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SYMBOLS

acceleration

exponential system parameters; the inverse of time constants.
the minimum and maximum values, respectively, of a,,.

constant coefficients of exponential functions in the time domain.
the ordered coefficients of the characteristic equation.

the first computed value in an Routh—Hurwitz array, see equation
(4.20).

exponential constant, natural logarithm base; ~ 2.71828. ..

the acceleration due to gravity, 9.8

i this work, unknown factors which determine «,, = 7 - a,, and
Bn = A~ ay.

in this work, a measure of the maximum uniform percentage
change that a system can experience while remaining stable; see
equation (4.49).

is a member of

infinity

a constant gain, as in a transfer function.

in this work, a combination of a, useful for determining stability;
see equation (4.33).

in this work, a measure of total parametric instability tolerance;
see equation (4.47).

the order of a transfer function numerator; the number of zeros.
mass

the imaginary number unit, j*> = —1



the order of a transfer function denominator; the number of poles.

radial frequency; the imaginary magnitude of a complex number.

is proportional to

the complex frequency variable, s = o + jw

time, the variable of the time domain.

a time constant; a measure of system responsiveness.
velocity

position

in this work, the jerk.
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xii

ABBREVIATIONS

adaptive cruise control

direct current, a fixed-voltage system.

feet

Light Direction And Ranging

meters

Miles per hour

Partial Fraction Expansion

Proportion, Integral, Derivative

Radio Direction And Ranging

seconds (Not to be confused with the the symbol s.)

System Identification; System Identity; System ID
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GLOSSARY

Bode Plot  The Bode Plot provides a two graphs that describe the frequency
response of a transfer function. The first graph shows the magni-
tude of the response vs. frequency. The second shows the phase

shift of the response vs. frequency.

Controller ~ The part of a system which is added to correct the operation of

a plant, usually through feedback techniques.

Av "Delta vee” is the difference in velocity. This might be the dif-
ference in velocity for one particular vehicle between two times,
or it may be the instantaneous difference in velocity between two

vehicles.

Feedback The technique of taking a portion of the output of a system
and applying it to the input in some combination with the in-
put signal—usually subtraction. If the output is modified by a
transfer function before being applied to the input, the feedback

is said to be non-unity feedback.

Laplace An integral transform from the time domain with variable ¢ to
Transform  the complex frequency domain with variable s = o + jw, for some

o and w. The integral is defined thus:

F(s) = /000 f(t)e *tdt



Lookup
Table

MatLAB

Partial
Fraction

Expansion

PID

Plant

RC filter

X1v

A control system which relies on a matrix of precalculated gain
values which are selected by indexing one or more measurable
conditions of the system. Also called gain scheduling. Such a
system can be exceptionally robust, as its parameters are well
known. Since no on-the-fly calculations are required, it switches

and reacts very quickly to changing conditions.

A suite of software produced by Mathworks, Inc. which provides
tools for creation and manipulation of matrices, systems of equa-

tions and engineering solutions.

A collection of algebraic techniques which separate a ratio of poly-
nomials into a sum of ratio terms having denominators which are
all the factors of the original denominator. This is particularly
useful when employing linear transformations such as the Laplace
transform, as the resultant terms may be transformed indepen-

dently and often with the use of a table.

Proportion, Integral, Derivative; A control system where the er-
ror signal is formed as a linear combination of the input, the out-
put, the derivative of the output, and the integral of the output.
The design of such a system involves determining the appropriate

value of the coefficients of combination—a process called tuning.

The part of a system which is to be controlled, having an input

and an output and generally described by a transfer function.

A basic passive system which provides a frequency-based modu-
lation of signals which pass through it. It is composed of at least
one resistor(R) and one capacitor(C) and is characterized by the

product of the value of these components.



Root

Locus

SID

Simulink

Summing

Junction

Transfer

Function

XV

A single graph which shows, for a transfer function, the path
(locus of points)which is followed by the poles as they move to
the zeros in the complex plane, as some parameter, usually K, is
varied. The N—m poles which do not have associated zeros move

to a virtual zero at infinity.

System Identification; An order-reduction method involving the
approximation of a system’s response as a lower-order transfer
function. The time constants of this new function then become

the identity of the system, e.g.: a (0.5, 0.002) system...

A programming environment inside MatLAB which provides a
graphic user interface for the creation of models and for running

simulations.

A point of intersection of two or more signals which produces an
output signal as a combination of the sum of some inputs and the

difference of others.

A mathematical representation of a system in the complex fre-

quency domain as the ratio of two polynomials, G(s) = ZZZZ(;‘)),
satisfying the relationship ;Eg = G(s) where Y (s) and R(s) are

the output and input of the system, respectively. The m roots of
the numerator polynomial are referred to as zeros, whereas the N
roots of the denominator polynomial are called poles. The roots
may be simple; having only a real part, or be compler; having

both a real part and an imaginary part.



Vector

XVvi

A mathematical construct composed of a magnitude and a di-
rection, occurring in some n-space of n > 2. A vector may be
represented by a magnitude and an angle, ¥ = v/2/45°, or by the
lengths projected on the axis of the space, ¥ = [1, 1].
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ABSTRACT

Meadows, Alexander David. M.S.E.C.E., Purdue University, May 2012. Plant Error
Compensation And Jerk Control For Adaptive Cruise Control Systems. Major
Professor: Lingxi Li.

Some problems of complex systems are internal to the system whereas other prob-
lems exist peripherally; two such problems will be explored in this thesis. First, is the
issue of excessive jerk from instantaneous velocity demand changes produced by an
adaptive cruise control system. Calculations will be demonstrated and an example
control solution will be proposed in Chapter 3. Second, is the issue of a non-perfect
plant, called an uncertain or corrupted plant. In initial control analysis, the adaptive
cruise control systems are assumed to have a perfect plant; that is to say, the plant
always behaves as commanded. In reality, this is seldom the case. Plant corruption
may come from a variation in performance through use or misuse, or from noise or
imperfections in the sensor signal data. A model for plant corruption is introduced
and methods for analysis and compensation are explored in Chapter 4. To facilitate
analysis, Chapter 2 discusses the concept of system identification—an order reduc-
tion tool which is employed herein. Adaptive cruise control systems are also discussed

with special emphasis on the situations most likely to employ jerk limitation.



1. INTRODUCTION

Before delving into the topics of jerk limitation and plant corruption, it is important
to appreciate some of the background information. Specifically, we will investigate the
types of systems explored for control and the nature of our dynamic model simulation.
We will then discuss some of the analytical techniques used to facilitate solutions.
This work deals specifically with adaptive cruise control(ACC') systems in passen-
ger vehicles. For the purpose of analysis and test, a simulation environment called
Simulink is used. Simulink is a part of Mathworks’ MatLAB, a matrix-based pro-
gramming and development environment. The simulation uses mathematical models
to predict the behavior of systems from the very simple, like an RC filter, to the very
complex, such as, the adaptive cruise control systems we are discussing here. The

model used for simulation is the same as was used in previous work by Yao Zhai [1].

G(s) G(s)

controller ) plant —T’ Y(s)
H(s)

Fig. 1.1. A generic control system with negative feedback.

R(s) £(s)

In control system theory, a controlled system is described as being comprised of a
plant, a controller, and in most cases, a feedback loop with a summing junction. In a
feedback system, the output of the system is compared to the input and an error signal
is produced which is used to adjust the process accordingly [2]. In general, a system
with negative feedback is a stable choice for control [3]. A generic closed-loop, negative

feedback controlled system diagram is depicted in Figure 1.1. This type of control,



Table 1.1
Parts of a generic controlled system.

Term Function

Y(s) System Input

e(s)  Error Signal

G.(s) Controller Transfer Function
s)  Plant Transfer Function

(
H(s) Feedback Transfer Function

occurring between the summing junction and the plant is specifically called cascade
compensation [3]. In such a diagram, the input signal of each functional block enters
from the left and the output emerges from the right. Note that such a diagram may
represent an abstraction from the true reality of the system—each plant or controller
may be recursively represented by a diagram such as this. The feedback function,
H(s), could be any transfer function, but in the most basic diagrams, H(s) = 1.
A system diagram with a non-unity feedback can be rearranged through various
identity properties to produce an equivalent unity feedback system diagram—this is
important for analysis techniques which are predicated on such a system [3]. With
unity feedback, the error signal input of the controller is simply e(s) = R(s) — Y (s).
In other words, the error is formed as the difference between the output and the input.
The controller is designed to minimize this error signal. In a simplified example, with
a traditional cruise control system, perhaps the car is traveling at 65 mph when the
set button is pressed. The input of the system becomes the current speed and the
error signal is e(s) = 65— 65 = 0. Farther down the road, if the car goes up a hill and
its speed decreases to 60 mph, the new error signal is e(s) = 65 —60 = +5, as a result,
the control system would issue an acceleration command to the plant, increasing the
vehicle speed to match the new set speed. When the car has passed the summit

and is going down a hill, its speed increases to 70 mph. The new error signal is



e(s) = 65 — 70 = —5, as a result, the control system would generate a deceleration
command to the plant, decreasing the vehicle speed to match the new set point.

As this work uses a complex dynamic model, a system identification will be derived
to expedite simulation and allow a more fundamental understanding of the interaction
of the plant and the controller. Using a system ID model will also allow analytical
solutions for the controller. System identification will be described in detail in Chapter

2, along with a demonstration of its application to a part of the model.

1.1 Adaptive Cruise Control Systems

Adaptive cruise control systems have been on the market for many years. The
first such system was the LIDA R-based “Preview Distance Control” system produced
by Mitsubishi Motors Corporation on their 1995 Diamante [4]. Most systems were
originally available specifically on higher-end vehicles such as the Volvo S60, Audi
A8, and BMW 7 Series but are becoming increasingly popular on mid-level cars
such as the Ford Taurus [5] [6] [7]. Although many complex control systems exist,
industry still tends toward the more simple and arguably more reliable lookup table
for implementation in most systems because they can be defined based on steady state
operating conditions which allow transient responses to subside and leave derivatives
at zero [8]. Disadvantages of lookup table controllers are that it is computationally
intensive, requiring the calculation of a number of linear controllers, and that it
has no guarantee of non-linear stability [9]. The inputs are then used to estimate
values for operating states falling between those previously calculated on a static test
bed [8]. After lookup table control systems, the most logical choice for control is the
PID controller, or one of its derivatives. Although PID controllers are as familiar to
industry as lookup tables, their primary drawback is the necessity to tune the control
parameters ahead of time to achieve reasonable functionality. The process of tuning

is tedious; algorithms exist but do not provide significant reductions in work time.



Adaptive cruise control systems are a further controlled extension of the traditional
cruise control systems with which nearly all car owners are familiar. Whereas a
standard cruise control system follows an operating point velocity equal to the user-
defined set point, an ACC system has an operating point which varies according to the
parameters of the system. Referring back to Figure 1.1, the traditional cruise control
system is the plant and the adaptive cruise control system is the controller. In such
a system, the user selects the initial set point for velocity. Absent perturbations to
the car-road system, ACC functions as traditional cruise control. The system may be
disturbed in several different ways, such as: driver alertness, road surface conditions,
visibility, route curviness, or lead car velocity. Only systems responding to lead car
velocities are commercially available, with other disturbance systems the subject of
research and development [10] These are the ACC systems considered here. In such
a system, when a lead vehicle with lower velocity presents itself in front of the ACC-
equipped follow vehicle, the system controls the velocity set point of the follow vehicle
until the velocities reach parity and the vehicles have a prescribed separation distance.

Figure 1.2 shows a block diagram for a generic ACC system.

distance
1] RADAR
Headway Setpoint +‘ AV System
2] (mph)
Speed Setpoint ACC Controller Vehicle Dynamics velocity

a
(mph) T (Plant) (mph)

Fig. 1.2. A simplified, generic adaptive cruise control system diagram.

As described, the system must have certain sensors beyond those found in tradi-
tional systems. Most important to our discussion is a sensor which detects the relative
distance and relative speed of any lead vehicle which is directly in front of the ACC-
equipped vehicle. The system most commonly used for this purpose is RADAR. Other



possible systems would include LIDAR or machine vision systems. While the primary
purpose of this sensor is to determine the separation distance, the relative velocity
combined with the vehicle velocity can also determine the lead vehicle velocity. The
ACC system employs certain switching logic which moves between two fundamental
modes of operation [1]. In the primary mode, ACC maintains a velocity—much like
traditional cruise control. When necessitated by the presence of a slower lead car,
the ACC system changes to headway management mode. In this mode, velocity is
controlled to maintain the distance relationship with the lead vehicle at the distance
set point. At rest, this system provides feedback as to the separation distance and
relative speed. An example of follow vehicle distance management is the two—second
rule we hear from our parents— “stay far enough behind the lead car so that it takes

you two seconds to get to where they are now.”

Table 1.2

Adaptive cruise control velocity adjustment cases.

1. Qwvertake: The follow vehicle overtakes a slower lead vehicle initially beyond

the range of the detection sensor.

2. Cut In: A vehicle merges into the lane in front of the follow vehicle at a

distance less than the maximum range of the distance sensor.

3. Lane Departure: The slower lead vehicle leaves the lane and the follow vehicle

resumes the user-initiated set point.

4.  Velocity Change: A change in the lead vehicle velocity when the follow car

is already in a state of controlled velocity.

Given such a system, the follow vehicle velocity is adjusted under four general
cases detailed in Table 1.2. In the first case, the transition is usually gentle, provided
the distance sensor has sufficient range capabilities. The second case can result in an

unpleasant velocity adjustment, if the Av between the vehicles is too great, or the



cut-in range is too small. The transition in the third case is generally smooth and is
also functionally equivalent to the follow vehicle leaving the lane of the lead vehicle.
The final case may result in an increase in velocity or a decrease in velocity.

Jerk limitation will be applied to the system under the auspices of the final case.
In the first and third cases, the velocity may easily be controlled to maintain the
jerk under a predetermined maximum value, as there are no other constraints on
the system. In the second case, there are two constraints, lead velocity and the
initial separation. The combination of these two constraints presents a complexity
beyond the scope of this analysis. In one case, a car merges in front of the follow car
with enough separation and velocity that a control scenario can be applied to bring
velocities to parity. In the other case, the car merges in with insufficient separation
and velocity to apply control and a collision will occur. With two possible outcomes
for the same scenario we are not constrained to a solution. In the final case, we have
but one constraint, the lead vehicle velocity. The first case is conceptually equivalent
to the fourth case for a lead vehicle initially positioned at the maximum range of the
sensor, traveling at the velocity of the follow car, and which immediately executes a
velocity change. Presumably, this would be a deceleration event, as an acceleration
would remove it from the ACC system’s area of effect. Applying jerk limitation in
this final case will therefore yield more acceptable results. We will explore some of
the requirements and approaches to jerk control in such a circumstance in Chapter 3.

An adaptive cruise control system responds to predetermined perturbations in its
environment. In most cases, as mentioned, this has to do with the relative velocities
of nearby vehicles. In a purely theoretical system, such as a simulation (even where it
is based on real world values), the models behave in an ideal sense. In reality, small
variations occur in any signal. In a mechanical signal, such as the power transmitted
through a transmission, this may be a small error introduced due to the backlash in a
set of gears. In an electrical signal, this may be a small DC offset produced by driving
under high voltage electrical wires. In a fluid system, this may be due to expansion

or contraction of the fluid or the system components with a change in heat, such as



from winter to summer. In all these cases, one cannot predict the ezact behavior of
the system for every possible environmentally-introduced error. In the abstraction of
the system to be considered as a single plant, we must address the variations in the
system and determine if we can maintain stability of a system. Such variations in a
plant are called plant corruption. This will be explored in Chapter 4 along with a

look at the limitations on stability.

1.2 Previous Work

This thesis follows the work produced by Yao Zhai in his thesis entitled “Design of
Switching Strategy for Adaptive Cruise Control Under String Stability Constraints”
[1]. In his work, Zhai proposed a new control strategy for ACC systems by using a plot
of range vs. range-rate. A control system was developed and applied in the dynamic
model in Figure 1.3 which simulates vehicle dynamics. Zhai also addressed the issue
of string stability in his work. String stability involves analysis of the propagation of
error velocities from the lead car to end car in a platoon of vehicles all employing ACC

systems. The vehicle dynamics block from Zhai’s model is used for simulation in this

Sensor v_pre
Iputs | Z—
¥_pre :
Driver - — v
{ 5 Tt e S ™ velocity =
Input -‘_ — Int ~_ P LD
- Brake I (\.___ bl x
Brake Signal o accekeration

Switching Logic Vehicle Dynamics

Fig. 1.3. An annotated example of the single vehicle model with ACC
control used in Yao Zhai’s thesis work [1].

work, applying the same set of parameters to describe the vehicle as in his work. The

switching logic block in Figure 1.3 selects different control algorithms based on the



characteristics of the three internal inputs (velocity, position, and acceleration) and
the three external inputs (velocity set point, lead vehicle velocity, and lead vehicle
position). Based on these inputs, a velocity demand is calculated and the current
velocity is subtracted to created a Av or dv. This dv is applied to a final dv—throttle—
brake controller which generates the throttle and brake signals provided as inputs to
the vehicle dynamics model [1]. This controller will also be used in this work and is
depicted in Figure 1.4. An important feature of this controller is that it guarantees
that the ACC system will never apply signals to the throttle and brake commands

simultaneously. This practice is mirrored by practical driving skills in modern vehicles

4 »(D
1
| Thott
{1} | == 0 — 0

v
(D
- = Brake

Fig. 1.4. The dv-Throttle-Brake controller used in Yao Zhai’s thesis work
applies positive dv to the throttle and applies rectified negative dv to the
brake with zeros applied otherwise [1].

with one peculiar exception, the original Saab 92, employing a two-stroke engine where
fuel and lubricating oil are mixed, required drivers to apply the brakes but maintain
some throttle to prevent the engine from seizing while going down long hills [11].
For analysis of his model, Zhai determines a representative system identification
model. While he calculates the first time constant graphically, he employs the Mat-
LAB System Identification toolbox to find the second time constant. In this paper,
the topic of system identification will be explored more thoroughly with surprising
results. A graphical, time-domain approach to finding second order complex system

models will be described and applied.



1.3 The Dynamic Model

The dynamic model inherited from Yao Zhai is implemented in Mathworks” Mat-
LAB software, specifically in the Simulink modeling suite. The model incorporates
various vehicle dynamics such as the specific parameters of the gasoline engine, the
differential and the tires. The vehicle model was developed in Japan by Kohakugawa
and later used and expanded in his thesis by Yao Zhai [1].

The dynamic vehicle model has two inputs, throttle and brake. The input is
a continuous value between 0 and 1 activating that aspect of the model. As was
discussed, control signals are only provided to one input or the other. The primary
output of the model is the vehicle velocity. There are also two secondary outputs,
which are merely the derivative and integral of the primary output, acceleration and
position, respectively. This dynamic model acts as a test bed for control schemes and
allows for complex scenarios of multiple vehicles to be tested [1]. The choice to use

this model was predicated on previous work in the department [1].
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Fig. 1.5. The highest level of the dynamic model, is similar in appearance
to the generic control system of Figure 1.1.

The highest level of the dynamic model used in this thesis is shown in Figure
1.5 for comparison to the generic controlled system of Figure 1.1. Figures 1.6 and
1.7 provide a glimpse at successively lower levels of the model to give the reader an

idea of the complexity of the dynamic model. An understanding of the specifics of
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Fig. 1.6. The main layer of the dynamic model shows much greater com-
plexity than a standard transfer function.
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Fig. 1.7. An expanded view of the Longitudinal Vehicle Dynamics module
of the dynamic model, depicted in Figure 1.6 shows multiple feedback

loops.
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these models is neither the topic of this thesis, nor required to understand the content

presented.

The dynamic model simulates a four—wheel drive vehicle with a gasoline engine.

The context of this research is the control of jerk derived from the velocity output of
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the model as a result of inputs from an adaptive cruise control system. As such, the
method by which those inputs were generated, while interesting, is not germane to
the discussion of how they will be processed for jerk limiting. We need only know the
shape of the signals to investigate the topic accurately. The dynamic model produces

reasonable data for this analysis.

1.4 Chapter Summary

We have discussed a fundamental understanding of what comprises a controlled
system. As in Figure 1.1, it is a plant, a controller and a feedback loop. We also have
considered that a system such as this may exist inside a particular block of the system
diagram. We have explained the broad operational parameters of an adaptive cruise
control system and listed the primary disturbances to such a system in Table 1.2.
We have discussed the nature of our dynamic model. Finally, we have introduced
the three primary topics of discussion for this thesis: System Identification, Jerk

Compensation, and Plant Error Compensation.
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2. SYSTEM IDENTIFICATION

System identification, often abbreviated as system ID or SID, is an analysis technique
used to provide a simplified mathematical model for a complex system. This technique
relies on the fact that the response of a linear system can be represented as a sum of

exponential functions of different time constants.
t t N t
y(t) = Ao+ Aje m + Ase m + =) A (2.1)

n=0
In creating the system ID, we will choose the A,, terms and the 7,, terms. The A

depends on the type of input to the system. Since we will be using a step input, Ag =
1, as will be shown in greater detail below. Our model will be in the complex frequency
domain. Using the Laplace transform, it is simple to determine the frequency domain
model [3] [12] [13] [14] [15]. In evaluating a signal, we might use foreknowledge to
predict the order of the system. For example, in an electrical system containing only
a resister and a capacitor we would create only a first order model. If we know
the system is more complex, we naturally may predict the necessity of a model of
greater order. The process of model generation may be applied recursively to generate
successively higher—order models [16]. As we wish to simplify our model, yet maintain
a measure of the true response, a second order system will be sufficient. For a second
order system with Ag = 1, we will have only the first two exponential terms. It may

appear as follows.
1 AlTl AQTQ (Al + AQ)TlTQS + (A17'1 + AQTQ)
() s+7'15—|—1+7'25+1 (ris+1)(m2s + 1) (2:2)

Since A; and A are arbitrary values, we may simplify by selecting a convenient

relationship between the two, Ay = —A;. Our frequency domain model then simplifies

to:
T — T2

A
Y(ris + 1)(rs + 1)

Y(s) = (2.3)
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At this point, we recognize that we have an equation with a constant gain and a

response which depends on the values of the two time constants 7; and 75. A final

simplification is made by defining A; = and we arrive at our general second

T1—T2 '
order system ID equation with two simple roots:
K

Yis) = (s + 1) (s + 1) (24)

At this point, we may freely choose the gain K to be any stable value, since
this represents only the addition of an inline amplifier in our design and would not
affect its control. Knowing this, we might select an initial value of 1 for K and
dispense with any formality in determining the coefficients A,, while determining 7,,.
Analytical techniques may be applied later to determine an ideal value for K, such as

the Routh—Hurwitz criteria and the root locus—both of which are discussed below [3].

2.1 First Order SID Methods

There are several methods employed to construct a system ID model-—both man-
ual and automated. Determination of the time constants can involve a grey box pro-
cess where some functionality of the system is known, or may be applied to a black box
system where the internal workings are wholly unknown. For manual determination,
a direct graphing technique may be applied. MatLAB provides a system ID toolbox
which determines time constants and generates models of various types, such as state
space models, system ID models, grey-box models and output-error models.

This work uses manual exponential curve matching, to obtain a better under-
standing of the function of the system. This involves determining the dominant time
constant and then subtracting that exponential function from the data and repeat-
ing as many times as the order to which we would like to have our model. For the
first couple of time constants, this process provides an approximation to the response
which is comparable to automated methods. We begin the process by introducing a

step input to our dynamic model and recording the output as in Figure 2.1.
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Fig. 2.1. The step response of the dynamic model.

It is the nature of a simple time constant to equa