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ABSTRACT

Li, Weixu. M.S.E.C.E., Purdue University, August 2011. A 2D Plus Depth Video
Camera Prototype Using Depth from Defocus Imaging and A Single Microfluidic
Lens. Major Professor: Lauren A. Christopher.

A new method for capturing 3D video from a single imager and lens is introduced

in this research. The benefit of this method is that it does not have the calibration

and alignment issues associated with binocular 3D video cameras, and allows for a less

expensive overall system. The digital imaging technique Depth from Defocus (DfD)

has been successfully used in still camera imaging to develop a depth map associated

with the image. However, DfD has not been applied in real-time video so far since the

focus mechanisms are too slow to produce real-time results. This new research result

shows that a Microfluidic lens is capable of the required focal length changes at 2x

video frame rate, due to the electrostatic control of the focus. During the processing,

two focus settings per output frame are captured using this lens combined with a

broadcast video camera prototype. We show that the DfD technique using Bayesian

Markov Random Field optimization can produce a valid depth map.
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1. INTRODUCTION

During the past few decades, computer vision has become increasingly important.

This is because tasks in several industrial applications must be performed in the 3D

world. The scene in the 3D world is created by gathering reliable depth information.

There are several techniques that are currently available to find depth information.

They can be classified into two types: active and passive. The active type needs an

artificial source of energy, laser or visible light. Passive methods have a wider range

of applicability in industrial and military applications where constraints may prevent

the use of artificial energy sources. One interesting passive method is Depth from

Defocus (DfD). It was first proposed by Pentland [1], and then contributed by other

researchers such as Chaudhuri [2] [3]. The advantage of DfD is that it only needs a

single instead of multiple cameras, so the overall cost of the system can be reduced.

In this thesis, we combine the DfD algorithm with a microfluidic lens. Using DfD, it is

possible to generate the image with its depth map from a single perspective view with

multiple focuses. In the earlist work contributed by Pentland [1] [4], he addressed the

problem using the focused and the defocused images of the same scene. In his work,

he estimated the blur parameter of a local region by comparing the focused and the

defocused images. When applying DfD to a scene, The blur obtained from a real

camera can be modeled as the space-variant Gaussian blur as suggested in [5]. In this

thesis, the strategy we use is different from Pentland’s, but similar to the method

described in [3]. We made several improvements when designing the algorithm to

produce a better result.

In order to find the blur parameter when applying DfD to the real world, we

must develop an estimation algorithm. The estimation algorithm described in the

literature models a depth map of an image as a Markov Random Field (MRF) [6].

According to the DfD technique, the blur parameter value is related to the depth of
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the scene. Since the change of depth in a scene is usually gradual, it tends to have

local dependencies. The MRF has the ability to capture these local dependencies.

We therefore model the space-variant blur parameter as a MRF.

Several approaches are described in the literature. Cooper and Subramonia [7] sug-

gested the Maximum a Posteriori (MAP) for the blur parameter estimation. Chaud-

huri and Rajagopalan [2] indicated that it is possible to restrict the computations to

local regions, which reduces the computational load. MAP probability is generally

the criteria used for optimization. It has been proved that the MRF-MAP model is

suitable for many vision-related problems [6] [8] [9].

In our research, a camera with single microfluidic lens is used to capture the focus

and the defocus images. We combine DfD with a microfluidic lens to capture two

focus settings per output frame. Our goal is to show that the DfD combined with

microfluidic lens system is capable of producing a depth map for each frame in real

time. In order to verify the capability of the system, the following specific objectives

are discussed:

1. Develop an algorithm using DfD and Markov random field optimization to

produce the depth map for each frame. In this thesis, our algorithm is modeled in

software, which will be ported to hardware in the future in order to increase the

speed.

2. Develop a control software for the microfluidic lens focus change.

3. Analyze the results and discuss if they are valid depth maps.

4. Verify the capability of the system.

Several aspects of this system and results are covered in this thesis. In Chapter 2,

DfD theory and Markov random field optimization is covered, with the corresponding

mathematics. The microfluidic lens is introduced in Chapter 3 by giving its working

principles and performance. In Chapter 4, the overall system flow with implementa-

tion method is shown, algorithm details and calculation steps are presented. Chapter

5 shows the results we obtained. The results are from two catagories: synthetic im-

ages and camera images. In this chapter, we discuss the results and evaluate the
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performance for each algorithm we test. Finally, the conclusion is given in Chapter 6

that the system is capable of estimating depth information of a scene in real time.
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2. THEORY

In this chapter, we describe the theoretical basis of this work. We begin with the real

aperture imaging system, then go through DfD technique, and end this chapter by

discussing the MAP-MRF estimation.

2.1 Real Aperture Imaging

The lens equation for real aperture imaging is given by:

1

D
+

1

v
=

1

f
(2.1)

Where D is the distance of the object from the lens, f is focal length of the lens, and

v is the distance between the lens and the image detector. When a point of light is

defocused, the light rays coming through a lens are intercepted and spread within an

area in the image plane. Figure 2.1 shows an image formation process when the light

source is defocused.

2.2 DfD

In order to find the depth D, we use the DfD algorithm to estimate the depth

given the focused and the defocused image of a scene. If a single point light source

is defocused, Chaudhuri [2] indicates that the point spread function (PSF) should

be used to describe the image intensity from the camera. By the ray tracing model

described in [10], the object point should be imaged into a circular area. However

in practice, the image formation process is affected by the brightness attenuation,

the image will be a circle with the brightness falling from the center to the border

gradually, viewed as blur. Thus, for a real camera system, the PSF of it can be
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Fig. 2.1. Image formation process when a light source is defocused

approximately modeled as a symmetric 2D Gaussian function as suggested in [11]

described by:

h(x, y) =
1

2πσ2
exp

−(x2 + y2)

2σ2
(2.2)

Where σ is the blur parameter, and x and y correspond to horizontal and vertical

coordinates.

In this research, we modeled the local blur in an image by a 2D spatially varying

Gaussian blur kernel. The local blur value is therefore specified by the blur parameter.

When the source point is not in focus, its image is a blur circle whose radius is

described by a blur parameter σ defined as:

σ = ρ r v(
1

f
− 1

v
− 1

D
) (2.3)

The blur standard deviation can be calculated knowing the focal length of the optics

f , the distance between the lens and the image detector v, the radius of the lens

aperture r, the camera constant ρ, and the depth of the object in the scene D.
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2.3 Markov Random Field

MRF is a graphical model in which a set of random variables have the Markov

property. Given a MRF consisting of a set of random variables X = Xv indexed by

V . The Markov properties are:

1. Pairwise Markov property: Any two non-adjacent variables are conditionally

independent given all other variables.

2. Local Markov property: A variable is conditionally independent of all other

variables given its neighbors.

3. Global Markov property: Any two subsets of variables are conditionally inde-

pendent given a separating subset.

MRF is characterized by the conditional distributions according to its definition,

which is called local characteristics of the random field. In most of the image pro-

cessing problems, it is usual to expect that the value of pixel does not depend on the

pixels outside its immediate neighborhood.

2.4 MAP Estimation

Given two registered images Iin and Iout, where the object of interest is in focus in

Iin and out of focus in Iout, a MAP estimation can be applied to calculate σ. Depth

can then be calculated using Equation 2.3 and the known fixed camera parameters.

The defocused image of a scene can be represented as follows

g(x, y) = f(x, y) ∗ h(x, y) + w(x, y) (2.4)

where f(.) is the focused image, h(.) is the space-variant blur function that can be

modeled by Gaussian function using Equation 2.2, w(.) is the noise and g(.) is the

observed defocused image.

Let S denote a MRF which consists of the space-variant blur parameter σx,y. In

this thesis, we assume S takes k classes. We define the noise field as W and observed
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image field as G, assuming S and W are independent. Since S is modeled as MRF,

the energy function can be written as

U(S) = β
∑
c∈CS

Vc(S) + |g(x, y)− f(x, y) ∗ h(x, y)|2, (2.5)

Where CS is the set of all cliques, β is the weighting factor and neighborhood

weighting function of clique c is denoted as Vc, which can be expressed as

Vc(S) =
∑
c

prior, (2.6)

with the prior obtained from Equation 2.7, below:

prior =

{
1 if the pixel has a different class from its neighbor. (2.7)

Figure 2.2 is the block diagram of MAP-MRF space-variant blur parameter es-

timation scheme. The a posteriori probability distribution of S is P (S = s|G = g).

MAP problem then can be used to estimate the space-variant blur parameter by

applying Bayes’ rule, which is given by Equation 2.8 and 2.9.

p(S = s|G = g) =
P (G = g|S = s)P (S = s)

P (G = g)
(2.8)

MAP = max(
P (G = g|S = s)P (S = s)

P (G = g)
) (2.9)

Our task then is computing the estimate of s. It had also been proved in [2] that

Fig. 2.2. Block diagram of MAP-MRF space-variant blur parameter
estimation scheme



8

computing the MAP estimate of s is equivalent to minimizing the energy function

U(S). Thus an algorithm is needed to calculate the minimum of the energy function.

In this thesis, we tested three computational algorithms: Simulated Annealing (SA);

Iterated Conditional Modes (ICM) [12]; and maximization of posterior marginals

(MPM) [13].
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3. MICROFLUIDIC LENS AND CAMERA PROTOTYPE

In this chapter the microfluidic lens and camera prototype will be discussed by giving

their working principles and performance. The microfluidic lens is an optimal com-

ponent in our system development since it has the ability to change focus multiple

times in a single second. This will enable us to get the depth information of a scene

in real time.

3.1 Microfluidic Lens

A typical electrowetting microfluidic lens is shown as Figure 3.1. In this thesis

the ARCTIC 416 lens is chosen, supplied by Varioptic Lens [14]. In order to capture

focused and defocused images in real time, this lens guarantees that the focus can be

adjusted continuously up to 30 frames per second. It also has a very fast response

time and wide focus range from 10 cm to infinity.

Fig. 3.1. Basic components of an electrowetting microfluidic lens [15]
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In this lens, a hydrophilic coating is applied to the interior part of the lens chamber.

A non-conducting fluid is placed in the bottom region. The insulating fluid is put on

the contact surface between the metal and the fluid which has a large difference in

refractive index with respect to water. Applying a voltage across the electrodes will

force the fluid toward the metal part. Then as shown in Figure 3.1, the shape change

of the fluid will change the optical properties of the whole lens. In this research, we

can change the focal point by controlling the voltage applied to the lens.

3.2 Camera Prototype

Figure 3.2 shows the camera system we use in this research. The system is con-

Fig. 3.2. Single camera system

sists of five components: The lens focus controller, microfluidic lens, Complementary

Metal-Oxide-Semiconductor (CMOS) imager, CMOS imager development board, and
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the computer. The image is formed on the imager, then the imager passes it to devel-

opment board in real time. There is another board installed in the computer which is

used to connect to the development board. Once the system is connected, the video

stream is sent to the computer and observed on the monitor. Figure 3.3 is the working

flow of this camera system. With this system, we are able to collect the test data,

both still and motion images. An example of test data is shown in Figures 3.4(a) and

(b), the image of the scene is taken in two different focuses, one is focused on the

nearer object, the other is focused on the farther one.

Fig. 3.3. Block diagram of the camera system flow
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(a)

(b)

Fig. 3.4. Focused at (a) 25cm and (b) 75cm
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4. IMPLEMENTATION PROCESS

As discussed in Chapter 2 and Chapter 3, we need a way to process the images in

the DfD algorithm. In this thesis we use OpenCV [16] library, which is one the

most powerful function libraries in image processing. It is an open source library

which has over 2000 optimized algorithms and many useful functions. We use it to

create multiple levels of blurred images from the original observed focused image, the

function is called cvSmooth(). Figure 4.1 is an example of a set of blurred image

created by OpenCV based on Equation 2.2.

Fig. 4.1. Multiple levels of blurred images created by OpenCV

4.1 General System Flow

Figure 4.2 shows the overall system flow for DfD algorithm. As described in chap-

ter 2, two inputs are required in order to calculate the space-variant blur parameter

using a MAP estimator, one observed defocused image and a set of blurred image cre-

ated by convolution. With the help of a microfluidic lens, we can capture focused and

defocused images within a single frame time. Once the input image pair is prepared,
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the algorithm will pass it to the MAP estimator which use three different algorithms

referenced in chapter 2. The calculation inside the MAP estimator is a loop to make

sure that the energy function converges to its minimum. Then MAP estimator out-

puts the blur map that contains all space-variant blur parameters. Therefore the

depth map of a scene can be calculated from the blur map using Equation 2.3. In

this thesis, the experiments are performed on two categories of images, one is synthetic

images, the other is real aperture images.

Fig. 4.2. DfD System Flow
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4.2 More Details of DfD Algorithm

Following is the outline for DfD algorithm:

1. We initialize the data structure for the observed focused image I0 and defo-

cused image I1. We create multiple levels of blurred images by Gaussian smooth

function cvSmooth() in OpenCV IG1, IG2,..., IG16; using k = 1, 2, 3, ..., 16 to label

them; Initialize IB as a MRF with the same image size.

2. Load the input image pair. Images are either synthetic or captured from the

camera.

3. Apply cvSmooth() function supplied by OpenCV to I0 , create a set of blurred

image. For this we always choose 16 levels. The 16 Gaussian blur parameters are

chosen from 0.5 to 2.0 with equal step size.

4. Pass I1, IG1, IG2,...,IG16 to MAP estimator.

5. Loop through each pixels in raster order by x and y.

a. Starting from IB as the default depth map. Calculate the absolute difference

D(x, y, k) for each class k using Equation 4.1.

D(x, y, k) = |IGk − I0|2 = |g(x, y)− f(x, y) ∗ h(x, y)|2 (4.1)

b. Calculate the prior term P (x, y) associate to the neighborhood system using

Equation 2.6,

P (x, y) = β
∑

Vc(S) (4.2)

c. Calculate the logpost L(x, y, k) for each class using Equation 4.3

L(x, y, k) = D(x, y, k) + P (x, y) (4.3)

d. Optimize L(x, y, k) by applying either MAP-ICM, MAP-SA, or MPM. Find

the optimal solution (class number) for this pixel. Update this pixel value for IB.

6. Calculate the average cost Ave(IB) following Equation 4.4.
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Ave(IB) =

∑
s∈S L(x, y, k)

total number of pixels in the image
(4.4)

7. Repeat step 6 until difference of average cost between iterations is below a

predetermined threshold.

4.3 Controlling the Microfludic Lens

In order to verify that the focal length of the lens can be changed 2x video frame

rate, software is designed for the purpose of controlling the microfluidic lens. In

this thesis, we use VPS-048 controller supplied by Varioptic Lens as our control box.

Figure 4.3 shows the details of VPS-048 controller. As shown in Figure 4.3, the RMS

voltage applied to the lens holder can be changed easily by turning the knob on top

of the controller. However, our goal is to make this change back and forth in a fixed

frequency, so a software is needed to to fulfill this task.

Fig. 4.3. The VPS-048 Controller [17]

Fortunately there is a communication protocol supplied by Varioptic, which we

use to talk to the controller through a signal generated by computer. This signal

will be transmitted by an USB cable trough the mini USB connecter on VPS-048. A

standard protocol (char[16] in C++ ) is described as : STX / MODE / XXX / YYY

/ ZZZ / TTT / CRC / ETX, where:
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1. STX: 0x02: Starting frame of the protocol.

2. MODE: 0x34, 0x33, 0x32. 0x34 is the fast mode, 0x33 and 0x32 are the slow

mode. In this work we use 0x34 mode.

3. XXX: Lens voltage (V rms); YYY: Lens current (μA); ZZZ: IC voltage (3.3V ,

predefined by Varioptic); TTT: IC current (mA).

4. CRC: Checksum.

5. ETX: Ending frame of the protocol.

Using fast mode, a single command is executed in 600 μsec, time is needed to

decode the USB frame, process the command and send the data to lens driver. We

can get a focused and a defocused image in a single frame time if a single command

is executed less than 16.67 msec. Therefore we are sure that the performance of

microfluidic lens meets our requirements. However, we still have 2 sources of uncertain

timing, which can contribute to jitter in the timing of the lens focus change:

1. PC to USB timing.

2. Imager to video capture in PC timing.

When we try to change the focus in 30 frames per second, the timing accuracy

suffers from the above two uncertainties. More work needs to be done to solve these

problems for a robust system.
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5. EXPERIMENTS AND RESULTS

In this chapter, we discuss the performance of DfD algorithm based on the results in

estimating the space-varying blur parameter. The test is applied both on synthetic

image and real image sets from the camera. In our experiments, the blur function was

assumed to be Gaussian with parameter σx,y. The number of levels, k, for the blur

parameter was predefined to be 16. For all the depth map, larger pixel value stands

for longer distance. In this chapter the pixel value in a image stands for the blur σx,y,

which can be used directly to calculate the depth given the camera constant.

5.1 Synthetic Images

In this research we choose several synthetic blurred images as test images. The

blur effect on them is assumed to be Gaussian blur. To evaluate the performance

of DfD algorithm, the first step is to generate synthetic images with various space-

varying blur. Then the DfD algorithm should be able to estimate the synthetic blur

parameters for each image.

5.1.1 Rock Image

In our first set of experiments, a scene with rocks is defocused by space-varying

blur which has the shape of concentric-disks. Figures 5.1(a), (b) show the focused

and defocused images of rocks respectively, Figure 5.1 (c) shows the synthetic blur

map applied to this scene, in which the pixel value stands for the number of class k

multiplied by 8 for observation convenience.
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(a) (b) (c)

Fig. 5.1. (a) Original focused rock image. (b) Synthetic defocused
rock image. (c) Actual class label of blur parameters

Here the image has the size of 216x144, the value chosen for weighting factor was

β = 19. Figures 5.2 (a), (b) and (c) shows the estimated blur map obtained from

MAP-SA, MAP-ICM and MPM.

(a) (b) (c)

Fig. 5.2. Blur map of rock image obtained by (a) MAP-SA (b) MAP-
ICM (c) MPM

After having the estimated blur map from the DfD algorithm, we are able to

evaluate the performance of the algorithms. Figure 5.3 is surface plot of actual blur

map, Figures 5.4, 5.5, and 5.6 are the blur maps estimated by MAP-SA, MAP-ICM

and MPM. Table 5.1 summarizes the performance of these three algorithms.

From the performance of these three algorithm we can see that MAP-ICM works

the best for this set of test images. It has the least convergence iterations and the

smallest average cost.
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Table 5.1
Performance of the three algorithms (rock image)

Algorithm Iterations to Converge Average Cost

MAP-SA 72 4.303

MAP-ICM 9 3.333

MPM 14 3.842
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Fig. 5.3. Rock Image: Surface plot of actual blur map

Fig. 5.4. Rock Image: Surface plot of blur map obtained by MAP-SA
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Fig. 5.5. Rock Image: Surface plot of blur map obtained by MAP-ICM

Fig. 5.6. Rock Image: Surface plot of blur map obtained by MPM
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As shown in Figure 5.2. The algorithm produces some labeling mistakes when the

blur parameter is either at the high end or the low end. That is mainly because at

the low end, the defocused image has to close to the focused image; at the high end

however, the defocused image becomes so blurry that there is not enough detail for

DfD algorithm as a reference. To reduce those labeling mistakes, a 2D median filter

can be added to the original results; Figure 5.7 shows the result after applying the

median filter to the result obtained by MAP-ICM and Figure 5.8 is the surface plot.

It can be observed that the result has improved.

Fig. 5.7. Blur map of rock image after applying median filter

5.1.2 Fish Image

The second test is performed on a set of fish mosaic images. In contrast with

the first test, here we use red, green, and blue (RGB) color images as the test data.

In this process, the algorithm will convert the RGB color images to black and white

(B/W) using Equation 5.1, then apply the algorithm to them.

BW = 0.212671 ∗RR + 0.715160 ∗GG+ 0.072169 ∗BB (5.1)
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Fig. 5.8. Blur map surface plot after applying median filter

Here BW is the grey level of the B/W image, the range of BW is 0 to 255 since

the data type of our test image is 8-bit unsigned character. RR, GG, and BB stand

for the 8-bit pixel values of the red, green, and blue channel. Figures 5.9 and 5.10

show the focused and defocused image of fish mosaic image respectively, Figure 5.11

shows the synthetic blur map applied to this scene.

Here the image has the size of 450 by 450, the value chosen for weighting factor

was β = 19. Figures 5.12, 5.13 and 5.14 shows the estimated blur map obtained from

MAP-SA, MAP-ICM and MPM.

From the result we can see that the algorithm performance is also acceptable when

applied to RGB color image. Similar to the B/W image, the results also suffered from

several miss labeling (white dots in the result). We can use median filter to get rid

of them as we did for B/W images. Table 5.2 summarizes the performance of this

set of tests. Figures 5.15 is surface plot of actual blur map, 5.16, 5.17, and 5.18 are

the blur maps estimated by MAP-SA, MAP-ICM and MPM. , Figure 5.19 shows the

result after applying the median filter to the result obtained from MPM and Figure
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Fig. 5.9. Original focused fish image

5.20 is its surface plot. It can be seen that the result is improved after applying the

median filter.

Fig. 5.10. Synthetic defocused fish image
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Fig. 5.11. Actual class label of blur parameters

From the performance of these three algorithms we can see that MAP-ICM works

the best for this set of test images. It has the least convergence iterations and the

smallest average cost. Combined with the results of rock image, we conclude that

Fig. 5.12. Blur map of fish mosaic image obtained from MAP-SA
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Fig. 5.13. Blur map of fish mosaic image obtained from MAP-ICM

MAP-ICM has the best performance among the three algorithms when dealing with

the synthetic images. Therefore we choose MAP-ICM as our estimator when applying

DfD algorithm to the real aperture images.

Fig. 5.14. Blur map of fish mosaic image obtained from MPM
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Table 5.2
Performance of the three algorithms (fish image)

Algorithm Iterations to Converge Average Cost

MAP-SA 155 1.421

MAP-ICM 11 1.183

MPM 15 4.102
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Fig. 5.15. Fish mosaic image: surface plot of actual blur map

Fig. 5.16. Fish mosaic image: surface plot of blur map obtained from MAP-SA
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Fig. 5.17. Fish mosaic image: surface plot of blur map obtained from MAP-ICM

Fig. 5.18. Fish mosaic image: surface plot of blur map obtained from MPM
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Fig. 5.19. Blur map of fish mosaic image after applying median filter

In literature Chaudhuri and Rajapopalan [2] had performed a recovery on the

space-variant depth (i.e. blur) of a scene given the focused and defocused image. In

order to evaluate our DfD algorithm, we compare our result to [2] and in [1]. The

estimate of the depth obtained by using the method in [1] are quite noisy, whose

average ranging error is 6.58 percent. The root mean squre (RMS) error for blur

parameter σ is 0.51. The estimates of depth obtained by the proposed method in [2]

is much better, which has a average ranging error of 4.05 percent. The RMS error for

blur parameter σ is reduced to 0.13. In our first set of experiments, the estimates of

depth of the rock image obtained by using MAP-ICM was shown in Figure 5.5. The

average ranging error is 1.887 percent, the RMS error for blur parameter σ is also

0.13. In the second experiment, the original depth obtained by DfD algorithm is not

quite satisfactory, which has a lot of noise on the edges. The ranging error is over

9 percent. However after applying a median filter to the original result, the ranging

error reduces to about 1.822 percent and the RMS error for blur parameter σ is 0.05.
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Fig. 5.20. Blur map surface plot after applying median filter

Therefore we conclude that there is a significant improvement in the estimate of σ

accuracy using our method. Table 5.3 summarizes the performances of the above

three methods.

In Chaudhuri’s experiment, 64 levels of synthetic blur parameters was used as

reference, while in this thesis we use 16 levels. If the defocused image has the blur

parameters which are close to the steps, our settings will prevent it from jumping

to the other levels. However if the blur parameters of the defocused image is laying

between two levels, our setting will cause some quantization error. Future work

remains to compare ours at 64 levels.
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Table 5.3
Performance of the three algorithms (fish image)

Method Pentland Chaudhuri Our method (rock) Our method (fish)

Ranging error 6.58 4.05 1.887 1.822

RMS error 0.51 0.13 0.13 0.05
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5.2 Images Captured from Camera with Microfluidic Lens

In order to verify if the DfD algorithm can be applied to real time, we need to

test it also on image captured from a real camera. In this research, our test data is

collected from a single camera system that has been discussed in chapter 3.

Figure 5.21 shows the scheme when handling the images from a real camera.

Different from the synthetic ones, images obtained from a real camera with blur effect

come along with the noise and lens defects. Therefore, instead of simply applying

the same algorithm, we segment the image in parallel to the MAP estimator. Here

our development is based on the assumption that a segmented object has a same

depth over its surface. First a MAP estimation is performed, then with the help of

segmented image (we call it an atlas the algorithm will calculate the dominant pixels

for each class inside a certain region. The algorithm will put the whole region into

the class which turns out to be dominating the region.

Figure 5.22 is our test image set, (a) is the focused image, (b) is the defocused

image. There are two objects in the scene, one is located at 25cm from the camera,

the other is at 50cm. As described in Fig 5.21, we first segment Fig 5.22 (a) using

pyramid segmentation. The segmentation function is supplied by OpenCV, Figure

5.23 shows the result of pyramid segmentation. Once the original segmentation result

is prepared, the algorithm will process it with a median filter to remove detail. Fig

5.24 is the output of the median filter, which becomes the atlas for the MAP estimator.

In this research, we find that DfD algorithm appeared to be more accurate when

estimating the region which has the details. We have improved our algorithm based

on this fact by writing a post process module. Figure 5.25 shows the edges after

applying Canny [18] edge detection to the original focused image. Figure 5.26 (a)

shows the blur map obtained directly from DfD algorithm. We pass three inputs:

blurmap from DFD algorithm; edges of the scene; and the atlas. We first find all

the pixels belonging to the edges in the image, then we perform a region growing

by 10 pixels toward all directions, where the pixel value is obtained from the MAP
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Fig. 5.21. Segmentation-DfD algorithm scheme for images obtained
from single camera

estimation result. Figure 5.26 (b) shows the blur map after ignoring all the pixels

which are not close to the edges, where black region is where the pixels are eliminated.

In another words, Figure 5.26(b) is our final reference when calculating which class
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(a)

(b)

Fig. 5.22. Test images obtained from single camera: (a) Focused at
25cm (b) Defocused image

Fig. 5.23. Original segmentation result using pyramid segmentation
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Fig. 5.24. The atlas for MAP estimator

is dominating each segmented area. Finally, we calculate the the number of pixels in

each class inside every segmented region shown in Figure 5.24, and assign the class

label to the largest.

Fig. 5.25. Edges on the test image

After post processing the algorithm outputs the final blur map. Figure 5.27

presents this output. It is very clear that Figure 5.27 is an improvement compared

to Figure 5.26(a) because more pixels are estimated correctly. The weakness of the

pyramid segmentation is that it can only estimate the depth information when the

objects are segmented properly in a scene. Where there is no detail in image we do
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(a)

(b)

Fig. 5.26. (a)Blur map of test images obtained from DfD algorithm
(b) Pixels picked from the original blur map after adding the edge
information

not find the depth, and we assign k = 0 . Other depth cues can be used to get the

entire depth information of a scene, such as vanishing point or motion.

In the literature Namboodiri, Chaudhuri, and Hadap [3] proposed a combined

segmentation method similar to ours. However, we use pyramid segmentation and

Canny edge detection instead of graph-cut. Compared to their result, our results are

more clear and well grouped.

However there are also some weaknesses in our method. As we can see in Figures

5.28 (a) and (b), the pyramid segmentation does not produce good result if the

following happens:
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Fig. 5.27. Blur map obtained from segmentation-DfD algorithm

1. One object is blocking the other.

2. The objects have similar colors.

Another weakness is caused by our assumption that the objects are flat depth when

we dealing with the images captured from camera. If the object surface is non-flat or

not vertical to the lens plane, our algorithm will output an incorrect result. We also

find that the experimental result of camera scenes are inferior to the synthetic, and

more research is required to find the difference. In general, the depth inference is not

valid for flat areas, this problem is common in DfD, Depth from Disparity, and other

depth finding techniques. Therefore, other computer vision cues such as vanishing

point or motion analysis may improve results for flat colored scene of objects.
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(a)

(b)

Fig. 5.28. Problem caused by pyramid segmentation:(a) test image
(b) segmented image
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6. CONCLUSION

In this thesis we have proposed a new system structure which can be used to obtain

the depth information of a scene in real-time using a new DfD algorithm. It use a

MAP estimator and the MRF framework, augmented by an efficient segmentation

and edge detection method. The most important advantage of this system is it only

needs a single camera. Compared to two camera disparity, the system cost is lowered

We have described the mathematical basis for this research in Chapter 2. The

microfluidic lens we used in this work is discussed in Chapter 3, as well as our camera

system. To verify that our system is capable of doing the job mentioned above,

we first introduced the performance of the Microfluidic lens in chapter 4. Given

the response time, we show that the camera system is able to get the focused and

defocused image in a single frame time. With the results given in chapter 5, we show

that our algorithm is capable of producing the valid depth map both for synthetic

images and real aperture images. Also in Chapter 5, we compare our method to 2

other methods, and show our advantages and limitations.

During our experiments, two difficulties came from the camera system. We have

a prototype with optics that are imperfect, and the camera speed has a maximum of

30Hz. Future work will be to fix those problems. We believe that we can improve

our result based on better camera-lens system. Although the microfluidic lens is able

to change focus twice in a single frame time, the software loop controlling it needs to

be free of timing jitter. The throughout of the software solution does not complete

in a single frame time. Table 6.1 shows the running time for each step. Therefore

interesting work in the future is to port our algorithm to hardware, thereby improv-

ing the throughout significantly. The steps that would most benefit from hardware

acceleration are: create gaussian blur; MAP estimator; and post processing. Another

interesting application of our system is medical imaging. Since the microfluidic lens
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Table 6.1
Running time for each step in DfD algorithm (450x450 image)

Steps Running Time

Create Gaussian Blur 3.356s

Loading Data 0.125s

Segmentation 0.170s

Canny Edge Detection 0.143s

MAP-ICM 4.873s

Post Processing 0.842s

Total 9.509s (ICM)

is small, it can be added to a probe, and can be used to collect depth information

during surgery.

In this thesis we have developed an DFD algorithm, we have (<2%) error and

0.05 RMS error result for DFD where image has valid edges. Our execution time on

CPU for the whole algorithm is less then 2 minutes.
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