which is calculated. This term, called the bn−1 term is defined for a 3rd order

system in Equation (4.20) [3].

bn−1 =
1

−a2

∣∣∣∣∣∣ a3 a1

a2 a0

∣∣∣∣∣∣ =
a0 · a3 − a1 · a2

−a2

(4.20)

The condition that will cause instability in the system is when a sign change or zero

occurs in the first column, and thus our condition for stability is bn−1 ≥ 0. We can

look at the general case as in Table 4.7 and see if simplification exists. We substitute
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γ terms and λ terms as appropriate in (4.20) and simplify for the bn−1 term of each

qn(s) equation.

bn−1(1) =
1

−γ · a2

∣∣∣∣∣∣ a3 λ · a1

γ · a2 λ · a0

∣∣∣∣∣∣ =
λ · a0 · a3 − γ · λ · a1 · a2

−γ · a2

(4.21)

bn−1(2) =
1

−λ · a2

∣∣∣∣∣∣ a3 γ · a1

λ · a2 γ · a0

∣∣∣∣∣∣ =
γ · a0 · a3 − γ · λ · a1 · a2

−λ · a2

(4.22)

bn−1(3) =
1

−λ · a2

∣∣∣∣∣∣ a3 λ · a1

λ · a2 γ · a0

∣∣∣∣∣∣ =
γ · a0 · a3 − λ2 · a1 · a2

−λ · a2

(4.23)

bn−1(4) =
1

−γ · a2

∣∣∣∣∣∣ a3 γ · a1

γ · a2 λ · a0

∣∣∣∣∣∣ =
λ · a0 · a3 − γ2 · a1 · a2

−γ · a2

(4.24)

In each case, the term bn−1 will be positive and non-zero if and only if the first term

of the numerator of each fraction is less than the second term. This guarantees that

the numerator will be negative, canceling the negative in the denominator, resulting

in an all positive bn−1. So we can further reduce our conditions for stability.

λ · a0 · a3 < γ · λ · a1 · a2 (4.25)

γ · a0 · a3 < γ · λ · a1 · a2 (4.26)

γ · a0 · a3 < λ2 · a1 · a2 (4.27)

λ · a0 · a3 < γ2 · a1 · a2 (4.28)
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It is well understood that for a system to be stable, all the coefficients of its character-

istic equations must have the same sign [3]. Thus the product of any two coefficients

will be strictly positive. We may therefore collect terms to simplify further.

1

γ
<
a1 · a2

a0 · a3

(4.29)

1

λ
<
a1 · a2

a0 · a3

(4.30)

γ

λ2
<
a1 · a2

a0 · a3

(4.31)

λ

γ2
<
a1 · a2

a0 · a3

(4.32)

Since the right side of these inequalities are the same, let us define the reciprocal of

this ratio as a constant κ which is defined for each system as in (4.33).

κ =
a0 · a3

a1 · a2

(4.33)

Starting with the first two equations, it is clear that we can establish a lower limit

for stability on both γ and λ. Because we have defined these variables to be strictly

positive, we need not be concerned with potentially changing the direction of the

inequality and so we simplify to Equations (4.34) and (4.35).

γ > κ (4.34)

λ > κ (4.35)

This provides us with a lower limit on the range of stability. To discover the upper

range, we turn our attention to the second two equations. Again, we can safely shift

the variables without changing the direction of our inequalities. Doing so results in

Equations (4.36) and (4.37).

γ <
1

κ
λ2 (4.36)

λ <
1

κ
γ2 (4.37)
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We now have our upper limit for stability. Combining Equations (4.34) through

(4.37), we can define the ranges of γ and λ more concisely, as follows in Equations

(4.38) and (4.39).

κ <γ <
1

κ
λ2 (4.38)

κ <λ <
1

κ
γ2 (4.39)

4.3.1 Further Refinement of Stability Regions

A closer examination of these equations leads to an interesting set of conditional

inequalities. Comparing these equations with our initial definition for γ and λ in

Equations (4.16) and (4.17), we can generate the conditional inequality condition for

γ in Equation (4.40).

κ < 0 0

0 ≤ κ κ

0 < κ < 1
√
κ

 < γ ≤

 1
√
κ ≤ λ

1
κ
λ2 λ <

√
κ

(4.40)

The first value on each side of the inequality is from the initial definition of γ in

Equation (4.16). The second value on each side comes from the derived expression in

Equation (4.38). First, let us show that 0 < κ < 1. Given that we are starting with

a stable system, then from the definition of bn−1 in Equation (4.20) it follows that

a3 ·a0 < a1 ·a2. Considering this with the definition of κ in Equation (4.33), it should

be clear that κ is always less than 1. As observed before, the product of any two

coefficients of the characteristic equation will be positive, as will the ratio of product

pairs, thus we know that κ must always be positive [3]. Now, consider the last value

on the left. Given that λ is less than 1
κ
γ2 from Equation (4.39) and that γ ∈ (0, 1)

from Equation (4.16), then there must exist a point where 1
κ
γ2 = 1 when γ =

√
κ.

With κ defined as a constant, smaller values of γ would yield values less than 1, yet

from Equation (4.17), λ must be greater than 1. As there can exist no λ for these

values of γ satisfying the requirements for stability, γ must be greater than
√
κ. Next,
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consider the other two conditional values on the left, there are competing conditions.

Clearly γ must be greater than the larger of κ and
√
κ. As κ is real and always less

than 1,
√
κ will always be larger than κ. Thus the left side may be reduced to only

the final value, as its condition will always be satisfied and it will always be larger

than the other two values.

Now, examine the right side. Again, the first value comes from the original def-

inition and the second value from the derivation. The conditions may be derived in

a similar fashion as for the final value on the left side. Consider 1
κ
λ2, for values of λ

greater than
√
κ, this would be larger than 1, yet from Equation (4.16), γ cannot be

greater than 1, and so this condition must be valid only for λ <
√
κ, leaving the first

value otherwise. However, we have already determined that κ is always less than 1

and from Equation (4.16), λ is at least 1, so the condition for 1
κ
λ2 can never occur.

Thus the right side simplifies to only the first condition.

For λ, there exist the requirement from its definition in (4.17) and from the deriva-

tion in (4.39). Knowing that κ is always less than 1, we may take the lower limit

from the definition and the upper limit from the derivation.

Putting all this information together, the final ranges of γ and λ for which the

system remains stable are given in Equations (4.41) and (4.42).

√
κ < γ ≤ 1 (4.41)

1 ≤ λ <
1

κ
γ2 (4.42)

Now we can apply this condition to our acceleration and braking systems to deter-

mine how the systems can be made unstable. Given the coefficients for our accelera-

tion and braking systems from the denominators of Equations (2.20) and (2.21), we

can calculate our κ and for convenience our inverse κ. These, along with the ranges

for γ and λ are shown in Table 4.8. We can draw some interesting conclusions from

this data. The values for γ and λ are factors to produce a low and high value for a
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Table 4.8
Conditions for stability for acceleration and braking systems in the pres-
ence of uncertain parameters.

Acceleration Braking

κA = 0.342 κB = 0.344
1

κA
= 2.928

1

κB
= 2.907

0.584 < γA ≤ 1 0.587 < γB ≤ 1

1 ≤ λA < 2.928 · γ2
A 1 ≤ λB < 2.907 · γ2

B

variation range in parameters for our systems. Let us construct the percent change

in the parameters in Equations (4.43) and (4.44).

% decrease =
γ · an − an

an
= (γ − 1) (4.43)

% increase =
λ · an − an

an
= (λ− 1) (4.44)

Because γ · an is always less than an, the percent change is would also be negative.

Since we are considering this as the decrease already, we will use the negative of the

derived value, (1 − γ) We can compute the ranges for these percent changes from

Equations (4.41) and (4.42), as shown in (4.45) and (4.46).

0 ≤ (1− γ) < 1−
√
κ (4.45)

0 ≤ (λ− 1) <
(1− γ)2

κ
− 1 (4.46)

Next, we plot these inequalities for each system in Figures 4.1 and 4.2. Integrating

the function of the limiting curve for this region, such as in Equation (4.47), we

generate a measurement of the size of the total stability region. The solution for this

integral depends only on κ and is shown in Equation (4.48). This might prove to
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be a useful metric for comparing the relative stability of systems in the face of plant

corruption.

λTOT =

∫ 1−
√
κ

0

(1− γ)2

κ
− 1 dγ (4.47)

λTOT =
2

3
·
√
κ+

1

3 · κ
− 1 (4.48)

For our acceleration and braking systems, we have λTOT values of 0.365 and 0.360,

respectively. We can see more generally that for a smaller percentage decrease in

parameter values, there is a correspondingly larger allowable percentage increase. It

is also clear that the ±2% variation we tested earlier is inside the stability regions of

both systems.

It is interesting to determine the maximum stable uniform percentage change.

The uniform percentage change would lie along the (λ − 1) = (1 − γ) line and the

maximum would occur on the bounding parabola, (λ − 1) = 1
κ
(1 − γ)2 − 1. Simple

substitution yields the quadratic formula γ2 + (κ − 2)γ + (1 − 2 · κ) = 0 with one

solution in the range from 0 to 1 given by Equation (4.49).

γMUP =

√
κ2 + 8 · κ

2
+
κ

2
+ 1 (4.49)

For our system, this would be be equivalent to ±32.7% for acceleration and also

±32.7% for braking. This value might also be used as a simple measurement of

a system’s plant corruption tolerance, as modeled through uncertain parameters,

although it would not be as precise.

4.3.2 Analysis of System Stability Regions

Finally, we should test a value outside the range of stability. If we allow our

parameters to vary between -20% and +87%, this corresponds to a γ of 0.8 and a λ

of 1.87. From Table 4.8, we can see that this value for γ is safe for both models, but

while our λ value of 1.87 is safe for the acceleration system (λ < 2.928(0.8)2 = 1.874),

it is not safe for the braking system (2.907(0.8)2 = 1.860). As before, we construct
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our α–β values in Table 4.3.2. Now, referring back to Equations (4.2) through (4.5),

we construct our R–H arrays in Tables 4.10 and 4.11.

As predicted, the parameter variation is stable for the acceleration system—there

are no zeros or sign changes in the first column of any of the arrays in Table 4.10.

The variation was unstable for the braking system, as indicated by the sign change

in first column of the R–H array of the q4(s) polynomial in Table 4.11.

4.4 Robust Control and Error Compensation

Now that we have shown the particulars of plant error modeling through uncertain

parameters, we must address plant error compensation. Our objective is to apply

a robust controller that will bring the plant back into stable operation. We will

compensate the plant by the use of a cascade controller such as depicted in Figure 1.1.

The open-loop transfer function of the compensated system is obtained as the product

of the controller and plant transfer functions [3]. We begin with the acceleration open-

loop SID transfer function of equation (2.20) We will assume that the real pole will

remain stable under uncertain parameters. This is a reasonable assumption, based on

the path of this pole in the root locus plot of Figure B.3. Our controller substitutes a

pole by placing a zero at the location of the real pole while having a pole at some new

Table 4.9
The parameters and their variations for a −20/+ 87% uncertain acceler-
ation and braking systems.

Acceleration Braking

n αn an βn

2 5 6.2 11.6

1 2003 2503.7 4681.9

0 4241.6 5302 9914.7

n αn an βn

2 19.4 24.3 45.4

1 2191 2738.8 5121.6

0 18315.8 22894.7 42813.1
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Table 4.10
Routh–Hurwitz Arrays for Polynomials of −20/+ 87% Uncertain Param-
eters in Acceleration.

Polynomial q1(s)

s3 1 4681.9

s2 5 9914.7

s1 2699 0

s0 9914.7

Polynomial q2(s)

s3 1 2003

s2 11.6 4241.6

s1 1637.3 0

s0 4241.6

Polynomial q3(s)

s3 1 4681.9

s2 11.6 4241.6

s1 4316.2 0

s0 4241.6

Polynomial q4(s)

s3 1 2003

s2 5 9914.7

s1 20.1 0

s0 9914.7



61

Fig. 4.1. The range of stable percent change for the SID2 acceleration
system, showing the line of uniform percent change and the location of
the selected test criteria.
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Table 4.11
Routh–Hurwitz Arrays for Polynomials of −20/+ 87% Uncertain Param-
eters in braking.

Polynomial q1(s)

s3 1 5121.6

s2 19.4 42813.1

s1 2914.7 0

s0 42813.1

Polynomial q2(s)

s3 1 2191

s2 45.4 18315.8

s1 1787.6 0

s0 18315.8

Polynomial q3(s)

s3 1 5121.6

s2 45.4 18315.8

s1 4718.2 0

s0 18315.8

Polynomial q4(s)

s3 1 2191

s2 19.4 42813.1

s1 -15.9 0

s0 42813.1
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Fig. 4.2. The range of stable percent change for the SID2 braking system,
showing the line of uniform percent change and the location of the selected
test criteria.
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location. It would likely be possible to find a solution for the compensator using only

one pole; however, we will use this method to maintain our characteristic equation

at third order, both to minimize complexity and to allow an easy comparison with

work in this chapter. The transfer function of our compensator begins to take shape

in Equation (4.50).

Gc(s) = Kc ·
(s+ zc)

(s+ pc)
(4.50)

Next, we multiply these two equations together, setting zc = 1.157 to cancel the

common factor, and arrive at the compensated open-loop Equation (4.51).

Gc(s)G(s) =
1.383 ·Kc · (s+ 1803)

s3 + (pc + 5.08)s2 + (5.08 · pc + 2496.5)s+ (2496.5 · pc)
(4.51)

Now, the closed-loop characteristic equation is constructed in the usual way in Equa-

tion (4.52). The coefficients of this equation are then given uniform uncertainty in

Table 4.12.

s3 +(pc+5.08)s2 +(5.08 ·pc+2496.5+1.383 ·Kc)s+(2496.5 ·pc+1803 ·Kc) = 0 (4.52)

It can be verified by inspection of Figure 4.1 that the acceleration system is unsta-

ble for a uniform parameter drift of 40%. The method of analysis has been shown

previously. Repeating the process for this value of uncertainty shows that the insta-

bility occurs in the R–H array of q4(s) in Table 4.13. Compensation can be achieved

by selecting stable values for Kc and pc. This can be accomplished numerically or

analytically.

4.4.1 A Numerical Solution

It is possible to investigate our pole location and gain by means of a computer

program, analogous to plotting the 2n–b–ω space in Chapter 3. Such a program as

appears in Appendix C generates the surface in Figure 4.3 for our system. Using such

a program, we might choose Kc = 1 and pc = 0.5 as stable values to compensate our
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Table 4.13
Routh–Hurwitz Arrays for Polynomials of ±40% uncertain parameters in
acceleration.

Polynomial q1(s)

s3 1 3505.2

s2 2.5 7422.8

s1 536.1 0

s0 7422.8

Polynomial q2(s)

s3 1 1001.5

s2 8.7 2120.8

s1 757.7 0

s0 2120.8

Polynomial q3(s)

s3 1 3505.2

s2 8.7 2120.8

s1 3261.4 0

s0 2120.8

Polynomial q4(s)

s3 1 1001.5

s2 2.5 7422.8

s1 -1967.6 0

s0 7422.8
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our system. The resulting characteristic equation with these values from Equation

(4.52) is (4.53).

s3 + 5.58 · s2 + 2500 · s+ 3051 = 0 (4.53)

By plotting the R–H array for these values in Table 4.14, we see the system has been

brought back into stability.

4.4.2 An Analytical Solution

For our compensator design, we examine the q4(s) R–H array with our compensa-

tion pole in place in Table 4.15. As in the derivations above, we look more closely at

bn−1, which is the only location where a sign change may occur in the first column.

This term is defined in Equation (4.54).(
γ · (5.08 · pc + 2496.5 + 1.383 ·Kc)−

λ · (2496.5 · pc + 1803 ·Kc)

γ · (pc + 5.08)

)
(4.54)

We want to solve the conditions for stability on pc. The second term denominator

yields pc 6= −5.08, however stability dictates that all poles fall in the left half s-plane,

thus pc > 0, which includes the earlier requirement. We may approach the solution

by defining the boundary conditions for stability. bn−1 = 0 forms one boundary

condition. pc > 0 and Kc > 0 will form the other boundary conditions. Setting

bn−1 = 0 from Table 4.15 and solving for Kc yields Equation (4.55).

Kc =
−2983.5 · λ · pc − 2353330.6 · λ
γ2 · (pc + 5.08)− 1303.7 · λ

− 3.673 · pc − 1805.1 (4.55)

At this point, we apply γ = 1 − 0.4 = 0.6 and λ = 1 + 0.4 = 1.4 to Equation (4.55)

and simplify to Equation (4.56).

Kc =
−67917123.3

pc − 5064.8
− 3.673 · pc − 13407.8 (4.56)

When plotted, the relationship is very linear near the origin, as in Figure 4.4. Solving

for Kc = 0 and then for pc = 0, we can calculate the linear relationship near the

origin as Equation (4.57).

Kc = 1.025 · pc + 1.811 (4.57)
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Table 4.14
Routh–Hurwitz Arrays for Polynomials of ±40% uncertain parameters in
compensated acceleration.

Polynomial q1(s)

s3 1 3500

s2 3.3 4271.4

s1 2205.6 0

s0 4271.4

Polynomial q2(s)

s3 1 1500

s2 7.8 1830.6

s1 1265.3 0

s0 1830.6

Polynomial q3(s)

s3 1 3500

s2 7.8 1830.6

s1 3265.3 0

s0 1830.6

Polynomial q4(s)

s3 1 1500

s2 3.3 4271.4

s1 205.6 0

s0 4271.4
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Fig. 4.3. The stable values of pc and Kc for our 40% uniform uncertainty,
highlighting a combination which will yield stability in our system.
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Fig. 4.4. The boundary relationship between pc and Kc for 40% uniform
uncertainty with the gain–pole location of (1,0.5) marked.

This condition forms a triangular region of stability as predicted by our numerical

solution. For completeness, we must check that this boundary is an upper limit. Re-

turning to Equation (4.55), we substitute a point below the line of Equation (4.57).

Choosing (Kc, pc) = (0, 0) and requiring a positive value simplifies to yield the con-

dition of γ and λ in (4.58).
1

1− 256.6 · λ
γ2

< 0 (4.58)
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This condition is satisfied for all values of γ and λ in the limits already established,

therefore the boundary of (4.57) is an upper limit. Finally, our limits on Kc and pc

may be collected as in Equations (4.59) and (4.60).

0 < Kc < 1.025 · pc + 1.811 (4.59)

0 < pc < 0.976 ·Kc − 1.767 (4.60)

Once again, choosing Kc = 1 and pc = 0.5 will satisfy these conditions.

Our completed compensator design is Equation (4.61) and the compensated open-

loop transfer function of our system is Equation (4.62).

Gc(s) =
(s+ 1.157)

(s+ 0.5)
(4.61)

Gc(s)G(s) =
s+ 1803

s3 + 5.508 · s2 + 2499 · s+ 1248
(4.62)

4.5 Chapter Summary

In this chapter, we have explored the stability of our vehicle model in the face

of plant corruption. We have discussed the modeling of a corrupted plant using a

technique of uncertain parameters. Finding that the plant is stable under a proposed

2% change in parameters, we investigated what would be required to cause instability

in the plant. A procedure for determining the range of stable parameter variation has

been introduced in Equations (4.41) and (4.42). The procedure was then applied to

the system ID models of the acceleration and braking systems, and stable and unsta-

ble cases were explored. Two possible metrics for rating the parameter uncertainty

tolerance have been suggested. The first relates to the total area of the γ–λ stability

region and is defined in Equation (4.48). The second relates to the magnitude of

maximum uniform stable parameter variation, as determined by solving the single

Equation (4.49).

Finally, we addressed the issue of plant error compensation. A method of compen-

sation was explored and applied to a corrupted acceleration model. The compensator
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design substitutes a pole in the open-loop transfer function, allowing selection of a

new pole to bring the system back into stable operation. The stable location of

this pole depends on the magnitude of uniform uncertainty and on the compensator

gain, Kc. Careful selection of this gain allows us to bring the errant plant back into

stability. A numerical solution was demonstrated using a short MatLAB program

to determine the range of possible locations of pc and values of Kc yielding stable

operation. Finally, an analytical analysis of the pole location was presented. The

analytical solution showed that boundary conditions for the stability region may be

derived from the R–H array and this solution agreed with the numerical approach.
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5. SUMMARY

In Chapter 1, we have discussed a fundamental understanding of what comprises a

controlled system. We have explained the broad operational parameters of an adap-

tive cruise control system and listed the primary disturbances to such a system in

Table 1.2. We discussed previous work in the field by Yao Zhai. We also discussed

the nature of our dynamic model and introduced the three primary topics of dis-

cussion for this thesis: System Identification, Jerk Compensation, and Plant Error

Compensation.

Moving on to Chapter 2, we explored the method of system identification further

and applied the process to a part of the problem at hand. The successful creation

of a system ID model depends on proper determination of time constants and gain.

By employing a manual curve-fitting technique, the appropriate system identification

model for acceleration was derived from step response data. This model was used

in subsequent chapters for analysis and compensation of the jerk in Chapter 3. We

also used the transfer function for this system identity to explore plant corruption

through the method of uncertain parameters in Chapter 4.

In Chapter 3, we discussed limiting the jerk of an adaptive cruise control sys-

tem to enhance the comfort of the passengers. To maintain an acceptable level of

comfort, the jerk should be limited in magnitude to less than 11.2 mph
s2

, according

to the University of California at Berkeley. Systems which limit jerk also must limit

acceleration. The University of California at Berkeley suggests 4.5 mph
s

as a limit on

acceleration. Jerk limit systems may range in complexity from the simple, analytical

design, employing a passive RC filter network, to a complex, active dynamic design.

We have demonstrated designs of both types which successfully limit the jerk of an

ACC system under normal operating parameters. Both designs have merit and both

have deficiencies. Two hybrid designs were discussed which capitalize on beneficial
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aspects of each type of system. Such a design is a practical approach to mitigation

of some of the deficiencies of each type of system. A realistic velocity profile was

demonstrated with and without jerk compensation.

Finally, in Chapter 4, we explored the stability of our vehicle model to plant

corruption. We discussed the modeling of a corrupted plant using a technique of

uncertain parameters. We applied this technique to create a minor corruption of

2% and used analytical techniques to investigate. We also explored how variations of

model parameters effected variations in the characteristic equation. Finding that both

acceleration and braking models were stable, we performed further analysis on what

would be required to cause instability in the plants. A procedure for determining the

range of stable parameter variation was introduced in Equations (4.41) and (4.42).

The procedure was applied to the system ID models of the acceleration and braking

systems, and stable and unstable cases were explored. Two possible metrics for rating

the parameter uncertainty tolerance have been suggested. The first relates to the total

area of the γ–λ stability region and is defined in Equation (4.48). The second relates

to the magnitude of maximum uniform stable parameter variation, as determined by

solving the single intersection of curves, yielding Equation (4.49).

Finally, we addressed the issue of plant error compensation. A method of compen-

sation was explored and applied to a corrupted acceleration model. The compensator

design substitutes a pole in the open-loop transfer function, allowing selection of a

new pole to bring the system back into stable operation. The stable location of this

pole depends on the magnitude of uniform uncertainty and on the compensator gain,

Kc. Careful selection of this gain allows definition of a region of stability for the

compensator pole. A numerical solution for the selection of pole location and gain

was demonstrated as was an analytical solution.
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5.1 Conclusions

Employing system identification is a viable means of reducing the complexity of a

problem. Indeed, in some cases, the only way to state the problem accurately would be

the generation of a model to fit a set of data, such as by using system identification.

Once such a model is obtained, the application of analytical techniques can yield

practical results quickly.

Jerk limitation in adaptive cruise control systems is achieved in the same fashion

as it would be in any other situation. The practicality of applying a jerk control

system to an ACC system is in the ability to define the step changes which may occur

regularly in such a system. The fact that these changes are limited in magnitude

compared to the full range possible in an automobile increases the likelihood for the

existence of a practical solution.

Plant error is likely to occur in any implemented system. The importance of the

ability to analyze and compensate for the error cannot be understated. For a given

system, a quick analysis of the range of stability to a uniform parameter uncertainty

is a practical, and easily-applied metric in the comparison of competing designs. For

a system which is known to be unstable via the methods of uncertain parameters,

compensation can be achieved through placing an additional pole and solving for the

range of stable values.

LATEX is an excellent resource for the production of professional documents. It

provides a particularly great environment for the presentation of formulae. The LATEX

Companion is a great resource for formatting questions [23].

5.2 Further Work

Continued research in jerk limitation could be focused along several avenues of

discussion. First, a researcher might be tempted to investigate the use of additional

filter architectures, such as Salen-Key for Chebyshev or Butterworth filters. Second,

an investigation of improved methods of generating a profile based on a step demand
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in the dynamic design could be investigated. Specifically, a better method of merging

both the acceleration limit and the jerk limit in real time. Finally, a more detailed

analysis of the hybrid designs could be considered.

In the field of plant error, there are a number of opportunities for research. The

applicability of a γ–λ process to higher order systems is worth investigating, partic-

ularly if it might yield a generalized form to calculate the stability regions of a plant

of arbitrary degree with uncertain parameters. For a second or third order system,

investigating the effect of a non–uniform uncertainly profile, and how this affects the

proposed stability measures is warranted.
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A. Additional Data

The following pages contain additional or supplementary data. Figure A.2 shows

the unfiltered data for the 2n–b–ω space defined in Chapter 2. Figure A.3 has the

same data after being recursively filtered by the 3× 3 gaussian filter as in Equation

(A.1). This operation smooths the data by reducing the variation between adjacent

points. The data was then trimmed, as filtering n-times produces a margin of noise

of n points on each side of the data set.

H(s) =

∣∣∣∣∣∣∣∣∣
0.0113 0.0838 0.0113

0.0838 0.6193 0.0838

0.0113 0.0838 0.0113

∣∣∣∣∣∣∣∣∣ (A.1)

Figure A.4 depicts a more dramatic example of a 10× gaussian–filtered 2n–b–ω

space with the original data inset. This data was generated by the author for a second

order system ID similar to that used for the acceleration system.

Fig. A.1. Copyright 2006 by Sidney Harris.
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B. System ID Analysis Plots

Fig. B.1. The Bode plot of the second order system ID for the acceleration
system.
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Fig. B.2. The Bode plot of the second order system ID for the brake system.
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Fig. B.3. The root locus of the second order system ID for the acceleration
system.
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Fig. B.4. The root locus of the second order system ID for the brake system.
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C. Stability Numerical Solution Code Example

A short program in MatLAB can calculate stable values of Pc and Kc for a given

characteristic equation.

% eComp.m - Calculates stability of values of p and K for a uniformly

% corrupted plant compensator.

% by Alex Meadows

% 2/29/2012

uChange=0.4; L=1+uChange; G=1-uChange;

res=0.01; max_K=2; max_p=2; index1=1; index2=1;

goodchart.data=zeros(max_p/res+1,max_K/res+1);

goodchart.axis1=[0:res:max_K]; goodchart.axis2=[0:res:max_p];

for p=0:res:max_p

for K=0:res:max_K

ceq=[1 p+5.08 5.08*p+2503.7+1.383*K 2496.5*p+1803*K];

q1=L*ceq(1)*ceq(4)-L*G*ceq(3)*ceq(2);

q2=G*ceq(1)*ceq(4)-G*L*ceq(3)*ceq(2);

q3=G*ceq(1)*ceq(4)-L*L*ceq(3)*ceq(2);

q4=L*ceq(1)*ceq(4)-G*G*ceq(3)*ceq(2);

state=(q1<0)*(q2<0)*(q3<0)*(q4<0);

if state==0

goodchart.data(index1,index2)=0;

else

goodchart.data(index1,index2)=1;

end

index1=index1+1;

end

index1=1; index2=index2+1;

end
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figure(1), surf(goodchart.axis1, goodchart.axis2, goodchart.data),...

colormap([0.3 0.3 0.3; 1 1 1]),...

xlabel(’K_c’),ylabel(’p_c’),zlabel(’stable’);
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