
Graduate School Form 30
Updated 1/15/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Kavit Shah

Secure Data Aggregation Protocol for Sensor Networks

Master of Science in Electrical and Computer Engineering

Dr. Brian King
Chair

Dr. Mohamed El-Sharkawy
 Co-chair

Dr. Paul Salama
Co-chair

Dr. Brian King

Dr. Brian King 2/26/2014

SECURE DATA AGGREGATION PROTOCOL FOR SENSOR NETWORKS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Kavit Shah

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2015

Purdue University

Indianapolis, Indiana

ii

ACKNOWLEDGMENTS

I would like to express my special appreciation and thanks to my advisor Brian

King who has been my teacher, guide and mentor during the entire thesis and Master’s

program. I am grateful to him for being a great role model for researcher and a mentor

in my life. I would like to thank him for encouraging me to do thesis and allowing

me to develop as a graduate student.

I would also like to thank the other members of my thesis committee: Paul Salama,

Mohamed El-Sharkawy and Sangkook Lee for letting my defense be an enjoyable

moment, and their brilliant comments and suggestions after the presentation.

I would also like to thank the entire academic staff of Electrical and Computer

Engineering Department at Indiana University Purdue University - Indianapolis for

being generous and helpful all the time.

Finally, I am thankful to my family for being patient and loving all the time. My

family’s financial and emotional support for me has been incredible. Their prayers

for me was what sustained me thus far.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

SYMBOLS . ix

ABBREVIATIONS . x

ABSTRACT . xi

1 INTRODUCTION . 1

2 SENSOR NETWORKS BACKGROUND 4

2.1 Applications . 4

2.2 Sensor Node Architecture . 6

2.3 Energy Consumption . 7

2.4 Resource Constraints . 9

2.4.1 Physical Limitations . 9

2.4.2 Hardware Limitations . 9

2.4.3 Transmission Medium . 10

2.4.4 Mobility . 11

3 CRYPTOGRAPHY TOOLS . 12

3.1 Symmetric Key Encryption . 12

3.2 Asymmetric/Public Key Encryption 12

3.3 Hash Function . 13

3.4 Message Authentication Codes . 15

3.5 Digital Signatures . 15

3.6 Summary . 17

4 DATA AGGREGATION BACKGROUND 18

4.1 Data Aggregation . 18

iv

Page

4.2 Bandwidth Analysis . 21

4.3 Resilient And Non-Resilient Aggregate Functions 22

4.4 Security Issues . 23

5 DATA AGGREGATION WITHOUT INTERNAL VERIFICATION . . . 26

5.1 Network Assumptions . 26

5.2 Attacker Model And Security Goal 27

5.3 The SUM Aggregate Algorithm of SHIA 28

5.4 Query Dissemination . 28

5.5 Aggregate Commit . 29

5.5.1 Aggregate Commit: Naive Approach 31

5.5.2 Aggregate Commit: SHIA’s Approach 32

5.6 Result Checking . 37

6 SYSTEM DESIGN . 40

6.1 Introduction . 40

6.2 System Design Specifications . 45

7 DATA AGGREGATION WITH INTERNAL VERIFICATION 47

7.1 Data-Item . 47

7.1.1 Signing and Verification of the Data-Item 49

7.1.2 Security Benefits . 49

7.2 Commitment Payload . 50

7.2.1 Security Benefits . 51

7.3 Key Differences . 52

7.3.1 Bandwidth . 53

7.4 Two Ways of Forwarding Payload 53

8 OUR PROTOCOL . 57

8.1 Query Dissemination . 57

8.2 Commitment Tree Generation . 57

8.3 Result Checking . 64

v

Page

8.3.1 Dissemination of Final Payload by the Base Station 64

8.3.2 Dissemination of Off-Path Values 64

8.3.3 Verification of Inclusion . 68

8.3.4 Collection of Authentication codes 68

8.3.5 Verification of Authentication Codes 69

8.3.6 Detecting An Adversary . 73

8.4 Analysis . 75

9 CONCLUSION AND FUTURE WORK 78

LIST OF REFERENCES . 79

vi

LIST OF TABLES

Table Page

2.1 System-on-Chip specifications for CC2538 from Texas Instruments imple-
menting IEEE 802.15.4 standards . 10

3.1 A comparison security primitives . 17

4.1 Summary of Wagner’s work . 23

7.1 Digital Certificate . 49

7.2 Data-Item Size . 53

8.1 Totality of Signatures Transmitted . 76

8.2 Totality of Certificates . 77

vii

LIST OF FIGURES

Figure Page

2.1 Sensor Node Block Diagram . 6

3.1 Two party communication using symmetric key encryption. 13

3.2 Two party communication using asymmetric key encryption. 14

3.3 Signing and verification of digital Signatures [25] 16

4.1 Routing River . 18

4.2 Star Network . 19

4.3 Palm Tree Network Topology . 22

5.1 Network graph . 29

5.2 Simplified Aggregation tree for network graph in Figure 5.1 30

5.3 Naive commitment tree for Figure 5.2. 33

5.4 A receives C2 from C, (B1, B0) from B, D0 from D and generates A0. The
received commitment forest are indicated by dashed-line box. 34

5.5 First Merge: A1 vertex created by A. 35

5.6 Second Merge: A2 vertex created by A. 35

5.7 Third Merge: A3 vertex created by A. 36

5.8 Off-path values of node u are highlighted with bold outline. 38

7.1 Palm Shaped Aggregation Tree . 51

7.2 Commitment Payload of Sensor Node C 51

7.3 Diamond Supply Chain. 54

8.1 Input node A has B1 and C1 in its forest. It aggregates these two trees
and constructs A2. 59

8.2 Aggregation Tree. 59

8.3 Transformation from B’s forest to its payload. Each dashed-line box shows
forest and solid-line box shows payload of the respective sensor node. . 60

8.4 C’s forest aggregation creating its payload. 61

viii

Figure Page

8.5 A’s forest: A receives three payloads from C,B,D and constructs A0 . 62

8.6 A’s forest: after first merge . 62

8.7 A’s forest: after second merge . 62

8.8 A’s payload : A sends this to the base station. 63

8.9 One Possible Commitment Tree . 66

8.10 A Commitment Tree With All Unique Vertices 73

ix

SYMBOLS

N Query nonce

H Hash function

x

ABBREVIATIONS

ACK Positive acknowledgment message

BER Bit error rate

FSwRD Forwarding signatures with resigning the data-items

FSwoRD Forwarding signatures without resigning the data-items

MAC Message authentication code

NACK Negative acknowledgment message

SHA Secure hash algorithm

SIA Secure information aggregation

SHIA Secure hierarchical in-network aggregation

xi

ABSTRACT

Shah, Kavit. MSECE, Purdue University, May 2015. Secure Data Aggregation Pro-
tocol for Sensor Networks. Major Professor: Brian King.

We propose a secure in-network data aggregation protocol with internal verifica-

tion, to gain increase in the lifespan of the network by preserving bandwidth. For

doing secure internal distributed operations, we show an algorithm for securely com-

puting the sum of sensor readings in the network. Our algorithm can be generalized

to any random tree topology and can be applied to any combination of mathemati-

cal functions. In addition, we represent an efficient way of doing statistical analysis

for the protocol. Furthermore, we propose a novel, distributed and interactive al-

gorithm to trace down the adversary and remove it from the network. Finally, we

do bandwidth analysis of the protocol and give the proof for the efficiency of the

protocol.

1

1. INTRODUCTION

Mark Weiser of Xerox PARC [1] invented the term ubiquitous computing in 1988

today which is known as Internet of Things (IoT). It is the scenario in which com-

puting is everywhere. It represents the scenario where devices that do not look like

computers have computational power. For example, street lights, door locks, kitchen

utensils and clothing have data processing power in them. The synergy between these

devices make the network do meaningful work. A wireless infrastructure is essential

for communications in such networks.

Kevin Ashton is a British technology pioneer who co-founded the Auto-ID Center

at the Massachusetts Institute of Technology, which created a global standard system

for RFID and other sensors. He is known for inventing the term Internet of Things

(IoT) to describe a system where the Internet is connected to the physical world via

ubiquitous sensors [3]. IoT means putting all kinds of devices on the Internet and

gaining efficiency from it. For example, Uber is a company built around location

awareness [4]. An Uber driver is a taxi driver with the real-time location awareness.

An Uber passenger knows when the taxi will show up. It is about eliminating slack

time and worry. It connects passengers, taxi drivers, smart phones and GPS in a way

that it provides an efficient and flexible way of transportation. In addition to that, the

Medical device manufacturers want medical instruments to report to analyze the data

and report it to a nursing station in timely fashion. In such scenario, each device by

becomes a network node. It takes advantage of the services offered by other nodes in

the network, instead of duplicating their work [2]. At the core of ubiquitous computing

and IoT, are the sensors generating data and wireless network providing transmission

medium for communications. Collectively, we refer these concepts as Sensor Networks

which enable economically viable solutions to a variety of applications.

2

In sensor networks, the sensors collect raw data, and the data is processed by

more powerful machines which converts the raw data into the information. Based on

the derived information an important action is taken. The error at any stage in the

process can create catastrophic situations. For example, speed sensor failure led to

crash of Air France flight - Airbus A330-203 AF 447 on 1st June 2009. France’s Bureau

of Investigation and Analysis (BEA) released the Airbus final report [5]. According

to an official report “ the pilots could not reclaim control as the plane dropped out

of the sky at a rate of 10, 000 feet per minute. The flight’s black boxes which were

found intact at the bottom of the Atlantic in early May. Their analysis reveals the

terrifying details of Air France flight 447’s literal dropping out of the sky. The co-

pilots encountered problem with the speed sensors four hours and 10 minutes into

the flight. The flight was operated by autopilot when the pilot took a routine rest

according to the schedule and ran out of the cockpit. They were knowingly headed

into a turbulent and storm-ridden spot over the Atlantic, and the black boxes show the

pilots attempted to maneuver around the storm slightly. For nearly a minute, as the

speed sensors jumped, the pilot was not present in the cockpit. By the time the pilot

returned, the plane had started to fall at 10, 000 feet per minute while violently rolling

from side to side. The plane’s speed sensors never regained normal functionality. The

plane began its three-and-a-half minute freefall and plunged into the Atlantic nose-

up. This accident killed all 228 passengers in the flight. The findings coincide with

investigators’ earlier theory that the sensors, known as pitot tubes, malfunctioned,

possibly because of ice at such a high altitude.” The sensor failure error generated the

bad data, resulting in the flight crash. The bad data can be generated by attacking the

sensor network and generating false data purposefully by an adversary. In addition

to, the small error in the system design could result in significant bad consequences.

For example, the recent data breach attack on the company Anthem, revealed Social

Security numbers and lots of private and secure details of approximately 80 million

customers of the company. It is considers as one of the biggest data breach in the of

medical customer data in the United States history [6].

3

In sensor networks, sensors are so blended into the physical world that they are

hard to distinguish from the physical objects. The sensors may blend into the physical

world so well that people will lose awareness of the computations happening behind

the scenes. To hide complexity is good from the usability perspective but it is a major

liability. This is a serious problem. Weiser [7] acknowledges: “If the computational

system is invisible as well as extensive, it becomes hard to know what is controlling

what, what is connected to what, where information is flowing, how it is being used,

what is broken and what are the consequences of any given action?”. The networks

where computing is invisible, and it is unclear who is responsible for what, detecting

an adversary is a challenging task. We think that the detecting an adversary is nec-

essary in sensor networks for countermeasures (a posteriori remedies). It is essential

for the longevity of the sensor network. Hence, we focus on designing the protocol

which helps detect an adversary in the sensor networks.

4

2. SENSOR NETWORKS BACKGROUND

Sensor networks are becoming ubiquitous in our day to day life. It is a scenario

in which network and computers are extremely inexpensive objects and they are

surrounded to real people all the time [2]. In this chapter, we introduce sensor

networks and its applications, we define basic terminologies and then we discuss

major barriers to achieve security in sensor networks.

2.1 Applications

In sensor networks, thousands of sensor nodes may interact with the physical world

and collectively monitor an area, generating a large amount of data to be transmitted

and reasoned about. With the recent advances in hardware technologies of sensors, we

can use tiny and cheap sensor nodes to obtain significant amount of useful data about

physical world. For example, we can use them to discover temperature, water quality,

lightning condition, humidity and pressure levels. We can also use them to know

certain characteristics of objects such as speed, direction, and size. These versatile

types of sensors, allow us to use sensor network in a wide variety of scenarios. For

example, sensor networks are used in military, environmental monitoring, health care,

scientific data collection, emergency fire alarm systems, traffic monitoring, wildfire

tracking, wildlife monitoring and many other applications.

Military Application Sensor networks can be used for enemy tracking, battlefield

surveillance or target classification [9]. For example, Palo Alto Research Center

tries to spot “interesting” vehicles (the vehicles marked specially) using motes

equipped with microphones or steerable cameras [10]. The goal is to synchro-

nize the sensor network to sense the track of a moving object with minimum

information loss about the track of a moving object.

5

Environmental Monitoring Sensor networks can be utilized to monitor a geo-

graphical location. For example, Meteorology and Hydrology in Yosemite Na-

tional Park [11], a sensor network was deployed to monitor the water system

across and within the Sierra Nevada. The goal was to collect the data and

derive information on natural climate fluctuation caused due to global warm-

ing. It also provided information on the increasing needs of water consumers.

Research of the water system in the Sierra Nevada is difficult, because of its

geographical structure. Sensor networks can be very useful in such situations

as they can operate with little or no human intervention.

Health Care Sensors can be used to monitor the patients around the clock. They

can report various statistics to the doctors and nurses regarding patients health.

Also, it can send reminders to them to take care of the patient periodically.

The most important criteria for the such networks are security and reliability.

Because based on the sensor readings, doctors decide what treatment or what

medicine to prescribe to the patients. If those readings are modified by an

adversary then the consequences might be lethal to the patients.

Sustainable Mobility Sensor networks can be used to build digitally connected

and coordinated vehicles. With the driver less cars from companies like Google,

autonomous vehicle systems seems the future of transportation. Autonomous

vehicle systems [12] describes how various various technologies in addition to

the sensor networks is used in making the sustainable mobility.

The applications of the sensor networks are enormous. The application platform

of a sensor network determines the design of the sensor nodes, the network protocol

and security architecture. As far as we know, there is no general architecture for

such design. Therefore, developing a protocol for sensor networks can certainly be

challenging.

6

2.2 Sensor Node Architecture

Sensor networks consists of an individual sensor node and the construction of

each node depends on the application. The major components of the sensor nodes

are shown in Figure 2.1 [15].

Fig. 2.1.: Sensor Node Block Diagram

Controller is the Central Processing Unit (CPU) of the node. It is responsible for

collecting data from the sensors and processing it to deriving useful information

from it. It also decides nodes for end to end communications and affects the

actuator’s behavior. It executes variety of algorithms, ranging from time-critical

signal processing and communication protocols to application algorithms.

Communication Device is utilized for trans receiving data between end hosts at

radio frequency. Radio Frequency(RF)-based communication is widely used

in sensor networks. RF based communications does not require line of sight

between sender and receiver. It also provides relatively long range communi-

cations capabilities and high data rates. It has an acceptable error rates at

reasonable energy consumption. All these characteristics, best fits the require-

ments of many sensor network applications. The most important function for

these devices are to convert a bit stream to radio waves and vice versa.

7

Sensors are the nodes generating raw data to be transmitted and analyzed by the

network. Passive sensors can measure a physical quantity without affecting the

environment at the point of deployment. For example, vibration, chemical sen-

sors sensitive for given substances and smoke detectors. Active sensors actively

probes the environment and generates raw information to be analyzed. For

example, a radar sensor or some types of seismic sensors creates shock waves

by small explosions into the sea to get the details about the earth. These are

very specific explosions and requires quite special permissions to carry out such

experiments.

Power Supply of Sensor Nodes is an important system component, too. Sensor

nodes can be powered by using normal AA battery which stores about 2.2 -

2.5 Ah at 1.5 V. To increase the longevity of the nodes and wireless sensor

networks we can use energy from a nodes environment “energy scavenging”.

For example, Photovoltaics effect is used in the solar cells, can be applied to

power supply module of the sensor nodes. Temperature gradients effect utilizing

the differences in temperature can be converted to electrical energy and can be

used to power sensor nodes.

The Memory Component is fairly straightforward. Random Access Memory (RAM)

can be used to store sensor readings, and temporary data. The operating system

code can be stored in Read-Only Memory (ROM). It is important to dimen-

sion RAM and ROM precisely, to reduce the manufacturing cost and power

consumption.

2.3 Energy Consumption

The sensor network’s lifetime can be maximized by minimizing the power con-

sumption of communication devices or trans receiver of the sensor nodes. The trans

receiver is responsible for all the wireless communications between nodes. To esti-

mate the power consumption, we have to consider the communication and compu-

8

tation power consumption. The trans receiver’s energy dissipation depends on two

main parameters [17]. The first is Eelec(J/b), the energy dissipated to run the trans-

mit or receive electronics. The second is εamp(J/m
2b), the energy dissipated by the

transmit power amplifier to achieve an acceptable signal to noise ratio Eb/No at the

receiver. We assume the d2 energy loss for transmission between sensor nodes since

the distances between sensors are relatively short [18]. To transmit a k - bit packet

at distance d, the energy dissipated is:

Etx(k, d) = Eelec · k + εamp · k · d2 (2.1)

and to receive the k - bit packet, the radio expends

Erx(k) = Eelec · k (2.2)

For µAmp wireless sensor, Eelec = 50nJ/b and εamp = 100pJ/m2b.

Trans receiver can be put into different states to save energy [15]. It can be in

either transmit or receive state and energy consumption of those states are describe

above. It can be in Idle state where it is ready to receive packet but is not currently

receiving anything. It can be in Sleep state where majority of the parts are switched

off, and is not able to receive immediately. To sustain the sensor network for longer

times all aspects of the sensor network should be efficient. For example, the network-

ing algorithm for routing should be such that it minimizes the distance d between the

nodes. The signal processing algorithm should be such that it process the networking

packets with less computations. It is shown in [17] that by using Fast Fourier Trans-

form (FFT) algorithm in the devices requires less communication between the sensor

nodes. To minimize the energy dissipation, a processor should operate at the lowest

possible voltage for a given clock frequency.

9

2.4 Resource Constraints

We introduce the parameters which should be taken into account while designing

secure protocol for sensor networks. These parameters can constrain the protocol

designer’s choices within the protocol.

2.4.1 Physical Limitations

Sensor nodes are often used in open, hostile and unattended environments. They

are vulnerable to physical attacks due to the lack of physical security available in their

environment. It allows an adversary to gain the secret information from a compro-

mised sensor node. An adversary can reprogram the sensor node with virus (malicious

software). The compromised node then report an arbitrary false sensor readings to

its parent node in the tree hierarchy, making the sensor readings unreliable and irrel-

evant. These attacks become more damaging when multiple adversaries succeeds in

inserting false data into the network which may cause catastrophic consequences [19].

2.4.2 Hardware Limitations

As far as we know, one of the first hardware platform for developing sensor net-

work application is MICA [20] developed by University of Berkeley. Another popular

platform is Mote from Intel [21]. Due to lower manufacturing cost of sensor nodes,

they have low speed processor, limited storage, a short range trans receiver. For ex-

ample, the major specifications for the latest ZigBee chip supporting IEEE 802.15.4

standard, CC2538 from Texas Instruments are shown in Table 2.1. This chip can do

most of the security algorithms but has really little amount of memory storage. It

has limited output power which constraints its transmission range which forces us to

use multi-hop routing in the network as one node can not communicate with the node

outside of its transmission range. These hardware limitations can constrain protocol

designer’s choice of algorithms for applications.

10

Table 2.1.: System-on-Chip specifications for CC2538 from Texas Instruments imple-

menting IEEE 802.15.4 standards

Device Type Wireless Micro controller

Frequency 2.4GHz

Processor Integration ARM Cortex-M3

Flash Up to 512 KB

RAM Up to 32 KB

Security AES-128/256; SHA2; RSA

RX Current 20 (mA)

Output Power 7 (dBm)

Data Rate(Max) 250 kbps

Type of Battery AAA; AA; Rechargable(Li-ION)

2.4.3 Transmission Medium

In sensor networks, a group of sensor nodes (or processors) communicate over the

radio (e.g., Blue-tooth, WLAN). Traditionally, wireless mediums have issues due to

synchronization, hidden station and expose station terminal problems, distributed

arbitration, directional antennas, bandwidth limitations, higher error rate, security,

scalability etcetera. For example, wireless networks have approximately 106 times

higher bit error rate (BER) than wired networks which causes frequent link loss and

then path loss. Hence, making unstable routing in the network. Higher BER creates

higher collision rate in the network, generating higher overhead of retransmission and

lowering the channel utilization and the throughput of the network. This kind of

transmission medium with constrained resources makes it challenging to design the

reliable networking protocol as we have to consider all the possible retransmissions.

11

2.4.4 Mobility

As we know, sensor nodes communicate via radio and the availability of the trans-

mission medium changes over time due to link failure, bandwidth limitations or change

in network topology. Nodes may be mobile creating the instability of the network link,

which require the reconfiguration and special protocol to redesign the network. The

mobility issue makes difficult to do the routing in the network with the directional

antennas in place. It also requires network to be agile enough to do the reconfigura-

tion for the newer network topology. It impedes while doing the quality of service in

the network.

All these parameters combined contributes to making strong assumptions on the

network topology while designing the protocol for sensor networks.

12

3. CRYPTOGRAPHY TOOLS

The word cryptography means “secret writing”. It is the art and science of hiding

the information from malicious or unauthorized parties. Cryptanalysis is the sci-

ence of cracking cryptography schemes. Formally, the fundamental components of

cryptography is a cryptosystem [22].

Definition 3.0.1 A cryptosystem is a system consisting of 5-tuple (E ,D,M,K, C),

where E :M×K → C is the set of enciphering functions, and D : C ×K →M is the

set of deciphering functions. M is the set of plaintexts, K is the set of keys, C is the

set of ciphertexts,

3.1 Symmetric Key Encryption

An encryption scheme made with the sets of encryption set {Ee : e ∈ K} and

decryption transformations {Dd : d ∈ K}, where K is the key space. The encryption

scheme is said to be symmetric-key if for each associated encryption and decryption

key pair (e, d), it is computationally “easy” to determine d given e, and to determine

e from d [23]. In many major symmetric-key schemes e = d. The communication

protocol between two parties Alice and Bob, using symmetric key encryption scheme

is shown in Figure 3.1. The major road block with symmetric key system is to find

an optimal solution to agree upon for securely doing the exchange keys between two

entities, which is known as key-distribution problem [23].

3.2 Asymmetric/Public Key Encryption

Consider an encryption scheme where {Ee : e ∈ K} is a set of encryption transfor-

mations, and {Dd : d ∈ K} be the set of corresponding decryption transformations,

13

Fig. 3.1.: Two party communication using symmetric key encryption.

where K is the key space. Any pair of related encryption-decryption transformations

(Ee, Dd) and assuming that each pair has the property that knowing Ee it is compu-

tationally infeasible, given a random cipher text c ∈ C, to find the message m ∈ M

such that Ee(m) = c. It implies that given the encryption key e, it is impossible

for an adversary to determine the related decryption key d. This is contrary to the

symmetric key schemes in which e and d are the same [23]. The communication pro-

tocol between two parties Alice and Bob, using asymmetric key encryption scheme is

shown in Figure 3.2.

3.3 Hash Function

A hash function takes a message as its input and outputs a fixed length message

called hash code. The hash code represents a compact image of the message like a

14

Fig. 3.2.: Two party communication using asymmetric key encryption.

digital fingerprint. Hash functions are essential mathematical tools to achieve data

integrity. A hash function should have the security properties like Compression, Ease

of computation, Preimage resistance, Collision resistance. Compression means a hash

function converts an input of random finite bit length, to a fixed bit length n. Ease

of computation means given the hash function and input, it is easy to compute the

output. Preimage resistance means given the outputs, it is impossible to discover any

input whose hashed output maps to the given output. Collision resistance means it

is hard to construct two unique inputs which hashes to the same value. SHA-256, is

a 256-bit hash and assures 128 bits of security against collision attacks [24]. For most

of the applications 128 bits security is adequate.

15

3.4 Message Authentication Codes

A Message Authentication Code (MAC) is a group of hash functions parameterized

by a secret key k, also known as keyed hash function (hk). It should have the security

properties properties like Ease of computation, Compression, Computation-resistance

similar to the described for hash functions. If all these properties are not satisfied

then a MAC algorithm can be attacked with MAC forgery.

3.5 Digital Signatures

A digital signature is a cryptographic scheme providing the security services of

the authenticity, integrity and non-repudiation of a digital message. A valid digital

signature provides a proof to a recipient that the message was created by an authentic

sender, such that the sender cannot deny having created and sent the message. It

also guarantees that the message was not altered during the transmission. A Digital

Signature scheme consists of the following:

1. a plain text message space M (set of strings over alphabets)

2. a signature space S (set of possible signatures)

3. a signing key space K (set of possible keys for signature generation) and a

verification space K′
(a set of possible verification keys)

4. an efficient key generation algorithm Gen : N → K×K′

5. an efficient signing algorithm Sign : M×K → S

6. an efficient verification algorithm Verify : S ×M→ {true, false}

For any secret key sk ∈ K and any m ∈ M, the message m is signed using key sk as

follows:

s = Signsk(m) (3.1)

16

For any sk let pk denote public key and for all m ∈M and s ∈ S, s as follows:

Verifypk(m, s) =

true with probability of 1 if s = Signsk(m)

false with overwhelming probability if s 6= Signsk(m)

(3.2)

where the probability space is determine by theM,S,K,K′
and perhaps the signing

and verification algorithms. The “overwhelming probability” for the signature scheme

determines the probability that the scheme allows for a forgery. In Figure 3.3, we show

the steps for signing and verifying the hashed message [25]. The message is hashed

Fig. 3.3.: Signing and verification of digital Signatures [25]

before its being signed to reduce the message size. If the message is not hashed before

signing then the signature can be longer than the message which is problematic for

the longer messages.

17

In the Digital Signature scheme only the owner of the secret key can generate a

valid signature. The digital signature is easily verified by other parties as long as

they know the public key. The digital signature is not only tied to the signer but also

to the message that is being signed. Digital signatures do not encrypt the message.

However, if necessary, a signed message can be encrypted after it is signed.

3.6 Summary

Three different integrity-protection mechanisms HASH, MAC, Signature can be

summarized in a matrix like Table 3.1 [2]. These primitives differ from the partys’

capabilities of generating and verifying the code which depends on the application.

Table 3.1.: A comparison security primitives

Who can generate it Who can verify it

Hash Everyone Everyone

MAC Holders of secret Holders of secret

Signature Holder of secret Everyone

18

4. DATA AGGREGATION BACKGROUND

Data aggregation is an important primitive for wireless routing in sensor networks.

The basic concept is to compress the data coming from different sources enroute

eliminating redundancy, minimizing the number of transmissions and thus saving

energy [26]. The necessary functionality of sensor networks is the ability to reply

the queries initiated by the base station. For example, in Figure 4.1 [27] the base

station who initiates the query to the sensor network might be at the end of the river.

The sensor nodes may lie on both sides of the river and they have to response to the

queries of the base station. The transreceiver module in the sensor nodes has a limited

transreceiving range. So, the sensor nodes cannot communicate to the base station

in peer-to-peer fashion. The sensor nodes have to communicate via hop-by-hop to

the base station. This resource constraint forces us to design distributed protocol for

sensor networks.

Fig. 4.1.: Routing River

4.1 Data Aggregation

The sensor nodes in the network often have limited resources, such as compu-

tational capability, memory storage, transmission capacity and the most important,

battery power. The wireless data communications between nodes consume a large

19

portion of the total energy consumption. In-network data aggregation techniques

allow the sensor nodes to aggregate the data before sending it to their parents. This

technique reduces the wireless communication happening between the nodes and the

overall energy consumption in the network. For instance, in-network data aggregation

of the SUM function can be executed as follows. All the intermediate sensor nodes in

the network, receives the sensor readings from all of their children. They aggregate

all those readings by applying the summation function to those readings. A network,

which has the star topology, shown in Figure 4.2. The root of the tree receives the

Fig. 4.2.: Star Network

following sensor readings S1(10), S2(14), S3(12), S4(15), S5(11), S6(17). The root has

its own reading of S0(15). The root node aggregates these seven readings and creates

an aggregated result as follows:

S =
6∑
i=0

Si (4.1)

Now, instead of sending all those sensor readings one at a time to its parent, it

can send one aggregated sensor reading. In this example the aggregate function is

summation, but it can be replaced with other statistical functions such as average,

median, count etcetera with little or no modification.

According to [28], data aggregation can be defined as follows. Let’s consider a

sensor network with n sensors collecting data. The collected data will be transmitted

to the base station using hop-by-hop communication. The base station aggregates

the received data and creates useful information by analyzing it. This can be written

20

as f(x1, x2, ..., xn) where x1, x2, ..., xn are the sensor readings. The function f is

some mapping f : D1 × D2 × ...Dn → I, where Di represents sensor i’s domain and

I represents the set of all possible information. Thus the goal is to compute the

information as follows:

y = f(x1, x2, ..., xn) (4.2)

It is shown that the energy savings achieved by in-network data aggregation are

significant [29]. The in-network data aggregation approach requires the sensor nodes

to do more computations. But studies have shown that wireless communication of

data transmission requires more energy than local computation of the data. In-

network data aggregation is an efficient and a widely used approach for saving band-

width by doing less wireless communications between sensor nodes and ultimately

giving longer battery life to sensor nodes in the network.

We define the following terms to help us define the goals of in-network data ag-

gregation.

Definition 4.1.1 [30] Payload is the part of the transmitted data which is the

fundamental purpose of the transmission, to the exclusion of information sent with it

such as meta data solely to facilitate the delivery.

Definition 4.1.2 For a given node Information rate is the ratio of the number of

sent payloads over the received payloads.

The goal of the aggregation process is to achieve the lowest possible information-

rate. In the following sections, we show that lowering information rate makes the

intermediate sensor nodes (aggregator) more powerful. In addition to that, it makes

aggregated payload more fragile and vulnerable to various security attacks. Hence,

to provide security services to data aggregation protocol is very critical.

21

4.2 Bandwidth Analysis

Congestion is a widely used parameter while doing bandwidth analysis of net-

working applications. The congestion for any given node is defined as follows:

Node congestion = Edge congestion · Fanout (4.3)

Congestion is a useful factor while analyzing sensor network as it quantifies how

fast the sensor nodes will use their battery power [31]. Some nodes in the sensor

network have more congestion than the others, the highly congested nodes are the

most important to the the network connectivity. For example, the nodes closer to

the base station are essential for the network connectivity. The failure of the highly

congested nodes may cause the sensor network to fail even though most of the nodes

in the network are alive. Hence, it is desirable to have a lower congestion on the

highly congested nodes even though it costs more congestion within the overall sensor

network. To distribute the congestion uniformly across the network, we can construct

an aggregation protocol where each node transmits a single payload as Definition 4.1.1

to its parent in the aggregation tree. In this approach, the fanout (δ) depends on the

given aggregation tree. For example, in the aggregation tree shown in Figure 4.2, with

n nodes, organized in the star tree topology, we see the congestion is O(n). For the

network organized in the palm tree topology, as shown in Figure 4.3, the congestion

is θ(1). This approach can create some highly congested nodes in the aggregation

tree which is undesirable. In most of the real world applications, we cannot control δ

as the aggregation tree is random. Hence, it is desirable to have uniform distribution

of congestion across the aggregation tree.

Even though network topology can be random, in our observation, palm tree, star

tree, binary tree are widely used network topologies to do the performance analysis.

In the following chapters, we describe how to run our protocol for any random aggre-

gation tree. In the end, we do bandwidth analysis of the protocol for star, palm and

binary trees.

22

Fig. 4.3.: Palm Tree Network Topology

4.3 Resilient And Non-Resilient Aggregate Functions

Wagner [32] uses statistical estimation theory to quantify the effects of direct data

injection on different aggregates functions.

Definition 4.3.1 [33] A Direct Data Injection attack occurs when an adversary

modifies the data readings reported by the nodes under its direct control, under the

constraint that only legal readings in [0, r] are reported.

Definition 4.3.2 [32] An aggregation function f is (k, α)-resilient (with respect to

a parameterized distribution p(Xi|θ)) if rms∗(f, k) ≤ α · rms(f) for the estimator f .

The author’s intuition is that the (k, α)-resilient functions are the ones that can be

computed with integrity in the presence of up to k malicious nodes (for small values

of α). According to this study which measures the effects of direct data injection

on different aggregate functions, concludes that the aggregates truncated SUM and

AVERAGE can be resilient under such attacks.

23

Table 4.1.: Summary of Wagner’s work

Aggregate(f) Security Level

minimum insecure

maximum insecure

sum insecure

average insecure

count acceptable

[l, u]-truncated average problematic

5% -trimmed average better

median much better

4.4 Security Issues

The aggregation schemes can be compared with compression schemes. “Lossless

data compression” [34] produces a compressed file from which the original data can

be recovered exactly. Facsimile uses lossless data compression. However, lossless

data compression schemes are limited in the compression rates they can achieve.

“Lossy data compression” [34] schemes produces a compressed file from which only an

approximation to the original information can be recovered. Much higher compression

ratios are possible. The aggregation scheme will be a lossy data compression because

once the base station receives the final aggregated value it can not create the original

sensor readings of the sensor nodes. It is very important that the base station has very

high confidence in the received final aggregated value. For example, in Equation 4.2

Sensor II’s reading is changed from x2 (the “true reading”) to x′2 by an intermediate

aggregator, then an aggregate node computes y′. It is very likely that y′ 6= y where

y is the true information if the true reading was counted. The base station takes an

action based on the received information y′. It could be dangerous to act using false

data y′.

24

As we know, in-network data aggregation technique saves bandwidth by transmit-

ting less payloads between sensor nodes thus increasing the lifetime of the network.

Designing one such protocol for the sensor networks poses a numerous challenges due

to resource limitations and inherent characteristics discussed in the previous chap-

ter. Moreover, this technique empowers intermediate aggregate sensor nodes in the

network by allowing them to control certain portion of the network. A malicious

intermediate sensor node who does aggregation over all of its descendants payloads,

needs to tamper with only one aggregated payload instead of tampering with all the

payloads received from its descendants. Thus, a malicious intermediate sensor node

needs to do less work to skew the final aggregated payload. An adversary control-

ling few sensor nodes in the network can cause the network to return unpredictable

payloads, making an entire sensor network unreliable. Intermediate sensor nodes

adversarial power is proportional to their number of descendants.

While applying the data-aggregation techniques the integrity of the sensor read-

ings becomes more valuable. As one or few faulty sensor readings can deviate the

final aggregated result. For example, National Snow and Ice Data Center on June

3, 2008 [35] reported that Arctic sea ice extent had declined as the summer approaches.

Everyday ice extents in May continued to be below the long-term average. Eventually

it reached the all time low levels. The spring ice cover was thin caused by the forma-

tion of several polynyas in the ice pack. The Defense Meteorological Satellite Program

(DMSP) F13 [36] satellite, which had been central to their Arctic sea ice analysis for

the past several years, is nearing the end of its mission. As the standard data prac-

tice, they have transitioned to a newer sensor, in that case the DMSP F15 [37]. The

DMSP F15 had the same type of sensor as the DMSP F13. NSIDC had done pre-

liminary inter calibration to assure consistency with the historical record. They said

that due to the inter calibration errors the final reported ice extent values might differ

on average ±30, 000 square kilometers per preliminary number reported. The faulty

sensor readings can be caused due to malfunctioning sensors, the active attacks on

true sensor readings or incorrect interpretations of the data, which can generate false

25

data and cause catastrophic situations. Hence, it is necessary to take account for false

data in your input and take countermeasure while using data-aggregation techniques.

Despite the fact that in-network aggregation makes an intermediate sensor nodes

more powerful and aggregated value more vulnerable to various security attacks,

some aggregation approaches requires strong network topology assumptions or honest

behaviors from the sensor nodes. For example, in-network aggregation schemes in [31,

38] assumes that all the sensor nodes in the network are honest. Secure Information

Aggregation (SIA) of [39] enables secure data aggregation such that the base station

accepts the data with high probability if the aggregated result is within an acceptable

range. The base station can detect malicious activity with overwhelming probability

and rejects all the out of range results. The SIA provides probabilistic security for

the network topology with a single-aggregate model.

Secure hierarchical in-network aggregation (SHIA) in sensor networks [33] presents

the first secure sensor network data aggregation protocol for random networks single

as well as multiple adversaries. We discuss the details of the protocol in the next

chapter. SHIA bounds the adversary’s capacity to tamper with the aggregation result

with the tightest bound possible. But it does not help detecting an adversary in the

network. We build our work on the foundation of SHIA, which allows to track down

the adversary and remove it from the network.

26

5. DATA AGGREGATION WITHOUT INTERNAL

VERIFICATION

Secure hierarchical in-network aggregation (SHIA) [33] presents the first and prov-

ably secure sensor network data aggregation protocol without internal verification.

It is designed for general networks with single or multiple adversaries. Our work en-

hances SHIA, by making it communication efficient, adds new security services to the

protocol, achieves similar security goals with non-resilient aggregation functions and

efficient ways of analyzing the protocol. In this chapter, we summarize the important

parts of SHIA and relevant terms, to build the foundation to describe our protocol in

the following chapters.

5.1 Network Assumptions

We assume a multi hop network with a set S = {S1, ..., Sn} consisted of n sensors

where all sensors are within communication range and generating heartbeats. The

rooted tree topology is constructed from the given network graph which can be con-

structed using any tree generation algorithms. The trusted base station is located in

the outskirts of the network. The base station has more computation power, storage

capacity then the sensor nodes in the network 1. The base station is aware of the

total number of sensor nodes in the network and the network topology. It also has

the capacity to directly communicate with every sensor node in the network using au-

thenticated broadcast. All the wireless communications between the sensor nodes are

peer-to-peer. We assume absence of the local wireless broadcast in the network. Each

sensor node S has a unique ID and it shares a unique secret symmetric key KS with

the base station. The symmetric keys enable message authentication between the

1SHIA names the base station as the querier and the root of the tree as the base station.

27

sensor node and the base station. It also allows data encryption in the network if the

data confidentiality is required. All the sensor nodes are capable of doing symmetric

key encryption and symmetric key decryption. They are also capable of computing

collision resistant cryptographic hash function.

5.2 Attacker Model And Security Goal

We assume that the malicious or compromised node can misconduct in any random

way. We assume that the adversary has computational resources no more than poly-

nomial in terms of the security parameter. Hence, it is called polynomially bounded

attacker model [39]. It can full control over any fraction of nodes in the network. For

example, the adversary can tamper with the reported data by the sensors under its

control and forward false aggregated result. In addition to that, an adversary could

ignore its children’s reading completely and aggregate fictitious values and forward

the garbage aggregated result. In such a case, the base station receives the inaccurate

aggregated data. Many applications rely on the information received or derived by

the base station to take critical decision and act upon it.

We concentrate on stealthy attacks. According to [39] in stealthy attacks “an

adversary has the goal of to make the base station accept false aggregation results,

which are significantly different from the true results determined by the measured

values, while not being detected by the base station.” In this setting, denial-of-

service (DoS) attacks such as not responding to the queries or always responding

with negative acknowledgment at the end of verification phase clearly indicates to the

base station that something is wrong in the network and therefore is not a stealthy

attack. One of the security goals of SHIA is to detect the stealthy attacks. One of the

security goals of our work is to detect an adversary who caused the stealthy attacks

and remove it from the network to prevent these attacks in the future.

28

Without precise knowledge of application, the direct data injection attacks are

indistinguishable from the malicious sensor readings. The goal of SHIA is to design

an optimally secure aggregation algorithm with only sublinear edge congestion.

Definition 5.2.1 [33] An aggregation algorithm is optimally secure if, by tampering

with the aggregation process, an adversary is unable to induce the base station to

accept any aggregation result which is not already achievable by direct data injection.

5.3 The SUM Aggregate Algorithm of SHIA

In this algorithm, the aggregate function f is summation meaning that we want

to calculate a1 + a2 + . . . + an, where ai is the reading of the sensor node i. The

algorithm has the following three main phases.

Query dissemination, initiates the aggregation process.

Aggregate commit, initiates the commitment tree generation process.

Result checking, initiates the distributed, interactive verification process.

5.4 Query Dissemination

Prior to this phase, an aggregation trees is created using a tree generation al-

gorithm. We can use any tree generation algorithm as this protocol works on any

aggregation tree structure. For completeness of this protocol, one can use Tiny Ag-

gregation Service (TaG) [29]. TaG uses broadcast message from the base station to

initiate a tree generation. Each node selects its parent from whichever node it first

receives the tree formation message. One possible aggregation tree for given network

graph in Figure 5.1 is shown in Figure 5.2. To initiate the query dissemination phase,

the base station broadcasts the query request message with the query nonce N in the

aggregation tree. The query request message contains new query nonce N for each

query. The fresh nonce is used for each new query to prevent replay attacks in the

network.

29

Fig. 5.1.: Network graph

5.5 Aggregate Commit

The aggregate commit phase constructs logical commitment tree to the data values

and to the intermediate aggregated data-values on top of the aggregation tree. These

logical commitment trees are then propagated to the base station by the root node in

an aggregation tree. The base station then broadcasts the logical commitment trees

in the aggregation tree using an authenticated broadcast. Using these commitment

values the rest of the network can verify that their respective data values have been

incorporated into the final aggregate value. The commitment tree is a logical tree

built on top of an aggregation tree.

30

Fig. 5.2.: Simplified Aggregation tree for network graph in Figure 5.1

Definition 5.5.1 [33] A commitment tree is a tree where each vertex has an asso-

ciated label representing the data that is passed on to its parent. The labels have the

following format:

<count, value, complement, commitment>

where count is the number of leaf vertices in the subtree rooted at this vertex; value

is the SUM aggregate computed over all the leaves in the subtree; complement is

the aggregate over the COMPLEMENT of the data values; and commitment is a

cryptographic commitment.

For example, the sensor node A creates the label for the leaf vertex A0 as follows :

XXXXXXXXXXA0 = < Acount, Avalue, Avalue, Acommitment >

where Avalue is the sensor data collected by A, Avalue = r − Avalue with r being the

upper bound on legal data values in the accepted range. The values of Acount = 1,

31

and Acommitment = Aid which is unique ID of A as A0 is the leaf vertex of A. Internal

vertices in the commitment tree represent aggregation operations, and have labels

that are defined based on their children. Suppose an internal node I has child vertices

with the following labels : A1, A2, . . . , Aq, where Ai = < Aicount, Aivalue, Aivalue,

Aicommitment>. The label for the internal vertex Ij is given as follows:

Ij = < Ijcount, Ijvalue, Ijvalue, Ijcommitment >

Ijcount =
∑
Aicount

Ijvalue =
∑
Aivalue

Ijvalue =
∑
Aivalue

Ijcommitment = H[N ||Ijcount||Ijvalue||Ijvalue||A1||A2|| . . . ||Aq]

The word vertex is used for the node in the commitment tree and the node is used

for the node in the aggregation tree. There is a mapping between the node in the

aggregation tree and the vertices in the commitment tree. A vertex is a logical element

in the commitment tree where as the node is a physical sensor node which does all

the local computations and wireless communications. The commitment field in the

label is calculated using collision resistant hash function which makes impossible for

an adversary to change the commitment structure once it is sent to the base station.

5.5.1 Aggregate Commit: Naive Approach

In the naive approach, during aggregation process each sensor node calculates the

cryptographic hash of all its inputs which includes its own data value. The aggregation

result along with the hash value called a label, is then passed on to the parent in the

aggregation tree. The commitment tree for the aggregation tree of Figure 5.2 is shown

in Figure 5.3 .

In this example, the node B receives E0 from E, F0 from F and has its own leaf

vertex B0. The node B aggregates all three vertices by creating a new vertex B1 and

sends B1 to its parent node A. The label of an internal vertex B1 is defined as follows:

XXXXXB1 = < 3, B1value, B1value, H[N ||3||B1value||B1value||B0||E0||F0] > .

32

All the intermediate nodes receives labels from their children and aggregates them

including its own data item. The labels of all the intermediate vertices on the path

of the leaf node to the root node for the commitment tree are given as follows:

I0 = < 1, Ivalue, Ivalue, Iid >

H1 = < 2, H1value, H1value, H[N ||2||H1value||H1value||H0||I0] >;

XXXXXH1value = Ivalue +Hvalue

B1 = < 3, B1value, B1value, H[N ||3||B1value||B1value||B0||E0||F0] >;

XXXXXB1value = Bvalue + Evalue + Fvalue

C1 = < 4, C1value, C1value, H[N ||4||C1value||C1value||C0||G0||H1] >;

XXXXXC1value = Cvalue +Gvalue +H1value

A1 = < 9, A1value, A1value, H[N ||9||A1value||A1value||A0||D0||B1||C1] >;

XXXXXA1value = Avalue +Dvalue +B1value + C1value.

In the naive approach the information rate is 1/n where n is the number of children

for the given node. As each node aggregates all the labels into one label before sending

it to the parent node.

5.5.2 Aggregate Commit: SHIA’s Approach

The aggregation tree is a subset of the network graph so it can be unbalanced

meaning not having uniform distribution of nodes. This approach tries to isolate the

the commitment tree from the aggregation tree by making a commitment tree protocol

independent of the input network tree. This approach constructs the commitment

tree which are complete binary trees. In the naive approach, each sensor node always

computes the aggregate sum of all its inputs which is a greedy approach. SHIA uses

delayed aggregation approach, which performs an aggregation operation if and only

if it results in a balanced binary commitment tree.

SHIA’s elaborates aggregation algorithm for producing balanced commitment

trees is as follows [33]: “ In the naive commitment tree, each sensor node passes

to its parent a single message containing the label of the root vertex of its commit-

33

Fig. 5.3.: Naive commitment tree for Figure 5.2.

ment subtree Ts. In the delayed aggregation algorithm, each sensor node passes on

the labels of the root vertices of a set of commitment subtrees F = {T1, . . . , Tq}. We

call this set a commitment forest, and we enforce the condition that the trees in the

forest must be complete binary trees, and no two trees have the same height. These

constraints are enforced by continually combining equal-height trees into complete

binary trees of greater height.

Definition 5.5.2 [33] A commitment forest is a set of complete binary commitment

trees such that there is at most one commitment tree of any given height.

The commitment forest is built as follows. Leaf nodes in the aggregation tree originate

a single-vertex commitment forest, which they then communicate to their parent

nodes. Each internal node I originates a similar single-vertex commitment forest. In

34

addition, I also receives commitment forests from each of its children. The node I

keeps track of which root vertices were received from which of its children. It then

combines all the forests to form a new forest as follows. Suppose I wishes to combine

q commitment forests F1,. . . ,Fq. Note that since all commitment trees are complete

binary trees, tree heights can be determined by inspecting the count field of the root

vertex. We let the intermediate result be F = F1 ∪ . . . ∪ Fq, and repeat the following

until no two trees are the same height in F . Let h be the smallest height such that

more than one tree in F has height h. Find two commitment trees T1 and T2 of height

h in F , and merge them into a tree of height h + 1 by creating a new vertex that is

the parent of both the roots of T1 and T2 according to the inductive rule in Definition

5.5.1”.

The following example illustrates the commitment tree generation process for the

node A of Figure 5.2.

Fig. 5.4.: A receives C2 from C, (B1, B0) from B, D0 from D and generates A0. The

received commitment forest are indicated by dashed-line box.

35

A0 =< 1, Avalue, Avalue, Aid >

D0 =< 1, Dvalue, Dvalue, Did >

E0 =< 1, Evalue, Evalue, Eid >

B1 =< 2, B1value, B1value, H(N ||2||B1value||B1value||B0||F0) >

C2 =< 4, C2value, C2value, H(N ||4||C2value||C2value||H1||C1) >

Fig. 5.5.: First Merge: A1 vertex created by A.

A1 = < 2, A1value, A1value, H(N ||2||A1value||A1value||A0||D0) >;

XXXA1value = Avalue +Dvalue; A1value = Avalue +Dvalue.

Fig. 5.6.: Second Merge: A2 vertex created by A.

36

A2 = < 4, A2value, A2value, H(N ||4||A2value||A2value||B1||A1) >;

XXXA2value = A1value +B1value; A2value = A1value +B1value.

Fig. 5.7.: Third Merge: A3 vertex created by A.

A3 = < 8, A3value, A3value, H(N ||8||A3value||A3value||C2||A2) >;

XXXA3value = A2value + C2value; A3value = A2value + C2value

Once the base station has received the all the logical commitment trees also known

as the final commitment forest from the root node, it verifies that none of the SUM or

COMPLEMENT are negative. If any of those are negative then the base station does

not accept the aggregated result and alerts the network notifying that it has detected

tampering of data values. If both the fields are positive then the base station then

proceeds further, and verifies that SUM + COMPLEMENT = nr where r is the

largest allowed legal data value for each node. On successful verification, the base

station then begin the next phase of result checking.

37

5.6 Result Checking

SHIA presents novel distributed verification algorithm, achieving provably optimal

security while maintaining sublinear edge congestion. In our work, we take similar

approach and add new capabilities to help find an adversary. SHIA’s result checking

phase is given as follows : “The purpose of the result checking phase is to enable

each sensor node I to independently verify that its data value (Ivalue) was added

into the SUM aggregate, and the complement Ivalue of its data value was added into

the COMPLEMENT aggregate. First, the base station sends the aggregation results

from the aggregation commit phase to every sensor node in the network using authen-

ticated broadcast. Each sensor node then individually verifies that its contributions

to the respective SUM and COMPLEMENT aggregates were indeed counted. If so,

it sends an authentication code to the base station. The authentication code is also

aggregated for communication efficiency. When the base station has received all the

authentication codes, it is then able to verify that all sensor nodes have checked that

their contribution to the aggregate has been correctly counted.” The result checking

process has the following phases.

Distributing Final Commitment Values In this phase, the base station sends

each of the received commitment labels to the entire network using authenti-

cated broadcast. Authenticated broadcast means that each sensor node can

verify that the message was sent by the base station and no one else.

Distributing Off-path Values Each vertex must receive all of its off-path values

to do the verification. The off-path values are defined as follows.

Definition 5.6.1 [33] The set of off-path vertices for a vertex u in a tree is

the set of all the siblings of each of the vertices on the path from u to the root

of the tree that u is in (the path is inclusive of u).

Vertex receives its off-path values from its parent. Each internal vertex has two

children. For example, an internal vertex k has two children k1, k2. k transmits

38

Fig. 5.8.: Off-path values of node u are highlighted with bold outline.

the label of k1 to k2 and vice versa. k tags the relevant information of its left

and right child. Once a vertex receives all of its off-path values it begins the

verification phase.

Verification of Contribution In this phase, the leaf vertex calculates the root ver-

tex’s label using its own label and off-path vertex labels received from its parent.

It compares the the calculated root vertex’s label with the label received from

the base station. If those two labels match then it proceeds to the next step with

Acknowledgment (ACK) message or with Negative Acknowledgment (NACK)

message. This allows the leaf to verify that its label was not modified on the

path to the root during the aggregation commit phase.

Collection of Authentication Codes Once each sensor node verifies its contri-

bution to the root label it proceeds further to transmit the relevant message

authentication code to its parent in the aggregation tree. The message authen-

tication codes (MAC) for sensor node A with ACK and NACK are given as

39

follows : MACskA(N||ACK),MACskA(N||NACK) where ACK and NACK unique

message identifier for positive and negative acknowledgment respectively, MAC

is the message authentication algorithm, N is the query nonce and skA is se-

cret key that node A shares with the base station. Collection of authentication

code starts with the leaf nodes in the aggregation tree. The leaf nodes in the

aggregation tree transmit their authentication codes to their parent. Once the

parent node has received the authentication from all of its children it does XOR

operation on all the authentication codes including its own authentication code

and sends it to its parent in the aggregation tree hierarchy. Each internal node

in the aggregation tree repeats the process. Finally, the root of an aggregation

tree sends a single authentication code to the base station which is an XOR of

all the authentication codes of the aggregation tree.

Verification of confirmations Since the base station shares the secret key of all

the nodes in the network, it computes the following:

n⊕
i=1

MACski(N||ACK)

Then it compares the computed code with the received code. If those two codes

match, then the base station accepts the aggregation result.

Hence, SHIA achieves security over the Truncated SUM which is a resilient ag-

gregator according to Wagner [32]. Our protocol enhances SHIA to achieve desired

security over the SUM which is non-resilient aggregate.

40

6. SYSTEM DESIGN

Here we elaborate the rationale behind the design specifications of our secure aggre-

gation protocol for sensor networks, the mechanism used to achieve it and implemen-

tation details.

6.1 Introduction

The most significant design aspect of the sensor network is the longevity of the

sensor network. A sensor network tends to have limited life span as they are pow-

ered by the battery. The lifetime of the sensor network is inversely proportional to

the sensor nodes’ power consumption. One of the most dominating factor for the

power consumption is transmitting and receiving data between sensor nodes, mak-

ing network bandwidth an expensive resource. The bandwidth is a more expensive

resource than the local data computation, as trans-receiving activity consumes more

power than computation. The obvious solution to increase the lifespan of the sensor

network is to decrease the bandwidth usage in the network. As we know, data aggre-

gation techniques can greatly reduce the bandwidth usage in the network, increasing

the lifespan of the network. Hence, data-aggregation techniques are one of the key

tool in our tool box while designing protocol for the sensor networks.

The second most significant factor in the design of the data aggregation proto-

col is Security Architecture . The International Telecommunications Union (ITU)

Telecommunication Standardization Sector (ITU-T) Recommendation X.800, Secu-

rity Architect for Open Systems Interconnection (OSI) provides a systematic approach

for it. The OSI security architecture describes the security attacks, mechanism and

services defined as follows:

41

Security attack is any action that compromises the security of information owned

by an organization or entity [40].

Security service is a service that enhances the security of the data processing sys-

tems and the information transfers of an organization. The services are intended

to counter security attacks, by using one or more security mechanisms [40].

Security mechanism is a mechanism that is designed to detect, prevent, or recover

from a security attack [40].

Security attacks can be classified as active attacks and passive attacks. Active

attacks modifies the data stream. It can be subdivided into four categories: replay,

masquerade, modification of messages, and denial of service. Replay attacks sniffs

network and capture the data unit. Then it uses the captured data in future retrans-

mission sessions to access secret resources in an unauthorized manner. A masquerade

occurs when a malicious party pretends to be a legitimate party and access the se-

cret resources. For example, authentication sequence can be captured by hijacking

the session and replaying the information in all the future sessions. Modification of

message means that some portion of a legitimate message is changed. For example, a

message stating “Only Barack Obama is authorized to read classified documents nu-

clear deal.” is modified to say “Only Michelle Obama is authorized to read classified

documents nuclear deal.” The denial of service blocks the normal access of commu-

nication resources. Active attacks are hard to prevent completely because to do so

requires physical protection of all entities at all times. Passive attacks tries to learn

information from the network but does not affect the network resources. Such attacks

are eavesdropping and monitoring of network traffic. Passive attacks are difficult to

detect as they do not change the message. It is plausible to prevent these attacks by

means of symmetric and asymmetric key encryption. Passive attacks are subtler and

outside the scope of our thesis.

Security services are divided into six categories: Authentication, Access Control,

Data Confidentiality, Data Integrity, Non-repudiation, Availability. Authentication

42

service assures that a authenticity to the communication services. It assures the

origin of the data unit. It does not protect the data unit against the modification

of data units. This type of service secures electronic mail where there are no prior

communications between two end hosts. Data Confidentiality ensures the protection

of transmitted data from passive attacks. It is also known as secrecy or privacy. For

example, classifieds mission of United States Armed Forces are highly confidential.

Ensuring confidentiality can be difficult. For example, how do we determine who is

authorized to access the secret information? Can authorized party reveal that infor-

mation to family, friends or other parties? [41] Data Integrity assures that the only

authorized entities can modify the information; where modification means writing,

creating, deleting and changing the information. A database entries of a patient’s

allergy information must be accurate. The doctor should be able to trust that the

information and cure the patient. If a integrity of a system is compromised then the

service may report the issue. There are alternatives which allows to recover automat-

ically from the loss of integrity. Availability means that the information of a system

being accessible and usable by an authorized parties according to performance speci-

fication at appropriate times. It applies to the information and services. It addresses

the concern raised by the denial of service attacks. Non repudiation service requires

neither the sender nor the receiver can deny the transmission. This security service

is necessary in electronic commerce applications, where a consumer must not be able

to deny the authorization of a purchase and the merchant must not be able to deny

the received payments. Access Control is the mechanism to control the permissions

to various resources via communications links. Login credentials and locks are two

analogues mechanism of access control.

Security mechanisms follows this principle of Open Design.

Definition 6.1.1 [22] The principle of open design states that the security of a

mechanism should not depend on the secrecy of its design or implementation.

Designers and implementers of a program must not depend on secrecy of the details

of their design and implementation to ensure security. The term “security through

43

obscurity” captures this concept exactly. The following security mechanisms may be

included into the relevant networking layer to provide some of the security services.

Encryption is the use of mathematical algorithms to encrypt the message to hide

it from unauthorized users. Digital Signature appends the data to a cryptographic

transformation of data which provides the security services like authentication, non-

repudiation and confidentiality. Hash functions provides maps any size input to fixed

size out put and provides irreversible encryption. Traffic Padding, Routing Control,

Notarization, Authentication Exchange are possible mechanisms as well but they are

outside the scope of our thesis.

As you can see, expectations from secure networking protocol are far-reaching. It

is very ambitious for any system to have all the above mentioned security services

at the same time. If we have to achieve all the security services for sensor networks

we can make each sensor node signs its reading data and then send data with its

signature to its parent. The network forwards all the data with their respective

signatures to the base station. The base station verifies all the signatures and then

calculates the aggregate function. Clearly, this approach is not practical as it requires

n signatures to traverse through the link between the base station and the root node

of the network; where n is the number of nodes in the network. Which makes that

link the bottleneck link of the network. And if that link breaks we loose the entire

network connectivity.

In reality all the security services are not always required. For example, Pro-

tecting banner advertisements on web pages. The provider of the advertisements do

not care if they copy the advertisements and show it to other people. So, there is

no confidentiality at all. But they want to prevent people from changing the adver-

tisements to the different types of advertisements. Also, when a client downloads a

file from the file server using Internet, he can verify the integrity of the file using

the checksum. But it is okay if somebody on the network sniffed the downloading

activity as far as it did not change the content of the file. In this application, a client

requires the integrity of the file but the privacy of the client, the file server and the

44

Internet service provider are not required. To give an analogy with a physical world

application, when a person writes a postcard, he puts his own signature on the it.

When that postcard delivers successfully by the postal service, the receiving party

can verify the integrity of the message from the handwriting and the signature of the

person. The postal service knows the sender and the receiver of the postcard. It can

even read the postcard. Again, the integrity is important not the confidentiality. In

most engineering discipline, it is useful to clarify the requirements carefully before

embarking on a project [2]. An important aspect to the computer security, as dis-

cussed by Anderson [42], that is often ignored: designed the security before careful

thought of the needs. It is crucial to find out which security services are desired for

the particular application, so we can use the relevant security mechanisms to provide

those services.

The most significant aspect data aggregation schemes is Integrity. Suppose, the

sensor network is deployed to measure the certain harmful chemical levels in the lab

atmosphere and raise an alarm if the it increases above certain level. If the base station

fails to raise an alarm because of the false aggregated data, can create catastrophic

and lethal situation. Hence, data integrity is an essential security service.

Data integrity can be achieved with the error detection and error correction tech-

niques. The first step towards achieving the data integrity in the sensor network is to

detect any malicious activity in the network. The second step is the ability to locate

the malicious node or an adversary in the network. We think detecting a malicious

activity without tracing down the malicious node responsible for it, is of no value.

To give an analogy with the physical world, it is like you know there is a crime in

the city and you do not do anything about it. Locating the criminals responsible for

the crime is mandatory to abolish the crime in the city. In similar way, locating the

malicious node and removing it from the network is an important security service.

Failing to provide such a security service, allows an adversary to continue doing the

malicious activity in the future, which makes aggregated sensor data garbage. The

network has to redo the all the work to create a response for the query from the base

45

station, which consumes lots of bandwidth. An adversary can repeat this process

until the network dies due to low battery power, creating a denial of service attack

in the network. Hence, detecting a malicious node who is responsible for the mali-

cious activity is equally important. If we can track down the malicious node in the

network then we can remove that node from the network for all future queries. And

make sure that all the future queries are not manipulated by any malicious node in

the network. Hence, the fourth and fifth most significant design aspects of secure

aggregation protocol are detect the malicious activity (in terms of data aggregation)

and can detect the adversary in the network, respectively.

To detect an adversary (or prove someone guilty), we need proof that the adversary

is responsible for the malicious activity. Consider the following example showing the

analogy with the signature scheme in the physical world, used by the postal services.

When a postman delivers the package, the receiving party has to sign the document

informing that he verified and received the package. Since only the receiving party

can create his signature, in the future he can not claim of not receiving the package

or receiving the damaged or incorrect package. If he claims such, the postal company

has the signed document as the proof mentioning that the package was received

successfully, by the receiving party. The signed document also ensures to the postal

company that the postman did not misplace or steal the package. The signature

scheme used by the postal service promises non repudiation security service. Hence,

we require non-repudiation security service in the sensor network.

6.2 System Design Specifications

We want to design a secure aggregation protocol which maximizes the network

lifetime. The protocol can be applied to any hierarchical sensor network. Further,

we want protocol to work on resilient and non-resilient aggregate functions without

compromising any desired security properties. In addition, We want protocol to be

secure with a single or multiple adversaries in the network. Moreover, we want the

46

protocol to protect against any active attacks. If the aggregation result is accepted

by the base station it should have very high confidence in the result, meaning that we

want the highest level of data integrity security service in the protocol. We need the

capabilities to detect any malicious activity. If there is any malicious activity in the

network, we should be able to locate an adversary responsible for it, in the network.

Also, we want the non-repudiation security service so neither sender nor receiver can

deny the transmission or receiving of the message, which is mandatory to locate an

adversary. Finally, we want to achieve this with the least amount of bandwidth and

computation overhead in the network. So, the protocol can be easily implemented in

the real world sensor networks. It is not that difficult to provide mentioned security

properties to protect against active attacks in the sensor network. We will show that

it requires sub-linear edge congestion to provide these services.

To detect any malicious activity in the network which is an important part of

achieving data-integrity in the network we use Hash Functions as security mecha-

nism. To protect against any active security attacks, provide authentication and non-

repudiation security services we use Digital Signatures as the security mechanisms.

Both of these mechanisms are described in detail in Chapter 3.

47

7. DATA AGGREGATION WITH INTERNAL

VERIFICATION

The concept of an aggregate commit with verification scheme is that all the sensor

nodes in the network send the signature of the message along with the message. They

send their certificates if the parent node does not have it already. The parent node

verifies all the received signatures from its children and proceeds with the aggregation

process. After aggregation, the parent node can throw away all the signatures from its

children and signs the message of its children or it can pass its children’s signatures

to its parent. The pros and cons of each approach are discussed in the following

sections. Once the base station receives the aggregated value it starts the verification

process. If there is no malicious activity in the network then it accepts the result and

takes an action. If the malicious activity is detected during the verification phase

then the base station starts interacting with the nodes in the network and detects an

adversary using interactive proof.

7.1 Data-Item

We describe structure of the data-item and its signature, used in creating the

commitment tree for the aggregate commit with verification approach. The differences

between the data-item and the label structure of SHIA, with rationale behind it are

discussed.

Definition 7.1.1 A commitment tree is a binary tree where each vertex has an asso-

ciated data-item representing the data that is passed on to its parent. The data-items

have the following format:

< id, count, value, commitment >

Where id is the unique ID of the node; count is the number of leaf vertices in the

48

subtree rooted at this vertex; value is the SUM aggregate computed over all the leaves

in the subtree and commitment is a cryptographic commitment.

Each sensor node creates its own data-item during commitment tree generation pro-

cess which is called the leaf vertex of the node. For example, sensor node A creates

its data-item A0 as follows:

A0 = < Aid, 1, Avalue, H(N ||1||Avalue) > . (7.1)

where Aid, Avalue is the unique ID and sensor reading of the node A. The count is 1

as there is only vertex in the subtree rooted at A, H is the collision resistant hash

function, and N is the query nonce.

The first difference between SHIA’s label structure and our data-item structure

is that we remove the complement field from the label structure see Definition 5.5.1.

The complement field is redundant information in the label. The complement field

is used by the base station (the querier in SHIA), before the result checking phase.

It is used to verify SUM + COMPLEMENT = n · r where n is the number of nodes

in the network, r is the upper bound on the allowed sensor readings. We can achieve

the same upper bound without the complement field. As the querier knows n, r and

it gets SUM from the root of the aggregation tree. If SUM > n · r , then the base

station knows some node or nodes in the network reported out of range readings.

Another difference between SHIA’s label and our data-item structure is that we

include unique ID of the node in its data-item. SHIA does not have the ID field in their

label structure as they do not do internal verification while creating a commitment

tree and while distributing off-path values. Also, in the label format ID of the node

is hashed in the commitment field after the first aggregation and virtually gets lost.

Hence, SHIA can not provide security services such as authenticity, non-repudiation

and is vulnerable to all sorts of active attacks. We do internal verification while

creating the commitment tree and distributing off-path values. So, it is necessary for

any aggregate node to know the ID of all the received data-items in its forest, for the

verification of the received signatures as shown in the following sections.

49

7.1.1 Signing and Verification of the Data-Item

Each sensor node sends the signature of its data-item signed by itself using its own

secret key. For example, the signature of A0 of the Equation 7.1 is given as follows:

S = SignskA(A0) (7.2)

where skA is the secret key of the sensor node A, Sign is the signing algorithm. The

parent node receives the data-item and its signature from its child. It also receives

the certificate from its child which is shown in Table 7.1. From the digital certificate

Table 7.1.: Digital Certificate

Unique ID of the sensor node

Public key of the sensor node

Certification Authority’s name

Certification Authority’s digital signature

the parent node receives the public-key of its child, which is used to decipher the

signature. For example, the parent node of B verifies SignskA(A0) as follows:

VerifypkA(A0, S) =

true with probability of 1 if S = SignskA(A0)

false with overwhelming probability if S 6= SignskA(A0)

(7.3)

where pkA is the public key of A, Verify is the verification algorithm. In this protocol,

the certification authority is the base station.

7.1.2 Security Benefits

While creating the commitment tree, the sensor S sends the data-item S0, and its

signature S to its parent in the aggregation tree. The signature allows the parent node

to verify the authenticity of the sensor node. As only sensor node S can create the

signature using its secret key. The signature S assures the integrity of the data-item

50

S0. Because either the data-item or the signature has been tampered in any way the

verification algorithm returns false. It allows the sender to have the proof for the

sent data-item and the receiver to have the proof for the received data-item. Hence,

providing the security service of non-repudiation. The digital signature depends on

the message so the parent node can not reuse the signature for other messages in the

future. Hence, protecting the network against the replay attacks. Hence, it protects

against the active attacks.

7.2 Commitment Payload

We define commitment payload based on the commitment forest see Definition

5.5.2. We also define transmit payload as follows.

Definition 7.2.1 A commitment payload is a set of data-items of the root vertices

of the trees with their respective signatures in the outgoing commitment forest and an

additional signature for the transmission.

Definition 7.2.2 The transmit payload is the concatenation of all the data-items

in the commitment payload.

For brevity, we use the term forest instead of the commitment forest and payload

instead of the commitment payload. Consider, the aggregation tree shown in Figure

7.1, where B is the parent of A, C is the parent of B and D is the parent of C. While

creating the commitment tree A creates its data-item A0 according to Equation 7.1.

A sends only one data-item to B therefore A’s payload (Apay), transmit-payload (Aτ)

are given as follows:

Apay = < A0, SignskA(A0), SignskA(Aτ) > where Aτ = < A0 > (7.4)

The sensor node C’s payload is shown in Figure 7.2. The commitment tree generation

process is described in the later sections. The sensor node C sends two data-items to

D therefore C’s payload (Cpay), transmit-payload (Cτ) are given as follows:

Cpay = < C0, SignskC(C0), B1, SignskC(B1), SignskC(Cτ) > where Cτ = < B1 || C0 >

51

Fig. 7.1.: Palm Shaped Aggregation Tree

Fig. 7.2.: Commitment Payload of Sensor Node C

The verification of the received signatures in the payload is done by the parent

node in the same way described in Section 7.1.1.

7.2.1 Security Benefits

As described in Section 7.1.2, the signature of the transmit-payload SignSS
(Sτ)

assures the integrity and authentication of the transmit-payload Sτ . In addition to

52

that, the signature of the transmit-payload is like the signature for the transmission.

To the sender, it assures that it is sending only the data-items included in the signature

of the transmit-payload. Further, it establish that none of the data-items gets added

or remove from the transmit-payload during the transmission. To the receiver, it

assures that it receives all the data-items included in the signature of the transmit-

payload and none of the data-items were stranded or added additionally to the payload

of its child. For example, the signature on the C’s transmit-payload SignskC(Cτ)

assures that the sensor node C sent only two data-items C0, B1 in its payload. It also

establishes that none of the data-items in its payload have been left stranded. As we

said, it’s like the signature for the transmission.

7.3 Key Differences

In SHIA, all the leaf nodes in the aggregation tree send only their respective data-

items to the parent in the aggregation tree. In our approach, all the leaf nodes send the

data-item, the signature of the data-item and the signature of the transmit-payload

to their parent node in the aggregation tree. The child node sends its certificate as

well if the parent node does not have it in its memory already.

In SHIA, the parent node proceeds with the aggregation process without verifying

the received data-items. In our protocol, the parent node verifies the received signa-

ture using the the verification algorithm. It proceeds with the aggregation only if all

the signatures are verified true.

In SHIA, the trusted base station verifies the final received data-items. And upon

detecting the malicious activity in the network, the base station raises an alarm. The

base station does not do anything to detect malicious node responsible for the mali-

cious activity. In our approach, upon detecting the malicious activity the base station

interacts with several relevant nodes in the network to trace down the malicious node.

Also, the base station issues the certificate to the sensor nodes in the network.

53

7.3.1 Bandwidth

According to Definition 7.1.1, the typical size of the data-item packet is 400 bits

as shown below. If one uses Elliptic Curve Digital Signature Algorithm (ECDSA)

Table 7.2.: Data-Item Size

ID COUNT VALUE COMMITMENT

20 bits 21 bits 20 bits 256 bits

then the size of signature is 500 bits [43]. And the certificate size is 1500 bits. So,

at max we have to send additional 2000 bits with the data-item 1. We think it is

worthwhile to send these additional bits because of all the security benefits we gain

from it.

7.4 Two Ways of Forwarding Payload

As described in the previous sections, we send the data-items with their signa-

ture along with the signature of the transmit-payload while creating the commitment

tree. Here, we describe two different approaches to send the signatures in the aggre-

gation tree hierarchy based on the two different ways of signing the data-items. To

demonstrate two approaches we use the aggregation tree shown in Figure 7.1 and the

payload of the sensor node C shown in Figure 7.2. In both the approaches, the sensor

node C sends all the data-items in its payload with their respective signatures to its

parent sensor node D along with the signature of its transmit-payload Cτ .

In the first approach, C verifies SignskB(B1) and sends it to D without any modi-

fications as follows:

Cpay = < C0,SignskC(C0), B1,SignskB(B1),SignskC(Cτ) > where Cτ =< C0||B1 >

C0 = < Cid, 1, Cvalue, H(N ||1||Cvalue) >

B1 = < Bid, 2, B1value, H(N ||2||B1value||A0||B0) >; B1value = Bvalue + Avalue

(7.5)

1The packets size are close approximate to the actual packet size. The actual packet size may differ
based on the implementation.

54

The sensor node C sends three signatures SignskB(B1), SignskC(C0) and SignskC(Cτ)

to its parent D. It requires the parent node D to know the public key of the sensor

nodes C and B, hence two certificates.

In the second approach, the sensor node C can verify the SignskB(B1) then remove

the old signature and creates new signature SignskC(B1) and sends to D as follows:

Cpay = < C0,SignskC(C0), B1,SignskC(B1),SignskC(Cτ) > where Cτ =< C0||B1 > (7.6)

The sensor node C sends three signatures SignskC(B1), SignskC(C0) and SignskC(Cτ) to

its parent D. But all the signatures are signed by the sensor node C, it requires the

parent node D to know the public key of only the sensor node C, hence D need to

know only one certificate.

To give an analogy with a real world application, consider the following exam-

ple. Suppose, one want to buy a diamond from the local diamond retailer. Some

Diamonds are expensive commodity, so the end customer wants to verify its authen-

ticity and integrity before purchasing. Now, suppose the diamond was created by

the manufacturer in Africa, it was sold to a national wholesaler in the United States.

The national wholesaler sells it to the state level reseller and he sells it to the city

or county level retailer from whom the customer purchases the diamond as shown

below.

Fig. 7.3.: Diamond Supply Chain.

One approach to verify the authenticity of the commodity is to make each entity in

the supply chain to verify all the signatures on the received entity and sign on top of

it. And then forward the commodity with all the signatures to the next entity in the

supply chain. The next entity repeats the same procedure. Hence, any entity in the

supply chain need to verify the signatures of all its descendants in the supply chain.

In our example, it means to make the manufacturer from Africa signs the diamond

55

and sells the signed diamond and sends the certificate to the national level wholesaler

in United States. The national level wholesaler in United States verifies the signature

from the manufacturer using manufacturer’s certificate. Then he adds his signature

and certificate, and sells the diamond signed with two signatures and two certificates

to the state level reseller. The state level reseller verifies both the signatures on

the diamond using the respective certificates. Then they add their signature and

send their certificate, and sells the diamond singed with three signatures and three

certificates to the city level retailer. The city level retailer does the same thing before

selling the diamond to the end customer. In the end, the customer needs to verify all

four signatures, using the respective certificates.

An alternative approach to verify the authenticity of the commodity is to make

each entity in the supply chain verify the signature, throw away the old signature, and

then add its own signature on it. It means the next entity in the supply chain need

to verify only a single signature. The next entity repeats the same procedure. Hence,

any entity in the supply chain need to verify the signature of only its direct peer in the

supply chain. In our example, it means to make the manufacturer from Africa signs

the diamond and sells the signed diamond with his certificate to the national level

wholesaler in United States. The national level wholesaler in United States verifies

the signature from the manufacturer using the manufacturer’s certificate. Then he

removes the signature of the manufacturer, adds his own signature and certificate,

and sells the diamond signed with one signature and one certificate to the state level

reseller. The state level reseller verifies only the signature from the wholesaler using

the wholesaler’s certificate. Then they remove the signature of the wholesaler, adds

their own signature and certificate, and sells the diamond signed with one signature

and one certificate to the city level retailer. The city level retailer does the same

thing before selling the diamond to the end customer. In the end, the customer needs

to verify only one signature of the city level retailer using retailer’s certificate. This

approach requires very few number of certificates overall in the supply chain.

56

We call these two approaches Forwarding signatures without resigning the data-

items (FSwoRD), Forwarding signatures with resigning the data-items (FSwRD) as

shown in Equations 7.5 and 7.6 respectively. Both the approaches have their pros

and cons and the perfect approach depends heavily on the application. The various

aspects of both the approaches for sensor nodes are discussed in the following sections.

57

8. OUR PROTOCOL

In this chapter, we describe our protocol with FSwRD approach beginning from query

dissemination phase till the detecting an adversary. Our protocol using FSwRD can

also be applied using FSwoRD with the obvious modifications. We briefly describe

the differences along the way.

8.1 Query Dissemination

The protocol begins with the base station initiating the query request to the

sensor network. The base station does the authenticated broadcast of its query to

the entire sensor network asking the network to report the aggregated result of the

sensor reading values. It includes the query nonce in its query to avoid replay attacks

in the future. We use the same hash chain process to generate unique query nonce for

the base station as described in Section 5.4. Once the sensor nodes receive the query

from the base station they constructs their own leaf vertex by creating the data-items

of their sensor readings and its signature. The sensor nodes constructs their payloads

and send it to their parent in the aggregation tree. The details of the commitment

tree generation is described in the next section.

8.2 Commitment Tree Generation

For the given aggregation tree the commitment forest is built as follows. The

commitment tree generation begins from the sensor nodes with the highest depth (leaf

nodes) in the aggregation tree. Leaf sensor nodes in the aggregation tree constructs

their leaf vertices by creating data-items, signatures of those data-items and signature

of the transmit-payload according to Equations 7.1, 7.2, 7.4, respectively. Then they

58

send the payload to their parents in the aggregation tree. Each internal sensor node

in the aggregation tree also constructs their leaf vertex. In addition, internal sensor

node receives the payload from each of its children, which impacts its forest. For

each child, internal node first verifies the signature of the transmit-payload and then

the signature of the data-item for one child at a time. Once internal node verifies

all the received signatures, it merges all the data-items with same count value from

its forest. It merges two data-items by creating a new data-item with count value

incremented by one and whose value is the addition of value field of the previous two

data-items. Note that we can easily determine the height of the commitment tree

from the count value. Suppose, after verifying all the signatures from the payloads,

an internal sensor node I has to merge i data-items D1, D2, . . . , Di in its forest. Let

c be the smallest count value in I’s forest. The sensor node I finds two data-items

D1 and D2 from its forest with the same count value c and merges them into a new

data-item with the count of c+ 1 as shown in Figure 8.1. It repeats the process until

no two data-items in its forest have the same count value. The data-item of the A2

is given as follows:

A2 = < Aid, 4, A2value, H(N ||4||A2value||B1||D1) >; A2value = B1value +D1value.

We demonstrate the commitment tree generation process for the aggregation tree

shown in Figure 8.2. In this example, A has three children. A receives one payload

from each of its children, which impacts A’s forest. After verifying all the signatures

from each child’s payload, A uses the data-items in its forest to constructs its payload,

which is sent to the base station. We describe the payload generation process for

sensor nodes B,C,D and A in order.

59

Fig. 8.1.: Input node A has B1 and C1 in its forest. It aggregates these two trees and

constructs A2.

Fig. 8.2.: Aggregation Tree.

60

The sensor node B constructs its payload from its forest. It’s forest consists of

payloads received from E and F . The leaf sensor nodes E and F constructs their

payloads according to Equation 7.4 as follows:

Epay = < E0, SignskE(E0), SignskE(Eτ) > where Eτ = < E0 >

E0 = < Eid, 1, Evalue, H(N ||1||Evalue) >

Fpay = < F0, SignskF(F0), SignskF(Fτ) > where Fτ = < F0 >

F0 = < Fid, 1, Fvalue, H(N ||1||Fvalue) > .

B receives Epay and Fpay from E and F respectively. B verifies all the signatures

in the received payloads. Then it constructs its own data-item B0. Now, B has

B0, E0, F0 in its forest as shown in Figure 8.3. As all the data-items have the same

count value, B has an option while selecting two data-items to merge. B aggregates

E0, F0 and constructs B1. After creating B1 none of the data-items have the same

count value. So, B constructs its payload Bpay and sends it to A as follows:

Bpay = < B0, SignskB(B0), B1, SignskB(B1), SignskB(Bτ) > where Bτ = < B0||B1 >

B1 = < Bid, 2, B1value, H(N ||2||B1value||E0||F0) >; B1value = Evalue + Fvalue

B0 = < Bid, 1, Bvalue, H(N ||1||Bvalue) > .

Fig. 8.3.: Transformation from B’s forest to its payload. Each dashed-line box shows

forest and solid-line box shows payload of the respective sensor node.

61

In similar way, the sensor node C in the aggregation tree receives Gpay from G

which is defined as follows:

Gpay = < G1, SignskG(G1), SignskG(Gτ) > where Gτ = < G0||H0 >

G1 = < Gid, 2, G1value, H(N ||2||G1value||G0||H0) >; G1value = Gvalue +Hvalue

G0 = < Gid, 1, Gvalue, H(N ||1||Gvalue) >

H0 = < Hid, 1, Hvalue, H(N ||1||Hvalue) > .

C verifies all the signatures in the received payload Gpay and constructs C0. Now, C

has C0, G1 in its forest as shown in Figure 8.4. As none of the data-items have the

same count value, C does not merge those two data-items. But C removes the old

signature on G1 and signs G1 with its secret key. So, C constructs its payload Cpay

and sends it to A as follows:

Fig. 8.4.: C’s forest aggregation creating its payload.

Cpay = < C0, SignskC(C0), G1, SignskC(G1), SignskC(Cτ) > where Cτ = < C0||G1 >

C0 = < Cid, 1, Cvalue, H(N ||1||Cvalue) > .

The sensor node D constructs its payload Dpay and sends it to A as follows:

Dpay = < D0, SignskD(D0), SignskD(Dτ) >; where Dτ = < D0 >

D0 = < Did, 1, Dvalue, H(N ||1||Dvalue) > .

The root node of the aggregation tree A receives the payloads Bpay, Cpay and Dpay

from B,C and D respectively. A verifies all the signatures in the received payloads

and constructs A0. Now, A has G1, C0, B1, B0, D0 and A0 in its forest as shown

62

Fig. 8.5.: A’s forest: A receives three payloads from C,B,D and constructs A0

Fig. 8.6.: A’s forest: after first merge

Fig. 8.7.: A’s forest: after second merge

63

in Figure 8.5. A has four data-items with count value of 1. In the first merge, A

aggregates those data-items and constructs A10 and A11 as shown in Figure 8.6. Now,

A has four data-items with count value of 2. In the second merge, A aggregates those

data-items and constructs A20 andA21 as shown in Figure 8.7. Finally, A has two

data-items with count value of 4. In the final merge, A aggregates those data-items

and constructs A3 as shown in Figure 8.8. Then A constructs payload and sends it

to the base station as follows:

Apay = < A3, SignskA(A3), SignskA(Aτ) > where Aτ = < A3 >

A3 = < Aid, 8, A3value, H(N ||8||A3value||A20||A21) >; A3value = A20value + A21value

A20 = < Aid, 4, A20value, H(N ||4||A20value||G1||B1) >; A20value = G1value +B1value

A21 = < Aid, 4, A21value, H(N ||4||A21value||A10||A11) >; A21value = A10value + A11value

A10 = < Aid, 2, A10value, H(N ||2||A10value||B0||C0) >; A10value = Bvalue + Cvalue

A11 = < Aid, 2, A11value, H(N ||2||A11value||D0||A0) >; A11value = Dvalue + Avalue

A0 = < Aid, 1, Avalue, H(N ||1||Avalue) > .

Fig. 8.8.: A’s payload : A sends this to the base station.

64

Once the base station receives the payload from the root of the aggregation tree,

it verifies all the signatures in the payload. In the previous example, the base station

receives Apay from the sensor node A. It verifies the signatures SignskA(A3), SignskA(Aτ)

in the received payload. If the base station verifies all the signatures to true it initiates

the result checking phase.

8.3 Result Checking

The purpose of the result checking phase is to require that all the sensor nodes

verify their individual contributions to the final aggregate value. If there is any

inconsistency in the aggregation process then with the help of the base station, trace

down the node responsible for causing the inconsistency in the aggregation process.

8.3.1 Dissemination of Final Payload by the Base Station

Once the base station receives the payloads of the root node of the aggregation

tree, it verifies all the signatures in the payload and then sends each of the data-

items in the payload to the entire sensor network using authenticated broadcast. The

authenticated broadcast allows the sensor nodes to verify that the data-items are sent

by the base station. The authentication ensures no one else is masquerading the base

station. In our previous example, the base station receives only one data-item A3 in

the payload sent by A. In that case, the base station’s payload Bpay which is sent to

the entire network is given as follows:

Bpay = < A3, SignskB(A3), SignskB(Bτ) > where Bτ = < A3 > .

8.3.2 Dissemination of Off-Path Values

To enable verification each sensor node must receive all of its off-path values. The

off-path values of the sensor nodes can be determined according to the Definition

65

5.6.1. Each internal vertex I in the commitment tree has two children u1 and u2. To

disseminate off-path values, I sends the data-item of u1 to u2, and vice-versa (I also

attaches relevant information tagging u1 as the right child and u2 as the left child)

along with the signatures of the data-item and the signature of the transmit-payload.

In our previous example, internal vertex A10, shown in Figure 8.8, has two children

C0 and B0. A10 (which is sensor node A in aggregation tree) sends the following

off-path values to C and B respectively as follows:

< B0, SignskA(B0), SignskA(Aτ) > where Aτ = < B0 >

< C0, SignskA(C0), SignskA(Aτ) > where Aτ = < C0 > .

An internal vertex I receives data-items with their respective signatures from

its parent. It verifies the signatures of the received data-items then resigns them

and sends those data-items (and left/right tags) with their signatures to both of its

children. Continuing the previous example, internal vertex A10 receives A11 and A20

from its parent A21. A10 sends the following off-path values to C and B respectively

as follows:

< B0, SignskA(B0), A11, SignskA(A11), A20, SignskA(A20), SignskA(Aτ) >

XXXXXwhere Aτ = < B0||A11||A20 >

< C0, SignskA(C0), A11, SignskA(A11), A20, SignskA(A20), SignskA(Aτ) >

XXXXXwhere Aτ = < C0||A11||A20 > .

In FSwRD, all the leaf vertices need to know only one certificate as they receive

data-items signed by their parent vertex. In FSwoRD, all the leaf vertices might need

to know log l certificates, where l is the number of leaf-vertices in commitment tree

including the leaf vertex. Continuing the previous example, C and B receive three

signatures from A10. All these three signatures are signed by A. Hence, C and B need

to know the certificate of A. Whereas in FSwoRD, C and B receives three signatures

from A. From those three two will be signed by A and one will be signed by either

B or C depending on the data-item. Therefore, B need to know the certificates of A

and C, and C need to know the certificates of A and B.

66

Fig. 8.9.: One Possible Commitment Tree

We show the significance of the commitment field while distributing the off-path

values. The commitment filed helps us detecting any malicious activity in the net-

work. Because of the signatures infrastructure eventually we can detect an adversary.

For example, if an internal vertex simply forwards incorrect data-item to its children

then the relevant leaf vertex will complain, as the leaf vertex will not be able to derive

the data-item received using authenticated broadcast from the base station. Because

of the signatures internal vertex responsible for forwarding the incorrect data-item

will be caught. Another scenario could be that an internal vertex changed the its chil-

dren’s data-item while creating commitment tree and sending the incorrect off-path

values to compensate discrepancy. To illustrate the scenario consider the following

Example.

Example 8.3.1 Suppose the vertices in the commitment tree of Figure 8.9 have the

data-items defined as follows. Note that we did not include the signatures of these

data-items in this example for simplification.

A0 = < Aid, 1, 10, H(N ||1||10) >

B0 = < Bid, 1, 20, H(N ||1||20) >

C1 = < Cid, 2, 30, H(N ||2||30||A0||B0) >

Now suppose C changes A0 and B0 to A′0 and B′0 by changing the value fields

and then applies aggregate commit algorithm. C can send either C ′1 or C ′′1 to the

base station. But it will be caught by base station in both cases. To compensate for

67

the discrepancy, C constructs B′′0 and A′′0 off-path values trying to hide its malicious

activity from the base station.

A′0 = < Aid, 1, 100, H(N ||1||10) >

B′0 = < Bid, 1, 200, H(N ||1||20) >

C ′1 = < Cid, 2, 300, H(N ||2||300||A′′0||B0) > or

C ′′1 = < Cid, 2, 300, H(N ||2||300||A0||B′′0) >

B′′0 =< Bid, 1, 290, H(N ||1||20) >

A′′0 =< Aid, 1, 280, H(N ||1||10) >

During the dissemination of the root data-item phase, A and B using authenticated

broadcast receives either C ′1 or C ′′1 from the base station based on what C has sent to

base station. During the dissemination of off-path values phase, A and B receives

B′′0 and A′′0 from C respectively. During the verification of inclusion phase, A and B

derives the root data-item using the received off-path values, and it does not match

with the received root data-item as follows:

A uses (A0, B
′′
0) and derives < 2, 300, H(N ||2||300||A0||B′′0) > = C ′′1 6= C ′1

B uses (A′′0, B0) and derives < 2, 300, H(N ||2||300||A′′0||B0) > = C ′1 6= C ′′1 .

Hence, during the collection of authentication codes phase, either A or B sends its

authentication codes with NACK message.

Above example shows how the commitment field in the data-item provides data-

integrity to the protocol. It makes it nearly impossible for an adversary to tamper

with the data-items while creating commitment tree and/or while distributing off-

path values. This malicious activity can be detected by the commitment filed in the

data-item. Later, we show that the adversary can be detected with the provided

signature infrastructure. Once a vertex has received all the off-path vertices, it can

proceed to the verification step.

68

8.3.3 Verification of Inclusion

Once the sensor node has received all the data-items of its off-path vertices from

its parent, first it verifies the signature of all the received data-items and then it

verifies that no aggregation result tampering has occurred on the path between its

leaf vertex and the root of its commitment tree. It also verifies that its senor reading

was aggregated correctly by all the intermediate aggregate nodes. For each vertex on

the path from the root of its commitment tree, it derives the data-items according to

Definition 5.5.1. It is able to do so since the off-path values provide all the necessary

information to perform the data-item computation. In the previous example, C re-

ceives B0, A11 and A20 from its parent node and it has C0. It aggregates < C0, B0 >

and derives A10. Then it aggregates < A10, A11 > and derives A21. Finally it aggre-

gates < A21, A20 > and derives A3. Then it compares the derived A3 with the A3

received from the base station. Based on those data-items are identical or not the

node proceeds with the next step accordingly. If those data-items are identical then

the node sends the authentication code with ACK message and if those data-items

are not identical then the node sends the authentication code with NACK message.

8.3.4 Collection of Authentication codes

The authentication codes for sensor node I, with their positive and negative ac-

knowledgment message, are defined as follows:

Positive : MACskI(N||ACK)

Negative : MACskI(N||NACK).
(8.1)

skI is the secret key of the sensor node I, ACK and NACK are special messages

for positive and negative acknowledgment respectively. The authentication code with

ACK message is sent by the sensor node if it verifies its contribution correctly to

the root commitment value during the verification of inclusion phase and vice versa.

Leaf sensor nodes in the aggregation tree first send their authentication codes to their

parents in the aggregation tree. Once an internal sensor node has received authen-

69

tication codes from all its children, it computes the XOR of its own authentication

code with all the received codes, and forwards it to its parent. For example, the sen-

sor node B shown in Figure 8.2, receives the authentication codes MACskE(N||ACK),

MACskF(N||ACK) from E,F respectively, and it has its own authentication code with

ACK message then B sends the following authentication code to A.

MACskE(N||ACK)⊕MACskF(N||ACK)⊕MACskB(N||ACK)

Because of the XOR function we do not have to forward all the authentication codes.

At the end of the process, the base station receives a single authentication code ∆root

from the root of an aggregation tree.

8.3.5 Verification of Authentication Codes

To verify that every sensor node has sent its authentication code with ACK, the

base station computes the ∆ack as follows:

∆ack =
n⊕
i=1

MACski(N||ACK) (8.2)

Here, the addition represents an XOR operation. The base station can compute ∆ack

as it knows the secret key ski for each sensor node i. Then it compares the computed

∆ack with the received root authentication code ∆root. If those two codes match then

it accepts the aggregated value or else it proceeds further to find an adversary.

To detect an adversary, the base station needs to identify which nodes in the

aggregation tree sent their authentication codes with NACK during the verification

of inclusion phase. The node who sent authentication code with NACK during the

verification of inclusion phase is called a complainer. We claim that if there is a single

complainer in the aggregation tree during the verification of inclusion phase then the

base station can find the complainer in linear time. To find a complainer, the base

station computes the complainer code c as follows:

c := ∆root ⊕∆ack (8.3)

70

Then it computes the complainer code ci for all node i = 1, 2, . . . , n.

ci := MACski(N||ACK)⊕MACski(N||NACK) (8.4)

After that, it compares c with all ci one at a time. The matching code indicates

the complainer node. The base station needs to do C(n,1)
1 calculations according to

Equation 8.4 and same number of comparisons to find a complainer in the aggregation

tree. Hence, the base station can find a single complainer in linear time.

Example 8.3.2 If there are four nodes s1, s2, s3, s4 in an aggregation tree and their

authentication codes with ACK, NACK message in the binary format are defined as

follows:

MACsk1(N ||ACK) = (1001)2; MACsk1(N ||NACK) = (1101)2

MACsk2(N ||ACK) = (0110)2; MACsk2(N ||NACK) = (1111)2

MACsk3(N ||ACK) = (0101)2; MACsk3(N ||NACK) = (0111)2

MACsk4(N ||ACK) = (0011)2; MACsk4(N ||NACK) = (1110)2.

Suppose the root of an aggregation tree computed the ∆root = (0100)2 as described

in Subsection 8.3.4. The base station calculates ∆ack = (1001)2 according to the

Equation 8.2. Then it calculates the complainer code c = (1101)2 according to the

Equation 8.3. The base station also computes the complainer codes for each sensor

node according to the Equation 8.4 as follows:

c1 = (0100)2, c2 = (1001)2, c3 = (0010)2, c4 = (1101)2.

The base station compares complainer code c with individual complainer code ci and

finds that c = c4. So, the base station identifies that the s4 complained, during

verification of inclusion phase.

The following binary illustration helps visualize that applying XOR is negating the

contribution of the authentication code with NACK. The base station receives the

1C(n,1) =
(
n
1

)
= n

71

following from the root an aggregation tree, which includes one authentication code

with NACK.

1 0 0 1

0 1 1 0

0 1 0 1

1 1 1 0

0 1 0 0︸ ︷︷ ︸
∆root

The base station calculates ∆ack,∆nack and complainer code c as follows:

1 0 0 1

0 1 1 0

0 1 0 1

+ 0 0 1 1

1 0 0 1︸ ︷︷ ︸
∆ack

1 1 0 1

1 1 1 1

0 1 1 1

1 1 1 0

1 0 1 1︸ ︷︷ ︸
∆nack

1 0 0 1

0 1 0 0

1 1 0 1︸ ︷︷ ︸
c

Then the base station calculates the complainer code for each node i as follows:

1 0 0 1

1 1 0 1

0 1 0 0︸ ︷︷ ︸
c1

0 1 1 0

1 1 1 1

1 0 0 1︸ ︷︷ ︸
c2

0 1 0 1

0 1 1 1

0 0 1 0︸ ︷︷ ︸
c3

0 0 1 1

1 1 1 0

1 1 0 1︸ ︷︷ ︸
c4

Finally, concludes that node 4 is complaining.

In general, to find k complainers the base station needs to do C(n,k)
2 calculations

and the same number of comparisons to find k complainers. Suppose, there are more

than one complainer in the network then the base station uses the following recursive

algorithm to find all the complainers in the network.

72

Algorithm 1 Finding complainer tree in a given forest

1: BS requests authentication codes of all the tree roots in the aggregation tree root’s

forest.

2: BS simulates authentication codes of all the tree roots in the aggregation tree

root’s forest with ACK message.

3: BS compares the requested and simulated authentication codes.

4: BS constructs T = {T1,T2, . . . ,Tlgn} whose authentication codes do not match.

5: for all t ∈ T do

6: Call Algorithm 2 with (t)

Algorithm 2 Finding complainer node in a given tree

1: BS requests the authentication codes of child C1 and C2 for the given tree.

2: BS simulates the authentication codes of child C1 and C2 with ACK message.

3: BS compares the requested and simulated authentication codes and identifies C ′

whose authentication codes do not match.

4: if C ′ is a leaf vertex then

5: Add C ′ to complainer vertex set C

6: else

7: Call Algorithm 2 with (C ′)

Note the fact that, in Algorithm 2, one of the child nodes will not match with the

simulated authentication codes of the base station. These algorithms are recursive

and runs in exponentially time. This algorithm detects complainers faster if there are

more complainers in the same commitment tree. Hence, we expect this algorithm to

run in linear time.

2C(n,k) =
(
n
k

)
= n!/(k! · (n− k)!)

73

Fig. 8.10.: A Commitment Tree With All Unique Vertices

8.3.6 Detecting An Adversary

Once the base station finds the node who sent NACK during the verification of

inclusion phase, it interacts with the nodes in the network to trace an adversary

responsible for it. The base station tries to constructs a set of possible adversaries

based on a set of possible cheaters. The following example demonstrates that if the

base station knows the commitment tree topology and the complainers in the network

then it can guess the possible adversaries. For simplicity, we selected the commitment

tree where all the vertices are unique. This analysis holds true for any commitment

tree topology.

Example 8.3.3 The base station constructs a set C = {C1,C2, . . . ,Cn} for the com-

plainers based on the protocol described in the Section 8.3.5. Then based on the set C

it constructs a set A = {A1,A2, . . . ,An} of the possible adversaries.

Suppose C = {A0} then a possible set of adversary A = {I, {B, I}, {B,M}, {B, I,M}}.

Note the fact that only I knows the exact data-item of A0. The vertices M and O

74

knows aggregated value of A0. Hence, if either M or O tampers they tamper with

more than one data-item or they have to cheat in a group. Based on the fact that the

possible set of adversaries for given complainer set are as follows:

If C = {A0, B0} then A = {I,M, {I,M}, {C,D,O}}

If C = {A0, B0, C0} then A = {{D,O}, {I, J}, {M,J}, {M,J, I}}

If C = {A0, B0, C0, D0} then A = {M,O, {I, J}, {E,F,G,H,O}}

If C = {A0, B0, C0, D0, E0} then A = {{O,K}, {M,K}, {J, I,K}, {F,G,H,O}}

If C = {A0, B0, C0, D0, E0, F0} then A = {{O,K}, {M,N}, {N,O}, {J, I,K}}

If C = {A0, C0} then A = {{J, I}}

Now, we describe the case for detecting an adversary for a single complainer case.

In above example, if C = A0 then A = {I, {B, I}, {B,M}, {B, I,M}}. Suppose I is

an adversary and it changed the A0 to A′0, creating an internal vertex I ′1 instead of

I1 while creating the commitment tree. Then,

I1 = < Iid, 1, I1value, H(N ||1||Ivalue||A0||B0) > where I1value = Avalue +Bvalue

Ipay =< I1, SignskI(I1), SignskI(Iτ) > where Iτ = I1

Whereas,

I ′1 = < Iid, 1, I
′
1value, H(N ||1||I ′value||A′0||B0) > where I1value = A′value +Bvalue

I ′pay =< I ′1, SignskI(I
′
1), SignskI(Iτ) > where Iτ = I ′1,

To detect an adversary, first the base station asks A to send its payload.

Apay =< A0, SignskA(A0), SignskA(Aτ) > where Aτ = A0

A0 =< Aid, 1, Avalue, H(N ||1||Avalue) >

Then the base station asks I to send all the received payloads from each of its children

and its own payload. So, I instead of sending the its true payload it sends its false

payload to the base station. As I is an adversary it might lie about it and send the

following payload.

Apay =< A0, SignskA(A0), SignskA(Aτ) > where Aτ = A0

Bpay =< B0, SignskB(B0), SignskA(Bτ) > where Bτ = B0

Ipay =< I1, SignskI(I1), SignskA(Iτ) > where Iτ = I0

75

Then the base station asksM to send all the received payload from each of its children.

So, M sends the following to the base station.

I ′pay =< I ′1, SignskI(I
′
1), SignskI(Iτ) > where Iτ = I ′1

Jpay =< J1, SignskI(J1), SignskA(Jτ) > where Jτ = J0

As the base station receives the I ′pay with a signature from M , then this proves that

the I has lied about its payload. Hence, I is an adversary. In general, the bases

station utilizes the following algorithm to trace an adversary.

Algorithm 3 Pseudo algorithm to detect an adversary

1: BS identifies all the complainer and constructs C = {C1,C2, . . . , cCn}

2: for all C ∈ C do

3: BS asks C to send data-item with its signature, sent during commitment tree

generation phase

4: BS identifies possible adversary based on C and constructs A = {A1,A2, . . . ,An}

5: for all A ∈ A do

6: BS asks A to send data-items with its signature, received and sent by A during

commitment tree generation phase

7: If needed BS asks the parent of A to send data-items with its signature

8: BS determines the adversary based on the verification of signatures

If an an adversary tempers with the data-item without being detected then it

breaks the data-integrity of the protocol. Once the base station detects adversaries

it dispels them from the network for all the future queries. Doing so removes un-

necessary communication for debugging purpose in the future. Hence, saves the

bandwidth and increases the longevity of the network.

8.4 Analysis

Our protocol creates a complete binary tree for any given aggregation tree. Hence,

if we have n nodes in an aggregation tree, then at max there will be 2lgn+1−1 = 2n−1

76

vertices in the commitment tree. In both the approaches FSwRD and FSwoRD, there

are at least two signatures associated with all the vertices in the commitment tree.

Hence, there are at least 2(2n− 1) signatures created while creating the commitment

tree. In general, an intermediate node with n descendants receives dlog2 ne trees

from its children. As we know, there are at least two signatures associated with each

vertex, the node with n descendants receives at least 2dlog2 ne signatures.

We claim that the binary representation of a non-negative number x illustrates the

payload decomposition of the sensor node S, where x = 1 + number of descendants of

S. For example, if sensor node S has 22 descendants then x = 23, (x)10 = (10111)2.

This means S has four complete binary trees in its payload, with the height of four,

two, one and zero. Note that all the trees in the commitment payload are complete

binary trees and no two trees have the same height. The reason 1 is added to the

descendants of S is that the sensor node itself is collecting data.

In both the approaches FSwRD and FSwoRD, the number of transmitted sig-

natures within the network remain the same as shown in Table 8.1 (we ignore the

signature of the payload). But the number of times a data-item is being signed differ

in both the approaches which impacts the number of certificates being transmitted in

the network. The certificate is large in size and consumes a lot of bandwidth during

the transmission. To do the further analysis, we developed a performance matrix

based on number of transmitted certificates for commonly used network topologies.

We analyzed different network topologies as shown in Table 8.2.

Table 8.1.: Totality of Signatures Transmitted

Network Topology FSwRD FSwoRD

Star 2n 2n

Palm Tree 2n 2n

Complete Binary 2n 2n

77

Table 8.2.: Totality of Certificates

Network Topology FSwRD FSwoRD

Star n− 1 n− 1

Palm Tree n− 1 XX

Complete Binary n− 1 n− 1

The following theorem proves that the complete binary tree structure is optimal

for commitment tree generation.

Theorem 8.4.1 Binary commitment tree is optimal in terms of verification for m-

ary tree, as it requires minimum number of off-path values.

Proof Consider the case of a tertiary tree, other m-ary tree arguments following

the same manner. Let m be the number of leaves in a commitment tree. For a

given binary commitment tree, each leaf vertex needs log2m off-path values in the

verification phase. The total off-path values needed in a given commitment tree is

m log2m. For the given tertiary commitment tree, each leaf vertex needs 2 log3m

off-path values in the verification phase. The total off-path values needed in given

commitment tree is 2m log3m. We know that, log3m = log2m
log2 3

. Multiplying both sides

with 2m gives, 2m log3m = 2m log2m
log2 3

= 2
log2 3

m log2m = (1.2618) m log2m. Hence,

2m log3m > m log2m. In totality, the binary commitment tree requires the minimum

number of off-path values.

78

9. CONCLUSION AND FUTURE WORK

In this thesis, we have shown data aggregation is an important primitive to save

bandwidth in the sensor network which are becoming pervasive in our day-to-day life.

We built our protocol on top of Secure Hierarchical In-network Data Aggregation

protocol which provides data integrity to the hash tree. Firstly, we modified the label

structure of SHIA to make it more communication efficient by removing the redundant

field in its data-item. Secondly, we represent a mathematical way of analyzing the

protocol. We also propose an algorithm to find all possible cheaters in the network. In

addition, we identify the significance of finding an adversary in a network is critical.

We propose an algorithm which can detect an adversary in the network and remove

it for all the future queries. Furthermore, we give the proof that complete binary tree

is an optimal data structure to build the commitment tree.

The security in unstructured networks without a trusted authority is very hard.

It can be simplified by giving structure to the network and trusted authority. In

the future, we would like to analyze this protocol for various network topologies

and generalized the results. It is our hope that further research can improve the

cheater detection algorithm. Furthermore, analyzing these security protocols can

provide additional insights into the network models that closely represent the real-

world applications.

LIST OF REFERENCES

79

LIST OF REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Scientific american, vol. 265,
no. 3, pp. 94–104, 1991.

[2] F. Stajano, Security for Ubiquitous Computing. John Wiley & Sons, Feb. 2002.

[3] K. Ashton, “That internet of things thing,” RFiD Journal, vol. 22, no. 7, pp.
97–114, 2009.

[4] Uber. https://www.uber.com/. LAST DATE ACCESSED: February 25, 2015.

[5] Final report of airbus a330-203. http://www.bea.aero/docspa/2009/f-cp090601.
en/pdf/f-cp090601.en.pdf. LAST DATE ACCESSED: February 25, 2015.

[6] Anthem inc.’s data breach. http://www.bloomberg.com/news/articles/
2015-02-05/signs-of-china-sponsored-hackers-seen-in-anthem-attack. LAST
DATE ACCESSED: February 23, 2015.

[7] M. Weiser, R. Gold, and J. S. Brown, “The origins of ubiquitous computing
research at parc in the late 1980s,” IBM systems journal, vol. 38, no. 4, pp.
693–696, 1999.

[8] H.-J. Hof, “Applications of sensor networks,” in Algorithms for Sensor and Ad
Hoc Networks. Springer, 2007, pp. 1–20.

[9] D. Li, K. D. Wong, Y. H. Hu, and A. M. Sayeed, “Detection, classification, and
tracking of targets,” Signal Processing Magazine, IEEE, vol. 19, no. 2, pp. 17–29,
2002.

[10] M. Chu, J. Reich, and F. Zhao, “Distributed attention in large scale video sensor
networks,” in Intelligent Distributed Surveilliance Systems, IEE. IET, 2004, pp.
61–65.

[11] J. D. Lundquist, D. R. Cayan, and M. D. Dettinger, “Meteorology and hydrol-
ogy in yosemite national park: A sensor network application,” in Information
Processing in Sensor Networks. Springer, 2003, pp. 518–528.

[12] R. Benenson, S. Petti, T. Fraichard, and M. Parent, “Towards urban driverless
vehicles,” International Journal of Vehicle Autonomous Systems, vol. 6, no. 1,
pp. 4–23, 2008.

[13] M. D. Addlesee, A. Jones, F. Livesey, and F. Samaria, “The orl active floor,”
IEEE Personal Communications, vol. 4, pp. 35–41, 1997.

80

[14] K. Lorincz, D. J. Malan, T. R. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnay-
der, G. Mainland, M. Welsh, and S. Moulton, “Sensor networks for emergency
response: challenges and opportunities,” Pervasive Computing, IEEE, vol. 3,
no. 4, pp. 16–23, 2004.

[15] H. Karl and A. Willig, Protocols and architectures for wireless sensor networks.
John Wiley & Sons, 2007.

[16] N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezo-
electrics,” Ieee Micro, vol. 21, no. 3, pp. 30–42, 2001.

[17] A. Wang and A. Chandrakasan, “Energy-efficient dsps for wireless sensor net-
works,” Signal Processing Magazine, IEEE, vol. 19, no. 4, pp. 68–78, 2002.

[18] M. Ettus, “System capacity, latency, and power consumption in multihop-routed
ss-cdma wireless networks,” in Radio and Wireless Conference, 1998. RAWCON
98. 1998 IEEE. IEEE, 1998, pp. 55–58.

[19] D. Wagner and R. Wattenhofer, Algorithms for sensor and ad hoc networks:
advanced lectures. Springer-Verlag, 2007.

[20] J. L. Hill and D. E. Culler, “Mica: A wireless platform for deeply embedded
networks,” Micro, IEEE, vol. 22, no. 6, pp. 12–24, 2002.

[21] O. Arazi, I. Elhanany, D. Rose, H. Qi, and B. Arazi, “Self-certified public key
generation on the intel mote 2 sensor network platform,” in 2nd IEEE Workshop
on Wireless Mesh Networks, 2006. WiMesh 2006. IEEE, 2006, pp. 118–120.

[22] M. Bishop, Introduction to computer security. Addison-Wesley Professional,
2004.

[23] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography. CRC press, 2010.

[24] sha256 standards from nist. http://csrc.nist.gov/groups/STM/cavp/documents/
shs/sha256-384-512.pdf. LAST DATE ACCESSED: January 9, 2015.

[25] Digital signature. http://en.wikipedia.org/wiki/Digital signature#mediaviewer/
File:Digital Signature diagram.svg. LAST DATE ACCESSED: January 9, 2015.

[26] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation
in wireless sensor networks,” in 22nd International Conference on Distributed
Computing Systems Workshops, 2002. IEEE, 2002, pp. 575–578.

[27] Routing river image. http://www.cse.msu.edu/rgroups/elans/project files/wsn
project2.html. LAST DATE ACCESSED: January 16, 2015.

[28] S. ZareAfifi, R. Verma, B. King, P. Salama, and D. Kim, “Secure countermea-
sures to data aggregation attacks on sensor networks,” in IEEE 55th Interna-
tional Midwest Symposium on Circuits and Systems (MWSCAS). IEEE, 2012,
pp. 856–859.

[29] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “Tag: A tiny ag-
gregation service for ad-hoc sensor networks,” ACM SIGOPS Operating Systems
Review, vol. 36, no. SI, pp. 131–146, 2002.

81

[30] Payload computing. http://en.wikipedia.org/wiki/Payload (computing). LAST
DATE ACCESSED: January 9, 2015.

[31] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “The design of an
acquisitional query processor for sensor networks,” in Proceedings of the 2003
ACM SIGMOD international conference on Management of data. ACM, 2003,
pp. 491–502.

[32] D. Wagner, “Resilient aggregation in sensor networks,” in Proceedings of the 2nd
ACM workshop on Security of ad hoc and sensor networks. Organization, 2004,
pp. 78–87.

[33] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network aggregation in
sensor networks,” in Proceedings of the 13th ACM conference on Computer and
communications security. ACM, 2006, pp. 278–287.

[34] L.-G. Alberto and W. Indra, “Communication networks: fundamental concepts
and key architectures,” Mc GrawHill, pp. 845–857, 2000.

[35] Nsidc weather report on arctic sea. http://nsidc.org/arcticseaicenews/2008/06/
arctic-sea-ice-still-on-track-for-extreme-melt/. LAST DATE ACCESSED: Jan-
uary 30, 2015.

[36] Dmsp-f13. http://nsidc.org/data/docs/daac/f13 platform.gd.html. LAST DATE
ACCESSED: January 30, 2015.

[37] Dmsp-f15. http://nsidc.org/data/docs/daac/f15 platform.gd.html. LAST DATE
ACCESSED: January 30, 2015.

[38] Y. Yao and J. Gehrke, “The cougar approach to in-network query processing in
sensor networks,” ACM Sigmod Record, vol. 31, no. 3, pp. 9–18, 2002.

[39] B. Przydatek, D. Song, and A. Perrig, “Sia: Secure information aggregation in
sensor networks,” in Proceedings of the 1st international conference on Embedded
networked sensor systems. ACM, 2003, pp. 255–265.

[40] W. Stallings and L. Brown, Computer Security. Pearson Education, 2008, no.
s 304.

[41] C. P. Pfleeger and S. L. Pfleeger, Security in computing. Prentice Hall Profes-
sional Technical Reference, 2002.

[42] R. Anderson, “Why cryptosystems fail,” in Proceedings of the 1st ACM Confer-
ence on Computer and Communications Security. ACM, 1993, pp. 215–227.

[43] ECDSA-FIPS, “186-3,” Digital Signature Standard (DSS), 2009. http://csrc.
nist.gov/publications/fips/fips186-3/fips 186-3.pdf LAST DATE ACCESSED:
February 25, 2015.

