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WHITE MATTER HYPERINTENSITY VOLUME AS A BIOMARKER OF 

OXIDATIVE STRESS IN ACUTE ISCHEMIC STROKE 

Zachary A. Corbin, Natalia S. Rost, MGH Stroke Service, Department of Neurology, 

Massachusetts General Hospital; Jeffrey B. Blumberg, Paul E. Milbury, Antioxidant 

Research Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, 

Tufts University, Boston, MA; Michael K. Parides, Department of Health Evidence and 

Policy, Mount Sinai School of Medicine, New York, NY; and Karen L. Furie, MGH 

Stroke Service, Department of Neurology, Massachusetts General Hospital (Sponsored 

by Walter N. Kernan, Section of General Internal Medicine, Department of Internal 

Medicine, Yale University School of Medicine, New Haven, CT). 

Oxidative stress contributes to brain injury during ischemic stroke, but antioxidant 

clinical trials have been unable to demonstrate a benefit to date.  The all comers approach 

to patient selection in these trials may have contributed to their lack of success.  We 

hypothesize that white matter hyperintensity is a biomarker that can identify ischemic 

stroke patients with increased levels of oxidative stress and improve future trials.  White 

matter hyperintensity represents chronic loss of cellular brain tissue and has been 

correlated with oxidative stress in humans and animal models.  To test our hypothesis, we 

examined the correlation between white matter hyperintensity volume and molecular 

biomarkers of oxidative stress in patients with acute ischemic stroke.  The patients for our 

study were a subset of participants in an ongoing prospective biomarker study at 

Massachusetts General Hospital and the Brigham and Women’s Hospital.  From all 

participants in that parent study, we selected patients if they had an analyzable MRI 

obtained within 72 hours of stroke onset.  During the parent study, the plasma Oxygen 

Radical Absorbance Capacity and urinary 8-hydroxy-2-deoxy-guanosine levels were 



 

measured at baseline (between 0 and 9 hours after stroke onset) and plasma F2-

isoprostane levels were measured at baseline and again at 48 hours after stroke onset.  

White matter hyperintensity volume was determined using a validated semi-automated 

analysis of brain MRI.  Baseline characteristics we examined included demographic 

features, comorbid illness, and body mass index, and 3-month functional outcomes 

measured by the modified Rankin Scale score and Barthel Index of Activities of Daily 

Living.  White matter hyperintensity volumes were adjusted for head size using 

intracranial area measurements and log-transformed prior to statistical analysis.  

Correlations were performed between the log of the normalized white matter 

hyperintensity volume and age, functional scores, and biomarkers of oxidative stress.  

Out of a projected 600 patient cohort in the parent study, an estimated 80% will be 

eligible for this substudy.  At the time of this analysis, measurements had been completed 

for 158 patients.  Mean age was 71±15 years; 56% were male; 71% had hypertension, 

44% had hyperlipidemia, 32% had atrial fibrillation, and 20% had diabetes mellitus.  

Mean log of the normalized white matter hyperintensity volume was 1.38±1.32.  Log of 

the normalized white matter hyperintensity volume was correlated with age (ρ=0.62, 

p<0.0001), modified Rankin Scale (ρ=0.20, p=0.04), and Barthel Index (ρ=-0.21, 

p=0.04).  White matter hyperintensity volume did not correlate significantly with 

molecular biomarkers of oxidative stress.  In conclusion, our analysis showed that that 

white matter hyperintensity volume does not correlate with systemic molecular 

biomarkers of oxidative stress measured at baseline or 48 hours.  As expected, white 

matter hyperintensity volume does correlate with age and functional scores in patients 

with acute ischemic stroke. 
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Introduction 

The Burden of Stroke 

The very course of history has been changed by cerebrovascular disease.(1)  

President Woodrow Wilson suffered from a “stuttering course” of strokes believed 

partially responsible for the United States’ refusal to join the League of Nations.(2)  

Three of the most influential politicians of the twentieth century, Franklin Roosevelt, 

Winston Churchill, and Josef Stalin, all suffered from severe cerebrovascular disease 

when they met at Yalta at the end of World War II.(1, 2)  President Roosevelt died later 

of a massive cerebral hemorrhage in 1945, while still president.(3) 

Stroke is second only to ischemic heart disease as a cause of death throughout the 

world and, in wealthy countries, as a cause of lost disability-adjusted life-years.(4, 5)  In 

the United States, someone suffers from a stroke every 40 seconds, on average.(6)  Stroke 

can be broadly defined as “any damage to the brain or the spinal cord caused by an 

abnormality of the blood supply.”(1)  Ischemic stroke accounts for 87% of strokes in 

western societies, with one-month mortality rates as low as 2.5% for a small lacunar 

infarction and as high as 78% for a large hemispheric lesion.(6-8) 

 

Antioxidants in Stroke 

As the blood’s supply of oxygen and glucose to an area of the brain is lost, there 

are degrees of injury related to the extent of oligemia.  Some of the tissue suffers a 

complete lack of blood flow, quickly infarcts, and becomes the “core.”  In some cases, 

particularly in larger strokes due to large vessel occlusion, there is a larger area damaged 

by severely attenuated blood flow, but potentially salvageable with reperfusion.  It is 

termed the “penumbra.”  Neuroprotection is a term generally applied to an intervention to 
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prevent the progression from cell injury to death in the ischemic penumbra.  Thus far, 

only one FDA approved pharmacologic intervention exists, recombinant tissue 

plasminogen activator, or rtPA.  More than one thousand agents have been evaluated as 

interventions in animal models of cerebral ischemia, while only 10% have been tried in 

clinical trials involving humans.(9) 

Antioxidants are a promising new class of drugs for treatment for acute ischemic 

stroke.  They have potent neuroprotective effects in animal models of acute stroke.  Four 

antioxidant therapies have been tested in clinical trials enrolling humans.(10)  One of the 

most well-known compounds is NXY-059, which is a spin trap agent, that has been the 

subject of two highly touted phase III trials, the Stroke-Acute Ischemic NXY Treatment 

(SAINT) I and SAINT II studies.(11, 12)  SAINT I included 1,722 patients and 

demonstrated an improved distribution of functional outcomes for stroke patients 

administered NXY-059.(11)  SAINT II was a larger trial that enrolled 3,306 patients, for 

increased power compared to SAINT I.  Unfortunately, the second trial showed no 

benefit for patients receiving the therapy.(12)  Much has been written about why the 

SAINT trials failed; four discussions are cited here.(13-15)  One author discusses NXY-

059 in the wider context all neuroprotectants, citing specific reasons why this agent in 

particular might not have been the best choice for clinical use.(16)  These reasons include 

NXY-059’s minimal ability to cross the blood-brain-barrier or cellular membranes along 

with its low potency.(16-19) 

Edaravone is a lesser-known antioxidant that is already in clinical use in 

Japan.(20)  This free radical scavenger showed a therapeutic benefit in a Japanese 

randomized controlled trial.(21)  This drug was administered to more than 500,000 

patients by the end of 2005 and reported to be “well-tolerated in all patients.”(20)  In 
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addition, the authors describe an interim analysis demonstrating that 47% of patients 

receiving the drug have “a favorable functional outcome (modified Rankin Scale 0 and 

1).”(20)  In the published data from the SAINT II trial, the fraction of patients in the 

placebo cohort who had such a functional outcome at 90 days was 28.7%.(12)  The 

efficacy of Edaravone is not widely acknowledged in the U.S., possibly because the trials 

were conducted in non-western countries.  Based on available trial data, however, it 

seems possible that this agent may increase the proportion of patients with a favorable 

outcome after acute ischemic stroke from about 25% to 45%.  A clinical trial with a 

sample size of just 254 (127 in each group) would be required to demonstrate this benefit, 

assuming a two-sided α=0.05 and 90% power.(22)  The total cohort would therefore be 

estimated at only 254.  In any case, Edaravone serves as a source of hope for emerging 

antioxidant therapies. 

The goal of our study is to text a potential instrument to expand upon the limited 

therapeutic options for stroke.  Suggestions for improving studies of acute stroke 

treatments have centered on issues of clinical trial design, and more specifically on 

improving patient selection.(23)  Criteria may be based upon a drug’s mechanism of 

action, or specific patient characteristics, such as clinical evidence of ischemic 

penumbra.(23, 24)  In this vein, we too observe that an all comers approach to stroke 

therapy has largely failed thus far.  We believe that the volume of white matter 

hyperintensity, which is a chronic neuroimaging finding on MRI, can serve as a novel 

tool with which to select for patients most amenable to potential antioxidant therapies in 

stroke. 
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Oxidative Stress in Stroke 

To understand the basis for employing antioxidants as a stroke therapy, it is 

important to understand the evolution of oxidative stress at the cellular level in the 

ischemic brain.  In an encyclopedic review, Lipton provides a detailed description of the 

known cellular events of ischemic neuronal death.(25)  Cherubini et al. discuss the 

process with more specific reference to oxidative stress as follows:  Briefly, as the cell’s 

supply of oxygen and glucose diminish, production of adenosine triphosphate ceases, 

which disrupts ion gradients and leads to an outflow of glutamate and inflow of calcium 

ions.  Increased intracellular calcium levels lead to activation of many enzymes, 

producing nitric oxide and free radicals (including reactive oxygen species), which are 

both important causes of injury to the cell and its organelles.(26)  Mitochondria are noted 

contributors to the increased levels of free radicals, especially superoxide, during 

ischemia, because of damage to the electron transport chain.(26, 27) 

Each cell is endowed with a supply of endogenous antioxidants and antioxidant 

enzymes with which they regulate the natural occurrence of low levels of reactive oxygen 

species.(28)  When these oxidative species overwhelm the antioxidant factors in the cell, 

the resulting imbalance is termed oxidative stress.(29)  Persistent oxidative stress is a 

significant cause of cellular injury, including damage to lipids and DNA, and eventually 

cell death.  Of note, brain tissue is unusually susceptible to oxidative injury secondary to 

its high oxygen needs and high concentrations of lipid such as arachidonic acid, among 

other factors.(26, 28) The stable interplay between antioxidants and oxidants over the 

long term can be thought of as a cell’s chronic level of oxidative stress.  A change to this 

level in the short term, for example, in the face of acute ischemic injury, is called acute 

oxidative stress.  With the goal of monitoring oxidative stress levels in ischemic brain 
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tissue, biomarkers of oxidative stress has become an area of particular interest in stroke 

research.(26) 

 

Biomarkers of Oxidative Stress 

A biomarker is defined by the Biomarkers Definitions Working Group as “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention.”(30)  In the case of oxidative stress, biomarkers have traditionally been the 

products of oxidative reactions with molecular components of the cellular 

architecture.(26)  With regard to ischemic stroke, an ideal biomarker will represent a 

property of the ischemic brain that can be quantified or measured indirectly, given the 

clear practical difficulties in obtaining direct measurements within brain tissue in the 

living human.(26)  For example, one might measure the level of a molecular biomarker in 

the urine or blood to detect oxidative stress in the brain, though these relationships have 

yet to be fully explored.(31)  Notably, biomarkers need not be a laboratory-style test or 

molecular species.  Observations such as physical exam maneuvers or findings such as 

patterns in neuroimaging fall well within the definition of a biomarker. 

As mentioned above, lipids are subjected to damage from oxidative stress.  F2-

isoprostanes are products of free radicals and arachidonic acid that have shown particular 

utility as biomarkers of oxidative stress in humans.(32)  Because the majority of 

arachidonic acid is present as part of the phospholipid components of plasma membranes, 

it is thought that F2-isoprostanes are made as part of phospholipids and then 

enzymatically released.(32, 33)  F2-isoprostanes are particularly attractive as biomarkers 

of oxidative stress for reasons including their stability and specificity, their detectable 
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levels in all body fluids, and their independence of dietary fat(34)  They have been found 

elevated in animal models of oxidative stress as well as animal stroke models.(35, 36)  

An earlier study measuring F2-isoprostane in stroke patients found no relationship 

between F2-isoprostane levels and stroke.(37)  More recently, several groups have found 

F2-isoprostane levels elevated with acute ischemic stroke in humans.(38-41)  One current 

study based on laboratory models reports evidence that F2-isoprostanes may be involved 

in the pathogenesis of ischemic neuronal death rather than a passive product of the 

process.(42) 

Another target of oxidative insult is the cell’s DNA.  This process is suspected to 

consist of two distinct steps, the first of which is early-onset DNA oxidation followed by 

later-onset DNA destruction by endonucleases.(26, 43)  8-hydroxy-2-deoxy-guanosine is 

one molecular result of oxidative DNA damage.(26, 43)  Repair of DNA lesions such as 

8-hydroxy-2-deoxy-guanosine likely ensues after the injury, but the question is raised 

whether the energy devoted to these repairs is an appropriate allocation of resources in 

damaged tissue or may actually contribute further harm.(43)  8-hydroxy-2-deoxy-

guanosine levels have been monitored in the peripheral plasma of animal models of 

stroke and were associated with levels at the site of infarction.(44)  Another group found 

that 8-hydroxy-2-deoxy-guanosine levels were more prominent in areas surrounding the 

infarct and proposed that oxidative DNA damage may be dependent on some 

preservation of oxygen supply to the tissue.(45) 

The Oxygen Radical Absorbance Capacity assay quantifies oxidative stress from 

a different perspective and measures the total antioxidant ability of a sample.(46, 47)  The 

basis of this assay was originally the use of a source of oxidative species that reacted with 

a class of fluorescent proteins called phycoerythrins.  The fluorescence of these proteins 
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decreased as they were exposed to this oxidative damage.  The sample was added to this 

reaction, and the total antioxidant abilities in the sample – including molecular 

antioxidants and antioxidant enzymes – stopped, or quenched, the oxidative damage.  The 

amount of damage the antioxidants prevented was then quantified and was the Oxygen 

Radical Absorbance Capacity of the solution.(46, 47)  The chemical fluorescein was later 

proposed as an alternative to phycoerythrin proteins because of several specific 

limitations of the protein reagent.(48, 49)  The Oxygen Radical Absorbance Capacity 

assay has been used extensively in nutrition research to quantify the antioxidant 

capacities of foods and supplements in vitro.(50)  The method’s technique of taking into 

account all antioxidant capacity make it particularly useful in biological fluids, where 

measurement of any one antioxidant may be less informative.(51)  Three examples of 

studies measuring the Oxygen Radical Absorbance Capacity in human plasma are cited 

here.(52-54)  One group found the Oxygen Radical Absorbance Capacity decreased in 

patients with stroke.(55) 

As mentioned previously, chronic oxidative stress and acute oxidative stress exist 

in concert.  One way to conceptualize oxidative stress is to visualize oxidative stress level 

graphed over time.  In this imaginary graph, acute oxidative stressors would appear as 

peaks stemming from a baseline of chronic oxidative state.  Studies discussed above 

generally concern oxidative stress biomarkers of stroke in the acute phase.  However, fine 

distinctions for timeframes of various studies are not always easily made.  For example, 

one group reports collecting serum “between 5 and 10 days of the stroke onset.”(55)  

Chronically increased markers of oxidative stress after stroke, as well as decreased 

antioxidants, have also been found.(56-58) 
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White Matter Hyperintensity 

 As discussed above, the purpose of our study is to investigate a novel method of 

patient selection in acute stroke trials using white matter hyperintensity volume.  We 

believe white matter hyperintensity volume can aid in the selection of stroke patients 

most amenable to antioxidant therapies because it is an imaging biomarker of chronic 

oxidative stress and may have implications for acute oxidative injury as well.  White 

matter hyperintensity, also known as leukoaraiosis or white matter changes, denotes areas 

of increased signal on MRI in the periventricular and/or subcortical areas of the deep 

white matter that are usually symmetric and bilateral.(59, 60)  As an historical note, white 

matter hyperintensity and leukoaraiosis – by definition – refer to imaging phenomena that 

are not completely synonymous with Binswanger’s disease, which signifies 

neuropathology first described in 1894.(59, 61)  Consensus has evolved that 

Binswanger’s disease is an inappropriate label for a disease defined by neuroimaging.(59, 

61)  The term leukoaraiosis was first coined in 1986 to describe hypodensities seen on 

CT and changes in the signal on MR.(59, 62)  For the purposes of this discussion, white 

matter hyperintensity will refer to the imaging phenomenon seen on both CT and MRI 

and its associated neuropathology. 

White matter hyperintensity is a common disease that is even more common in 

patients who suffer strokes, and it is thought to be mainly vascular in origin.(63)  The 

pathophysiologic basis of white matter hyperintensity is complex and remains 

incompletely understood.(64)  Briefly, the areas of disease include infarcted tissue at 

different stages of progression as well as vascular damage called periventricular venous 

collagenosis, which likely causes venous stenosis and eventually occlusion.(60, 63, 65)  

Areas of white matter around the lesion show apoptosis and gliosis and demonstrate 
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“progressive cell and axonal loss with loosening of the WM structure.”(60)  The disease 

increases in prevalence with age as well as cardiovascular risk factors, including 

hypertension, diabetes, smoking, c-reactive peptide, homocysteine, and atherosclerosis. 

(59, 60, 63, 66-72)  In the elderly, white matter hyperintensity is quite common.  At 85 

years old, the incidence is close to 100%.(63)  It has been linked to dementia, cognitive 

impairment, falls, and urinary incontinence.(59, 60, 63, 73)  White matter hyperintensity 

itself has been shown to be a predictor of stroke, both ischemic and hemorrhagic, and 

volume of white matter hyperintensity has been shown to predict growth of an ischemic 

infarct in patients with acute stroke.(60, 64, 74)  Furthermore, though not all studies 

agree, larger cohorts have shown that white matter hyperintensity predicts worse 

functional outcome after stroke.(75-77) 

 

White Matter Hyperintensity and Oxidative Stress 

Many groups have demonstrated evidence from chronic cerebral hypoperfusion 

models in animals that oxidative stress may be involved in the development of white 

matter hyperintensity, and five recent studies are cited here.(78-82)  This model is 

certainly not specific for white matter hyperintensity as a disease, and the animal studies 

link the hypoperfusion model to Alzheimer’s Disease, vascular dementia, and cerebral 

palsy.(80, 83)  While certain conclusions from these data are helpful, differences in the 

neuroanatomy of rodents and humans underscore the specificity of white matter 

hyperintensity to the human species.  As one review notes, approximately 90% of the 

rodent brain is grey matter, while the human brain is equal parts grey matter and white 

matter.(60) 
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To the best of our knowledge, only two groups have demonstrated a correlation 

between indicators of oxidative stress and white matter hyperintensity severity in 

humans.  In 1996, the Austrian Stroke Prevention Study examined plasma antioxidant 

levels and observed decreased levels of lycopene and α-tocopherol in subjects with 

higher grades of white matter hyperintensity.  The finding for α-tocopherol remained 

significant even after correcting for known risk factors of white matter hyperintensity, 

such as age, hypertension, hypercholesterolemia, and heart disease.  Moreover, this group 

calculated an adjusted odds ratio of 3.70 (90% CI, 1.69 to 8.10) for higher grades of 

white matter hyperintensity using quartiles of α-tocopherol serum concentration.(84)  In 

2004, a group at the Shimane Institute of Health Science in Japan examined nitric oxide 

metabolites and F2-isoprostane in subjects with grades of periventricular hyperintensity, 

which is a component of white matter hyperintensity (they specifically excluded 

subcortical infarcts in their analysis).  Interestingly, this group found an inverse 

correlation with nitric oxide metabolites and periventricular hyperintensity.  F2-

isoprostane did not correlate with periventricular hyperintensity, but F2-isoprostane 

levels had a significant effect on worsening periventricular hyperintensity grade in a 

regression analysis.(85) 

These studies provide compelling evidence that white matter hyperintensity 

volume correlates with oxidative stress, and endothelial dysfunction serves as a satisfying 

explanation for the process.  However, the relationships described above were 

demonstrated in healthy populations instead of stroke patients.  The studies also used 

white matter hyperintensity (or periventricular hyperintensity) grading such as the 

Fazekas criteria, which is an ordinal scale that has been found to be less reliable than 

volumetric analysis.(86)  In order to truly demonstrate that white matter hyperintensity 
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volume may serve as a tool to aid in patient selection within stroke clinical trials, we 

embarked on a study to explore whether oxidative stress correlates with white matter 

hyperintensity volume in acute ischemic stroke patients. 

One mechanistic link between white matter hyperintensity and reactive oxygen 

species revolves around the idea of endothelial dysfunction.  The mechanics of 

endothelial dysfunction, how it relates to white matter hyperintensity, and its 

underpinning molecular events are well described in a recent review.(87)  Briefly, 

endothelial dysfunction can cause blood brain barrier damage, reduced blood flow, and 

change the interactions of glial cells with the endothelium.(87)  Reactive oxygen species 

may be involved in the changes in perfusion brought about by endothelial dysfunction, 

perhaps mediated by angiotensin II and nicotinamide adenine dinucleotide phosphate 

oxidase.(88) 

A more general theory to link oxidative stress and white matter hyperintensity 

revolves around thinking of white matter hyperintensity as simply ‘sick brain’ – given 

that its areas involve much cellular and structural loss.  Potentially, in this tissue depleted 

of its natural complement of cells and a healthy milieu, oxidative insults that are a normal 

part of biological processes can inflict substantial harm.  Furthermore, oxidatively 

mediated diseases such as true brain ischemia, may inflict much more damage than would 

be seen otherwise.  Thus, an individual experiencing chronically elevated levels of 

oxidative stress, as in smokers, for example, may have a predisposition to white matter 

hyperintensity as well as ischemic strokes that are more significant than they would be 

otherwise.(31) 
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A “Gold Standard” for Oxidative Stress 

The relationship between white matter hyperintensity and oxidative stress is a 

tempting target for study and has exciting potential implications.  As these processes are 

both somewhat diffuse, however, we must first ensure that we are able to measure both 

variables as best we can.  For white matter hyperintensity, measurement is largely 

described in the definition: the areas of bright signal on MRI.  Therefore, volumetrically 

quantifying the white matter hyperintensity in a reproducible manner seems to be the 

finest measure possible. 

The best way to quantify oxidative stress is less obvious.  Several kinds of 

oxidative stress measurements have been described above.  The label of “gold standard” 

for measuring oxidative stress in living systems has been given to F2-isoprostanes.(32)  

They earned this moniker due to their performance in the Biomarkers of Oxidative Stress 

Study II, which was a validation study designed to find the best biomarker for in vivo 

measurement of oxidative stress.  In this study, F2-isoprostanes were mentioned as 

“promising” measures in both plasma and urine.(89)  Another review summarized the 

established data regarding various biomarkers, and classified plasma F2-isoprostanes as 

having “met with confidence” evaluation of validity, relationship to disease, and variation 

with oxidative dose, though questions remained about their specificity and stability.(90)  

Interestingly, the Oxygen Radical Absorbance Capacity performed well regarding 

specificity and variation with dose, and urinary 8-hydroxy-2-deoxy-guanosine had stellar 

marks in each category except its specificity.(90)  Taken together, the strengths of the 

different biomarkers complement each other. 

More to the point, oxidative stress is such that measurement of multiple 

biomarkers in parallel is almost certain to be more powerful that measuring one 
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individually.  When considering the many different tissue structures, physical states, and 

biochemical composition of even one organ of the body, it seems to go without saying 

that measuring biomarkers that represent different kinds of damage will reveal the 

clearest picture.(91)  That being said, we do know that the brain contains a large supply 

of arachidonic acid, which will evolve F2-isoprostanes in the setting of oxidative stress.  

Thus, F2-isoprostanes seem to be an excellent marker of oxidative stress that is only 

further strengthened by simultaneous assays of the Oxygen Radical Absorbance Capacity 

and 8-hydroxy-2-deoxy-guanosine.  

 

Statement of Purpose, Specific Hypothesis, and Specific Aims 

Statement of Purpose and Specific Hypothesis 

The goal of this study is to examine the performance of white matter 

hyperintensity volume as a biomarker of oxidative stress in acute ischemic stroke 

patients.  As discussed above, evidence by others demonstrates that white matter 

hyperintensity severity and oxidative stress levels are correlated in the general 

population.(84, 85)  We hypothesize that this relationship remains true in the stroke 

population. white matter hyperintensity volume may therefore be a useful tool with which 

to identify an enriched sample of stroke patients that is more oxidatively stressed, and 

this subpopulation would therefore be more susceptible to the potential of antioxidant 

stroke treatments. 

 

Specific Aim #1: To determine whether, in acute stroke patients, there is an association 

between white matter hyperintensity volume and biomarkers of oxidative stress measured 
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at baseline (less than 9 hours) after stroke onset.  We will label this relationship the 

correlation at baseline. 

Hypothesis: Levels of biomarkers of oxidative stress measured at baseline will correlate 

directly with the volume of white matter hyperintensity, independent of known stroke 

risk factors and stroke characteristics, such as infarct volume. 

 

Specific Aim #2: To determine whether, in acute stroke patients, there is an association 

between white matter hyperintensity volume and biomarkers of oxidative stress measured 

at 48 hours after stroke onset.  We will label this relationship the correlation at 48 hours. 

Hypothesis: Levels of biomarkers of oxidative stress measured at 48 hours after stroke 

onset will correlate directly with the volume of white matter hyperintensity, independent 

of known stroke risk factors and stroke characteristics, such as infarct volume. 

 

Specific Aim #3: To compare the correlation at baseline with the correlation at 48 hours. 

Hypothesis: We hypothesize that the correlation at baseline will be stronger than the 

correlation at 48 hours, because of the added contribution of acute oxidative stress. 

 

Methods 

Author Contributions 

 Patients for the study of white matter hyperintensity as a biomarker of oxidative 

stress in acute ischemic stroke were selected from a larger parent study of biomarkers in 

ischemic stroke conducted at the Massachusetts General Hospital and Brigham and 

Women’s Hospital.  The author (Z.A.C.) spent a year at the Massachusetts General 

Hospital to conduct the substudy.  The following were his overall duties, the specifics of 
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each are described in detail in the methods below: 1) to complete the research group’s 

protocol for certification as a reader of white matter hyperintensity, 2) to obtain patient 

information subsequent to enrollment in the parent study and screen them for this 

substudy, 3) to retrieve and store the MRIs from the medical imaging systems at the 

hospitals, 4) to quantify the white matter hyperintensity on the MRIs after retrieval, 5) to 

review the analyzed MRIs with the overreader (N.S.R.), 6) to assist in the quantification 

of 8-hydroxy-2-deoxyguanosine for a subset of the parent study cohort, specifically 

measuring output peaks on the mass spectrometer in the collaborating laboratory, 7) to 

calculate the total white matter hyperintensity volume for each MRI read, and 8) correct, 

or normalize, those volumes for head size when possible. 

 Other members of the research group physically recruited the patients, conducted 

the patient interviews, recorded patient clinical data, and collected biological samples 

from the patients.  Collaborating laboratories quantified the values of clinical indicators, 

F2-isoprostane, the Oxygen Radical Absorbance Capacity, and completed the 

measurement of 8-hydroxy-2-deoxyguanosine.  The statistical analysis was conducted by 

a collaborating biostatistician (M.K.P.). 

  

Subject Selection and Screening 

As mentioned previously, this project was a substudy of a larger observational 

study.  In the parent study, consecutive patients presenting within 9 hours of onset of 

acute ischemic stroke symptoms were enrolled at the Massachusetts General Hospital and 

Brigham and Women’s Hospital.  If stroke onset time was unknown, onset time was 

defined as the time midway between when the subject was last seen well and when the 

symptoms were first noted.  Exclusion criteria were as per the protocol of the parent 
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study: 1) Stroke cause was believed to be vasculitis, endocarditis, venous infarction, or 

primary hemorrhagic stroke.  2) No baseline CT or MRI was available.  3) Other acute 

intracerebral pathology was noted on baseline imaging (i.e. subarachnoid hemorrhage, 

brain tumor, central nervous system infection).  4) Isolated transient monocular blindness 

was present.  5) Neurological deficits that were rapidly resolving.  6) Temperature was 

above 101 degrees Fahrenheit or white blood cell count was greater than 15,000 cells per 

milliliter.  7) Chronic kidney disease existed requiring dialysis or end-stage hepatic 

dysfunction.  8) Active metastatic malignancy was diagnosed at the time of the stroke.  9) 

Informed consent was unable to be obtained.  10) Stroke, MI, or a major thrombolytic 

event had occurred within 30 days.  11) Major surgery had occurred within 30 days.(92) 

The author reviewed the recorded stroke onset times for all patients enrolled in 

the parent study by consulting either the medical record or the larger study’s database.  

He then consulted the medical record to determine if an MRI had been performed for 

clinical or research purposes within approximately 72 hours of stroke onset.  Patients 

were included as subjects in this substudy if they had an MRI that was available within 

the time period and analyzable as determined by either the author and/or the overreader.  

All patients included in this analysis were enrolled at Massachusetts General Hospital. 

 

Demographics, Clinical Measures, and Outcomes 

As part of the parent study, baseline demographics, vital signs, basic clinical 

laboratory data, medical history, medication history, stroke risk factors, and stroke 

characteristics were collected, including the NIH Stroke Scale, for each patient.  After 3 

months (or 70 to 110 days), the modified Rankin Scale score and Barthel Index of 

Activities of Daily Living were determined. 
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Biological Samples 

As part of the parent study, peripheral plasma and urine samples were collected at 

baseline (less than 9 hours after stroke onset), and peripheral plasma was collected again 

at 48 hours (between 36 and 60 hours) after stroke onset.  These samples were obtained 

by research coordinators, research fellows, and study investigators affiliated with the 

larger study.  Urinary creatinine was quantified by the clinical laboratory at the 

Massachusetts General Hospital. 

 

Quantification of White Matter Hyperintensity Volume 

MRIs were performed at the Massachusetts General Hospital on 1.5 Tesla 

scanners (GE Healthcare, Little Chalfont, Buckinghamshire, U.K.).  Because the majority 

of the available MRIs were obtained for clinical purposes, motion artifact was prominent 

in many of the images. 

The author was trained and certified to read white matter hyperintensity per the 

research group’s protocol prior to analyzing patient images.  The method of quantifying 

white matter hyperintensity volume and normalizing the volume to intracranial area has 

been described previously.(93, 94) In this manner, the author conducted white matter 

hyperintensity volume analysis using a semi-automated multistep process with MRIcro 

software (Center for Advanced Brain Imaging, Atlanta, GA), which is recapitulated here: 

1) Sagittal T1 images, when available, were reviewed to determine the two most midline 

slices.  For these slices, the intradural space was outlined manually by tracing the inner 

table.  The computer calculated the intradural area, which served as an estimate of 

intracranial area with which to normalize white matter hyperintensity volume. 
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2) As these MRIs were performed on patients suffering acute ischemic stroke, areas of 

restricted diffusion were generally visible on diffusion-weighted imaging.  The author 

reviewed diffusion-weighted imaging sequences to determine the anatomical distribution 

of the ischemia. 

3) The author then reviewed axial T2 fluid-attenuated inversion recovery images to 

determine a slice with a representative quantity of white matter hyperintensity visible.  

Using this slice as a guide, a threshold intensity filter was manually adjusted to generate a 

region of interest for the whole sequence.  Because T2 signal is not specific to white 

matter hyperintensity, this region of interest included components of bone, calcifications 

in the grey matter, brain infarcted at various stages, and other structures. 

4) To limit the region of interest to white matter hyperintensity, axial T2 fluid-attenuated 

inversion recovery sequences were examined with coregistration of diffusion-weighted 

image sequences, to ensure regions of acute ischemia were not included as white matter 

hyperintensity. For individual cerebral hemispheres, the author grossly outlined areas of 

white matter hyperintensity (including both periventricular hyperintensity as well as 

subcortical infarcts) on each slice.  The computer then determined the region of interest 

overlap between the intensity filter and white matter hyperintensity outlines, which 

represented an estimate of white matter hyperintensity volume. 

5) As a final step, the author manually refined this estimate by editing the white matter 

hyperintensity region of interest so that it better reflected the heterogeneity of white 

matter hyperintensity. 

6) As mentioned above, the MRIs with quantified white matter hyperintensity volumes 

were individually reviewed in person with the overreader (N.S.R.), who would ensure 
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that the appropriate regions of the image had been classified as white matter 

hyperintensity. 

7) Computation of total white matter hyperintensity volume depended on several 

additional rules: 

a) If the ischemia was infratentorial, the white matter hyperintensity volume of 

both hemispheres was summed. 

b) If the ischemia involved only one cerebral hemisphere or if prominent 

intracranial pathology interfered with white matter hyperintensity measurements 

in one cerebral hemisphere, the white matter hyperintensity volume of the 

contralateral hemisphere was doubled. 

c) If ischemia or prominent intracranial pathology interfered with the 

measurement of white matter hyperintensity volume of both cerebral hemispheres, 

the white matter hyperintensity volume of both hemispheres was summed. 

 

Quantification of F2-isoprostane 

To assay F2-isoprostane, baseline and 48-hour plasma samples were frozen at -80 

degrees Celsius prior to processing.  F2-isoprostane was quantified using the 8-

Isoprostane Enzyme Immunoassay Kit (Cayman Chemical, Ann Arbor, MI) by the 

Antioxidant Research Laboratory at the Jean Mayer USDA Human Nutrition Research 

Center on Aging at Tufts University. 

 

Quantification of 8-hydroxy-2-deoxy-guanosine 

To measure 8-hydroxy-2-deoxy-guanosine, urine samples were taken at baseline 

and frozen at -80 degrees Celsius prior to processing.  The level of 8-hydroxy-2-deoxy-
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guanosine was quantified using a high performance liquid chromatography / mass 

spectrometry technique developed at the Jean Mayer USDA Human Nutrition Research 

Center on Aging at Tufts University. 

8-hydroxy-2-deoxy-guanosine was extracted from urine samples by solid-phase 

extraction using an Oasis HLB cartridge using a urine cleanup procedure previously 

described.(95)  Chromatographic separation of 8-hydroxy-2-deoxy-guanosine from other 

eluent constituents was conducted using an Agilent 1100 HPLC system (Agilent 

Technologies, Palo Alto, CA) fitted with a Phenomenex Synergi Max-RP 80A (4 µm, 

150 mm x 4.60 mm i.d.), C18 analytical column.  The eluent was directed to an API 3000 

triple-quadrupole mass spectrometer (Applied Bioscience, Foster City, CA) equipped 

with a TurboIon spray source.  The recovery and quantification of 8-hydroxy-2-deoxy-

guanosine present in samples was determined by comparison to a stable isotope 8-

hydroxy-2-deoxy-guanosine kindly provided by Dr. Miral Dizdaroglu, at the National 

Institute of Standards and Technology, Gaithersburg, MD.  The author analyzed output 

curves for many samples to quantify the amount of 8-hydroxy-2-deoxy-guanosine present 

in the urine.  This resulting 8-hydroxy-2-deoxy-guanosine amount was corrected with the 

concentration of urine creatinine. 

 

Quantification of the Oxygen Radical Absorbance Capacity 

Plasma samples for the Oxygen Radical Absorbance Capacity were drawn at 

baseline. Plasma samples for the Oxygen Radical Absorbance Capacity (total) and 

Oxygen Radical Absorbance Capacity (perchloric acid) were drawn at baseline.  Samples 

destined for the Oxygen Radical Absorbance Capacity (perchloric acid) assay received 

0.5 M perchloric acid added at a 1:1 ratio and vortexed vigorously for 30 second.  



 21 

Samples were then centrifuged at 13,000 rpm using microplate centrifuge for 15 minutes 

and frozen at -80 degrees Celsius prior to processing.  The Oxygen Radical Absorbance 

Capacity was quantified by the Antioxidant Research Laboratory at the Jean Mayer 

USDA Human Nutrition Research Center on Aging at Tufts University according to 

methods previously described.(96)  

 

Statistical Analysis 

Statistical analysis was performed using SAS statistical software (SAS Institute, 

Cary, NC).  White matter hyperintensity volume was normalized with intracranial area by 

dividing the white matter hyperintensity volume by the ratio of intracranial area over a 

standard intracranial area value.  Normalized white matter hyperintensity volume was 

log-transformed prior to analysis.  Non-parametric Spearman correlations were 

performed between the log of the normalized white matter hyperintensity volume and 

age, functional scores, and the biomarkers of oxidative stress, F2-isoprostane, 8-hydroxy-

2-deoxy-guanosine, and the Oxygen Radical Absorbance Capacity.  Non-parametric tests 

were used because the age, functional scores, and biomarker values were not normally 

distributed.   Multivariable regression modeling was performed to explore the 

relationship between the plasma biomarkers of oxidative stress, NIH Stroke Scale (a 

marker for stroke severity), and the log of the normalized white matter hyperintensity 

volume. 

 

Results 

Table 1 lists demographics and clinical features of the cohort.  We studied 158 

participants, with a mean age of 71±15 years. The population was 56% male, and mean 
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body mass index was 28±6.  Prevalent stroke risk factors included hypertension (71%), 

hyperlipidemia (44%), atrial fibrilliation (32%), and diabetes mellitus (20%). 

The distribution of the values of the log of the normalized white matter 

hyperintensity, F2-isoprostane, the Oxygen Radical Absorbance Capacity, and 8-

hydroxy-2-deoxy-guanosine are specified in Table 2.  Mean log of the normalized white 

matter hyperintensity volume was 1.38±1.32.  Measured at baseline, median value of F2-

isoprostane was 54 pg/mL, interquartile range 36-72.  The Oxygen Radical Absorbance 

Capacity at baseline had a median of 1561 µmol Trolox equivalents per liter, interquartile 

range 1200-1983.  Baseline levels of 8-hydroxy-2-deoxy-guanosine had a median of 18 

ng 8-hydroxy-2-deoxy-guanosine per mg creatinine, interquartile range 12-31.  F2-

isoprostane measured at 48 hours after stroke onset had a median value of 43 pg/mL, 

interquartile range 28-64.  

The log of the normalized white matter hyperintensity volume was strongly 

correlated with age (ρ=0.62, p<0.0001), modified Rankin Scale (ρ=0.20, p=0.04), and 

Barthel Index (ρ=-0.21, p=0.04), as shown in Table 3.  Table 4 demonstrates that the log 

of the normalized white matter hyperintensity volume did not correlate significantly with 

levels of, F2-isoprostane, 8-hydroxy-2-deoxy-guanosine, or the Oxygen Radical 

Absorbance Capacity.  Multivariable regression modeling did not reveal any significant 

predictive value for log of the normalized white matter hyperintensity volume from the 

biomarkers, taken together and in combination with stroke severity, represented by NIH 

Stroke Scale. 
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Table 1. Demographics and Comorbidities of the Patient Cohort 

Age (years), mean±SD 71±15 

Body Mass Index, mean±SD 28±6 

Race, n (%)  

 White 149 (94) 

 Black 4 (3) 

 Other 5 (3) 

Ethnicity, n (%)  

 Hispanic 16 (10) 

Gender, n (%)  

 Male 88 (56) 

 Female 70 (44) 

Comorbidities / Risk Factors, n (%)  

 Hypertension 112 (71) 

 Diabetes Mellitus 31 (20) 

 Hyperlipidemia 69 (44) 

 Atrial Fibrillation 50 (32) 

 Prior Stroke 28 (18) 

 Prior Transient Ischemic Attack 11 (7) 

 Coronary Artery Disease 24 (15) 

 Body Mass Index ≥ 30 44 (33) 

 Current Smoking 32 (20) 
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A25 - 75 IQR = the 25th to 75th percentile interquartile range 

Bµmol TE/L = micromoles of Trolox equivalents per liter 

C8-hydroxy-2-deoxy-guanosine is measured as a ratio of its quantity divided by that of 

urine creatinine 

Table 2. Distribution of White Matter Hyperintensity Volume and Oxidative Stress 

Biomarkers Measured at Both Timepoints after Stroke Onset 

 n Mean±SD 

Log of the normalized white matter hyperintensity 

volume 

158 1.38±1.32 

 Baseline (within 9 hours) 48 hours 

 n Median 25-75  IQRA n Median 25-75 IQRA 

F2-isoprostane 

(pg/mL) 

144 54 36-72 107 43 28-64 

The Oxygen 

Radical Absorbance 

Capacity 

(µmol TE/L)B 

142 1561 
 
 
 

1200-1983 N/A 

8-hydroxy-2-deoxy-

guanosine (ng/mg)C 

27 18 12-31 N/A 
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Table 3. Correlation between White Matter Hyperintensity Volume and Age and 

Functional Scores 

 n Correlation (ρ) p value 

Age  158 0.62 < 0.0001 

Modified Rankin Scale 109 0.20 0.04 

Barthel Index of Activities of Daily Living 98 -0.21 0.04 

Table 4. Correlation between White Matter Hyperintensity Volume and Oxidative 

Stress Biomarkers Measured at Both Timepoints after Stroke Onset 

 Baseline (within 9 hours) 48 hours 

 n Correlation (ρ) p value n Correlation 

(ρ) 

p value 

F2-isoprostane 144 -0.01 0.91 107 0.15 0.11 

The Oxygen 

Radical 

Absorbance 

Capacity 

142 -0.07 0.39 N/A 

8-hydroxy-2-

deoxy-guanosine 

27 -0.01 0.95 N/A 
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Discussion 

 White matter hyperintensity volume does not correlate with levels of established 

molecular biomarkers of systemic oxidative stress in our cohort of patients with acute 

ischemic stroke.  Potential explanations for our negative findings include: 1) our systemic 

measures of oxidative stress may not be suitably accurate or sensitive as measures of 

oxidative stress in the brain; 2) we may not have a large enough sample; 3) we may not 

have measured oxidative stress at an appropriate time point to observe chronic oxidative 

state; or 4) white matter hyperintensity may not be related to oxidative stress, but other 

neuroimaging findings may be. 

Perhaps we were unable to detect a true relationship between white matter 

hyperintensity and systemic biomarkers of oxidative stress because of theoretical or 

practical limitations inherent to the study.  Oxidative stress biomarkers in acute ischemic 

stroke are limited by the difficulty of signal-to-noise ratio, which is to say that the 

measurement of oxidative stress has variability due to chance and that true differences 

may be within the same scale as chance differences.  One study of intraindividual 

variability predicted that studies with one measurement of F2-isoprostanes would 

generate observed correlation coefficients 85% of their true value.(97)  While this is quite 

good – indeed, considered the “gold standard” – it shows that, even in a perfect world, 

measurement of the true changes in oxidative stress are reflected less well in the 

biomarkers.(32)  Other factors inherent to oxidative stress biomarkers contribute to this 

noise, such as sample oxidation between when it has left the patient and when it is 

quantified, an issue that has been of particular concern with 8-hydroxy-2-deoxy-

guanosine.(26, 91, 98) 
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Also, the dynamic nature of levels of oxidative stresses and antioxidant defenses 

combined with the variety of species and mechanisms for both adds a layer of complexity 

to any measure of oxidative stress, especially when using systemic markers.  Different 

oxidative species effect different types of oxidative damage, which are best measured by 

different molecular biomarkers.(91)  Thus, measurement of overall oxidative damage by 

any one biomarker is limited, and it is better to work with techniques that combine more 

than one biomarker together.  However, using multiple different biomarkers that 

represent different oxidant systems will not necessarily reduce complexity of the analysis. 

For example, in our scenario, it is possible that the Oxygen Radical Absorbance 

Capacity and 8-hydroxy-2-deoxy-guanosine will change paradoxically because of 

processes mediating protection and recovery from injury.(31)  Specifically, the Oxygen 

Radical Absorbance Capacity measures antioxidant capacity, so it is possible that 

protective mechanisms within the body will increase the concentration of antioxidant 

species in response to evolving oxidative injury.  If the Oxygen Radical Absorbance 

Capacity detects only the increase of antioxidant species, our study would incorrectly 

conclude that the oxidative stress within the system has decreased.  Though the 

antioxidant capacity has increased in this system, perhaps the total systemic oxidative 

stress has either not changed or actually increased and caused the increase in antioxidant 

capacity.  Assaying 8-hydroxy-2-deoxy-guanosine may result in a similar scenario.  

Evidence has shown that these markers of DNA oxidation are repaired by cellular 

machinery, and potentially these processes become detrimental to the cell if they divert 

energy from other more important systems.(43)  One could imagine that detectable levels 

of 8-hydroxy-2-deoxy-guanosine actually increase after the cell has undergone the worst 

of its damage, when the cells enzymatically remove the damaged bases from the DNA 
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during the repair process.  Thus, in this situation the concentration of these markers 

paradoxically increases after the tissue has begun recovery from the stress. 

The above considerations contribute to the ‘noise’ in the signal-to-noise ratio, but 

the ‘signal’ is another limiting factor in this study.  When compared to the size the human 

body, even the largest brain infarct is miniscule.  The brain is approximately 2% of the 

total body weight, and the largest common vascular distribution for stroke is the middle 

cerebral artery.(1)  Thus, common strokes are significantly less than 1% of the volume of 

the body.  Even with factors such as the high concentration of arachidonic acid and high 

oxygen metabolism contributing to potentially significant oxidative injury, it is difficult 

to detect any changes in such a small part of the body given the practical limitations to 

physically accessing the tissue.(26)  

These limitations underscore the paradigm of monitoring processes in the central 

nervous system with markers in the body’s periphery.  In the case of persistent ischemia, 

one would expect any bloodborne markers of tissue damage will need to be brought to 

detection from tissue that has a severely impaired vascular supply and therefore equally 

impaired venous return.  In this way, more affected tissues may be less likely to convey 

the impaired state of their function in peripheral biomarker studies.  The 8-hydroxy-2-

deoxy-guanosine literature hints at this effect in one excellent study where temporary 

middle cerebral artery occlusion was induced in rats and monitored with peripheral 8-

hydroxy-2-deoxy-guanosine measurements.(44)  This group found that, when comparing 

their models of permanent versus temporary ischemia, plasma 8-hydroxy-2-deoxy-

guanosine levels were similar.  The group implies that this means the level of oxidative 

damage is similar for the two types of ischemia.(44)  However, presumably, there is 

actually less ischemia in the area reperfused by the temporary versus permanent 
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occlusion model.  If this is the case, the reperfused tissue is evolving as much 8-hydroxy-

2-deoxy-guanosine as the completely ischemic tissue, which is actually in a more dire 

state.  Thus, the level of molecular biomarkers is not accurately reflecting the condition 

of the tissue from which it evolves.  One of the reasons for this effect may be the lack of 

venous return from the most affected areas of tissue in the ischemic region of the brain. 

We discussed previously theories of endothelial dysfunction surrounding the 

development of white matter hyperintensity.(87)  In this theory, we relate systemic 

oxidative stress to endothelial dysfunction, which causes white matter hyperintensities in 

the brain.  By definition, the source of systemic oxidative stress would be from a distant 

site in the body.  The volume in which these reactive oxygen species would be diluted, 

the time necessary to transport them between their site of formation, and site of action 

would be quite a bit larger than if the source of oxidative species were local.  Were the 

oxidative species formed in the hypothetical endothelial cells that are experiencing 

dysfunction, the scale of oxidative stress necessary to produce physiologically significant 

effects would be much smaller.  In this experiment, because we are observing the 

evolution of events occurring on a molecular level in the brain in the distant peripheral 

plasma or – even more physiologically removed – urine, we are likely unable to witness 

local sources of oxidative stress in the brain unless they are on a catastrophic scale.  

Indeed, the types of endogenous oxidants that keep reactive oxygen species in check in 

normal biological systems are probably buffering most of the signs of oxidative stress we 

might detect were white matter hyperintensities being caused by oxidative stress in situ. 

When planning for the study, we had hoped to analyze some 250 patients in our 

cohort.  This projection was made from an estimated sample of 259, based on an α set at 

0.05 and an assumed lower limit of 0.2 for a correlation coefficient, given a power of 
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0.90.(99)  For this cohort, 158 subjects were included, which was well below our 

projections.  The limitations were largely manpower.  Potentially, we were not powered 

to detect a signal we might have expected.  On the other hand, the correlations between 

white matter hyperintensity volume and functional scores were in the range of 0.2 and 

were well seen in our analysis. 

Interestingly, we may see a trend in the data that points to a true correlation 

between white matter hyperintensity volume and F2-isoprostane.  Observe that 

Spearman’s ρ=-0.01 (p=0.91) at baseline versus ρ=0.15 (p=0.11) at 48 hours after stroke 

onset.  Though neither of these correlations is statistically significant, it is notable that for 

the correlation at 48 hours, the proposed directionality is correct.  We would expect 

increasing F2-isoprostanes to trend with increasing white matter hyperintensity volume.  

In addition, the value of the proposed ρ is within the range of the correlations between 

white matter hyperintensity and the functional scores, which we can conceptualize as 

positive controls in this study. 

Our goals of detecting a correlation at baseline or at 48 hours were ambitious 

because of the interplay of acute versus chronic oxidative stress.  Recall the theory that 

everyone lives at a level of chronic oxidative stress, which forms a kind of baseline 

oxidative state from which oxidative stress levels rise during an acute oxidative injury, 

such as that which evolves in acute ischemic stroke.  All of our measurements of 

oxidative stress biomarkers fall well within the timeframe in which we might expect to 

see acute oxidative injury evolve.  Of course, another factor at play in this situation 

concerns the idea of white matter hyperintensity producing ‘sick brain.’  This damaged 

brain tissue may be without the natural oxidative defense mechanisms that can help it 

deal with an acute stroke, as evidence has shown that infarct growth is larger in patients 
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with more white matter hyperintensity.(64)  Potentially, the same sized acute ischemic 

injury in a brain with a lot of white matter hyperintensity would lead to a greater 

evolution of acute oxidative stress. 

If one can visualize again the curve of acute oxidative stress overlaying chronic 

oxidative state, multiple factors influence oxidative state in the acute phase, including a 

somewhat delayed inflammatory response that occurs over the scale of days.  Thus, it is 

difficult to put exact timeframes on when one will return to the chronic oxidative state.  

This dynamic underscores some weaknesses mentioned earlier regarding the current 

literature of oxidative stress in stroke, given studies that group together patients 5 days 

after stroke with patients 10 days after stroke.(55)  Studies such as the parent study to this 

analysis endeavor to obtain significantly improved resolution regarding the switch from 

acute injury and acute oxidative stress back to chronic oxidative state. 

In any case, this potential trend may point to a relationship between white matter 

hyperintensity volume and oxidative stress that is emerging as acute oxidative stress 

dissipates to the chronic oxidative state.  Another potential trend in the values of F2-

isoprostane shown in Table 2 may represent this change.  When measured at baseline, the 

F2-isoprostane levels have a median of 54 pg/mL, with an interquartile range of 36-72.  

At 48 hours, the levels show a median of 43 pg/mL, with an interquartile range of 28-64.  

Though the difference between these values was not statistically verified, the trend is that 

values of F2-isoprostane are decreasing over this time period.  Given that this is only at 

48 hours, an improved measure of oxidative state might have been achieved with levels 

of the molecular biomarkers between 30 to 90 days after stroke.  However, in this 

timeframe, some variability in chronic oxidative state may become evident.  Patients 

might adopt lifestyle changes after a serious health event such as a stroke, which is of 
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scientific concern.  These lifestyle changes would likely improve their future health but 

will also certainly impair the ability to retrospectively observe the chronic oxidative state 

prior to their stroke. 

It is possible to statistically account for the acute stroke in our analysis by using 

multivariable regression modeling with a marker for stroke severity.  The infarct size in 

our acute stroke population is a potential confounder, as larger acute strokes may be 

related to larger volumes of white matter hyperintensity as well as larger amounts of 

acute oxidative stress.  In this study, we were able to use the NIH Stroke Scale score to 

adjust for the acute stroke.  As we have MR imaging for all of the subjects, a better 

marker for the acute stroke would be the acute stroke size on diffusion-weighted imaging.  

However, infarct size measurements were unavailable for this analysis. 

Oxidative stress, both systemic and local, may simply not cause white matter 

hyperintensity.  The “operational” nature of the pathophysiologic explanations for white 

matter hyperintensity are important to remember.(64)  Most of the theories put forth, 

including endothelial dysfunction, center around chronic ischemia as the root cause.(60)  

Vascular conditions relatively unrelated to oxidative stress may be chiefly responsible for 

this ischemia.  One of those conditions, mentioned before, is periventricular venous 

collagenosis.(65)  Thickening of the walls of veins in the brain parenchyma near the 

ventricles eventually leads to venous occlusion.  The theory continues that the impaired 

drainage causes edema and eventually death of surrounding cells.(65)  Potentially the 

result of this process, as it unfolds on a large scale, is seen as white matter hyperintensity. 

Finally, even if white matter hyperintensity may not be related to oxidative stress, 

perhaps periventricular hyperintensity is.  As discussed previously, previous authors that 

found a relationship between periventricular hyperintensity and F2-isoprostane did not 
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include the subcortical components of white matter hyperintensity in their analysis.(85)  

Interestingly, they conducted a secondary analysis by grading total white matter 

hyperintensity and were unable to find any correlations with F2-isoprostane.  (Recall that 

they also did not find any direct correlations with F2-isoprostane and periventricular 

hyperintensity.)  It has been articulated that one should consider “smooth periventricular 

signal abnormalities” as separate entities from the other components of white matter 

hyperintensity.(100)  Causes of periventricular hyperintensity may be related to 

arteriosclerosis, seepage of CSF into the parenchyma near the ventricles, or perhaps 

interstitial fluid accumulating in tissues atrophied due to degenerative disease.(85, 100, 

101) This theoretical segmentation is in contradistinction to the inclusive technique 

conducted in our study, given that we have considered all white matter hyperintensity 

together.  That said, potentially the origins of periventricular hyperintensity differ from 

white matter hyperintensity in such a way that oxidative stress is related more directly to 

the formation of the former than the latter. 

In this study of ischemic stroke patients, we have likely selected for patients who 

will have a cardiovascular or cardioembolic pathophysiology for their white matter 

hyperintensity, as they probably also have these factors contributing to their stroke risk.  

Thus, all locations of white matter hyperintensity seen in our cohort, periventricular or 

subcortical, will likely have a similar etiology, and we would not expect to find a distinct 

cause for the periventricular hyperintensities.  In any case, the literature technically 

demonstrated a relationship between periventricular hyperintensity and biomarkers of 

oxidative stress, as opposed to white matter hyperintensity.(85)  Reanalyzing the MRIs 

for the patients in this cohort following the established periventricular hyperintensity 

criteria may be informative in our cohort.  Given that a grading scale is a significantly 
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smaller time-investment than the semi-automated quantification method for measuring 

white matter hyperintensity volume, periventricular hyperintensity grade may be a 

reasonable variable to examine in the larger study of the biomarkers of oxidative stress, 

especially if analyses demonstrated substantially different findings for periventricular 

hyperintensity. 

In conclusion, though white matter hyperintensity volume was correlated with age 

and functional outcome scores in our study, we did not find a correlation between white 

matter hyperintensity volume and systemic biomarkers of oxidative stress.  Our analysis 

has several important caveats.  To be powered to detect these correlations, we projected a 

need for a larger cohort than was available at the time of this analysis.  Additionally, we 

did not have an ideal marker for acute stroke severity, thought to be a likely confounder 

in this study.  Finally, periventricular hyperintensity remains to be explored as a potential 

biomarker for oxidative stress in our cohort.  These issues suggest that fertile ground 

remains in the search for the relationship between white matter hyperintensity and 

oxidative stress.  Indeed, future advances toward a tool for improving trials in emerging 

stroke therapies will only come through the careful understanding of complex 

relationships such as these.  With such great rewards in sight, great challenges should be 

expected along the way! 
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