
A NEW ADAPTIVE TRILATERAL FILTER

FOR IN-LOOP FILTERING

A Thesis

Submitted to the Faculty

of

Purdue University

by

Akitha Kesireddy

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and

Computer Engineering

May 2014

Purdue University

Indianapolis, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . iv

LIST OF FIGURES . v

ABSTRACT . viii

1 INTRODUCTION . 1

1.1 In-loop Filtering . 2

1.2 Deblocking Filter . 2

1.3 Sample Adaptive Offset . 2

1.4 HEVC Coding Design and Features 4

1.5 Video Coding Layer . 4

1.6 Aim of the Thesis . 6

2 DESIGN DESCRIPTION OF FILTERS 7

2.1 HEVC Adaptive Loop Filtering . 7

2.2 ALF Core Techniques . 8

2.2.1 Discrete Wiener Filter . 9

2.2.2 Filter Shape . 10

2.2.3 Filter Symmetry . 10

2.2.4 Filter Coefficient Representation 12

2.2.5 Virtual Boundary Processing 14

2.2.6 Slice and Tile Boundary Processing 16

2.2.7 Syntax Design . 16

2.3 Block-based and Region-based Filter Adaptation 17

2.3.1 Block-Based Filter Adaptation 18

2.3.2 Region-Based Filter Adaptation 19

2.3.3 Class/Region Merging in BA/RA 20

iii

Page

2.4 Trilateral Filter . 21

3 PROPOSED ALGORITHM . 24

3.1 Proposed Algorithm . 24

3.2 Boundary Block Detection . 24

3.3 In-Loop Filtering . 25

3.4 Steps to make the HEVC Stream 27

4 RESULTS . 31

4.1 Experimental Results . 31

4.2 Proposed Algorithms Quality Assessment Test Conditions 31

4.3 Proposed algorithm experimental results 33

4.3.1 Test Results for the Mobile Cif Sequence 34

4.3.2 Test Results for the Akiyo Cif Sequence 36

4.3.3 Test Results for the Flower Cif Sequence 38

4.3.4 Test Results for the Foreman Cif Sequence 40

4.3.5 Test Results for the bus Cif Sequence 42

4.3.6 Bit-rate changes for the test sequences 44

4.3.7 Total running time for the test sequences 47

4.3.8 Comparison of subjective video quality 50

4.4 Summary of test results . 65

5 SUMMARY . 69

LIST OF REFERENCES . 71

iv

LIST OF TABLES

Table Page

2.1 K Values for Different Filter Coefficients 13

2.2 Class Table for Block-based Filter Adaptation 18

4.1 Test Sequences Information . 32

4.2 Changes compared to original software for Mobile cif 65

4.3 Changes compared to original software for Akiyo cif 66

4.4 Changes compared to original software for Flower cif 66

4.5 Changes compared to original software for Foreman cif 67

4.6 Changes compared to original software for Bus cif 67

v

LIST OF FIGURES

Figure Page

1.1 An example of intensity bands and groups of bands in BO mode, for 8-b. 3

1.2 Patterns used in EO mode . 3

1.3 Block diagram of HEVC video encoder 5

2.1 An ALF shape . 8

2.2 Filter shape of ALF in HM-6.0 and HM-7.0. 11

2.3 Illustration of virtual boundary processing when filter process across vir-
tual boundary (bold line). 15

2.4 Locations of ALF parameters in the bitstream. 16

2.5 Illustration of samples (solid circles) for calculating a 4×4 block class in
block-based filter adaptation (BA) method. 18

2.6 Illustration of dividing one picture into 16 regions in region-based filter
adaptation (RA) method. 20

2.7 Illustration of samples (Mapping between filters and classes/regions. . . 20

3.1 The flow chart of the proposed in-loop filter for HEVC 26

3.2 Original Image . 28

3.3 Encoded Frame . 29

3.4 Compression artifacts . 30

4.1 Bit-rate vs Y-PSNR (Mobile cif) . 34

4.2 Bit-rate vs U-PSNR (Mobile cif) . 34

4.3 Bit-rate Vs V-PSNR (Mobile cif) . 35

4.4 Bit-rate Vs Avg-PSNR (Mobile cif) . 35

4.5 Bit-rate Vs Y-PSNR (Akiyo cif) . 36

4.6 Bit-rate Vs U-PSNR (Akiyo cif) . 36

4.7 Bit-rate Vs V-PSNR (Akiyo cif) . 37

4.8 Bit-rate Vs Avg-PSNR (Akiyo cif) . 37

vi

Figure Page

4.9 Bit-rate Vs Y-PSNR (Flower) . 38

4.10 Bit-rate Vs U-PSNR (Flower cif) . 38

4.11 Bit-rate Vs V-PSNR (Flower cif) . 39

4.12 Bit-rate Vs Avg-PSNR (Flower cif) . 39

4.13 Bit-rate Vs Y-PSNR (Foreman cif) . 40

4.14 Bit-rate Vs U-PSNR (Foreman cif) . 40

4.15 Bit-rate Vs V-PSNR (Foreman cif) . 41

4.16 Bit-rate Vs Avg-PSNR Foreman cif) 41

4.17 Bit-rate Vs Y-PSNR (Bus cif) . 42

4.18 Bit-rate Vs U-PSNR (Bus cif) . 42

4.19 Bit-rate Vs V-PSNR (Bus cif) . 43

4.20 Bit-rate Vs Avg-PSNR (Bus cif) . 43

4.21 Comparison of the Bit-rate of Flower cif for different QP values 44

4.22 Comparison of the Bit-rate of Foreman cif for different QP values . . . 44

4.23 Comparison of the Bit-rate of Bus cif for different QP values 45

4.24 Comparison of the Bit-rate of Mobile cif for different QP values 45

4.25 Comparison of the Bit-rate of Akiyo cif for different QP values 46

4.26 Comparison of the total running time of Bus cif for different QP values 47

4.27 Comparison of the total running time of Akiyo cif for different QP values 47

4.28 Comparison of the total running time of Mobile cif for different QP values 48

4.29 Comparison of the total running time of Foreman cif for different QP values 48

4.30 Comparison of the total running time of Flower cif for different QP . . 49

4.31 (a) Input picture of Flower cif . 50

4.32 (b) Reconstructed picture using original software 51

4.33 (c) Reconstructed picture using proposed software 52

4.34 (a) Input picture of Bus cif . 53

4.35 (b) Reconstructed picture using original software 54

4.36 (c) Reconstructed picture using proposed software 55

vii

Figure Page

4.37 (a) Input picture of Foreman cif . 56

4.38 (b) Reconstructed picture using original software 57

4.39 (c) Reconstructed picture using proposed software 58

4.40 (a) Input picture of Mobile cif . 59

4.41 (b) Reconstructed picture using original software 60

4.42 (c) Reconstructed picture using proposed software 61

4.43 (a) Input picture of Akiyo cif . 62

4.44 (b) Reconstructed picture using original software 63

4.45 (c) Reconstructed picture using proposed software 64

viii

ABSTRACT

Kesireddy,Akitha M.S., Purdue University, May 2014. A New Adaptive Trilateral
Filter for In-loop Filtering. Major Professor: Mohammed El-Sharkawy.

HEVC has achieved significant coding efficiency improvement beyond existing

video coding standard by employing many new coding tools. Deblocking Filter, Sam-

ple Adaptivie Offset and Adaptive Loop Filter (ALF) for in-loop filtering are currently

introduced for the HEVC standardization. However these filters are implemented in

spatial domain despite the fact of temporal correlation within video sequences. To

reduce the artifacts and better align object boundaries in video, a new algorithm in

in-loop filtering is proposed. The proposed algorithm is implemented in HM-11.0 soft-

ware. This proposed algorithm allows an average bitrate reduction of about 0.7% and

improves the PSNR of the decoded frames by 0.05%, 0.30% and 0.35% in luminance

and chroma.

1

1. INTRODUCTION

High-Efficiency Video Coding (HEVC) is the new video coding standard developed

in the joint collaboration of the ITU-T Video Coding Experts Group (VCEG) and

the ISO/IEC Moving Picture Experts Group (MPEG). The main aim of the project

is improving the compression efficiency of the H.264/AVC standard by almost 50%

and maintaining the same computational complexity. Many coding tools are included

to reduce the distortion between the original frame and decoded frames produced by

the lossy coding.

Over the past several years many algorithms have been proposed for reducing

the blocking artifacts and the bit rate [2–5].These algorithms can be categorized

into several types. One is a post processing algorithm to remove blocking artifacts

for highly compressed images in the DCT domain, the other is the reduction of

blocking artifacts that is carried out at encoding schemes [2] and another is to reduce

the temporal redundancy of ALF parameters by reusing the prior transmitted filter

parameters [3]. In [4] the proposed method, a strong filter is selectively applied to

blocks having small estimated artifacts that is, to highly reliable blocks to avoid

harmful side effects of filtering, and a weak filter is applied to other ones that is,

to lowly reliable blocks - in order to slightly correct them. In the other context [5]

an adaptive in-loop bilateral filter selecting the optimal filter parameters based on

the image characteristics is proposed to minimize the Lagrangian Rate-Distortion.

Based on these algorithms we proposed an algorithm which reduces the computational

complexity and achieves the main goal to improve the PSNR values and reduce the

bit-rate.

2

1.1 In-loop Filtering

According to the name loop filtering [1] reflects that the filtering is done as a

part to remove the blocking artifacts .H.264/AVC includes an in-loop Deblocking

Filter. HEVC employs a Deblocking Filter similar to the one used in H.264/AVC

but also expands an in-loop processing by introducing two new tools: SAO ad ALF.

These techniques are implemented to reduce the distortion introduced in the encoding

process (prediction, transform, and quantization). By including filtering techniques,

the pictures will serve as better references for motion- compensated prediction since

they have less encoding distortion.

1.2 Deblocking Filter

Blocking is known as one of the most visible and objectionable artifacts of block-

based compression methods. For this reason, in H.264/AVC, low-pass filters are

adaptively applied to block boundaries according to the boundary strength. This

improves the subjective and objective quality of the video. HEVC uses an in-loop

Deblocking Filter similar to the one used in H.264/AVC. In HEVC, there are several

kinds of block boundaries, such as CUs, PUs, and TUs. The set of boundaries that

may be filtered in HEVC is the union of all of these boundaries (except for 4 X 4

blocks, which are not filtered to reduce complexity). For each boundary, a decision is

made to turn the Deblocking on or off and whether to apply strong or weak filtering.

This decision is based on the pixel gradients across the boundary and thresholds

derived based on the QP in the blocks.

1.3 Sample Adaptive Offset

SAO [11] is a new coding tool introduced in HEVC, which involves classifying

pixels into different categories and adding a simple offset value to each pixel based

on its category. SAO classifies reconstructed pixels into different categories based on

3

either intensity or edge properties. It then adds an offset, either band offset (BO) or

edge offset (EO), to the pixels in each category in a region to reduce distortion. BO

classifies all pixels of a region into multiple bands, with each band containing pixels

in the same intensity interval. The intensity range is divided into 32 equal intervals

from zero to the maximum intensity. For example, for 8-b data, the maximum value

is 255, so the bands will be 256/32 = 8 pixels wide.

Fig. 1.1: An example of intensity bands and groups of bands in BO mode, for 8-b.

Fig. 1.2: Patterns used in EO mode

The 32 bands are divided into two groups. One group consists of the central 16

bands while the other group consists of the remaining 16 bands (see the example in

Figure 1.1). The encoder decides which group of bands to apply SAO, so 16 offsets

will be encoded in the bit stream [11]. EO uses one of four one-dimensional three-

pixel patterns to classify pixels based on their edge direction, as illustrated in Figure

1.2. Each pixel can be classified as a peak (if it is greater than two neighbors), valley

(if it is less than the two neighbors), edge (if it is equal to one neighbor, categories 2

and 3), or none of these. Four offset values will be calculated for these four categories.

4

The encoder can choose to apply either BO or EO to different regions of a picture.

It can also signal that neither BO nor EO is used for a region.

1.4 HEVC Coding Design and Features

The HEVC standard is designed to achieve multiple goals including coding effi-

ciency, ease of transport system integration and data loss resilience, as well as imple-

mentability using parallel processing architectures. The following subsections briefly

describe the key elements of the design by which these goals are achieved, and the

typical encoder operation that would generate a valid bitstream [10].

1.5 Video Coding Layer

The video coding layer of HEVC employs the same hybrid approach (inter/intra

picture prediction and 2-D transform coding) used in all video compression standards

since H.261. Fig. 1.3 depicts the block diagram of a hybrid video encoder, which

could create a bit stream conforming to the HEVC standard. An encoding algorithm

producing an HEVC compliant bit stream would typically proceed as follows. Each

picture is split into block-shaped regions, with the exact block partitioning being

conveyed to the decoder. The first picture of a video sequence (and the first picture

at each clean random access point into a video sequence) is coded using only intra-

picture prediction (that uses some prediction of data spatially from region-to-region

within the same picture, but has no dependence on other pictures). For all remain-

ing pictures of a sequence or between random access points, inter picture temporally

predictive coding modes are typically used for most blocks. The encoding process

for inter-picture prediction consists of choosing motion data comprising the selected

reference picture and motion vector (MV) to be applied for predicting the samples

of each block. The encoder and decoder generate identical inter-picture prediction

signals by applying motion compensation (MC) using the MV and mode decision

data, which are transmitted as side information. The residual signal of the intra-

5

or inter-picture prediction, which is the difference between the original block and its

prediction, is transformed by a linear spatial transform. The transform coefficients

are then scaled, quantized, entropy coded, and transmitted together with the pre-

diction information. The encoder duplicates the decoder processing loop such that

both will generate identical predictions for subsequent data. Therefore, the quantized

transform coefficients are constructed by inverse scaling and are then inverse trans-

formed to duplicate the decoded approximation of the residual signal. The residual

is then added to the prediction, and the result of that addition may then be fed into

one or two loop filters to smooth out artifacts induced by block-wise processing and

quantization.

Fig. 1.3: Block diagram of HEVC video encoder

6

The final picture representation (that is a duplicate of the output of the decoder)

is stored in a decoded picture buffer to be used for the prediction of subsequent

pictures. In general, the order of encoding or decoding processing of pictures often

differs from the order in which they arrive from the source; necessitating a distinction

between the decoding order (i.e., bit stream order) and the output order (i.e., display

order) for a decoder. Video material to be encoded by HEVC is generally expected

to be input as progressive scan imagery (either due to the source video originating

in that format or resulting from de-interlacing prior to encoding). No explicit coding

features are present in the HEVC design to support the use of interlaced scanning, as

interlaced scanning is no longer used for displays and is becoming substantially less

common for distribution. However, a meta-data syntax has been provided in HEVC

to allow an encoder to indicate that interlace-scanned video has been sent by coding

each field (i.e., the even or odd numbered lines of each video frame) of interlaced

video as a separate picture or that it has been sent by coding each interlaced frame

as an HEVC coded picture. This provides an efficient method of coding interlaced

video without burdening decoders with a need to support a special decoding process

for it.

Entropy coding: Context adaptive binary arithmetic coding (CABAC) is used for

entropy coding. This is similar to the CABAC scheme in H.264/MPEG-4 AVC, but

has undergone several improvements to improve its throughput speed (especially for

parallel-processing architectures) and its compression performance, and to reduce its

context memory requirements.

1.6 Aim of the Thesis

The main aim of this thesis is to reduce the bit rate and improve the video quality

by implementing a trilateral filter and adaptive loop filter together, evaluate the effect

of proposed algorithm on the quality of the output and compare their results to the

evaluated results of the original algorithm of HEVC.

7

2. DESIGN DESCRIPTION OF FILTERS

2.1 HEVC Adaptive Loop Filtering

This section describes ALF core techniques employed in the final ALF version in

HM-5.0. The filter derivation details including Wiener filter derivation, filter shapes,

and coefficient coding are introduced here. The concept of Wiener filter is to minimize

the mean square error between the desired samples and the filtered samples. In ALF,

the desired samples are the original picture, the to-be-filtered samples are the output

picture of SAO, and the filtered samples are the output picture of ALF.

In HEVC [1], an ALF is applied to the reconstructed signal after the de-blocking

filter and SAO. The filter is adaptive in the sense that the coefficients are signalled in

the bit stream and can therefore be designed based on image content and distortion of

the reconstructed picture. The filter is used to restore the reconstructed picture such

that the mean-squared error between the source picture and the reconstructed picture

is minimized. Details of a single filter shape in HM-3.0 which is a cross overlaid on a

3× 3 square with nine coefficients to be encoded in the bit stream (Figure 2.1) [13].

8

Fig. 2.1: An ALF shape

Note that the number of taps in the filter is greater than nine due to symmetry.

There are two modes that can be used for applying different filters to different

pixels within each picture: region-based adaptation (RA) and block-based adaptation

(BA). In RA mode, the picture is divided into 16 regions of equal size. These regions

can be merged, and each region remaining after merging will have its own filter (with

a unique set of coefficients). In BA mode, 4 × 4 blocks are classified into 1 of 16

categories based on edge activity and direction. These categories can be merged, and

in the end, one filter will be designed for each of the categories left after merging.

The filter coefficients for each region can be calculated based on the auto correlation

and cross-correlation of the original pixels and the reconstruction pixels in the region

(using WienerHopf equations) [14].

The ALF can be enabled or disabled for different picture areas based on the

partitioning of LCUs into CUs (in a quad-tree segmentation structure).

2.2 ALF Core Techniques

The ALF design in the HM-6.0 and HM-7.0 is detailed in this section which

describes ALF core techniques employed in the final ALF version in HM-7.0. The

9

filter derivation details including Wiener filter derivation, filter shapes, and coefficient

coding are introduced from Sections 2.2.1 to 2.2.4. Sections 2.2.5 and 2.2.6 describe

related hardware-friendly designs in ALF. Finally ,the flexible syntax design which

allows on/off control in different levels is described in Section 2.2.7 [6].

2.2.1 Discrete Wiener Filter

The concept of Wiener filter is to minimize the mean square error between the

desired samples and the filtered samples. In ALF, the desired samples are the original

picture, the to-be-filtered samples are the output picture of SAO, and the filtered

samples are the output picture of ALF.

Tc =



∑
‖R‖

t[r+p0]t[r+p0]
∑
‖R‖

t[r+p1]t[r+p0] · · ·
∑
‖R‖

t[r+pN−1]t[r+p0]

∑
‖R‖

t[r+p0]t[r+p1]
∑
‖R‖

t[r+p1]t[r+p1] · · ·
∑
‖R‖

t[r+pN−1]t[r+p1]

...
...

. . .
...

∑
‖R‖

t[r+p0]t[r+pN−1]
∑
‖R‖

t[r+p1]t[r+pN−1]· · ·
∑
‖R‖

t[r+pN−1]t[r+pN−1]





c0

c1

.

..

cN−1


=



∑
‖R‖

s[r]t[r+p0]

∑
‖R‖

s[r]t[r+p1]

...

∑
‖R‖

s[r]t[r+pN−1]



= v

(1)

Let us assume the followings for 2-D images.

1. Sample location r = (x,y) belongs to the to-be-filtered region R and ‖ R ‖ is

the number of samples in R.

2. Desired sample: s[r]

3. To-be-filtered sample: t[r]

4. FIR filter with N coefficients: c = [c0c1...cN−1]
T

5. Filter tap position offset:p0, p1, ..., pN−1 , where pn denotes the sample location

offset to r of the nth filter tap.

10

6. Filtered sample:f [r] and is derived by:

f [r] =
N−1∑
n=0

cnt[r + pn] (2)

In order to find the minimum sum of squared errors (SSE) between f [r] and s[r],we

can calculate the derivatives of SSE with respect to cn and let the derivatives equal to

zero. Then the Wiener-Hopf equations in a matrix form can be derived,as shown in

(1). In (1),T, c, and denote the auto-correlation matrix of the to-be-filtered samples,

the filter coefficients, and the cross-correlation vector of the to-be-filtered and the

original samples, respectively. Gaussian elimination algorithm can be applied to solve

(1) for the optimal filter coefficients.

2.2.2 Filter Shape

The filter shapes adopted in the key technical area (KTA)software were 5 × 5,

7 × 7 and 9 × 9 square shapes, where the shape can be selected picture by picture.

When ALF was adopted in TMuC, the filter shapes became diamond shapes that

reduce the number of coefficients to half. Between TMuC and HM-6.0, filter shapes

have been studied by [15–18] to find a good trade-off between coding efficiency and

the number of coefficients (i.e., complexity). In HM-7.0, the filter shape of ALF is a

combination of 9× 7-tap cross shape and 3× 3-tap rectangular shape, as illustrated

in Fig. 2.2. Each square in Fig. 2.2 corresponds to a sample. Therefore, a total of

19 samples are used to derive a filtered value for the sample of position 9.

2.2.3 Filter Symmetry

Since the Wiener filter is designed according to the coding error statistics of large

areas of a picture, the symmetry of coding error is a reasonable assumption. There-

fore, a symmetrical filter is used. A point-symmetrical filter can reduce the number

11

of filter coefficients to half, which implies that the number of multiplications and

the overhead sending coefficients can be also reduced to half.Since a multiplier needs

much larger chip area than an adder or a subtractor, eliminating half the multipliers

significantly reduces the chip area for ALF.

Fig. 2.2: Filter shape of ALF in HM-6.0 and HM-7.0.

In Fig. 2.2, c1, c2, .., c9 denote the filter coefficients. Therefore, the number of

multiplications is 10 to perform a 19-tap FIR filter.With the symmetric filter design,

the Wiener-Hopf equations in (1) can be described in (3) where t′ is derived as:

t′ = [r + pn] = t[r + pn] + t[r + p18−n] (4)

12

2.2.4 Filter Coefficient Representation

Filter coefficients are derived by solving Wiener-Hopf equations. The derived

filter coefficients can be floating- point, and the filter coefficient ranges are almost

unlimited. However, it is hard to represent a variable with a floating-point value and

an unlimited range in syntax and implementation, especially for hardware designs [19].

In order to solve this problem, the filter coefficient precision in the fractional part

and the filter coefficient range should be properly defined. In HM-6.0, the precision

of filter coefficients in the fractional part is 8-bit, so the derived filter coefficients shall

be quantized with this precision. The ranges of filter coefficients are defined as follows.

For non-center filter coefficients, the coefficient range is limited within [−1, 1). For the

center (i.e., position 9 in Fig. 2.2) filter coefficient, the coefficient range is limited in

[0.0, 2.0). By these two constraints, filter coefficients can be represented by integers

in software implementations, and by 10-bit registers in hardware implementations.

The bit widths of multiplier inputs for ALF are 10 bits for filter coefficients and 9

bits for the sum of two samples. The 10 filter coefficients in Fig. 2.2 have different

distributions. For example, the center coefficient c9 usually has the biggest value

among all coefficients, and the coefficients near the center position tend to have

bigger values than the others.

Tc =



∑
‖R‖

t′[r+p0]t′[r+p0]
∑
‖R‖

t′[r+p1]t′[r+p0] · · ·
∑
‖R‖

t′[r+p9]t′[r+p0]

∑
‖R‖

t′[r+p0]t′[r+p1]
∑
‖R‖

t′[r+p1]t′[r+p1] · · ·
∑
‖R‖

t′[r+p9]t′[r+p1]

...
...

. . .
...

∑
‖R‖

t′[r+p0]t′[r+p9]
∑
‖R‖

t′[r+p1]t′[r+pN−1]· · ·
∑
‖R‖

t′[r+p9]t′[r+p9]





c0

c1

...

c9


=



∑
‖R‖

s[r]t′[r+p0]

∑
‖R‖

s[r]t′[r+p1]

...

∑
‖R‖

s[r]t′[r+p9]



= v (3)

Note that the distribution of c9 can be reduced by a prediction formed by other

coefficients using the following equation:

13

Table 2.1: K Values for Different Filter Coefficients

Filter Coefficient Coefficient Value Range K

c0 -256 to 255 2

c1 -256 to 255 3

c2 -256 to 255 3

c3 -256 to 255 4

c4 -256 to 255 3

c5 -256 to 255 1

c6 -256 to 255 2

c7 -256 to 255 3

c8 -256 to 255 4

c9 0 to 511 1

∆c9 = c9 − (28 −
8∑

n=0

2cn) (5)

where ∆c9 denotes its prediction error, and 28 is the fixed-point representation of 1.0

with 8-bit fractional precision.

To exploit different distributions of coefficients, ALF coefficients are coded using

Kth order Exp-Golomb codes. For different coefficients, different K values are selected

empirically, as shown in Table 2.1. The coefficient magnitude 0 is signaled by the

shortest codeword, the coefficient magnitude 1 by the second shortest codeword, and

so on. The sign of each non-zero coefficient is then signaled by one bit. The detailed

parsing process of Kth order Exp-Golomb code can be found in [20] for interested

readers.

14

2.2.5 Virtual Boundary Processing

As shown in Fig. 2.2, the filter shape has 9 taps in the horizontal direction, 7

taps in the vertical direction, and 19 taps in total for this filter. This means that the

memory bandwidth requirement is 19 times of the number of samples in one picture

if there is no local buffer. In hardware implementations, six line buffers can be

invested to avoid the memory bandwidth increase. However, the line buffers require

large chip areas, especially for high resolution videos. In order to solve this problem,

virtual boundary (VB) processing [22] is introduced for ALF. The basic concept of

VB processing is that when one sample on one side of a VB is filtered, those samples

on the other side of the VB cannot be used in filtering process. That is, if the filter

shape centered at a to-be-filtered sample crosses a VB, then the filter process should

be changed to avoid using samples on the other side of the VB. The modified filter

processes are shown in Fig. 2.3, where c9 marks the to-be-filtered sample, the bold

line in the middle is the VB,c0 − c9 are original filter coefficients, and c′0 − c′9 are

modified filter coefficients. If the filter shape of the to-be-filtered sample is not across

the VB, original filter coefficients are applied in the filtering process. If the filter

shape of the to-be-filtered sample is across the VB, the modified filter coefficients are

selected based on the position of the to-be-filtered sample and applied in the filtering

process as shown in Fig. 2.3.

15

Fig. 2.3: Illustration of virtual boundary processing when filter process across

virtual boundary (bold line).

16

By this method, no sample line buffer is needed in ALF filtering process and the

price is only minor coding performance degradation.According to simulation results

[22], [23], the BD-rate loss induced by VB process is only 0.1%0.3%, and it is easy to

be compensated by increasing the number of vertical filter taps in the filter footprint.

Considering the Deblocking Filter in HEVC, the lumaVB is four samples above the

horizontal coding tree block (CTB) boundary, and the chroma VB is two samples

above the horizontal CTB boundary.

2.2.6 Slice and Tile Boundary Processing

To better support parallel processing, non-cross-slice [24] and non-cross-tile [25]

boundary filtering are allowed options. Let us take non-cross-slice boundary filtering

as an example. If the filtering process of one sample needs to refer other samples

from a different slice, the slice boundary samples of the current slice are repetitively

extended to replace those samples outside the slice boundary. The same padding

technique is applied for both non-cross-slice and non-cross-tile boundary filtering

methods. By using non-cross-slice/tile boundary filtering, the parallel processing can

be achieved for different slices/tiles in one picture.

Fig. 2.4: Locations of ALF parameters in the bitstream.

2.2.7 Syntax Design

There are two types of coded information for ALF: filter coefficient parameters

and filter on/off control flags. As shown in Fig. 2.4, the filter coefficient parameters

17

are located in a picture-level header called APS, and the filter on/off control flags

are interleaved in slice data with CTUs. The filter coefficient parameters include

picture-level on/off control flags for three color components, number of luma filters

(i.e., class/region merging syntax elements for BA/RA), and corresponding filter co-

efficients. Up to 16 luma filters, one Cb filter, and one Cr filter per picture can be

signaled. Filter on/off control flags are used to provide better local adaptation. In

addition to the picture-level filter on/off control flags in APS, there are also slice-level

and CTU-level filter on/off control flags. In slice header, similarly, filter on/off control

flags for three color components are coded. The signaling of slice-level filter on/off

control flags can solve a slice parsing problem when the referenced APS of the slice

is lost [26]. If the slice-level on/off control flag indicates ALF-on, CTU-level filter

on/off control flags are interleaved in slice data and coded with CTUs; otherwise, no

additional CTU-level filter on/off control flags are coded and all CTUs of the slice are

inferred as ALF-off. APS was removed from HEVC standard after HM-8.0. In HM-

11.0 to implement ALF without APS, the related syntax elements of filter parameters

is coded in slice header instead of APS.

2.3 Block-based and Region-based Filter Adaptation

Block-based adaptation (BA) and region-based adaptation (RA) classify samples

according to texture characteristics and sample locations respectively. Details are

described in 2.3.1 and 2.3.2. In order to reduce the bit overhead of coding multiple

filters, group merge method and syntax support are described in 2.3.3. BA and RA

existed simultaneously in HM-5.0, that is, two adaptation methods can be switched

to each other in picture level. However, only RA was adopted in the final ALF version

in HM-7.0.

18

2.3.1 Block-Based Filter Adaptation

In order to improve coding efficiency, especially for high resolution videos, a block-

based filter adaptation (BA) method is developed to select filters on 4×4 block level,

which divides one picture into 4×4 blocks and classifies each 4×4 block based on

Laplacian activity and direction. First, vertical and horizontal 1-D Laplacian activi-

ties (i.e.,H4×4 and ,V4×4 respectively) for each 4×4 block are computed and only the

inner 4 samples are used as shown in Fig.2.5.

Fig. 2.5: Illustration of samples (solid circles) for calculating a 4×4 block class in

block-based filter adaptation (BA) method.

Active Class 0 1 2 3 4 5

Direction=0 0 1 2 3 4 5

Direction=1 0 6 7 8 9 10

Direction=2 0 11 12 13 14 15

Table 2.2: Class Table for Block-based Filter Adaptation

19

For each 4×4 block with the top-left sample position r,H4×4and V4×4 are given by:

H4×4 =
2∑

j=1

2∑
i=1

hor(r, i, j)

V4×4 =
2∑

j=1

2∑
i=1

ver(r, i, j),

where hor(r, i, j) and ver(r, i, j) are derived as:

hor(r, i, j) = |2t[r + (i, j)] + t[r + (i− 1, j)]− t[r + (i+ 1, j)]|

ver(r, i, j) = |2t[r + (i, j)] + t[r + (i, j − 1)]− t[r + (i, j + 1)]|

Then a 2D Laplacian activity is computed by adding V4×4 and H4 × 4 and quan-

tizing that output into 6 activity classes (i.e., 05). Direction is classified into one of

three categories: no direction (0), horizontal direction (1), and vertical direction (2)

as follows. If ,H4×4 ≥ 2V4×4 direction is 1. Otherwise, if , V4×4 ≥ 2H4×4 direction is

2. Otherwise, direction is 0. Based on the 2-D Laplacian activity class and direction,

the block based class is derived by using Table 2.2, which results in 16 classes in BA.

Note that when there is minor 2D Laplacian activity (i.e., activity class 0), direction

information is not used (i.e., block based class 0 is shared for activity class 0 with

direction 0/1/2). All 4×4 luma blocks of the same class in a picture share one filter.

2.3.2 Region-Based Filter Adaptation

Besides BA, a region-based filter adaptation (RA) method [21] is also an option

to support local adaptation. The concept of RA is to divide one picture into multiple

non-overlapping regions, and for each region one local filter can be applied. This

adaptation is suitable for one picture with apparent structure and repetitive patterns

in one local region.

20

Fig. 2.6: Illustration of dividing one picture into 16 regions in region-based filter

adaptation (RA) method.

Fig. 2.7: Illustration of samples (Mapping between filters and classes/regions.

For example, one picture is composed of blue sky in the upper part, gray buildings

in the middle part, and green grass in the lower part. Compared to BA, RA focuses on

the relations of sample position rather than the relations of image texture. It provides

another trade-off point between coding efficiency and computation complexity. RA

divides one picture into 16 roughly-equal-size regions, as shown in Fig. 2.6. The

region boundaries must be CTU boundaries.

2.3.3 Class/Region Merging in BA/RA

In BA/RA, there are 16 classes/regions, and each class/region can have one filter.

But depending on bit budget, sometimes neighboring classes/regions need to share

21

one filter. On the encoder side, a class/region merging algorithm can find the best

grouping of classes/regions by trying different versions of merging neighbors based on

rate-distortion-optimization (RDO) process. In one extreme, all classes/region share

one filter; in the other extreme, each class/region has its own filter. To derive the

relation between multiple filters and classes/regions, the mapping information be-

tween classes/regions and filters should be signaled to the decoder. A syntax element

related to the number of filters is signaled first. This syntax element indicates one

of three cases: one filter, two filters, or more than two filters that are used. Fig. 2.7

shows an example when more than two filters are used. In this example, there are 16

classes/regions and five distinct filters the mapping between those can be described

as [0, 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 4], and it can be coded using DPCM coding

as [0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0]. Note that this mapping information

is not needed when one filter or two filters are used for whole classes/regions. When

one filter is used, all classes/regions must be merged, so no merging information has

to be coded. When two filters are used, the index where the second filter starts to

apply is sent.

2.4 Trilateral Filter

An image is defined by f(x) ∈ Rn (n = dimensionality), where x ∈ Ω is the pixel

position in image domain Ω.Generally speaking, an n-D (n-dimensional) pixel-discrete

image has an image domain defined as,φ ⊂ Ω ⊆ Xn ⊂ Nn(Xn is our maximum

discrete index set of the image domain in dimension n). A smoothing operator will

reduce an image to a smoothed version of itself, specifically S(f) = s, where s is in

the same image domain as f. To introduce the trilateral filter, we must first define

the bilateral [8] case; we will then go on to define the traditional trilateral filter using

this notation.

The trilateral filter is a “ gradient-preserving ” filter [8]. It aims at applying

a bilateral filter on the current plane of the image signal. The trilateral case only

22

requires the specification of one parameter σ1. At first, a bilateral filter is applied on

the derivatives of f (i.e., the gradients):

gf (x) = 1
k∇

∫
Ω
∇f(x+ a) · w1(a) · w2(‖ ∇f(x+ a)−∇f(x) ‖)da

k∇(x) =
∫

Ω
w1(a) · w2(‖ ∇f(x+ a)−∇f(x) ‖)da.

To approximate ∇f(x),forward differences are used, and more advanced tech-

niques (e.g., Sobel gradients, 5-point stencil) are left for future studies. For the

subsequent second bilateral filter, suggested the use of the smoothed gradient gf (x)

instead of ∇f(x) for estimating an approximating plane:

pf (x, a) = f(x) + gf (x) · a.

Let f∇(x, a) = f(x+ a)− pf (x, a).

Furthermore, a neighbour-hood function:

N(x+ a) =

 1 if |gf (x+ a)− gf (x)| < c

0 otherwise

is used for the second weighting. Parameter c specifies the adaptive region and is

discussed further below. Finally,

s(x) = f(x) + 1
k∇(x)

∫
Ω
∇f(x, a) · w1(a) · w2(∇f(x, a)) ·N(x, a)da.

k∇(x) =
∫

Ω
w1(a) · w2(∇f(x, a)) ·N(x, a)da.

The smoothed function s equals STL(f).

23

Again, w1 and w2 are assumed to be Gaussian functions, with standard deviations

σ1 and σ2, respectively. The method requires specification of parameter σ1 only,

which is at first used to be the diameter of circular neighbour-hoods at x in f; let

ḡf (x) be the mean gradient of f in such a neighbourhood. The parameter for w2 is

defined as follows:

σ2 = β · |maxx∈Ωḡf (x)−minx∈Ωḡf (x)|

(β= 0:15 was recommended). Finally, c=σ2.

24

3. PROPOSED ALGORITHM

3.1 Proposed Algorithm

There are three in-loop filtering techniques in HEVC; namely, the Deblocking

Filtering, the Sample Adaptive Offset (SAO) and the Adaptive Loop Filter (ALF).

After the details of these filters in the introduction and the design of the proposed

filter the functionality of each filter is noted.

3.2 Boundary Block Detection

In this design trilateral filter can work in the context of block-based processing.

The trilateral filter might introduce other blocking artifacts if it is applied to all the

blocks in a frame, so it is only applied to blocks in object boundaries. This is called

region-based filtering. Here , [9] we use the standard deviation of the block to detect

the boundary block since non-boundary blocks usually consist of homogeneous pixel

values and have a smaller variance. Only when the standard deviation of a block

exceeds a predefined value, we perform the trilateral filtering the standard deviation

is for a NXN block is:

STD = sqrt{ 1
N×N

∑N−1
i=0

∑N−1
j=0 [I(i, j)−Meanblk]2}

Where N is the block size, I(i,j) is the pixel intensity, and Mean is the mean of the

block.

25

3.3 In-Loop Filtering

After the details of ALF and trilateral filter in chapter 2, it is now essential to

define how to combine these filters in the HEVC in-loop filtering process. As described

in the introduction, the trilateral filter is a gradient-preserving filter suited to remove

the blocking artifacts whereas the Adaptive loop filter is more targeted to reduce

the bit-rate. Therefore, it is appropriate to combine these two filters by selecting

each image block in the reconstructed frame. This is the main idea behind the

proposed algorithm whose processing considered each block along with the Deblocking

Filter. The filtering reduces the bit-rate and improves the PSNR values and is not

complicated when compared with other algorithms. Now the procedure is detailed in

steps by supposing a input frame F into the in-loop filter. The performed steps are:

1. Partition F into block size of B.

2. Using the standard deviation of a block, detect the object boundaries.

3. Over the object boundary perform TLF to obtain F TLF .

4. Perform DBF over the remaining blocks of the frame to obtain FDBF .

5. Finally, the combined frame F TDBF is obtained.

6. Over the whole frame F TDBF perform ALF to obtain F TDALF .

In this algorithm by considering the region characteristics of the block, only the

block boundaries are filtered by trilateral filter. Therefore, we adopt the quad-tree

structure of LCU in HEVC. For every CUs in LCU, we check whether its standard

deviation is above a certain threshold. If the condition is met, we perform the trilateral

filtering in this block. Later ALF is performed over the whole frame. The overall flow

chart of the proposed in-loop filter for HEVC is shown in Figure 3.1

26

LCU’s

Cal block std

if Bstd>th?

Trilateral filter

Deblocking filter

Combined

Frame F TDLF

Adaptive

Loop Filter

Output

no

yes

Fig. 3.1: The flow chart of the proposed in-loop filter for HEVC

27

3.4 Steps to make the HEVC Stream

In this work, the main aim of the thesis is to encode the video with HM-11.0

and produce the HEVC stream. In this process two filters are implemented in the

codec and the resulting frames are compared to the frames resulted from the original

HEVC Test Model (HM-11.0). HM is provided as a source code so that we can build

on various platforms. Windows and Visual Studio Command Prompt (2010) are the

tools used. System should have few YUV files as input and YUV Player to view the

encoded video. Following the steps below we can encode the video with HM-11.0 [12].

Step 1: Download the source tree

Download the source tree into the latest version of HM download the source tree.

Step 2: Build it!

Start Visual studio command prompt and build HM vc10 located in trunk/build di-

rectory.

% msbuild /p:Configuration=Release HM vc10.sln

Step 3:Encode it!

Make a configuration text file and save it as test.config. the encoder tool is called

TAppEncoder.exe which is located in Trunk/bin/vc10/win32/release.

%TAppEncoder.exe -c test.cfg -i mobile cif.yuv

Step 4:Output in YUV player

Using the above steps we encoded the first 5 frames at 100kbps and it creates mo-

bile.hevc, which is the HEVC stream. The final output is a YUV file which is decoded

from the HEVC stream.

28

Fig. 3.2: Original Image

29

Fig. 3.3: Encoded Frame

30

Second figure is the encoded Frame and we can observe some compression artifacts

here:

Fig. 3.4: Compression artifacts

31

4. RESULTS

4.1 Experimental Results

In this paper, we implement the proposed method on HM-11.0 and conduct the

same experiments using both the modified HM-11.0 and the original one. For each

video sequence varying the quantization parameters say 22, 32, 38 and 42 results are

noted in both the cases. 5 frames in the test sequence are encoded. The performance

of the proposed method is illustrated under different bases on the resulting subjective

image quality and also objective measurement in PSNR. The peak signals to noise

ratio show the quality of decoded images, and PSNR is defined as:

PSNR = 10Xlog10 1/N X
∑255

i=1
2552

(Xi−Y i)

2
db

Where Xi and Yi are the pixel values of the position i of original and reconstructed

images respectively. N is the total no. of pixels in the image.

4.2 Proposed Algorithms Quality Assessment Test Conditions

In order to test the efficiency of the proposed algorithm, evaluation of the quality

of the reconstructed video compared to the original video is done using the quality

assessment mentioned in section 4.1. The tests done in this chapter are done using

standard high definition video quality assessment sequences available on [12]. The

full description of the test sequences used is shown in table 4.1.

32

Table 4.1: Test Sequences Information

Sequence #Frames Short Description

Mobile cif 300 A toy train moving on the track pushing the ball

forward with the fixed background of a calendar and a

painting of scenery with many details.

Akiyo cif 300 News reporter reading the news with the background

of screens telecasting the news. Static camera.

Flower cif 300 View of a windmill with a good scenic view, high

contrast, small color differences in the sky, many

details.

Foreman cif 300 A man explaining the construction view. Camera

zoomed in, high depth of the field.

Bus cif 300 Video capture of a fast moving bus , low camera

position, bus pass by very close to the camera.

The aim is to evaluate the complexity of the algorithms compared to their quality

and reliability, and determine the efficiency of each of the proposed algorithms com-

pared to the original. The sequences used in the testing are taken as input in the YUV

format, which means that each frame is represented in terms of three components;

Y which is the Luminance; U which is the Contrast; and V which is the Structure.

The sequence is encoded as a set of frames, each frame is treated as an independent

image, and each component within each frame is also encoded independently. The

same is done for the decoding process after which the components are combined to

reform the frames which are combined together to reform the sequence.

33

4.3 Proposed algorithm experimental results

The test results for each sequence is shown in the rate-distortion graph. For each

sequence we have 4 graphs for the PSNR, each figure with a separate graph for each

component and each figure with a graph for average value for the proposed algorithm

and the original algorithm. In these graphs x-axis is the bit-rate and the y-axis varies

as Y,U,V and average PSNR values.

34

4.3.1 Test Results for the Mobile Cif Sequence

The results for the tests performed on the sequence [Mobile cif] are shown from

Figure 4.1 to Figure 4.4.

Fig. 4.1: Bit-rate vs Y-PSNR (Mobile cif)

Fig. 4.2: Bit-rate vs U-PSNR (Mobile cif)

35

Fig. 4.3: Bit-rate Vs V-PSNR (Mobile cif)

Fig. 4.4: Bit-rate Vs Avg-PSNR (Mobile cif)

36

4.3.2 Test Results for the Akiyo Cif Sequence

The results for the tests performed on the sequence [Akiyo cif] are shown from

Figure 4.5 to Figure 4.8.

Fig. 4.5: Bit-rate Vs Y-PSNR (Akiyo cif)

Fig. 4.6: Bit-rate Vs U-PSNR (Akiyo cif)

37

Fig. 4.7: Bit-rate Vs V-PSNR (Akiyo cif)

Fig. 4.8: Bit-rate Vs Avg-PSNR (Akiyo cif)

38

4.3.3 Test Results for the Flower Cif Sequence

The results for the tests performed on the sequence [Flower cif] are shown from

Figure 4.9 to Figure 4.12.

Fig. 4.9: Bit-rate Vs Y-PSNR (Flower)

Fig. 4.10: Bit-rate Vs U-PSNR (Flower cif)

39

Fig. 4.11: Bit-rate Vs V-PSNR (Flower cif)

Fig. 4.12: Bit-rate Vs Avg-PSNR (Flower cif)

40

4.3.4 Test Results for the Foreman Cif Sequence

The results for the tests performed on the sequence [Foreman cif] are shown from

Figure 4.13 to Figure 4.16.

Fig. 4.13: Bit-rate Vs Y-PSNR (Foreman cif)

Fig. 4.14: Bit-rate Vs U-PSNR (Foreman cif)

41

Fig. 4.15: Bit-rate Vs V-PSNR (Foreman cif)

Fig. 4.16: Bit-rate Vs Avg-PSNR Foreman cif)

42

4.3.5 Test Results for the bus Cif Sequence

The results for the tests performed on the sequence [bus cif] are shown from Figure

4.17 to Figure 4.20.

Fig. 4.17: Bit-rate Vs Y-PSNR (Bus cif)

Fig. 4.18: Bit-rate Vs U-PSNR (Bus cif)

43

Fig. 4.19: Bit-rate Vs V-PSNR (Bus cif)

Fig. 4.20: Bit-rate Vs Avg-PSNR (Bus cif)

44

4.3.6 Bit-rate changes for the test sequences

Fig. 4.21: Comparison of the Bit-rate of Flower cif for different QP values

Fig. 4.22: Comparison of the Bit-rate of Foreman cif for different QP values

45

Fig. 4.23: Comparison of the Bit-rate of Bus cif for different QP values

Fig. 4.24: Comparison of the Bit-rate of Mobile cif for different QP values

46

Fig. 4.25: Comparison of the Bit-rate of Akiyo cif for different QP values

These graphs show bit-rate of the sequences and the difference in the bit-rate can

be noticed. In the experiment high contrast, low resolution and sequences with many

details are used. Results show the reduction of bit-rate achieved by the proposed

algorithm over the original algorithm.

47

4.3.7 Total running time for the test sequences

Fig. 4.26: Comparison of the total running time of Bus cif for different QP values

Fig. 4.27: Comparison of the total running time of Akiyo cif for different QP values

48

Fig. 4.28: Comparison of the total running time of Mobile cif for different QP values

Fig. 4.29: Comparison of the total running time of Foreman cif for different QP

values

49

Fig. 4.30: Comparison of the total running time of Flower cif for different QP

values

From the experimental results, we observe that the running time has increased

compared to the original algorithm. The increase in total time has varied from se-

quence to sequence, even though the sequence has more details increase in the total

running time is less compared to the sequence with high contrast and static camera.

Increase in total time is a bit higher than the original algorithm but the reduction in

the bit-rate and increase in the PSNR values reduce the total cost.

50

4.3.8 Comparison of subjective video quality

Fig. 4.31: (a) Input picture of Flower cif

51

Fig. 4.32: (b) Reconstructed picture using original software

52

Fig. 4.33: (c) Reconstructed picture using proposed software

53

Fig. 4.34: (a) Input picture of Bus cif

54

Fig. 4.35: (b) Reconstructed picture using original software

55

Fig. 4.36: (c) Reconstructed picture using proposed software

56

Fig. 4.37: (a) Input picture of Foreman cif

57

Fig. 4.38: (b) Reconstructed picture using original software

58

Fig. 4.39: (c) Reconstructed picture using proposed software

59

Fig. 4.40: (a) Input picture of Mobile cif

60

Fig. 4.41: (b) Reconstructed picture using original software

61

Fig. 4.42: (c) Reconstructed picture using proposed software

62

Fig. 4.43: (a) Input picture of Akiyo cif

63

Fig. 4.44: (b) Reconstructed picture using original software

64

Fig. 4.45: (c) Reconstructed picture using proposed software

65

4.4 Summary of test results

The figures in section 4.3 show all the test results, the improved PSNR values

and the reduced bit-rate compared to the original software. In this section we give

the summarized results of the proposed algorithm and all the details of the original

algorithm, these details includes bit-rate, Y-PSNR ,U-PSNR ,V-PSNR and average

PSNR and the total time. They are shown in the following tables:

Table 4.2: Changes compared to original software for Mobile cif

QP values Bitrate

reduced %

YPSNR

Increased

%

UPSNR

Increased

%

VPSNR

Increased

%

Total

Time

Increased

%

22 0.59 0.02 0.09 0.19 25.2

32 0.58 0.03 0.10 0.18 25.3

38 0.56 0.05 0.11 0.17 28.1

42 0.55 0.07 0.13 0.15 28.2

66

Table 4.3: Changes compared to original software for Akiyo cif

QP values Bitrate

reduced %

YPSNR

Increased

%

UPSNR

Increased

%

VPSNR

Increased

%

Total

Time

Increased

%

22 0.375 0.055 0.149 0.142 29.931

32 0.37 0.05 0.145 0.141 29.821

38 0.35 0.039 0.138 0.143 29.121

42 0.33 0.035 0.057 0.056 33.704

Table 4.4: Changes compared to original software for Flower cif

QP values Bitrate

reduced %

YPSNR

Increased

%

UPSNR

Increased

%

VPSNR

Increased

%

Total

Time

Increased

%

22 0.132 0.045 0.097 0.033 20.01

32 0.295 0.088 0.071 0.039 21.09

38 0.261 0.110 0.068 0.023 27.3

42 0.202 0.120 0.056 0.022 28.091

67

Table 4.5: Changes compared to original software for Foreman cif

QP values Bitrate

reduced %

YPSNR

Increased

%

UPSNR

Increased

%

VPSNR

Increased

%

Total

Time

Increased

%

22 0.49 0.066 0.133 0.2610 25.84

32 0.35 0.064 0.305 0.3055 27.35

38 0.35 0.054 0.126 0.087 30.03

42 0.32 0.053 0.118 0.086 30.15

Table 4.6: Changes compared to original software for Bus cif

QP values Bitrate

reduced %

YPSNR

Increased

%

UPSNR

Increased

%

VPSNR

Increased

%

Total

Time

Increased

%

22 0.54 0.024 0.094 0.097 21.08

32 0.38 0.130 0.356 0.108 22.60

38 0.20 0.093 0.019 0.305 23.27

42 0.18 0.142 0.046 0.166 25.05

From the experimental results in table 4.2,4.3,4.4,4.5,4.5 and 4.6 we can see that

the proposed algorithm reduce the bit rate by 0.7% and improves the PSNR values by

68

0.05%, 0.30% and 0.35% in luminance and chroma. As the low resolution sequences

usually coded into a relative lower bit rate than the high resolution sequences. So,

the improvement is more efficient on low resolution than the high resolution video

sequences.

69

5. SUMMARY

HEVC is designed to achieve multiple goals including coding efficiency, ease of

transport system integration and data loss resilience, as well as implementability using

parallel processing architecture. In HEVC, there are two processing steps, namely

Deblocking Filter (DBF) and Sample Adaptive Offset (SAO). These are applied to

the reconstructed samples before writing them to the decoded picture buffer in the

decoded loop.

During the development of HEVC, it had also been considered to operate with a

third processing step called Adaptive Loop Filter (ALF) after the SAO Filter, however

the ALF feature was not included in the final design. In this work we redesigned the

in-loop filter by including the ALF. ALF is applied to the reconstructed signal after

the deblocking filter and SAO. ALF is used to restore the reconstructed picture such

that the mean-squared error between the source picture and the reconstructed picture

is minimized.

Additionally, a Trilateral Filter is included to smooth the blocking artifacts of

the picture boundary. Trilateral filter and Adaptive loop filters are included in the

original in-loop filter. Trilateral filter is applied to block boundaries to improve the

perceptual quality and the Adaptive loop filter is used to reduce the bit-rate. Making

use of these filters we proposed a new algorithm called A New Adaptive Trilateral

Filter for In-loop filtering.

The main aim of proposing A New Adaptive Trilateral Filter for In-loop Filtering

is to reduce the bit-rate and improve the PSNR values. We implemented the proposed

method on HM-11 and conducted the same experiments using both the modified HM-

11 and the original one. For each video sequence varying the Quantization parameters

say 22, 32, 38 and 42. Results are noted in both cases, here the input video sequence

is in YUV format.

70

Objective quality and subjective quality are the two types of quality assessment

tests performed to evaluate the performance of the proposed algorithm and the origi-

nal software. The peak signals to noise ratio show the quality of decoded images. The

test results show that the proposed algorithm had improved the quality and reduced

the bit-rate.

The simulation results show that the proposed algorithm improves rate distortion

performance and reduces the ringing artifacts introduced by the use of large transform

block sizes and therefore, it also improves the perceived video quality. Moreover, the

proposed algorithm allows an average bit-rate reduction of about 0.7% and improves

the PSNR of the decoded frame by 0.05%, 0.30% and 0.35% in luminance and chroma.

71

LIST OF REFERENCES

[1] M. T. Pourazad, C. Doutre, M. Azimi, and P. Nasiopoulos, “HEVC: The New
Gold Standard for Video Compression,” IEEE Consumer Electronics Magazine,
July 2012.

[2] R. Palaparthi, V. K. Srivastava, “A Simple Deblocking Method for Reduction
of Blocking Artifacts,” IEEE Students’ Conference on Electrical, Electronics and
Computer Science, 2012.

[3] X. Zhang, C. R. Xiong and S. Ma, “Adaptive Loop Filter with Temporal Predic-
tion,” 2012 Picture Coding Symposium, May 7 - 9, 2012, Krakw, Poland.

[4] K. Q. Dinh and h. shim, “Deblocking Filter for Artifact Reduction in Distributed
Compressive Video Sensing,” VCIP, page 1-5, IEEE 2012.

[5] M. Naccari and F. Pereira, Instituto de Telecomunicaes, “Adaptive Bilateral Filter
for Improved In-Loop Filtering in the Emerging High Efficiency Video Coding
Standard,” 2012 Picture Coding Symposium, May 7-9, 2012, Krakw, Poland.

[6] C.Y. Tsai, Member, IEEE, C.Y. Chen, T. Yamakage, “Adaptive loop filter for
video coding,” IEEE Journal of selected topics in signal processing Vol.7 N0. 6,
December 2013.

[7] S. Esenlik, M. Narroschke, and T.Wedi, “Syntax refinements for SAO and ALF,”
Joint Collaborative Team on Video Coding (JCT-VC) of ISO/IEC MPEG and
ITU-T VCEG, JCTVC-G566, November 2011.

[8] http://www.researchgate.net/publication/37988010 Fast Trilateral Filtering/
file/d912f50d172f2a9ecf.pdf, Last Date Accessed: March 2014.

[9] http://www.apsipa.org/proceedings 2012/papers/102.pdf,
Last Date Accessed: March 2014.

[10] G. J. Sullivan, J.R. Ohm, W.J. Han, and T. Wiegand, “Overview of the High
Efciency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and
Systems for Video Technology, VOL. 22, NO. 12, December 2012.

[11] C.M. Fu, C.Y. Chen, Y.W. Huang, and S. Lei, “Sample adaptive offset for
HEVC,” in Proc. Int. Workshop on Multimedia Signal Processing, (MMSP), Oc-
tober 2011.

[12] http://codesequoia.wordpress.com/2012/11/04/make-your-first-hevc-stream,
Last Date Accessed: March 2014.

[13] P. Lai, F. C. A. Fernandes, H. Guermazi, F. Kossentini, and M.Horowitz, “CE8
Subtest 4: ALF using vertical-size 5 filters with up to 9 coefficients,” JCTVC-
F303, July 2011.

http://www.researchgate.net/publication/37988010_Fast_Trilateral_Filtering/file/d912f50d172f2a9ecf.pdf
http://www.researchgate.net/publication/37988010_Fast_Trilateral_Filtering/file/d912f50d172f2a9ecf.pdf
http://www.apsipa.org/proceedings_2012/papers/102.pdf
http://codesequoia.wordpress.com/2012/11/04/make-your-first-hevc-stream

72

[14] C.Y. Tsai, C.Y. Chen, C.M. Fu, Y.W. Huang, and S. Lei, “One-pass encoding
algorithm for adaptive loop filter in high-efficiency video coding,” Proc. Visual
Communications and Image Processing (VCIP), November 2011.

[15] http://iphome.hhi.de/suehring/tml/download/KTA/jm11.0kta2.7.zip,
Last Date Accessed: March 2014.

[16] T. Yamakage et al., “Description of core experiment 8 (CE8): Nondeblocking
loop filtering,” Joint Collaborative Team on Video Coding(JCT-VC) of ISO/IEC
MPEG and ITU-T VCEG, JCTVC-D608, January 2011.

[17] T. Yamakage, I. S. Chong, and M. Narroschke, “Joint Collaborative Team on
Video Coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG, JCTVC-E028,”
CE8: Non-deblocking loop filteringSummary Report, March 2011.

[18] T. Yamakage, I. S. Chong, and M. Narroschke, “Joint Collaborative Team on
Video Coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG, JCTVC-F028,”
CE8: Non-deblocking Loop FilteringSummary Report, July 2011.

[19] T. Yamakage, I. S. Chong, and M. Narroschke, “Joint Collaborative Team on
Video Coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG, JCTVC-G038,”
CE8: Non-Deblocking Loop FilteringSummary Report, November 2011.

[20] C.Y. Chen, C.Y. Tsai, C.M. Fu, Y.W. Huang, and S. Lei, “Joint Collaborative
Team on Video Coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG,JCTVC-
G214,” Non-CE8: Constrained ALF Coefficients, November 2011.

[21] C.Y. Chen et al., “AHG6: Further Cleanups and Simplifications of the ALF in
JCTVC-J0048,” Joint Collaborative Team on Video Coding(JCT-VC) of ISO/IEC
MPEG and ITU-T VCEG, JCTVC-J0390, July 2012.

[22] C.Y. Chen, C.M. Fu, C.Y. Tsai, Y.W. Huang, and S. Lei, “CE8 Subtest 2:
Adaptation between pixel-based and region-based filter selection,” Joint Collabo-
rative Team on Video Coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG,
JCTVC-E046, March 2011.

[23] C.Y. Chen et al., “Non-CE8.c.7: single-source SAO and ALF virtual boundary
processing with cross9 9,” Joint Collaborative Team on Video Coding (JCT-VC)
of ISO/IEC MPEG and ITU-T VCEG,JCTVC-G212, November 2011.

[24] C.Y. Tsai et al., “CE8.d.1: Snowflake5 5 and Cross9 9 for Luma and Chroma
ALF Shapes ,” Joint Collaborative Team on Video Coding(JCT-VC) of ISO/IEC
MPEG and ITU-T VCEG, JCTVC-G208, November 2011.

[25] C.Y. Tsai, C.Y. Chen, Y.W. Huang, and S. Lei, “AHG6: ALF with modi-
fied padding process,” Joint Collaborative Team on Video Coding(JCT-VC) of
ISO/IEC MPEG and ITU-T VCEG, JCTVC-J0050, July 2012.

[26] C.Y. Tsai, C.W. Hsu, C.Y. Chen, C.M. Fu, Y.W. Huang, S. Lei,and A. Fuldseth,
“AHG4: Non-cross-tiles loop filtering for independent tiles,” Joint Collaborative
Team on Video Coding (JCT-VC) of ISO/IEC MPEG and ITU-T VCEG, JCTVC-
G194, November 2011.

