
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Stephen W. Abell

Parallel Acceleration of Deadlock Detection and Avoidance Algorithms on GPUs

Master of Science in Electrical and Computer Engineering

Dr. John Jaehwan Lee

Dr. Brian King

Dr. Stanley Chien

Dr. John Jaehwan Lee

Dr. Brian King 06/26/2013

PARALLEL ACCELERATION OF DEADLOCK DETECTION

AND AVOIDANCE ALGORITHMS ON GPUS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Stephen W. Abell

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2013

Purdue University

Indianapolis, Indiana

ii

ACKNOWLEDGMENTS

First and foremost, I must thank my advisor Dr. John Lee. His dedication to

innovative and thorough research is what led to the accomplishments in this thesis.

I must thank him for our many meetings, technical discussions, and paper revisions.

All of which have helped me grow into a more thorough engineer.

I must thank my family and girlfriend for their undying support and confidence

in me. They have always stood beside me in my decision to seek higher education

and believed in my abilities as an engineer.

Lastly, I would like to thank Sherrie Tucker. Sherrie has always been helpful when

it comes to logistical aspects of my graduate career and has always kept me on track.

Also, her seemingly endless supply of coffee and candy has been a huge aid in my

success as a masters student.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Terminology . 2

1.2.1 Definitions in the CUDA Framework 2

1.2.2 Definitions in the Deadlock Domain 3

1.2.3 Definitions in the Graph Theory Domain 5

1.2.4 Theorems for Deadlock Detection 10

1.3 Related Work . 11

1.4 Motivation . 13

1.5 Thesis Organization . 15

2 PARALLEL COMPUTING AND THE CUDA FRAMEWORK 16

2.1 Serial vs. Parallel Computing and Flynn’s Taxonomy 16

2.1.1 Single-Instruction Single-Data (SISD) 17

2.1.2 Single-Instruction Multiple-Data (SIMD) 18

2.1.3 Multiple-Instruction Single-Data (MISD) 19

2.1.4 Multiple-Instruction Multiple-Data (MIMD) 20

2.2 CUDA Overview . 21

2.3 CUDA Hardware Architecture Details 21

2.3.1 Streaming Multiprocessors 22

2.3.2 CUDA Memories . 26

2.4 CUDA Programming Model Details 31

iv

Page

2.4.1 Core Software Instrinsics . 31

2.4.2 Occupancy . 35

2.5 Chapter Summary . 36

3 GPU-OSDDA: A GPU-BASED DEADLOCK DETECTION
ALGORITHM FOR SINGLE UNIT RESOURCE SYSTEMS 37

3.1 Introduction . 37

3.2 Background . 37

3.2.1 Assumptions and Terms . 37

3.2.2 Underlying Theory of OSDDA 38

3.3 GPU-OSDDA Design . 42

3.3.1 Introduction . 42

3.3.2 Bit-Vector Design . 42

3.3.3 Handling a Resource Request Granted Event 46

3.3.4 Handling a Resource Request Blocked Event 48

3.3.5 Handling a Resource Release Event 52

3.3.6 Supplementary Kernels . 56

3.4 Experimentation and Results . 58

3.5 Conclusion . 60

4 GPU-LMDDA: A GPU-BASED DEADLOCK DETECTION
ALGORITHM FOR MULTI-UNIT RESOURCE SYSTEMS 61

4.1 Introduction . 61

4.2 Background . 61

4.2.1 Assumptions and Terms . 61

4.2.2 Underlying Theory of LMDDA 62

4.3 GPU-LMDDA Design . 68

4.3.1 Introduction . 68

4.3.2 Bit-Vector Design . 69

4.3.3 Handling a Resource Request Granted Event 74

4.3.4 Handling a Resource Request Blocked Event 76

v

Page

4.3.5 Handling a Resource Release Event 83

4.3.6 Supplementary Kernels . 93

4.4 Experimentation and Results . 94

4.5 Conclusion . 97

5 GPU-PBA: A GPU-BASED DEADLOCK AVOIDANCE
ALGORITHM . 98

5.1 Introduction . 98

5.2 Background . 99

5.2.1 Assumptions and Terms . 99

5.2.2 Underlying Theory of PBA 99

5.2.3 Computations of PBA and the H-Safety Check 100

5.3 GPU-PBA Design . 103

5.3.1 Introduction . 103

5.3.2 Handling a Resource Request 103

5.3.3 Handling a Resource Release 118

5.4 Experimentation and Results . 120

5.5 Conclusion . 123

6 SUMMARY . 125

6.1 Thesis Conclusions . 125

6.2 Future Work . 126

LIST OF REFERENCES . 129

vi

LIST OF TABLES

Table Page

2.1 Flynn’s Taxonomy . 16

2.2 CUDA Device Memory Features . 26

2.3 CUDA Memory Access Times . 26

3.1 Common variables used throughout GPU-OSDDA 43

3.2 Run-Time/Speedup of CPU-OSDDA and GPU-OSDDA (Initial) 59

3.3 Run-Time/Speedup of CPU-OSDDA and GPU-OSDDA (Bit-Packed) . 59

4.1 Common variables used throughout GPU-LMDDA 70

4.2 Event structure in GPU-LMDDA . 71

4.3 Run-Time/Speedup of CPU-LMDDA and GPU-LMDDA (Initial) . . . 96

4.4 Run-Time/Speedup of CPU-LMDDA and GPU-LMDDA (Bit-Packed) 96

5.1 Data Structures for GPU-PBA . 100

5.2 Run-Time/Speedup of CPU-PBA and GPU-PBA (256 Resources) . . . 121

5.3 Run-Time/Speedup of CPU-PBA and GPU-PBA (512 Resources) . . . 121

5.4 Run-Time/Speedup of CPU-PBA and GPU-PBA (1024 Resources) . . 122

vii

LIST OF FIGURES

Figure Page

1.1 A 3× 3 RAG incurring resource events 7

1.2 A 3× 3 Weighted RAG incurring resource events 8

1.3 The process bit-mask matrix represented with bit-vectors 10

2.1 SISD Execution Model . 17

2.2 SIMD Execution Model . 18

2.3 MISD Execution Model . 19

2.4 MIMD Execution Model . 20

2.5 Fermi SM Block Diagram (Courtesy of Nvidia) 22

2.6 Kepler SMX Block Diagram (Courtesy of Nvidia) 23

2.7 CUDA Memory Spaces (Courtesy of Nvidia) 27

2.8 Coalesced memory accesses in a single 128-byte L1-Cache line 28

2.9 Unaligned sequential addressing in two 128-byte L1-Cache lines 29

2.10 Misaligned sequential addressing in five 32-byte L2-Cache lines 29

3.1 Scenarios of resource request granted events (GPU-OSDDA) 39

3.2 Scenarios of resource request blocked events (GPU-OSDDA) 39

3.3 Scenarios of resource release events (GPU-OSDDA) 40

3.4 A 128x128 Bit-Vector Adjacency Matrix (GPU-OSDDA) 43

3.5 Computation to update AG/Sink/RP Matrix (Resource Granted) . . . 46

3.6 Resource Request Granted . 47

3.7 Calculation to determine reachability in RAG 51

3.8 Bit-Matrix Transpose in GPU-OSDDA 56

3.9 Transpose of bit-matrix tiles in GPU-OSDDA 57

3.10 GPU-OSDDA Speedup . 60

4.1 Scenarios of resource request granted events (GPU-LMDDA) 63

viii

Figure Page

4.2 Scenarios of resource request blocked events (GPU-LMDDA) 64

4.3 Scenarios of resource release events (GPU-LMDDA) 65

4.4 Example of the node hopping mechanism finding reachable processes . 66

4.5 A 128x128 Bit-Vector Adjacency Matrix (GPU-LMDDA) 70

4.6 Illustration of computation to update RP Matrix (Resource Granted) . 75

4.7 Illustration of finding sink process nodes 77

4.8 Illustration of computation to check for deadlock 80

4.9 Illustration of computation to update RP Matrix (Resource Blocked) . 81

4.10 Illustration of computation to find waiting processes 85

4.11 Illustration of RC for RP[k][h] for a single iteration 88

4.12 Illustration of connecting process z to process h (RC) 91

4.13 Illustration of connecting resource k to process h (RC) 92

4.14 Bit-Matrix Transpose in GPU-LMDDA 93

4.15 Transpose of bit-matrix tiles in GPU-LMDDA 94

4.16 GPU-LMDDA Speedup . 96

5.1 PBA Process Flowchart . 101

5.2 GPU-PBA Speedup w/ 256 Resources 122

5.3 GPU-PBA Speedup w/ 512 Resources 123

5.4 GPU-PBA Speedup w/ 1024 Resources 123

ix

ABSTRACT

Abell, Stephen W. MSECE, Purdue University, August 2013. Parallel Acceleration
of Deadlock Detection and Avoidance Algorithms on GPUs. Major Professor: Dr.
John Jaehwan Lee.

Current mainstream computing systems have become increasingly complex. Most

of which have Central Processing Units (CPUs) that invoke multiple threads for their

computing tasks. The growing issue with these systems is resource contention and

with resource contention comes the risk of encountering a deadlock status in the

system. Various software and hardware approaches exist that implement deadlock

detection/avoidance techniques; however, they lack either the speed or problem size

capability needed for real-time systems.

The research conducted for this thesis aims to resolve issues present in past ap-

proaches by converging the two platforms (software and hardware) by means of the

Graphics Processing Unit (GPU). Presented in this thesis are two GPU-based dead-

lock detection algorithms and one GPU-based deadlock avoidance algorithm. These

GPU-based algorithms are: (i) GPU-OSDDA: A GPU-based Single Unit Resource

Deadlock Detection Algorithm, (ii) GPU-LMDDA: A GPU-based Multi-Unit Re-

source Deadlock Detection Algorithm, and (iii) GPU-PBA: A GPU-based Deadlock

Avoidance Algorithm.

Both GPU-OSDDA and GPU-LMDDA utilize the Resource Allocation Graph

(RAG) to represent resource allocation status in the system. However, the RAG is

represented using integer-length bit-vectors. The advantages brought forth by this

approach are plenty: (i) less memory required for algorithm matrices, (ii) 32 compu-

tations performed per instruction (in most cases), and (iii) allows our algorithms to

handle large numbers of processes and resources. The deadlock detection algorithms

x

also require minimal interaction with the CPU by implementing matrix storage and

algorithm computations on the GPU, thus providing an interactive service type of be-

havior. As a result of this approach, both algorithms were able to achieve speedups

over two orders of magnitude higher than their serial CPU implementations (3.17-

317.42x for GPU-OSDDA and 37.17-812.50x for GPU-LMDDA). Lastly, GPU-PBA

is the first parallel deadlock avoidance algorithm implemented on the GPU. While it

does not achieve two orders of magnitude speedup over its CPU implementation, it

does provide a platform for future deadlock avoidance research for the GPU.

1

1 INTRODUCTION

1.1 Problem Statement

Modern computing platforms have grown increasingly complex over the past

decade. The advent of multi-cored and multi-threaded Central Processing Units

(CPUs) have reintroduced a common problem regarding resource contention, dead-

lock. In the past, many software-based deadlock detection/avoidance approaches were

devised that handled both single-unit and multi-unit request systems. The issue with

these deadlock detection solutions was that they were not capable of determining

events that led to deadlock in a deterministic and expedited manner. These solu-

tions typically had poor run-time complexities on the order of O(M×N), O(N 2), or

O(N 3), where M and N are process and resource counts, respectively.

As a result, researchers began developing hardware solutions to the deadlock de-

tection problem. The key advantage to these hardware techniques was their ability to

exploit parallelism in the Resource Allocation Graph (RAG) while performing dead-

lock detection computations. Since these parallel computations took place in hard-

ware, the algorithms devised had low run-time complexities, i.e., O(log2(min(M,N)))

andO(1). The only issue with applying these hardware solutions to real world systems

was the inability to handle increasingly large numbers of processes and resources. By

increasing the number of processes and resources, the size of the hardware solutions

would grow polynomially, as would their cost.

Furthermore, in the past 7 years their has been a paradigm shift in the way re-

searchers, scientists, and software engineers handle parallel computations. Graphics

card manufacturers (Nvidia and ATI) realized, with the help of the hardware and

software communities, that their massively parallel hardware platforms, or Graphics

Processing Units (GPUs), could be used as a large vector processor. Nvidia then

2

created their Compute Unified Device Architecture (CUDA) framework. This de-

velopment has given researchers the capabilities of massively parallel processors in

a discrete package that fits into most common personal computers (PC). This leads

to the research conducted for this thesis. By thinking about the previously devel-

oped hardware algorithms in terms of software, it was hypothesized that those same

algorithms could be developed for the modern GPU. As a result, several deadlock

detection/avoidance algorithms could be utilized for real world systems that would

yield large speedups with respect to a CPU implementation. Since the GPU is a

secondary device to the CPU, limited interaction with the CPU would be required so

that it may continue performing its normal tasking.

1.2 Terminology

This section defines terms and theorems in the CUDA framework, deadlock de-

tection and graph theory domains that are applicable to this thesis.

1.2.1 Definitions in the CUDA Framework

Definition 1.2.1 API is the acronym for an Application Programming Interface.

Definition 1.2.2 CUDA is the acronym for Nvidia’s Compute Unified Device Ar-

chitecture. The CUDA framework consists of both the hardware architecture and the

parallel programming model provided by Nvidia.

Definition 1.2.3 GPU is the acronym for a Graphics Processing Unit.

Definition 1.2.4 A Streaming Multiprocessor (SM) is a multi-cored processing unit

on the GPU.

Definition 1.2.5 A Stream Processor (SP) is one of many execution units on the

SM of a GPU.

3

Definition 1.2.6 A thread is a single path of execution that takes place on an SP

inside of an SM.

Definition 1.2.7 A block is a grouping of threads that are scheduled on multiple

SP’s inside of a single SM.

Definition 1.2.8 A grid consists of many groupings of thread blocks that can be

distributed across many SP’s of many SM’s.

Definition 1.2.9 A warp is the lowest level grouping of threads that are scheduled

on the GPU. The warp consists of 32 threads.

Definition 1.2.10 A kernel is the programmer derived software function to be launched

on the GPU.

1.2.2 Definitions in the Deadlock Domain

Definition 1.2.11 Deadlock is a situation in which a set of processes are perma-

nently blocked for competing for system resources or communicating with each other.

The following are necessary and sufficient conditions for deadlock to occur:

Condition 1 Mutual exclusion condition: a resource (unit) is either assigned to one

process or it is available.

Condition 2 Hold and wait condition: processes already holding resources may re-

quest additional resources.

Condition 3 No preemption condition: only a process holding a resource can release

it.

Condition 4 Circular wait condition: two or more processes form a circular chain

where each process waits for a resource that the next process in the chain holds.

4

Definition 1.2.12 Deadlock detection is a way of dealing with deadlock that tracks

resource allocation and process states to find deadlock, and rolls back and restarts

one or more of the processes in order to remove the deadlock.

Definition 1.2.13 A single-unit resource is a resource that serves at most one process

at a time. This means while a single-unit resource is serving a process, all other

processes requesting this resource must wait.

Definition 1.2.14 A multi-unit resource is a resource that can serve one or more

processes at the same time. All processes are served with the same or similar func-

tionality.

Definition 1.2.15 An active process is a process which has no outgoing edge (no

pending resource request) but may have incoming edges (granted resources).

Definition 1.2.16 A system is in an expedient state if any request for available units

is granted immediately.

Definition 1.2.17 A single-unit request system is a system in which a process may

request only one unit at a time, and thus has at most one outstanding request for a

single unit of some resource.

Definition 1.2.18 An H-Safe sequence is an enumeration p1, p2, . . ., pN of all pro-

cesses in the system, such that for each i=1, 2, . . ., N , the resources that pi may re-

quest are a subset of the union of resources that are currently available and resources

currently held by p1, p2, . . ., pi−1 [1] [2].

Definition 1.2.19 An H-Safe state exists if and only if there exists an H-Safe se-

quence p1, p2, . . ., pN . If there is no H-Safe sequence, the system is in an H-Unsafe

state [2].

5

1.2.3 Definitions in the Graph Theory Domain

In this section, we first describe the Resource Allocation Graph (RAG), followed

by definitions from graph theory that are used throughout the algorithms in this

thesis.

Definition 1.2.20 Let P = {p1, p2, . . . , pM} be a set of M requestors or processes

that may request and/or hold a number of resources at any given time.

Definition 1.2.21 Let Q = {q1, q2, . . . , qN} be a set of N resources that provide

specific functions usable by processes. Each resource consists of a fixed number (one

or more) of units to supply.

Definition 1.2.22 Let the set of nodes V be P ∪Q, which is divided into two disjoint

subsets P and Q such that P ∩ Q = ∅. Another notation for the set of nodes is,

V = {v1, v2, . . . , vl}.

Definition 1.2.23 Let G be a set of grant edges. Let an ordered pair (qj, pi) be a

grant edge where the first node is a resource qj ∈ Q, the second node is a process

pi ∈ P , and qj has been granted to pi. Thus, a set of grant edges G can be written as

G = {(qj, pi)| j ∈ {1, 2, . . . , n}, i ∈ {1, 2, . . . ,m}, and resource qj has been granted to

process pi}. An ordered pair (qj, pi) can also be represented by qj → pi.

Definition 1.2.24 Let R be the set of request edges. Let an ordered pair (pi, qj) be

a request edge where the first node is a process pi ∈ P , the second node is a resource

qj ∈ Q, and pi has requested qj but has not yet acquired it. Thus, a set of request

edges R can be written as R = {(pi, qj)| i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}, and

process pi is blocked for requesting resource qj}. An ordered pair (pi, qj) can also be

represented by pi → qj.

Definition 1.2.25 Let the set of edges E be R ∪ G. Another notation used is,

E = {e1, e2, . . . , eh}.

6

Definition 1.2.26 A particular resource allocation situation in a given system with

processes and resources can be abstracted by a Resource Allocation Graph (RAG). A

RAG is a directed graph θ = {V,E}, such that V is a non-empty set of nodes defined in

Definition 1.2.22, and E is a set of edges defined in Definition 1.2.25. The RAG is also

split into two separate adjacency matrices: Adjacency Request (AR) and Adjacency

Grant (AG), which hold the resource request and grant information, respectively. In

this thesis we assume a RAG handles single-unit resources (see Definition 1.2.13).

Definition 1.2.27 The Adjacency Request matrix is a component of the RAG. It

contains request edges (see Definition 1.2.24) that denote that a process pi has re-

quested a resource qj.

Definition 1.2.28 The Adjacency Grant matrix is the second component of the

RAG. It contains grant edges (see Definition 1.2.23) that denote that a resource qj

has been granted to process pi.

Summary of AG/AR for RAG Handling Single-Unit Resources

AG[j][i] =

 1 if ∃qj → pi,

0 otherwise.
AR[i][j] =

 1 if ∃pi → qj,

0 otherwise.

RAG Example

Figure 1.1(a) shows an example RAG of a 3×3 system consisting of three processes

(p0, p1, p2) and three resources (q0, q1, q2). Since we assume a RAG handles a single-

unit system, each resource has one unit and grant edge weights do not exceed 1.

Accompanying the RAG in Figure 1.1 are the associated adjacency matrices AG and

AR to reflect resource allocation status in the system.

In the RAG, there exist three resource grant edges (q0→p0, q1→p2, and q2→p0)

and two resource request edges (p1→q0 and p2→q2). Further, by looking at Figure

1.1(b), it can be seen that under the resource release event where p0 releases q0, q0

is then granted to the blocked process p1. This is an example of the system being

7

AG AR

AG AR

AG AR

p q grant edgeprocess node resource node resource unitrequest edge

p

p
0

p1 p2

q1 q2

q1

q2

p1 p2

p
0

p1

p2

q1 q2

p1 p2

q1 q2

q1

q2

p1 p2

p1

p2

q1 q2

p
0

p1 p2

q1 q2

q1

q2

p1 p2 q1 q2

p1

p2

1

1

0 0

0 0

0 01

1

1

0 0 0

00

00

1

1

0 0

0 0 1

0 0

00

00

00 1

0

1

1

1

0 0

0 0 1

0 0 0

00

00

00 1

0

(a) Initial Resource Allocation Graph

q

q

q

q

p

p

(b) p releases q

q

p q

p

 and is blockedrequests q(c) p

, q is granted to p

q0

0

0 0

0

q
0

0

p
0

0

0

0 0 0 1

q
0

0

0 0

0

0 0

Figure 1.1: A 3× 3 RAG incurring resource events.

in an expedient state (see Definition 1.2.16). Notice also that AG and AR have been

updated accordingly. Lastly, in Figure 1.1(c), process p0 requests q0 and is blocked

due to q0 having been granted to process p1.

Definition 1.2.29 A weighted RAG is a Resource Allocation Graph (see Definition

1.2.26) whose grant edges can have a weight (or value) greater than 1. In other words,

a weighted RAG handles multi-unit resources (see Definition 1.2.14).

8

Summary of AG/AR for Weighted RAG Handling Multi-Unit Resources

AG[j][i] =

 w(qj, pi) if ∃qj → pi,

0 otherwise.
AR[i][j] =

 1 if ∃pi → qj,

0 otherwise.

Weighted RAG Example

Figure 1.2(a) shows an example RAG of a 3×3 system consisting of three processes

(p0, p1, p2) and three resources (q0, q1, q2). Since the weighted RAG handles multi-

unit systems, the edge weights in the RAG may exceed 1. Accompanying the RAG in

Figure 1.2 are the associated adjacency matrices AG and AR to reflect the resource

allocation status in the system. In the RAG, there exist three resource grant edges

(q0→p0, q1→p2, and q2→p0) and two resource request edges (p1→q0 and p2→q2).

AG AR

AG AR

AG AR

p

p
0

p1 p2

q1 q2

q1

q2

p1 p2

p
0

p1

p2

q1 q2

p1 p2

q1 q2

q1

q2

p1 p2

p1

p2

q1 q2

p
0

p1 p2

q1 q2

q1

q2

p1 p2 q1 q2

p1

p2

(c) p
2
 requests an additional unit of q

1
 and is granted the request

1

1

0 0

0 0

0 01

1

1

0 0 0

00

00

1

0 0

0 0 1

0 0

00

00

00 1

0

1

1

0 0

0 0 1

0 0 0

00

00

00 1

0

(a) Initial Resource Allocation Graph

q

q

q

q

p

p

(b) p

q

p q

p

, q is granted to p

q0

0

0 0

0

q
0

0

p
0

0

0

0 0 0 1

q
0

0

0 0

0

1

11

1

11

1 2

2

0

1

 releases q

p grant edgeprocess node resource node resource unitrequest edgeq

Figure 1.2: A 3× 3 Weighted RAG incurring resource events.

9

Further, by looking at Figure 1.2(b), it can be seen that under the resource release

event where p0 releases q0, q0 is then granted to the blocked process p1. This is an

example of the system being in an expedient state (see Definition 1.2.16). Notice also

that AG and AR have been updated accordingly. Lastly, in Figure 1.2(c), process

p2 requests an additional unit of q1 and the resource is granted (assuming q1 has

available units), increasing the weight of the grant edge q1→p2. If no additional units

of q1 were available, the resource request p2→q1 would be blcoked.

Definition 1.2.30 A bipartite graph is a graph whose nodes can be divided into two

disjoint sets V1 and V2 such that every edge connects a node in V1 and one in V2.

That is, there is no edge between two nodes in the same set.

Definition 1.2.31 A cycle is made up of a simple path v1 → v2 → v3 → . . .→ vj−1

→ vj and an additional edge vj → v1.

Definition 1.2.32 A node vi is reachable from a node vj if there exists a path that

starts from vj and ends at vi. Thus, vi is called a reachable node of vj [3].

Definition 1.2.33 The reachable set of node vj is a set of nodes such that a path

exists from vj to every node in the reachable set [3].

Definition 1.2.34 A knot is a nonempty set K of nodes such that the reachable set

of each node in K is exactly K [3].

Definition 1.2.35 A sink node is a node that has at least one incoming edge but

does not have any outgoing edge.

Definition 1.2.36 The process bitmask matrix is an M ×M matrix in which the

ith row is equal to pi’s bitmask. The process bitmask of process pi is an M -bit binary

value 0. . .010. . .0 in which only the ith bit is 1, and all others are zeros.

10

Example of a process bit-mask matrix

process p 126 bitmask

process p 127 bitmask

1 bitmaskprocess p

process p 2 bitmask

process p 0 bitmask 10000... 0 ... 00000

01000... 0 ... 00000

00100... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00000

00000... 0 ... 00010

00000... 0 ... 00001

0~31 32~63 64~95 96~127

ProcessBitMask Matrix

Figure 1.3: The process bit-mask matrix represented with bit-vectors.

Definition 1.2.37 A sink bitmask for the reachable sink nodes of a resource qj is an

M -bit binary value 0. . .0101. . .0 in which its ith bit is 1 if process pi is a reachable

sink node of qj in the RAG, where 1 ≤ i ≤M . Otherwise, the ith bit is 0.

1.2.4 Theorems for Deadlock Detection

Defined here are two theorems that provide theoretical support for the deadlock

algorithms which were used to construct the GPU-based algorithms described in this

thesis.

Theorem 1.2.38 A single-unit request system consisting of only single-unit resources

is in a deadlock state if and only if its corresponding RAG contains a cycle.

Proof The proof of this theorem can be found in [3].

Theorem 1.2.39 A single-unit request system consisting of general resources (i.e.,

including both single-unit and multi-unit resources) is in a deadlock state if and only

if its corresponding RAG contains a knot.

Proof The proof of this theorem can be found in [3].

11

1.3 Related Work

There have been a multitude of software-based deadlock detection algorithms pro-

posed in the past that handle resource events in single-unit resource systems. In 1972,

Holt [3] first introduced a RAG-based deadlock detection approach with an O(M×N)

run-time complexity. Following this development, Leibfried [4] devised an algorithm

that utilized the adjacency matrix. Leibfried’s approach used matrix multiplication in

order to determine reachability information which led to an algorithm with an O(M 3)

run-time complexity. Later, Kim and Koh [5] devised a tree-based algorithm that im-

proved upon the prior deadlock detection run-time. Their tree-based algorithm was

able to detect deadlock in O(1) run-time; however, the caveat to this approach was

that it required an O(M +N) run-time for the resource release phase of the algorithm.

The completion of this release phase was required for the algorithm to handle the next

invocation of deadlock detection.

Regarding systems with multi-unit resources, Shoshani et al. devised a deadlock

detection algorithm in 1969 that achieved a run-time complexity of O(M 2×N) where

M and N are the number of processes and resources, respectively [6]. This approach

also utilized the Resource Allocation Graph (RAG) to maintain resource allocation

information in the system. The use of the RAG as an abstraction of resource alloca-

tion information in systems became quite popular in the deadlock detection domain

following this development. As a result, in 1972, Holt devised his own approach to

deadlock detection in multi-unit resource systems using the RAG. Holt’s approach

led to an improved run-time of O(M×N) [3]. Then in 1997, Kim introduced an

algorithm that was split into multiple phases: preparation and detection [7]. The

preparation phase of this algorithm was required for future iterations of detection

following a resource event. The result of Kim’s work yielded an algorithm with a

deadlock preparation run-time of O(M×N) and a deadlock detection run-time of

O(1).

12

In recent years, there has been a progression towards parallel hardware-based

algorithms to detect deadlock. These algorithms are deterministic and have accom-

plished low run-time complexities in hardware. In 2001, Shui et al. devised a deadlock

detection approach in hardware that utilized parallel hardware to perform matrix re-

ductions, leading to an overall run-time complexity of O(min(M,N)) [8]. Following

the development by Shui et al., a new approach to deadlock detection in single-unit

resource systems was developed by Xiao and Lee in 2007, known as HDDU [9]. This

algorithm had a deadlock detection run-time of O(1) and a detection preparation

run-time of O(min(M,N)). Later, Xiao and Lee developed a new approach to clas-

sifying resource events in single-unit resource systems. This development led to a

new algorithm known as OSDDA [10]. By utilizing the new classification of resource

events, deadlock preparation was able to be completed in O(1) time. As a result,

OSDDA was able to achieve an overall run-time complexity of O(1) in hardware.

The single-unit resource hardware deadlock detection approaches mentioned above

ultimately led to the development of deadlock detection algorithms in hardware for

multi-unit resource systems. In 2007, Xiao and Lee developed the first multi-unit

hardware approach to deadlock detection, known as MDDU [11]. The deadlock

preparation run-time of MDDU was O(min(M,N) and deadlock detection run-time

was O(1) in hardware. This algorithm was the first of its kind to have a O(1) dead-

lock detection run-time. Following this development, Xiao and Lee then devised a

new approach to classifying resource events in a multi-unit resource system which led

to the development of the log2(min(M,N)) deadlock detection algorithm known as

LMDDA [12].

Now that prior work regarding deadlock detection has been discussed, we’ll move

on to discussing prior work in deadlock avoidance. In 1965, Dijkstra introduced the

Bankers Algorithm (BA) for systems with a single resource with multiple units [1].

Since most systems have more than a single resource available, BA laid the framework

for deadlock avoidance algorithms. Habermann, in 1969, improved BA to support

multiple resources with multiple instances of each resource [2]. Habermann’s approach

13

was software-based and had a run-time of O(N×M 2), where M and N are the process

and resource amounts, respectively. This approach was improved upon in 1972 by

Holt. Holt’s approach improved the algorithm’s run-time, leading to a O(M×N)

run-time for BA [3].

Much like the progression towards hardware-based approaches to deadlock de-

tection, a similar progression occurred regarding deadlock avoidance. In 2004, Lee

designed a parallel hardware approach to BA which resulted in a run-time complex-

ity of O(N×min(M,N)) [13]. The only caveat to this algorithm was that it was able

to operate solely on single-instance resource systems. As a follow up to this work,

Lee and Mooney then proceeded to develop a O(N) deadlock avoidance algorithm in

hardware known as the Parallel Banker’s Algorithm Unit (PBAU) [14]. PBAU was

able to handle multi-resource systems containing multiple instances of each resource.

1.4 Motivation

One may inquire about the purpose of developing such algorithms for the GPU

over the CPU when modern CPUs have parallel programming primitives (such as

OpenMP) and feature vector architectures such as MMX and SSE. The answer is

quite simple: our CPUs are meant for general purpose tasks. The goal of a deadlock

detection/avoidance algorithm should be to act as an interactive service to the normal

operation of the CPU. If such algorithms were to be designed and utilized on the

CPU using its parallel programming capabilities, it would severely detract from the

usability of the CPU. Not only would the CPU not be able to spawn the amount of

threads that a GPU is capable of, thus not being able to fully exploit the parallel

nature of the problem, but it also would take longer to execute and thus other critical

tasks would not be able to take place concurrently.

For these reasons, this thesis proposes three algorithms: GPU-OSDDA, GPU-

LMDDA, and GPU-PBA. GPU-OSDDA is the first single-unit deadlock detection

algorithm implemented on the GPU platform. This algorithm stores its adjacency

14

request and grant matrices, as well as other algorithm matrices and vectors, in integer

length bit-vectors. This along with the bit-wise operators utilized to solve compu-

tations of deadlock detection has allowed this algorithm to operate on large systems

with increasing numbers of processes and resources (in the thousands or tens of thou-

sands). It has accomplished this while also being able to run extremely fast, thus

yielding a single-unit deadlock detection algorithm applicable to real-world systems.

The second algorithm, GPU-LMDDA, is the also the first multi-unit deadlock

detection algorithm implemented on the GPU platform. Much like GPU-OSDDA,

GPU-LMDDA stores all but one of its algorithm’s matrices in integer length bit-

vectors. This also has allowed GPU-LMDDA to adopt bit-wise operators to perform

calculations involved in deadlock detection for multi-unit systems. The result of

this work yielded a multi-unit deadlock detection algorithm that was able to achieve

substantial speedups over the CPU, as well as handle up to 1024 processes or resources

concurrently.

The last of the proposed algorithms, GPU-PBA, is the first GPU-based deadlock

avoidance algorithm. By utilizing the GPU’s parallel architecture, many compu-

tations involved in deadlock avoidance were able to be parallelized. As a result,

GPU-PBA was able to achieve speedups over a CPU-based implementation of the

Banker’s Algorithm.

For all of these algorithms, the CPU’s only responsibility is to pass resource event

information to the GPU for computation. In this way, GPU-OSDDA, GPU-LMDDA,

and GPU-PBA serve as interactive services to the CPU. When the words interactive

service are mentioned, it refers to the limited interaction that the CPU is required

to have with our algorithms. All of the aforementioned algorithms are meant to run

in the background, receiving resource event information from the operating system

and then provide notification to the CPU regarding the status of the resource event

(deadlock occurred or request denied). In this way, our algorithms provide an un-

obtrusive notification to the CPU (or operating system) regarding the state of its

resource events.

15

1.5 Thesis Organization

In Chapter 2, the disparity between serial and parallel computing is discussed.

This is followed by a discussion of the CUDA hardware architecture and software

model. Chapters 3, 4, 5 discuss GPU-OSDDA, GPU-LMDDA, and GPU-PBA, re-

spectively, as well as their implementation details and results. Chapter 6 provides a

summary of this thesis and its technical contributions.

16

2 PARALLEL COMPUTING AND THE CUDA

FRAMEWORK

2.1 Serial vs. Parallel Computing and Flynn’s Taxonomy

In the past, most software programs have been written for Central Processing

Units (CPUs) that follow the Single-Instruction Single-Data (SISD) architecture.

This implies that the software programs are written in a serial manner; executing one

instruction after the next. This architecture, however, does not advocate task con-

currency in terms of the task’s execution. Until the advent of multi-core CPUs, SISD

machines implemented context switching (or time slicing) and pipelining in order to

simulate task concurrency. The arrival of multi-core CPUs, parallel instructions sets

(SSE and MMX), and massively parallel architectures (GPU) have enabled increasing

amounts of task execution concurrency. In 1996, Michael Flynn introduced a method

to classify various computer architectures, known as ‘Flynn’s Taxonomy’ [15]. Table

2.1 summarizes these classifications and a further description of each architecture is

provided in the following sub-sections.

Table 2.1: Flynn’s Taxonomy

Architecture Description

SISD single instruction, single data

SIMD single instruction, multiple data

MISD multiple instruction, single data

MIMD multiple instruction, multiple data

17

2.1.1 Single-Instruction Single-Data (SISD)

The SISD architecture is the most well-known class of computing architecture to-

day. Software written for these machines were meant to execute in a serial manner.

Figure 2.1 depicts this execution model. SISD architectures are thought to have no

layers of concurrency; however, concurrency may exist if the architecture implements

pipelining. Pipelining allows the CPU to perform multiple phases of processing (of

different instructions) simultaneously. According to [15], this does not achieve concur-

rency of execution, but does achieve concurrency of processing. As a result, modern

CPUs adopted the pipelining to increase their concurrent processing capability.

D
i

D
o

I
Unit

Execution

Figure 2.1: SISD Execution Model

The concurrency of execution is often referred to as Instruction-Level Parallelism

(ILP). There are two common sub-architectures of SISD that aid in the concurrency

of instruction execution: superscalar and very long instruction word (VLIW). Both

of these techniques schedule different operations to execute concurrently based on the

analysis of the dependencies between the operations in the instruction stream [15].

The primary difference between the two is that the superscalar technique determines

dependencies dynamically at run-time while the VLIW technique determines them

statically at compile-time. Most modern CPUs are of the superscalar variety, as they

are more easily adapted to current software.

18

2.1.2 Single-Instruction Multiple-Data (SIMD)

The SIMD architecture has become increasingly popular in modern day CPUs

and mobile devices. This architecture typically has a single instruction operate on a

multitude of data elements in parallel, hence single-instruction multiple-data. Figure

2.2 illustrates the execution model of the SIMD architecture.

D
io

D
o0

D
in−1

D
on−1

Unit
0

n−1Unit

I

Execution

Execution

Figure 2.2: SIMD Execution Model

Flynn [15] further defines two SIMD sub-architectures: array and vector proces-

sors. Array processors feature hundreds or thousands of simple processors operating

in parallel on sequential data elements [15]. Prior to the mid-2000s, there were no

immediate problems requiring such an architecture. However, with the arrival of in-

creasingly complex graph algorithms, medical applications, and graphics rendering

techniques, the array processor design has found its way into the hands of everyday

users in the form of GPU and General Purpose Graphics Processing Units (GPGPU).

These architectures are also referred to as massively parallel processors (MPP). In

contrast, the vector architecture typically has a single processing element that focuses

its operation on smaller data sets. Vector processors rely on heavy pipelining and

high clock rates to reduce overall latency of operations [15].

19

2.1.3 Multiple-Instruction Single-Data (MISD)

The MISD architecture is the most underutilized architecture, if thought as a stan-

dalone parallel architecture. The MISD architecture is composed of independently

executing functional units operating on a single data stream, forwarding results from

one functional unit to the next [15]. Figure 2.3 illustrates the execution model of the

MISD architecture. This should sound much like the pipelining concept mentioned

previously because on an abstract level it is pipelining. The difference between a

pipelined architecture and the MISD architecture is that the pipelined architecture

is a partition of assembly instructions into pipeline stages that pass results between

successive stages. In contrast, the MISD architecture aims to pass full instruction

results between execution units.

Unit
0

n−1Unit

I
n−1

I
0 D

io

D
on−1

Execution

Execution

Figure 2.3: MISD Execution Model

According to [15], most programming constructs do not easily map programs into

the MISD organization. For this reason, the abstract idea of MISD (pipelining) has

been integrated into modern day computing systems, but the MISD architecture as

a whole has been more or less ignored for real-world systems.

20

2.1.4 Multiple-Instruction Multiple-Data (MIMD)

The MIMD architecture is the most well-known parallel architecture available,

seen in modern day multi-core CPUs. This architecture is typically comprised of in-

dependent, homogeneous processing units that communicate with each other through

network interconnects or a shared memory construct (cache). Figure 2.4 illustrates

the execution model of the MIMD architecture.

D
io

D
o0

D
in−1

D
on−1

Unit
0

n−1Unit

I
n−1

I
0

Execution

Execution

Figure 2.4: MIMD Execution Model

The MIMD architecture has its processing units handle independent instructions

acting on independent data sets. The most significant issues with implementing such

an architecture are mainlining memory and cache coherency [15]. Mainlining mem-

ory refers to the programmer-visible memory references seen while writing software,

and how memory values may change when writing software across many processing

units [15]. As mentioned previously, many of these homogeneous processing units are

connected through a cache. When multiple processing units access the same memory

locations, it is critical that all processing units see the same memory value, resulting

in cache coherency. Modern CPUs solve these issues with a combination of software

and hardware techniques for mainlining memory and exclusively hardware techniques

for cache coherency [15].

21

2.2 CUDA Overview

The introduction of the Compute Unified Device Architecture (CUDA) by Nvidia

has brought a whole new level of parallel programmability to the mainstream public.

In the past, the GPU (a massively parallel processor) has been used solely for graphics

rendering, an inherently parallel task. Since Nvidia has developed the CUDA hard-

ware architecture and a scalable and powerful programming model, it has enabled

normal users to offload heavy parallel computations to their CUDA-capable GPUs.

By modeling their architecture off the familiar SIMD architecture, the GPU has the

potential of operating on many thousands of data elements in parallel. This powerful

architecture has unleashed never before seen capabilities in the consumer software

development market. This has allowed developers to write applications that exploit

the GPU’s parallel execution capabilities.

For purposes of this thesis, only the two latest Nvidia architectures will be covered:

Fermi and Kepler. These two architectures, while both providing significant compute

capability, have a significant difference in their hardware design and subset of their

software features. The following Sections 2.3 and 2.4 provide detailed information

regarding the CUDA hardware architecture and software model in Nvidia’s Fermi

and Kepler series GPUs.

2.3 CUDA Hardware Architecture Details

The following Sections 2.3.1 and 2.3.2 describe in detail hardware features of the

two latest Nvidia GPU architectures: Fermi and Kepler. Section 2.3.1 describes the

streaming multiprocessor (SM) and stream processor (SP). The abstraction of threads,

blocks, grids, and warps are also discussed as a subset of the SM and SP modules.

Following that, in section 2.3.2, is a description of the CUDA memory hierarchy and

the implications each memory type produces.

22

2.3.1 Streaming Multiprocessors

In any CUDA capable GPU, there exist a number of streaming multiprocessors

(SM). The SM is the building block of the GPU. Within each SM, there are tens or

hundreds of streaming processors (SP). The SPs are where the stream of execution

takes place. Any time that an SP is given work, it is signified by a thread. These

threads are scheduled in batches of 32 and are called warps. Each SM has its own

set of warp-schedulers which allocate work to the SPs. Nvidia adopted a scheduling

model that it dubs SPMD (single-program, multiple-data), which is based off of the

SIMD architecture discussed in Section 2.1.2 [16]. Figures 2.5 and 2.6 depict the

layout of the SM(X) in both the Fermi and Kepler architectures [17, 18]. Discussed

next are the concepts of threads, blocks, grids, and warps, all of which provide a

hardware abstraction of the CUDA hardware model.

Figure 2.5: Fermi SM Block Diagram (Courtesy of Nvidia)

23

Figure 2.6: Kepler SMX Block Diagram (Courtesy of Nvidia)

Threads

Threads are the fundamental building block of a parallel program [16]. As most

are familiar, uni-processors typically have a single thread of execution. This thread

will compute a single result for a single data point per instruction. GPUs on the

other hand are comprised of tens, hundreds, or thousands of SPs (synonymous with

uni-processor in terms of instruction execution) that allow them to operate on tens,

hundreds, or thousands of data points per instruction. The thread runs in a single

24

SP of a single SM. The thread scheduling units (warps) are distributed to the SPs of

an SM by the warp schedulers available in the SM. Each thread is then allocated a

partition of registers. These registers are on-chip, and have very high bandwidth and

low latency. Section 2.3.2 further covers the registers available to each thread.

Blocks

A block is an abstraction for a set of threads on the GPU. While each thread’s

scope is a single SP, a block’s scope is a single SM, i.e. many threads run on an

SM. There are limitations to the number of threads one may schedule per block and

also per SM, and this is determined by the target hardware. In our case, our thread

limit per block on both the Fermi and Kepler architecture is 1024 threads. One of

the differences between the Fermi and Kepler architectures is that while Fermi may

schedule only 1536 threads per SM, Kepler may schedule 2048 threads per SM. This

difference implies that Kepler may have two concurrent blocks running of size 1024

threads while Fermi may only run a single block. By launching multiple blocks, we

are essentially launching (# of blocks × # of threads) streams of execution. This

allows us to compute (# of blocks × # of threads) data elements in parallel per

SM(X).

Grids

A grid in CUDA is an abstraction of multiple blocks on the GPU. Similar to how

the block was a level higher in terms of scope than a thread, a grid has a higher

scope than a block. The grid in CUDA hardware has scope of the entire GPU, or in

other words, a grid may be decomposed across many SMs and SPs. Since the GPU

is limited in the number of threads per block and blocks per SM it may launch, if a

problem is in need of additional parallelism (or has more data points than currently

available threads), we are able to specify more dimensions to the grid (x,y, and z).

This enables more blocks, and thus, more threads to be scheduled per GPU. The

25

method of scheduling multiple dimensions to a grid also applies to threads, which

may aid in problem decomposition. Note that while we may schedule many more

threads by adding additional dimensions to a grid, this does not necessarily imply

that more threads are running concurrently.

Warps

Cook [16] states that the warp is the basic unit of execution on the GPU. Under-

standing how the GPU handles this thread grouping is important in order to properly

utilize GPU resources. Since the GPU is essentially a collection of SIMD vector pro-

cessors and each warp is executed together, ideally, a single fetch from memory for

the current instruction is needed [16]. Upon fetching the instruction, the GPU is able

to broadcast that instruction to each SP (thread) in the warp.

There exists one common programming paradigm that can significantly lower

performance on the GPU, that is branching. The conditional branch in Algorithm 1

is a common practice in serial CPU programming. On the GPU, however, it becomes

very costly.

Algorithm 1 Warp Branching
1: if test condition if then

2: execute if();

3: else

4: execute else();

5: end if

If the threads within a warp take separate execution paths for the conditional, the

separate conditional (if and else) pieces will not be executed in parallel. Therefore,

some of the threads within the warp may execute the if block and the other threads

will become inactive. This inactive state effectively cuts utilization of the GPU hard-

ware by half. When the initial threads complete the if block, the remaining threads

will execute the else block, while the initial threads become inactive. The typical

rule of thumb is that for every level of divergence in a conditional block (say N),

26

our device utilization drops by a factor of N. So for a conditional code-block with 3

conditional statements, our utilization would be 1
3
, or 33%.

2.3.2 CUDA Memories

The crux to writing efficient parallel programs utilizing the GPU is understanding

the GPU’s memory hierarchy. Nvidia’s CUDA architecture supplies the developer

with several memory types, each type serving its own purpose with different on/off

chip placements and latency requirements. Table 2.2 and Table 2.3 provide a summary

of all on-board memory types available in the CUDA hardware architecture and their

access times [19].

Table 2.2: CUDA Device Memory Features

Memory Location On/Off Chip Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off † R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off † R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

† Cached only on devices of compute capability 2.x

Table 2.3: CUDA Memory Access Times

Storage Type Registers Shared Memory Texture Memory Constant Memory Global Memory

Bandwidth ∼8 TB/s ∼1.5 TB/s ∼200 MB/s ∼200 MB/s ∼200 MB/s

Latency 1 cycle 1 to 32 cycles ∼400 to 600 ∼400 to 600 ∼400 to 600

27

To facilitate understanding of the memory hierarchy, Figure 2.7 depicts the mem-

ory spaces on the GPU device [19]. The rest of this section summarizes typical mem-

ory usage scenarios and additional information on registers available in the CUDA

architecture.

Figure 2.7: CUDA Memory Spaces (Courtesy of Nvidia)

Global Memory Coalescing and Caching

According to Nvidia [19], global memory coalescing is the most important per-

formance consideration to take into account when writing parallel code for CUDA-

capable GPUs. If done correctly, global memory loads and stores initiated by a warp

may be handled in a single memory transaction when certain requirements are met.

These requirements can be summarized as follows:

28

The concurrent accesses of the threads of a warp will coalesce into a

number of transactions equal to the number of cache lines necessary to

service all of the threads of a warp [19].

By default, the GPU’s L1 cache is enabled and all transactions are cached through

it. This cache is comprised of 128-byte cache lines. Next, three examples are given to

illustrate a warp that performs coalesced accesses in a single 128-byte L1-cache line,

unaligned sequential addresses fitting into two 128-byte L1-cache lines, and misaligned

sequential addresses that fall within five 32-byte L2-cache lines.

Figure 2.8 shows the simplest case of memory coalescing in CUDA. Every k -th

thread in a warp will access the k -th word in an L1-cache line. If in this case each

thread addresses a four byte value, then an entire warp is satisfied by a single 128-byte

transaction from the L1-cache (hashed area in figure is the cache line).

0 32 64 96 128 160 192 224 256 288 320 352 384

addresses from a warp

Figure 2.8: Coalesced global memory accesses fitting into a single 128-byte

L1-Cache line

In the second example, seen in Figure 2.9, the threads within a warp access se-

quential addresses but are not aligned on the 128-byte cache line boundary. This

forces the GPU to fetch two 128-byte cache lines from the L1-cache.

The last example in Figure 2.10 is considered a non-caching transaction, in that

it bypasses the L1-cache and uses the L2-cache [19]. The L2-cache utilizes 32-byte

cache lines. In the event that misaligned (but sequential) addresses are requested, it

forces the GPU to fetch five 32-byte L2-cache lines to satisfy the 128-byte request.

29

0 32 64 96 128 160 192 224 256 288 320 352 384

addresses from a warp

Figure 2.9: Unaligned sequential addressing fitting into two 128-byte L1-Cache lines

0 32 64 96 128 160 192 224 256 288 320 352 384

addresses from a warp

Figure 2.10: Misaligned sequential addressing fitting into five 32-byte L2-Cache lines

Shared Memory and Bank Conflicts

As denoted in Table 2.2, the GPU’s shared memory resides on-chip. Since shared

memory is on-chip, it has a much higher bandwidth and lower latency than all other

memories on the GPU with the exception of registers. However, the potential speedup

granted by using shared memory may suffer in the event that shared memory bank

conflicts occur. The structure of shared memory and bank conflicts are discussed

next.

Shared memory is able to achieve high bandwidth for concurrent memory accesses

because it is split into equally sized memory modules (or banks) that can be accessed

simultaneously [19]. In the event that the GPU loads or stores n addresses that span

n shared memory banks, the loads and stores of all n addresses may be handled

simultaneously [19]. The simultaneous handling of shared memory accesses yields

an effective bandwidth n times higher than bandwidth of a single shared memory

bank. If there are multiple memory requests (for different addresses) that access

the same shared memory bank, these accesses are serialized. In the event of a bank

conflict consisting of m requests, the GPU hardware splits the memory requests into

30

m separate conflict-free requests. This action would effectively decrease the shared

memory bandwidth by a factor of m. The exception to this rule is when multiple

threads within a warp access the same memory location. If this occurs, the memory

location is broadcasted to all requesting threads.

The two architectures we focus on in this thesis (Fermi and Kepler) are of compute

capability 2.x and 3.x, respectively. In the 2.x compute GPUs, each shared memory

bank has a bandwidth of 32 bits per two clock cycles and successive 32-bit words are

assigned to successive memory banks [19]. The 3.x compute capability GPUs have

two separate banking modes: successive 32-bit words or successive 64-bit words are

assigned to successive banks. The 3.x compute capable card could have a maximum

bandwidth per bank equal to 64 bits per clock cycle [19].

Register Usage

As denoted by Table 2.3, registers offer the highest bandwidth and lowest latency

of all the memory types available on the CUDA platform. Typically, registers do not

consume additional clock cycles per instruction but delays may occur due to read-

after-write (RAW) dependencies and register memory bank conflicts [19]. The latency

of such a dependency is approximately 24 cycles, but this latency may be hidden by

running simultaneous threads. For example, devices of compute capability 2.0, which

have 32 CUDA cores per SM(X), may require up to 768 threads, or 24 warps, to

completely hide this latency (32 CUDA cores per SM × 24 cycles of latency = 768

active threads to cover latency) [19].

In terms of optimally utilizing registers, NVCC (CUDA compiler) and the hard-

ware thread scheduler will attempt to schedule instructions in such a way to avoid

register memory bank conflicts [19]. There are a large number of registers available

per SM(X), but the available registers are partitioned among all threads scheduled

to that SM(X). For fine tuned control over register usage, Nvidia provides a compiler

switch, -maxrregcount=N, that places an upper bound on the number of registers a

31

thread may have allocated to it (in this case, N) [19]. Generally, the best results are

achieved by launching thread blocks that have a thread count equal to a multiple of

64.

2.4 CUDA Programming Model Details

The CUDA programming model (CUDA C) is split into two separate APIs: driver

and runtime. The driver API is not within the scope of this thesis, but it should be

known that it has the same capabilities as the runtime API with some advanced low

level features. The runtime API will be discussed here, as it is the most commonly

used and provides a higher level of abstraction to the GPU hardware.

2.4.1 Core Software Instrinsics

CUDA C is simply an extension of the familiar C programming language. Nvidia

[20] has allowed the programmer to define functions, known as kernels, that are

executed N times in parallel by N different threads on the GPU. In contrast, the

CPU typically launches a single thread to execute a function. The similarities of the

GPU’s execution model with that of a SIMD architecture (seen in Section 2.1.2) are

realized by how the GPU kernels execute instructions. The GPU kernel launches a

series of serialized instructions that operate on a vector of (or many) data elements,

just like the SIMD architecture.

The CUDA kernel (or function) is defined using the global declaration specifier,

followed by void as the return type since CUDA kernels do not return values. In order

to specify the number of blocks (i.e., the grid size) and the number of threads per

block (i.e., the block size) for a kernel launch, the CUDA framework provides the

triple chevron execution configuration syntax, ≪...≫. In its most basic form, the

execution configuration syntax is populated with two arguments: 1.) the number

of blocks and 2.) the number of threads per block. As mentioned in Section 2.3.1,

multiple dimensions of both blocks and threads may be invoked. The arguments to the

32

execution configuration syntax are of type dim3, which is a 3-component vector [20].

When the dim3 variable is used within a kernel it allows for thread identification

by a one-dimensional, two-dimensional, or three-dimensional thread index known as

threadIdx. Utilizing the multi-dimensional thread and block intrinsics allows for easier

mapping of threads to a problem space (i.e., vector, matrix, volume). The following

summarizes multi-dimensional thread usage within a single block.

The index of a thread and its thread ID relate to each other in a

straightforward way. For a one-dimensional block, they are the same; for

a two-dimensional block of size (Dx,Dy), the thread ID of a thread of

index (x,y) is (x+yDx); for a three-dimensional block of size (Dx,Dy,Dz),

the thread ID of a thread index (x,y,z) is (x+yDx+zDxDy) [20].

Algorithm 2 illustrates the usage of a two-dimensional thread block to perform

an addition operation between two matrices A and B. In lines 13 and 14, the dim3

component vector is used to establish the number of blocks launched per grid and the

number of threads launched per dimension. This is followed by the kernel invocation

in line 15. Starting on line 4 is the kernel that will perform the matrix addition. Lines

4 and 5 generate the indices for the x and y dimensions of matrices A and B. Notice

that the vector directions (x,y) are referenced using the threadIdx variable appended

with .x or .y, depending on the dimension to be used. Line 6 performs the matrix

addition between A and B, storing the result in the matrix C.

Declaring registers to hold the values of the threadIdx variables are not necessary.

However, doing so greatly increases code readability.

Note that there is a limit to the number of threads that may be invoked per block.

In both the Fermi and Kepler architectures the thread limit per block is 1024 threads.

If additional threads are needed, which is typical, more blocks should be scheduled to

handle the additional parallelism. Similar to the prior algorithm, Algorithm 3 utilizes

multiple blocks to handle a larger matrix size. Assume for the computation that M

and N are of size 256. In lines 14-15, the dim3 vector is initialized with 16 in the x and

33

Algorithm 2 Multi-Dimensional Threads - Kernel Invocation

1: // Kernel Definition

2: global void Add2DVector(int A[M][N], int B[M][N], int C[M][N])

3: {

4: int x = threadIdx.x;

5: int y = threadIdx.y;

6: C[x][y] = A[x][y] + B[x][y];

7: }

8:

9: int main()

10: {

11: ...

12: // Kernel launched with a single block of M * N * 1 threads

13: dim3 blocksPerGrid(1,1,1);

14: dim3 threadsPerBlock(M,N,1);

15: Add2DVector≪blocksPerGrid,threadsPerBlock≫(A, B, C);

16: ...

17: }

y directions. The number of blocks required in both directions depends on the quotient

of M or N and the number of threads launched in the associated directions. Line 16

performs the kernel invocation using the blocksPerGrid and threadPerBlock dim3

variables that were created. Inside the kernel, lines 4 and 5 build the x and y indices

into the matrices. Since multiple blocks (with multiple dimensions) were launched,

we utilize the blockIdx variable with .x or .y appended to obtain the appropriate

block ID. We then multiply the block ID by the number of threads within each block,

denoted by blockDim. The thread ID is then added to yield the global index into the

matrices. Line 6 performs a check on the indices x and y to verify computations stay

in a valid memory range, which is followed by the final matrix addition in line 7.

When scheduling multiple thread blocks in a kernel invocation, all thread blocks

must be able to execute independently [20]. Threads within a single block may

communicate with each other via shared memory as discussed in Section 2.3.2. If the

threads within the block need to synchronize at some point (to avoid data hazards),

Nvidia provides the syncthreads() intrinsic function. The syncthreads() function

creates a barrier where all threads within a block must wait to perform further action

34

Algorithm 3 Multi-Dimensional Blocks and Threads - Kernel Invocation

1: // Kernel Definition

2: global void Add2DVector(int A[M][N], int B[M][N], int C[M][N])

3: {

4: int x = blockIdx.x*blockDim.x + threadIdx.x;

5: int y = blockIdx.y*blockDim.y + threadIdx.y;

6: if(x < M and y < N)

7: C[x][y] = A[x][y] + B[x][y];

8: }

9:

10: int main()

11: {

12: ...

13: // Kernel launched with 16x16 (256) thread blocks

14: dim3 threadsPerBlock(16,16,1);

15: dim3 blocksPerGrid(M/threadsPerBlock.x,N/threadsPerBlock.y,1);

16: Add2DVector≪blocksPerGrid,threadsPerBlock≫(A, B, C);

17: ...

18: }

[20]. After all threads have synchronized on this function, the threads within that

block may continue their execution.

There are no synchronization primitives between blocks while a kernel is execut-

ing. The only way that threads across multiple blocks may communicate is via global

memory. If multiple invocations of a CUDA kernel are required, synchronization is

handled by the CPU by using the cudaDeviceSynchronize() intrinsic function follow-

ing a kernel launch. Since all kernel calls are asynchronous, this function forces the

CPU to halt its execution until the invoked kernel has completed.

When deciding on the optimal number of threads and blocks to schedule for a

problem, some experimentation may be needed. However, Nvidia has provided the

following common practices:

• Threads per block should be a multiple of the warp size to avoid wasting com-

putation on under-populated warps and to facilitate coalescing [19].

35

• A minimum number of 64 threads per block should be used, and only if there

are multiple concurrent blocks per SM(X) [19].

• Between 128 and 256 threads per block is a better choice and a good initial

range for experimentation with different block sizes [19].

• Use several (3 or 4) smaller thread blocks rather than one large thread block

per multiprocessor if latency affects performance. This is particularly beneficial

to kernels that frequently call syncthreads() [19].

2.4.2 Occupancy

Instructions executed by a thread are done so in sequence. By having additional

warps execute while others are paused or stalled allows the GPU to hide memory

latency and keep the hardware active. The metric that relates the number of active

warps on an SM(X) to the maximum number of active warps is known as occupancy

[19]. Maintaining a high level of occupancy is never bad practice because it does hide

memory latency. However, there is a diminishing rate of return for having additional

occupancy above a certain point.

For purposes of calculating occupancy, the number of registers claimed per thread

is a primary factor [19]. On the Kepler architecture, for example, there are 65,536

registers available per SM(X) and each SM(X) may have up to 2048 resident threads

(64 warps × 32 threads per warp). This implies that to achieve 100% occupancy,

each thread may claim at most 32 registers. Determining the occupancy of a kernel

can be complicated across different GPU architectures. The number of available reg-

isters per SM(X), simultaneous resident threads on an SM(X), the number of blocks

running per SM(X), and the register allocation granularity are all factors that need

to be considered when calculating occupancy [19]. Since many of these factors change

across architectures, the relationship between register usage and occupancy is diffi-

cult to determine. There has been research performed that determined that higher

occupancy does not always mean better performance [21].

36

As a result, testing and experimentation are the only true way to maximize perfor-

mance with regards to occupancy.

Nvidia [19] does provide two tools to help developers determine the occupancy of

kernels, they are the CUDA Occupancy Calculator and the Nvidia Visual Profiler’s

Achieved Occupancy metric. By evaluating kernels with one of these two tools, de-

velopers are able to make more efficient decisions regarding the number of blocks and

threads to launch.

2.5 Chapter Summary

This chapter has discussed the differences between serial and parallel computing,

followed by the well-known computer architectures described by Flynn’s Taxonomy.

By understanding Flynn’s classification of the SIMD architecture, the current GPU

programming platform is better understood.

Next, the hardware architecture details of the Fermi and Kepler GPU architectures

were covered in detail. How the GPU schedules its threads, interacts with memory,

and the implications of working with several memory types were covered in order

to facilitate explanation of the algorithms within this thesis. Finally, the CUDA

programming model was discussed to explain how the CUDA software framework

provides abstractions of the GPU hardware. After researching both the hardware

architecture and software model details, the most performance critical techniques

and optimizations have been applied to the algorithms in this thesis.

37

3 GPU-OSDDA: A GPU-BASED DEADLOCK

DETECTION ALGORITHM FOR SINGLE-UNIT

RESOURCE SYSTEMS

3.1 Introduction

This chapter discusses GPU-OSDDA, a GPU-based approach to deadlock detec-

tion in single-unit resource systems. The following section states the system as-

sumptions and provides background information regarding the core methodology of

GPU-OSDDA. GPU-OSDDA adopts the resource event classification scheme found in

the hardware-based deadlock detection algorithm known as O(1) Single-Unit Dead-

lock Detection Algorithm (OSDDA) [10]. Section 3.2.2 includes the underlying theory

of OSDDA and discusses how it classifies and handles resource events, as well as

its O(1) overall run-time capability in hardware. This is followed by our algorithm

design and its implementation in Section 3.3. Following the design discussion is the

Experimentation and Results Section (Section 3.4) which details the run-times and

speedups achieved by GPU-OSDDA.

3.2 Background

3.2.1 Assumptions and Terms

We here define a single-unit resource system as an m×n system, where m and

n are the number of processes and resources, respectively. The proposed algorithm

adheres to the following assumptions:

1. Each resource contains a single unit (see Definition 1.2.13). Thus, a cycle in the

RAG is a necessary and sufficient condition for deadlock [10].

38

2. One process requests one resource at a time (see Definition 1.2.17). Thus, a

process is blocked as soon as it requests an unavailable resource [3].

3. A resource is granted to a process immediately if the resource is available. As a

result, the entire system is always in an expedient state (see Definition 1.2.16) [3].

4. Resource events are managed centrally (e.g., by the OS).

To aid computations of deadlock detection in GPU-OSDDA, we define the sink process

node (see Definition 1.2.35) and the active process (see Definition 1.2.15).

3.2.2 Underlying Theory of OSDDA

OSDDA is truly unique because its overall algorithm run-time isO(1) in hardware.

It is able to achieve this by performing parallel computations on a RAG based on the

classification of resource events in the system. The three types of resource events in

OSDDA are: granted resource request, blocked resource request, and resource release

[10]. The resource events and deadlock detection capability of OSDDA are briefly

discussed in Sections 3.2.2 and 3.2.2.

Resource Events

Let us first discuss the resource request granted event type. For this event to

occur, when a process pi requests a resource q j, q j has to be available (not granted to

another process) and pi needs to be an active process. This means that resource q j

must not have any incoming or outgoing edge and process pi may have incoming edges

but no outgoing edge (since the system is in an expedient state). If these criteria are

satisfied, resource q j may be granted to process pi. This event causes q j to change

its reachable sink node. The resource request granted scenario is illustrated in Figure

3.1.

Next we will discuss the resource request blocked event. When a process pi requests

a resource q j and there are no available unit of q j, the process pi is blocked. Prior to

39

p
i

p
i

q
j

q
j

p
i may or may not

grant

scenario

..
.

..
.)(()

have incoming edges.

after request granted before request

Before resource granted,

representative scenario

Figure 3.1: Scenarios of resource request granted events (Courtesy of Xiao and

Lee [10]).

the request, process pi has to be an active process, and thus, pi has no outgoing edge

when the request is made. By definition of an active process, pi could have already

been granted resources and as a result have incoming edges. Furthermore, resource q j

has an outgoing edge (as it is not available) and may have incoming edges (pending

requests). As a result, two scenarios of the resource request blocked event exist with

an illustration provided in Figure 3.2:

1. Block (i) - Before request blocked, pi has no incoming edges; q j may or may

not have incoming edges [10].

2. Block (ii) - Before request blocked, pi has incoming edges; q j may or may not

have incoming edges [10].

p
i

p
i

q
j

q
j

..
.

..
.

q
j may or may not

p
i

p
i

p
i

q
j

q
j

..
.

..
. ..

.

..
.

p
i
q

j

block (i)

() ()

have incoming edges.

after request blocked before requestscenario representative scenario

Before request blocked,
has no incoming edges ;

() ()

have incoming edges.

block (ii) has incoming edges
may or may not

;
Before request blocked,

Figure 3.2: Scenarios of resource request blocked events (Courtesy of Xiao and

Lee [10]).

Finally, we’ll discuss the resource release event. For process pi to release its

resource, it must be an active process by having no outgoing edge. While servicing the

40

resource release event, the algorithm must determine if resource q j has any pending

resource requests (incoming edges). If q j has a pending request (incoming edge) from

a process pt, q j is granted to pt after the release (due to the system being in an

expedient state). Depending on if resource q j has pending requests, two separate

resource release scenarios exist with an illustration provided in Figure 3.3.

1. Release (i) - Before resource released, pi may have one or more incoming edges;

q j has no incoming edges [10].

2. Release (ii) - Before resource released, pi may have one or more incoming edges;

q j has one or more incoming edges; pt may or may not have incoming edges.

After release, q j is assigned to pt [10].

p
i

p
i

..
.

q
j q

j

p
i

p
t

p
t

..
. q

j

q
j

..
.

..
.

p
i

..
.

..
.

.
.
.

p
i
may have one or more

p
i

q
j

q
j

p
t

q
j

p
t

before release after release

..
.() ()

release (i)

release (ii)

)(()
()

)(

()
)(may have one or more

incoming edges;

have incoming edges.

incoming edges;

incoming edges;
may have one or more

has no incoming edges.

Before resource released,

Before resource released,

scenario representative scenario

After release,

may or may not

is
assigned to .

Figure 3.3: Scenarios of resource release events (Courtesy of Xiao and Lee [10]).

O(1) Deadlock Detection

It is known that as long as the sink process node for every resource in the system

can be identified, then deadlock can be detected in O(1) time in OSDDA [5] [9]. We

know the reachable sink process node of a resource q j is process pi if and only if pi is

a sink process node and a path from resource q j to process pi exists. A cycle occurs

in the system when the sink process node (say pi) of a resource (say q j) requests the

41

resource. By the system assumptions of OSDDA, a cycle in the RAG is a necessary

and sufficient condition for deadlock, and thus, under this scenario, a deadlock exists.

Prior work in [9] adopted the same deadlock detection approach as seen in [5],

but this approach required reachable sink node information to be re-computed after

every resource event. The re-computation of the sink process nodes in the system has

a run-time complexity of O(m+n) in [5], O(min(m,n)) in [9], and O(1) in [10], where

m and n are the process and resource counts, respectively. To achieve O(1) run-time

of deadlock detection, OSDDA maintains the sink information for all resources in the

system for use in upcoming invocations of deadlock detection. The sink information

is stored in a matrix known as Sink.

Furthermore, for a release (ii) event, the OSDDA algorithm needs to identify

resources on the sub-tree of the released resource (q j) as well as those on the sub-tree

of the process acquiring q j [9]. For this, OSDDA utilizes the ReachableResource or RR

and the ReachableProcess or RP matrices to maintain information on what resources

and processes are reachable from every resource, respectively [9]. The matrices are

defined as follows:

Sink[j][i]nxm =

 1 if pi is q j’s reachable sink node,

0 otherwise.

RR[j][k]nxn =

1 if a path exists from resource q j to qk

or k = j,

0 otherwise.

RP [j][i]nxm =

 1 if a path exists from resource q j to pi,

0 otherwise.

42

3.3 GPU-OSDDA Design

3.3.1 Introduction

During the development process of our preliminary version of GPU-OSDDA, we

implemented two versions, one with characters and the other with integers to represent

our matrices. For both the character and integer based approaches, time was spent

optimizing and tweaking code to ensure that occupancy was high, coalesced memory

accesses were occurring, and threads were kept busy. This enabled us to maintain a

high Instructions Per Cycle (IPC) ratio and maximize the memory bandwidth for our

problem. We utilized the Nvidia Compute Visual Profiler to gauge our results at each

step and came to a point where we were satisfied with the optimizations. However,

with all optimizations complete, we were only able to achieve 3-24X speedup over our

CPU implementation, dubbed CPU-OSDDA. These speedups, while an improvement,

did not grant us the kinds of speedups we were looking for.

We then decided that a radically different approach was necessary in order to

maximize our speedups and yield an algorithm that would be applicable to real world

systems. Thus, we decided to implement our entire algorithm with integer length

bit-vectors. This approach would reduce our memory footprint by a factor of 32, thus

allowing for an increasing amount of processes and resources the algorithm could

handle, as well as simplify and accelerate the bit-wise computations of our algorithm.

Advantages of this approach are discussed throughout the remaining subsections as

well as how GPU-OSDDA handles each resource event type.

3.3.2 Bit-Vector Design

Since GPU-OSDDA is based off of a single-unit system, all values that indicate

the state of a process or resource in the system may be represented as binary values

(0,1). In this case, instead of using an 8 or 32-bit variable to hold a 1-bit value,

43

we bit-pack 32 processes or resources into a single 32-bit unsigned integer. Figure

3.4 shows how we would create a 128×128 adjacency matrix using 32-bit unsigned

integers, where each box in the image represents a 32-bit unsigned integer. Similarly,

we could create an adjacency matrix where the rows/columns are reversed.

q0

q1

q2

q126

q127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p96~p127p64~p95p32~p63

p0~p31 p32~p63 p64~p95 p96~p127

Figure 3.4: A 128x128 Bit-Vector Adjacency Matrix

Additionally, Table 3.1 describes variables used throughout the remaining algo-

rithm descriptions using Figure 3.4.

Table 3.1: Common variables used throughout GPU-OSDDA.

Variable Description Values in Figure 3.4 Comment

INTS PER ROW (IPR) The number of integers in a bit-packed row 4 Used to calculate row index

INTBITS The number of bits per unsigned integer 32 Used to determine integer and bit to alter

LIPR Equivalent to log2(INTS PER ROW) 2 Used in multiply bit-shift calculations

LINTBITS Equivalent to log2(INTBITS) 5 Used in divide bit-shift calculations

Now that all algorithm critical information has been discussed, we present the

overall kernel structure with the pseudo-code in Algorithm 4. The pseudo-code

presents the kernels called upon each resource event type. In lines 4-5, GPU-OSDDA

handles the resource request granted event.

44

The Request Granted kernel launches a single block containing a single thread to

perform the updates discussed in Section 3.3.3.

Algorithm 4 Overall Kernel Structure

1: // Refer to Table 3.1 for variable definitions

2: // Where TILE DIM equals M÷INTBITS or N÷INTBITS (32 bits per unsigned int)

3:

4: if Resource Request Granted then

5: Request Granted≪1,1≫(event, AG, Sink, RP)

6: else if Resource Request Blocked then

7: DeadlockCheck Init≪1,1≫(event, Sink, AR, deadlock)

8: if deadlock == false then

9: BitMatrix Transpose≪TILE DIM,TILE DIM≫(AG tile, AG)

10: tileTranspose≪TILE DIM,TILE DIM≫(AG trans, AG tile)

11: Row Reduction≪1,IPR/2≫(AG trans[event→p*IPR], phold)

12: if phold == false then

13: Request Blocked≪N,IPR≫(event, Sink temp, Sink, RR, RP)

14: end if

15: else

16: Handle Deadlock

17: end if

18: else if Resource Released then

19: Release Resource≪1,1≫(event, AG)

20: BitMatrix Transpose≪TILE DIM,TILE DIM≫(AR tile, AR)

21: tileTranspose≪TILE DIM,TILE DIM≫(AR trans, AR tile)

22: Row Reduction≪1,IPR/2≫(AR trans[event→q*IPR], pwait)

23: if pwait == 0 then

24: Update Sink RP≪1,1≫(event, Sink, RP)

25: else

26: Update AG AR≪1,1≫(event, AG, AR)

27: Release Update Reachability≪N,IPR≫(event, Sink, RP, RR)

28: end if

29: else

30: Not a valid event

31: end if

Lines 6-16 in Algorithm 4 handle the resource request blocked event. The Dead-

lockCheck Init kernel in line 7 launches a single block containing a single thread. It

checks the system for deadlock utilizing the Sink[] matrix previously discussed and

updates the deadlock flag accordingly. Line 8 checks the system’s deadlock status. If

deadlock exists, the algorithm notifies the CPU of the deadlock status. Otherwise,

45

lines 9-10 performs a bit-wise matrix transpose on the AG[] matrix, which allows

for coalesced memory accesses in the Row Reduction kernel in line 11. The reduction

kernel launches a single block with a number of threads equal to the number of inte-

gers per matrix row (INTS PER ROW or IPR) divided by two. The reduction kernel

determines if the blocked process holds any additional resources. If the process does

not hold additional resources, sink nodes do not change (block (i) event, see Figure

3.2) and no additional computation is needed. If the process does hold additional

resources, we launch the Request Blocked kernel in line 13. This kernel launches N

blocks with INTS PER ROW threads per block to facilitate parallel computation.

The resource request blocked functionality is discussed in detail in Section 3.3.4, while

the BitMatrix Transpose, tileTranspose and Row Reduction kernels are discussed in

Section 3.3.6.

Lastly, lines 17-26 handle the resource release event. In line 19, the Resource Release

kernel launches a single block with a single thread to perform the update to AG[]

reflecting the resource release. Lines 20-22 perform a similar function to what was

done in lines 9-11, except this time we transpose and check the AR[] matrix. The

Row Reduction kernel tells us if any processes are waiting for the released resource.

If no processes are waiting, we launch the Update Sink RP kernel in line 24, which

performs the updates on the Sink[] and RP[] matrices. Otherwise, we grant the

released resource to a new process with the Update AG AR kernel in line 26. Fol-

lowing the resource grant, we update the reachability information in the system by

calling the Release Update Reachability kernel in line 27. The release resource event

is discussed in detail in Section 3.3.5.

In the GPU-OSDDA algorithm, we set the size of our matrices to powers of two,

so that we can perform bit-shifts either left (multiplication) or right (division) for

index calculations. Note that M and N do not need to be equal in size, but they must

be powers of two. If M and N are not equal, the INTS PER ROW value will change

depending on which matrix we address. For ease of explanation in this paper, we

assume that M and N are equal.

46

3.3.3 Handling a Resource Request Granted Event

To handle a resource request granted event, GPU-OSDDA launches a kernel with

a single block containing a single thread. The computation involved in this event

does not advocate parallelism; however, GPU-OSDDA manages and maintains the

RAG on the GPU which makes it necessary to launch this small kernel. Algorithm 5

shows the assignments made in our kernel. Since we utilize a bit-packing technique to

represent all algorithm matrices, we have to use a special method of referencing the

correct process/resource pair for assignment. Figure 3.5 provides an illustration of

the indices used to address the matrices in the Request Granted kernel while Figure

3.6 summarizes the actions taken by the kernel.

q0

q1

p0 p31 p32 p63 p64 p95 p96 p127

q127

pi >> LINTBITS

qj << LIPR

bit

AG/Sink/RP Matrices

idx

Assume q j equals 1 and p i equals 48

Figure 3.5: Illustration of computation to update AG/Sink/RP Matrix (Resource

Granted).

In order to find the correct bit corresponding to the process in the grant event,

handled by the Request Granted computation, we perform in line 3 the modulo of

pi by INTBITS (see Figure 3.5 for illustration of bit variable). After obtaining the

correct bit in the integer, we find the exact integer index to be altered in each adja-

cency matrix. This is computed in line 4 by multiplying the row we want (qj) by the

size of each row (note, this is actually a left shift), which is INTS PER ROW (refer

47

p
i
 also becomes reachable from q

j
qj i

’s reachable sink node is p
j

q
i

 is granted to p

qj pi

Sink RPAG

Resource Grant:

1 1 1

threadIdx.x = 0

Figure 3.6: Resource Request Granted

to Figure 3.4 that has INTS PER ROW equal to 4). To this we add the quotient of

the process number divided by INTBITS (note, this division is actually a right shift).

The sum of these two numbers yields the index of the integer we want to alter in the

adjacency matrix. In Figure 3.5, this value is equivalent to the idx variable.

In order to perform assignments to the adjacency matrices, we perform bit-wise

OR computations with the appropriate mask. The mask is created by shifting a 1

into the location specified by the bit variable we calculated in a prior step. Upon

performing the bit-wise OR operations in lines 8-10, our Request Granted kernel is

complete.

Algorithm 5 Request Granted≪1,1≫
1: // Refer to Table 3.1 for variable definitions

2: // Determine index variables - integer index and bit to alter

3: bit← pi mod INTBITS

4: idx← qj � LIPR+ pi � LINTBITS

5:

6: // Update AG[], Sink[], and RP[] to reflect resource grant

7: // All assignments are bit-wise computations using index variables

8: AG[idx] |= (1� (INTBITS − (bit+ 1)))

9: Sink[idx] |= (1� (INTBITS − (bit+ 1)))

10: RP [idx] |= (1� (INTBITS − (bit+ 1)))

48

As a summary, in the Request Granted kernel, it can be seen that the AG[] matrix

is updated to reflect the assignment qj→pi. Similarly, by resource q j being granted

to pi, pi becomes the new reachable sink node of resource q j, denoted by the Sink[]

matrix. It follows that process pi is reachable from resource q j as denoted by the

RP[] matrix assignment.

3.3.4 Handling a Resource Request Blocked Event

GPU-OSDDA handles a resource request blocked event through several stages.

The initial step, which we denote as DeadlockCheck Init (Algorithm 6), checks whether

or not the requesting process is the current sink node of the requested resource. Ac-

cording to [10], if a resource request event occurs where the requesting process is the

current sink node of the resource being requested, a cycle forms in the RAG and a

deadlock occurs. Otherwise, AR[] is updated to reflect the blocked request of pi→q j.

Algorithm 6 DeadlockCheck Init≪1,1≫
1: // Refer to Table 3.1 for variable definitions

2: // Determine index variables - integer index and bit to alter

3: // We have two sets of indices as Sink[] is resource×process

4: // and AR[] is process×resource

5: sbit← pi mod INTBITS

6: abit← qj mod INTBITS

7: sidx← qj � LIPR+ pi � LINTBITS

8: aidx← pi � LIPR+ qj � LINTBITS

9:

10: // If current requested resource’s sink node is the requesting process

11: // then a deadlock exists. Otherwise, block the request by updating AR[].

12: if (Sink[sidx] & (1� (INTBITS − (sbit+ 1))) == 1) then

13: Update Deadlock F lag

14: else

15: AR[aidx] |= (1� (INTBITS − (abit+ 1)))

16: end if

The DeadlockCheck Init kernel utilizes a similar technique seen in the

Request Granted kernel to determine the indices needed for its computations. First,

we determine which bit needs to be checked and/or set in the kernel. We first deter-

49

mine the bit to be checked in the Sink[] matrix in line 5. Since we want to check a

single bit in an integer, we perform the modulo of process pi by INTBITS. Similarly,

we need a bit for the AR[] matrix. The reason for building two separate indices is

that the Sink[] and AR[] matrices take the form of resource × process and process ×

resource, respectively. For the AR[] matrix, we gain the bit to check by performing

the modulo of resource q j by INTBITS in line 6. As can be seen in Algorithm 6, we

continue by constructing two separate global indices; sidx and aidx in lines 7-8. The

sidx index yields the position of the integer we want to check in the Sink[] matrix,

while the aidx index yields the position of the integer for assignment in the AR[]

matrix. The combination of both the global integer index and the associated bit

index enables us to check or alter a single bit in the appropriate adjacency matrix. If

a deadlock occurs (checked in line 12), then we update the deadlock detection flag in

line 13 for the CPU to handle the deadlock event. Otherwise, the resource request is

blocked in line 15 by updating the value corresponding to the request pi→q j in the

AR[] matrix.

If a deadlock does not occur, reachability information of the RAG needs to be

updated if the requesting process holds additional resources. Otherwise, the reachable

sink nodes do not change, so no additional computation is necessary. The task of

updating reachability information for a RAG is computationally expensive, unlike

O(1) of OSDDA [10]. Nevertheless, our implementation of the reachability update

computation benefits greatly from the parallelism offered by the GPU and is further

accelerated by our bit-vector approach to the algorithm. Algorithm 7 shows the

pseudo-code for our Request Blocked kernel, which performs the reachability update.

As can be seen by the kernel overview in Algorithm 4, we launch N blocks with

INTS PER ROW threads per block. This kernel structure allows us to perform all

bit-wise computations in this kernel simultaneously, except for the serialization of the

Sink[], RR[], and RP[] updates per thread. The bit-vector approach we implement

allows us to perform computations for 32 processes or resources per integer index in

an adjacency matrix. This approach granted us an exponential speedup in the run-

50

time of our algorithm, which will be depicted in the Experimentation and Results

section of this paper. The first step in our Request Blocked kernel is to determine

the indices in our adjacency matrices (lines 3-7).

We also allocate a temporary sink matrix, Sink temp[], on the GPU which takes

on the values of the Sink[] matrix. The Sink temp[] matrix is used to check values

of the Sink[] matrix without the risk of race conditions between the read and write

cycles of the Sink[] matrix. After performing our check in line 12, the Sink[],

RR[], and RP[] matrices are updated according to [10] in lines 13-15. Line 13

makes the sink node of all resources on the sub-tree of pi equal to q j’s sink node.

Then in lines 14-15, the resources on pi’s sub-tree include the reachable resources and

processes of q j. Following Algorithm 7, a summary of the operations performed for

the Request Blocked kernel is provided.

Algorithm 7 Request Blocked≪N,IPR≫
1: // Refer to Table 3.1 for variable definitions

2: // Indexing variables for reachability update computation

3: row ← blockIdx.x

4: col← pi � LINTBITS

5: bit← pi mod INTBITS

6: tid← threadIdx.x

7: idx← row � LIPR+ col

8:

9: // For all the resources that belong to the sub-tree of pi,

10: // their sink nodes are now set to qj ’s; their reachable

11: // resource and process nodes include qj ’s.

12: if ((Sink temp[idx] & (1� (INTBITS − (bit+ 1)))) == 1) then

13: Sink[row × IPR+ tid]← Sink[qj × IPR+ tid]

14: RR[row × IPR+ tid]← RR[row × IPR+ tid] | RR[qj × IPR+ tid]

15: RP [row × IPR+ tid]← RP [row × IPR+ tid] | RP [qj × IPR+ tid]

16: end if

As in [10], for all resources belonging to pi’s sub-tree, their sink nodes are set

to q j’s sink node. Their RR[] and RP[] matrices are also updated to include q j’s

reachable nodes. The biggest advantage we gain during this computation is that per

each assignment or bit-wise OR operation, we effectively update 32 process/resource

51

pairs per matrix per thread. Figure 3.7 depicts the operations taking place during

the reachability computation, where resources q1 and q127 have a sink node of pi and

q j is assumed to be q0. Figure 3.7(a) depicts line 13 in the Request Blocked kernel

where the reachable sink nodes are updated. Figure 3.7(b) depicts lines 14-15 in the

Request Blocked kernel where the reachable processes and resources of pi’s sub-tree

resources are updated to include q j’s.

In our implementation, each row of a matrix is handled per block with all columns

being handled per thread. In the bottom part of the figure, the RR[]/RP[] matrix

is split into four rows in order to better show the handling of the computation.

Furthermore, we assume that the resource q j falls within the first row (since q j is

equivalent to q0) in order to make the diagram easily understood. In the bottom

part of the figure, we show the logic diagram for a single matrix, but know that an

identical operation is occurring for both matrix RR[] and RP[], respectively.

RR[q 1][p0..127]/RP[q 1][p0..127]

RR[q127][p0..127]/RP[q127][p0..127]

RR[q127][p0..127]/RP[q][p127 0..127]

RR[q 1][p0..127]/RP[]0..127][p1q

1][p0..127]Sink[q

(a)

(b)

][pj]/RP[q]][pj

Sink[q 127][p]

0..127RR[q

Sink[q

0..127

0..127

j
][p 0..127]

Figure 3.7: Calculation to determine reachability in RAG.

(a) Update Reachable Sink Node (Line 13)

(b) Update Reachable Processes and Resources (Lines 14-15)

52

3.3.5 Handling a Resource Release Event

In handling a resource release event, GPU-OSDDA first has process pi release

resource q j by updating AG[], as the pseudo-code in Algorithm 8 depicts. We

first determine the bit that represents the process pi releasing resource q j in line 3.

Following a familiar procedure, we compute pi modulo INTBITS to represent our

process bit. Then to determine the integer index into the AG[] matrix that we need

to alter, we compute q j left-shifted by log2(INTS PER ROW) to give us the proper

row of AG[] in line 4. We then add this to pi right-shifted by log2(INTBITS) to

give us the column integer that we want to address. This sum then yields the index

to address in AG[]. From there, the operation in line 7 performs a bit-wise AND

operation that updates AG[] reflecting that process pi released resource q j.

Algorithm 8 Release Resource≪1,1≫
1: // Refer to Table 3.1 for variable definitions

2: // Determine index variables - integer index and bit to alter

3: bit← pi mod INTBITS

4: idx← qj � LIPR+ pi � LINTBITS

5:

6: // Release resource from AG matrix by clearing the bit

7: AG[idx] & = ∼ (1� (INTBITS − (bit+ 1)))

GPU-OSDDA then checks if a process is waiting on q j by performing a reduction

on AR trans[q j][] (transpose of the AR[] matrix). In the event that this reduction

returns 0, it informs us that no process is waiting on q j and that it belongs to

a release event (i) explained in Section 3.2.2 (see Figure 3.3). From there, GPU-

OSDDA updates the Sink[] and RP[] matrices to indicate that q j has no sink and

that pi is no longer reachable from q j. Algorithm 9 depicts the update process of

Sink[] and RP[]. Since both Sink[] and RP[] are resource×process matrices, we are

able to utilize the same bit and index to update necessary information. Notice the

procedure in lines 3-4 in Algorithm 9 is similar in terms of finding the appropriate bit

and index. After computing this information, we perform a bit-wise AND operation

in lines 7 and 9 to clear the corresponding bit in the adjacency matrices.

53

Algorithm 9 Update Sink RP≪1,1≫
1: // Refer to Table 3.1 for variable definitions

2: // Determine index variables - integer index and bit to alter

3: bit← pi mod INTBITS

4: idx← qj � LIPR+ pi � LINTBITS

5:

6: // qj is isolated; thus qj has no sink - clear bit

7: Sink[idx] & = ∼ (1� (INTBITS − (bit+ 1)))

8: // pi is no longer reachable from qj either - clear bit

9: RP [idx] & = ∼ (1� (INTBITS − (bit+ 1)))

If the reduction of AR[][q j] is not equal to 0, this indicates that the release event

is a release (ii) event (see Figure 3.3). In this case, GPU-OSDDA updates AG[] and

AR[] to indicate that the released resource is granted to a waiting process. Algorithm

10 depicts the update process for AG[] and AR[]. Since the AG[] and AR[] matrices

take the form of resource × process and process × resource, respectively, they both

need their own bit and global index variables to update the correct bit. As performed

for all of our updates thus far, we find the correct bit by computing the modulo of

the bit we want with INTBITS in lines 5-6. Following that, lines 7-8 perform familiar

computations to find the integer index into the adjacency matrix that we want to

update. Finally, we update AG[] and AR[] by performing bit-wise OR operations

on the corresponding index and bit in lines 11-12.

Algorithm 10 Update AG AR≪1,1≫
1: // Refer to Table 3.1 for variable definitions

2: // Determine index variables - integer index and bit to alter

3: // We have two sets of indices as AG[] is resource×process

4: // and AR[] is process×resource

5: tbit← pt mod INTBITS

6: qbit← qj mod INTBITS

7: tidx← pt � LIPR+ qj � LINTBITS

8: qidx← qj � LIPR+ pt � LINTBITS

9:

10: // qj is now granted to pt - set appropriate bits

11: AG[qidx] |= (1� (INTBITS − (qbit+ 1)))

12: AR[tidx] |= (1� (INTBITS − (tbit+ 1)))

54

Following this step, reachability and sink information needs to be updated. Al-

gorithm 11 provides our pseudo-code in handling the update process. The Re-

lease Update Reachability kernel takes advantage of the parallelism provided by the

GPU. For this kernel, we launch N blocks with a number of threads equal to INTS PER

ROW for each block. The kernel also utilizes the same methods as prior kernels to

check, set, and clear bits in our adjacency matrices.

To start, in line 3 we create an array in shared memory called newSink [], which

we use to update sink information later in the kernel. Lines 7-8 assign the block

and thread variables to row and tid, respectively, which are used for calculating the

bit, column, and index variables. It can be seen that the same familiar process to

find needed bits (lines 9-11), columns (lines 12-14), and indices (lines 15-17) has

been performed. This kernel, however, has every block handle a row in the matrices

involved in computation. In lines 20-24, the newSink shared variable is populated to

hold the new sink node, i.e., process pt. In line 27, we check the RR[] matrix to

obtain all of q j’s sub-tree resources. After finding all of q j’s sub-tree resources, we

assign them the new sink node of pt in line 29. Since pi released resource q j, pi is

no longer reachable from qj and is removed from the RP[] matrix in line 34. In line

36, we check if pt’s sub-tree resources were able to reach q j. If pt’s sub-tree resources

were able to reach q j, q j is no longer reachable so we remove q j from the RR[] matrix

in line 38. Otherwise, for q j’s sub-tree resources that were not reachable to pt, pt

becomes reachable and the RP[] matrix is updated to reflect the change in line 41.

As a summary, the Release Update Reachability kernel updates all sink nodes in

q j’s sub-tree to pt. The process pi that released the resource is no longer reachable

from q j and its sub-tree, so the RP[] matrix is updated accordingly. The final steps

in our computation require that all pt’s sub-tree resources that were previously able

to reach q j, be removed from the RR[] matrix. Conversely, if q j’s sub-tree resources

were not reachable to pt, pt now becomes reachable and the RP[] matrix is updated.

55

Algorithm 11 Release Update Reachability≪N,IPR≫
1: // Refer to Table 3.1 for variable definitions

2: // Shared variable holds new sink information

3: shared newSink[IPR]

4:

5: // Determine index variables - integer index and bit to alter

6: // Multiple indices are needed since we reference three different variables: pt, pi, and qj

7: row ← blockIdx.x

8: tid← threadIdx.x

9: tbit← pt mod INTBITS

10: pbit← pi mod INTBITS

11: qbit← qj mod INTBITS

12: tcol← pt � LINTBITS

13: pcol← pi � LINTBITS

14: qcol← qj � LINTBITS

15: tidx← row � LIPR+ tcol

16: pidx← row � LIPR+ pcol

17: qidx← row � LIPR+ qcol

18:

19: // Initialize newSink so pt is the new sink node and synchronize threads

20: newSink[tid]← 0

21: if tid == tcol then

22: newSink[tcol] |= (1� (INTBITS − (tbit+ 1)))

23: end if

24: syncthreads()

25:

26: // For qj and its sub-tree resources

27: if (RR[qidx] & (1� (INTBITS − (qbit+ 1))) == 1) then

28: // Assign the new sink node information

29: Sink[row × IPR+ tid]← newSink[tid]

30: // Avoids writing to the same location for each thread

31: // although the remaining threads go inactive

32: if tid == 0 then

33: // pi is no longer reachable

34: RP [pidx] & = ∼ (1� (INTBITS − (pbit+ 1)))

35: // For pt’s sub-tree resources that were able to reach qj

36: if (RP [tidx] & (1� (INTBITS − (tbit+ 1))) == 1) then

37: // qj is no longer reachable

38: RR[qidx] & = ∼ (1� (INTBITS − (qbit+ 1)))

39: else

40: // pt becomes reachable

41: RP [tidx] |= (1� (INTBITS − (tbit+ 1)))

42: end if

43: end if

44: end if

56

3.3.6 Supplementary Kernels

One may notice that there were two additional kernels in the overview code that

were not discussed in the design section, the BitMatrix Tranpose and Row Reduction

kernels. The BitMatrix Transpose kernel was used to transpose our bit-vector matri-

ces in order to ensure coalesced global memory accesses in our Row Reduction kernels.

This is why the BitMatrix Transpose kernel always precedes the Row Reduction ker-

nel.

Performing the transpose of a bit-vector matrix can be a complicated task (see

Figure 3.8). This computation has been done in [22]; however, we needed to parallelize

the computation to some degree and make it applicable to our algorithm. As such, we

adopted the bit-vector matrix transpose function seen in [22]. The transpose in [22]

only works on a 32-bit×32-bit matrix. To make this solution fit to our problem, we

sub-divided the transpose of our matrices into 32-bit×32-bit tiles (seen as TILE DIM

in Algorithm 1). We achieve this by launching TILE DIM blocks and threads. This

ensures that each thread handles a 32-bit×32-bit tile of the matrix. Following the

transpose of each 32-bit×32-bit tile, all tiles are transposed to effectively transpose the

entire bit-vector matrix (see Figure 3.9). By performing the transpose of our entire

matrix in tiles, we were not only able to enable coalesced global memory accesses

for following kernels but also able to parallelize the transpose, thus leading to a fast

bit-vector matrix transpose operation.

0 1 2 3 4 5 29 30 31...

... 61 62 63

64 65 66 67

32 33 34 35

... 93 94 95

992 993 994 1021 1022 1023

960 961 962 989 990 991

928 929 930 957 958 959...

...

...

bitMatrix T

32 integers

32 bits

32 integers

32 bits

bitMatrix

...

...

...

...

...

...

0 32 64 928 960 992

1 33 65 929 961 993

2 34 66 930 962 994

29 61 93 957 989 1021

30 62 94 958 990 1022

31 63 95 959 991 1023

Figure 3.8: Example of a bit-matrix transpose of a 32×32 matrix.

57

TILE 0

1 thread

TILE 1 TILE 2 TILE 3

TILE 4 TILE 5 TILE 6 TILE 7

TILE 8 TILE 9 TILE 10 TILE 11

TILE 12 TILE 13 TILE 14 TILE 15

1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

TRANSPOSE

TILE

A 128−bit x 128−bit matrix with transposed tiles A fully transposed 128−bit x 128−bit matrix

TILE 0

1 thread

TILE 5

TILE 15

1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

TILE 4 TILE 8

TILE 1 TILE 9

TILE 2 TILE 6

TILE 12

TILE 13

TILE 10 TILE 14

TILE 3 TILE 7 TILE 11

Figure 3.9: Example of full matrix transpose after bit-matrix transpose in tiles.

Our Row Reduction kernel also greatly benefits from our bit-vector approach. All

of the reductions in GPU-OSDDA are used to check to see if the row or column of

a particular matrix is zero. This works well with the bit-vector approach. When we

perform our reduction, we simply add each integer of a particular row and column

together (an add reduction) and determine if the total is zero or not. This allowed

us to compute the row or column reduction 32× faster than if we had not taken the

bit-vector approach in storing our adjacency matrices. To optimize our reduction

kernels even further, we perform the first addition of the reduction when we populate

shared memory, thus allowing us to launch half the number of threads required in a

standard reduction. From that point, we perform the reduction while unrolling the

last warp utilizing the warpReduce function found in [23].

While these kernels are supplementary to the core GPU-OSDDA functionality,

they provide substantial speedups with regard to the run-time of our algorithm.

Without performing the bit-matrix transpose that advocates global memory coalesc-

ing in kernels, we would have seen a great loss in efficiency (coalesced global memory

accesses would not have occurred) and in run-time.

58

3.4 Experimentation and Results

A serial version of GPU-OSDDA is first implemented using the C language referred

to as CPU-OSDDA. This version utilizes no parallel programming primitives (such

as OpenMP) in order to fully demonstrate the capabilities of parallel processing on

GPU. The development of a parallel CPU version of our algorithm would provide

significant difficulty as the CPU is limited in the number of threads it may spawn

to accomplish the massive parallel computations required. In addition, the CPU

should be available to handle the normal stream of tasks associated with computing,

as mentioned in Section 1.4. By launching the maximum number of threads (or

utilizing vectorized instructions) on the CPU, we limit the capability of the processor

to perform processing of normal computing tasks.

All experiments were performed on an Intel ® Core i7 CPU @ 2.8 GHz with 12

GB RAM. The CUDA GPU-OSDDA implementation was tested on three different

GPUs: GTX 670, Tesla C2050, and Tesla K20c. The GTX 670 has 7 SMXs (1344

CUDA Cores) with 2 GB Global Memory, the Tesla C2050 has 14 SMs (448 CUDA

Cores) with 3 GB Global Memory, and the Tesla K20c has 13 SMXs (2496 CUDA

Cores) with 5 GB Global Memory.

To verify the correctness of our algorithm, both CPU-OSDDA and GPU-OSDDA

were tested against RAGs of different sizes (processes x resources). Once results

were verified as correct, more complex and larger RAGs were generated to test the

scalability of GPU-OSDDA for larger set sizes. Tables 3.2 and 3.3 show the run-times

of CPU-OSDDA, our initial approach to GPU-OSDDA, and the bit-packed approach

to GPU-OSDDA, respectively. Figure 3.10 then depicts the associated speedups

of each set size on each piece of target hardware. As can be seen by our results,

an increase in process and resource counts dramatically increases CPU-OSDDA’s

run-time. However, GPU-OSDDA scales well with increasing process and resource

amounts. Our initial approach without the use of bit-packing was able to achieve

speedups of an order of magnitude higher than CPU-OSDDA. The integration of our

59

bit-packing approach, however, enabled us to achieve additional speedups of an order

of magnitude higher than our initial approach.

Table 3.2: Run-Time/Speedup of CPU-OSDDA and GPU-OSDDA

(Initial)

Input CPU-OSDDA GTX 670 Tesla C2050 Tesla K20c

512×512 0.22/0x 0.08/2.75x 0.08/2.75x 0.05/4.40x

1024×1024 2.57/0x 0.26/9.88x 0.27/9.52x 0.24/10.71x

2048×2048 18.60/0x 1.49/12.48x 1.17/15.90x 1.50/12.40x

4096×4096 170.81/0x 10.83/15.77x 8.10/21.09x 11.00/15.53x

8192×8192 1383.97/0x 81.97/16.88x 58.15/23.80x 86.66/15.97x

Table 3.3: Run-Time/Speedup of CPU-OSDDA and GPU-OSDDA

(Bit-Packed)

Input CPU-OSDDA GTX 670 Tesla C2050 Tesla K20c

512×512 0.22/0x 0.07/3.14x 0.07/3.14x 0.04/5.50x

1024×1024 2.57/0x 0.11/23.36x 0.12/21.42x 0.09/28.56x

2048×2048 18.60/0x 0.26/71.54x 0.33/56.36x 0.23/80.87x

4096×4096 170.81/0x 0.88/194.10x 1.42/120.29x 0.81/210.88x

8192×8192 1383.97/0x 4.36/317.42x 8.52/162.44x 4.68/295.72x

60

0.0	

50.0	

100.0	

150.0	

200.0	

250.0	

300.0	

350.0	

512x512	 1024x1024	 2048x2048	 4096x4096	 8192x8192	

Sp
ee
du

p	

Input	 Size	 MxN	

GTX	 670	 Tesla	 C2050	 Tesla	 K20c	 GTX	 670	 (Bit-‐Packed)	 Tesla	 C2050	 (Bit-‐Packed)	 Tesla	 K20c	 (Bit-‐Packed)	

Figure 3.10: GPU-OSDDA Speedup

3.5 Conclusion

A new approach to deadlock detection for single-unit systems on GPU has been

devised and developed using CUDA C. By leveraging facts about single-unit sys-

tems, we were able to devise a bit-vector technique for storing our matrices which

led to efficient algorithmic computations and drastically saved memory space on the

GPU. These factors alone allow GPU-OSDDA to handle systems with increasing

amounts of processes and resources. Since GPU-OSDDA performs deadlock compu-

tation/detection on the GPU, our algorithm acts as an interactive service to resource

events occurring on the CPU. Our experimental results show promising speedups in

the range of 5-317X, thus making GPU-OSDDA a viable solution to deadlock detec-

tion on single-unit resource systems with a large number of processes and resources.

61

4 GPU-LMDDA: A GPU-BASED DEADLOCK

DETECTION ALGORITHM FOR MULTI-UNIT

RESOURCE SYSTEMS

4.1 Introduction

This chapter discusses GPU-LMDDA, a GPU-based approach to deadlock de-

tection in multi-unit resource systems. The following section states the system as-

sumptions and provides background information regarding the core methodology of

GPU-LMDDA. GPU-LMDDA adopts the resource event classification scheme found

in the hardware-based deadlock detection algorithm known as Logarithmic Multi-Unit

Deadlock Detection Algorithm (LMDDA) [12]. Section 4.2.2 includes the underlying

theory of LMDDA and discusses how it classifies and handles resource events, as well

as its log2(min(m,n)) overall run-time capability in hardware. This is followed by

our algorithm design and its implementation in Section 4.3. Following the design

discussion is the Experimentation and Results Section (Section 4.4) which details the

run-times and speedups achieved by GPU-LMDDA.

4.2 Background

4.2.1 Assumptions and Terms

A multi-unit resource system (see Definition 1.2.14) is an m×n system where m

and n are the number of processes and resources, respectively. GPU-LMDDA, like

the algorithm it is modeled after, utilizes a weighted RAG (see Definition 1.2.29) and

its adjacency matrices AG and AR to represent the resource allocation information

in the system. This GPU-based approach to LMDDA also adheres to the following

system assumptions:

62

1. Each type of resource has a fixed total number of units [12].

2. A resource unit is granted immediately if it is available. Thus, the entire system

is always in an expedient state (see Definition 1.2.16) [12].

3. A process requests or releases one resource unit at a time, so called a single-unit

request system (see Definition 1.2.17). Thus, a process is blocked as soon as it

requests an unavailable resource unit [12].

4. Since the target system has multi-unit resources, a knot in the RAG is a neces-

sary and sufficient condition for deadlock (see Theorem 1.2.39).

5. Resource events are managed centrally (e.g., by the OS).

Like GPU-OSDDA discussed in Chapter 3, GPU-LMDDA also utilizes the active

process (see Definition 1.2.15) and the sink process node (see Definition 1.2.35) to aid

the computations of deadlock detection.

4.2.2 Underlying Theory of LMDDA

LMDDA has a slightly different approach to the way it classifies resource events

and determines deadlock in a system since it deals with multi-unit resources. It also

has the best known run-time of any multi-unit resource deadlock detection algorithm

to date. The resource events in LMDDA are comprised of the following: granted

resource requests, blocked resource requests, and resource release [12]. In order to

determine if a deadlock exists in a RAG consisting of both single-unit and multi-

unit resources, the RAG of interest must contain a knot (see Theorem 1.2.39). The

resource events, node traversal, and deadlock preparation capability of LMDDA are

briefly discussed in the following subsections.

63

Resource Events

First discussed is the granted resource request event type. In the event that a

process pi requests a unit of resource q j (via Assumption 3 in Section 4.2.1), two

circumstances may arise assuming that resource q j has at least one available unit. If

process pi has not been previously granted a resource of q j, then q j is granted (see

Definition 1.2.16) to pi with a weight of 1 (see Definition 1.2.29). On the other hand,

if resource q j has been previously granted to process pi and an additional unit is

requested, then the weight of the grant edge (q j→pi) is increased by one. Depending

on if process pi has already attained a unit of resource q j, two granted resource request

scenarios exist with illustrations provided in Figure 4.1:

1. Grant (i) - Before q j is granted, no unit of q j has been assigned to pi. The

weight of the granted edge is assigned a value of 1 [12].

2. Grant (ii) - Before q j is granted, some units of q j have been assigned to pi. The

weight of the already granted edge is increased by 1 [12].

p
i

q
j

q
j

. . .() . . .() . . .()
p

i

. . .()

p
i

q
j

q
j

. . .() . . .() . . .()
p

i

. . .()

p
i

j
q

q
j

p
i

q
j
q

j
assigned to .

Before is granted,
some units of have
been assigned to .

Before is granted,
no unit of has been

before request

w+1wgrant (ii)

1grant (i)

after request granted scenario representative scenario

Figure 4.1: Scenarios of resource request granted events (Courtesy of Xiao and

Lee [10]).

Discussed next is the blocked resource request event type. In this event type,

process pi makes a request for a unit of resource qj, where pi is an active process

(see Definition 1.2.15). When the process pi is blocked for requesting resource q j,

the request edge pi→q j is inserted into the RAG. As a result, all processes that are

reachable (see Definition 1.2.32) from the requested resource q j, also become reachable

64

from the resources on process pi’s sub-tree. If pi has no sub-tree resources, then the

reachable processes of every resource in the RAG remain unchanged. The blocked

resource request events can be handled under a single scenario, with an illustration

provided in Figure 4.2:

1. Block (i) - Before the request is blocked, pi (q j) may or may not have incoming

edges [12].

p
i

p
i

q
j

q
j

..
.()

..
.()

..
.()

..
.()

p
i

q
j() may or may not

have incoming edges.

Before request blocked,

before request

block

after request blocked scenario representative scenario

Figure 4.2: Scenarios of resource request blocked events (Courtesy of Xiao and

Lee [10]).

Last is the resource release event type. In this event type, process pi releases a

unit of resource qj, and the released resource may be granted to a waiting process pt if

qj has an incoming edge from pt. The trivial case of the resource release event occurs

when more than a single unit of resource q j has been granted to process pi and q j has

no incoming edges (pending resource requests). If pi releases a unit of q j under this

scenario, when the resource unit is released, the grant edge q j→pi still exists. Thus,

no edge changes occur in the RAG; there is simply a decrease in the weight of the

granted edge. As a result, the reachable processes of every resource remain the same.

If the resource release scenario is not like that mentioned above, it can be unclear

on how the released resource affects the reachable processes of each resource. For

example, say resource q j has incoming edges (pending requests) prior to the resource

release; after the release occurs, q j is granted to one of the requesting processes (say

pt). While the request edge pt→q j no longer exists after the resource release event,

a resource on pt’s sub-tree may still be able to reach process pi via another path

not involving pt [12]. In these cases, LMDDA utilizes a node hopping mechanism

to determine reachable processes from each resource in the RAG (further discussed

65

in the next section). Summarized here are the resource release event scenarios with

illustrations provided in Figure 4.3:

1. Release (i) - Before a resource is released, more than one unit of q j were assigned

to pi; q j has no incoming edges [12]. As a result, the AG[] matrix is updated

to reflect the resource release, but no update of the RP[] matrix is required.

2. Release (ii) - Before a resource is released, more than one unit of q j were assigned

to pi; q j has incoming edges [12]. As a result, the AR[] and AG[] matrices are

updated to reflect the resource release and the newly granted resource request

(pt→qj). Then reachability information for the RAG is computed by updating

the RP[] matrix using the node hopping mechanism (discussed in next section).

3. Release (iii) - Before a resource is released, only one unit of q j was assigned to

pi; q j may or may not have incoming edges [12]. As a result, the AG[] matrix

is updated to reflect the resource release, followed by an update of the RP[]

matrix to determine reachability information in the RAG. If qj has incoming

requests, one of the requests is granted (updating the AR[] matrix). Otherwise,

the AR[] matrix does not change.

p
i

p
i

q
j

q
j

. . .

()
. . .() . . .() . . .

()

p
i

p
t

q
j

. . .

()

. . .()

p
t

q
j

. . .

()

p
i

.
.
.)

(

. . .()
.
.
.)

(

p
i

p
t

q
j

. . .

()
. . .

()
. . .

()

. . .()

p
t

q
j

. . .

()

p
i

.
.
.)

(

. . .()
.
.
.)

(

.

q
j
may or may not

q
j

p
i

q
j

q
j

p
i

q
j
has incoming edges.

q
j

p
i

before release after release representative scenario

release (i)
w w−1

Before resource is released,

release (ii)

1

w−1

()
Before resource is released,

Before resource is released,

have incoming edges.

release (iii)

w

scenario

more than one unit of

only one unit of

were assigned to ;

has no incoming edges.

more than one unit of

;were assigned to

;was assigned to

Figure 4.3: Scenarios of resource release events (Courtesy of Xiao and Lee [10]).

66

Node Hopping Mechanism

The node hopping mechanism is used to determine reachable processes from each

resource in a RAG. Knowing resource reachability information in the RAG is re-

quired to determine if a knot exists in the RAG. By using the reachability informa-

tion calculated by the node hopping mechanism, the algorithm is able to satisfy the

requirements of Theorem 1.2.39.

1 1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

1𝑠𝑠𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

2𝑖𝑖𝑛𝑛 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑐𝑐𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑟 𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖 𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎

3 𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖𝑠𝑠 𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎

5 𝑖𝑖𝑖𝑖 7 𝑖𝑖𝑛𝑛𝑒𝑒𝑖𝑖𝑠𝑠 𝑖𝑖𝑎𝑎𝑖𝑖𝑎𝑎

p0 q0 q1 p1 q2 p2 q3 p3

q0

q0

q0

q0

p0

p0

p0

p0

q1

q1

q1

q1

q1

q1

p1

p1

p1

p1

p1

p1

q2

q2

q2

q2

q2

q2

p2

p2

p2

p2

p2

p2

q3

q3

q3

q3

p3

p3

p3

p3

2 1

- 𝑅𝑅𝑖𝑖𝑠𝑠𝑖𝑖𝑅𝑅𝑖𝑖𝑐𝑐𝑖𝑖 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖 - 𝑃𝑃𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑠𝑠 𝑁𝑁𝑖𝑖𝑛𝑛𝑖𝑖 - 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸𝑛𝑛𝑒𝑒𝑖𝑖 - 𝑅𝑅𝑖𝑖𝑅𝑅𝑅𝑅𝑖𝑖𝑠𝑠𝑖𝑖 𝐸𝐸𝑛𝑛𝑒𝑒𝑖𝑖

Figure 4.4: An example of the node hopping mechanism finding reachable processes

(Courtesy of Xiao and Lee [12]).

First, the closest reachable process from each resource is determined, or in other

words, the processes that are directly connected to each resource. In Figure 4.4, this

step is known as initialization. As an example, the initialization step in Figure 4.4

determines that processes p0, p1, p2, and p3 are reachable from resources q0, q1, q2,

and q3, respectively. In this initialization step, all reachable processes up to 1 edge

(or hop) away can be determined.

Next, the node hopping mechanism goes through a number of iterations to deter-

mine reachability information for the entire RAG. For all upcoming iterations, the

node hopping mechanism plugs in request edges to further determine reachability

67

information in the system. Looking at the first iteration in Figure 4.4, if the request

edge p0→q1 is plugged in, then process p1 is now reachable from resource q0. Sim-

ilarly, by plugging in request edges p1→q2 and p2→q3, p2 becomes reachable from

q1 and p3 becomes reachable from q2, respectively. Notice, during this first iteration

that all reachable processes up to 3 edges away (or 3 hops) can be determined.

For the second iteration of the nodding hopping mechanism, additional request

edges are plugged in. In Figure 4.4, the request edge p1→q2 is plugged in and results

in p2 becoming reachable from q0 and q1. Now, all reachable processes of each resource

has been determined. The second iteration of the node hopping mechanism is able to

determine reachable processes that are either 5 or 7 edges (5 or 7 hops) away from

each resource.

Each iteration of the node hopping mechanism builds upon the prior iteration

to find reachable processes that are further away by plugging in additional request

edges. Since it is not known in advance which request edge connects a set of nodes,

all request edges must be tried to determine reachability across the RAG. There are

no dependencies between request edge computations, so all computations may be

performed in parallel. The node hopping mechanism finds reachable processes that

are at most 1, 3, 7, 15, 31, ... edges away from every resource in sequence [12]. From

this sequence, it is known that prior to the sth iteration (where s ≥ 1), reachable

processes within 2s-1 edges (or hops) away from each resource can be determined.

Since all reachable processes are at most 2×min(m,n)-1 edges away from any resource

in the RAG [12], to fully determine all reachable processes of every resource in the

system, the number of iterations required is equal to dlog2(min(m,n))e [12].

Deadlock Preparation in log2(min(m,n)) Time

To perform deadlock preparation in log2(min(m,n)) time, LMDDA determines

the reachable processes of every resource in the system utilizing the node hopping

mechanism described above. The reachable process information is stored in a matrix

68

known as ReachableProcess (RP). The matrix RP is an n by m matrix where RP[j][i]

is 1 if pi is reachable from q j, or 0 otherwise [12]. RP is summarized as follows:

RP [j][i]nxm =

 1 if a path exists from resource q j to pi,

0 otherwise.

LMDDA also determines which processes are sink nodes (see Definition 1.2.35)

in the system. The corresponding sink nodes are stored in a vector known as Sink.

The vector Sink is an m by 1 vector where Sink[i] is 1 if pi is a sink node. Sink is

summarized as follows:

Sink[i]mx1 =

 1 if pi is a sink node,

0 otherwise.

After determining reachability information of all processes and resources in the

system, the deadlock status of the system may be determined. In the event of a

resource request blocked, sink nodes must be determined using the AR matrix (see

Definition 1.2.28). Then, a logical AND is performed between Sink[] and RP[j][].

If the result of this logical AND operation is equal to pi’s bitmask (see Definition

1.2.36), then a deadlock exists according to Theorem 1.2.39.

4.3 GPU-LMDDA Design

4.3.1 Introduction

The initial design of GPU-LMDDA utilized characters to represent the adjacency

matrix elements. It was thought that the use of characters would help eliminate as

much unused memory space as possible, thus allowing for a larger number of process

and resource counts the algorithm could handle. This also reduces the amount of

data fetched from memory per global memory access and allows additional data to

be held in the L1 and L2 caches of the GPU. After this version of the algorithm was

optimized, the maximum speedup achieved over the CPU implementation, dubbed

CPU-LMDDA, was 64X.

69

It was found that the bottle neck of the algorithm was within the implementation of

the node hopping mechanism to find reachability information in the system.

Following the development of the bit-vector implementation of GPU-OSDDA (see

Chapter 3), it was hypothesized that similar speedups may be achieved by utiliz-

ing the bit-vector structure for GPU-LMDDA. However, GPU-LMDDA has several

caveats with regards to implementing a bit-vector version. The first is that all matrix

elements are not represented solely as a series of 0s and 1s. Since GPU-LMDDA

utilizes a weighted RAG (see Definition 1.2.29), the AG matrix may contain values

greater than 1. To circumvent this problem, the AG matrix elements were represented

with integers, while the rest of the algorithm’s matrices were represented with integer

length bit-vectors. Another caveat of the bit-vector implementation in GPU-LMDDA

is that when updating reachability information, the algorithm is unable to write all

consecutive values at once because of the nature of the node hopping mechanism (see

Section 4.2.2). As a result there are portions of GPU-LMDDA where writes to a single

bit-packed integer must be atomic and are therefore serialized. The code segments

where this occurs will be discussed in the forthcoming sections when the algorithm

design is described in detail. While GPU-LMDDA provided several interesting prob-

lems to overcome, the use of bit-vectors allowed GPU-LMDDA to reduce its memory

footprint by approximately a factor of 32. The bit-vector approach also allowed for

simplification of reductions and accelerated bit-wise computations of GPU-LMDDA.

4.3.2 Bit-Vector Design

Since GPU-LMDDA is based off of a multi-unit resource system and utilizes a

weighted RAG (see Definition 1.2.29), there may be more than one unit of a resource

granted to any given process in the system. This implies that all matrices in GPU-

LMDDA, with the exception of the AG[] matrix, can have their elements represented

by binary values (0,1). Instead of using an 8 or 32-bit variable to hold a 1-bit value,

we bit-pack 32 processes or resources into a single 32-bit unsigned integer (just as in

70

GPU-OSDDA). Figure 4.5 shows how we could create a 128× 128 element bit-vector

matrix using 32-bit unsigned integers. Like the bit-packing method used in GPU-

OSDDA, each box in Figure 4.5 represents a 32-bit unsigned integer. Note, Figure

4.5 does not apply to the AG[] matrix.

q0

q1

q2

q126

q127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p96~p127p64~p95p32~p63

p0~p31 p32~p63 p64~p95 p96~p127

Figure 4.5: A 128x128 Bit-Vector Adjacency Matrix

Table 4.1 provides a description of some key variables used throughout GPU-

LMDDA. All descriptions are made with respect to Figure 4.5.

Table 4.1: Common variables used throughout GPU-LMDDA.

Variable Description Values in Figure 3.4 Comment

INTS PER ROW (IPR) The number of integers in a bit-packed row 4 Used to calculate row index

INTBITS The number of bits per unsigned integer 32 Used to determine integer and bit to alter

LIPR Equivalent to log2(INTS PER ROW) 2 Used in multiply bit-shift calculations

LINTBITS Equivalent to log2(INTBITS) 5 Used in divide bit-shift calculations

Now that the core methodology behind GPU-LMDDA has been discussed, the

overall kernel structure is shown in Algorithm 12. The pseudo-code presents the

kernels that are invoked upon each resource event type, with the event information

being contained in the event structure variable. The event structure variable consists

of the elements in Table 4.2:

71

Table 4.2: Event structure in GPU-LMDDA.

Variable Description

p i Used to hold process id (i.e., pi) involved in event

q j Used to hold resource id (i.e., qj) involved in event

p t Used to hold process id of the process to be granted resource qj in the resource release (ii) or (iii) event (i.e., pt)

event States the event type (0 = Granted, 1 = Blocked, 2 = Released)

In our pseudo-code description of GPU-LMDDA, for the sake of understanding and

simplicity, it is assumed that M and N are equal and are powers of two (to facilitate

bit-packing and bit-shifting operations). In lines 5-6, GPU-LMDDA handles the

resource request granted event. The Request Granted kernel launches a single block

containing a single thread to perform the updates discussed in Section 4.3.3.

Lines 7-15 in Algorithm 12 handle the resource request blocked event. First, the

Find Sink Processes kernel launches M blocks with INT PER ROW threads per

block. Each block determines if a process is a sink node or not. After finding all

sink nodes, GPU-LMDDA launches the Deadlock Check kernel with a single block

containing a single thread. This kernel determines if a deadlock exists in the system

and alters the deadlock flag accordingly. If a deadlock exists, it would be handled in

line 12 of Algorithm 12 (out of the scope of this thesis). Otherwise, as the requester

(say pi) is blocked for the requested resource (say qj), all processes reachable from

the requested resource also become reachable from the resources on the requesting

process’ sub-tree. The Update RP Blocked kernel in line 14 handles this case. The

kernel is launched with N blocks containing INT PER ROW threads per block to

facilitate parallel computation. All kernels launched to handle the resource request

blocked event are discussed in detail in Section 4.3.4.

Lastly, lines 16-37 handle the resource release event. In line 18, the Release Resource

kernel is launched with a single block containing a single thread. The kernel releases

the resource from the AG matrix by either decrementing the weight of the grant edge

72

Algorithm 12 Overall Kernel Structure

1: // Assume TILE DIM = 32 AND BLOCK ROWS = 16

2: // grid variable → dim3 grid (M/TILE DIM, N/TILE DIM)

3: // threads variable → dim3 threads (TILE DIM, BLOCK ROWS)

4:

5: if Resource Request Granted then

6: Request Granted ≪ 1, 1 ≫ (event,AG,RP)

7: else if Resource Request Blocked then

8: Find Sink Processes ≪ M, INT PER ROW ≫ (SP,AR)

9: Deadlock Check ≪ 1, 1 ≫ (event, SP,RP, ProcessBitMask, deadlock flag)

10: Resource Request Blocked ≪ M,N ≫ (event,AR, SP,RP, ProcessBitMask, deadlock flag)

11: if deadlock flag == true then

12: Handle Deadlock

13: else

14: Update RP Blocked ≪ N, INT PER ROW ≫ (event,RP)

15: end if

16: else if Resource Released then

17: // Release the resource

18: Release Resource ≪ 1, 1 ≫ (event,AG)

19: // Transpose the AR matrix for upcoming kernel

20: bitMatrixTranspose ≪ TILE DIM, TILE DIM ≫ (AR tile, AR)

21: tileTranspose ≪ TILE DIM, TILE DIM ≫ (AR trans,AR tile)

22: // Determine if processes are waiting on the released resource

23: Find Waiting Processes ≪ 1, INT PER ROW ≫ (event,AR trans, pwait flag)

24: // Determine the release type: if of type (ii) or (iii), perform reachability computation

25: Determine Release Type ≪ 1, 1 ≫ (event,AG,AR, pwait flag, reachability flag)

26:

27: if reachability flag == true then

28: // Reset reachability flag

29: reachability flag ← false

30: // Initialize the RP matrix to AG - i.e. All grant edges

31: InitRP Reachability ≪ N,M ≫ (AG,RP)

32:

33: // Perform iterations of the reachability computation implementing the node hopping mechanism

34: for s = 1; 2s−1<min(m,n); s++ do

35: bitMatrixTranspose ≪ TILE DIM, TILE DIM ≫ (RP tile, RP)

36: tileTranspose ≪ TILE DIM, TILE DIM ≫ (RP trans,RP tile)

37: Reachability Computation ≪ N,M ≫ (RP,RP temp,RP trans,AR)

38: end for

39: end if

40: else

41: Not a valid event

42: end if

73

or removing it altogether. Then a transpose of the AR matrix is computed and stored

into the AR trans matrix in lines 20-21 via the bitMatrixTranspose and tileTranspose

kernels (the bitMatrixTranspose and tileTranspose kernels are further discussed in

Section 4.3.6). This is done to facilitate coalesced global memory accesses in the

upcoming kernel. The Find Waiting Processes kernel then launches one block con-

taining INT PER ROW threads. This kernel reduces row q j of the AR trans matrix

to determine if any processes are waiting on the released resource. If there is a pro-

cess waiting, the pwait flag is set to 1. Next, in line 25, the Determine Release Type

kernel is launched with a single block containing a single thread. This kernel checks

the resource release event type, and if necessary, removes the pending request edge

pt→q j from the AR matrix and grants the resource q j to process pt by updating the

AG matrix accordingly. If the Determine Release Type kernel finds that the resource

release event is of release type (ii) or (iii), then the reachability flag is set to true,

indicating that reachability information in the system needs to be updated.

After returning to the CPU, it checks if the reachability flag is set to true (line

27), and if so, the reachability flag is reset (line 29) and the InitRP Reachability

kernel is launched (line 31). The InitRP Reachability kernel is launched with N

blocks containing M threads per block. This kernel initializes RP for the forthcoming

Reachability Computation (RC). The CPU then begins iterations of RC. For each

iteration, the bitMatrixTranspose and tileTranspose kernels (line 35-36) are called to

build the transpose of RP, placing the result into the matrix RP trans. This step is

performed in order to guarantee coalesced global memory accesses in the upcoming

kernel. Following the transpose is the launch of the Reachability Computation kernel

in line 37, which is launched with N blocks containing M threads per block. It is

this kernel’s responsibility to update all reachability information in the system by

utilizing the node hopping mechanism seen in Section 4.2.2. Design details of the

resource release kernels are discussed in Section 4.3.5.

74

4.3.3 Handling a Resource Request Granted Event

To handle the resource request granted event, GPU-LMDDA launches a kernel

with a single block containing a single thread. Much like GPU-OSDDA, the Re-

source Request Granted kernel does not advocate parallelism since it launches a single

thread, but is required for GPU-LMDDA to manage and maintain the RAG on the

GPU. Algorithm 13 shows the pseudo-code for the Resource Request Granted kernel

and is followed with an explanation of its statements.

Algorithm 13 Resource Request Granted≪1,1≫
1: // CUDA Indexing Variables

2: row ← qj � LIPR

3: col← pi � LINTBITS

4: bit← pi%INTBITS

5: idx← row + col

6:

7: // One additional unit of qj is assigned to pi

8: AG[qj ×M + pi] = AG[qj ×M + pi] + 1

9: // Process pi becomes reachable from resource qj

10: RP [idx]| = (1� (INTBITS − (bit+ 1)))

In this kernel, both the RP[] and AG[] matrices must be updated to reflect

the granted resource q j→pi. Since the RP[] matrix is bit-packed and the AG[]

matrix is not, two separate indices are needed to update the matrices. To facilitate

understanding of the upcoming discussion, Figure 4.6 illustrates the index variable

computations performed.

In lines 2-5, index variables are determined in order to update RP[]. In line 2, the

proper row is calculated by multiplying q j by LIPR (also denoted as row in Figure

4.6). Since GPU-LMDDA assumes that both M and N are powers of two, it is able

to use bit-manipulation techniques to determine index variables. To determine the

correct column to update, pi is divided by LINTBITS in line 3 (the col variable is

denoted as the blue set of boxes in Figure 4.6). Then, to calculate which bit within

the final integer to alter, line 4 performs the modulo of pi by INTBITS (denoted as the

green highlighted portions of blue boxes in Figure 4.6). The final index is computed

75

q0

q1

p0 p31 p32 p63 p64 p95 p96 p127

q127

bit

col

RP Matrix

Assume q j equals 1 and p

row

i
 equals 48

Figure 4.6: Illustration of computation to update RP Matrix (Resource Granted).

in line 5 by adding the row and column variables that were previously calculated.

Line 8 handles the update of the AG[] matrix by assigning one (or one additional)

unit of resource q j to the requesting process pi. Since AG[] is not bit-packed, the

standard method of addressing a linearized matrix is used (i.e., row × row width +

column). As a result of the granted resource q j→pi, pi becomes reachable from q j.

To reflect this change, RP[idx] is ORed with a bit-mask that updates the correct

bit within RP[] (line 10). This bit-mask technique is used frequently throughout

GPU-LMDDA (much like GPU-OSSDA in Chapter 3) and is accomplished by simply

shifting a bit into the desired position and performing a bit-wise operation on the

desired data element, in this case, an OR operation so that the correct bit in RP[]

will be set.

In summary, according to Xiao and Lee [12], the result of a resource requested

granted event is that the requesting process pi become reachable from the requested

resource qj. Since the resource request (pi→qj) is granted, the AG[] matrix is updated

to reflect the grant status (qj→pi).

76

4.3.4 Handling a Resource Request Blocked Event

GPU-LMDDA handles a resource request blocked event in several stages: finding

the sink process nodes, checking for deadlock, and updating reachability information

if necessary. First, the Find Sink Processes kernel is launched to find the sink process

nodes in the RAG.

Algorithm 14 Find Sink Processes≪M,INT PER ROW≫
1: // Declare shared variable for reduction

2: shared sAR[INT PER ROW]

3:

4: // CUDA Indexing Variables

5: bid← blockIdx.x

6: tid← threadIdx.x

7: idx← bid� LIPR+ tid

8: spidx← bid� LINTBITS

9: bit← bid%INTBITS

10:

11: // Read global AR data into shared memory

12: sAR[tid] = AR[idx]

13: syncthreads ()

14:

15: // OR Reduction in shared memory to determine if processes are waiting on qj

16: for s = 1; s < blockDim.x; s = s× 2 do

17: if tid % (2× s) == 0 then

18: sAR[tid] |= sAR[tid+ s]

19: end if

20: syncthreads()

21: end for

22:

23: // Write out compliment of shared data to SP to determine sink status

24: if tid == 0 then

25: if sAR[0] == 0 then

26: atomicOr(SP [spidx], (unsigned int)(1� (INTBITS − (bit+ 1))))

27: end if

28: end if

The computations performed in this kernel are illustrated in Figure 4.7. First, a

shared vector of length INT PER ROW is created in line 2 that holds each row of

the AR[] matrix in shared memory (of each block).

77

p
0

p
1

p
2

p
1
2
6

p
1
2
7

q
0
~

q
3
1

q
3
2
~

q
6
3

q
6
4
~

q
9
5

q
9
6
~

q
1
2
7

q
0
~

q
3
1

q
3
2
~

q
6
3

q
6
4
~

q
9
5

q
9
6
~

q
1

2
7

q
0
~

q
3
1

q
3
2
~

q
6
3

q
6
4
~

q
9
5

q
9
6
~

q
1
2
7

q
0
~

q
3
1

q
3
2
~

q
6
3

q
6
4
~

q
9
5

q
9
6
~

q
1
2
7

q
0
~

q
3
1

q
3
2
~

q
6
3

q
6
4
~

q
9
5

q
9
6
~

q
1
2
7

p
0

p
1

p
2

p
3

1

p
3

2

p
6

3

p
9

6

p
1

2
7

p
1

2
6

b
lo

c
k
 1

2
6

:
s
A

R
[

]
=

 A
R

[1
2

6
][

]

b
lo

c
k
 1

2
7

:
s
A

R
[

]
=

 A
R

[1
2

7
][

]

b
lo

c
k
 1

:
s
A

R
[

]
=

 A
R

[1
][

]

b
lo

c
k
 2

:
s
A

R
[

]
=

 A
R

[2
][

]

b
lo

c
k
 0

:
s
A

R
[

]
=

 A
R

[0
][

]

s
A

R
[0

]
A

R
 M

a
tr

ix

S
P

 V
e

c
to

r

O
R

 R
e

d
u

c
ti
o

n

~
s
A

R
[0

]

F
ig

u
re

4.
7:

Il
lu

st
ra

ti
on

of
fi
n
d
in

g
si

n
k

p
ro

ce
ss

n
o
d
es

.

78

The shared memory is used to hasten future reductions in the kernel. Next, indexing

variables are determined in lines 5-9. Lines 5 and 6 holds the block index and thread

index variables in bid and tid, respectively. Then, in line 7, a global integer index

is determined by multiplying (actually a left shift) bid (synonymous with a row) by

LIPR and adding to it tid (synonymous with a column). Next, an index is declared

for each block by dividing (actually a right shift) bid by LINTBITS (line 8). This

index is created so that each block may write to the correct integer in the SP[] vector.

Finally, to find the correct bit in the integer to alter in the SP[] vector, the modulo

of bid by INTBITS is performed in line 9.

In lines 12 and 13, the shared vector sAR[] is populated with the contents of each

row of the AR[] matrix (i.e., the shared vector sAR[] in block bid would be populated

with AR[bid][]) and a syncthreads() is performed. Following the initialization phase

of the kernel, a parallel OR reduction of the shared memory vector sAR[] is performed

in lines 16-21. Starting in line 24, a single thread (thread 0) from each block takes

control. If the reduction of the sAR[] vector is equal to 0 it indicates that process pbid

is a sink node. As a result, by using the spidx index and the bit variable determined

earlier, a 1 is written to the associated bit in the SP[bid] element.

If the reduction of sAR[] is greater than 0, process pbid is blocked and thus not a

sink node; no change is made to the SP[bid] element.

After the Find Sink Processes kernel completes, all process sink nodes have been

found for the current RAG. Then the Deadlock Check kernel is invoked with a single

block containing a single thread. The pseudo-code for this kernel is provided in

Algorithm 15. This kernel first creates a register variable likecols in line 2 which will

be used later in the kernel to keep track of vector comparisons. Next, index variables

qrow and prow are created in lines 3-4. The qrow variable equals the resource q j

times LIPR, yielding the q j
th row in an n×m matrix. The prow variable on the

other hand equals the process pi times LIPR, which gives the pi
th row in an m×n

matrix. In lines 7-11, a bit-wise AND of the SP[] and RP[qrow][] vectors is performed

and compared with ProcessBitMask[prow][] vector (where prow is the bitmask for

79

Algorithm 15 Deadlock Check≪1,1≫
1: // CUDA Indexing Variables

2: likecols← 0

3: qrow ← qj � LIPR

4: prow ← pi � LIPR

5:

6: // Check if pi is the only reachable sink of qj

7: for i = 0; i < INT PER ROW ; i = i+ 1 do

8: if (SP [i] & RP [qrow + i]) == ProcessBitMask[prow + i]) then

9: likecols = likecols+ 1

10: end if

11: end for

12:

13: // If likecols is equal to INT PER ROW, this means that all columns of

14: // (SP[] & RP[j][]) == pi’s bitmask and that a deadlock exists

15: if likecols == INT PER ROW then

16: deadlock flag ← 1

17: else

18: col← qj � LINTBITS

19: bit← qj%INTBITS

20: idx← prow + col

21:

22: // Process pi is now blocked for requesting qj

23: AR[idx] |= (1� (INTBITS − (bit+ 1)))

24: end if

process pprow, see Definition 1.2.36). The bit-wise AND result is compared with the

ProcessBitMask[prow][] vector to determine if pi is the only reachable sink node of

qj.

As illustrated in Figure 4.8, if the result of the bit-wise AND computation is equal

to the value in ProcessBitMask[prow][], then we iterate the likecols variable. The

loop iterates INT PER ROW times so that all elements of the vectors of interest have

been compared. In line 15, a comparison of likecols and INT PER ROW is performed.

If likecols is equal to INT PER ROW, this indicates that all integers of the bit-wise

AND computations are equal to the corresponding integers in ProcessBitMask[]. As

a result of likcols being equal to INT PER ROW, process pi is a sink node of the

requested resource q j and a deadlock exists in the system.

80

RP[qrow][]

p
0

p
31

p
32

63
p

p
96

p
127

p
0

p
31

p
32

63
p

p
96

p
127

&

&

&

j
qrow − resource q ’s reachability information

i
prow − process p ’s bit−mask vector

+

SP[]

if result is equal to

if result is equal to

if result is equal to

ProcessBitMask[prow][]

likecols

INT_PER_ROW

Figure 4.8: Illustration of computation to check for deadlock.

Line 16 then asserts the deadlock flag variable and the kernel is complete. If

likecols is not equal to INT PER ROW, then the requesting process pi is not a sink

node of the requested resource q j. As a result, pi needs to be blocked for requesting

q j. Lines 18-20 perform the index calculations to determine what bit to write in

the AR[] matrix and AR[] is subsequently updated in line 23 to reflect the blocked

request, pi→q j.

Upon completion of the Deadlock Check kernel, the CPU either handles the dead-

lock event or GPU-LMDDA continues its operation by updating resource reachability

information by launching the Update RP Blocked kernel (see Figure 4.2). This kernel

is invoked with N blocks containing INT PER ROW threads per block. What it does

is update the reachability information (see Definition 1.2.32) of all resources following

the resource request blocked event. Figure 4.9 provides an illustration of how each

variable in the kernel references indices into the RP[] matrix (to be discussed next).

81

kchk 0

kchk 1

kchk 127

q0

q1

p0 p95 p96 p127

q127

krow0

krow1

127krow

kidx2 kidx3kidx0

kidx1 kidx2 kidx3

kidx0 kidx1 kidx2 kidx3

kidx0
jidx0 jidx2 jidx3

p

bit

col

jrow

RP Matrix

Assume p equals 1 equals 48 and qi j

31 p32 p64p63

kidx1

jidx1

Figure 4.9: Illustration of computation to update RP Matrix (Resource Blocked).

Algorithm 16 Update RP Blocked≪N,INT PER ROW≫
1: // CUDA Indexing Variables

2: col← pi � LINTBITS

3: bit← pi%INTBITS

4: krow ← blockIdx.x� LIPR // Start location of each row

5: kchk ← krow + col // Each int to be checked in each row

6: kidx← krow + threadIdx.x // All elements of such row (dest)

7: jrow ← qj � LIPR // Start location of qj row

8: jidx← jrow + threadIdx.x // All elements of qj row (source)

9:

10: // Now all processes reachable from qj become also

11: // reachable from the resources on pi’s sub-tree

12: if (RP [kchk] & (INTBITS − (bit+ 1)) == 1) then

13: RP [kidx] |= RP [jidx]

14: end if

To start, the kernel computes all indexing variables in lines 2-8. In this kernel,

each block works on a separate row in the RP[] matrix. In line 2, the col variable is

declared which yields the integer in which process pi falls. This is done by dividing

(actually a right shift) pi by LINTBITS (result is the blue column in Figure 4.9 under

listed assumptions). Then in line 3, the bit variable is computed to determine which

bit to alter in the integer index (result is the green highlighted portion of the blue

box in Figure 4.9). Following a similar process as done previously to find the bit of

82

interest, the modulo of process pi by INTBITS is performed. Next, we define the

krow variable in line 4. The krow is assigned the row that each block handles by

multiplying (actually a left shift) blockIdx.x by LIPR.

In the upcoming computation, one bit of one column of every row in RP[] needs

to be checked to find if process pi is reachable from any resource. Looking at Figure

4.9, it is assumed that the process of interest is p48, which helps derive the column

and bit of RP[] to check. The column (denoted as col in Figure 4.9) and bit checked

under this scenario are shown. To perform this check in the kernel, we continue to

create the kchk variable in line 5, which is the sum of the krow and col variables. This

kchk variable combined with the bit variable already determined will allow for all bits

of interest (bit column shown in Figure 4.9) of RP[] to be checked. As we discussed

earlier, if an element of RP[] (say RP[k][i]) is 1, then those resources denoted by

qk are reachable to pi. As a result, we must make all processes reachable from qj

also reachable from the resources on pi’s sub-tree. To do so, we first calculate the

variable jrow in line 7 by multiplying q j by LIPR. Following in line 8, the global

integer index jidx is determined by adding jrow and threadIdx.x. Figure 4.9 depicts

the indices used after creating the jrow and jidx variables, assuming that qj is equal

to q1 in the figure. Then in line 12, we check a specific bit (see the bit variable in

Figure 4.9) within every RP[kchk] integer for equality with 1. If it is equal to 1,

then that indicates that resource qbid is reachable to process pi. Then, all processes

reachable from qj become also reachable from the resources (such as qbid) on pi’s sub-

tree. Line 13 performs this update in parallel. Since the RP[] matrix is bit-packed,

each statement (RP[kidx] |= RP[jidx]) updates 32 bits at a time. Upon completing

the update in reachability, the resource request blocked event has been completely

handled.

Provided here is a summary of the computations involved when GPU-LMDDA

handles a resource request blocked event. According to [12], the first action taken

after the request is to determine if the event would cause the system to enter a

deadlock state. This is done first by finding all sink processes in the system. To do

83

so, GPU-LMDDA performs an OR reduction on all rows of the AR[] matrix. If a row

(say ph) is reduced to 0 (or the negation of the reduction is equal to 1) then process

ph is a sink process. All sink nodes found are stored in the Sink[] vector. Then,

the Sink[] vector is bit-wise ANDed with the reachable process vector (RP[j][]) to

determine if the result is equal to pi’s bit-mask. If the result of the computation is

equal to pi’s bit-mask, a deadlock occurs in the system. Otherwise, the request is

blocked (pi→qj) by updating the AR[] matrix to reflect this event (see Figure 4.2).

Finally, resource reachability is updated. All processes reachable from qj become also

reachable from the resources on pi’s sub-tree [12]. To update the RP[] matrix, in

parallel for all 1 ≤ k ≤ N , RP[k][] is bit-wise ORed with RP[j][] and stored in the

associated RP[k][] memory location.

4.3.5 Handling a Resource Release Event

GPU-LMDDA handles the resource release event in several phases. The first phase

is the releasing of a unit of resource q j which may be followed by an update phase of

the reachability information of the system if the event is of type release (ii) or (iii)

(see Figure 4.3).

To begin, GPU-LMDDA launches the Release Resource kernel whose pseudo-code is

provided in Algorithm 17. This kernel is launched with a single block containing a

single thread.

Algorithm 17 Release Resource≪1,1≫
1: // CUDA Indexing Variables

2: idx← qj ×M + pi

3:

4: // One unit of qj is released by pi

5: AG[idx] = AG[idx]− 1

Looking at Algorithm 17, line 2 calculates the global index to alter in the AG[]

matrix to reflect the release of resource q j by process pi. This global index is stored

in the idx variable and is found by multiplying the row q j by the length of the row

84

(M) and adding the column offset (pi). Next, the resource is released in line 5 by

decrementing AG[idx]. This will result in either: i) the weight of the current grant

edge being reduced by 1 or ii) the grant edge being removed entirely (i.e., a weight

of 0).

Algorithm 18 Find Waiting Processes≪1,INT PER ROW≫
1: // Declare shared variable for reduction

2: sAR[INT PER ROW]

3:

4: // CUDA Indexing Variables

5: tid← threadIdx.x

6:

7: // Populate shared data with data from AR trans

8: sAR[tid] = AR trans[qj × INT PER ROW + tid]

9: syncthreads()

10:

11: // Perform reduction of row qj of AR trans matrix

12: for s = 1; s < blockDim.x; s = s× 2 do

13: if tid % (2× s) == 0 then

14: sAR[tid] |= sAR[tid+ s]

15: end if

16: syncthreads()

17: end for

18:

19: // If sAR is not all zeros, then a process is waiting for resource qj

20: if tid == 0 then

21: sAR[0] ? pwait flag = 1 : pwait flag = 0

22: end if

After removing a unit of the released resource from the AG[] matrix, GPU-

LMDDA must determine if any other processes are waiting on the released resource q j.

To do so, the Find Waiting Processes kernel is invoked with a single block containing

INT PER ROW threads. The pseudo-code for this kernel can be found in Algorithm

18 with an illustration of its computations found in Figure 4.10.

To begin the Find Waiting Processes kernel, a shared vector sAR[] is declared of

size INT PER ROW in line 2 (as done in Algorithm 14). Then in line 5, a variable is

created to hold the value contained in threadIdx.x named tid. Lines 8-9 then populate

85

q0

q1

q2

q126

q127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31

p0~p31

p0~p31

p0~p31

p32~p63

p32~p63

p32~p63

p32~p63

p64~p95

p64~p95

p64~p95

p64~p95

p96~p127

p96~p127

p96~p127

p96~p127

Assume q j equals 1

pwait_flag = 1 pwait_flag = 0

Yes No

Is sAR[0] > 0

block 0: sAR[] = AR_trans[q
j
][]

AR Matrix Transpose

OR Reduction
sAR[0]

Figure 4.10: Illustration of computation to find waiting processes.

the sAR[] vector with the values in the q j
th row of the AR trans[] matrix followed

by the syncthreads() intrinsic operation. Using shared memory to reduce the q j
th

row of AR trans[] allows for quicker access to memory, thus making the reduction

faster.

In lines 12-17, an OR reduction of the sAR[] vector is performed. After the reduc-

tion is finished, a single thread (thread 0) takes control, denoted by the conditional

check in line 20. If the reduced value of sAR[] is not equal to 0, this implies that a

process is waiting on resource q j and the pwait flag is set to 1. If the reduction of

sAR[] is equal to 0, it implies that no processes are waiting for resource q j and the

pwait flag is set to 0. Upon completion of this kernel, GPU-LMDDA has determined

whether or not any processes are waiting on the released resource q j.

After finding if any processes are waiting for the release of resource q j, GPU-

LMDDA determines whether the event was of release scenario (ii) or (iii) using the

Determine Release Type kernel. This kernel is invoked with a single block containing

a single thread. The pseudo-code is provided in Algorithm 19. In Algorithm 19,

lines 2-5 determine the indexing variables used in the kernel’s calculations. Line 2

calculates the pt
th row (pt is the process that has a potential outstanding request of

resource q j) by multiplying (actually a left shift) pt by LIPR and storing the result

in row. In line 3, the integer that represents the q j
th column is found by dividing

(actually a right shift) q j by LINTBITS and stored in col. Then in line 4, the bit

86

Algorithm 19 Determine Release Type≪1,1≫
1: // CUDA Indexing Variables

2: row ← pt � LIPR

3: col← qj � LINTBITS

4: bit← qj%INTBITS

5: idx← row + col

6:

7: // Check the event type:

8: // If pwait flag == 1 - release type (ii)

9: // If AG[] == 0 - release type (iii)

10: if pwait flag == 1 || AG[qj ×M + pi] == 0 then

11: reachability flag ← 1

12: // If the resource is reassigned - update matrices

13: if qj is reassigned to pt then

14: // The request edge pt→qj is removed

15: AR[idx] & = ∼ (1� (INTBITS − (bit+ 1)))

16: // A unit of qj is assigned to pt

17: AG[qj ×M + pt] = AG[qj ×M + pt] + 1

18: end if

19: end if

which needs to be altered is found by performing the modulo of q j by INTBITS. A

global index idx is then calculated by adding the row and col variables together.

Next, line 10 checks if either there is a process (known as pt) waiting on the released

resource qj or if the released resource’s grant edge has been completely removed from

the RAG. If either of these conditions is true, it indicates that the release event is of

type (ii) or (iii), respectively (see Figure 4.3). In this case, reachability information

of the RAG needs to be updated and thus the reachability flag is set to 1 in line

9. In the event that the resource q j was reassigned to a process pt (denoted by the

conditional check in line 13), line 15 removes the pending request edge from the AR[]

matrix by performing a bit-wise AND with the appropriate bit-mask. Then in line

17, the resource q j is granted to process pt by incrementing the associated element

in the AG[] matrix.

When the CPU regains control after the Determine Release Type kernel com-

pletes, it checks the status of the reachability flag. If the reachability flag has been

87

asserted, then a series of calculations, known in their entirety as the Reachability Com-

putation (RC), begins. Otherwise, GPU-LMDDA is finished handling the resource

release event. Here we assume that reachability information needs to be updated

and that the reachability flag has been asserted. In this case, the InitRP Reachability

kernel is invoked with N blocks containing M threads per block. The pseudo-code

for this kernel is provided in Algorithm 20.

Algorithm 20 InitRP Reachability≪N,M≫
1: // CUDA Indexing Variables

2: bid← blockIdx.x

3: tid← threadIdx.x

4: nidx← bid× blockDim.x+ tid

5: row ← bid� LIPR

6: col← tid� LINTBITS

7: bit← tid%INTBITS

8: idx← row + col

9:

10: // If AG[qj][pi] >= 1, it means that process pi is reachable from qj

11: if AG[nidx] >= 1 then

12: RP [idx] |= (1� (INTBITS − (bit+ 1)))

13: end if

To prepare the RP[] matrix for RC, Algorithm 20 performs the initialization

step of the node hopping mechanism (see Section 4.2.2). The algorithm starts by

calculating all index variables in lines 2-8. Each matrix row of interest is handled

per block in this kernel. Line 2 assigns the value of blockIdx.x to the variable bid.

Then each element per row (of AG) is handled by a thread. Line 3 assigns the value

of threadIdx.x to the variable tid. To build the global index into the AG[] matrix

(since it is not bit-packed), bid (indicating a row) is multiplied by the width of the

row (denoted by blockDim.x) and added by the thread offset of tid. To successfully

update the RP[] matrix, indices are needed that correctly address the bit-packed

matrix as well. Line 5 calculates the row used for addressing RP[] and is computed

by multiplying bid by LIPR and storing the result in row. The correct integer to alter

in RP[] is determined by storing the result of tid divided by LINTBITS in the col

88

variable (line 6) (see Figure 4.6). To find the bit within the integer to update, line 7

creates the variable bit and assigns it the modulo of tid by INTBITS. The global bit-

packed index into the RP[] matrix is then found by creating the idx variable in line

8. This global index is calculated by adding the row and col variables. After finding

all index variables, line 11 checks every element in the AG[] matrix using the global

index nidx. If the value at the checked element in AG[] is greater than or equal to

1 (indicating a grant edge qbid→ptid exists) then that same (resource, process) pair

is updated in the RP[] matrix. Line 12 performs the update of the RP[] matrix

if necessary by performing a bit-wise OR computation using the appropriate bit-

mask built with the bit variable. Now the initialization phase of the node hopping

mechanism has been completed.

Next, the CPU initiates iterations of RC. For this computation, GPU-LMDDA

calculates whether if each process (say ph) is reachable (see Definition 1.2.32) from

each resource (say qk), where 1 ≤ h ≤ M and 1 ≤ k ≤ N , respectively. This

computation follows the methodology described by the node hopping mechanism in

Section 4.2.2. Figure 4.11 illustrates the computation of a single RP[k][h] value for a

single iteration, and such a computation needs to be performed for all resource-process

pairs over many iterations.

p0	

pz	

pM-‐1	

qk	

q0	

qg	

qN-‐1	

ph	

≤2s+1−1 𝑒𝑑𝑔𝑒𝑠	

≤2s−1 𝑒𝑑𝑔𝑒𝑠	 1 𝑒𝑑𝑔𝑒	 ≤2s−1 𝑒𝑑𝑔𝑒𝑠	

A	 dashed	 arrow	 in	 the	 figure	 denotes	 a	 path	 that	 may	 consist	 of	 one	 or	 more	 edges.	 	 A	 solid	 arrow	 stands	 for	 an	
edge.	

Figure 4.11: Illustration of RC for RP[k][h] for a single iteration (Courtesy of

Xiao [12]).

89

Algorithm 21 Reachability Computation≪N,M≫
1: // CUDA Indexing Variables

2: k ← blockIdx.x

3: h← threadIdx.x

4: hcol← h� LINTBITS

5: hbit← h%INTBITS

6:

7: // Vector elements indicate whether connections

8: // have been made between pz→ph

9: innertemp[M/INTBITS] = {0}

10:

11: // By implementing the node hopping mechanism, try to connect any

12: // request edge in AR to the reachability edge qg→ph

13: for z = 0; z < M ; z = z + 1 do

14: for g = 0; g < INT PER ROW ; g = g + 1 do

15: if (AR[z � LIPR+ g] & RP trans[h� LIPR+ g]) > 0 then

16: // Represent the connection of AR[z][g] to ph with innertemp[z]

17: innertemp[z � LINTBITS] |= (1� (INTBITS − ((z%INTBITS) + 1)))

18: break

19: end if

20: end for

21: end for

22:

23: // Now attempt to connect all reachability edges qk→pz using the RP matrix and innertemp[]

24: for z = 0; z < INT PER ROW ; z = z + 1 do

25: if (RP [k � LIPR+ z] & innertemp[z]) > 0 then

26: atomicOR(RP temp[k � LIPR+ hcol], (unsigned int)(1� (INTBITS − (hbit+ 1))))

27: break

28: end if

29: end for

Prior to each iteration of RC, GPU-LMDDA computes the transpose of the cur-

rent RP[] matrix and stores the result in the RP trans[] matrix, which facilitates

global memory coalescing in the upcoming kernel. The bitMatrixTranspose kernel is

further discussed in Section 4.3.6. After performing the matrix transpose of RP[],

the Resource Reachability kernel is invoked with N blocks containing M threads per

block. For this kernel, every thread (across all blocks) handles its own reachability

computation for each RP[k][h] index. Algorithm 21 provides the pseudo-code for the

Resource Reachability kernel.

90

To start Algorithm 21, index variables k and h are created in lines 2-3 which

contain the blockIdx.x and threadIdx.x variables, respectively. Lines 4-5 then deter-

mine indexing variables that allow us to address the bit-packed matrices later in the

kernel. Line 4 creates the hcol variable that is the quotient of h divided by LINT-

BITS. The bit which would need to be altered is calculated in line 5 by performing

the modulo of h by INTBITS and storing it in the hbit variable. Then, line 9 creates

the vector innertemp of length M /INTBITS, which will be used to keep track of any

connection made between a particular process pz and ph, where 0 ≤ z ≤ M − 1 (see

Figure 4.11), while performing calculations of the node hopping mechanism. Starting

in line 13, the kernel begins computation that attempts to connect edges in AR[z][g]

(where 0 ≤ z ≤ M − 1 and 0 ≤ g ≤ N − 1) to edges in the current RP[g][h] (where

0 ≤ g ≤ N−1) matrix index. Looking at Figure 4.11, this step consists of connecting

edges pz→qg (in AR[]) to qg→ph (in the current RP[] matrix). The for-loops iterate

over all combinations of 0 ≤ z ≤ M − 1 and 0 ≤ g ≤ N − 1 as seen in Figure 4.11.

To determine if a connection can be made from pz to ph (where 0 ≤ z ≤M − 1), line

15 performs the bit-wise AND of every AR[z][g] element with every current RP[g][h]

(denoted by RP trans[h][g]) element. If a connection between pz in AR[] to ph in the

current RP[] matrix exists, the value pertaining to that z element in the innertemp

vector is set to 1 (line 17). The innertemp value is set utilizing the familiar bit-wise

OR with a bit-mask as performed in prior kernels. The resulting innertemp vector

now signifies those processes connected to ph. Figure 4.12 provides an illustration of

the computations performed to attempt connecting all z processes (pz, where 0 ≤

z ≤ M − 1) to process ph (see Figure 4.11). Each row (z) of AR undergoes AND

computations with row ph of RP trans, the result is used to set the zth element of

innertemp.

After performing computations that try to connect any edge between pz and ph,

the kernel then tries to connect the resource qk to one of those processes found and

stored in the innertemp vector. Figure 4.13 illustrates the computations performed

to attempt connecting resource qk to one of the processes contained in innertemp

91

p0

p1

p2

p126

p127

p0

p1

p2

p126

p127

g = 0 g = 1 g = 2 g = 3 g = 0 g = 1 g = 2 g = 3

− z = 0 − z = 1 − z = 2 − z = 126 − z = 127

z
0

z
31

z
32

z
64

z
96

z
127

z
63

z
95

AR Matrix RP Transpose Matrix

z = 0

z = 1

z = 2

z = 126

z = 127

h = 2

** Assume calculations on rows z = 16, z = 48, z = 80, and z = 102 yield a result >= 1 **

innertemp vector

1 1 1 11

** Each (z,g) element in AR Matrix is bit−wise ANDed with each (h,g) element in RP Transpose Matrix for all 0<=z<=M−1 and 0<=g<=N−1 **

** If any computation on row z results in a value >= 1, then the z
th

 bit in innertemp is set to 1 **

q0~q31

q0~q31

q32~q63

q32~q63

q64~q95

q64~q95

q96~q127

q96~q127

q0~q31 q32~q63 q64~q95 q96~q127 q0~q31 q32~q63 q64~q95 q96~q127

q0~q31 q32~q63 q64~q95 q96~q127 q0~q31 q32~q63 q64~q95 q96~q127

q0~q31 q32~q63 q64~q95 q96~q127

q0~q31 q32~q63 q64~q95 q96~q127

q0~q31 q32~q63 q64~q95 q96~q127

q0~q31 q32~q63 q64~q95 q96~q127

Figure 4.12: Illustration of connecting process z to process h in RC.

where row qk of the current RP[] matrix is bit-wise ANDed with innertemp, and

the results are reduced to determine if qk is reachable to ph. In line 24, the for-loop

starts iterating over all pz elements in vector innertemp and attempts to connect

them with qk using the current RP[] matrix. For each iteration of z, the kernel

effectively performs 32 comparisons at once since the matrices are bit-packed. If the

result of the bit-wise AND operation in line 25 is greater than 0, a connection has

been made between resource qk and process ph. To signify the connection has been

made, an atomic OR operation is performed on the RP temp[] matrix to set the

bit pertaining to the connection between different RP[k][h] values (see node hopping

mechanism in Section 4.2.2). Since multiple threads may attempt to write to the

same RP temp[] integer, the atomic operation is needed to avoid race conditions.

Similarly, to avoid race conditions, the results of each iteration of RC are stored

into the RP temp[] matrix which holds new values of RP[]. Upon completing each

iteration of RC, the results held in RP temp[] are copied back into the RP[] matrix

and GPU-LMDDA continues the next iteration of RC. This final computation will

be able to determine if a connection exists between resource qk and process ph at

the end of the current iteration of RC (i.e., qk → . . . → pz → . . . → ph). Multiple

iterations of RC are required to fully determine if some qk is reachable to some ph, as

92

each iteration of RC adds edges that are 1,3,7,15,31... edges away per iteration (see

Figure 4.4). The maximum number of iterations of RC completed by GPU-LMDDA

is dlog2(min(m,n))e as defined by the node hopping mechanism in Section 4.2.2.

k = 2

q126

q127

q0

q1

q2

z = 0 z = 1 z = 2 z = 3 z = 0 z = 1 z = 2 z = 3

innertemp vector

q126

q127

q0

q1

q2

RP Matrix

RP[2][2] = 1

** Assume that k = 2 and that h = 2 **

** Each (k,z) element in RP Matrix is bit−wise ANDed with each z element in innertemp vector **

** If any computation on row k results in a value >= 1, then resource k is reachable to process h **

** As a result, RP[2][2] is updated and set equal to 1 **

RP Matrix

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

z0~z 31 z32~z 63 z64~z 95 z96~z 127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

p0~p31 p32~p63 p64~p95 p96~p127

Figure 4.13: Illustration of connecting resource k to process h in RC.

To summarize, GPU-LMDDA starts handling the resource release event by re-

moving the released resource from the AG[] matrix. Then, GPU-LMDDA needs to

determine what type of release event occurred (i, ii, or iii) (see Figure 4.3). First, the

column vector of AR[][j] undergoes an OR reduction. Then, the result of the OR

reduction is compared with 0, and if the result is not equal to 0 or if the grant edge

AG[j][i] has been completely removed then the event belongs to release type (ii) or

(iii). If one of these two conditions does not occur, the RAG does not change and

computation is complete.

Here we assume that the release event is of type (ii) or (iii) and reachability

information needs to be updated. If the released resource is reassigned to a waiting

process (say pt), then the request edge (pt→qj) is removed from the AR[] matrix

and the grant edge (qj→pt) is added (or incremented) in the AG[] matrix. The next

step is initializing the RP[] matrix for computations of RC. To do so, the RP[k][h]

elements (where 1 ≤ k ≤ N and 1 ≤ h ≤M) are initialized to 1 if AG[k][h] is greater

93

than or equal to 1. Otherwise, the RP[k][h] elements contain a 0. Next, computations

of RC are completed as described in Section 4.2.2.

4.3.6 Supplementary Kernels

In addition to the core GPU-LMDDA kernels discussed previously, there are two

additional kernels (or techniques) that GPU-LMDDA uses in its computations. One

of which is the bitMatrixTranspose and tileTranspose kernels. These kernels are used

prior to the Find Waiting Processes kernel and during the iterations of RC to enable

coalesced global memory accesses in the forthcoming kernels. Since the matrices to

be transposed were bit-packed, the transpose becomes more complex than a standard

matrix transpose. It was found that a bit-matrix transpose of 32×32 elements had

been performed before by Warren [22] (see Figure 4.14). Like GPU-OSDDA, Warren’s

approach to the bit-matrix transpose was implemented in parallel to handle blocks of

32×32 elements per thread followed by a tile transpose to effectively transpose the en-

tire matrix (see Figure 4.15). This allowed for a fast and efficient bit-matrix transpose

function that facilitated parallelism and global memory coalescing in computations

of GPU-LMDDA.

0 1 2 3 4 5 29 30 31...

... 61 62 63

64 65 66 67

32 33 34 35

... 93 94 95

992 993 994 1021 1022 1023

960 961 962 989 990 991

928 929 930 957 958 959...

...

...

bitMatrix T

32 integers

32 bits

32 integers

32 bits

bitMatrix

...

...

...

...

...

...

0 32 64 928 960 992

1 33 65 929 961 993

2 34 66 930 962 994

29 61 93 957 989 1021

30 62 94 958 990 1022

31 63 95 959 991 1023

Figure 4.14: Example of a bit-matrix transpose of a 32×32 matrix.

The other kernel (or technique) used in GPU-LMDDA’s computations is the re-

duction. Throughout GPU-LMDDA, the reduction was not performed in its own

94

TILE 0

1 thread

TILE 1 TILE 2 TILE 3

TILE 4 TILE 5 TILE 6 TILE 7

TILE 8 TILE 9 TILE 10 TILE 11

TILE 12 TILE 13 TILE 14 TILE 15

1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

TRANSPOSE

TILE

A 128−bit x 128−bit matrix with transposed tiles A fully transposed 128−bit x 128−bit matrix

TILE 0

1 thread

TILE 5

TILE 15

1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

1 thread 1 thread 1 thread 1 thread

TILE 4 TILE 8

TILE 1 TILE 9

TILE 2 TILE 6

TILE 12

TILE 13

TILE 10 TILE 14

TILE 3 TILE 7 TILE 11

Figure 4.15: Example of full matrix transpose after bit-matrix transpose in tiles.

device function, but directly in the kernel. GPU-LMDDA also had several types

of reductions (OR, AND, ADD); regardless, the approach to the reduction is the

same. Parallel reduction is also a common operation in parallel programming, so the

reduction techniques used in this algorithm were adopted from [23].

4.4 Experimentation and Results

A serial version of GPU-LMDDA is first implemented using the C language re-

ferred to as CPU-LMDDA. This version, like CPU-OSDDA, utilizes no parallel pro-

gramming primitives (such as OpenMP) in order to fully demonstrate the capabilities

of parallel processing on GPU. The development of a parallel CPU version of our al-

gorithm would provide significant difficulty as the CPU is limited in the number of

threads it may spawn to accomplish the massive parallel computations required. In

addition, the CPU should be available to handle the normal stream of tasks associated

with computing, as mentioned in Section 1.4. By launching the maximum number of

threads (or utilizing vectorized instructions) on the CPU, we limit the capability of

the processor to perform processing of normal computing tasks.

95

All experiments were performed on an Intel ® Core i7 CPU @ 2.8 GHz with 12

GB RAM. The CUDA GPU-LMDDA implementation was tested on three different

GPUs: GTX 670, Tesla C2050, and Tesla K20c. The GTX 670 has 7 SMXs (1344

CUDA Cores) with 2 GB Global Memory, the Tesla C2050 has 14 SMs (448 CUDA

Cores) with 3 GB Global Memory, and the Tesla K20c has 13 SMXs (2496 CUDA

Cores) with 5 GB Global Memory.

To verify the correctness of our algorithm, both CPU-LMDDA and GPU-LMDDA

were tested against a small RAG (approximately 8 processes × 8 resources). Once

results were verified as correct, larger RAGs were generated to test the scalability of

GPU-LMDDA for larger set sizes. Table 4.3 shows the run-time of CPU-LMDDA

versus our initial character approach to GPU-LMDDA. Table 4.4 follows and shows

the run-time of CPU-LMDDA versus the final bit-vector implementation of GPU-

LMDDA. The speedups associated with our results are then depicted in Figure 4.16

on each piece of target hardware. As can be seen by our results, an increase in process

and resource counts dramatically increases CPU-LMDDA’s run-time. However, GPU-

LMDDA’s run-time provides substantial speedups in comparison with the run-time

of CPU-LMDDA. The gradual reduction of achieved speedups is due to limitations

of available thread blocks when the number of processes and resource increases. A

further discussion will be provided in the Future Work section (Section 6.2) of this

thesis.

96

Table 4.3: Run-Time/Speedup of CPU-LMDDA and GPU-LMDDA

(Initial)

Input CPU-LMDDA GTX 670 Tesla C2050 Tesla K20c

64×64 0.10/0x 0.001/100.00x 0.001/100.00x 0.001/100.00x

128×128 1.80/0x 0.04/45.15x 0.04/44.00x 0.03/59.00x

256×256 32.54/0x 0.57/56.09x 0.70/45.49x 0.50/64.08x

512×512 389.03/0x 9.38/40.47x 12.30/30.63x 8.50/44.77x

1024×1024 6688.14/0x 162.99/40.03x 213.60/30.31x 149.80/43.65x

Table 4.4: Run-Time/Speedup of CPU-LMDDA and GPU-LMDDA

(Bit-Packed)

Input CPU-LMDDA GTX 670 Tesla C2050 Tesla K20c

64×64 0.10/0x 0.001/100.00x 0.0001/100.00x 0.0001/100.00x

128×128 1.80/0x 0.005/359.00x 0.003/599.00x 0.003/599.00x

256×256 32.54/0x 0.15/215.93x 0.04/812.50x 0.12/270.17x

512×512 389.03/0x 2.78/138.94x 1.22/317.88x 2.18/177.45x

1024×1024 6688.14/0x 93.17/70.78x 175.23/37.17x 77.55/85.24x

0.00	

100.00	

200.00	

300.00	

400.00	

500.00	

600.00	

700.00	

800.00	

900.00	

128x128	 256x256	 512x512	 1024x1024	

Sp
ee
du

p	

Input	 Size	 MxN	

GTX	 670	 Tesla	 C2050	 Tesla	 K20c	 GTX	 670	 (Bit-‐Packed)	 Tesla	 C2050	 (Bit-‐Packed)	 Tesla	 K20c	 (Bit-‐Packed)	

Figure 4.16: GPU-LMDDA Speedup

97

4.5 Conclusion

A new approach to deadlock detection for multi-unit systems on GPU has been

devised and developed using CUDA C. By finding a clever GPU-based solution to

the node hopping mechanism, GPU-LMDDA was able to achieve substantial speedups

over a CPU-based implementation. The use of bit-vectors for storing matrices led to

a greatly reduced memory footprint and efficient algorithmic computations. Both of

these factors alone drastically affected the speedups realized and allow GPU-LMDDA

to handle a large number of processes and resources.

98

5 GPU-PBA: A GPU-BASED DEADLOCK AVOIDANCE

ALGORITHM

5.1 Introduction

This chapter discusses GPU-PBA, a GPU-based approach to deadlock avoidance

in systems with multi-resources containing multiple-instances. Section 5.2 states the

system assumptions and provides background information regarding the core method-

ology of GPU-PBA, which is rooted in the Parallel Bankers Algorithm (PBA). The

section then discusses the underlying theory of PBA by revealing how it handles re-

source request and resource release events. Since all computations are done in parallel,

the best case run-time of PBA is O(1) as opposed to O(N×M2) of [2] and O(N×M)

of [3]. It also discusses the H-Safety check which performs the task of determining

if an H-Safe sequence exists (system is in an H-Safe state) upon a resource request

event. The H-Safety check and the H-Safe sequence are terms based on Habermann’s

approach to deadlock avoidance (see Definitions 1.2.19 and 1.2.18), hence the H (for

Habermann) preceding the terms.

After performing the H-Safety check it would be known if the resource request is

able to be granted and still allow the system to avoid the deadlock condition. This

is followed by our algorithm design and its implementation in Section 5.3. Following

the design discussion is the Experimentation and Results Section (Section 5.4) which

details the run-times and speedups achieved by GPU-PBA.

99

5.2 Background

5.2.1 Assumptions and Terms

The goal of GPU-PBA is to determine if an H-Safe sequence (see Definition 1.2.18)

exists based upon a resource request event. If an H-Safe sequence exists, then the

system is deemed to be in an H-Safe state (see Definition 1.2.19). The assumptions

listed here are required in order to determine if the H-Safe sequence exists:

1. The maximum claim of each resource from each process must be declared in

advance [14].

2. There are a fixed number of resources in the system [14].

Additionally, we provide two additional notes regarding the H-Safe sequence.

1. Any H-Safe sequence can be proven never to evolve into deadlock [2].

2. There are no promises about any timing properties such as periods and worst-

case execution times of processes [14].

It was noted in the introduction that GPU-PBA handles multi-unit resources

containing multiple instances or units. By this, it is meant that processes may re-

quest/release multiple resources as well as multiple units of each resource per each

resource request/release event. The multiple instance (or multi-unit) resource is de-

fined in Definition 1.2.14.

5.2.2 Underlying Theory of PBA

The PBA algorithm is meant to execute in the event of any resource request or

resource release event. Upon a resource request event, PBA determines that the

system is “safe” if the resource request is granted, i.e., if an H-Safe sequence exists

that leads to the system being in an H-Safe state.

100

Table 5.1: Data Structures for GPU-PBA

Structure Name Explanation

request[i][j] request from process i for resource j

maximum[i][j] maximum possible demand of process i for resource j

available[j] current number of unused instances of resource j

allocation[i][j] process i’s current allocation of j

need[i][j]
process i’s potential for more j

(need[i][j]=maximum[i][j]-allocation[i][j])

work[j] a temporary storage (vector) for available[j]

finish[i] potential completeness of process i

Prior to the explanation of the underlying theory of PBA, the algorithm’s data

structures are introduced in Table 5.1. Table 5.1 provides a list of the data structures

utilized in PBA with an explanation of each [14]. It should be noted for the rest of

the design explanation of PBA and GPU-PBA that i refers to a process and j refers

to a resource.

5.2.3 Computations of PBA and the H-Safety Check

Prior to starting computations of PBA, the algorithm should take as input the

maximum resource claim of each process, which is represented by the maximum[i][j]

matrix described in Table 5.1. After the system is initialized, PBA may begin handling

resource request and resource release events. The flow chart detailing PBA’s behavior

in a resource request scenario is shown in Figure 5.1. No flow chart is provided for

a resource release scenario, as the actions taken under this scenario are trivial. The

following sub-sections detail each phase of computation from the resource request and

resource release events.

101

Is the request valid?

Are the resources available?

Pretend Allocation

Perform Safety Check

Is there an H-Safe sequence?

Grant the resource request

Undo Allocation

Deny the resource request

Process makes resource request

Return

N

N

N

Y

Y

Y

Safety Check

Work[j] = Available[j] for all resource j

Finish[i] = false for all process i

Find all able-to-finish processes i in parallel

(i.e., Finish[i] == false and Need[i][j] <= Work[j] for all j)

Does any such process still exist?

For all such able-to-finish processes i {

 Finish[i] = true

 Work[j] = Work[j] + Allocation[i][j] for all j

}

Return

N

Y

Are all Finish[i] == true?

Y N

H-Safe Unsafe

Figure 5.1: PBA Process Flowchart

Resource Request

Computations of PBA are initiated upon a resource request event. The first com-

putation PBA performs is called the validity check. For this computation, the number

of resources requested by a particular process (say pi) is compared with its pertain-

ing vector in the need matrix (i.e., need[pi][]). If the number of resources requested

for each resource qj is less than or equal to the process’ current number of needed

resources, the request is valid. If one or many of the amounts of resources requested

is greater than its associated value in the need[] matrix, then the request is denied

and the next event may be handled.

Assuming that the request made in the prior step is valid, PBA continues to

check if the resources requested are available to satisfy the request. To do so, PBA

checks the amounts of requested resources against the resource values contained in

the available[] matrix.

102

If the number of resources requested is less than or equal to all values in the

available[] matrix, then resources are available to satisfy the resource request. If

there are not enough resources (of one or many of the requested resources) then the

request is denied.

If all resources are available to satisfy the request, then PBA temporary allocates

the resources to the requesting process and initializes the work[] matrix with the

values in the available[] matrix in preparation for the H-Safety check. In the H-

Safety check (see Figure 5.1), the finish[] matrix is initialized to false for all values

of pi. It then begins iterations of the safety check to determine if processes are able

to finish. To do so, the need[] matrix is compared with the work[] matrix for all

processes (i.e., need[pi][j] ≤ work[j]). If for all j, this inequality is satisfied, then the

process pi is able to finish. If the process is able to finish, then the finish[pi] value is

set to true and the process’ allocated resources are added back to the work[] matrix.

Iterations continue until either 1) all processes are able to finish which implies an

H-Safe sequence exists, or 2) no more processes are able to finish. If the H-Safety

check determines that an H-Safe sequence exists, the resource request is granted. If

there is no H-Safe sequence, the temporary allocations are revoked and the resource

request is denied.

Resource Release

The resource release event is easily handled by PBA. In parallel, PBA adds the re-

leased resources back to the availability pool (i.e., available[j] += releasedResources[j]).

The process that released these resources (say pi) needs the resources added back to

its need pool, indicating that it may require those resources again to execute its task

(need[pi][j] += releasedResources[j]). This is followed by removing the released re-

sources from the allocation pool (i.e., allocation[pi][j] -= releasedResources[j]) so that

the resources may be claimed by other requesting processes.

103

5.3 GPU-PBA Design

5.3.1 Introduction

This design section describes, in detail, the GPU-PBA approach to the Paral-

lel Bankers Algorithm. The design that GPU-PBA employs allows for simultaneous

computations to be done concurrently, ranging from the validity and resource avail-

ability checks to the computations in the H-Safety check. Section 5.3.2 dicusses how

GPU-PBA handles the resource request event and breaks the overall process down

into multiple phases. Each subsection of Section 5.3.2 provides the pseudo-code of

each kernel that GPU-PBA uses to handle this event type. Then in Section 5.3.3,

GPU-PBA’s handling of the resource release event is discussed. Pseudo-code for the

resource release kernel is also provided and detailed.

5.3.2 Handling a Resource Request

GPU-PBA splits the handling of the resource request event into 5 phases: 1)

Valid Request Check, 2) Resource Availability Check, 3) Preparation for the H-Safety

Check, 4) Computations of the H-Safety Check, and 5) Handling the results of the

H-Safety Check. Provided in Algorithm 22 is the overall kernel structure that GPU-

PBA follows for a resource request event. The H-Safety check kernel structure is

detailed separately in Algorithm 23. Make note of two things: 1) there are several

computations that are handled outside of GPU kernels for the H-Safety check due to

the speed advantage that the CPU has over the GPU for that particular computation

and 2) the finish[] and atf[] vector elements are all initialized to 0 prior to running

the H-Safety check.

In Algorithm 22, line 4 performs a check to determine if the resource request that

was made is valid by launching the Check Valid Request kernel. This kernel launches

a single block containing J threads (i.e., the number of resources in the system). If

this kernel returns with the cont variable equal to true, then the resource request

104

Algorithm 22 GPU-PBA Overall Kernel Structure for Resource Request Events

1: // Check resource event type

2: if Resource Request then

3: // Check if the resource request is valid

4: Check Valid Request≪1,J≫(event, Need, cont)

5: if cont == true then

6: // Check if resources are available to satisfy request

7: Check Resource Availability≪1,J≫(event, Available, Wait Count, cont)

8: if cont == true then

9: // Temporarily Allocate the Requested Resources

10: Temporary Allocate Request≪1,J≫(event, Available, Allocation, Maximum, Need, Work)

11: // Declare variable to hold number of processes that are able to finish

12: total atf ← 0

13:

14: // Set finish[] and atf[] vectors to 0 and Perform Safety Check - see Algorithm 23

15: The H-Safety Check

16:

17: // If the request is H-Safe - Continue

18: // Otherwise, rollback the temporary allocations and deny request

19: if total atf ! = I then

20: RollBack Allocations≪1,J≫(event, Available, Allocation, Maximum, Need, Wait Count)

21: end if

22: end if

23: end if

24: end if

is valid. Then in line 7, the Check Resource Availability kernel is invoked with a

single block containing J resources. This kernel checks that all requested resources

are available, if so, the GPU-PBA continues to temporarily allocate the requested

resources. Otherwise, the resource request is denied.

Assuming the resource request was valid and the requested resources are available,

the Temporary Allocate Request kernel is invoked in line 10. This kernel is launched

with a single block containing J threads. The work[] matrix is also initialized in this

kernel and will be detailed in sub-section Preparing for the H-Safety Check. Next,

a temporary variable total atf is created that is used to keep track of the number

of processes that are able to finish. Then, starting in line 15, the H-Safety Check is

performed (see Algorithm 23) to attempt to find an H-Safe sequence.

105

Algorithm 23 Safety Check Overall Kernel Structure

1: // The H-Safety Check

2: // Maximum I iterations can occur where only 1 process is

3: // “able to finish” per iteration, if an H-Safe sequence exists

4: for i = 0; i < I; i++ do

5: Perform Safety Check≪I,J≫(Need, Work, Finish, atf)

6:

7: // Copy the atf vector to CPU for sequential scan

8: for i = 0; i < I; i++ do

9: if atf [i] == 1 then

10: total atf = total atf + 1

11: // Add resources of able to finish processes to Work[]

12: Add Finished To Work≪1,J≫(i, Work, Allocation)

13: end if

14: end for

15:

16: // If all processes are able to finish - break the for loop

17: if total atf == I then

18: break;

19: end if

20: // Set all elements of the atf[] vector to 0

21: atf []← 0

22: end for

The safety check will perform a maximum number of I iterations to determine

if a safe sequence exists. The reason there is a potential of I iterations is due to

the fact that a scenario may exist where, per iteration, a single process is deemed

“able to finish”. If this is the case, and an H-Safe sequence exists, it would take the

maximum number of iterations, or I iterations. If no safe sequence is found before

or on the I th iteration, then no safe sequence exists for a particular resource request

event. In Algorithm 23, line 4 initiates the iterations of the safety check, with the max-

imum number of iterations set to I. Line 5 then launches the Perform Safety Check

kernel to handle safety check computation in parallel. Make note of the arguments

in the Perform Safety Check kernel call, in particular the finish and atf arguments.

The finish argument refers to the finish vector mentioned in Section 5.2.2. The atf

argument is a temporary finish vector that tracks the processes that are able to fin-

ish per each iteration of the safety check. Between each iteration, the atf vector is

106

reset to 0. The Perform Safety Check kernel is invoked with I blocks (each block

performs computations for each process) containing J threads per block (perform

computations on each resource) in order to maximize parallelism for this computa-

tion and perform all comparisons of the safety check in parallel. Inside the kernel,

the atf vector is updated to show which processes are able to finish per iteration as

previously mentioned. After the completion of the Perform Safety Check kernel, the

atf vector is copied back to the CPU and sequentially scanned to find all processes

that are able to finish (see lines 8-14). In line 9, if a process (pi) is able to finish,

then the total atf variable is incremented by 1 and pi’s allocated resources are added

back to the work pool. Note that more than one process may be able to finish per

iteration of the H-Safety check. Line 12 launches the Add Finished To Work kernel

with a single block containing J threads. After all processes that were able to finish

add their allocated resources back to the work pool, then the total number of able

to finish process is checked in line 17. If total atf is equal to I, this indicates that all

processes were able to finish and that an H-Safe sequence exists. The safety check

computation then terminates via the break statement. Otherwise, the next iteration

of the safety check is initiated to find additional able to finish processes.

Looking back at Algorithm 22, if the H-Safety Check completes and there exists

an H-Safe sequence, then the variable total atf will be equal to I and all temporary

allocations anchor. On the other hand, if no H-Safe sequence exists (the check per-

formed on total atf in line 19 is true), then all temporary allocations are rolled back

by the RollBack Allocations kernel in line 20. This kernel is invoked with one block

containing J threads. As a result of no H-safe sequence existing, the resource request

is denied. Now that the overall kernel structure of GPU-PBA has been covered, the

following sub-sections will detail all kernels launched for each phase of a resource

request event scenario.

107

Valid Request Check

The first phase of handling the resource request event is the valid request check.

GPU-PBA launches the Check Valid Request kernel to handle this validity check. The

pseudo-code of this kernel is provided in Algorithm 24.

Algorithm 24 Check Valid Request≪1,J≫
1: // Declare shared memory vector used to check

2: // validity of all resource requests by a process

3: shared sArrCheck[J]

4:

5: // CUDA Indexing Variables - Shorthand notation for threadIdx.x

6: tid← threadIdx.x

7:

8: // Initialize shared memory to 0 and synchronize

9: // to prepare for resource request validity check

10: sArrCheck[tid]← 0

11: syncthreads()

12:

13: // Perform a check to determine if request is valid

14: if process i′s request for resource j ≤ Need[pi × J + tid] then

15: sArrCheck[tid]← 1

16: end if

17:

18: // Reduce sArrCheck[]

19: // If sum is equal to J, then pi’s request for all resources are valid

20: for s = 1; s < blockDim.x; s = s× 2 do

21: index← 2× s× tid

22: if index < blockDim.x then

23: sArrCheck[index]+ = sArrCheck[index+ s]

24: end if

25: syncthreads()

26: end for

27:

28: // Have thread 0 write-back the validity status to cont variable

29: if tid == 0 then

30: if sArrCheck[0] == J then

31: cont← 1

32: else

33: cont← 0

34: end if

35: end if

108

To start Algorithm 24, a shared vector sArrCheck of length J is declared in line

3 that will be used in the kernel to check the validity of all resource requests by the

process (say pi). Line 6 follows by declaring the tid variable which is assigned all

threadIdx.x variables. Then in lines 10-11, the shared memory vector sArrCheck is

initialized to 0 and all threads synchronize on the syncthreads() intrinsic function.

The sArrCheck vector is initialized to 0 because in the upcoming conditional check,

if the process’ request for resource q tid is valid, then sArrCheck [tid] is set to 1. This

usage will be made apparent in the discussion that follows.

Starting in line 14, each resource (q j) amount requested by process pi is compared

against pi’s current need of each resource in the Need[pi][q j]. If the request amount

is less than or equal to the current need[] amount for every resource q j, then the

sArrCheck [q j] value is updated to contain a 1 in line 15. After all resources have

been checked in parallel, then the sArrCheck vector is reduced in order to determine

if all resource amounts requested were valid. Lines 20-26 perform the Add reduction

by summing all values in the sArrCheck vector into the sArrCheck [0] location. Line

29 then forces a single thread (with threadIdx.x equal to 0) write the validity status

of the request to the cont variable. If the result of the Add reduction was equal to

J (line 30), then all resource amounts requested were valid and the cont variable is

written with a 1 in line 31. On the other hand, if the reduction did not yield the

value J, the request was invalid and the cont variable is written with a 0 in line

33. After returning to the CPU, GPU-PBA determines if the resource request event

should continue to the next phase in computation by checking the status of the cont

variable. If cont equals 1 (or true) then GPU-PBA advances to the Check Resource

Availability phase. Otherwise, the resource request is denied.

Checking Resource Availability

Assuming the validity check of the resource request was valid (and the cont vari-

able was 1 or true), then GPU-PBA initiates the next phase of computation which

109

checks resource availability for the request. For this phase of computation, the

Check Resource Availability kernel is invoked. The pseudo-code for this kernel is

provided in Algorithm 25.

Algorithm 25 Check Resource Availability≪1,J≫
1: // Declare shared memory vector used to check

2: // availability of all resource requests by a process

3: shared sArrCheck[J]

4:

5: // CUDA Indexing Variables - Shorthand notation for threadIdx.x

6: tid← threadIdx.x

7:

8: // Initialize shared memory to 0 and synchronize

9: // to prepare for resource availability check

10: sArrCheck[tid]← 0

11: syncthreads()

12:

13: // Perform check to determine if resources are available

14: if process i′s request for resource j ≤ available[tid] then

15: sArrCheck[tid]← 1

16: end if

17:

18: // Reduce sArrCheck[]

19: // If sum is equal to J, then all required resources are available

20: for s = 1; s < blockDim.x; s = s× 2 do

21: index← 2× s× tid

22: if index < blockDim.x then

23: sArrCheck[index]+ = sArrCheck[index+ s]

24: end if

25: syncthreads()

26: end for

27:

28: // Have thread 0 write-back whether or not resources are available

29: if tid == 0 then

30: if sArrCheck[0] == J then

31: cont← 1

32: else

33: cont← 0

34: end if

35: end if

110

To start the Check Resource Availability kernel, a shared vector sArrCheck is

created of length J in line 3. This vector serves a similar purpose to the shared

vector in the Check Valid Request kernel, except in this kernel it is used to check the

availability of all requested resources by a process (say pi). Line 6 follows by creating

the tid variable, which holds the thread identifier (threadIdx.x) for each thread. Lines

10-11 then initialize the shared vector sArrCheck elements to 0 and synchronize all

threads by the syncthreads() function. Similar to the Check Valid Request kernel, if

the request for a particular resource q tid can be satisfied, then sArrCheck [tid] is set

to 1. This usage will also be made apparent in the upcoming discussion.

Starting in line 14, the kernel checks the amount of each resource (q tid) requested

against the available units of that variable in the available[q tid] matrix. If the re-

quested amount of resource q tid is less than or equal to the available amount, then

the sArrCheck[tid] element is set to 1 in line 15. Following this availability check,

lines 20-26 perform an Add reduction on the sArrCheck vector and store the result in

sArrCheck[0]. Line 29 then forces the thread with threadIdx.x equal to 0 to take over

and write the availability check status back to the cont variable. If the reduction of

sArrCheck was equal to J, then this implies that all requested resources are available

and the resource request event is still valid. As a result, the cont variable is set to

1 (or true) in line 31. If the reduced vector value is not equal to J, it implies that

one or more resources requested were not available and then cont variable is set to

0 in line 33. After returning to the CPU, GPU-PBA checks the cont variable. If

the cont variable is equal to 1 (or true), GPU-PBA continues to the next phase of

computation: Preparing for the H-Safety Check. Otherwise, the resource request is

denied.

Preparing for the H-Safety Check

If the resource request event is valid and all resources are available, then GPU-PBA

needs to prepare for the H-Safety check. To do so, the algorithm temporarily grants

111

all requested resources to the requesting process and initializes the work[] matrix.

The Temporary Allocate Request kernel fulfills this function and the pseudo-code is

provided in Algorithm 26.

Algorithm 26 Temporary Allocate Request≪1,J≫
1: // Declare shared memory vector

2: // used to hold resource request amounts

3: shared sRequest[J]

4:

5: // CUDA Index Variables - Shorthand for threadIdx.x and Global Index

6: tid← threadIdx.x

7: idx← pi × J + tid

8:

9: // Populate shared vector with requested resource amounts and synchronize

10: sRequest[tid]← requestedResources[tid]

11: syncthreads()

12:

13: // Pretend to allocate the requested resources

14: available[tid] = available[tid]− sRequest[tid]

15: allocation[idx] = allocation[idx] + sRequest[tid]

16: need[idx] = maximum[idx]− allocation[idx]

17: syncthreads()

18:

19: // Initialize the Work array

20: work[tid] = available[tid]

To start the Temporary Allocate Request kernel, in Line 3 a shared memory vector

is created of length J called sRequest that is used to temporarily hold the amounts of

all resources requested by a process (say pi). Lines 6-7 generate all indexing variables

used throughout the kernel. Line 6 follows by assigning the tid variable, the identifier

found in threadIdx.x. Then, line 7 creates the idx variable which is used to address

the 2-D matrices in this kernel (i.e., allocation[], need[], and maximum[]). The value

assigned to idx is comprised of the product of the process identifier and the width

of the matrix row (i.e., J) and added to this is the thread identifier variable tid.

Lines 10-11 initialize the sRequest vector to contain the amounts of each requested

resource by process pi (i.e., sRequest [q j] = requested amount of resource q j) and then

synchronize all threads on the syncthreads() function.

112

Starting line 14, the kernel begins the temporary allocation process. Line 14 re-

moves the requested resource amounts of each resource from the availability pool.

Line 15 adds the requested resource amounts to the allocation[] vector for the re-

questing process. Then, in line 16, the requesting process’ need[] vector is updated

by subtracting its current number of allocated resources from the process’ maximum

claim for each resource. After these updates are completed, all threads synchronize

on the syncthreads() function in line 17. Last, the work[] vector is initialized with

the values in the available[] vector in preparation for the upcoming safety check.

Performing the H-Safety Check

When the CPU initiates iterations of the safety check, the Perform Safety Check

kernel is invoked. The pseudo-code for this kernel is provided in Algorithm 27. In

this kernel, every block performs computations for a particular process (pblockIdx.x).

Each thread in a block will perform computations involving a particular resource that

a process needs or currently holds (q threadIdx.x). Thus, all processes and resources

are checked in parallel.

To start the Perform Safety Check kernel, line 3 declares a shared vector

resource check of length J that holds the status of each resource checked between a

process’ need[] and work[] vectors. Lines 7-8 then create the variables tid and bid

and initialize them with the threadIdx.x and blockIdx.x identifiers, respectively. Lines

11-12 follow by initializing the resource check vector with 1’s and synchronizing all

threads at that point. In line 14, the finish vector is checked to determine if any

process pbid has been deemed able to finish. If it has, the block pertaining to that

process goes idle and its computation is complete. However, on this first iteration,

at least, no processes have yet been deemed able to finish. Therefore, in line 16,

every process’ resources in the need[] matrix are checked against values in the work[]

matrix. If the process’ need[] value for any resource is greater than the value in

work[], then the process will not be able to finish in this iteration, so the

113

Algorithm 27 Perform Safety Check≪I,J≫(need, work, finish, atf)

1: // Declare shared memory vector to hold status of

2: // check between a process’ need[] and work[] vectors

3: shared resource check[J]

4:

5: // CUDA Index Variables

6: // Each thread handles a process’ resources and each block handles a process

7: tid = threadIdx.x

8: bid = blockIdx.x

9:

10: // Initialize shared vector to contain all 1’s and synchronize

11: resource check[tid] = 1

12: syncthreads()

13:

14: // If process denoted by bid has already finished, skip

15: // Otherwise, determine if the process may finish

16: if finish[bid] == 0 then

17: // Check if the process is able to finish

18: if need[bid× J + tid] > work[tid] then

19: resource check[tid]← 0

20: end if

21: syncthreads()

22:

23: // Reduce resource check[]

24: // If sum is equal to J, then process can finish

25: for s = blockDim.x/2; s > 0; s�= 1 do

26: if tid < s then

27: resource check[tid]+ = resource check[tid+ s]

28: end if

29: syncthreads()

30: end for

31:

32: // Each block - or process - checks to see if it was able to finish

33: // If so, assert its completion status in finish[] vector, and

34: // also assert its completion status in atf[] vector.

35: // Reminder: atf[] is used to keep track of processes that need to add their resources back to work pool

36: if tid == 0 then

37: if resource check[0] == J then

38: finish[bid]← 1

39: atf [bid]← 1

40: end if

41: end if

42: end if

114

resource check [] value pertaining to a particular process’ resource is set to 0. After

checking all resources for each process, the resource check vector is reduced via the

Add reduction in lines 25-30. After the reduction, a single thread per block takes

control by means of the conditional in line 36. Then in line 37, if the result of the

resource check reduction is equal to J, this implies that process pbid is able to finish.

Therefore, that process’ index into the finish vector is set to 1 in line 38. Then, in

line 39, the same index into the atf vector is set to 1 as well.

Looking back at Algorithm 23, after the Perform Safety Check kernel is complete,

the CPU copies the atf vector from the GPU to the CPU. Then in lines 8-14 of

Algorithm 23, a sequential scan is performed on the atf vector. If an index of the atf

vector (say index i) is equal to 1, that process is able to finish (checked in line 9). Then

in line 10, the total atf variable is incremented for every process that has been deemed

able to finish. The process that is able to finish needs to add its allocated resources

back to the work pool and does so by invoking the Add Finished To Work kernel in

line 12. When invoking this kernel, GPU-PBA passes it the necessary matrices along

with the identifier (i) of the process that was able to finish. Pseudo-code for this

kernel is provided in Algorithm 28.

Algorithm 28 Add Finished To Work≪1,J≫
1: // CUDA Index Variables

2: tid← threadIdx.x

3:

4: // For processes able to finish, add their allocated resources to work

5: work[tid]+ = allocation[pi × J + tid]

The Add Finished To Work kernel starts by creating the tid variable and setting

it equal to the value of threadIdx.x in line 2. Then in line 5, all resources currently

allocated to process i (i.e., allocation[pi×J +tid]) are added back to the associated

resource amounts in the work[] matrix (i.e., work[tid]). Looking back at Algorithm

23, after the Add Finished To Work kernel is finished executing, the value of the

total atf variable is checked in line 17. If total atf is equal to I, then all processes

are able to finish (meaning an H-Safe sequence exists) and the safety check is finished

115

(execution of the for-loop stops via the break statement in line 18). Otherwise, the

CPU initiates additional iterations of the safety check after clearing the atf vector in

line 21.

Handling Results of H-Safety Check

After iterations of the H-Safety check have completed, GPU-PBA determines if

an H-Safe sequence has been found. Looking at Algorithm 22, after the safety check

has been performed, line 19 checks if total atf is not equal to I. If the condition

is satisfied, it implies that all processes were not able to finish and that no H-Safe

sequence exists. As a result, the resource request made by pi is denied. Thus, all

of the prior temporary allocations must be reversed. GPU-PBA then invokes the

RollBack Allocations kernel in line 20. The pseudo-code for this kernel is provided in

Algorithm 29.

Algorithm 29 RollBack Allocations≪1,J≫
1: // Declare shared memory vector to hold the amounts

2: // of each resource that a process (say pi) previously requested

3: shared sRequest[J]

4:

5: // CUDA Indexing Variables

6: // process holds the process id (pi) that is releasing resources

7: // tid holds the value corresponding to each threadIdx.x value and

8: // idx acts as an index into the 2-D matrices (allocation, need, maximum)

9: process← pi

10: tid← threadIdx.x

11: idx← process× J + tid

12:

13: // Populate shared vector with prior resource request amounts

14: sRequest[tid] = requestedResources[tid]

15: syncthreads()

16:

17: // Deallocate all previously allocated resources

18: available[tid] = available[tid] + sRequest[tid]

19: allocation[idx] = allocation[idx]− sRequest[tid]

20: need[idx] = maximum[idx] + allocation[idx]

116

The RollBack Allocations kernel starts by declaring a shared memory vector of

size J called sRequest in line 3 that holds the amounts of each resource that a process

(say pi) previously requested. Then in lines 9-11, indexing variables are created. Line

9 creates a process variable and assigns it the identifying value of process pi. Line 10

creates the variable tid and assigns it the value of threadIdx.x for each thread in the

kernel. Then in line 11, a global index into the 2-D matrices (allocation[], need[],

and maximum[]) is created called idx. The idx variable is formed by multiplying the

row in the matrix (row pi) by the width of the row (width ofJ) and adding the tid

offset into the result.

Starting in line 14, the sRequest vector is populated with the resource request

amounts that the process pi had previously requested. This is followed by a syn-

chronization of all threads in line 15. Line 18 then adds all the previously requested

resources back to the availability pool (available[] matrix). Followed by the tempo-

rary allocations being removed from the allocation[] matrix in line 19. Then in line

20, the requesting process’ need[] matrix values are updated to reflect the removal of

allocated resources. After all of these parallel computations have completed, the roll-

back of all prior temporary allocations has been completed. Now that the handling

of a resource request event has been covered, Section 5.3.3 covers how GPU-PBA

handles the resource release event.

Summary of the Resource Request Event Handling

Provided here is a summary of the computations GPU-PBA performs in order

to satisfy a resource request event. During a resource request event, a process may

request multiple instances of multiple resources at a time. When a process (say pi)

makes a request, GPU-PBA must check if the requested amount of each resource are

less than or equal to process pi’s maximum claim (or less than what is currently in

need[i][]) [14]. This step is denoted as the validity check.

117

If all resource requests are less than or equal to pi’s maximum claim, then the

request is valid and the algorithm continues to the next phase. Otherwise, the request

is invalid and process pi is denied its request.

Assuming pi’s request was valid, GPU-PBA needs to check if the requested re-

sources are available [14]. GPU-PBA compares pi’s requested resource amounts

with the corresponding amounts in the available[] vector. If the requested resource

amounts are less than or equal to the resource amounts in the available[] vector,

then the resources are available to satisfy the request. This phase is called the check-

ing resource availability phase. If the resources are available to satisfy the request,

GPU-PBA continues to the next phase of execution. Otherwise, the request cannot

be satisfied and the request made by process pi is denied.

The next phase of execution is denoted as the preparing for H-safety check phase.

During this phase, GPU-PBA temporarily grants all the requested resources to pro-

cess pi. This is done in three steps: 1) removing requested resources from the avail-

able[] vector, 2) adding the requested resources to pi’s allocated resources in the

allocation[i][] vector, and 3) removing the allocated resource amounts from process

pi’s maximum claim (or adjusting need[i][] accordingly) [14]. After these steps are

completed, the work[] vector is populated with the values currently contained in the

Available[] vector. The work[] vector is then used to search for processes that are

able to finish by acquiring resources that are currently available (in the available[]

vector) or that will become available during the execution of an H-Safe sequence [14].

The next phase of execution is performing the H-Safety check to determine if an

H-safe sequence exists.

The H-Safety check phase attempts to find all processes that are able to finish in

order to determine if an H-Safe sequence exists. It accomplishes this by comparing

each process’ need[] vector with the resource amounts available in the work[] vector.

If a process is deemed able to finish, its allocated resources are added back to the

work[] vector to be claimed (potentially) by other processes in the system. If following

processes are able to finish by claiming the resources that were added back to the

118

work[] vector, they are deemed able to finish by setting their corresponding entry

in the finish[] vector to true (or 1). The H-Safety check computations are repeated

for up to I iterations until either all processes are able to finish (indicating that an

H-Safe sequence exists) or not all processes are able to finish (indicating that no H-

Safe sequence exists) [14]. Assuming that all processes are able to finish and that

an H-Safe sequence exists, GPU-PBA anchors all of the temporary allocations made

previously. If the converse is true, the pretended allocations are rolled back and the

resource request event initiated by process pi is denied.

5.3.3 Handling a Resource Release

The way GPU-PBA handles a resource release event is fairly straightforward.

Since this is not a deadlock detection algorithm, but a deadlock avoidance algorithm,

then there is no update of resource reachability in a RAG or anything of the sort. So, if

a process (say pi) releases a set of resources, GPU-PBA invokes the Release Resources

kernel with a single block containing J threads per block. The pseudo-code for this

kernel is provided in Algorithm 30.

To start the Release Resources kernel, a shared vector of size J is declared in

line 2 called sResources. Lines 5-7 declare the indexing variables used for the kernel.

Line 5 assigns the process id (pi) to the variable process. This is followed by the tid

variable being populated with the values of threadIdx.x in line 6. Then in line 7, a

2-D global index is declared called idx. The idx variable is populated by multiplying

the row in the desired 2-D matrix (row process) by the width of the row (width of

J) and adding the tid offset. Lines 10-11 then populate the shared vector sResources

with the amounts of each resource to be released.

Then in line 14, the released resources are added back to the availability pool by

adding the values in the sResources vector to the corresponding values in the available

vector. Line 17 follows by adding the released resource amounts back to process pi’s

need pool (via the need [] matrix). Lastly, in line 20, the resources are finally removed

119

Algorithm 30 Release Resources≪1,J≫
1: // Declare shared memory vector

2: shared sResources[J]

3:

4: // CUDA Indexing Variables

5: process← pi

6: tid← threadIdx.x

7: idx← process× J + tid

8:

9: // Populate shared vector with released resource amounts

10: sResources[tid]← releasedResources[tid]

11: syncthreads()

12:

13: // Add the released resources back to the availability pool

14: available[tid]+ = sResources[tid]

15:

16: // Add these released resources back to the processes need pool

17: need[idx]+ = sResources[tid]

18:

19: // Remove allocated resources from allocation matrix

20: allocation[idx]− = sResources[tid]

from process pi’s allocated resources pool by subtracting the sResources values from

the corresponding values in pi’s row in the allocation[] matrix. After completing the

resource release event, GPU-PBA is free to handle more incoming resource request or

release events.

To summarize GPU-PBA’s handling of the resource release event, the first com-

putation performed is to add the released resources back to the availability pool

(available[]). Since process pi released resources, its associated need[i][] resource

amounts are increased to reflect pi’s potential need for additional resources in the

future to complete its tasks. Finally, the released resources are removed from process

pi’s allocated resources in allocation[i][].

120

5.4 Experimentation and Results

A serial version of GPU-PBA was first implemented using the C language referred

to as CPU-PBA. This version, like the previous CPU implementations of deadlock

detection algorithms, utilizes no parallel programming primitives (such as OpenMP)

in order to fully demonstrate the capabilities of parallel processing on GPU.

All experiments were performed on an Intel ® Core i7 CPU @ 2.8 GHz with 12 GB

RAM. The CUDA GPU-PBA implementation was tested on three different GPUs:

GTX 670, Tesla C2050, and Tesla K20c. The GTX 670 has 7 SMXs (1344 CUDA

Cores) with 2 GB Global Memory, the Tesla C2050 has 14 SMs (448 CUDA Cores)

with 3 GB Global Memory, and the Tesla K20c has 13 SMXs (2496 CUDA Cores)

with 5 GB Global Memory.

To verify the correctness of our algorithm, both CPU-PBA and GPU-PBA were

tested against a series of different resource events. Once results were verified as

correct, more processes and resources were added to the resource requests (thus,

adding additional computations for calculations of PBA). What was found was that

the CPU and GPU were almost identical in terms of run-time when it came to events

that fell into the best-case scenario of finding the H-Safe sequence. So, to truly see how

GPU-PBA fairs against CPU-PBA, tests were performed on the worst case scenarios

where all I iterations of the safety check must be performed. In other words, each

iteration of the H-Safety check yields a single process that is able to finish.

To test GPU-PBA’s run-time behavior, a several tests were run with varying

numbers of resources and increasing amounts of processes. This test should show

how CPU-PBA and GPU-PBA handle higher levels of resource contention where in-

creasing numbers of processes are competing for lesser resources. Tables 5.2, 5.3, and

5.4 show the run-times of CPU-PBA versus GPU-PBA with 256, 512, and 1024 re-

sources, respectively. For each of these tables, the resource amount was kept constant

while process counts were increased. Following the result tables, Figures 5.2, 5.3, and

121

5.4 depicts the speedups GPU-PBA achieves over CPU-PBA for the sets with 256,

512, and 1024 resources, respectively.

Table 5.2: Run-Time/Speedup of CPU-PBA and GPU-PBA (256 Resources)

Processes×Resources CPU-PBA GTX 670 Tesla C2050 Tesla K20c

512×256 0.03/0x 0.02/0.65x 0.03/0.10x 0.02/0.65x

1024×256 0.13/0x 0.06/1.17x 0.08/0.63x 0.05/1.60x

2048×256 0.51/0x 0.21/1.43x 0.25/1.04x 0.16/2.19x

4096×256 2.05/0x 0.67/2.06x 0.87/1.36x 0.55/2.73x

8192×256 8.34/0x 2.37/2.52x 3.10/1.69x 1.99/3.19x

Table 5.3: Run-Time/Speedup of CPU-PBA and GPU-PBA (512 Resources)

Processes×Resources CPU-PBA GTX 670 Tesla C2050 Tesla K20c

512×512 0.05/0x 0.03/0.67x 0.04/0.25x 0.02/1.50x

1024×512 0.20/0x 0.12/0.63x 0.13/0.51x 0.09/1.18x

2048×512 0.78/0x 0.39/1.00x 0.47/0.66x 0.30/1.60x

4096×512 3.26/0x 1.37/1.38x 1.70/0.92x 1.13/1.88x

8192×512 13.60/0x 5.19/1.62x 6.40/1.13x 4.30/2.16x

122

Table 5.4: Run-Time/Speedup of CPU-PBA and GPU-PBA (1024 Resources)

Processes×Resources CPU-PBA GTX 670 Tesla C2050 Tesla K20c

512×1024 0.10/0x 0.06/0.67x 0.08/0.25x 0.05/1.00x

1024×1024 0.39/0x 0.23/0.70x 0.31/0.26x 0.18/1.17x

2048×1024 1.59/0x 0.88/0.81x 1.19/0.34x 0.68/1.34x

4096×1024 6.62/0x 3.25/1.04x 4.60/0.44x 2.63/1.52x

8192×1024 26.62/0x 12.69/1.10x 17.90/0.49x 10.30/1.58x

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

512x256	 1024x256	 2048x256	 4096x256	 8192x256	

Sp
ee
du

p	

Input	 Size	 MxN	

GTX	 670	 Tesla	 C2050	 Tesla	 K20c	

Figure 5.2: GPU-PBA Speedup w/ 256 Resources

123

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

512x512	 1024x512	 2048x512	 4096x512	 8192x512	

Sp
ee
du

p	

Input	 Size	 MxN	

GTX	 670	 Tesla	 C2050	 Tesla	 K20c	

Figure 5.3: GPU-PBA Speedup w/ 512 Resources

0.00	
0.20	
0.40	
0.60	
0.80	
1.00	
1.20	
1.40	
1.60	

512x1024	 1024x1024	 2048x1024	 4096x1024	 8192x1024	

Sp
ee
du

p	

Input	 Size	 MxN	

GTX	 670	 Tesla	 C2050	 Tesla	 K20c	

Figure 5.4: GPU-PBA Speedup w/ 1024 Resources

5.5 Conclusion

A GPU-based approach to deadlock avoidance has been implemented and suc-

cessfully tested. Speedups achieved by GPU-PBA over CPU-PBA are in the range of

0.10-3.2X. There are several hypothesized reasons for the speedup difference between

124

this algorithm and the two prior algorithms. The reasons and potential solutions will

be discussed in the Future Work section of this thesis.

125

6 SUMMARY

6.1 Thesis Conclusions

This thesis has proposed and developed three algorithms, namely a single-unit

deadlock detection algorithm (GPU-OSDDA), a multi-unit deadlock detection algo-

rith (GPU-LMDDA), and a deadlock avoidance algorithm (GPU-PBA) on the GPU

platform. The goal of providing deadlock detection/avoidance algorithms as an in-

teractive service to the CPU has been accomplished. By modeling prior hardware

deadlock detection/avoidance algorithms for use on the GPU, utilizing bit-packing

methods to store algorithm matrices, and solving algorithm computations with bit-

wise operations, the three algorithms developed have, in general, provided speedups

over two orders of magnitude higher than CPU implementations. The following pro-

vides lists of the contributions brought by each of the aforementioned algorithms.

GPU-OSDDA

1. First single-unit deadlock detection algorithm available for the GPU platform

2. Keeps track of all resource allocation events on the GPU

3. Implements matrix storage and algorithm computations on bit-vectors

4. Has the ability to handle large numbers of processes and resources

5. Required memory space substantially reduced with current implementation

6. Limited interaction with the CPU, allowing for an interactive service behavior

7. Achieved speedups over two orders of magnitude higher than CPU version

126

GPU-LMDDA

1. First multi-unit deadlock detection algorithm available for the GPU platform

2. Keeps track of all resource allocation events on the GPU

3. Implements matrix storage and algorithm computations on bit-vectors

4. Has the ability to handle a set size of 1024x1024 (processes x resources)

5. Required memory space substantially reduced with current implementation

6. Highly parallelized reachability computation which could be used in different

applications

7. Limited interaction with the CPU, allowing for an interactive service behavior

8. Achieved speedups over two orders of magnitude higher than CPU version

GPU-PBA

1. First parallelized deadlock avoidance algorithm available for the GPU platform

2. Provided speedups over CPU implementation

6.2 Future Work

The three proposed algorithms in this thesis have laid the groundwork for future

research regarding parallelized deadlock detection and avoidance algorithms on the

GPU platform. The single-unit deadlock detection algorithm (GPU-OSDDA) was

able to achieve substantial speedups over the CPU with no process or resource amount

limitations (with the exception being the available memory space on a GPU). A

potential extension to this algorithm could be to implement a sparse-matrix storage

mechanism over-top of the bit-vector technique currently being utilized. While this

may not eliminate all nodes of disinterest for computations (as 32 sequential process or

resource amounts would have to be 0), in RAGs with very sparse elements, substantial

127

speedups could be achieved over the current implementation if the sparse locations

of a RAG were removed from consideration during computation of GPU-OSDDA.

The multi-unit deadlock detection algorithm (GPU-LMDDA), while able to achieve

impressive speedups over the CPU, has a caveat being that its performance degrades

as the process and resource amounts approach 1024. This is due to scheduling the

maximum number of threads per block (1024) during the initialization and compu-

tation phases of the reachability computation. A future addition would be to expand

the algorithm’s capability by reworking the computations involved to accept a lower

number of threads per block (preferably 256), which then causes computations to be

broken apart and handled by more blocks. As a result, this would allow for a much

greater number of allowable process and resource amounts the algorithm may han-

dle and greatly increase speed since more blocks may be running concurrently on an

SM(X). Implementing a sparse-matrix storage mechanism over-top of the bit-vector

technique used in GPU-LMDDA may also advocate greater speedups, similar to what

was suggested for GPU-OSDDA.

GPU-PBA, the deadlock avoidance algorithm proposed in this thesis, presented

concerns about being able to significantly accelerate computations of deadlock avoid-

ance on GPUs. There are several primary limitations, the first being the synchroniza-

tion problem. During the H-Safety check computation, the comparisons performed

for all processes are done in parallel. The issue is that there are no synchronization

primitives between blocks in the CUDA framework. This implies that for each itera-

tion of the H-Safety check, the algorithm must return to the CPU to synchronize all

blocks. When re-entering the H-Safety check kernel, all matrix elements of interest

must be reread from global memory, all the while incurring kernel call overhead for

each iteration. This alone greatly increases the run-time of the algorithm. In contrast,

the CPU performs all of these comparisons in serial and is able to cache most (if not

all) values for future iterations of the H-Safety check. Additionally, the CPU does not

incur a kernel call overhead as GPU-PBA does. These factors, as well as the CPU’s

increased clock speeds over the GPU, lead to the limited speedups that GPU-PBA

128

was able to achieve. If the CUDA framework provided a cross block synchronization

mechanism (or if one could be implemented efficiently), then matrix elements could

be cached, thus eliminating kernel call overhead and allowing for cache utilization.

LIST OF REFERENCES

129

LIST OF REFERENCES

[1] E. W. Dijkstra, “The origin of concurrent programming,” ch. Cooperating se-
quential processes, pp. 65–138, New York, NY, USA: Springer-Verlag New York,
Inc., 2002.

[2] A. N. Habermann, “Prevention of system deadlocks,” Communications of the
ACM, vol. 12, pp. 373–377, July 1969.

[3] R. C. Holt, “Some deadlock properties of computer systems,” ACM Computing
Surveys, vol. 4, pp. 179–196, Sept. 1972.

[4] T. F. Leibfried, “A deadlock detection and recovery algorithm using the formal-
ism of a directed graph matrix,” SIGOPS Operating Systems Review, vol. 23,
pp. 45–55, Apr. 1989.

[5] J. K. Kim and K. Koh, “A O(1) time deadlock detection scheme in a single unit
and single request multiprocessor system,” in TENCON ’91.1991 IEEE Region
10 International Conference on EC3-Energy, Computer, Communication and
Control Systems, vol. 2, pp. 219–223, Aug.

[6] A. Shoshani, Detection, Prevention and Recovery from Deadlocks in Multiprocess
Multiple Resource Systems. Reports, Princeton University, 1969.

[7] J. G. Kim, “An algorithmic approach on deadlock detection for enhanced paral-
lelism in multiprocessing systems,” in Proceedings of the 2nd AIZU International
Symposium on Parallel Algorithms / Architecture Synthesis, PAS ’97, (Washing-
ton, DC, USA), pp. 233–, IEEE Computer Society, 1997.

[8] P. Shiu, Y. Tan, and V. J. Mooney, “A novel parallel deadlock detection algo-
rithm and architecture,” in Hardware/Software Codesign, CODES 2001. Pro-
ceedings of the Ninth International Symposium on, pp. 73–78, 2001.

[9] X. Xiao and J. Lee, “A novel parallel deadlock detection algorithm and hard-
ware for multiprocessor system-on-a-chip,” Computer Architecture Letters, vol. 6,
no. 2, pp. 41–44, Feb.

[10] X. Xiao and J. Lee, “A true O(1) parallel deadlock detection algorithm for single-
unit resource systems and its hardware implementation,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 21, no. 1, pp. 4–19, Jan.

[11] X. Xiao and J. Lee, “A novel O(1) parallel deadlock detection algorithm and
architecture for multi-unit resource systems,” in Computer Design, ICCD 2007.
25th International Conference on, pp. 480–487, Oct. 2007.

[12] X. Xiao and J. Lee, “A parallel multi-unit resource deadlock detection algo-
rithm with O(log2(min(m,n))) overall run-time complexity,” Elsevier Journal of
Parallel and Distributed Computing, vol. 71, pp. 938–954, July 2011.

130

[13] J. Lee, Hardware/software deadlock avoidance for multiprocessor multiresource
system-on-a-chip. PhD thesis, School of ECE, Georgia Institute of Technology,
Atlanta, GA, USA, Nov. 2004.

[14] J. Lee and V. J. Mooney, “A novel O(n) parallel banker’s algorithm for system-
on-a-chip,” Parallel and Distributed Systems, IEEE Transactions on, vol. 17,
no. 12, pp. 1377–1389, Dec. 2006.

[15] M. J. Flynn and K. W. Rudd, “Parallel architectures,” ACM Computing Surveys,
vol. 28, pp. 67–70, Mar. 1996.

[16] S. Cook, CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann - Elsevier, 1 ed., 2012.

[17] NVIDIA Corporation, “NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Fermi.” http://www.nvidia.com/content/PDF/fermi white papers/
NVIDIA Fermi Compute Architecture Whitepaper.pdf, 2009. Accessed: 2013-
03-22.

[18] NVIDIA Corporation, “NVIDIA’s Next Generation CUDA Compute Architec-
ture: Kepler.” http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf, 2012. Accessed: 2013-03-22.

[19] NVIDIA Corporation, “CUDA C Best Practices Guide.” http://docs.nvidia.
com/cuda/pdf/CUDA C Best Practices Guide.pdf, October 2012. Accessed:
2012-09-25.

[20] NVIDIA Corporation, “CUDA C Programming Guide.” http://docs.nvidia.com/
cuda/pdf/CUDA C Programming Guide.pdf, October 2012. Accessed: 2012-09-
25.

[21] V. Volkov, “Better performance at lower occupancy,” in GPU Technology Con-
ference, 2010.

[22] H. S. Warren, Hacker’s Delight. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2002.

[23] M. Harris, “Optimizing Parallel Reduction in CUDA.” http://developer.
download.nvidia.com/compute/cuda/1.1-Beta/x86 website/projects/reduction/
doc/reduction/pdf, 2009. Accessed: 2013-02-12.

