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ABSTRACT

Rao, Swetcha. M. S. E. C. E. , Purdue University, August 2012. 3D Endoscopy Video
Generated Using Depth Inference: Converting 2D to 3D. Major Professor: Lauren
Christopher.

A novel algorithm was developed to convert raw 2-dimensional endoscope videos

into 3-dimensional view. Minimally invasive surgeries aided with 3D view of the in-

vivo site have shown to reduce errors and improve training time compared to those

with 2D view. The novelty of this algorithm is that two cues in the images have been

used to develop the 3D. Illumination is the first cue used to find the darkest regions

in the endoscopy images in order to locate the vanishing point(s). The second cue

is the presence of ridge-like structures in the in-vivo images of the endoscopy image

sequence. Edge detection is used to map these ridge-like structures into concentric

ellipses with their common center at the darkest spot. Then, these two observations

are used to infer the depth of the endoscopy videos; which then serves to convert

them from 2D to 3D. The processing time is between 21 seconds to 20 minutes for

each frame, on a 2.27GHz CPU. The time depends on the number of edge pixels

present in the edge-detection image. The accuracy of ellipse detection was measured

to be 98.98% to 99.99%. The algorithm was tested on 3 truth images with known

ellipse parameters and also on real bronchoscopy image sequences from two surgical

procedures. Out of 1020 frames tested in total, 688 frames had single vanishing

point while 332 frames had two vanishing points. Our algorithm detected the single

vanishing point in 653 of the 688 frames and two vanishing points in 322 of the 332

frames.
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1. INTRODUCTION

Minimally Invasive Surgery (MIS) is a surgical technique which, when compared to

open surgeries, has advantages like reduced scarring and shorter recovery time. For

these reasons, MIS is replacing other standard surgical procedures. The procedure

for MIS requires a long and thin tube with a miniature camera attached at its end.

Such a tube is called an Endoscope, as it is used to view internal structures in the

body. This enables surgeons to view the surgical area in a screen from the miniature

camera. This research converts the 2D video output from such a camera, making

it viewable on 3D-Television. Viewing in 3D has shown to improve clinical practice

by speeding up execution time of the surgical procedure, improving the quality of

training for novice practitioners and ultimately yielding better patient outcomes.

The following sections of this chapter explain the need and advantages of having

3D endoscopy compared to 2D, and the existing methods, algorithms and research

on conversion of 2D endoscopic vision to 3D.

1.1 Advantages of 3D Endoscopy

With the increasing use of minimally invasive surgeries, the ability to view the

endoscopy by practitioners and resident surgeons in 3D is an added advantage. The

statistical evidence from a number of studies prove that 3-dimensional view of the in-

vivo surgical site improves time for learning endoscopic procedures and also reduces

the operating time among practitioners. Studies also show that compared to 2D,

3D endoscopy provides a more realistic view of the surgical site, thus making it

advantageous over 2D endoscopy when used during delicate endoscopic surgeries.

The following paragraphs cite and discuss some studies conducted by researchers to
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analyze the effects of endoscopic surgeries performed using 3D vision as compared to

2D vision.

In a recent presentation at the American Rhinologic Society COSM (Combined

Otolaryngology Society Meetings), a study was conducted to analyze the effects of

3D endoscopic surgery compared to using a 2D system [1]. The experiment involved

7 patients undergoing sinonasal and skull base surgeries. On some of these patients,

a 2D endoscopic system was used to perform these surgeries while on the others, 3D

endoscopic system was incorporated at key portions of the procedure. The reported

result is that by 3D endoscopy, the depth perception and endoscopic orientation were

enhanced in 43% of the patients, without any increase in complications due to the

surgery in the patients.

In an article written by Taffinder. N, et al [2], twelve experienced laparoscopic sur-

geons and sixteen novices were asked to perform a 672 tasks of laparoscopic surgeries:

comparing 2D, 3D, and direct vision using the Imperial College Surgical Assessment

Device (ICSAD); standard objective scores for measuring the movements of surgical

instruments. Compared with direct vision, the 2D endoscopic vision reduced the per-

formance by 35%-100%, while the 3D reduced these mistakes by 41%-53% in both

novices and experienced surgeons. Also, no side effects were reported in the new 3D

system.

J. C. Byrn, et al, in their journal paper [3], talk about a study designed to evaluate

the effect of 3-dimensional vision on the performance of experienced and resident

surgeons compared to 2-dimensional vision, using the da Vinci surgical system. In

this study, the performance times and errors of six surgeons and six senior surgical

residents were recorded using 2D and 3D vision individually for various tasks. The

four tasks or skills that were tested were bead transfer and drop, needle capping,

threading and knot tying. The paper reports that statistical calculations of error

rates and performance times for all the 4 skills were reduced by 34% to 46% and

44% to 66% respectively. This proves that 3-dimensional vision has a significant
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advantage compared to 2D vision in the improvement of performance and error rate

in both experienced and novice surgeons.

Apart from endoscopy, enhanced depth perception in laparoscopy with 3D imaging

has been reported as a major advantage of minimally invasive surgical procedures [4].

In this the participants included 20 novices, 20 practitioners with an experience of

50 laparoscopic procedures and 20 with an experience of more than 50 laparoscopic

procedures. Results show clearly that there was a significant improvement in speed

and accuracy under 3 dimensional conditions compared to 2D vision on all levels

of experience, irrespective of the order of the sequence of each individual test. The

performance time decreased by 21.6-27.2% and number of mistakes reduced by 24.6-

80.4% in the 3D assisted surgical procedures. Conclusion of this evaluation states that

”three dimensional imaging may further improve the safety aspect of MIS.” Table 1.1

summarizes the conclusions from the above cited references.

For minimally invasive surgical methods, apart from improved accuracy, speed,

dexterity and safety offered by 3-dimensional vision, another feature that adds to

its advantage is a new MIS system under development: Telepresence surgery [5].

This technology uses remote force-feedback manipulators, 3D vision and stereophonic

sound, projecting the images from the site of surgery to a remote workstation, allowing

the surgeon to perform the surgery by not being present at the surgical site [6].

The above 4 studies are representative of other multiple studies where researchers

show that 3-dimensional endoscopic view is advantageous over 2-dimensional view in

terms of performance, error minimization and reduced learning curve. In this section,

the advantages of 3D endoscopy have been discussed, the next section discusses about

existing methods to convert 2D endoscopy to 3D, and in what aspects the method

developed in this thesis is advantageous over the prevailing methods.
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Table 1.1
Summary of Advantages of 3D Endoscopic Surgeries

Reference Article # of patients/tasks Conclusions

[1] 7 patients Enhanced depth perception and

endoscopic orientation by 3D

endoscopy.

Improved effect of 3D endoscopic

surgery in 43% of patients.

[2] 672 tasks Compared to direct vision

performance based on

movement of surgical instruments

reduced by 35-100%

in 2D surgical vision and

these mistakes decreased by 41-53%

in 3D surgical vision.

[3] 48 tasks Compared to 2D vision,

3D vision reduced

task execution time by 34-46%

Error rate by 44-66%

[4] 120 tasks Compared to 2D, 3D vision

reduced the task execution time

and mistakes by 21.6-27.2%

and 24.6-80.4% respectively.
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1.2 Literature Review for 2D to 3D Conversion of Endoscopic Image

Sequences

There are several algorithms to estimate the depth associated with 2D images, to

reconstruct its 3D view. According to the depth cues on which the algorithms rely,

they are classified into 12 categories [7]. In terms of 3D endoscopy, many researchers

and computer vision enthusiasts have developed methods for to convert 2D endoscopy

to 3D view based on stereoscopic depth-map generation. Broadly, there are two

methods adopted to convert 2D endoscopy to 3D. They are:

(1) 3D from binocular image sequence, and

(2) 3D from monocular image sequence.

In this thesis, 3D is developed from the monocular image sequence. The following

sub-sections consist of literature review of 2D to 3D conversion of endoscopic image

sequences using each of the above methods.

1.2.1 2D to 3D Conversion of Endoscopy from Binocular Image Sequence

Many of the methods used by researchers associate binocular vision to the endo-

scope, which means that to develop 3D endoscopy, the hardware is modified to consist

of two cameras.

K. Keller and A. State, of InnerOptic Technology Inc., have developed a stereo

endoscopy hardware system, that plugs in to the existing monoscopes already owned

by a majority of practitioners [8]. This hardware consists of 5.5mm and 10mm dual

optical channel laparoscopes, which combine both exit channels of the laparoscope

into a single, standard, endoscopic eye cup. This technology helps practitioners to

reduce the cost of buying new hardware, compatible with 3D technology. Although,

practitioners still have to invest on buying the stereo endoscopy hardware to plug

in to their monoscopes, which can be avoided by adopting our proposed method of

converting 2D endoscopy to 3D.
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M. Chan, et al, designed a system that consists of two imaging channels and

a provision to illuminate the imaged object, to measure the surface topology [9].

The imaging system designed, consisted of two wide-angle lenses with each imaging

channel measuring 1.8mm in diameter. According to this model, the total diameter

of the endoscope including the stereo cameras, stainless steel tubing and separation

between the lenses sums up to 5.1mm. While it is known that the minimum diameter

of existing single channel endoscopes manufactured to date is 5.0mm, the drawback of

this design is the slightly increased size of the endoscope [9]. Although the difference

in diameters is not much, as diameter of Bronchioles range from 0.8mm to 8.0mm, it

is always desirable to minimize the diameter of the endoscope.

As another example, a computerized 3-dimensional endoscopic imaging system

was designed, dedicated to delicate endoscopic surgery [10]. In this design, a 3D

telescope was used to capture stereo images of the endoscope. This telescope con-

sisted of a stereo laparoscope of diameter 10.0mm, attached to a camera hand-piece

containing 2 microchip cameras. Although in this design, high resolution cameras

were used to obtain the images, and the results conclude that the objective: reducing

surgical performance time surgeons surgeons was achieved. However, the size of the

endoscope (10.0mm) is still too big, which restricts this design from being applied

to bronchoscopes which demand the outer diameters to be in the range of 2.2mm to

4.9mm in case of pediatric sized flexible bronchoscopes [11].

In a publication by F. Mourgues, F. Devemay, and E. Coste-Maniere [12], a stereo-

scopic endoscope was used to obtain the pre-operative images for surgeons to view

the operative field in 3D. The novelty of this paper is that instruments are removed

from the field of view in the 3D version, so that surgeons can get a view of the in-

ternal organs as if they were looking at them directly. Although this algorithm gives

a more realistic view of the surgical site, there were discrepancies in this algorithm

due to correlation errors in the stereoscopy algorithm, resulting in errors in proper

reconstruction of 3D perspective.
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1.2.2 2D to 3D Conversion of Endoscopy from Monocular Image Se-

quence

In terms of depth-map estimation of 2D endoscopic image sequences to convert

them to 3-dimensional view from monocular input image sequence, most of the pre-

vious attempts made by researchers consist of structure-from-motion algorithms.

In [13], a structure-from-motion algorithm was used for a sparse set of feature

points and a fast, linear interpretation algorithm was developed for creating a dense

disparity field for synthesizing stereoscopic views from original monocular video. This

algorithm uses the monocular image sequence to interpret the depth of the endoscopic

video by using the normalized depth of every pixel and then recovering the normalized

depth via structure-from-motion and linear interpolation. As reported by the authors,

the results of this algorithm demonstrate feasibility and effectiveness. However, there

are inconsistencies in the dense disparity map for real endoscope data.

In the algorithm developed in [14], reconstruction of the 3D scene of endoscopic

image sequence from monocular endoscopy is done by estimating the motion of the

camera, then generating a triangle mesh and calculating 3D coordinates based on the

triangle mesh and motion of the camera. Then, to assign a natural look to the 3D

reconstruction, final texturing is done. This approach is robust and could have a good

potential after the improvement of its accuracy and after analysis of the estimation

error.

1.2.3 Preview of Our New Monocular Extensions to the Literature

In this thesis, we use two novel cues to estimate and infer the depth of endoscopic

images, from monocular endoscopes, which are as follows:

(1) Depth from illumination or shadowing.

(2) Depth from ellipses and vanishing point.

The implementation of our algorithm is shown on synthetic truth data and on real
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bronchoscope data and the results are discussed based on mean square error calcula-

tions and number of proper vanishing points detected among all the frames tested.

This thesis is structured as follows: In Chapter 2, the implementation of the

algorithm is described stage-wise, starting with the data preparation stage to the

depth-map generation and depth image based rendering (DIBR). The results of the

algorithm, implemented using Open Source Computer Vision (OpenCV) are shown

in Chapter 3, with real as well as synthetic images given as inputs. Chapter 4 con-

cludes and elucidates on the challenges faced during the algorithm development and

implementation, and suggests future work, to improve the algorithm.
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2. DEPTH INFERENCE ALGORITHM FOR

ENDOSCOPY

This chapter explains the algorithm developed in this thesis for conversion of monoc-

ular 2D endoscopy video into 3D and its implementation. Two cues are used to

develop depth-map for monocular endoscopic image sequences. The first cue is that

the edge detected images of endoscopy are characterized by ridge-like structures that

appear concentric, with their centers at the darkest point in the source image where

light from the camera cannot reach. This dark point is the second cue used in this

algorithm. The results of this researched were tested on two data sets, obtained from

Dr. Aliya Noor at Indiana University (IU) Hospital, Pulmonology Department.

The proposed algorithm for depth inference consists of four stages. They are as

follows:

(1) Slice the endoscopy video into a stack of images and select the region of interest.

(2) Filter the Canny edge detected image in the stack and apply a novel combination

of image processing techniques.

(3) Detect ellipses from the edge information of each image.

(4) An atypical approach to generate depth-map from the ellipse parameters obtained.

These stages are described in a block diagram in Figure 2.1. In Bronchoscopy

videos there are often two branches called Bronchioles; which when seen from an

image-processing perspective appear to have two vanishing points. In such cases, the

algorithm detects two sets of concentric ellipses at each of the vanishing points. Once

the depth-map is generated, it is stitched to the right side of the source image for

Depth Image Based Rendering. This is repeated for each image in the stack and

upon completing with the entire stack, it is converted back into a video sequence.

This is done in the last stage of the algorithm. Each stage is further explained in the

following sections.
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2.1 Image Data Preparation

The endoscopy video is first converted from the original movie into a stack of

single images at 30 frames per second. Each of these images is taken as a single

source image during the process of depth estimation and the algorithm is designed to

work on one image at a time.

Usually, an endoscopy video consists of region around the endoscope cameras

display, with information about the patient, time and date when the endoscopy was

performed, etc. The text is embedded in the endoscopy video over a black background.

As our region of interest is the area consisting of only the internal organs, in this stage

just the area with the subject of interest is selected and saved. The dimensions of

region of interest can be different for different datasets, as they are taken from different

endoscopes. This can be a user set parameter for different input endoscope images.

This is explained in Figure 2.2, where the inner rectangle is the in vivo surgical site

and our region of interest and the area between inner and outer rectangles is where

the patients details are embedded.

Fig. 2.2. Region of Interest in Endoscopy Images
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For the endoscope data set obtained from Dr. Aliya Noor, the dimensions of the

rectangular region of interest are 226 × 213. These dimensions can vary with the

type of camera used in different endoscopes. Further processing is done on this new

image, named roiimg. Once the depth-map generation step is done, the roiimg and

depth image are fitted back with the rest of the black part with patients information,

so that image dimensions of the source and depth images agree for the final stage

(Figure 2.1).

2.2 Image Filtering and Canny Edge Detection

The aim of this stage is to perform edge detection on the output image from the

previous stage (Section 2.1), to detect ellipses close to the vanishing point(s) of the

endoscopy video. An example of this stage is as shown in Figure 2.3.

First, we pre-process the image from the previous stage (Section 2.1) by applying

Median Filter with a square aperture of size 5x5. This process filters out the specular

points appearing in the roiimg image due to the reflections from the endoscope light.

The median filtered image is referred to as Image 2 (with respect to block diagram

in Figure 2.1). To reduce undesired image clutter that appears as noise to the edge

detector, further processing is necessary. For this reason, a mask is created by per-

forming morphological operation of dilation on the image obtained after darkest area

detection on the median filtered image.

To create the mask, the next step is detecting the darkest area. The regions in

the endoscopy image where minimum light from the endoscope reaches the field of

view are considered as the deepest points for the depth-map generation. The mask

is transparent in the darkest areas detected and opaque in the remaining portions of

the image. This image is referred to as Image 3 in Figure 2.1. The darkest area in

Image 2 is identified by setting a threshold of 95, 50 and 65 for the red, green and

blue components respectively, of the median filtered image. These values are worked
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for various in-vivo surgical images. The threshold on the red component is set higher

compared to blue and green components since red is a dominant tissue color.

From observation and many trials, it is decided that the most suitable mask is

obtained by performing two iterations of dilation on the darkest area detected image

(Image 3 in Figure 2.4), with a circular kernel of size 3x3. This double dilated image

is now used as a mask over the median-filtered image, to mask out regions in the

median-filtered image that cause undesired edge pixels upon edge-detection (Figure

2.3). The resulting masked image from the above step is segmented using Canny

Edge Detection [3]. The edge pixels are used to detect ellipses in the endoscopy

images for depth-map estimation, in the later stages. The lower threshold used for

Canny edge detection is 70 and the upper threshold is 100. The aperture size for the

Sobel operator used in the Canny edge detection algorithm is 3x3. Figure 2.4 shows

this process with an example. The edge detected image is then used in the ellipse

detection stage, described in the next section.

2.3 Ellipse Detection

The next stage is ellipse detection. This is one of the novel parts of the algorithm

developed in this thesis. A review of classical methods is discussed in this section,

followed by the advantages of adopting ellipse detection compared to the classical

methods.

When seen from an edge detection perspective, one of the observations made dur-

ing this research was that the field of interest of the videos and image sequences from

Bronchoscopy and Colonoscopy were characterized by elliptical ridge-like structures.

These ellipses were complete and closed in some frames, while they were broken in

most of the frames. Moreover, the elliptical structures were observed to be nearly

concentric, with the centers of the ellipses within some threshold (Figure 2.5).
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roiimg Mask

Masked Image Edge Detected Image

Fig. 2.3. Effect of masking on edge detection
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Source Image Edge Detection Image

Fig. 2.5. Ridges of endoscopy image appearing as ellipses in the edge-
detected image

On the basis of these observations, our research focus was to automatically detect

the elliptical shapes appearing in these edge-detected images and then to estimate

the depth of each frame of the endoscope image sequence.

We first explored using the OpenCV function for detecting circles. This algorithm

for circle detection is based on Hough’s method of line detection [15], but was found

to eliminate concentric circles as outliers. Therefore, changes to this algorithm were

necessary to keep circles having centers close to each other. However, it was observed

that the number of outliers increased as the algorithm considers undesired edge pixels

as circles. Figure 2.6 shows a comparison of circle detection using OpenCV and our

algorithm.

D. H. Ballard, in his paper on generalized Hough transform to detect arbitrary

patterns [16], generalizes the Hough algorithm [15] to use edge information to define

mapping between the orientations of edge pixels from a reference point. This paper

illustrates the implementation of their algorithm by finding the parameters of an

ellipse. On similar grounds, detection of ellipses by finding the parameters of possible
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Fig. 2.6. Circles detected from OpenCV circle detection code(left) vs
our algorithm(right)

ellipse and voting for the best fitting ellipse was proposed by Yonghong Xie and Qiang

Ji, in their conference paper [17].

Upon researching a number of journals and conference proceedings, we find that

although many researchers have attempted to detect ellipses automatically, the com-

putational complexity of detecting ellipses is high due to the requirement to find all

the five parameters of the ellipses. While detecting single ellipses in an image is not

very difficult, detection of multiple ellipses is highly complex. Hence, to make sure

that the computational complexity of detecting ellipses is as low as possible, we have

implemented the algorithm in [17], with some modifications.

According to Yonghong Xie and Qiang Ji [17], the edge image is given as input to

the ellipse detection function. The white pixels in the edge image represent the image

pixels to be considered for ellipse detection. The following describes our algorithm for

ellipse detection [17] along with snippets of the code developed using Visual Studio

and OpenCV libraries.

The first step in [17] is to store all the edge pixels in a 1 dimensional array. We

modify this step by storing the edge pixels in a 2 dimensional array of sizewidthxheight

of the edge image, to speed up the process of searching through each edge pixel. The

step (3) of [17] where for each pixel (x1, y1) and each other pixel (x2, y2) of the edge

image, the distance between (x1, y1) and (x2, y2) is calculated, we modify this step by
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setting limits to the coordinates of the edge pixels around the borders of the image.

This modification reduces the execution time taken by the ellipse detection algorithm

as the number of edge pixels that are to be searched to find an ellipse is reduced.

Now, if the distance between each edge pixel, (x1, y1) and each other edge pixel, (x2,

y2) is greater than or equal to 8, then the steps (5) through (7) from [17] are carried

out.

(5) For the pair of pixels (x1, y1) and (x2, y2), using Equations 2.1 to 2.4 to calculate

the center, orientation and length of major axis for the assumed ellipse.

(6) For each third pixel (x, y), if the distance between (x, y) and (x2, y2) is greater

than the required least distance for a pair of pixels to be considered then carry out

the following step.

(7) Using Equations 2.5 and 2.6 to calculate the length of minor axis.

x0 = (x1 + x2)/2 (2.1)

y0 = (y1 + y2)/2 (2.2)

a = [(x2 − x1)2 + (y2 − y1)2]
1/2
/2 (2.3)

α = arctan [(y2 − y1)/(x2 − x1)] (2.4)

b2 = (a2d2 sin2 τ)/(a2 − d2 cos2 τ) (2.5)

where cos τ is

cos τ = (a2 + d2 − f 2)/(2ad) (2.6)

where ’d’ is the distance between (x, y) and (x◦, y◦) and ’f ’ is the distance between

(x, y) and (x2, y2). The ellipse parameters are as shown in Figure 2.7.

Steps (8), (9) and (10) of [17] are modified to decrease the execution time of the

ellipse detection algorithm. According to step (8) in Y. Xie and Q. Ji’s algorithm,

after calculating the length of the minor axis, the accumulator array is incremented

by 1 for this length of minor axis. Our modification to this step is to consider only

those values of ’b’ calculated from Equations 2.5 and 2.6, that are greater than a

threshold of ’8’. This way, ellipses detected from the edge pixels coming up due
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Fig. 2.7. Parameters for ellipse detection

to the bubble clutter in the in-vivo site are eliminated. The threshold is chosen as

’8’ from observation of a number of bronchoscopy video frames. Next, the values

of semi-minor axis that are greater than ’8’ are stored in a one dimensional array,

ac[]. The edge pixels corresponding to these values of semi-minor axis are stored in

an accumulator matrix, accum of data type CvMat. This is repeated until all the

pixels are computed for this pair of pixels. A snippet of the code for this part of the

algorithm is shown in Figure 2.8.

In step (10), instead of setting a general voting threshold for all types of input

images as according to [17], a conditional voting threshold is used. If the total number

of edge pixels is less than ’1600’, then an ellipse is said to be detected if the accumu-

lator vote for the semi-minor axis length is between ’27’ and ’30’; else, an ellipse is

detected if the accumulator vote for the semi-minor axis length is greater than ’47’.

The reason for making this modification is that when a general voting threshold is set,

in cases where the number of edge pixels is less and the voting threshold is too high,

the correct ellipses are discarded by the algorithm due to insufficient votes; whereas

when the number of edge pixels is more and voting threshold that is set, is a low

value, then the algorithm ends up detecting too many outliers. Hence, an adaptive

voting threshold that changes with the number of edge pixels is a good way to reduce

the possibility of erroneous ellipse detection. A snippet of the code for this part of

the algorithm is shown in Figure 2.9.
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Fig. 2.8. Code snippet for data storage using accumulator array and
accumulator matrix

Fig. 2.9. Code snippet for implementing adaptive voting threshold
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Next, steps (11) through (15) from [17] are implemented. The steps are as follows:

(11) Output ellipse parameters.

(12) Remove the pixels on the detected ellipse from edge pixel array.

(13) Clear accumulator array.

(14) Loop until all pairs of pixels are computed.

(15) Superimpose detected ellipses on the original image.

This algorithm implementation is first tested on synthetic and real world im-

ages consisting of simple and slightly complex ellipses, before implementing it on the

endoscopy image sequences. The synthetic source images and ellipses detected are

shown in Tables 2.1 and 2.3. Table 2.1 consists of synthetic ellipses that are used to

test the accuracy of the code implemented for ellipse detection. Table 2.3 consists of

ellipses synthesized to test on images that are close to the edge-detected images of

endoscopy videos. Table 2.5 shows ellipses detected when the source images are those

of real-world scenes. Tables 2.2, 2.4 and 2.6 compare the results of detected ellipse

parameters with the actual ellipse parameters, for the synthetic and real world test

images.

The parameter values are detected with accuracy of 98.98% to 99.99%. The

percentage accuracy, A measured is calculated using Equation 2.7.

A% = 100−

∑5
p=1

∣∣∣∣∣∣
detectedp − actualp

actualp

∣∣∣∣∣∣
5

(2.7)

where detectedp and actualp are the values of the pth detected and actual param-

eters of the ellipse, respectively.

Next, with these tests concluding the effectiveness of the ellipse detection algo-

rithm and its code, we apply this ellipse detection to the endoscopy images to find

the centers and orientations of the elliptical ridges present. Figures 2.10 to 2.14 show

some of the bronchoscope image sequences obtained from Dr. Aliya Noor and the

ellipses detected.
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Table 2.1
Synthetic test images and results: testing accuracy of ellipse detection code

Ellipses Detected

Name of Image Source Image (Superimposed on Source Image

In Red)

Oval 1

Oval 2

Oval 3
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Table 2.2
Comparison of ellipse parameters of actual and detected ellipses from
the synthetic test images in Table 2.1

Image x◦ y◦ Orientation Major Minor Accuracy

Angle Axis Axis %

Oval 1 Actual 93 47 0 93 46 99.97

34 82 90 83 34 99.97

Detected 96 48 0 92 48

36 83 89 83 36

Oval 2 Actual 62 92 56 79 42 99.96

Detected 60 93 62 80 43

Oval 3 Actual 126 83 0 126 50 99.98

130 79 0 127 75 99.98

Detected 128 80 1 129 51

128 81 0 129 76

116 65 -4 117 62
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Table 2.3
Synthetic test images and results (continued from Table 2.1): testing
accuracy of ellipse detection code with images relevent to endoscopy
data

Ellipses Detected

Name of Image Source Image (Superimposed on Source Image

In Red)

Oval 4

Oval 5

Oval 6
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Table 2.4
Comparison of ellipse parameters of actual and detected ellipses from
the synthetic test images in Table 2.3.

Image x◦ y◦ Orientation Major Minor Accuracy

Angle Axis Axis %

Oval 4 Actual 117 104 0 90.5 55.5 99.95

118 103 0 106.5 92.5 99.98

Detected 117 103 0 88 57

117 101 0 108 94

Oval 5 Actual 97 101 -55 78 44 99.95

79 143 73 129 45 99.98

40 126 85 39 23 99.95

Detected 100 113 -55 81 45

80 140 75 128 46

39 126 89 41 25

Oval 6 Actual 85 71 0 53.5 51 99.98

159 111 0 57.5 43.5 99.98

Detected 85 72 0 53 48

155 110 0 58 45
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Table 2.5
Real-world test images and results

Ellipses Detected

Name of Image Source Image (Superimposed on Source Image

In Red/Blue)

Oval 7

Oval 8

Oval 9
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Table 2.6
Comparison of ellipse parameters of actual and detected ellipses from
the synthetic test images in Table 2.5.

Image x◦ y◦ Orientation Major Minor Accuracy

Angle Axis Axis %

Oval 7 Actual 87 150 -87 83 80.5 99.99

185 77 -2 75 72 99.89

Detected 87 150 -88 83 81

185 77 -3 77 72

Oval 8 Actual 144 63 0 73 62 99.97

Detected 145 64 0 81 62

Oval 9 Actual 157 156 0 150 149 98.99

116 98 -90 42 15 99.98

197 98 -90 42 14.5 99.96

Detected 155 156 -6 150 149

116 97 -87 43 15

195 97 -87 43 16
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Source Image Median Filtered ROI Image

Mask Masked ROI Image

Edge Detection Image Ellipses Detected

Fig. 2.10. Image #1: Example of one vanishing point detected from ellipses
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Source Image Median Filtered ROI Image

Mask Masked ROI Image

Edge Detection Image Ellipses Detected

Fig. 2.11. Image #2: Example for two ellipses detected
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Source Image Median Filtered ROI Image

Mask Masked ROI Image

Edge Detection Image Ellipses Detected

Fig. 2.12. Image #3: Example of ellipses detected from many edge pixels
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Source Image Median Filtered ROI Image

Mask Masked ROI Image

Edge Detection Image Ellipses Detected

Fig. 2.13. Image #4: Example of one ellipse detected for two vanish-
ing points present in source image



32

Source Image Median Filtered ROI Image

Mask Masked ROI Image

Edge Detection Image Ellipses Detected

Fig. 2.14. Image #5: Example of ellipses detected with bubble clutter
in source image
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2.4 Depth-Map Generation

This is the last stage in the process of depth-map inference of 2D endoscopy

image sequences. To create a depth gradient from one or more vanishing points has

been adopted by a number of researchers, but it is restricted to indoor or outdoor

hallway type images and has not been previously applied for 2D to 3D conversion of

endoscopy videos. In [18], the images are first classified into 3: indoor, outdoor and

outdoor with geometric elements such as buildings, bridges, etcetera, and based on

this classification, vanishing lines and vanishing points are detected. Based on the

slopes of these vanishing lines and the position of vanishing point, the depth-gradient

planes are generated. The grey levels in these depth-gradient planes are based on

assumptions that the vanishing point is the farthest point from the observer and that

higher depth corresponds to lowed grey values. In their paper, the grey levels in the

horizontal planes are set to be constant along rows and the grey levels in vertical

planes are set to be constant along columns. The two assumptions made in [18] are

first implemented to estimate and generate a depth map for tunnel images consisting

of a single vanishing point. This vanishing point is detected using centers of circles

detected from gray scale images using Hough transform.

In this thesis, the depth gradient is grown such that the darkest grey level starts

from the detected vanishing point and becomes lighter as it approaches the borders

of the source image. for circles, this is illustrated in Figure 2.15. In this image, the

circles in red denote the circles detected from our ellipse detection algorithm. The

points in green are the centers of these circles and the single point in dark red is the

point where the average of the centers of detected circles lies. This dark red point is

considered as the vanishing point. To the right of the source image superimposed by

the detected circles, their centers and the final vanishing point, is the depth gradient

generated for the input tunnel image from the inferred vanishing point. The above

method of gradient generation is used as the final step of our algorithm to develop a

depth-map for endoscopy image sequences. After ellipses are detected from the edge
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Fig. 2.15. Example of depth gradient generated (right) on tunnel
image from circle detection (left)

segmented image of each endoscopy image, the detected ellipses are grouped into two

sets since this particular set of endoscopy images have two vanishing points. The

median value of x and y coordinates of the centers of ellipses detected is found and

the distance between this median center and every other center is calculated. If this

distance is less than a particular threshold, then the ellipses associated with those

centers are considered as one set, and the ellipses whose centers lie at a distance

greater than the threshold from the median value are considered as the second set.

A mean of the centers of ellipses in each of the two groups is calculated, which gives

the approximate location of the two vanishing points in the endoscopy image.

If only a single ellipse is detected by the ellipse detection algorithm, the center

of that ellipse is taken as one of the vanishing points. The second vanishing point is

obtained by finding the mean of points that fit a certain range of thresholds of red,

blue and green components (50, 15 and 15 respectively) in the masked image. This is

a just-in-case approach to find one of those vanishing points which is not detected by

the algorithm in some of the endoscopy images due to reasons like insufficient edge

pixels or unsuitability of the voting threshold. This approach to locate a possible

vanishing point is used in 5% of the frames tested from the real bronchoscopy videos.
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Figures 2.16, 2.17 and 2.17 show the two vanishing points detected for an en-

doscopy image from the database and the corresponding depth gradients generated

by this algorithm. The blue ellipses in ”vanishing point” images are the ellipses de-

tected after grouping the outputs from ellipse detection stage into two groups. The

green dots represent centers of ellipses and the vanishing points found when one of

the ellipses is not inferred.

Once the depth gradients corresponding to the two vanishing points are generated,

they are linearly added to obtain the final depth gradient. This final depth gradient is

set back to its original dimensions before cropping out the region of interest in stage

1 and is stitched by the right side of the source image for 2D plus depth image based

rendering [19].
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SourceImage Ellipses Detected

Vanishing Point 1 (VP1) Corresponding Depth Gradient for VP1

(First from left to right in image)

Vanishing Point 2 (VP2) Corresponding Depth Gradient for VP2

(Second from left to right in image)

Fig. 2.16. Depth-map generation example #1: Two ellipses detected
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SourceImage Ellipses Detected

Vanishing Point 1 Corresponding Depth Gradient for VP1

Vanishing Point 2 Corresponding Depth Gradient for VP2

Fig. 2.17. Depth-map generation example #2: One ellipse detected, one inferred
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3. RESULTS FROM REAL ENDOSCOPY IMAGES:

COMPARING OUR RESULTS WITH TRUTH DATA

In this chapter, the resulting depth gradient obtained using our algorithm for en-

doscopy images is discussed. First, to test the credibility of the algorithm, it is tested

on truth data. The truth images are obtained by developing gray scale gradients from

known values of ellipse parameters. Then the algorithm is appplied on these truth

images to obtain the inferred depth-gradient. The mean square error (ε) between

the truth images and their corresponding depth-maps inferred from the algorithm is

calculated using Equation 3.1. Figure 3.1 shows the truth images in the first column

and the depth-maps inferred in the second column. The ellipses detected in the truth

images are superimposed on the inferred depth-map images. Table 3.1 compares the

values of center coordinates, major axis, minor axis and orientation of ellipses of truth

data and our algorithm. The mean square error between depth map generated from

our algorithm and truth data is also listed in this table. The mean square error is in

the range of 5 to 7 gray levels (highest being 255), which means that the depth map

generated is very close to the actual gradient of the truth image.

ε =

∑n
i=1 (ai − bi)2

n
(3.1)

where ai and bi represent pixel value of the ith pixel in an array consisting of n

elements in total.

Next, the algorithm is applied on the real endoscopy images from Dr. Noor. The

endoscopy video of the first procedure (without instruments visible in the surgical

site), when split into a stack of images at the rate of 29.97 frames per second gives a

total of 846 images. Out of these, our algorithm is tested on 570 images to generate
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Fig. 3.1. Truth image (left) and inferred depth with detected ellipses
superimposed (right)
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Table 3.1
Comparison of ellipse parameters of truth images and inferred depths

Image #
Parameters Mean Square

x y a b α Error (ε)

1
Truth 149 69 55 16 -6

5
Inferred 149 69 53 15 -4

2
Truth 157 108 62 23 -36

7
Inferred 156 108 60 22 -33

3
Truth 107 87 63 22 41

6
Inferred 107 86 61 21 40
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their depth maps. Figures 3.2 to 3.4 show three of the input images from the first

procedure as examples.

The video of the second procedure given by Dr. Noor is divided into sequence of

images at the rate of 29.97 frames per second, resuting in a total of 1489 images. Out

of these, our algorithm is tested on 450 images and their depth map is generated.

The region of interest for these images has dimensions 215× 304. The thresholds for

darkest area detection are not changed. Also, the thresholds for Canny edge detection

are the same as described in the above sections. The advantage of our algorithm is

that the presence of surgical instruments in the in-vivo surgical site does not affect

the detection of vanishing point(s) in the image; this is because it is observed that

the surgical tools are usually brighter than the darkest regions of the image. Due to

this, the regions of the image where the surgical tools are present get masked after

the darkest area detection step in stage 2. Figures 3.5 to 3.7 show three examples

of images from the second procedure and the results of application of our algorithm

on these input source images. Figures 3.2 to 3.7 contain the input source image, the

image containing the detected vanishing points, the corresponding depth gradients

for each vanishing point detected and the final depth-map corresponding to the input

source image.

With respect to depth map generated for endoscopy images from the first pro-

cedure, Dr. Aliya Noor stated that subjective viewing of the 3D effect in the bron-

choscopy video using the depth map inferred by our algorithm, appears natural and

could be useful in a clinical setting with more testing.

More results of our algorithm implemented on the endoscopy videos from the

first and second bronchoscopy videos given by Dr. Noor are included in appendix A.

Section 1 of appendix A contains some of the results that have two ellipses detected for

the two vanishing points while section 2 contains results of images with two vanishing

points but one from detected ellipse and the other from inferred vanishing point and

input images with single vanishing point. The images in sections 1 and 2 of appendix

A are representative of a number of frames of the original endoscopy video.
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Source Image Vanishing Points

Depth Map 1 Depth Map 2

Fig. 3.2. Depth gradient obtained for image #1: without surgical instrument
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Source Image Vanishing Points

Depth Map 1 Depth Map 2

Fig. 3.3. Depth gradient obtained for image #2: without surgical instrument
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Vanishing Point 1 Vanishing Point 2

Depth Map 1 Depth Map 2

Fig. 3.4. Depth gradient obtained for image #3: without surgical instrument
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Source Image Vanishing Points

Depth Map 1 Depth Map 2

Fig. 3.5. Depth gradient obtained for image #1: with surgical instrument
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Source Image Vanishing Points

Depth Map 1 Depth Map 2

Fig. 3.6. Depth gradient obtained for image #2: with surgical instrument
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Source Image Vanishing Points

Depth Map 1 Depth Map 2

Fig. 3.7. Depth gradient obtained for image #3: with surgical instrument



48

For the 570 test images from procedure one, our algorithm detected two vanishing

points from two detected ellipse parametes in 225 of these images and from one

detected ellipse and one inferred point in 331 of the images. For the 450 test frames

of the second procedure, two vanishing points were detected from two detected ellipse

parameters in 97 frames and single vanishing point was detected in 322 frames.

Table 3.2 gives the execution times of each stage of our algorithm on six repre-

sentative images from the endoscopy image sequence for varying edge pixels. These

runtimes are recorded when the algorithm is executed on a computer with 2.27GHz

clock frequency, 4GB RAM and Intel Code i3 CPU. It can be observed that the time

of execution varies between 21 seconds to 20 minutes. The execution time of the

third stage, i. e., ellipse detection stage is the reason for increase in running time of

the algorithm, as the ellipse detection code searches through each edge pixel three

times to detect the best ellipse. The execution time of the ellipse detection stage is

proportional to the number of edge pixels. Figure 3.8 shows a graph of variation of

execution time of our algorithm with number of edge pixels.

Table 3.2
Time elapsed for execution of each stage of our algorithm (seconds)

Image #
# of edge Time Elapsed (in seconds)

pixels Stage 1 Stage 2 Stage 3 Stage 4 Total

1 1289 0.014 0.387 20.043 0.616 21.060

2 1366 0.017 0.384 71.018 0.612 72.031

3 1552 0.016 0.374 89.139 0.592 90.121

4 2047 0.008 0.387 186.246 0.529 187.17

5 2305 0.000 0.375 599.118 0.686 600.179

6 2627 0.000 0.546 1247.314 0.890 1248.750
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Fig. 3.8. Graph representing execution time of our algorithm vs num-
ber of edge pixels
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4. CONCLUSION AND FUTURE WORK

In this thesis, a novel algorithm was proposed and developed to convert 2D endoscopy

video to 3D using depth inference. Interpretation of depth was done by finding the

vanishing points in 2D endoscopy image sequence obtained from detection of the

centers and orientations of elliptical ridges present in the edge detection images. The

depth-map was generated by growing a depth gradient from these vanishing points.

This is a new approach that has never been employed by researchers previously for

depth-map inference of monocular 2D endoscopy videos to convert them to 3D.

In Chapter 1, the motivation to start this research was explained by stating the

advantages of 3D endoscopy and the previous work related to conversion of 2D en-

doscopy videos to 3D. In Chapter 2, the algorithm developed by us was described

stage-wise with examples. In Chapter 3, the locations of vanishing points detected

from our algorithm were compared with truth data. Results of application of our

algorithm on real endoscopy images with and without the presence of surgical instru-

ments in the site of surgery were also discussed and illustrated in this chapter. Also,

in Chapter 3, the execution time of each stage of our algorithm for different number

of input edge pixels were tabulated and their causes and effects were discussed.

The credibility of our algorithm was first tested on synthetic truth images. The

truth images were obtained by growing concentric ellipses starting from the edges

of an ellipse with known parameter values. Our algorithm was then implemented

on these truth images and the corresponding vanishing point was found and depth

gradient was generated. The mean squared error between each pixel value of the truth

image and obtained depth gradient image was calculated and found to have values of

5 , 6 and 7 gray levels, the highest value of gray level being 255. The % accuracy of

ellipse detection was found to be in the range of 98.98% to 99.99%.
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For the first procedure, where no surgical instruments were present in the en-

doscopy video, 570 frames out of a total of 846 frames were tested with our algo-

rithm. In the second procedure consisting of surgical instruments, 450 of a total of

1489 frames were tested. The number of frames where desired ellipses and vanish-

ing points were detected by our algorithm are tabulated in Table 4.1. The results

from Table 4.1 show that the desired single and double vanishing points are located

from our algorithm for the first and second procedures in 92% to 97.89% of the total

number of frames tested. These values are calculated using Equation 4.1.

Table 4.1
Comparing accuracy of our algorithm with real values

Procedure # # of frames with # of frames with

(# of frames 1 vanishing point 2 vanishing points

tested) Real Detected % Accuracy Real Detected % Accuracy

1(570) 338 331 97.89 232 225 96.89

2(450) 350 322 92 100 97 97.4

%Accuracy = 100−

∣∣∣∣∣∣
real − detected

real

∣∣∣∣∣∣ (4.1)

From Table 4.1 it can be seen that out of a total of 1020 frames tested (combining

procedures 1 and 2), single vanishing point was detected as desired in 653 out of 688

frames (94.9% of the frames) and two vanishing points were detected in 322 out of

332 frames (96.98% of the frames).

The limitation of our approach is the execution time of the algorithm. It can be

observed from Table 3.2 that as the number of edge pixels increases, the execution

time of the algorithm increases. It can also be observed from this table that stage 3,

which is the ellipse detection stage, takes the maximum time for execution, which is

the reason for high execution time of the algorithm. The reason for high execution

time of the ellipse detection stage is because the algorithm performs an exhausitve
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search of each edge pixel, three times. Hence, as future work, the execution time of

the algorithm can be reduced by implementing an ellipse detection algorithm that has

lesser time complexity. Also, another method to reduce the execution of the overall

algorithm is by implementing it with the aid of OpenMP parallel processing. Further

improvement of the part of the algorithm to group the ellipses into two groups to

detect the two vanishing points present in bronchoscopy videos can be done using

k-means clustering algorithm [20]. In addition, the work for future would be to test

the algorithm on more endoscopy image sequences from various other sources.

A real time version of this algorithm can be developed by designing a hardware

device that takes input video from the 2D endoscopy camera and executes this algo-

rithm to give 2D plus depth video as output. For this, the speed of execution must

be at the rate of 0.02 frames per second. This can be achieved by parallel processing

of the microprocessors or a suitable hardware design.

Other developments that can be made to this algorithm are as follows:

- Allowing the user to change the thresholds for the red, green and blue components

in the image for darkest area detection and the upper and lower thresholds of Canny

edge detection.

- Using this algorithm together with other algorithms such as structure-from-motion,

depth-from-defocus, etc., to infer a more accurate depth-map for endoscopy images.

- Using knowledge of locations of vanishing points in previous frames of the video to

interpret the location of vanishing points in the current frame. - Improve the method

of combining depth gradients of the two vanishing points detected, to make a more

accurate depth gradient.

Our algorithm is a novel approach to infer the depth-map of endoscopy images, ir-

respective of the type of camera used to capture the video. In addition, this algorithm

is automatic for each set of input source image sequence. The percentage accuracy

of identification of vanishing points by our algorithm from Table 4.1 shows that this

algorithm can be implemented successfully in endoscopy videos without instruments

and in bronchoscopy videos with surgical instruments by making slight changes in it.
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A. ALGORITHM IMPLEMENTED ON MORE

BRONCHOSCOPY IMAGES

The endoscopy video used to test this algorithm is available on the following website:

http://www.engr.iupui.edu/ lauchris/Assets/Bronchoscopy3D.avi

A.1 Two vanishing points detected from two ellipses

# of frames Detected Ellipses Depth-Map

represented and Vanishing Points Generated

61/570

51/570

Fig. A.1. Result of algorithm implemented on dataset with two de-
tected vanishing points from ellipses
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# of frames Detected Ellipses Depth-Map

represented and Vanishing Points Generated

33/570

38/570

42/570

Fig. A.2. Result of algorithm implemented on dataset with two de-
tected vanishing points from ellipses (continued from Figure A.1)
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# of frames Detected Ellipses Depth-Map

represented and Vanishing Points Generated

40/450

34/450

23/450

Fig. A.3. Result of algorithm implemented on dataset with two de-
tected vanishing points from ellipses (continued from Figure A.2)
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A.2 One vanishing point detected from ellipse and one inferred vanishing

point

# of frames Detected Ellipses Depth-Map

represented and Vanishing Points Generated

93/570

16/570

30/570

Fig. A.4. Result of algorithm implemented on dataset with one de-
tected vanishing point from ellipse and one inferred
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# of frames Detected Ellipses Depth-Map

represented and Vanishing Points Generated

31/570

97/570

64/570

Fig. A.5. Result of algorithm implemented on dataset with one de-
tected vanishing point from ellipse and one inferred (continued from
Figure A.4)
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# of frames Detected Ellipses Depth-Map

represented and Vanishing Points Generated

275/450

32/450

15/450

Fig. A.6. Result of algorithm implemented on dataset with one de-
tected vanishing point from ellipse and one inferred (continued from
Figure A.5)
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B. CODE IN VISUAL C/C++ USING OPENCV LIBRARY

B.1 Functions for Stages 1, 2 and 4

/* File Name: preprocessing functions.cpp */

#include <cv.h>

#include <highgui.h>

#include <time.h>

/* Function to crop out the region of interest: Stage 1, 2 and 3 processes */

void regionofinterest(IplImage* image1, IplImage* roi img)

{

/* int wid = 215;int ht = 304; CvRect rectAngle = cvRect(203,44,wid,ht); */

/* Dimensions of region of interest for second procedure */

int wid = 226; int ht = 213; CvRect rectAngle = cvRect(83,11,wid,ht); /* Dimensions

of region of interest for first procedure */

IplImage* im = cvCreateImage(cvSize(wid,ht),image1->depth,image1->nChannels);

cvSetImageROI(image1,rectAngle); /* To set the region of interest in image1 */

cvCopyImage(image1,roi img); / *To copy the region of interest of image1 into the

image, roi image* /

cvResetImageROI(image1); / *To reset the region of interest in image1 */

}

/* Function to identify the darkest region in the endoscopy image and creating a

mask: Stage 2 process */

void darkest point(IplImage* image1, IplImage* image2)

{

CvMat* imgmat = cvCreateMat(image1->height,image1->width,CV 32FC3);

cvConvert(image1, imgmat); /* convert input image to matrix form */
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int s = image1->height*image1->width;

CvPoint *p = NULL;p = new CvPoint[s];

for(int k=0; k<s; k++)

{

p[k].x = 0; p[k].y = 0;

}/* initialize cvpoint ’p’ for storing image pixels */

int count = 0; /* initialize counter to zero */

for(int i=0; i<imgmat->rows; i++)

{

for(int j=0; j<imgmat->cols; j++)

{

CvScalar scal = cvGet2D(imgmat,i,j); /* access each (i,j)th element of matrix, ’img-

mat’ */

int b = (int)scal.val[0]; /* store blue component of image1 in b */

int g = (int)scal.val[1]; /* store green component of image1 in g */

int r = (int)scal.val[2]; /* store red component of image1 in r */

if((b<65)&&(g<50)&&(r<95)) /* if b,g,r component values are each less than a

threshold value */

{

p[count].x = j; p[count].y =i;/* (j,i) are the coordinates of the point in image1 which

has darkest pixel values */

cvCircle(image2,p[count],1,CV RGB(255,255,255),1,CV AA,0); /* mask is transparant

in the darkest region */

count++; /*increment counter*/

}

else/* if b,g,r component values are each greater than the threshold value */

{

p[count].x = j; p[count].y =i;/* (j,i) are the coordinates of the point in image1 which

do not have darkest pixel values */
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cvCircle(image2,p[count],1,CV RGB(0,0,0),1,CV AA,0); /* mask is opaque in such

regions */

count++; /*increment counter*/

}

}

}

}

/* Function to mask one image with another: Stage 2 process */

void showMaskPart(IplImage* image1, IplImage* mask, IplImage* result)

{

/* image1 is the source image which is to be masked

* mask is a single channel binary image as a mask

* result is the image with the same size, depth, channel with src

*/

cvZero(result);

CvSize sz = cvSize(image1->width, image1->height);

IplImage* refImg = cvCreateImage(sz, image1->depth, image1->nChannels);

cvZero(refImg);

cvOr(image1, refImg, result, mask);/* applying OR operation on each pixel of ’im-

age1’ and ’mask’ and storing result in ’result’ */

cvReleaseImage(&refImg);

}

/* Function for stitching image ’src2’ to the right side of image ’src1’ */ /* and

storing result in image ’dst’ */

void stitching(IplImage* src1,IplImage* src2, IplImage* dst)

{

CvRect left = cvRect(0,0,src1->width,dst->height); /* setting region of interest for

src1 image */

cvSetImageROI(dst,left);
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cvCopy(src1,dst,0);

cvResetImageROI(dst); /* reset ’dst’ image region of interest */

CvRect right = cvRect(src2->width,0,src2->width,dst->height);/* setting region of

interest for src2 image */

cvSetImageROI(dst,right);

cvCopy(src2,dst,0);

cvResetImageROI(dst); /* reset ’dst’ image region of interest */

}

/* Function to find darkest point for inferred vanishing point in case single ellipse

is detected */

void find one vanishing point(IplImage* image1, int& x, int& y)

{

CvMat* imgmat = cvCreateMat(image1->height,image1->width,CV 32FC3);

cvConvert(image1, imgmat); /* converting input image to matrix form */

int s = image1->height*image1->width;

int count = 0; /* counter to count number of pixels in having darkest value */

CvPoint *p = NULL;p = new CvPoint[s];

for(int k=0; k<s; k++)

{

p[k].x = 0; p[k].y = 0; } /* initializing cvpoint ’p’ for storing image pixels */

for(int i=0; i<imgmat->rows; i++)

{

for(int j=0; j<imgmat->cols; j++)

{

CvScalar scal = cvGet2D(imgmat,i,j); /* accessing each (i,j)th element of matrix,imgmat

*/

int b = (int)scal.val[0]; /* store blue component of image1 in b */

int g = (int)scal.val[1]; /* store green component of image1 in g */

int r = (int)scal.val[2]; /* store red component of image1 in r */
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/* if b,g,r component values are below a certain threshold,count the point as a pixel

having darkest value */

if((b<15)&&(g<15)&&(r<50))

{

p[count].x = j; p[count].y =i;

count++;

}

}

}

int sumx = 0; int sumy = 0; double meanx,meany;

/* finding mean of all pixels having darkest value */

for(int i=0; i<count; i++)

{

sumx = sumx + p[i].x;

sumy = sumy + p[i].y;

}

meanx = sumx/count;

meany = sumy/count;

x = cvRound(meanx);

y = cvRound(meany);

}

B.2 Functions for Stage 3: Ellipse Detection

/* File Name: ellipse detection.cpp */

#include <cv.h>

#include <highgui.h>

#include ”ellipse detection main.cpp” /* including the file containing main function,
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which is the calling function */

#include <time.h>

/* Function to find element repeating maximum number of times in a 1D array

*/

int maxelement(double num[], int lim, int& maxcount)

{

/* arranging elements of the array, num[] in descending order */

double temp;

for(int i=0; i<lim; i++)

{

for(int j=i+1; j<lim; j++)

{

if(num[i] <= num[j])

{

temp = num[j];

num[j] = num[i];

num[i] = temp;

}

}

}/* now elements of the array, num[] are in descending order */

int currentValue = 0; int currentCount = 0;

int maxValue = 0; int maxCount = 0;

for(int i=0; i<lim; i++) /* scanning through each element of the array, num[] */

{

/* is currentValue equal to the value of current element in the array, num[] */

if(currentValue == cvRound(num[i]))

{

currentCount++; /* if yes, increment currentCount */

}
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else /* if currentValue not equal to value of current element in the array, num[] */

{

/* is this value of currentCount greater than max count */

if(currentCount > maxCount)

{

/* if yes */

maxCount = currentCount;

maxValue = currentValue;

}

/* reset values */

currentValue = cvRound(num[i]);

currentCount = 0;

}

}

maxcount = maxCount; /* maxcount is the vote of number of times maxValue repeats

in the array, num[] */

return(maxValue); /* maxValue is the value that repeats maximum number of times

in the array, num[] */

}

/* Function to find median of a 1D array */

int findmedian(int arr[],int lim)

{

if(lim%2==0)

{

return (arr[lim/2]+arr[lim/2-1])/2;

}

else

{

return arr[lim/2];
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}

}

/* Function for ellipse detection */

void detect ellipses(IplImage* image1, IplImage* image2, int* majoraxis,

int* minoraxis, int* centersx, int* centersy, double* orientations, int sizeofarray)

{

/* initializations */

double a2dist,a2,ddist,d,a,fdist,f,bdist,b,maxim;

double costau, sintau;

double one,two,slp,alfa;

int ori[15],maja[15],mina[15],centx[15],centy[15],counting = 0;

int count,vote;

CvPoint cent;

for(int k=0; k<sizeofarray; k++)

{

majoraxis[k] = 0; minoraxis[k] = 0;

centersx[k] = 0; centersy[k] = 0; orientations[k] = 0.0;

}

for(int k=0; k<15; k++)

{

maja[k] = 0; mina[k] = 0; centx[k] = 0; centy[k] = 0; ori[k] = 0;

}

/* accumulator matrix */

CvMat* accum = cvCreateMat(mat->rows,mat->cols,CV 32FC1);

/* accumulator array */

double *ac = NULL; ac = new double[mat->rows * mat->cols];

for(int k=0; k<mat->rows * mat->cols; k++)

ac[k] = 0.0;

IplImage* out = cvCloneImage(image2);
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int tot;

counting = 0;/* initializations end */

/* start timer to check execution time of ellipse detection */

clock t start1 = clock();

CvMat* mat = cvCreateMat(image1->height,image1->width,CV 32FC1);

cvConvert(image1,mat); /* store all edge pixels in a 2D array */

tot = cvCountNonZero(mat);/* counting total number of edge pixels */

printf(”Total edge pixels = %d”,tot); /* printing total number of edge pixels */

/* for each edge pixel with coordinates (x1,y1) */

for(int x1=0; x1<mat->cols; x1++)

{

for(int y1=0; y1<mat->rows; y1++)

{

if((x1!=0)&&(y1!=0)&&((float*)(mat->data.ptr + mat->step*y1))[x1] == 255)

{

/* for each edge pixel with coordinates (x2,y2) */

for(int y2=0; y2<mat->rows; y2++)

{

for(int x2=0; x2<mat->cols; x2++)

{

if((x2!=0)&&(y2!=0)&&((float*)(mat->data.ptr + mat->step*y2))[x2] == 255)

{

/* length of semi major axis, ’a’ is half of distance between points (x1,y1) and (x2,y2)

*/

a2dist = (double)((x2-x1)*(x2-x1))+((y2-y1)*(y2-y1));

a2 = sqrt(a2dist); /* length of major axis */

a = a2/2;/* length of semi major axis from Equation 2.3 */

/*is length of major axis between 8 and 100 units*/

if((a2 >= 8)&&(a2 < 100))
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{

/* if length of major axis is between 8 and 100 units */

/* x and y coordinates of center calculated from Equations 2.1 and 2.2 */

cent.x = cvRound((x1+x2)/2);

cent.y = cvRound((y1+y2)/2);

/* calculating slope, ’slp’ and orientation, ’alfa’ of ellipse */

one = (double)(y2-y1);

two = (double)(x2-x1);

slp = one/two;

/* (slp < 0) conditions */

if(((x1>x2)&&(y1<y2)) ‖ ((x1<x2)&&(y1>y2)))

{

/* orientation angle of ellipse calculated from modification of Equation 2.4 */

alfa = (-1)*((atan(slp))*(360/(2*CV PI)));

}

else if(((x1<x2)&&(y1<y2)) ‖ ((x1>x2)&&(y1>y2)))

{

/* orientation angle of ellipse calculated from modification of Equation 2.4 */

alfa = (-1)*(atan(slp)*(360/(2*CV PI)));

}

/*(slp >= 0) conditions*/

else if(x1!=x2 && y1!=y2)

{

/* orientation angle of ellipse calculated from Equation 2.4 */

alfa = atan(slp) *(360/(2*CV PI));

}

else if((x1 == x2) && (y1!=y2))

{

alfa = 90;
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}

else if((y1 == y2) && (x1!=x2))

{

alfa = 0;

}

count = 0;

cvZero(accum); /* clearing accumulator matrix */

/* for each edge pixel with coordinates (x,y) */

for(int y=0; y<mat->rows; y++)

{

for(int x=0; x<mat->cols; x++)

{

if((x!=0)&&(y!=0)&&((float*)(mat->data.ptr + mat->step*y))[x] == 255)

{

if(x!=x1 && x!=x2 && y!=y1 && y!=y2)

{

ddist = ((cent.x - x)*(cent.x - x)) + ((cent.y -y)*(cent.y - y));

d = sqrt(ddist); /* calculating distance between (x0,y0) and (x,y) */

fdist = ((x2-x)*(x2-x))+((y2-y)*(y2-y));

f = sqrt(fdist); /* calculating distance between (x2,y2) and (x,y) */

costau = ((a*a) + (d*d) - (f*f))/(2*a*d); /* calculating cos τ from Equation 2.6 */

if((d<=a) && (costau >= -1) && (costau <= 1) )

{

sintau = sqrt(1.0-(costau*costau)); /* calculating sin τ value from trigonometric iden-

tity */

if((sintau >= -1) && (sintau <= 1) && (((a*a) - (d*d*costau*costau)) !=0))

{

bdist = abs((a*a*d*d*sintau*sintau)/((a*a) - (d*d*costau*costau)));

b = sqrt(bdist); /* calculating semi minor axis length from Equation 2.5 */
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/* if semi-minor axis length is greater than ’8’ */

if(cvRound(b)>8)

{

/* store the location of edge pixel corresponding to */

/* this (greater than ’8’) value of semi-minor axis */

/* in accumulator matrix */

((int*)(accum->data.ptr + accum->step*y))[x] = cvRound(b);

/* increment accumulator array for this value of semi-minor axis */

ac[count] = b;

count++;

} /* if(b) ends */

} /* if(sintau) ends */

} /* if(costau) ends */

} /* if((x,y) != (x1,y1) && (x,y) != (x2,y2)) ends */

} /* if(considering only edge pixels x,y) ends */

} /* for(x) ends */

} /* for(y) ends */

maxim = maxelement(ac,count,vote); /* finding value of ’b’ that repeats maximum

number of times in accumulator array */

CvPoint pt;

/* is value of ’vote’ satisfying the threshold needed for the detected ellipse to be the

correct ellipse */

if(((tot<=1600)&&(vote > 27)&&(vote<30)) ‖ ((tot>1600)&&(vote>47)))

{

/* if yes, one ellipse is detected */

/* detected ellipse with the corresponding parameter values is superimposed on the

source image */

CvSize axes;

axes.height = cvRound(maxim); /* minor axis length */
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axes.width = cvRound(a); /* major axis length */

/* store parameter values of detected ellipse in 1D arrays */

maja[counting] = axes.width; mina[counting] = axes.height;

centx[counting] = cent.x; centy[counting] = cent.y; ori[counting] = cvRound(alfa);

/* draw ellipse with detected parameters on source image */

cvEllipse(image2,cent,axes,alfa,0,360,CV RGB(255,0,0),1,CV AA,0);

counting++; /* count number of ellipses detected */

/* deleting edge pixels that belong to the detected ellipse */

/* for each edge pixel with coordinates (x1,y1) */

for(int yi=0; yi<mat->rows; yi++)

{

for(int xi=0; xi<mat->cols; xi++)

{

/* is value in accumulator matrix at point (x1,y1) equal to value of minor axis of

detected ellipse */

if((xi!=x1)&&(yi!=y1)&&

((int*)(accum->data.ptr + accum->step*yi))[xi] == cvRound(maxim))

{

/* if yes, make the value in edge image matrix at point (x1,y1) equal to zero */

/* this deletes the points in edge image matrix that lie on detected ellipse */

pt.x = xi; pt.y = yi;

((int*)(mat->data.ptr + mat->step*yi))[xi] = 0;

} /* if(maxim) ends */

} /* for(j) ends */

} /* for(i) ends */

} /*if(vote) ends */

cvZero(accum); /* clearing accumulator array */

} /* if(a2) ends */

} /* if(considering only edge pixels x2,y2) ends */
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} /* for(x2) ends */

} /* for(y2) ends */

} /* if(considering only edge pixels x1,y1) ends */

} /* for(x1) ends */

} /* for(y1) ends */

/* Printing time taken for all ellipses to be detected in edge image */

printf(”Total time elapsed for ellipse detection: %f”, ((double)clock() - start1) /

CLOCKS PER SEC);

/* initializations for grouping detected ellipses into two groups */

int centxsum[2] = {0,0}, centysum[2] = {0,0};

int majorsum[2] = {0,0}, minorsum[2] = {0,0};

int anglesum[2] = {0,0}, k0=0, k1=0;

int medx,medy,xcent,ycent;

double distmedsq,distmed; /* initializations for grouping ellipses end */

/* ’counting’ denotes total number of ellipses detected in the given source image */

/* if number of ellipses detected is even */

if(counting%2==0)

{

/* find median of array containing x and y coordinates of centers of the detected

ellipses with array size as ’counting+1’ */

medx = findmedian(centx,counting+1);

medy = findmedian(centy,counting+1);

}

else if(counting%2==1) /* if number of ellipses detected is odd */

{

/* find median of array containing x and y coordinates of centers of the detected

ellipses with array size as ’counting’ */

medx = findmedian(centx,counting);

medy = findmedian(centy,counting);
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}

/* for each element in array containing (x0,y0) of detected ellipses */

for(int i=0; i<=counting; i++)

{

/* making sure elements of the arrays are not zero */

if((centx[i] != 0)&&(centy[i] != 0))

{

xcent = centx[i]; ycent = centy[i];

/* finding distance between median of (x0,y0) and current (x0,y0) point */

distmedsq = (double)(((medx-xcent)*(medx-xcent)) + ((medy-ycent)*(medy-ycent)));

distmed = sqrt(distmedsq);

/* if distance between median and current (x0,y0) value is less than 35 */

if((distmed < 35)&&(distmed >= 0))

{

/* add parameter values of ellipses with centers near each other and store as group

one*/

centxsum[0] = centxsum[0] + xcent; centysum[0] = centysum[0] + ycent;

anglesum[0] = anglesum[0] + ori[i];

majorsum[0] = majorsum[0] + maja[i]; minorsum[0] = minorsum[0] + mina[i];

k0++; /* counting number of ellipses in group one */

}

else

{

/* else, add parameter values of remaining ellipses and store as group two*/

centxsum[1] = centxsum[1] + xcent; centysum[1] = centysum[1] + ycent;

anglesum[1] = anglesum[1] + ori[i];

majorsum[1] = majorsum[1] + maja[i]; minorsum[1] = minorsum[1] + mina[i];

k1++; /* counting number of ellipses in group two */

}
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}

}

/* finding mean of parameters in groups one and two */

/* storing result as output parameters of the function, detect ellipses() */

if(k0!=0)

{

centersx[0] = cvRound(centxsum[0])/k0; centersy[0] = cvRound(centysum[0])/k0;

orientations[0] = anglesum[0]/k0;

majoraxis[0] = cvRound(majorsum[0])/k0; minoraxis[0] = cvRound(minorsum[0])/k0;

}

/* if there are no ellipses in group one, store the output parameter values as zero */

else if(k0==0)

{

centersx[0] = 0; centersy[0] = 0; orientations[0] = 0;

majoraxis[0] = 0; minoraxis[0] = 0;

}

if(k1!=0)

{

centersx[1] = cvRound(centxsum[1])/k1; centersy[1] = cvRound(centysum[1])/k1;

orientations[1] = anglesum[1]/k1;

majoraxis[1] = cvRound(majorsum[1])/k1; minoraxis[1] = cvRound(minorsum[1])/k1;

}

/* if there are no ellipses in group two, store the output parameter values as zero */

else if(k1==0)

{

centersx[1] = 0; centersy[1] = 0; orientations[1] = 0;

majoraxis[1] = 0; minoraxis[1] = 0;

}

}
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B.3 Main Functon

/* File Name: ellipse detection main.cpp */

#include <iostream>

#include <cv.h>

#include <highgui.h>

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <direct.h>

#include <errno.h>

using namespace std;

using namespace cv;

void regionofinterest(IplImage* image1, IplImage* roi img);

void showMaskPart(IplImage* image1, IplImage* mask, IplImage* result);

void detect ellipses(IplImage* image1, IplImage* image2, int* majoraxis,

int* minoraxis, int* centersx, int* centersy, double* orientations, int sizeofarray);

void darkest point(IplImage* image1, IplImage* image2);

void stitching(IplImage* src1,IplImage* src2, IplImage* dst);

/* global variables */

IplImage* src; IplImage* roiimg;

IplImage* depthmap;

/* Main function */

int main(int argc, char* argv[])

{

/* initializations for ellipse detection */

int a[2],b[2],cx[2],cy[2],circx,circy;

double o[2];

for(int i=0; i<2; i++)
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{

a[i] = 0;b[i] = 0;cx[i] = 0;cy[i] = 0;o[i] = 0.0;

}

circx = 0; circy = 0;

/* loading source image */

if (argc < 2)

{

fprintf(stderr, ”Usage: %s <image>”, argv[0]);

return 1;

}

int c=1;

/* for 61 images given as input arguments. this value can be changed according to

desired number of images to be given as input arguments */

while(c <= 61)

{

src = cvLoadImage(argv[c], 1);

depthmap = cvCreateImage(cvGetSize(src),src->depth,1);

cvCvtColor(src,depthmap,CV BGR2GRAY);

/* calling the preprocessing functions */

/* finding region of interest */

/* int width = 254; int height = 361; */ /* for 2nd procedure, part 2 */

/* int width = 215; int height = 304; */ /* for 2nd procedure, part 1 */

int width = 226; int height = 213; /* for 1st procedure */

CvRect rectAngle = cvRect(83,11,width,height);

roiimg = cvCreateImage(cvSize(width,height),src->depth,src->nChannels);

cvSetImageROI(src,rectAngle);

cvCopyImage(src,roiimg);

cvResetImageROI(src);

cvSaveImage(”roi.png”,roiimg,0); /* saving region of interest image as ’roi.png’ */
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/* median X filtering */

IplImage* median = cvCreateImage(cvGetSize(roiimg),roiimg->depth, 3);

cvSmooth(roiimg,median,CV MEDIAN,5,0);

cvSaveImage(”roimed.png”,median); /* saving median filtered image as ’roimed.png’

*/

/* darkest area detection */

IplImage* dark = cvCloneImage(median);

darkest point(median, dark);

/* dilate darkest area detection image to create a mask */

IplImage* dark dil = cvCreateImage(cvGetSize(dark),dark->depth,dark->nChannels);

cvDilate(dark,dark dil,NULL,2); /* performing two iterations of dilation */

cvSaveImage(”mask.png”,dark dil,0); /* saving mask image as ’mask.png’ */

/* convert ’dark dil’ to grayscale for edge detection */

IplImage* dark dil gray = cvCreateImage(cvGetSize(dark dil),dark dil->depth,1);

cvCvtColor(dark dil,dark dil gray,CV RGB2GRAY);

/* masking median filtered image with mask and store result in ’masked’ */

IplImage* masked = cvCreateImage(cvGetSize(median),median->depth,median->nChannels);

showMaskPart(median,dark dil gray,masked);

cvSaveImage(”masked.png”,masked); /* saving masked image as ’masked.png’ */

/* convert masked image to grayscale */

IplImage* mask gray = cvCreateImage(cvGetSize(masked),masked->depth,1);

cvCvtColor(masked,mask gray,CV RGB2GRAY);

/* canny edge detection */

IplImage* edge = cvCreateImage(cvGetSize(roiimg),roiimg->depth, 1);

cvCanny(mask gray,edge,100,70,3);

cvSaveImage(”edge.png”,edge,0); /* saving canny edge detected image as ’edge.png’

*/

/* ellipse detection */

IplImage* ell = cvCloneImage(masked);
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IplImage* ell1 = cvCloneImage(roiimg);

IplImage* ell2 = cvCloneImage(roiimg);

int size = 2;

detect ellipses(edge,ell,a,b,cx,cy,o,size); /* detect ellipse on edge segmented image */

/* depth map generation */

IplImage* depthimg = cvCreateImage(cvGetSize(ell),ell->depth, 1);

cvSetImageROI(depthmap,rectAngle);

cvCopyImage(depthmap,depthimg); /* creating image in which the depth map will

be stored */

/* creating images in which the depth map will be stored */

IplImage* depthimg1 = cvCreateImage(cvGetSize(ell),ell->depth, 1);

IplImage* depthimg2 = cvCreateImage(cvGetSize(ell),ell->depth, 1);

/* initializations */

cvZero(depthimg);

cvZero(depthmap);

cvZero(depthimg1);

cvZero(depthimg2);

CvPoint pt;

pt.x = 0;

pt.y = 0;

CvSize ax; CvPoint cen; double ang1;

for(int k=0; k< size; k++)

{

/* if no ellipses are detected after ellipse detection function */

/* depth gradient generation */

if((a[k]==0)‖(b[k]==0)‖(cx[k]==0)‖(cy[k]==0))

{

find one vanishing point(median,circx,circy);

pt.x = circx; pt.y = circy;
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if(k == 0)

{

/* growing circles of varying radii and color(grayscale) in the ’depthmap1’ image */

for(int i = ell->width+ell->height; i>0; i–)

{

int j=3*i/2;

cvCircle(depthimg1, pt, i, CV RGB(j,j,j), 5, CV AA, 0);

}

}

else if(k == 1)

{

/* growing circles of varying radii and color(grayscale) in the ’depthmap2’ image */

for(int i = ell->width+ell->height; i>0; i–)

{

int j=3*i/2;

cvCircle(depthimg2, pt, i, CV RGB(j,j,j), 5, CV AA, 0);

}

}

}

/* else, if ellipse is detected after ellipse detection function */

else

{

ax.height = b[k]; ax.width = a[k]; cen.x = cx[k]; cen.y = cy[k]; ang1 = o[k];

if(k==0)

{

CvSize ax1;

/* drawing depthimg1 gradient */

/* growing ellipses of varying axes lengths and color(grayscale) in the ’depthmap1’

image */
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for(int i = depthimg1->width+depthimg1->height; i>0; i–)

{

ax1.height = (b[k]) + i;

ax1.width = (a[k]) + i;

int j=3*i/2;

cvEllipse(depthimg1,cen,ax1,ang1,0,360,CV RGB(j,j,j),5,CV AA,0);

}

} /* if (k=0) ends */

if(k==1)

{

CvSize ax2;

/* drawing depthimg2 gradient */

/* growing ellipses of varying axes lengths and color(grayscale) in the ’depthmap2’

image */

for(int i = depthimg2->width+depthimg2->height; i>0; i–)

{

ax2.height = (b[k]) + i;

ax2.width = (a[k]) + i;

int j=3*i/2;

cvEllipse(depthimg2,cen,ax2,ang1,0,360,CV RGB(j,j,j),5,CV AA,0);

}

} /* if (k=1) ends */

}

} /* for (k) ends */

/* averaging depthimg1 and depthimg2 images and storing the result in ’depthimg’

*/

cvAddWeighted(depthimg1, 1./2., depthimg2, 1./2., 0.0, depthimg );

cvCopy(depthimg,depthmap,NULL); /* copying ’depthimg’ into ’depthmap’ */

/* resetting image regions of interest */
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cvResetImageROI(depthmap);

/* stitching src image and depthmap image beside each other and saving result in

’stitched’*/

int wid = depthmap->width + src->width;

int ht = src->height;

IplImage* stitched = cvCreateImage(cvSize(wid,ht),depthmap->depth,3);

IplImage* depthmap color = cvCreateImage(cvGetSize(depthmap),depthmap->depth,3);

cvCvtColor(depthmap,depthmap color,CV GRAY2BGR); /* converting grayscale im-

age to color image */

stitching(src,depthmap color,stitched);

c++;

} /* while (c) ends */

/* cleaning up */

cvDestroyAllWindows();

return 0;

}


