
Graduate School ETD Form 9 
(Revised 12/07)          

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 
 
 

This is to certify that the thesis/dissertation prepared 
 
By   
 
Entitled  
 
 
 
For the degree of    
 
 
Is approved by the final examining committee: 
 
          
                                              Chair 
 
          
 
 
          
 
 
          
 
 
To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  
 
      

Approved by Major Professor(s): ____________________________________ 

                                                      ____________________________________ 

 
Approved by:    
     Head of the Graduate Program     Date 
 
 



 

 

 
 
Graduate School Form 20 
(Revised 1/10)  

 
PURDUE UNIVERSITY 

GRADUATE SCHOOL 
 

Research Integrity and Copyright Disclaimer 
 
 

 
 
Title of Thesis/Dissertation: 
 
 
 
 
For the degree of ________________________________________________________________ 
 
I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*  
   
Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 
 
I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with 
the United States’ copyright law and that I have received written permission from the copyright 
owners for my use of their work, which is beyond the scope of the law.  I agree to indemnify and save 
harmless Purdue University from any and all claims that may be asserted or that may arise from any 
copyright violation. 
 
 
 
______________________________________ 
Printed Name and Signature of Candidate 
 
 
______________________________________ 
Date (month/day/year) 
 
 
 
 
 
 
*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html


A DYNAMICALLY CONFIGURABLE DISCRETE

EVENT SIMULATION FRAMEWORK FOR MANY-CORE

SYSTEM-ON-CHIPS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Christopher J. Barnes

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

August 2010

Purdue University

Indianapolis, Indiana



ii

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Jaehwan John Lee for all of his support

and encouragement throughout my pursuit of a Master’s degree. His knowledge and

professionalism have given me high standards that I will always strive to achieve.



iii

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objective and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Previous Works In The Area of Retargetable Simulators . . . . . . 6

2.2.1 Anahita Processor Description Language (APDL) . . . . . . 6

2.2.2 EXPRESSION and ReXSim . . . . . . . . . . . . . . . . . . 7

2.2.3 Instruction Set Description Language (ISDL) . . . . . . . . . 9

2.2.4 LISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 nML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.6 Reduced Colored Petri Net (RCPN) . . . . . . . . . . . . . . 13

2.2.7 A Note About Full-System Simulators and Instruction Set Ar-
chitecture Simulators . . . . . . . . . . . . . . . . . . . . . . 14

2.2.8 Previous Work Performed By The Author . . . . . . . . . . 15

2.3 Previous Works In The Area of Network-on-Chip (NoC) Simulators 17

2.3.1 Garnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Noxim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 SICOSYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.4 Integrated Network-on-chip Simulators in RSIM and ASIM . 18



iv

Page

2.4 Previous Work in the Area of Multithreaded Simulators . . . . . . . 20

2.5 Our Design Decisions Based On Previous Work . . . . . . . . . . . 20

3 Resource Configuration Interface . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Simulation Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Resource Configuration Editor (RCE) . . . . . . . . . . . . . . . . . 25

3.4 Module Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Module Communication . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6 Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Memory and Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 Simulation Configuration Data File . . . . . . . . . . . . . . . . . . 32

4 The Framework’s Structure and Dynamic Compilation . . . . . . . . . . 36

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Framework Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Implementation of Dynamic Compilation . . . . . . . . . . . . . . . 39

4.4 Communication Between the Framework and Simulator Components 41

4.5 External Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.1 Debugging External Modules . . . . . . . . . . . . . . . . . 42

5 Network-on-Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Introduction to Network-on-Chips . . . . . . . . . . . . . . . . . . . 45

5.3 Network-on-Chip Implementation . . . . . . . . . . . . . . . . . . . 47

5.4 Network-on-Chip Configuration Editor . . . . . . . . . . . . . . . . 50

5.5 A Note About Mhetero’s Network-on-Chip Infrastructure . . . . . . 52

6 Simulation Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 Single Threaded Execution . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Overview of Multithreaded Execution . . . . . . . . . . . . . . . . . 55



v

Page

6.4 Approach 1: One Thread Per Resource and Network (OTRN) . . . 57

6.5 Approach 2: Thread Pool . . . . . . . . . . . . . . . . . . . . . . . 58

6.6 Thread Synchronization Using Barriers . . . . . . . . . . . . . . . . 59

6.7 Slack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.8 Performance Concerns . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Description of the MIPS64 Simulator . . . . . . . . . . . . . . . . . 63

7.3 Cache Simulation Experiment . . . . . . . . . . . . . . . . . . . . . 64

7.4 Branch Prediction Algorithm Comparison Experiment . . . . . . . . 66

7.5 Network-on-Chip Experiment . . . . . . . . . . . . . . . . . . . . . 66

7.6 Single Thread Simulation Performance Experiment . . . . . . . . . 71

7.7 Performance Comparison Between Execution Methods . . . . . . . 73

7.7.1 Evaluation of Simulation Error Introduced With Slack . . . 76

7.7.2 Discussion of Multithreading Approaches . . . . . . . . . . . 77

8 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



vi

LIST OF FIGURES

Figure Page

2.1 An example of the APDL ADL describing the add and subtract instruc-
tions (Courtesy of N. Honarmand et al. [24]) . . . . . . . . . . . . . . . 7

2.2 An example description of a cache subsystem using EXPRESSION ADL
(Courtesy of A. Halambi et al. [19]) . . . . . . . . . . . . . . . . . . . . 8

2.3 An example description of add, sub, and mult instructions using EXPRES-
SION ADL (Courtesy of A. Halambi et al. [19]) . . . . . . . . . . . . . 9

2.4 An example of the LISA ADL, which describes a load (LD) instruction
(Courtesy of V. Zivojnovic, S. Pees, and H. Meyr [20]) . . . . . . . . . 11

2.5 An example of the nML ADL used to describe a simple processor (Courtesy
of M. Freericks [21]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 An example of the CADL ADL describing the data channel between stages
as well as the memory and cache subsystems (Courtesy of C. Barnes et
al. [23]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 An example of the SGML-based lanuage used in SICOSYS (Courtesy of
E. Gamma et al. [33]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Organization of editors within the simulation framework . . . . . . . . 23

3.2 A screenshot of the Simulation Editor . . . . . . . . . . . . . . . . . . 24

3.3 A screenshot of the Resource Configuration Editor with the Module Editor
selected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 A screenshot of the Basic Configuration tab in the Resource Configuration
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 A screenshot of the Registers tab in the Resource Configuration Interface 27

3.6 A screenshot of the Module Communication tab in the Resource Configu-
ration Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Potential pipeline configurations . . . . . . . . . . . . . . . . . . . . . . 30

3.8 A screenshot of the Instructions tab in the Resource Configuration Inter-
face . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



vii

Figure Page

3.9 A screenshot of the Memory & Cache tab in the Resource Configuration
Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.10 An example of the Mhetero XML file format . . . . . . . . . . . . . . . 35

4.1 Organization of the framework structure and communication between re-
sources and routers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Flow of configuration data, source code, and external modules in the com-
pilation process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Diagram of two external modules integrated into a resource’s execution
loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 A detail of how resources, routers, and connections form a network . . 48

5.2 An example of a small 2D mesh network (on a larger scale than Figure
5.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 A screenshot of the NoC Configuration Editor interface . . . . . . . . . 51

6.1 A screenshot of the Simulation Monitor interface . . . . . . . . . . . . 54

6.2 A representation of barriers synchronizing the execution of four resources
and a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.1 Diagram of a typical MIPS five stage pipeline (Courtesy of D. Patterson
and J. Hennessy [67]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Cache hit rate using different cache schemes and block sizes . . . . . . 65

7.3 Branch prediction algorithm results . . . . . . . . . . . . . . . . . . . . 67

7.4 The 2D mesh network topology used in the Network-on-Chip Experiment 68

7.5 Detail of the connections between routers and resources in the 2D mesh
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.6 Pseudocode explaining the routing function used in the 2D mesh network 70

7.7 The number of cycles required as the number of cores is varied . . . . . 71

7.8 Simulation performance results as the number of concurrent cores execut-
ing is increased . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.9 Four core simulation performance comparison between multithreaded with
slack and single threaded execution . . . . . . . . . . . . . . . . . . . . 73

7.10 Sixteen core simulation performance comparison between multithreaded
with slack and single threaded execution . . . . . . . . . . . . . . . . . 74



viii

Figure Page

7.11 Multithreaded performance comparison by varying the amount of work in
the delay module (OTRN uses five threads, TP uses four threads) . . . 75

7.12 Four core simulation multithreaded performance comparison with large
granularity and 15,000 delay loop count (OTRN uses five threads, TP
uses four threads) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.13 The simulation error introduced as the amount of slack increases . . . . 77

7.14 Performance comparison between single-threaded and thread pool multi-
threaded execution methods with 500 delay loop count . . . . . . . . . 79



ix

GLOSSARY

Module A simulated representation of a functional unit

within a resource, such as a processor stage,

branch predictor, or forwarding unit.

NoC Network-on-Chip, an emerging approach to

communication between resources, or subsys-

tems, on a chip that is similar to large scale

computer networks (i.e., a LAN, or the Inter-

net). Network-on-Chips are also referred to as

an on-chip interconnect.

Resource A simulated representation of any high level

component in a simulated system such as a pro-

cessor core, I/O, or memory. Resources can per-

form any sort of behavior that the simulation

designer wishes.

Simulation Configuration The collection of settings and source code that

is used to produce a processor simulator.

Simulation Designer A person that is using the simulation frame-

work for the purpose of producing or revising a

processor simulator.

Simulation Framework Software used to gather simulation configura-

tion information and dynamically compile pro-

cessor simulators. The software described in

this thesis.

Simulation Host The machine used to execute a simulation.



x

ABSTRACT

Barnes, Christopher J. M.S.E.C.E., Purdue University, August 2010. A Dynamically
Configurable Discrete Event Simulation Framework for Many-Core System-on-Chips.
Major Professor: Jaehwan J. Lee.

Industry trends indicate that many-core heterogeneous processors will be the

next-generation answer to Moore’s law and reduced power consumption. Thus, both

academia and industry are focused on the challenges presented by many-core hetero-

geneous processor designs. In many cases, researchers use discrete event simulators

to research and validate new computer architecture innovations. However, there is

a lack of dynamically configurable discrete event simulation environments for the

testing and development of many-core heterogeneous processors. To fulfill this need

we present Mhetero, a retargetable framework for cycle-accurate simulation of het-

erogeneous many-core processors along with the cycle-accurate simulation of their

associated network-on-chip communication infrastructure. Mhetero is the result of

research into dynamically configurable and highly flexible simulation tools with which

users are free to produce custom instruction sets and communication methods in a

highly modular design environment. In this thesis we will discuss our approach to

dynamically configurable discrete event simulation and present several experiments

performed using the framework to exemplify how Mhetero, and similarly constructed

simulators, may be used for future innovations.



1

1. INTRODUCTION

1.1 Background

Many-core heterogeneous processor designs have proven to improve performance

and power efficiency in a variety of applications [1, 2] resulting in the wide spread

adoption of heterogeneous designs in emerging processors [3, 4]. As the industry

moves toward merging many different, highly specialized processor resources on one

physical chip [5], there is a need for a highly configurable discrete event simulation

environment for the study of heterogeneous processor designs. Moreover, as many-

core designs become more prevalant, there is an urgent need for an environment that

integrates both the study of heterogeneous designs and an intra-core communications

infrastructure. Introduced in this thesis is Mhetero, a novel simulation framework

that enables users to construct and perform heterogeneous discrete event simulations

with a network-on-chip that meets these needs.

Computer architecture simulation is often a cornerstone in the research of new pro-

cessor concepts and in the education of computer architecture students. Simulators

are used by researchers to validate architecture designs and explore new concepts. Ed-

ucators use simulators to elucidate concepts in computer architecture through hands-

on exercises and demonstrations. To be useful for both researchers and educators,

simulators must be flexible, easy to use and understand, and fast.

Simulation speed and configurability are two important aspects in the design of

computer architecture simulators. In the past, fast simulations typically had a mono-

lithic design and were written to simulate a particular architecture. However, this

approach required a complete understanding of the source code before the user could

deviate from the simulator’s original design. To overcome this drawback, some sim-

ulators embraced a more modular design, while others attempted to provide some



2

customizability in the simulator by integrating and using Architecture Description

Languages (ADLs) to describe the resulting simulator’s functionality. This approach

provides some configurability, but still requires the user to undergo a lengthy learning

process to begin generating useful results. Additionally, many ADL implementations

depend on several third party programs, which can make the process of producing

and executing simulators disjointed and error prone.

Our simulation framework addresses the need for fast as well as configurable simu-

lations by taking advantage of the dynamic compilation capabilities of the Microsoft’s

.NET development libraries in several ways. First, we use dynamic compilation to

produce simulations based on configuration information gathered through an easy-to-

use GUI. The entire process is seamless and user-friendly, meaning that the user does

not need to leave the framework to execute external compilers, write source code,

edit configuration files, or execute simulations. Second, the simulations produced

by the framework are compiled to an intermediate language [6], resulting in quick

compilation time as well as execution speeds matching that of other compiled .NET

programs.

Our framework also supports single threaded and multithreaded execution, allow-

ing the user to optimize their performance based on the available hardware and needs

of their simulation. Moreover, the framework’s design is open and modular, allow-

ing simulation designers to produce any sort of simulator that they may desire, even

simulations extending beyond the typical tasks associated with a processor simulator.

Mhetero’s simulation infrastructure is similar to other discrete event/time simu-

lators, but with a few notable differences that facilitate processor simulation. First,

instead of using a single, global event queue, Mhetero maintains several event queues

each modeling a communication channel between two entities/modules of simulation.

Second, instead of activating modules after certain events occur, entities/modules are

activated during every cycle and these modules can then choose to process corre-

sponding events immediately or after a specified number of cycles ensuring causality

and synchronism between events in the simulation [7]. Hence, Mhetero’s simulation



3

infrastructure can be categorized as a cycle-accurate discrete time simulation infras-

tructure which by definition itself is a discrete event simulation infrastructure [7]. As

a result, the framework is not only an interesting and powerful alternative to other

discrete event simulators but also a useful tool for computer architecture researchers

and educators.

1.2 Objective and Purpose

The objective of this research was to develop a framework that enables students

and researchers to design, configure, generate, and execute processor simulators,

through a user-friendly interface. Furthermore, the framework should be able to

produce simulators that are not only relevant for the research topics of today, but

those of tomorrow as well. To this end, Mhetero was developed to be highly modular,

pervasively object oriented, and support many heterogeneous processor components,

from the ground up.

The purpose of this research was to allow researchers to rapidly explore a large

variety of architectures and IPs, as well as investigate new computer architecture

innovations. Additionally, this framework should provide a platform for teaching

topics related to computer architecture.

1.3 Organization

In this thesis, we will discuss the design and construction of Mhetero. We will

begin by reviewing some of the previous work in the area of computer architecture

simulation (Chapter 2). Next we will discuss our configuration interface (Chapters

3), dynamic compilation technique (Chapter 4), and network-on-chip implementation

(Chapter 5). We will then introduce our approach to multithreaded simulation and

address some multithreaded performance issues (Chapter 6). Finally, we will discuss

several experiments that were conducted to validate the framework’s design (Chapter

7).



4

2. PREVIOUS WORK

2.1 Overview

Over the past several decades a considerable amount of research has been per-

formed in the area of computer architecture simulation. Computer architecture sim-

ulators vary greatly in purpose, scope, and detail level. These simulators can be

broadly divided into several categories: full-system simulators, Instruction Set Ar-

chitecture (ISA) simulators, and retargetable simulators. Each category serves an

entirely different purpose, but all have been used for the advancement of computer

architecture research.

The purpose of full-system simulators is to model an entire computer system, in-

cluding the processor, memory system, and any I/O. These simulators are typically

capable of running real (i.e., not for testing purposes) software completely unmodi-

fied, similar to a virtual machine. There are many simulation suites that take this

approach, including PTLSim [8], M5 [9], Bochs [10], ASIM [11], GxEmul [12], and

Simics [13] (Simics is a commercial product). Simics has several extensions that

constitute their own full-system simulators such as VASA [14] and GEMS [15]

ISA simulators are less comprehensive than full-system simulators as their pur-

pose is typically limited to modeling the processor alone. ISA simulators serve several

purposes: to simulate and debug machine instructions of a processor type that differs

from the simulation host, to investigate how the various instructions (or a series of

instructions) affect the simulated processor, and for developing and testing experi-

mental ISAs. To this end, modeling of the full computer system is unnecessary and

would impose additional complexity and delay. Examples of this type of simulator

include SimpleScalar [16], WWT-II [17], and RSIM [18].



5

Retargetable simulators are similar to ISA simulators, but are more focused on the

research and development of new computer architecture concepts, ISAs, and design

space exploration of Chip Multiprocessors (CMPs). The research and development

focus results from the capability to reconfigure the simulator to produce a new sim-

ulation target through some mechanism that is easier and/or faster than writing a

new simulator. Typically this process is done through the use of an Architecture

Description Language (ADL). Thus the user of the simulator can model experimental

processor designs by adjusting parameters in an ADL script instead of writing or

rewriting a new processor simulator. Examples of this type of simulator are Expres-

sion [19], LISA [20], nML [21], and RCPN [22]. The author of this thesis has also

produced a simulator of this type called CADL [23].

In the case of retargetable simulators, it is important to note the distinction be-

tween the simulator and the program that creates the simulator. In many articles

this distinction is unclear, which may lead to confusion. In our case, Mhetero is a

framework for creating simulators, and not a simulator itself. During the develop-

ment of Mhetero, a simulation configuration for a MIPS64 architecture was created

(Mhetero’s simulation capabilities are not limited to MIPS64 however). The frame-

work coupled with the simulation configuration is used to generate an executable

simulation.

Mhetero can be defined as a retargetable simulation framework. However, the

framework attempts to cross the bridge between retargetable simulators and ISA

simulators. To this end, the framework is very modular and open to allow simulation

designers to produce virtually any sort of ISA imaginable. However, once produced,

the simulation configuration can be easily distributed and used similarly to an ISA

simulator. Mhetero is also similar to ISA simulators in that it yields simulators that

execute virtually as fast as other simulators targeted towards a particular ISA due to

its compilation technique (discussed in Chapter 4).

In the remainder of this chapter we will review the previous work completed in the

area of retargetable simulators, and briefly discuss full-system and ISA simulators.



6

We will then review the previous work in the area of network-on-chip simulators, and

briefly discuss some of the previous work in the area of multithreaded simulation. We

will conclude this chapter with a discussion of how these previous works influenced

the design of Mhetero.

2.2 Previous Works In The Area of Retargetable Simulators

2.2.1 Anahita Processor Description Language (APDL)

APDL [24] is one of the more recent contributions in the area of retargetable

simulation. The language was introduced in 2007 by N. Honarmand et al. from

the Shahid Beheshti University, IRAN. The primary difference between APDL and

other ADLs is the addition of the Timed Register Transfer Level (T-RTL), which

enables the simulation designer to define the latencies and hardware requirements of

processor operations. This separation of configuration data enables APDL to better

integrate with external software for analysis as the T-RTL data is organized separately

from the remainder of the processor description. Moreover, APDL can describe both

instruction and structure descriptions of a target processor.

The Pascal-like syntax of APDL is clearly more intuitive than many other ADLs

such as LISA and EXPRESSION. A short example of APDL’s syntax is shown in

Figure 2.1. While this language is easier to read and understand, the researchers

have not yet implemented a compiler to produce simulations. Furthermore, despite

APDL’s relative ease, users are still faced with the task of learning the details of the

syntax.



7

operation add ( s0: reg_src, s1: reg_src, d: reg_dst ) is

s0’rf_read_port_number := 0;

s1’rf_read_port_number := 1;

action := { d’val := int32(s0’val) +|ALU,EX,1| int32(s1’val); }

end operation;

operation sub ( s0: reg_src, s1: reg_src, d: reg_dst ) is

s0’rf_read_port_number := 0;

s1’rf_read_port_number := 1;

action := { d’val := int32(s0’val) -|ALU,EX,1| int32(s1’val); }

end operation;

Fig. 2.1. An example of the APDL ADL describing the add and
subtract instructions (Courtesy of N. Honarmand et al. [24])

2.2.2 EXPRESSION and ReXSim

EXPRESSION [19] was introduced in 1999 by the Department of Information and

Computer Science, University of California, Irvine. EXPRESSION was developed for

the investigation of System-on-Chip (SoC) architectures through the use of an ADL

that mixes both structural and behavioral descriptions, with a particular emphasis

on describing memory systems. Additionally, EXPRESSION supports cycle-accurate

simulation with pipelines and cache hierarchies. One interesting feature of EXPRES-

SION is its ability to create retargetable compilers based on simulator descriptions.

The EXPRESSION ADL uses a LISP-like syntax for describing processor configu-

rations. An example cache description is shown in Figure 2.2, and several instructions

are defined in Figure 2.3. While this approach is capable in several respects, the ADL

has a significant learning curve which makes the process of generating simulators dif-

ficult to learn and use. Additionally, EXPRESSION is primarily useful for the design

space exploration (i.e., exploring the effect of removing or adding functional units)



8

rather than producing fast simulations. Finally, EXPRESSION does not support

many-core simulations, and thus also does not support heterogeneous simulations or

network-on-chip.

(STORAGE PARAMETERS

(L1 cache (TYPE cache) (SIZE 1024) (LINE 32)

(ASSOCIATIVITY 3) (ADDRESS RANGE 0 511)

(ACCESS TIMES 1)))

Fig. 2.2. An example description of a cache subsystem using EX-
PRESSION ADL (Courtesy of A. Halambi et al. [19])

ReXSim [25] was introduced in 2003 by a computer architecture research team also

at University of California, Irvine (the ReXSim team has several researchers in com-

mon with EXPRESSION). ReXSim is an extension of the EXPRESSION language

which sought to improve simulation speed by integrating a novel method of decod-

ing instructions of the simulated program before execution of the simulation. As a

result, the instruction decoding process was removed from the execution loop of the

simulator, and thus improved the simulation speed significantly. Using this method,

the team was able to produce retargetable simulations that showed performance in

excess of major simulators such as SimpleScalar [16], which is widely considered to

be a simulation performance benchmark.



9

(OP_GROUP alu_ops

(OPCODE add

(OP TYPE DATA_OP)

(OPERANDS (SRC1 g1) (SRC2 g1) (DST g2))

(BEHAVIOR DST = SRC1 + SRC2)

)

(OPCODE sub

(OP TYPE DATA_OP)

(OPERANDS (SRC1 g1) (SRC2 g1) (DST g2))

(BEHAVIOR DST = SRC1 - SRC2)

)

)

(OP_GROUP mult_ops

(OPCODE mult

(OP TYPE DATA_OP)

(OPERANDS (SRC1 g1) (SRC2 g1) (DST g3))

(BEHAVIOR DST = SRC1 * SRC2)

)

)

Fig. 2.3. An example description of add, sub, and mult instructions
using EXPRESSION ADL (Courtesy of A. Halambi et al. [19])

2.2.3 Instruction Set Description Language (ISDL)

ISDL [26] was introduced in 1997 by G. Hadjiyiannis, S. Hanono, and S. Devadas

from the Massachusetts Institute of Technology. The purpose of ISDL was to provide

a language for describing instruction sets along with a limited amount of details of

a processor structure for the automatic construction of compilers, assemblers, and

simulators. The language is not similar to any particular programming language;



10

however, ISDL does make use of C syntax to describe instruction behavior. In partic-

ular, ISDL was designed to describe VLIW machines such as digital signal processors

(DSPs).

ISDL enables users to define their target processors in several ways. First, users

can define operations, their format, and the associated assembly language instruction.

Second, users can define the storage resources available to the processor, including the

register file and memory. Third, users can define constraints in the processor, such as

instructions requesting the same data path, or restrictions regarding assembly syntax.

Alone, ISDL does not provide any sort of mechanism for actually producing either

compilers or simulators. In the literature describing the ADL, the authors mention on-

going research into the development of tools and simulators utilizing ISDL. However,

we were unable to find any such tools. Additionally, very little detail is provided

as to how to actually use the language to describe a processor. We discuss this

previous work because it is frequently cited in many works in the area of retargetable

simulation.

2.2.4 LISA

LISA [20] was introduced in 1996 by Zivojnovic et al. from Aachen University

of Technology, Germany. The main characteristic of LISA is its ability to model

pipelines and simulate instruction sets that are described through the LISA ADL.

LISA is more simple than others because its functionality is much more restrictive.

While EXPRESSION is able to describe both the instruction set and structure of the

modeled processor (e.g., memory and cache systems) and the flow of data between

functional units, LISA is only capable of describing the instruction set and pipeline.

The LISA ADL arranges small pieces of C/C++ source code in a format that

groups the pieces together by instruction type. An example of this arrangement is

shown in Figure 2.4. LISA’s compilation process outputs C/C++ source code, which

must be compiled separately by the user afterwards. Thus the simulator compilation



11

<insn> LD

{

<decode>

{

%ID: {0x7121, 0x1004}

%src: { mem[%OPCODE1 & 0x7F] }

%dest: { accu[(%OPCODE1 >> 8) & 1] }

}

<schedule>

{

LD1(PF, w:ebus_addr, w:pc) | LD2(IF) |

LD3(DE) | LD4(AC, w:dbus_addr) |

LD5(RE, !r:treg, r:dbus_addr) | LD6(EX, r:treg)

}

<operate>

{

LD1: { ebus_addr = pc; }

LD1.control { pc++ }

LD2: { ir = mem[ebus_addr]; }

LD4: { dbus_addr = %src; }

LD5: { treg = mem[dbus_addr]; }

LD6: { %dest = treg; }

}

}

Fig. 2.4. An example of the LISA ADL, which describes a load (LD)
instruction (Courtesy of V. Zivojnovic, S. Pees, and H. Meyr [20])



12

process requires the simulation designer to configure and use several programs every

time a simulator is produced. This multi-step process is likely problematic; for exam-

ple, if a syntax error exists in the behavioral description of an instruction, it will be

difficult to determine where the error is located in the ADL. In other words, when a

compilation error occurs, there is no way to trace back specifically to the origin of the

error in the ADL since the C/C++ compiler is unrelated to the LISA ADL compiler.

Moreover, the configuration of the external compiler and its associated project (i.e.,

any external libraries and source code files that must be included into the resulting

simulator executable) is left up to the user.

2.2.5 nML

nML [21] is also an ADL-based language, which was developed at TUBerlin in

1991 by M. Freericks. The nML ADL language was one of the earliest ADLs, and

as such it is considerably more simple than both LISA and EXPRESSION in terms

of functionality. The ADL does not support cycle-accurate simulation, or complex

pipelining. The primary purpose of nML, like LISA, is to describe the instruction set

of a target processor, and thus it does not describe the structure of the processor.

Similar to LISA and EXPRESSION, nML users must overcome a large learning

curve to begin producing simulators. In fact, the nML ADL has its own unique gram-

mar, which is more akin to an assembly language than any programming language

(i.e., the language has very specific formatting and rules that are not intuitive, and

thus it is not useful without a complete understanding of the language). An example

of the language syntax is shown in Figure 2.5.

nML was later extended in Sim-nML [27] which was introduced in 1999 by V.

Rajesh and R. Moona from the Indian Institue of Technology Kanpur. This extension

enabled cycle-accurate simulations; however the resulting simulations are slow, and

the language’s simplicity (relative to other ADLs) limits the user’s ability to describe

complex pipelines.



13

resource fetch_unit,execution_unit,

retire_unit

reg AC [ 1, card( 8 ) ]

reg PC [ 1, card( 32 ) ]

reg temp [ 1, card ( 8 ) ]

op plus ( )

syntax = "add"

image = "000000"

action = { AC = AC + tmp; }

uses = execution_unit #1

preact = { PC = PC + 1; }

uses = fetch_unit : preact&#1,x.uses,

retire_unit #1 : action

Fig. 2.5. An example of the nML ADL used to describe a simple
processor (Courtesy of M. Freericks [21])

2.2.6 Reduced Colored Petri Net (RCPN)

RCPN [22] was introduced in 2005 by M. Reshadi and N. Dutt (who also con-

tributed to EXPRESSION), from University of California, Irvine. RCPN takes a

vastly different approach to retargetable simulation, in which pipelines are modeled

using a simplified version of Colored Petri Nets (CPN). Petri Nets are a graph-based

mathematical method of describing a process. The nodes of the graph represent

particular discrete events, states, or functions, and the graph edges represent the

transitions of data between nodes. The transitions can be enabled or disabled based

on conditions specified at the nodes. Colored Petri Nets (CPNs) extend the concept

of Petri Nets by adding color to the nodes to symbolize the data type that passes

through it.



14

The purpose of RCPN is to provide retargetable simulations for modeling of

pipelined processors. RCPN reduces the functionality of a regular CPN by limit-

ing the capabilities of the nodes in the graph for the purpose of increasing simulation

speed and usability. Additionally, RCPN takes advantage of some of the natural

properties of CPNs to prevent structural and control hazards as well as modeling

latencies. Using this method, RCPN was able to produce very fast simulation, well

in excess of SimpleScalar [16].

Simulations are modeled as a series of nodes and transitions which can resemble

a processor block diagram. While this may be more intuitive from a user’s perspec-

tive, this process may be difficult to implement as the user must have a complete

understanding of how CPNs work in order to determine the conditions that enable

transitions between nodes.

2.2.7 A Note About Full-System Simulators and Instruction Set Archi-

tecture Simulators

Full-system simulators are typically very capable and complex simulation suites.

For example, a full-system simulator provides all of the essential ‘virtual hardware’

necessary to boot a simulated computer. While these types of simulators have fre-

quently been used for academic research, this complexity makes retargeting the sim-

ulator very difficult. To exemplify this, most of the currently available full-system

simulators only simulate one type of system (i.e., x86, Alpha, etc.). As far as we

know, Simics [13] supports the most processor types of all the full-system simulators

with ten different supported processor types.

ISA simulators can also make the exploration of new architectures difficult. These

types of simulators are typically faster than retargetable simulators as they can avoid

any computational delay associated with retargetability. However, ISA simulators are

usually monolithic and difficult to understand and modify.



15

Direct execution of simulations is another restrictive approach employed by sev-

eral simulators [17, 28]. This simulation execution methodology allows the simulator

to directly execute the simulated program on the host processor to speed up the sim-

ulation. Thus, the simulator is only capable of executing programs that could only be

executed on the simulation host. As a result, simulators using this methodology are

not capable of supporting heterogeneous simulation, or exploring architecture types

beyond that of the simulation host.

2.2.8 Previous Work Performed By The Author

The author of this thesis introduced an ADL in 2009 called Computer Architecture

Description Language (CADL) [23] based on work performed at the IUPUI Computer

Architecture Lab. The research defined an XML-based ADL which enabled simulation

designers to describe the structure, instructions, and behavior of a target processor.

An example of CADL is shown in Figure 2.6. The CADL files were used to produce

executable simulators through the use of a CADL compiler coupled with an external

C++ compiler. Simulators generated with the CADL compiler were multithreaded

as well as cycle-accurate and performed competitively to SimpleScalar [16].

CADL quickly highlighted many of the drawbacks associated with retargetable

simulators. First, despite the fact that the simulator descriptions used the industry

standard XML format, it was difficult to use for those not familiar with the data

format. Additionally, this method allowed users to input parameters that would

generate invalid simulations. While error checking of the XML was performed during

compilation, it occurred as a separate process so the origin of the error was unclear.

Moreover, configuring the CADL compiler to automatically initiate the C++ compiler

was a lengthy process that was error prone for those not familiar with the usage of

command-line compilers. Thus, the CADL research provided valuable insight that

inspired our approach to Mhetero.



16

<ADL>

...

<Channels>

<Channel name="ID2EX">

<Output>ID</Output>

<Input>EX</Input>

<Data>

<uint32>rs_data</uint32>

<uint32>rt_data</uint32>

<uint32>base</uint32>

<uint32>originPC</uint32>

<bool>nop</bool>

</Data>

</Channel>

...

<Memory>

<Instruction size="0x8000" type="uint32" bytesPerFetch="4"/>

<Data size="0x8000" type="uint64" bytesPerFetch="8"/>

<Cache mapping="DIRECT" replacement="LRU" blocks="64" wordBits="2"

tagBits="60" setBits="0" blockBits="0"/>

</Memory>

...

</ADL>

Fig. 2.6. An example of the CADL ADL describing the data channel
between stages as well as the memory and cache subsystems (Courtesy
of C. Barnes et al. [23])



17

2.3 Previous Works In The Area of Network-on-Chip (NoC) Simulators

2.3.1 Garnet

Garnet [29] was introduced in 2008 by N. Agarwal et al. from Princeton University.

The purpose of Garnet was to extend the GEMS [15] full-system simulator with a

detailed NoC simulator extension. Since Garnet’s introduction, it has been entirely

integrated into the GEMS simulator. Garnet is an interesting NoC simulator because

it is able to provide very detailed and cycle-accurate information about network power

consumption, network timing, and packet ordering. Additionally, the simulation is

suitable for the investigation of network topology, bandwidth usage, and routing

algorithms.

Configuration of the simulated NoC is performed through the adjustment of a

small number of parameters, such as flit size, buffer sizes, and routing tables. Since

Garnet has a fixed amount of adjustable parameters, the simulation can only operate

with predictable configurations. This characteristic enables the simulation to provide

useful statistical information; however, this restriction does place a limitation on the

creativity of simulation designers. Therefore, the Garnet simulator is more useful for

the design space exploration of today’s network-on-chip designs rather than investi-

gation of hypothetical and innovative network topologies and routing algorithms.

2.3.2 Noxim

Noxim [30] is an open source project that was developed by F. Fazzino, M. Palesi,

and D. Patti in 2005. The purpose of Noxim is limited to network simulation, and

it does not integrate with any processor simulator. Thus, this simulator is limited in

scope and usefulness. The simulator allows users to adjust a series of parameters for

the purpose of analyzing the resulting changes, which include the energy consump-

tion, communication delays, and the amount of packets/flits received at a particular

destination.



18

Despite the fact that this simulator is cited in many NoC studies [31,32], there is

surprisingly little information available about it.

2.3.3 SICOSYS

SICOSYS [33] was introduced in 2002 by V. Puente, J.A. Gregorio, and R. Beivide

from the University of Cantabria (Spain). This NoC simulator is similar to Noxim in

that it does not provide a means to simulate any other processor resources beyond

the network itself. However, SICOSYS does provide the capability of co-simulation

with RSIM [18] (an ISA simulator) which is facilitated by YACSIM [34].

SICOSYS was designed to ease the process of exploring new NoC designs. To

achieve this, simulation designers can configure their simulations through description

files in an XML-like language called SGML [35]. An example of a router defined using

SGML is shown in Figure 2.7. This language is used to specify the various hardware

connected to the network, router architecture, network type, and other simulation

parameters such as message size and delays.

While SICOSYS offers more flexibility than either Garnet or Noxim, the sim-

ulation environment requires the setup and integration of three different programs

(YACSIM, RSIM, and SICOSYS), which is a difficult and error prone task. Addi-

tionally, SICOSYS only supports a limited number of network topologies and routing

functions. Moreover, SGML network configuration format is not intuitive for novice

users.

2.3.4 Integrated Network-on-chip Simulators in RSIM and ASIM

Both RSIM [18] (an ISA simulator) and ASIM [11] (a full-system simulator) in-

clude functional NoC simulation capabilities. These implementations have a very

limited amount of configurability relative to the external NoC simulators covered

here. For example, the ASIM NoC simulator only supports ring interconnects, and

RSIM’s NoC simulator only supports 2D mesh networks. Additionally, the primary



19

<Router id="DOR2D-BU" inputs=4 outputs=4 bufferSize=64 bufferControl=CT

routingControl="DOR-BU">

<Injector id="INJ">

<Consumer id="CONS">

<Buffer id="BUF1" type="X+" dataDelay=2>

. . . . . . . . . . .

<Buffer id="BUF5" type="Node" dataDelay=2>

<Routing id="RTG1" type="X+" headerDelay=1 dataDelay=0>

. . . . . . . . . . .

<Routing id="RTG5" type="Node" headerDelay=1 dataDelay=0>

<Crossbar id="CROSSBAR" inputs="5" outputs="5" type="CT" headerDelay=2

dataDelay=1>

<Input id=1 type="X+">

<Input id=2 type="X-">

. . . . . . . . . . .

<Output id=5 type="Node">

</Crossbar>

<Connection id="C01" source="INJ" destination="BUF5">

<Connection id="C12" source="RTG5" destination="CROSSBAR.5">

<Input id="1" type="X+" wrapper="BUF1">

<Output id="1" type="X+" wrapper="CROSSBAR.1">

<Output id="4" type="Y-" wrapper="CROSSBAR.4">

</Router>

Fig. 2.7. An example of the SGML-based lanuage used in SICOSYS
(Courtesy of E. Gamma et al. [33])



20

motivation of these NoC simulators are to facilitate many-core simulation, and there-

fore, their detail level is low and they are considered to be inaccurate [29].

2.4 Previous Work in the Area of Multithreaded Simulators

Several of the processor simulators mentioned in this chapter support multi-

threaded execution of simulations. Simics [13], a full-system simulator, is multi-

threaded capable and has several variants, such as GEMS [15] and VASA [14]. Wis-

consin Wind Tunnel II [17] supports parallel direct-execution simulation which can

be executed across multiple computers in a cluster. However, all of these simulators

are not fully suitable for design-space exploration for reasons that were previously

noted. As far as we are aware, there are no other retargetable simulators designed

for CMP simulation that support multithreaded execution.

In addition to these simulators, there have been several parallel processing tech-

niques presented to speed up processor simulation. Chidester et al. [36] presented

a distributed simulation methodology for CMPs based on Message Passing Inter-

face (MPI), which shows simulation speed-up of 5%. Several authors [37–39] also

presented methods of using program traces (execution paths of simulated programs

based on previous observed executions) to improve simulation speeds on a multipro-

cessing platform.

2.5 Our Design Decisions Based On Previous Work

Several of Mhetero’s design decisions were made clear based on the previous work

studied here. First, our simulation framework must be built to minimize the difficulty

of describing the target processor by providing an easy-to-use GUI intended to offer

a minimal learning curve. Second, users should be able to load the framework and

immediately begin producing simulators, and performing experiments. Third, sim-

ulators generated by our framework should also be compiled using a technique that

is completely concealed from the user, avoiding any compiler configuration concerns.



21

Fourth, a flexible and integrated network-on-chip simulation infrastructure is neces-

sary for the exploration of many-core designs. Finally, simulators generated by our

framework must be capable of performing competitively with other major simulators

in terms of instructions per second.

The remainder of this thesis will focus on the design and operation of Mhetero. We

will also descuss some experiments performed with simulators constructed with the

Mhetero simulation framework. The next chapter (Chapter 3) will begin by looking

at Mhetero’s user interface.



22

3. RESOURCE CONFIGURATION INTERFACE

3.1 Overview

Option-based or text-based configuration of processor simulators can often be a

confusing and difficult task for novice and expert users. This process typically requires

the user to learn a new programming language or data format, and may require

external, third party tools. To improve the configuration process, our framework

allows users to completely configure their simulator in a Microsoft Windows GUI,

making the learning curve minimal to non-existent. Discussed in this section are

the various editors that can be used by the simulation designer to configure their

simulations. Figure 3.1 depicts the organization of the editors for the design and

configuration of simulations.

3.2 Simulation Editor

The Simulation Editor, the first editor that users encounter, acts as a gateway to

the Resource and Network-on-Chip (NoC) Configuration Editors. Simulation configu-

rations are composed of multiple types of resources and networks; therefore, this stage

is necessary to allow users to choose either editing existing resources and networks, or

defining new ones. Once the user selects a resource or network, its respective editor is

initiated for the user to modify its functionality. A screen shot of the Simulation Edi-

tor interface is shown in Figure 3.2. The remainder of Chapter 3 details the Resource

Configuration Editor, and the Network-on-Chip Configuration Editor is discussed in

Chapter 5.



23

Fig. 3.1. Organization of editors within the simulation framework



24

Fig. 3.2. A screenshot of the Simulation Editor



25

Fig. 3.3. A screenshot of the Resource Configuration Editor with the
Module Editor selected

3.3 Resource Configuration Editor (RCE)

The Resource Configuration Editor (RCE) is the central location for editing the

settings of a resource type. Within the RCE, there are many tabs that enable users to

modify every aspect of the resource type, including instructions, registers, memory,

cache, data flow, and behavioral logic. Figure 3.3 shows the RCE interface. Several

of the more simple tabs are discussed in this subsection, and the remaining tabs are

described in Sections 3.4 - 3.7.

The Basic Configuration tab (shown in Figure 3.4) contains fields for the name

of the resource type, number of instances, and the applications to execute on each

instance of the resource. Users are able to choose a default program that will run on



26

Fig. 3.4. A screenshot of the Basic Configuration tab in the Resource
Configuration Interface

all instances, and/or choose particular programs to run on specific instances. For ex-

ample, to implement a master/slave distributed processing application, two programs

could be used. The master program, executing on one resource instance, would be

used to aggregate the results of the slave resources, running a different program.

The Registers tab (shown in Figure 3.5) provides an interface for the user to specify

register names, number of registers, and data types. The Instruction Types tab allows

the user to specify the instruction format which is additionally used to disassemble

the resource’s program for debugging purposes. The NoC Interface allows the user

to specify the input and output queues, queue size, and data type for the resource’s

network interface.



27

Fig. 3.5. A screenshot of the Registers tab in the Resource Configuration Interface



28

3.4 Module Editor

Modules are a core concept to the extendibility and configurability of the frame-

work. Modules can represent stages or components such as branch predictors, data

forwarding units, hazard detection units, or any sort of experimental unit. The mod-

ularity of the framework provides completely configurable simulations, enabling users

to conceive of any sort of chip resource. Moreover, modules allow the user to easily

extend the functionality of their simulations by defining a new module and assigning

it a position in the resource’s execution loop. The newly defined module will become

a part of the simulation in its next execution.

The Module Editor (shown in Figure 3.3) allows the user to input the module’s

name, execution precedence, and a section of C# source code describing the module’s

behavior into the framework. The module’s behavioral source code has access to all of

the inputs and outputs to the module, as well as the resource’s memory and registers.

External modules can also be linked to the resource in this tab. The user can

choose a precompiled Dynamic-Link-Library (DLL) file, the name of the class to

instantiate, and the variable name of the instantiated class (which may be referenced

by other behavioral source code). External modules give the user complete control

over the modules’ implementation, including the ability to define additional functions,

classes, and variables that will be available to other modules. Details on how external

modules can be linked to the resource are given in Section 4.5.

3.5 Module Communication

In the Module Communication tab (shown in Figure 3.6), the user can describe

data channels that connect one module to another as the resource is executed. The

user must specify the source and destination modules, channel name, and variables

to be included in the data channel. During the compilation process, these channels

become data structures that are available as variables to the module’s behavioral

source code. A module should read its available inputs and act upon them, as well



29

Fig. 3.6. A screenshot of the Module Communication tab in the Re-
source Configuration Interface



30

Fig. 3.7. Potential pipeline configurations

as produce valid outputs, if necessary. The transmission of data between modules is

handled automatically by the framework.

Module communication combined with the module’s execution precedence allows

the user to design versatile resources such as a pipelined execution unit. The open

architecture of our framework allows users to specify arbitrary pipeline designs as

shown in Figure 3.7.



31

3.6 Instructions

The Instructions tab (shown in Figure 3.8) provides access to the instructions that

are implemented in the resource. Here, users can add, delete, or edit instructions.

Instructions have an associated name, op code, and instruction format type (which

are specified in the Instruction Types tab). The C# source code that describes the

behavior of the instruction is also entered here.

Fig. 3.8. A screenshot of the Instructions tab in the Resource Con-
figuration Interface



32

3.7 Memory and Cache

The Memory & Cache tab (shown in Figure 3.9) enables the user to specify the

size and type of the data and instruction memory. The user may specify single or

multi-level cache systems with various configurations. The framework supports Direct

Mapped, Set Associative, and Fully Associative cache types, as well as Least Recently

Used (LRU), and random replacement schemes. The user may also specify the cache

size and latencies of each cache level.

The cache and memory systems are built into the framework and are optional for

the simulation designer to use. If the cache system is used, information regarding the

cache’s performance is reported at the end of the simulation. Each core has direct

access to the memory system; however, it may be desirable for memory to be accessed

over an intra-core network. In this case, the simulation designer must implement a

network and network protocol to access memory from a resource modeling a memory

module. Details about intra-core networks are explained in Section 5.

3.8 Simulation Configuration Data File

Information regarding the simulator’s configuration is saved in an XML format

utilizing the .NET Document Object Model (DOM) XML classes: XmlDocument

[40], XmlNode [41], and XmlTextWriter [42]. The process of saving a configuration

starts with creating an empty XML configuration file. Another class, ResourceConfig,

was implemented to store resource settings and handle the saving and loading of

configuration data for resource types. Similarly, a NetworkConfig class was created

that performs the same functions for networks. Once the output file has been created,

the Simulator class loops through each resource and network (stored in a list as

ResourceConfig and NetworkConfig classes, respectively) and invokes their individual

SaveConfiguration() functions. The SaveConfiguration() function creates a new node

in the new XML document, and inserts its settings.



33

Fig. 3.9. A screenshot of the Memory & Cache tab in the Resource
Configuration Interface



34

To load a configuration, the Simulator class must load the XML file, and exam-

ine the XML tree to determine the number of types of resources and networks to

prepare for loading. Simulator instantiates the appropriate number of resources and

networks, and then invokes their LoadConfiguration() function. Each LoadConfigura-

tion() function is sent a reference to the appropriate portion of the XML tree to load

settings from.

The behavioral source code of modules, instructions, and routers entered by the

user through their respective editors, is also stored in the configuration XML file.

The behavioral source code must be encoded so that characters such as greater-than

and less-than signs do not interfere with the XML format. We solve this problem

by using another Microsoft .NET class, HttpUtility [43] typically used for Internet

communication. This class contains two functions which encode and decode text

to and from a format that will not interfere with the XML file’s formatting. This

arrangement of configuration data allows the framework to store and load entire

simulation configurations, including multiple heterogeneous cores and networks, into

a single file.

A brief example of a file format with one resource is shown in Figure 3.10. The

file format places no restriction on the number of resources, modules, instructions,

and networks defined in the framework. When a new resource/module/instruction/

network is defined in the framework, the new data is stored in memory until the data

is saved. The new data overwrites the old data, resulting in the addition of a new

resource/module/instruction/network tag into the appropriate location of the XML

tree.



35

<Simulator Name="MIPS64">

<Resource Name="MIPS64" Num="1">

<Instructions OpcodeLoBit="26" OpcodeHiBit="31">

<InstructionType Name="RType">...</InstructionType>

....

<Instruction Name="HALT" Type="RType" OpCode="0x1">

(Encoded C# Source Code)

</Instruction>

</Instructions>

<Registers>

<Register Name="r" Size="32" Type="UInt64" />

...

</Registers>

<Modules>

<Module Name="Fetch" ExecutionOrder="1" Type="None"

InstanceName="" ClassName="" ExternalDLL="">

(Encoded C# Source Code)

</Module>

...

</Modules>

...

</Simulator>

Fig. 3.10. An example of the Mhetero XML file format



36

4. THE FRAMEWORK’S STRUCTURE AND DYNAMIC

COMPILATION

4.1 Overview

One of the primary benefits of our framework is its ability to dynamically compile

source code into executable code quickly and seamlessly. Dynamic compilation refers

to the framework’s ability to take configuration and behavioral data, and produce

an executable library at run-time. Without leaving the framework’s interface, the

user can make large and small modifications to a simulator’s configuration and test

those modifications immediately. The framework does not generate any external

executable files that the user would need to run as a separate process. Instead, the

framework takes the simulation configuration that is entered into the framework’s

GUI and assembles a complete simulator, which is loaded into memory and executed

as part of the main framework.

Simulator compilation generally takes less than a second as the source code is com-

piled to an intermediate language called Microsoft Intermediate Language (MSIL) [6].

The behavioral source code of a module, instruction, or router can be modified

through their respective editors. If there are any errors present in the behavioral

source code, the framework provides detailed error reports similar to those provided

in Microsoft Visual Studio. Errors can be quickly and easily corrected inside the

framework’s GUI, and a new simulator can be built. Since the .NET framework

includes all of the necessary functionality, the entire process has no external depen-

dencies that are required for the user to download and install.

Integrating the C# compiler into the framework provides users with a very con-

venient and excellent development experience specialized for computer architecture

simulation without any of the pitfalls associated with relying on third party compilers



37

or development tools. This technique also enables the framework to compile and link

processor simulators to memory leaving no left-over files in the file system for cleanup.

In this section, we discuss how we structured the simulator to support this behav-

ior, how the dynamic compilation is implemented, and how the framework communi-

cates with the newly generated simulator executed inside the framework.

4.2 Framework Structure

Two classes, Simulator and Network, make up the core of the dynamic compilation

implementation. Figure 4.1 shows the organization of these two classes within the

framework. The Simulator class was constructed to interface the simulation frame-

work to the chip’s resources and networks. Simulator, once invoked, handles the com-

pilation, initialization, and instantiation of the various resources within the simulator.

The Network class provides an interface from the Simulator class to the individual

routers and is treated similar to other resources. The primary difference between the

Network class and other resources is the compilation process. After Simulator has

compiled all of the resources, Network is invoked to compile routers. Resources and

routers are represented by the Resource and Router classes respectively, which are

detailed in Section 4.3.

The framework allows the user to create multiple types of resources and routers

in the simulated system. Each resource and network type can be instantiated an

arbitrary number of times, according to the simulation’s configuration. Creating

multiple types of resources thus leads to a heterogeneous simulation. In addition,

multiple types of networks are desirable for transferring different types of information.

For example, one network may transmit data streams, while another may transmit

small packets. Moreover, some NoC implementations may include a memory system

modeled as a chip resource, so networks for accessing memory may also be necessary.



38

Fig. 4.1. Organization of the framework structure and communication
between resources and routers



39

4.3 Implementation of Dynamic Compilation

Before the compilation process can begin, the source code of the simulator must

be gathered by the framework. Figure 4.2 shows the flow of how the source code is

combined to produce an executable simulator. A generalized parent class, Resource,

is included in the framework that contains only the basic structure and functionality

needed to interface with the framework. The configuration data gathered in the RCE

for each resource is combined into the Resource class to construct new classes that

implement the behavior of the simulator. The source code of the modules within

each resource is gathered and inserted into the Resource class at the appropriate

locations based on each module’s execution precedence (defined in the RCE). The

network routers undergo a similar process as the resources; their configuration data is

combined with a generalized Router class and then instantiated and managed by the

Network class. The remaining resource configuration and simulation settings are also

analyzed and interpreted by the framework to generate the remainder of the source

code.

In addition, the framework can automatically generate source code for an exe-

cution stage during compilation. This is necessary to make use of the instruction

source code that is entered by the simulation designer in the Instructions tab of the

RCE. In the Module Editor, the user can specify a module for the framework to insert

the automatically generated execution stage source code. If this option is chosen,

the framework will assemble the every instruction’s source code into a switch [44]

statement during the compilation process. The case statements in the switch corre-

spond to the instructions entered by the user. The instruction’s behavioral source

code is then inserted into the body of the case. During the simulation, a decoded

instruction’s op code is used to select the appropriate case to execute.

Once the simulator source code has been pieced together, the program is com-

piled. The compilation utilizes the C# Compiler (CSC.exe) [45] included in the

.NET framework distribution, assuring wide availability with no additional configu-



40

ration or installation. The C# compiler produces the same error messages along with

their line numbers as the Microsoft Visual Studio development environment does. If

errors are found, they are displayed in a status window for users to examine and make

corrections to their module, instruction, or router source code.

The execution of the C# compiler is managed by the CSharpCodeProvider class

[46]. We use the CompileAssemblyFromSource() [47] function included in the CSharp-

CodeProvider class to produce an Assembly [48] which represents the compiled code.

CompileAssemblyFromSource() takes two parameters, the source code and Compiler-

Parameters [49]. CompilerParameters contains many of the compiler settings avail-

able to developers in the Microsoft Visual Studio, such as setting warning levels, and

including debug information. We make use of the ReferencedAssemblies property to

include external modules, as well as System.dll. CompileAssemblyFromSource() re-

Fig. 4.2. Flow of configuration data, source code, and external mod-
ules in the compilation process



41

turns compilation results which provide error messages or a reference to a compiled

Asssembly. The compiled Assembly data structures are stored in a List [50] and used

for instantiating the new resource and router classes.

4.4 Communication Between the Framework and Simulator Components

Communication between the resources, modules, and routers are facilitated by the

interface capability [51] which is provided in C#, as well as other .NET languages.

interface enables developers to generalize the signature of function calls which should

be included into the dynamically linked library or program. That is, interface pro-

vides a method to initiate function calls between the framework and the classes of the

dynamically compiled simulator. The generalized resource and router classes (shown

in Figure 4.2) implement standard function calls that allow the framework to com-

municate with the compiled and instantiated code. The communication is primarily

used for transmitting statistical information, as well as starting and stopping the

simulation.

4.5 External Modules

External modules are precompiled Dynamic-Link Library (DLL) [52] files contain-

ing a class that implements the functionality of a module. During the compilation

process (described in Section 4.3), any external modules that are included in a re-

source are loaded and linked into the compiled code. This is accomplished by adding

the external module to the ReferencedAssemblies variable [53] in the CompilerPa-

rameters class that is prepared before compilation is initiated. When the resource

is instantiated, the external module is available to the resource and executed as if it

were an internal module.

External modules provide several benefits that may make them desirable to some

users. First, enabling external modules make it easier to swap modules into and out

of the framework, and transmit them with other users. Second, external modules give



42

users complete control over the programming of the module, as long as it implements

the Init() and Run() functions. For example, the user can declare new classes, addi-

tional global variables, or additional functions in an external module, which regular

modules do not provide since they must only implement the behavioral source code.

Third, the functions declared in external modules are available for other modules to

call, which may be desirable in some circumstances. For example, if the user chose

to implement a power consumption external module, the module could implement a

function that would be called from other modules to tally power consumption. Fi-

nally, the module can be implemented using any .NET-compatible language whereas

internal modules must be written in C#.

An external module must be compiled with a reference to the framework’s exe-

cutable (i.e., in the Visual Studio project settings). The reference enables the external

module class to implement the appropriate interface, IModule, which ensures that the

DLL file will be compatible with the framework. Additional functions may also be

implemented to be used within the module, or to be called from other modules.

Figure 4.3 illustrates how two external modules could be integrated into a re-

source’s execution loop.

4.5.1 Debugging External Modules

Simulation designers have severals options for debugging their external modules.

The first method is to send a message (as a string [54], similar to the C function printf )

from the external module to the framework to be displayed to the user. When the

Init() function of the external module is called, an interface to its parent resource (i.e.,

the resource to which the external module belongs) is sent as a paramter which pro-

vides access to debugging function WriteToUI(). WriteToUI() enables the external

module to write to the Simulation Monitor’s Simulation Status panel. WriteToUI()

also includes a priority level parameter to specify if the message is a warning or error.

Warnings can be disabled by the user to improve performance.



43

Fig. 4.3. Diagram of two external modules integrated into a resource’s
execution loop



44

Another method of debugging external modules is through Microsoft Visual Studio

[55] (MSVS). This method enables the user to debug and breakpoint their external

modules as though they were developing a regular application. To accomplish this, the

simulation designer must alter the Configuration Properties of their project (which is a

configuration window within MSVS) by setting the executable file used for debugging

to the simulation framework’s executable (specified in the Start external program field

of the Debug tab, located in the Configuration Properties window). This will execute

the framework when the external module’s debugging process is started. Once the

framework has started and a simulation is loaded, the framework will load the exernal

module’s DLL file that is monitored by MSVS. This will allow the simulation designer

to analyze the execution of the external module by setting a break point, similar to

how a regular application would be debugged.

The final method is to debug the simulation framework project and the DLL

project at the same time. In this case, the simulation designer would need to setup

both projects in MSVS (multiple projects can be added through the Solution Ex-

plorer). The simulation configuration should then be adjusted (in the framework) to

load the DLL file produced when MSVS compiles the external module (i.e., the newly

compiled external module will be loaded by the framework when the simulation con-

figuration is loaded). When a debugging session is started, the simulation designer

will then be able to choose a breakpoint in the external module’s source code, and

debugging may proceed as normal. Additional information regarding debugging DLL

files can be found in the Microsoft Developer Network website [56].



45

5. NETWORK-ON-CHIP

5.1 Overview

Network-on-Chip (NoC) has become one of the leading methods for intra-core

communication in current and emerging processor designs. NoCs are widely viewed

as fast, power efficient, and scalable to hundreds of cores. Furthermore, NoCs can sup-

port multiple voltage domains, clock frequencies, and heterogeneous designs. Thus,

NoC support is a critical part of our support for heterogeneous many-core simula-

tions. In this section, we will introduce NoCs, followed by a discussion of our NoC

implementation and the NoC Configuration Editor.

5.2 Introduction to Network-on-Chips

One of the first publications that introduced NoCs was written by W. Dally and B.

Towles in 2001, titled Route Packets, Not Wires: On-Chip Interconnection Networks

[57]. The publication introduced the concept of connecting network clients (i.e.,

processor resources such as cores and memories) together through a network instead of

dedicated lines and busses. This concept enables network clients to communicate with

each other through a series of network routers that connect to other clients, and thus

all clients are able to send or receive packets from any other client. Dally’s publication

also described higher level protocols for network communication and discussed some

of the challenges that would occur in NoC designs.

NoCs have several benefits that have lead to their adoption among current [58–60]

and future concept [3] processor designs. First, NoCs inherently enable parallel pro-

cessing since each resource is free to execute independently from either the network or

other resources. Second, the NoC circuitry is small relative to the size of the resources



46

on the processor (the estimated size of a NoC is 6.6% of a chip’s silicon [57]) due to

the high duty-cycle of wires since they are to be utilized for many purposes. Third,

NoCs enable the chip to have reduced power disipation and fast signal propagation

between network clients [61] due, in part, to the shorter wire length between routers.

Fourth, NoCs are scalable to large numbers of cores (such as the 100 core Tilera

TILE-GX processor [60]) due to the large amount of paralellism that is achieved

from the concurrent operation of routers. Finally, NoCs are considered to be very re-

liable relative to their larger-scale counterparts since the network’s environment (i.e.,

integrated into the circuitry on the chip) is predictable and known during the design

phase.

NoCs can also help avoid problems caused by dedicated wiring from resource to

resource. The routing of NoC lines are generally defined at the beginning of the design

phase to be isolated from internal resource wiring. This reduces unwanted parasitic

capacitance or cross-talk between lines. Additionally, as processors become larger and

more complex, the dedicated connections between resources become longer; eventually

requiring repeaters. Placing repeaters at their proper location on the chip is difficult

in later stages of the design phase. Repeaters also increase power consumption.

NoCs eliminate this problem since routers are placed at regular intervals throughout

the network. The topology of the network is generally known at the beginning of

the design phase, and as a result, NoCs will have predictable levels of resistance

and capacitance. The network topology can later be used to calculate a worst-case

transmission scenario to specify the network’s speed (frequency) [57].

Some considerations for NoC designers (and simulation designers) include the

network topology, routing function, as well as the number of networks and their

purpose. Network topology refers to the organization or layout of resources on the

chip and the arrangement of network connections and routers that connect them. The

routing function describes how data will flow between routers and the direction that

the data is redirected by the router (thus, the routing function is heavily influenced



47

by the network topology). Seperate networks may be implemented on the chip to

seperate tasks for the purpose of maximizing bandwidth and minimizing traffic.

Data is usually transmitted over a NoC as either a packet or a stream. Data

packets can be split up into smaller pieces called flits. Flits are sections of a data

packet that can be transmitted over the network’s wires at once, and thus their size

is limited to the number of wires. Some NoC implementations allow for streaming

data transmission, which is a function of the routers. Data streams are implemented

as a series of network connections that are reserved, for some period of time, between

one resource and another. This process is usually implemented by routers that relay

data along the reserved path as soon as it’s received.

In real-world NoC implementations, routers and resources usually interface to the

network through some kind of buffer. Buffering allows resources to reassemble the

flits into packets before processing. Routers have some flexibility on how flits are

handled, depending on the routing function. For example, flits can be immediately

relayed to its destination upon arrival, or it can wait for the entire packet to arrive

before beginning to relay. Buffers allow resources to continue working on other tasks

until they are ready to receive network data. Furthermore, buffers also serve to

minimize transmission errors.

5.3 Network-on-Chip Implementation

In the simulation framework, networks are a collection of connections and routers

that facilitate communication between resource instances. Routers and resources

interface with the network through inputs and outputs, which are implemented using

the FIFO queue .NET class, Queue [62]. Connections (described in more detail later)

in the network simulate the wires of a physical network which make the connection

from an output to an input. Routers are responsible for managing the flow of data

from its inputs to the appropriate output, which occurs within the routing function.

The Network class (described in Section 4.2) manages the flow of data through the



48

Fig. 5.1. A detail of how resources, routers, and connections form a network

connections and executes the routing functions for each Router instance. Figures 5.1

and 5.2 show how all of these components can connect to form a network.

The simulation designer may choose to implement multiple networks. This is

common in modern NoC designs, as each network is used for a specific purpose such

as memory requests, cache synchronization, or streaming data. Each network type

can define multiple router types, as well as multiple instances of each router type.

Since the network interfaces of routers and resources are standardized, connections can

span between different router types; even router types existing in different networks.



49

Fig. 5.2. An example of a small 2D mesh network (on a larger scale
than Figure 5.1)



50

This results in an extremely flexible NoC implementation that can simulate arbitrary

network topologies.

During each cycle in which the simulator is executing, each network will process

all of its connections and initiate the routing functions of each router instance. The

Network class stores the connection configuration data in a list through which it

iterates to move data packets from outputs to their corresponding inputs assigned

to the other end. The size and data type of the data packet depend on the output

and input types, specified by the network interface in either the NoC Configuration

Editor, or the RCE. Packets can also be represented by arrays, enabling simulation

designers to transmit large amounts of data per cycle (this functionality is provided

to maximize configurability, and may not be realistic in a physical implementation).

Resources and routers communicate through the network by manipulating their

input and output queues. These queues are available through the behavioral source

code of resources and routers that are connected to the network. Resources can expose

the network interface to the simulated program any number of ways, and it is left

up to the simulation designer to specify how this should work. For example, network

transmissions can be implemented by either mapping a register to an input/output,

memory mapping, or by executing an instruction.

This NoC implementation is extremely open, allowing the simulation designer to

produce virtually any kind of network topology imaginable. Moreover, the simula-

tion configuration is also not limited to any particular routing function or router

placement.

5.4 Network-on-Chip Configuration Editor

The NoC Configuration Editor (shown in Figure 5.3) allows users to define the

router types and connections between the routers and resources. Router types have

a name, number of instances, source code, and input and output queues. The source

code describes the routing function of the router, i.e., which inputs connect to which



51

Fig. 5.3. A screenshot of the NoC Configuration Editor interface



52

outputs. The input and output queues are assigned a name, size, and data type.

The queues are accessible by the routing function, along with the router’s instance

number (ID). The instance number can be used to determine its location within the

network.

Connections must specify which type of resource or router it is connecting to, and

which input and output queues to read from or write to. The user must also specify

which instance number that the connection is operating on. Connections can also

have a delay (in cycles), which enables users to simulate the transmission of a packet

of data over the connection in multiple flits.

5.5 A Note About Mhetero’s Network-on-Chip Infrastructure

Mhetero’s NoC implementation was designed to facilitate many-core simulation

and is not designed to be a detailed network simulation. Thus, our implementation

should be considered to be a functional NoC and should not be considered for anal-

ysis of power consumption or network timing. However, the simulation designer is

free to add such functionalities either through external modules or by adding the

functionality into the routing functions.



53

6. SIMULATION EXECUTION

6.1 Overview

This chapter will focus on our approaches to simulation execution within the

framework. We begin by looking at how single threaded execution was implemented.

Then we will discuss several concerns with multithreaded execution, and how we

implemented two different multithreaded approaches into the framework.

6.2 Single Threaded Execution

The simulation executes in a different thread (referred to as “Simulation Thread”

in Figure 4.1) from a thread of the framework and its GUI (referred to as “Framework

Thread”). The compilation of the resources and routers is initiated when the user

builds the simulator, which is a process that must be completed before the user can

initiate the Simulation Monitor. The Simulation Monitor is an interface that monitors

the execution of the simulation. A screen shot of the Simulation Monitor is shown in

Figure 6.1. Executing the Simulation Monitor instantiates the Resource and Network

classes, required by the simulation, and prepares the execution of the simulation

thread. The user must press the “Start Sim” button to begin the simulation.

Once the simulation has been started, the simulation thread is initiated and every

instance of the resources and networks is executed. They are executed sequentially

(i.e., each resource and network executes one cycle, then proceeds to the next cycle)

until each resource has completed their programs. During a resource’s cycle, all of

its modules are executed within a try-catch [63] block which protects the framework

thread from exceptions. During a network’s cycle, each connection is examined for



54

data waiting to be transmitted and then each router’s routing function is executed

to process the data.

The Simulation Monitor periodically checks on the status of each resource to

see if execution has completed. Once the resource has completed its execution, its

status is changed to “Done”, and performance and statistical information regarding

the resource’s performance are presented to the user. Runtime exceptions are also

reported to the user in an information text box that is located in the Simulation

Monitor window.

Fig. 6.1. A screenshot of the Simulation Monitor interface



55

6.3 Overview of Multithreaded Execution

Unlike single threaded execution, where one simulation thread executes all re-

sources and networks, multithreaded execution enables resources and networks to

execute concurrently over many threads. Multithreaded execution enables the frame-

work to fully utilize all of the physical cores available in the simulation host (i.e.,

the machine that is executing the simulation) by allowing the operating system to

schedule the simulation’s threads on them, thus enabling concurrent execution of the

simulator. Theoretically, as the number of physical cores increases in the simulation

host, multithreading becomes more advantageous. While multithreading may seem

like a large advantage, there are several challenges that must be overcome to realize

improved performance.

By definition, discrete event simulations must be deterministic and repeatable.

However, multithreading may introduce some uncertainty into the timing of the sim-

ulation for two reasons. First, the simulator cannot guarantee that each thread re-

ceives equal processor time since the operating system manages the assignment of a

thread to a physical core. Second, the framework supports heterogeneous resources

and networks, and therefore the execution time for each thread is likely to be differ-

ent, producing synchronization problems. Thus, simply assigning different resources

to different threads will produce simulations that are neither deterministic nor re-

peatable, which would invalidate the simulation’s results. Our approach to thread

synchronization is discussed in Section 6.6.

Executing resources and networks each in its own thread does not guarantee im-

proved performance because the overhead associated with allocating and initiating

the threads causes a large reduction in the simulation speed as the number of threads

becomes large (i.e., greater than 100 resources and networks). Moreover, depending

upon the granularity (i.e., the modeling detail of a resource/network, and thus, the

processing time required) of the simulation, the overhead of executing resources in

different threads may be greater than the speed benefit that comes from multithread-



56

ing. If the simulation is not detailed enough (e.g., if each resource runs only hundreds

of cycles), the resulting simulation would be slower than if it were executed in a single

thread.

Overhead in multithreaded execution is caused by context switching and thread

synchronization. The framework must use kernel-level threads to take advantage of

multiple cores in the simulation host as only the operating system can handle the

scheduling of such threads on multiple processor cores. However, there is some delay

caused by context switching from one thread to another. Context switching refers to

interrupting the execution of one thread, saving its registers, loading another thread’s

registers, and resuming execution of the restored thread. In addition to the context

switching delay, the operating system itself causes some delay as it must also manage

the scheduling of the threads. Thread synchronization, which is necessary for cycle

accuracy in multithreaded implementations, also imposes some overhead as some

threads may stop working while waiting for other threads to complete their tasks. In

a case where the amount of work performed by each thread is very small relative to

the multithreading overhead, the resulting program would run slower than if it ran

in a single thread.

Therefore, multithreaded execution may or may not be desirable for any particular

simulation configuration and simulation host. For example, a simulation configuration

that is very detailed would likely be able to take advantage of multithreading, while

a simple functional simulation would likely run faster in a single thread. Fortunately,

our framework is designed to leave this decision up to the user, who is free to choose

an execution method based upon trial and error, or experience.

In our framework, we have implemented two different multithreaded execution ap-

proaches. The first approach is to initiate one thread for each resource and network.

This method was our first attempt to implement multithreaded execution because

the modular nature of the framework’s resource and network classes create a natu-

ral division for which to assign threads. Additionally, this approach allowed for an

easier transition from the single threaded implementation. We will refer to this ap-



57

proach as One Thread per Resource and Network (OTRN) approach to be concise.

Later, a second approach was implemented that utilizes a thread pool in which a

fixed number of threads iterates through resources and networks for execution. The

primary motivation for the second approach was to support simulations with very

high amounts of resources and networks where dynamically managing allocation of

hundreds of threads is not practical. All three methods (single-threaded and the

two multithreaded approaches) coexist within the framework, and the user is free to

choose which execution method is preferred in the Simulation Editor.

The organization of the simulation framework is similar in both the single-threaded

and multithreaded implementations. The main difference between the two is related

to the execution of the resources and networks in the Simulator class. As described in

Section 6.2, the single-threaded implementation instantiates a single thread (separate

from the framework’s GUI) where all of the resources and networks are executed

serially in a loop, one cycle at a time. Sections 6.4 and 6.5 will discuss how each

multithreaded approach is implemented.

6.4 Approach 1: One Thread Per Resource and Network (OTRN)

The OTRN approach allocates one thread for each resource and network instance,

which is then free to execute in a loop independently from others. The process of

initiating multithreaded execution using the OTRN approach begins by counting the

number of threads necessary to execute every instance of every type of resource and

network. Next, the threads are allocated and assigned to execute the Run() function

of its assigned resource or network. A parameter is set in each resource and network

instance indicating that the Run() function should loop until complete or asked to

stop (by user intervention, or due to a completed simulation). When the “Start Sim”

button is pressed in the Simulation Monitor, each thread is started and the simulation

proceeds.



58

We use the .NET class Thread [64] to implement the multithreading in our frame-

work. The operation of the Thread class is very simple. A reference to the function

to be executed in the new thread is passed to the constructor when it is declared.

After a thread is instantiated, it can be started by simply calling the Start() method

of the new Thread instance.

When the simulation is first started (by pressing “Start Sim” in the Simulation

Monitor), all of the threads are allocated at once. As such, for large amounts of

resources and networks (i.e., more than 100), there is a considerable delay caused by

initializing all the threads. In the case of a simulation containing over 1000 resources,

this execution method may take over 20 minutes on regular desktop PCs before the

simulation actually begins to execute.

6.5 Approach 2: Thread Pool

There are several disadvantages with the OTRN approach which became apparent

after it was tested with a large number of threads. First, the overhead of context

switching is significant. Second, the length of time it took to instantiate the threads

was so large that single-threaded execution was the only practical option. Third,

thread synchronization (discussed later) caused many of the threads to idle while

few threads were actually performing work. To avoid these problems we chose to

implement the thread pool approach, which is a balance between single-threaded and

the OTRN multithreaded approach.

The thread pool approach uses a fixed number of threads to execute all the re-

sources and networks. With this approach, before the simulation is executed, the

thread pool is created and initialized with a fixed number of threads, which is deter-

mined by the user in the Simulation Editor. The number of threads in the thread

pool is typically set to the number of threads that the simulation host can ideally

execute in parallel (i.e., the number of available cores, or ideal number of threads

in the case of Hyper-Threading technology). Thread initialization is similar to the



59

OTRN approach (described in Section 6.4) except that all Thread classes are set to

execute the RunThreadPool() function. This new function manages the allocation of

tasks to each different thread.

Once the simulation is executed, all of the threads enter the RunThreadPool()

function concurrently. At the beginning of the function, a critical section iterates

through an index indicating which resource or network is ready to be worked on.

Each thread executes a resource or network by calling RunOnce(), a special version of

Run() which only executes one cycle. As each thread completes a task, it proceeds to

work on the next resource/nextwork until all resources and networks have completed

execution in the current cycle. As soon as all of the resources and networks have

been completed their one cycle, each thread must stop and synchronize to ensure

that all processing in the current cycle is complete before proceeding to the next

cycle. Thread synchronization is described in Section 6.6.

Using the thread pool approach, when one resource or network has completed its

processing, the current thread can proceed to work on another resource or network

within the cycle. There are typically fewer kernel-level threads (in a pool) performing

work concurrently, and thus the operating system is not tasked with scheduling as

many threads as the OTRN approach; thereby task management time is reduced.

Additionally, the simulation framework does not depend on the operating system’s

thread scheduling to determine which resources or networks require additional pro-

cessor time since this is managed within the framework.

6.6 Thread Synchronization Using Barriers

Keeping the resources and networks synchronized for enforcing cycle-accuracy

(and signal exchange between components) is a primary concern with either multi-

threaded implementation. To address this concern, we implemented a barrier after

each cycle, which forces the threads to operate in lock-step. Barriers prevent each

thread from continuing to execute until all threads have completed their cycle. Figure



60

6.2 shows a visual representation of four resources and one NoC executing over five

threads with barriers (slack, denoted in the figure, will be introduced in Section 6.7).

The barrier was implemented using the .NET class Semaphore [65], which was

used to create a critical section to count the number of threads that must arrive at

the barrier (after completing their cycle). Threads that arrive at the barrier earlier

(due to simple operation) are forced to wait until the number of waiting threads

equals the number of executing threads, indicating that all threads have completed

their cycle. The last thread to arrive at the barrier releases all of the threads, which

then go on to process another cycle. This synchronization method ensures that the

simulation maintains its cycle-accuracy.

6.7 Slack

Slack is a concept that can be used to trade off simulation accuracy for simulation

speed [66]. The amount of slack indicates the number of cycles between synchroniza-

tions. A large amount of slack provides a large increase in simulation speed at the

cost of introducing a large amount of simulation errors (inaccurate timing of events).

However, a small amount of slack can still yield significant speed improvements, while

only introducing a small amount of simulation errors. Unfortunately, any simulation

Fig. 6.2. A representation of barriers synchronizing the execution of
four resources and a network



61

error breaks the claim of cycle-accuracy; however, some users may tolerate these tim-

ing errors for the benefit of increasing simulation performance. In our multiprocessor

implementation, we allow the user to tune their simulation performance by choosing

the amount of slack to be used in the simulation.

Slack has the effect of increasing the granularity of resources and networks. For

example, if a resource is waiting for a memory operation to complete, it may have

several cycles of no operation followed by intensive calculation. If the amount of

slack allowed is large enough, the resource could group the waiting period with the

calculation before it needs to synchronize again. In this example, the simulation

will be able to make much better use of multiple processing cores available on the

simulation host.

Slack was implemented in the OTRN approach by including a counter in the gen-

eralized Resource and Network class. When the resource/network is instantiated, the

amount of slack is passed to its constructor and stored. A counter is incremented

after each execution cycle (of the resource or network) and compared to the desired

amount of slack. When the counter reaches the desired amount of slack, the syn-

chronization function, Sync(), is called, which is implemented in the Simulator class.

The Sync() prevents the thread from proceeding until all of the other threads have

arrived at the barrier.

Slack was implemented in the thread pool approach by executing the RunOnce()

function in a loop until the number of slack cycles is reached. This has the result of

executing resources and networks in groups of cycles, each equal to the amount of

slack in the simulator.

Before the simulation starts, the Simulator class counts the amount of resources

and networks that must be synchronized. As resources complete their execution (or

are prematurely stopped by the user), the number of resources and networks that

must be synchronized is reduced to ensure that the simulation does not deadlock.

In the thread pool approach, the number of synchronizing threads is constant (as

specified by the user in the Simulation Editor).



62

6.8 Performance Concerns

Due to the nature of the framework, the performance of the resulting simulation

can vary greatly depending upon the simulation configuration. During the develop-

ment of the framework, every effort was made to keep the simulation overhead to a

minimum. In Section 7.6, we show that simulations generated using our framework

can be competitive with other major simulators. As the complexity of the user’s

simulation increases, the performance (simulated instructions executed per second)

of the simulation is likely to degrade.



63

7. EXPERIMENTATION

7.1 Overview

The goal of these experiments is to prove the validity of our framework in produc-

ing cycle-accurate discrete event simulators. Five experiments were conducted, each

exploring different areas of the framework’s functionality. In each experiment, sev-

eral different simulators were constructed by varying settings within the framework.

Then each simulation was executed, and the results of the new settings were observed.

Each experiment used a MIPS64 configuration as the basis for the simulation, which

is described in Section 7.2.

The experiments were conducted on a computer equipped with a 2.4 GHz Intel

Core 2 Quad CPU and 4GB of RAM, running the 64-bit version of Windows Vista.

Similar experiments have been conducted on different machines, and the results of

the experiments are reproducible across various hardware platforms.

7.2 Description of the MIPS64 Simulator

A MIPS64 simulation configuration was developed during the design of the sim-

ulation framework. The configuration was designed to model a five-stage MIPS64

implementation similar to the one shown in Figure 7.1. The configuration has five

stages (instruction fetch, instruction decode, execute, memory, and writeback), and

includes an additional branch prediction external module. In the NoC experiment

(Section 7.5), a network interface module was created that handles the register map-

ping functionality, which is required to queue and dequeue packets from the network.

Communication between stages is also modeled similarly to Figure 7.1. For example,



64

Fig. 7.1. Diagram of a typical MIPS five stage pipeline (Courtesy of
D. Patterson and J. Hennessy [67])

register data is read during the instruction decode stage and communicated to the

next stage.

The MIPS64 configuration implements all of the control, ALU, and memory func-

tions of the MIPS64 instruction set architecture. The simulator was verified by testing

a series of MIPS64 programs and comparing the results to other MIPS64 simulators.

The configuration also properly handles data and control hazards, as well as data

forwarding.

7.3 Cache Simulation Experiment

The purpose of this experiment was to demonstrate and validate the framework’s

cache system. One level of 1KB cache was used with three different mapping schemes,



65

Fig. 7.2. Cache hit rate using different cache schemes and block sizes

direct, set associative, and fully associative. Three different block sizes were used for

each test, 2, 4, and 8 words per block. Set associative and fully associative mapping

schemes also tested with the Least Recently Used (LRU) and random replacement

methods. The small cache size is used because we used a micro-benchmark for this

experiment.

This experiment was conducted using a single-processor configuration based on

the MIPS64 instruction set architecture. An insertion sorting was performed on

1600 64-bit values, which executed 106,740 instructions that took between 118,620

and 255,060 cycles to complete. The cache accuracy results (shown in Figure 7.2)

demonstrate that the cache’s performance varies with different configurations and

the accuracy responds in a manner that is in line with expectations.



66

7.4 Branch Prediction Algorithm Comparison Experiment

This experiment was conducted to demonstrate the capability of external mod-

ules, and further validate the framework. The framework along with a preconfigured

MIPS64 simulation was given to a group of graduate computer architecture students

to produce external branch predictor modules. Each student was provided with the

source code for a simple two-bit branch predictor and was tasked with creating a

two-level correlating predictor and a tournament predictor. The students produced

DLL files which were loaded by the framework as the simulator was constructed as

described in Section 4.5. The program that tested the branch prediction modules was

comprised of many loops and conditional statements in an attempt to emulate pro-

gram flow that is commonly observed in a typical program, but does not perform any

specific function. It was observed that a typical program consists of about 15-20% of

branches [67].

Results across all of the students were similar and in line with expectations. The

branch prediction results from one project are shown in Figure 7.3(a) and Figure

7.3(b). Figure 7.3(a) shows the branch prediction accuracy across each branch pre-

diction scheme. As the branch prediction accuracy improves, the number of cycles

used to complete the program is reduced, as shown in Figure 7.3(b). The results

demonstrate that the external modules are a viable method of integrating functional

units into a simulation. Additionally, the nature of the external modules allowed the

students to focus only on their portion of modeling and simulation, which provided

for an easy-to-use and standardized environment for testing and comparison.

7.5 Network-on-Chip Experiment

This experiment is a brief demonstration of the NoC infrastructure in the frame-

work. The simulation has one master core (resource) that is used to distribute data

and aggregate the results of calculations performed on a varying amount of slave

cores. At the beginning of the simulation, when ready, each slave core sends a re-



67

quest for data to perform calculations with. The master core responds by sending a

packet of data to the slave core, and the master core moves on to the next portion of

data. Once the slave core receives the packet, the calculations are performed and the

results are transmitted back to the master core, and then the process repeats until all

of the calculations have been completed. This is similar to how MPI [68] or PVM [69]

processes.

(a) Accuracy results by algorithm.

(b) Number of cycles required per algo-

rithm.

Fig. 7.3. Branch prediction algorithm results



68

To demonstrate the capabilities of the NoC, we implemented a 2D mesh network

topology (detailed in Figures 7.4 and 7.5) and then varied the number of slave cores

(from 3 to 511) performing the calculations, and observed the number of cycles needed

to aggregate all of the results. In this experiment, each 600 pairs of 64-bit values was

transmitted to the slave cores to perform a multiplication calculation. The results are

returned to the master core, which aggregates them. For each experiment, the amount

of calculations is fixed. The cores interacted with the network through registers

mapped to network inputs and outputs.

The first resource instance was assigned to execute the master program and the

remaining cores were assigned to execute the slave program. The network grew to

the south and east (right and bottom) direction as additional cores were added.

Fig. 7.4. The 2D mesh network topology used in the Network-on-Chip Experiment



69

Fig. 7.5. Detail of the connections between routers and resources in
the 2D mesh network

The master core stayed in the same position for all experiments for consistency and

simplicity. (Positioning the master core in a central location in the network would

likely yield improved performance, though this experiment’s purpose was to validate

the NoC infrastructure, not to demonstrate the NoC’s performance.)

Figure 7.6 describes the routing function that was used in the network’s routers

using pseudo code (for clarity). In this experiment, all of the routers used the same

routing function (though this is not a limitation of the framework).

In addition, the number of cycles required to perform the calculation was varied

to produce large and small workloads. The large workload required twice the number

of cycles to complete the calculation as the small workload. The purpose of collecting

the two different sets of results was to observe how the total number of cycles required

to produce a result was affected by increasing the runtime of the slave application.

The results (shown in Figure 7.7) demonstrate that as additional slave cores are

added, the number of cycles required by the application to complete the calculation

is reduced. However, in both data sets, the speedup is diminished as the number of

cores increases, due to the network overhead approaching the workload required to

perform the calculation. In other words, as the number of cores increases, the number



70

Columns <= 2

Rows <= 2

//ID i s Given to The Routing Function

CurrentRow <= Floor ( ID / Rows )

CurrentColumn <= ID mod Columns

// Retre ive Data From Input Queues

Inputs [ 0 ] <= Receive ( ‘ ‘ north in ’ ’ )

Inputs [ 1 ] <= Receive ( ‘ ‘ e a s t i n ’ ’ )

Inputs [ 2 ] <= Receive ( ‘ ‘ s ou th in ’ ’ )

Inputs [ 3 ] <= Receive ( ‘ ‘ we s t in ’ ’ )

Inputs [ 4 ] <= Receive ( ‘ ‘ c o r e i n ’ ’ )

f o r i <= 0 to 4

i f Inputs [ i ] != nu l l then // nu l l Input means no data in Queue

Packet <= (UInt64 [ ] ) Input [ i ] //Cast the packet to an array o f

// 64 b i t unsigned i n t e g e r s

// F i r s t 64 b i t s o f Packet s p e c i f i e s the packet d e s t i n a t i on

DestinationRow <= Floor ( Packet [ 0 ] / Rows )

DestinationColumn <= Packet [ 0 ] mod Columns

i f DestinationRow = CurrentRow then

i f DestinationColumn = CurrentColumn then

Send ( ‘ ‘ c o r e out ’ ’ , Packet ) //The packet i s at the c o r r e c t

// router , send packet to r e s ou r c e

e l s e i f DestinationColumn > CurrentColumn then

Send ( ‘ ‘ e a s t ou t ’ ’ , Packet ) //Send packet ea s t

e l s e

Send ( ‘ ‘ west out ’ ’ , Packet ) //Send packet west

e l s e

i f DestinationRow > CurrentRow then

Send ( ‘ ‘ south out ’ ’ , Packet ) //Send packet south

e l s e

Send ( ‘ ‘ north out ’ ’ , Packet ) //Send packet north

Fig. 7.6. Pseudocode explaining the routing function used in the 2D mesh network



71

Fig. 7.7. The number of cycles required as the number of cores is varied

of routers that each packet must traverse increases, reducing the benefit of additional

cores. With 512 cores, the total execution times for the small and large workloads

became nearly identical.

7.6 Single Thread Simulation Performance Experiment

The purpose of this experiment was to examine the performance of a simulator

generated by the framework and reveal how a simulator’s performance responds when

executing many resources in a single thread. The single threaded implementation exe-

cutes the resources and networks serially, one cycle at a time, and thus the simulation

will always be in sync as each resource and network will have executed the same

number of cycles. Therefore, the combined performance degradation of increasing

simulated cores should be small (in terms of total IPS), and performance per core

should degrade proportionally to the number of simulated cores.

Again, we chose the MIPS64 configuration to perform this experiment. The same

configuration was utilized for every experiment, with the exception of the number of



72

cores to be simulated. Each core executed an insertion sort application independently;

there was no network simulated during this experiment.

The results of the experiment (shown in Figure 7.8) confirmed our hypothesis. As

the number of cores increases, the total Instructions-Per-Second (IPS) degrades only

slightly. The IPS per core degrades somewhat proportionally to the total number

of cores, which is to be expected from a single threaded simulation. Additionally,

the simulation performance of the single-core simulation was competitive with other

major simulators such as SimpleScalar [16].

Fig. 7.8. Simulation performance results as the number of concurrent
cores executing is increased



73

7.7 Performance Comparison Between Execution Methods

We performed several experiments to explore the benefits of multithreading with

and without slack. Each experiment tested both the OTRN and thread pool multi-

threading approaches. The thread pool approach was tested with four threads (be-

cause the simulation host has four cores), and the OTRN approach used five threads

(four resources, and one network-on-chip) in the four simulated core experiments, and

seventeen threads in the sixteen simulated core experiments.

Figure 7.9 shows the performance results of a four core MIPS64 configuration

with a network, and Figure 7.10 shows a similar experiment with sixteen simulated

cores. In this experiment, we can see that the thread pool approach is superior to

the OTRN approach in almost all cases. In the case of thread pool approach, the

simulation performance exceeded the single threaded performance with three cycles

of slack, while the ORTN approach required four cycles of slack.

Fig. 7.9. Four core simulation performance comparison between mul-
tithreaded with slack and single threaded execution



74

Fig. 7.10. Sixteen core simulation performance comparison between
multithreaded with slack and single threaded execution

We believe that this occurred because the MIPS64 configuration that was tested

did not require enough processing time to overcome the overhead associated with the

context switching and synchronization (i.e., the modeling of components is not com-

plex enough). When the threads are allowed to execute multiple cycles at a time, the

benefits of multithreading become more apparent. The framework combines several

smaller cycles into one group, making the overhead of context switching and synchro-

nization small relative to the behavioral execution. The performance results show

diminishing returns as the amount of slack increases, indicating that the simulator

approached the peak performance of the simulation host.

We theorized that multiprocessing would be more beneficial in a situation where

each cycle required a more significant amount of time to process. To test this theory,

we performed another experiment with the four core (with NoC) program where we

added a module to the MIPS64 core which introduced a delay in each cycle. The

purpose of the delay was to mimic the additional processing time required in more



75

complex simulations. The delay module was implemented with a simple for-loop

that counted up to varying amounts, which we will refer to as the delay loop for

this experiment. (A Sleep [70] function could not be used as it would deschedule

the thread to process other threads, which would cause inconsistent performance and

would be less realistic.)

The results, shown in Figure 7.11, confirmed our theory. As the amount of delay

(number of times looped in the delay module) increases, the benefit of multithreaded

simulation becomes more significant. The thread pool approach showed better per-

formance than single-threaded performance over a delay loop count of 2000, and the

OTRN approach improved with a delay count of 4000, even without slack. In other

words, in sufficiently complex simulations, multiprocessing will be faster than single

threaded execution in every case. Figure 7.12 shows the most extreme case that we

tested, which used a 15,000 delay loop count, and utilized slack. With these results,

we see that even the ‘no slack’ case is faster by over 2000 IPS (per core), and the

speed improves as the amount of slack increases.

Fig. 7.11. Multithreaded performance comparison by varying the
amount of work in the delay module (OTRN uses five threads, TP
uses four threads)



76

Fig. 7.12. Four core simulation multithreaded performance compari-
son with large granularity and 15,000 delay loop count (OTRN uses
five threads, TP uses four threads)

7.7.1 Evaluation of Simulation Error Introduced With Slack

In this experiment, we evaluated how much simulation error is introduced as we

varied the amount of slack in a simulation. We used the four simulated core dot

product program with the thread pool multithreaded approach. We observed the

difference in the total execution cycles of the slack simulations against the synchro-

nized simulations (i.e., no slack) to produce the percentage of error, and the results

are shown in Figure 7.13. The percentage of error will likely vary with the applica-

tion, though we can observe from the figure that a small amount of slack yields a

small amount of error, despite the significant speed increase. Thus, slack is a use-

ful method for increasing multithreaded simulation speed where a small amount of

simulation error is acceptable.



77

Fig. 7.13. The simulation error introduced as the amount of slack increases

7.7.2 Discussion of Multithreading Approaches

In our performance comparison (Section 7.7), we can see that the thread pool mul-

tithreading approach consistently outperforms OTRN. This result occurs because the

thread pool approach makes better utilization of the available threads than OTRN. In

the OTRN approach, when a resource/network has completed execution, the thread

must wait at the barrier until all other threads have arrived. In the case of the thread

pool approach, once a thread has completed its work, it proceeds to work on another

resource/network to be executed within the same cycle without a context switch. Ad-

ditionally, there is less overhead from the operating system and synchronization since

there are less threads to manage and synchronize. Thus, the thread pool approach

is able to utilize the multiple cores better, while minimizing overhead, which yields

superior simulation performance.

Another justification for the thread pool approach is its ability to simulate very

large amounts of resources. Figure 7.14 demonstrates the performance of many-core

configurations using both single threaded and thread pool multithreaded execution



78

methods. This figure shows similar results to Figure 7.12; however in this case we are

testing with large amounts of resources. Again we introduced a delay to mimic a more

detailed simulation; however in this experiment we only used a 500 delay loop count

(half of the smallest delay previously tested). Figure 7.14 demonstrates that when

executing with a single thread, the simulation performance is more sensitive to the

modeling detail. When executing with a thread pool, the performance was virtually

identical with or without the delay module. Additionally, the thread pool performance

beat the single thread performance when the delay module was introduced.

With these results, we can see that both single threaded and multithreaded per-

formance have their advantages and disadvantages depending on the simulation host

and modeling detail. The simulation framework gives the user the flexibility to make

their own decision regarding the total performance and accuracy of their simulations.

In many cases multithreaded execution is beneficial with today’s multicore hosts, and

multithreading will also ensure that the simulation framework will be able to take

advantage of additional computing power as the amount of processing cores increase

in the future.

Slack provides an interesting method of increasing the amount of processing re-

quired per synchronization by introducing some amount of timing error into the simu-

lation. The increased processing time enables the simulator to take better advantage

of multiple cores available on the simulation host. Slack may be unnecessary to in-

crease performance with multithreading if the modeling detail of the simulation is

great enough to require a significant amount of processing.



79

Fig. 7.14. Performance comparison between single-threaded and
thread pool multithreaded execution methods with 500 delay loop
count



80

8. SUMMARY AND CONCLUSION

8.1 Summary

In this thesis, we have discussed Mhetero, a simulation framework for dynamically

configurable discrete event simulators for many-core heterogeneous Chip Multiproces-

sors(CMPs). We began by analyzing the previous work in the area of retargetable

simulation. Then we discussed the organization of the framework as to how to con-

figure, construct, and execute simulations within a unified interface, and the details

behind the framework’s implementation. Furthermore, we discussed how we applied

our configurability approach to implement a NoC infrastructure into the framework

to facilitate communication between resources. We also introduced two approaches to

multithreaded simulation, and examined some of the advantages and disadvantages

that multithreaded simulation can offer. Finally, we performed several experiments

to validate our framework, and showed very useful results that can help simulation

designers build, configure and execute their simulations. We envision the framework

will be used to further computer architecture research and education.

8.2 Future Work

A natural evolution for this simulation framework is to enhance its GUI with more

visual elements, such as resource and network diagrams, and visual performance re-

sults. For example, a resource diagram could display a visual representation of the

resource’s modules and the communication channels between them. Visual perfor-

mance results of a simulation could also be presented to a user in the form of graphs

that show data such as cache hit/misses and instructions per second. The framework

could also store previous values, which could be graphed to compare current and



81

previous results. These visualizations would be more stimulating and motivating to

usefsrs, and in particular, computer architecture students.

Another possible direction for future development would be to improve the frame-

work’s debugging capabilities. One improvement in this area would be to add the

ability to pause and step through a simulation to examine the variables in a mod-

ule’s communication channel. This would be very helpful for simulation designers

and it would be complementary to the visual diagrams described. The user could use

the diagram to inspect values as they progress through the resource/network, which

would be useful as for developments as well as educators. Teachers could also use this

tool to demonstrate how instructions flow through a processor pipeline and how the

simulated processor is affected as events occur.

Since the area of network-on-chip simulation is still in its infancy, it would stand

to reason that additional improvements to the NoC infrastructure could help differ-

entiate Mhetero from other simulation frameworks. To this end, the level of detail

in network-on-chip simulation could be increased to enable packet timing, power,

and bandwidth evaluation. Power consumption measurement could be added to the

framework by implementing functions in the Router class that would allow simulation

designers to tally and log power consumption figures based on usage. Additionally, the

Network class could also be augmented to record connection duty-cycle (bandwidth)

statistics.

Finally, the instruction format information that is collected in the RCE could be

used for the automatic construction of assemblers. This type of tool is available with

other ADLs such as EXPRESSION [19] and LISA [20], and could be used to speed

up the process of developing test programs to execute in simulations. Much of the

information required for such a tool is being collected by the framework in its current

form, and thus this would be a natural direction for Mhetero in future work.



82

8.3 Conclusion

The simulation framework discussed in this thesis provides several contributions

in an effort to improve discrete event and processor simulation for research and ed-

ucation. The dynamic compilation technique produces fast simulations that compile

quickly, with virtually unlimited configurability. The techniques that we described

here enable the framework to maintain the same easy-to-use and capable interface

throughout the user experience, from simulation configuration to execution. This

cohesive and seamless interface provides a tool that is approachable by novice as well

as expert users alike. The framework’s modular design allows users to easily test new

implementations and extend their simulator’s functionality. External modules pro-

vide a means for simulation designers to extend their simulators and make their work

available to others. Additionally, the network-on-chip infrastructure builds on the

framework’s configurability and compilation capabilities to provide a structured envi-

ronment for intra-chip communications. Combined, these features create an interest-

ing and powerful simulation platform that provides an exciting computer architecture

research and education experience.



LIST OF REFERENCES



83

LIST OF REFERENCES

[1] R. Kumar, D. Tullsen, and N. Jouppi, “Heterogeneous chip multiprocessors,”
Computer, vol. 18, Nov. 2005.

[2] H. Meyr, “Heterogeneous mp-soc–the solution to energy-efficient signal process-
ing,” in Multiprocessor SoC MPSoC Solutions/Nightmare, Design Automation
Conference, 2004.

[3] Intel, “Futuristic intel chip could reshape how computers are
built.” http://www.intel.com/pressroom/archive/releases/2009/
20091202comp sm.htm. Visited Jan. 2010.

[4] AMD, “The future is fusion — amd.” http://sites.amd.com/us/fusion/Pages/index.aspx.
Visited Jan. 2010.

[5] W. Wolf, “The future of multiprocessor systems-on-chips,” in Multiprocessor SoC
MPSoC Solutions/Nightmare, Design Automation Conference, 2004.

[6] MSDN, “Compiling to msil.” http://msdn.microsoft.com/en-us/library/c5tkafs1

[7] V. Lee, “A framework for comparing models of computation,” IEEE Trans. on
Computer-Aided Design of Integrated Circuit and Systems, pp. 1217–1223, Dec.
1998.

[8] M. Yourst, “Ptlsim.” http://www.ptlsim.org/. Visited Jan. 2010.

[9] “M5.” http://www.m5sim.org. Visited Jan. 2010.

[10] “bochs: The open source IA-32 emulation project.”
http://bochs.sourceforge.net/. Visited Jan. 2010.

[11] J. Emer, P. Ahuja, and E. Borch, “Asim: A performance model framework,”
Computer, pp. 68–76, 2002.

[12] “Gxemul.” http://gxemul.sourceforge.net/. Visited Jan. 2010.

[13] P. M. et al., “Simics: A full system simulation platform,” Computer, vol. 35,
pp. 50–58, 2002.

[14] D. Wallin, H. Zeffer, M. Karlsson, and E. Hagersten, “Vasa: A simulator in-
frastructure with adjustable fidelity,” Parallel and Distributed Computing and
Systems, 2005.

[15] M. M. et al., “Multifacets general execution-driven multiprocessor simulator
(gems) toolset,” SIGARCH Computer Architecture News, pp. 92–99, 2005.

[16] “Simplescalar LLC.” http://www.simplescalar.com/, 2010.



84

[17] S. M. et al., “Wisconsin wind tunnel ii: A fast and portable parallel architecture
simulator,” Workshop on Performance Analysis and Its Impact on Design, Jun
1997.

[18] V. Pai, P. Ranganathan, and S. Adve, “Rsim: An execution-driven simulator for
ilp-based shared-memory multiprocessors and uniprocessors,” Third Workshop
on Computer Architecture Education, Feb 1997.

[19] A. H. et al., “Expression: A language for architecture exploration
through compiler/simulator retargetability.” http://www.cs.ucr.edu/ vahid/-
courses/269 w00/date99 dutt.pdf, 1999.

[20] V. Zivojnovic, S. Pees, and H. Meyr, “Lisa machine description language and
generic machine model for hw/sw co-design,” Proceedings of the IEEE Workshop
on VLSI Signal Processing, Oct. 1996.

[21] M. Freericks, “The nml machine description formalism,” Fachbereich Informatik,
1991.

[22] M. Reshadi and N. Dutt, “Generic pipelined processor modeling and high per-
formance cycle-accurate simulator generation,” vol. 2, pp. 786–791, 2005.

[23] C. Barnes, P. Vaidya, and J. Lee, “An xml-based adl framework for automatic
generation of multithreaded computer architecture simulators,” Computer Ar-
chitecture Letters, vol. 8, Apr. 2009.

[24] N. Honarmand, H. Sohofi, M. Abbaspour, and Z. Navabi, “Processor description
in apdl for design space exploration of embedded processors,” Proc. EWDTS,
2007.

[25] “Rexsim: A retargetable framework for instruction-set architecture simulation.”
http://www.cecs.uci.edu/technical report/TR03-05.pdf. Visited Jan. 2010.

[26] G. H. et al., “Isdl: An instruction set description language for retargetability,”
In Proc. Design Automation Conference, pp. 299–302, 1997.

[27] Y. S. Chandra and T. The, “Retargetable functional simulator,” 1999.

[28] P. Dickens, M. Haines, P. Mehrotra, and D. Nicol, “Towards a thread-based
parallel direct execution simulator,” 1996.

[29] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha, “Garnet: A detailed on-
chip network model inside a full-system simulator,” In Proc. IEEE International
Symposium on Performance Analysis of Systems and Software, 2009.

[30] “Noxim - NoC simulator.” http://noxim.sourceforge.net/. Visited Jan. 2010.

[31] M. Palesi, S. Kumar, and R. Holsmark, “A method for router table compression
for application specific routing in mesh topology noc architectures,” SAMOS VI
Workshop: Embedded Computer Systems: Architectures, Modeling, and Simula-
tion, pp. 373–384, 2006.

[32] G. Ascia, V. Catania, M. Palesi, and D. Patti, “A new selection policy for adap-
tive routing in network on chip,” in International Conference on Electronics,
Hardware, Wireless and Optical Communications, 2006.



85

[33] V. Puente, J. Gregorio, and R. Beivide, “Sicosys: An integrated framework for
studying interconnection network performance in multiprocessor systems,” In.
Proc. IEEE 10th Euromicro Workshop on Parallel and Distributed Processing,
Jan. 2002.

[34] J. Jump, “Yacsim reference manual,” Rice University, Electrical and Computer
Engineering Department, Mar. 1993.

[35] E. G. et al, “Elements of reusable object-oriented software,” Addison-Wesley
Professional Computing Series, 1995.

[36] M. Chidester and A. George, “Parallel simulation of chip-multiprocessor archi-
tectures.” http://www.hcs.ufl.edu/pubs/PARSIM2002.pdf, 2002.

[37] L. Eeckhout and K. Bosschere, “Efficient simulation of trace samples on parallel
machines,” Parallel Computing, vol. 30, no. 3, pp. 317–335, 2004.

[38] A. N. et al., “Accuracy and speed-up of parallel trace-driven architectural sim-
ulation,” 1997.

[39] G. Lauterbach, “Accelerating architectural simulation by parallel execution of
trace samples,” 1993.

[40] MSDN, “Xmldocument class (system.xml).” http://msdn.microsoft.com/en-
us/library/system.xml.xmldocument.aspx. Visited Jan. 2010.

[41] MSDN, “Xmlnode class (system.xml).” http://msdn.microsoft.com/en-
us/library/system.xml.xmlnode.aspx. Visited Jan. 2010.

[42] MSDN, “Xmltextwriter class (system.xml).” http://msdn.microsoft.com/en-
us/library/system.xml.xmltextwriter.aspx. Visited Jan. 2010.

[43] MSDN, “Httputility class (system.web).” http://msdn.microsoft.com/en-
us/library/system.web.httputility.aspx. Visited Jan. 2010.

[44] MSDN, “switch (c# reference).” http://msdn.microsoft.com/en-
us/library/06tc147t.aspx. Visited Jan. 2010.

[45] MSDN, “Command-line building with csc.exe.” http://msdn.microsoft.com/en-
us/library/78f4aasd.aspx. Visited Jan. 2010.

[46] MSDN, “Csharpcodeprovider class.” http://msdn.microsoft.com/en-us/library/
microsoft.csharp.csharpcodeprovider(VS.85).aspx. Visited Jan. 2010.

[47] MSDN, “Codedomprovider compileassemblyfromsource method.” http://
msdn.microsoft.com/en-us/library/system.codedom. compiler.codedomprovider.
compileassemblyfromsource.aspx. Visited Jan. 2010.

[48] MSDN, “Assembly class (system.reflection).” http://msdn.microsoft.com/en-
us/library/system.reflection.assembly.aspx. Visited Jan. 2010.

[49] MSDN, “Compilerparameters class (system.codedom.compiler).”
http://msdn.microsoft.com/en-us/library/system.codedom.compiler. com-
pilerparameters.aspx. Visited Jan. 2010.



86

[50] MSDN, “List(t) class (system.collections.generic).” http://msdn.microsoft.com/
en-us/library/6sh2ey19.aspx. Visited Jan. 2010.

[51] MSDN, “interface (c# reference).” http://msdn.microsoft.com/en-
us/library/87d83y5b.aspx. Visited Jan. 2010.

[52] MSDN, “Dynamic link libraries.” http://msdn.microsoft.com/en-
us/library/ms682589.aspx. Visited Jan. 2010.

[53] MSDN, “Compilerparameters referencedassemblies property (sys-
tem.codedom.compiler).” http://msdn.microsoft.com/en-us/library/
system.codedom.compiler.compilerparameters.referencedassemblies.aspx. Vis-
ited Jan. 2010.

[54] “string (c# reference).” http://msdn.microsoft.com/en-us/library/
362314fe.aspx. Visited Jan. 2010.

[55] “Microsoft visual studio 2008.” http://www.microsoft.com/visualstudio. Visited
Jan. 2010.

[56] “How to: Debug dlls.” http://msdn.microsoft.com/en-us/library/c91k1xcf Vis-
ited Jan. 2010.

[57] W. Dally and B. Towles, “Route packets, not wires: On-chip interconnection
networks,” In Proc. Design Automation Conference, pp. 684–689, 2001.

[58] “Arteris.” http://www.arteris.com/. visisted Jan. 2010.

[59] “Sonics, inc..” http://www.sonicsinc.com/. visisted Jan. 2010.

[60] “Tilera corporation.” http://www.tilera.com/products/TILE-Gx.php. Visited
Jan. 2010.

[61] W. Dally and J. Poulton, Digital Systems Engineering. Cambridge University
Press, 1998.

[62] MSDN, “Queue class (system.collections.generic).” http://msdn.microsoft.com/
en-us/library/7977ey2c.aspx. Visited Jan. 2010.

[63] MSDN, “try-catch (c# reference).” http://msdn.microsoft.com/en-
us/library/0yd65esw.aspx. Visited Jan. 2010.

[64] MSDN, “Thread class (system.threading).” http://msdn.microsoft.com/en-us/
library/system.threading.thread.aspx. Visited Jan. 2010.

[65] MSDN, “Semaphore class (system.threading).” http://msdn.microsoft.com/en-
us/library/system.threading.semaphore.aspx. Visited Jan. 2010.

[66] J. Chen, M. Annavaram, and M. Dubois, “Slacksim: A platform for parallel
simulations of cmps on cmps.” http://ceng.usc.edu/assets/001/60870.pdf, Aug.
2008.

[67] D. Patterson and J. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface. Morgan Kaufmann, 2004.



87

[68] A. Gabriel, A. Fagg, and A. Bosilca, “Open MPI: Goals, concept, and design of a
next generation MPI implementation,” in Proceedings, 11th European PVM/MPI
Users’ Group Meeting, (Budapest, Hungary), pp. 97–104, September 2004.

[69] V. Sunderam, “Pvm: A framework for parallel distributed computing,” Concur-
rency: Practice and Experience, pp. 315–339, Dec. 1990.

[70] MSDN, “Thread.sleep method (int32) (system.threading).”
http://msdn.microsoft.com/en-us/library/d00bd51t.aspx. Visited Jan. 2010.


	Text1: Christopher James Barnes
	Text2:               A Dynamically Configurable Discrete Event Simulation Framework for Many-Core System-on-Chips
	Text3: Master of Science in Electrical and Computer Engineering
	Text4: Jaehwan John Lee
	Text8: 
	Text5: Brian S. King
	Text9: 
	Text6: Yung Ping Stanley Chien
	Text10: 
	Text7: 
	Text11: 
	Text12: Jaehwan John Lee
	Text13: Jaehwan John Lee
	Text14: Yaobin Chen                                                                                     March, 10, 2010
	Type Thesis Title: A Dynamically Configurable Discrete Event Simulation Framework for Many-Core System-on-Chips
	Type Degree: Master of Science in Electrical and Computer Engineering
	name: Christopher James Barnes
	Date monthdayyear: March 10, 2010


