
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Santhan Pamulapati

Link Failure Detection In OSPF Network Using OpenFlow Protocol

Master of Science in Electrical and Computer Engineering

Dr. Dongsoo Stephen Kim

Dr. Brian S. King

Dr. Maher E. Rizkalla

Dr. Dongsoo Stephen Kim

Dr. Brian S. King 11/20/2013

LINK FAILURE DETECTION IN OSPF NETWORK USING OPENFLOW

PROTOCOL

A Thesis

Submitted to the Faculty

of

Purdue University

by

Santhan Pamulapati

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

December 2013

Purdue University

Indianapolis, Indiana

ii

To my grandfather who is battling against cancer.

iii

ACKNOWLEDGMENTS

First and most importantly, I would like to thank my thesis advisor Dr. Dongsoo

Stephen Kim for giving me an opportunity to work on this thesis. He has been an

immense support and motivation behind my thesis and undoubtedly an invaluable

experience working under him. Secondly, I would like to thank my friend Shreya for

her encouragement and support.

I express my sincere thanks to members of InCNTRE, Ron Milford for giving me

an opportunity to work on SDN/OpenFlow and Uwe Dahlmann, for his guidance.

My heart felt thanks to Sudhakar Venkatesh, who has been a great support during

my internship at Juniper Networks. Special thanks to Christian Esteve Rothenberg

of RouteFlow community and Martin Ivanov for their help.

I would like to thank my thesis committee members Dr. Brian King and Dr.

Maher Rizkalla for their precious time. I would also like to thank Sherrie Tucker and

Summer Layton for their help.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . v

ABSTRACT . vii

1 INTRODUCTION . 1

2 RELATED WORK . 5

2.1 OpenFlow protocol . 9

2.2 Previous work . 13

3 PROPOSED IDEA . 15

3.1 Brief description of RouteFlow architecture 19

4 IMPLEMENTATION . 23

4.1 Linux based traditional OSPF:quagga 23

4.1.1 Configuring OSPF in quagga 25

4.1.2 Setting up multiple OSPF routers 27

4.1.3 Connecting OSPF routers together 28

4.2 Wirehark trace of OSPF packets . 30

4.3 OpenFlow based OSPF environment 31

4.3.1 Emulating control plane . 31

4.3.2 Emulating data plane . 32

4.4 Connecting control and data plane 34

5 TESTING METHODOLOGY AND RESULTS 36

5.1 Testing methodology . 36

5.2 Results . 40

6 FUTURE SCOPE AND CONCLUSION 45

LIST OF REFERENCES . 47

APPENDIX . 49

v

LIST OF FIGURES

Figure Page

1.1 SDN architecture . 4

2.1 Inside OSPF router . 8

2.2 Traditional network device with control and data plane tied together . 9

2.3 OpenFlow controller and switch . 10

2.4 A typical flow entry inside an OpenFlow device 11

2.5 OpenFlow header format . 12

3.1 OSPF hello message . 15

3.2 Signalling of port down event . 17

3.3 A simple testbed of OpenFlow switches 18

3.4 Architecture of RouteFlow . 21

4.1 Architecture of quagga routing suite 24

4.2 Using virtual interface to interact with ospfd 25

4.3 A sample of ospf config file used in quagga 26

4.4 Wireshark trace showing OpenFlow messages 27

4.5 Traditional OSPF network - hardware prototype vs. linux environment 29

4.6 Wireshark trace showing hello and DD packets from one of the virtual
interfaces of VM in control plane . 30

4.7 Data plane emulated with the help of mininet 33

5.1 Topology used in the experiment . 37

5.2 4 node topology used in experiment . 39

5.3 5 node topology used in experiment . 40

5.4 Traditional OSPF . 41

5.5 OpenFlow based OSPF . 41

5.6 Traditional OSPF . 42

vi

Figure Page

5.7 OpenFlow based OSPF . 42

5.8 Traditional OSPF . 43

5.9 OpenFlow based OSPF . 43

vii

ABSTRACT

Pamulapati, Santhan. M.S.E.C.E., Purdue University, December 2013. Link Fail-
ure Detection in OSPF Network using OpenFlow Protocol. Major Professor: Dr.
Dongsoo Stephen Kim.

The study of this thesis is focused on reducing the link failure detection time in

OSPF network. When a link failure occurs, OSPF protocol detects it using Rou-

terDeadInterval time. This timer is fired only after a predefined time interval, thus

increasing the time of convergence after the link failure. There are previous studies

to reduce the RouterDeadInterval time, but they introduce other effects which are

discussed later in the thesis. So, a novel approach is proposed in this thesis to re-

duce the link failure detection time with the help of emerging network architecture

Software Defined Networking (SDN) and OpenFlow Protocol.

1

1. INTRODUCTION

Using the Internet has become an inevitable part of our daily lives. The Internet

is a collection of multiple independent networks that are joined together into a sin-

gle virtual network [1]. It makes users believe being connected to a single, identical

network. It carries datagrams or so called data traffic from one end-point (source) to

other end-point (destination) and in this process the data traverses through multiple

paths. The process of path selection is called routing [2]. To aid the process of routing

and to route the datagrams, routers are used, that are building blocks of the Internet.

A router is a network device that connects two or more networks. It receives data-

grams from hosts on one network and forwards them to the routers or hosts on other

networks. Routers make use of routing protocols to gain the knowledge of topology

of the network. Also, these routing protocols learn the networks that are currently

reachable and the apt next-hop to use in order to reach a given destination. This

routing information (next hop, the cost associated, etc.) is stored in the form of route

tables in routers memory. Routing protocols generally fall into two classes: Exterior

Gateway Protocols (EGP) and Interior Gateway Protocols (IGPs). IGPs deal with

routing within an Autonomous System (AS) [3] and on the other hand EGP handles

routing outside an AS. Border Gateway Protocol (BGP) is an example of an EGP.

IGPs are classified into two categories: Distance Vector routing protocol and Link

State routing protocol. Distance vector routing protocol is based on Bellman-Ford

algorithm [4] which computes the shortest paths from a single source vertex to all

other vertices in a weighted digraph. Each router running distance vector routing

protocol relies on its neighbors for the routing information, which the neighbors in

2

turn might have learned from their neighbors. In this way routing tables are periodi-

cally broadcasted to all the neighbors in the network. Routing Information Protocol

(RIP) is an example for the distance vector routing protocol.

On the other hand link state routing protocol operates by flooding the informa-

tion related to state of the link in to the network periodically and when state of the

network change is sensed. The link state information is stored in the form a database

called topology database and each router holds an identical copy of such database.

Link state routing protocol is based on Dijkistra’s algorithm [5] which also computes

the shortest path between the source vertex to all other vertices. Vertices in Dijk-

istra’s algorithm contain whole information of the network topology. Open Shortest

Path First protocol (OSPF) stands as an example for link state routing protocols and

the focus of this paper is comparison between current implementation of OSPF and

OpenFlow based OSPF.

In its current implementation OSPF as a distributed routing protocol works prop-

erly for the most of normal situation. But, there are few issues faced by it. When

there is link or node (router) failure in the network, OSPF protocol would take some

time to detect the failures. The amount of time to detect the failures plays a crucial

role in the convergence of the network. Also, it takes time to re-build the path, so that

each node in the network has the same view of the new topology. During this transi-

tory, the data meant for the failed device will be thrown down. Also, such scenarios

might lead to routing loops in the network which would impel artificial congestion

in the network. In the other case where whole network is running OSPF, and one

link within it is being flapping every few seconds, OSPF updates would dominate the

network by notifying every other router every time the link changes its state. The

outcome from it would be Shortest Path First (SPF) calculations for every Link State

Advertisement (LSA) that is being propagated.

3

Also, every time a router has to perform SPF calculations, it would result in high

CPU consumption, which could result in the performance degradation. For relatively

small networks with few routers the network would converge immediately. But as the

size of the network grows, the time taken for network to converge could significantly

increase because of link flapping scenarios. Also, when a new OSPF router attaches

to the prevailing topology, this event has to be spread throughout the AS and every

routers link state database should be synchronized with respect to this change. So,

every OSPF router has to go through all the process over and over until entire AS is

synchronized.

Considering the above issues faced by OSPF, it would be helpful to have a global

view of the network state. A logically centralized mechanism can be deployed over

the existing distributed OSPF routing protocol that would help to have a better un-

derstanding of the topology. This mechanism would be able to detect the link failures

in the network in very short amount of time and thus saves time in terms of conver-

gence. An approach is proposed in this paper to have such central mechanism with

the aid of emerging network architecture-Software Defined Networking (SDN) and a

new protocol called OpenFlow.

With invent of Software Defined Networking (SDN) [6] in computer networking,

it is possible to have a logically centralized software program that would control an

entire network. With SDN it is also possible to separate the control and data plane of

device, which are tied together in traditional network devices. The decoupled control

plane can be directly programmable for having much control over the network. Also,

it is flexible to control from high level without touching the low level device configu-

ration through SDN. In Fig 1.1, an approach to SDN is shown, where there are few

custom network devices.

4

The control plane from these devices is abstracted in the form Network Operating

System. Just like a normal OS supports many features over it, one can have features

like firewall, load balancing or routing running on Network OS.

Fig. 1.1. SDN architecture

OpenFlow [6] is the first standard communications interface defined between the

control and data plane layers of the SDN architecture. OpenFlow protocol is desirable

in order to move the control out of the network devices. The forwarding or Data Plane

of the network devices like a switch or a router can be easily managed through the

OpenFlow interface. OpenFlow based SDN is currently being implemented in variety

of network devices.

5

2. RELATED WORK

This section would brief the working of OSPF and OpenFlow protocol. Also, this

section would discuss the previous work that has been done related to the link failure

detection in OSPF networks. OSPF routing protocol is designed to be run internally

to a single AS [3]. The successful functioning of an OSPF protocol in an AS depends

on: Formation of Link State Database (LSDB), calculation of SPF tree and populat-

ing the route table with route entries.

LSDB in an OSPF router holds the information, which describes the topology

of the AS. Each such piece of LSDB that belongs to a particular router represents

the local state (e.g., neighbors which are reachable from the router and state of the

routers interface) of that router. A LSDB is created using LSAs. LSAs often de-

scribe native state of router. This description includes the current situation of the

routers interfaces and its adjacencies. Router shares this information throughout the

AS by flooding. Thus LSAs collected from routers and networks aid in forming LSDB.

After the formation of LSDB its information is used by the router to construct

shortest path. For the construction of shortest path, Dijkistras algorithm is used

which gives the least cost path to each other router in the AS. Since least path calcu-

lation is carried out by each router, the shortest path tree varies from router to router.

Once SPF calculations are completed, the information is used in building routing

tables. Routing table consist of route entries for each network in the AS. Each

destination network in an AS is reached by performing a route table lookup for

matching route entries.

6

Suppose there is a link failure or a router failure in the network, OSPF protocol

dynamically recalculates the routes with respect to the change that took place after

a node (router) or link failure.

For exchanging information related to LSDB, LSAs and routing information be-

tween neighbor routers, OSPF protocol establishes adjacencies (not every neighbor

router will be an adjacent router). Forming adjacencies between routers is a cru-

cial part of OSPF protocol. Only after this step the LSDB are synchronized in the

network. For establishing the adjacencies, OSPF uses Hello protocol. This protocol

would make sure the communication between neighbors is bi-directional by send-

ing hello packets out of routers interface at a pre-defined interval. In particular

a bi-directional link is formed when the router sees itself listed as neighbor in the

neighbor field in the hello packet that is generated by other router in the same phys-

ical segment. Once the adjacencies are formed, the information related to LSDB are

exchanged between the adjacent routers using Database Description (DD) Packets.

After receiving these packets, a router may find that parts of the LSDB are out of

date and may request for LSDB that are up-to date. This is done with the help of

a request packet called Link State Request (LSR). Instead of sending a single LSA,

a bundle of LSAs are grouped together and sent in the form of Link State Update

(LSU) packets. And for each LSA sent an acknowledgment is sent back in the form of

Link State Acknowledgment (LSAck) packet. All these packets are identified by using

a type field in OSPF header. All the communication and exchange process depends

on which network topology or network type OSPF is operating.

OSPF recognizes four diverse network topologies or network types: Broadcast

multi-access, Point-to-Point, Non-Broadcast Multiaccess and Point-to-Multi point.

In Broadcast and Non-broadcast networks such as Ethernet or Frame Relay, a large

amount of bandwidth is consumed, when OSPF routers have to form adjacencies. To

prevent this, an election takes place among the OSPF routers, to elect a Designated

7

Router (DR). The hello packet contains ROUTER PRIORITY and ROUTER ID

field which helps in electing a DR. The value of the priority field ranges from 0-255,

and higher the value, a router gets close to be elected as DR. A router with priority

set to 0 cannot participate in the election. After a DR is decided, other routers will

send updates only to it. DR will then use the multicast address of 244.0.0.6 to send

these updates to all other routers in the network. If a DR fails a Backup Designated

Router (BDR) takes its place. BDR is the second best router after a DR in the last

election. But in Point-to-Multipoint and Point-to-Point networks there is no such

election which decides a DR.

The information provided in the above paragraphs described the abstract working

of OSPF protocol. In general OSPF would run as a process inside the route processor

(refer to Fig 2.1) which is present in the router. When a router receives an LSU,

OSPF uses these messages to build a link-state database. SPF calculations are run

on this database to build a Forwarding Information Base (FIB) or so called routing

table. In order to store these routing tables, routers use their memory. When a net-

work interface card sees the data, it would refer the routing table. This way routing

table helps to pick the next hop for the data to traverse. The switching fabric helps

to pass the data from one interface to another.

8

Fig. 2.1. Inside OSPF router

In the above Fig 2.1, the control plane and the data plane of the router are tied

together and this is the kind of setup that traditional or legacy network devices have in

them. With this kind of setup it is difficult to have control over the FIB, because the

control plane is vendor dependent. If the user tries to add his/her own applications, it

might break existing processes that are already running. One of the possible solution

to this problem is to separate control and data plane so that the user can program

the control plane according to the needs. This idea has led to a new architecture

called SDN and OpenFlow is the first standard based interface defined between the

control and data plane.

9

2.1 OpenFlow protocol

Today’s network devices like switches or routers have their control and data plane

tied together, as show in Fig 2.2. The control plane would build information and

make the forwarding/routing decisions and populate the forwarding or routing table

and data plane would forward the data according to it. With this kind of setup, it is

difficult to have high-level control over these network devices.

Fig. 2.2. Traditional network device with control and data plane tied
together

In contrast, an OpenFlow enabled device as in Fig 2.3 has its control plane hosted

inside a server (often called as OpenFlow controller) that would run applications de-

fined for definite purpose and can be monitored by a network operator. One of the

controller applications can be a learning switch module (which helps in learning MAC

address of the hosts that are connected to the switch). The data plane still resides

10

in the device and is abstracted in the form a flow table, which can be programmed.

Controller manages OpenFlow switch over a separate secure channel using the Open-

Flow protocol. This protocol is implemented on both sides i.e. on controller side and

also in the devices.

Fig. 2.3. OpenFlow controller and switch

An OpenFlow switch maintains a flow table (instead of forwarding table), which

contains set of flow entries as shown in Fig 2.4 which are inserted in the flow table

using the controller. Each flow entry consist of header fields (to match against in-

coming packets), actions (to apply to matching packets) and counters (to update for

a matching packet). The incoming packets are compared against the flow entries and

if a matching entry is found, respective actions are applied and counters are updated

accordingly. The power of OpenFlow protocol lies in the set of actions it supports.

For example, a packet matching a flow entry can be modified by its layer2 and layer

11

3 header fields. If there is flow entry in the switch with no action specified, that

packet would be dropped. Also, if there is no matching entry, then the entire packet

or a part of the packet is sent to the controller. All the communication between the

controller and OpenFlow device is in the form of OpenFlow messages and all these

messages carry OpenFlow header.

Fig. 2.4. A typical flow entry inside an OpenFlow device

The format and the fields of OpenFlow header are shown below in Fig 2.5. The

version field represents the OpenFlow version being used. Both controller and the

switch need to negotiate the OpenFlow version at the connection establishment. In

this paper OpenFlow version is limited to 1.0. The type field represents the Open-

Flow message type and OpenFlow supports three message types: Controller-to-switch

messages, Asynchronous messages and Symmetric messages.

12

Fig. 2.5. OpenFlow header format

Controller-to-switch messages are purely initiated by OpenFlow controller and

may or may not require a response from the OpenFlow device. Some of the impor-

tant Controller-to-switch messages are

1. Features: With this message the controller is able to query the switch for the

capabilities that it supports (like the number of physical and virtual ports supported

by the switch, actions supported, etc.)

2. Modify-State: With the help of this message controller can add, delete or modify

a flow entry in the flow table.

Asynchronous messages are sent by the OpenFlow switch to the controller in order

to notify the arrival of packet, change of switch state (port up/down) or to report an

error. Some of the important asynchronous messages are

1. PACKET IN: If there is no matching flow entry in the flow table, then the entire

packet or a part of the packet is sent to the controller. This is sent as Packet In

message to the controller, which contains the information of the port, on which the

frame was receive and also the reason for sending it to the controller (no matching

flow or action was to output to controller). Only the first packet of the flow is sent

to the controller. Except the first packet, the rest of them are compared against the

flow entry inserted by the controller and are forwarded according to the action(s)

specified.

2. Flow removed: Every flow entry has a timeout associated to it. When a flow

expires due to a time out, the switch notifies the controller using the FlowRemoved

message.

13

Symmetric messages are OpenFlow messages like Hello and Echo request/reply.

These are initiated either by a controller or an OpenFlow switch. Hello messages are

used in version negotiation and Echo request/reply messages are used in maintaining

the connection.

The length field in OpenFlow header represent the length of the OpenFlow packet.

The length includes the OpenFlow header and the data sent. Xid specifies the trans-

action id associated with the respective packet. If a request is sent, the corresponding

reply will share the transaction id. Simply put together, OpenFlow uses the idea of

flows to classify network traffic based on pre-defined match rules that can be statically

or dynamically programmed by the control software [6].

2.2 Previous work

The major concern for today’s network infrastructure is fast rescue from the link

failures and fast convergence to topology changes. Apart from these aspects, in OSPF

network, processing and bandwidth requirements also draw equal importance. When

a device (router) or a link(s) failure occurs, OSPF protocol needed several tens of

seconds to recuperate from the failure and real time applications like Voice Over IP

(VoIP) [7] cannot stand the breakdown ranging such duration. There were previous

research works related to the failure identification and improving convergence time

in OSPF networks. In the IP network failures occur due to hardware/software issues

in the routers or due to fiber cuts. These issues may result in single or multiple

links or router(s) failures. Markopoulou et al. [8] in their study on failures related to

operational IP backbone networks found that nearly 70 percent of the failures were

single link failures. Often, defective hardware/software leads to flapping behavior of

the links. This kind of activity has severe effect on data traffic.

14

Failures in OSPF are identified by using the default hello protocol. After the

establishment of adjacency with the neighboring routers, a HelloInterval is set with a

default value of 10 seconds. Hello packets are exchanged in this interval. Whenever

a router receives a hello packet, inactivity timer which is associated with the router

is reset. This timer is triggered after the RouterDeadInterval (which is generally four

times the HelloInterval). With this kind of setup it would take 30-40 seconds of time

to detect the failure which is highly undesirable. So, efforts have been made to reduce

the HelloInterval. Alaettinoglu et al. [9] suggested to reduce the HelloInterval to mil-

lisecond range to attain sub-second failure detection. But, this approach would effect

the CPU of the OSPF router to be overloaded. The lowering of HelloInterval would

lead to loss of consecutive Hello messages, which in turn results in false breakdown

of the adjacency link. Due to this false failure, LSAs are generated leading to new

routing table calculations. Basu and Riecke [10] from their observation reported that

reducing the HelloInterval to 500ms would not overload the CPU. However there is an

increase in the number of route flaps when the interval was further reduced to 250ms.

Feng et al. [11] observed that, the frequency at which these false alarms would trigger

depend on the congestion in the network and also on the links. In this paper an

approach is proposed to detect the link failures effectively (without using the Hello

protocol) using OpenFlow protocol and there by avoid the packet loss during the

event of link failures.

15

3. PROPOSED IDEA

The Hello messages (refer to Fig 3.1) in OSPF are used to maintain the link ad-

jacency and these messages are also used to detect the link failures. HelloInterval

and RouterDeadInterval are two important fields inside a hello messages which are

used in maintaining adjacencies and detecting link failures. In general, the default

HelloInterval for point-to-point and broadcast networks is 10 seconds. With this con-

figuration, a router running OSPF protocol would take at least 40 seconds (because

RouterDeadInterval for above network types is four times the HelloInterval) to detect

the link failure. So, there is a delay involved from the time actually a link went down

to the time it is actually detected.

Fig. 3.1. OSPF hello message

16

Before the network converges again after the link failure has been identified, there

are other delays involved. The link failure insists the router to generate an LSA and

flood it across all its interfaces. The LSA flooding time comprises of the propagation

delays (typically in milliseconds). After receiving a new LSA, router schedules an

SPF calculation. As SPF calculation uses Dijkistras algorithm [5] it constitutes sig-

nificant processing load. For this reason the router will wait for some time (spfDelay

- typically 5 seconds) for other LSAs arrive before performing an SPF calculation.

In additional to spfDelay, routers govern the frequency of SPF calculations through

spfHoldTime (typically 10 seconds between successive SPF calculations) which intro-

duces further delays. All these delays contribute to the failure recovery time of the

OSPF network. Clearly among all the delays, the link failure detection time plays a

major role in the failure recovery. Hence reducing the failure detection time would

help the network to recover from the failure quickly.

As discussed earlier, in SDN, the control and data plane are separated and Open-

Flow protocol is used as the medium for communication between control and data

plane. For reducing the link failure detection time in OSPF network, OpenFlow pro-

tocol and OpenFlow network can be used. An OpenFlow network consists of switches

that support OpenFlow protocol and this kind of network can be easily emulated us-

ing an open source tool called Mininet [12]. An OpenFlow switch consists of ports

on which the data traffic can be sent and received. The link status of the port (if the

port is up/down) can be monitored using one of the OpenFlow messages. Precisely,

OFPT PORT STATUS [13] message is used to notify the controller of any change in

the link status. Refer to Fig 3.2 for the signaling process.

17

Fig. 3.2. Signalling of port down event

In OFPT PORT STATUS message, the reason for the change of state of the link is

appended and is sent to the controller. For example, consider two OpenFlow switches

connected with a link. If one of the port connecting both the switches goes down,

then immediately an OFPT PORT STATUS message is generated with reason as

OFPR DELETE (which means a port is down). The time taken by the controller to

receive this message can be considered as the time to detect the failure of the link. To

estimate the time taken for controller to receive the OFPT PORT STATUS message,

a simple test bed with two OpenFlow switches and controller has been setup (refer

to Fig 3.3).

18

Fig. 3.3. A simple testbed of OpenFlow switches

In the Fig 3.3, two OpenFlow switches are created using Mininet, that imple-

ments software version of OpenFlow switch called Open Virtual Switch (OVS) [14].

These two switches are then hooked to an open source controller POX [15] (written in

Python language) via a dedicated control channel. Now, when the 7th port of switch

A fails, the link between both the switches is broken. Both the switches detect this

failure and immediately send an OFPT PORT STATUS message to the controller.

At the controller these OpenFlow messages are captured using a packet sniffer appli-

cation called Wireshark [16]. These messages are time stamped so that their arrival

time at controller can be estimated. From the results it was observed that the time

taken to receive the OFPT PORT STATUS by the controller is approximately 0.02

milliseconds. Once the failure has been detected, the controller can make the decision

to add or delete a flow using OFPC ADD or OFPC DELETE message.

19

The time taken by the controller to make this decision introduces delay. This

delay can be compared with spf delay that OSPF introduces to calculate new routes.

The delay introduced by POX is calculated using a tool called Cbench [17]. It is the

current standard for evaluating OpenFlow controller performance. A latency test is

performed using Cbench which emulates one OpenFlow switch. This test sends a

single packet to the controller and waits for a reply. It repeats this process as quickly

as possible. The total number of responses received at the end of the time period

can be used to compute the average time for the controller to process each message.

From the results it was observed that, POX takes almost 0.06 milliseconds to process

the flow. This delay is much smaller than spfdelay. But, the disadvantage of POX

is, as the network scales further delay may be introduced. This is because a single

controller has to handle all the flows. Also, the decision made by controller is entirely

dependent on the application (L2 Forwarding switch, firewall, load balancer, etc.)

that runs over it.

From the above discussion, OpenFlow protocols capability to instantaneously de-

tect the link failures can help OSPF routers to reduce the link failure detection time.

When a routers interface goes down, OpenFlow protocol can quickly notify this event

to the controller and the decision to install a flow entry in the data plane can be made

instantaneously. In this way, OSPF router don’t have to wait till the RouterDeadIn-

terval time to detect the failure. In order to test this approach, RouteFlow [18] has

been used which makes OpenFlow switches behave as routers.

3.1 Brief description of RouteFlow architecture

RouteFlow [18] is an open source project which provides virtualized IP routing

services over OpenFlow networks. It stores the control logic (control plane) of the

OpenFlow switches in a virtual network, composed of virtual machines (VM). These

VMs can be interconnected to form a logical topology that mirrors the discovered

20

physical topology (OpenFlow switches) accordingly. The Network Interface Card

(NIC) of the VMs are connected to a software switch like OVS, for their manage-

ment. Also, these VMs run open source routing engines (ex: Quagga, which supports

routing protocols like OSPF, BGP, etc.) that generate FIB in the Linux IP table,

but not directly in the OpenFlow switch. RouteFlow converts these IP table entries

into OpenFlow flow entries and installs them in the respective OpenFlow device. As

a result of this architecture, control is centralized and it stays logically distributed.

But, still the flow entries are upheld in the data plane to specify how traffic must be

handled [13] (i.e port forwarding, MAC re-writing, TTL decrement, etc.).

The architecture of RouteFlow (refer to Fig 3.4 consists of three important compo-

nents: RouteFlow Client (RF-Client), RouteFlow Server (RF-Server) and RouteFlow

Proxy (RF-Proxy).

21

Fig. 3.4. Architecture of RouteFlow

RF-Client sits as a daemon in the VM instance. It keeps track of changes in the

Linux ARP and routing tables and sends the collected routing information to the RF-

Server. The VMs running the RF-Client daemons are managed by RF-Server. The

RF-Server maintains the mapping between RF-Client VM instances and interfaces

and the corresponding OpenFlow switches and ports. It also instructs RF-Proxy

to configure flows to be installed in the OpenFlow switch as needed. RF-Proxy is

an application for POX and other controllers. It controls the interactions with the

OpenFlow switches (identified by DPID) through OpenFlow protocol. It takes in-

structions from the RF-Server and notifies it about events in the network. For all the

22

communication between RF-Client, RF-Server and RF-Proxy, a simple RouteFlow

protocol has been defined. This protocol is based on a set of Inter Process Communi-

cation (IPC) messages. These messages carry information like flow modification and

Packet In. In this way RouteFlow provides routing over OpenFlow network.

In its current implementation, RouteFlow does not support the events of link

failures. This means, when a link between OpenFlow switches in data plane is down,

the failure is not replicated in the VM of control plane. Also, the failure is detected

only according to the configured RouterDeadInterval which results in delayed link

failure detection, which in turn results in delayed convergence. So, the code has been

added to notify the link failure events to RouteFlow. When the RF-Proxy is capable

of receiving link failure events, it can instruct the RF-Client daemon which sits in

the VM to shutdown the respective interface of the VM. When OSPF finds that

interface went down, it will not wait for the RouterDeadInterval to be fired. Rather

it notices this change in the state of the interface and immediately generates an LSA

and floods it out. In this way, the link failure is detected quickly (in millisecond

range) and efficiently with the help of OpenFlow and RouteFlow.

23

4. IMPLEMENTATION

This chapter presents the implementation of traditional OSPF and OpenFlow

based OSPF. The first Section 4.1 would discuss about emulating an OSPF network

environment over a Linux machine. Later in Section 4.2, we extend the same envi-

ronment to support OpenFlow based OSPF with the help of RouteFlow architecture.

It would also discuss the implementation of the proposed idea from Chapter 3.

4.1 Linux based traditional OSPF:quagga

Quagga is an open source routing software suite and is licensed under GPL. It

provides implementations of various routing protocols like OSPFv2, OSPFv3, Routing

Information Protocol (RIP) and Border Gateway Protocol (BGP). All the protocols

inside Quagga are implemented according to the IETF standards. There are other

open source routing software suites like XORP [19] and BIRD [20] which can serve

the same purpose. But, for this study we have decided to go with Quagga because of

its active development community. Currently Quagga can be implemented over the

platforms like GNU/Linux and BSD. Each protocol running on Quagga is a separate

process. This gives the feasibility to modify any protocol, without effecting the other.

This way, the failure of one process would not affect the other processes. Each protocol

is handled by different routing daemons and each daemon has its own routing table.

For example OSPFv2 is handled by ospfd and BGP by bgpd. Zebra daemon serves

as a moderator for allocation and distribution of services and resources to various

daemons. It is responsible for interacting and installing routes in the kernels routing

table. The architecture of Quagga is show in Fig 4.1

24

Fig. 4.1. Architecture of quagga routing suite

Also, each daemon has its own configuration file and a terminal interface to inter-

act. When configuring an OSPF network, it must be specified in ospfd configuration

file. If the user wishes to change a particular aspect of the OSPF routing protocol

(e.g. to change the HelloInterval time) it can be done with the help of the terminal

interface. For example, if the user wants to see the SPF tree built by OSPF protocol,

he can simply issue a command (in privilege mode) from the interface as show in Fig

4.2.

25

Fig. 4.2. Using virtual interface to interact with ospfd

4.1.1 Configuring OSPF in quagga

In order to make a Linux machine behave as an OSPF router, there are few pa-

rameters that have to be configured. First, the zebra and ospfd daemons have to be

enabled. This can be done by editing the daemons file under /etc/quagga. Then ospf

parameters are set either by editing the ospfd configuration file or through command

line (virtual interface).

We can start with setting the time of HelloInterval. The minimum possible value

for HelloInterval is 1 sec and the default is 10 sec. Then, the RouterDeadInterval is

set to four times the HelloInterval time. Each OSPF router should identify in the

network with a RouterID. If no RouterID is configured, then ospfd uses the highest

IP address of physical or virtual interfaces of the Linux machine. Finally, the router

should belong to an area and two OSPF routers can communicate only if they belong

to same area. In this study all the routers belong to special area called backbone area

or area 0.0.0.0. A sample configuration with all the OSPF parameters set is shown

in Fig 4.3.

26

Fig. 4.3. A sample of ospf config file used in quagga

After all initial configuration parameters, finally the OSPF process has to be

enabled for that particular ospfd. Then, the daemon has to be restarted for the

changes to be effective. Once the daemon comes up, it starts sending Hello messages

out of its interface(s). A sample wireshark trace is provided in the Fig 4.4. With this,

a Linux machine is turned in to an OSPF router.

27

Fig. 4.4. Wireshark trace showing OpenFlow messages

4.1.2 Setting up multiple OSPF routers

An OSPF network consists of two or more routers and this network environment

can be emulated using different Linux machines. But, to save resources we have used

virtual Linux machines (LXC) running inside single Ubuntu (12.04) server to emu-

late the required OSPF network. This also makes debugging and management of the

network much easier.

LXC (Linux Containers) [21] is an operating system-level virtualization method

for running multiple isolated Linux systems (containers) on a single control host. It

does not provide features of a full virtual machine.But it provides a virtual environ-

28

ment that is close to that of a fully virtualized Linux machine. Also, each Linux

system (container) has its own process and network space. LXC provides resource

management through the control groups aka process containers and resource isolation

through the namespaces [22].

LXCs are created using a single command and each container has its own con-

figuration file. This file is used to define the network and mount parameters. To

ease the task of creating multiple containers, LXC provides the option of cloning. A

single container can be created with all the required packages installed. Later that

single container can be cloned for any number of containers using a LXC command.

Refer to Appendix LXC commands for the list of commands used in creating multiple

containers.

After creating multiple containers, Quagga routing suite is installed in each of

them. Then, the process of turning a Linux system in to an OSPF enabled router is

followed as discussed in Section 4.1.1.

4.1.3 Connecting OSPF routers together

For connecting the virtual interfaces of the emulated OSPF routers together, a

Linux bridge can be used. In general a hardware bridge [23] is a way to connect

two Ethernet segments together in a protocol independent way. A Linux bridge is

more usefull than its hardware counterpart as it allows to filter and shape the traffic

passing through it. Since, the containers are based on virtual environment, a Linux

bridge might not be suitable to manage the virtual interfaces. For this reason, we

have decide to go with Open Virtual Switch (OVS) [14]. OVS is a software switch

and is designed to be used in virtualized environments.

29

It forwards the traffic between different virtual machines on the same physical

host. It is designed specially to manage virtual machine network configuration. It

can be managed by a Command Line Interface and OpenFlow protocol.

We connect every virtual interface of emulated OSPF routers to the OVS. This

is done by creating an OVS bridge and its ports. Now, the virtual interfaces are

attached to the created ports. OVS bridge and ports are created using ovs-vsctl

program which is a part of OVS software.

Fig. 4.5. Traditional OSPF network - hardware prototype vs. linux envi-
ronment

The entire setup of OSPF network in Linux environment is compared with the

hardware setup in Fig 4.5. The figure shows a simple three node topology of both

the setups. Linux based OSPF routers form adjacencies and exchange Database De-

scription (DD) packets and finally converge after a few seconds. Wireshark traces

30

are provided in the Fig 4.6 for the reference. Thus from above sections a traditional

OSPF network can be emulated in the Linux environment with the help of LXC, OVS

and Quagga routing suite.

4.2 Wirehark trace of OSPF packets

Fig. 4.6. Wireshark trace showing hello and DD packets from one of the
virtual interfaces of VM in control plane

31

4.3 OpenFlow based OSPF environment

In order to test the proposed idea, we emulate OpenFlow based OSPF network

in Linux environment with the help of RouteFlow architecture. This is done by emu-

lating control and data plane separately and later connecting both of them together

with OpenFlow and RouteFlow.

4.3.1 Emulating control plane

The Control Plane formed by VMs are emulated in the Linux environment with

the help of Quagga and LXC. We follow the same procedure as discussed in the Sec-

tion 4.1 for creating VMs and loading Quagga routing suite in them. Additionally,

the RF-Client application is copied into every VM. RF-Client code utilizes Netlink

API [24], which is used for Inter Process Communication (IPC) between the Kernel

and User space process. Here the Kernel processes refers to the ARP and Routing

tables of the VM and the user space processes refers to the RF-Client application.

Simply put together, RF-Client gathers the updates of the routing and ARP table

via Netlink API. RF-Client informs these changes to the RF-Server application for

further processing.

Once the VMs of Control Plane are up and running, its interfaces are connected

to an OVS. The OVS has an ability to support OpenFlow protocol and behaves as

an OpenFlow switch. Every OpenFlow switch identifies itself with a special ID called

Datapath ID (DPID). So, OVS is also given a DPID and is connected to the Open-

Flow controller POX. This controller listens on a port 6633 for incoming connections

(from OF switches). The controller and OVS exchange initial OpenFlow Hello mes-

sages and establish a connection. Now, the controller is responsible for forwarding

routing protocol messages from OSPF like Hello and LSA between the interfaces of

VMs. It is also responsible for forwarding packets between the data and control plane.

32

The whole process of starting VMs of control plane, loading RF-Client application

and connecting to the controller is automated using a shell (bash) script. This script

is also used in stopping the VMs and clearing the routes that are inserted by ospfd.

The script can be found in the Appendix (Script 1).

4.3.2 Emulating data plane

The Data Plane in the OpenFlow based OSPF environment is formed by a network

of OpenFlow (OF) switches. Such network can be emulated using Mininet. Mininet

is a network emulator, which is capable of emulating any number of OF switches

depending on the system resources [12]. It uses lightweight virtualization technique

to make a single system look like a complete network. The behavior of such network

elements is similar to their hardware prototypes.

33

Fig. 4.7. Data plane emulated with the help of mininet

Mininet is entirely written in Python language. Using Python scripts we can

emulate custom topologies of an OF network. A sample script is provided in the Ap-

pendix (Script 2) which creates four OF switches and connects them to an OpenFlow

controller POX. All the necessary OF switches and links between them are created

using node and net modules of Mininet. The links used to connect the OF switches

are virtual Ethernet pairs, which live in Linux kernel. The created OF network is

34

connected to a controller using RemoteController class from node module. We con-

nect the OF network to the same controller that we used for connecting the virtual

interfaces of the VMs to OVS. With this, the emulation of Data Plane is completed

with the help of Mininet.

4.4 Connecting control and data plane

This section would brief the procedure followed in connecting the Control and

Data Plane together with the help of OpenFlow and RouteFlow architecture.

The POX controller used in this study is loaded with an extra module from Route-

Flow architecture called RF-Proxy and is parallely started. It acts as a direct channel

between the Data Plane and virtual environment (Control Plane). This eliminates

the need to pass through RF-Server and RF-Client. RF-Proxy can also control the

behavior of the OVS apart from controller itself. The responsibilities of RF-Proxy are:

to notify RF-Server about the network events such as switch joining or leaving the

network, informing RF-Server about the ports of the OF switch and taking instruc-

tions from RF-Server to configure OF switches with OpenFlow rules. It also sends

packets to Data and Control Plane, with the help of OVS. The packets that need to be

delivered to the Control Plane from Data Plane are received by RF-proxy through the

event (packet-in). This packet arrives with the information of sender at the OVS. The

packet is then stored in a buffer and an event of packet entry is sent to the RF-Server.

RF-Server is the core component of RouteFlow architecture. It acts as a mediator

between RF-Client and RF-Proxy. It collects the routing updates from RF-Client

and adapts this to specified routing control logic. It then instructs the RF-Proxy to

install the OpenFlow rules in the OF switches in Data Plane, based on the routing

control logic. RF-Server is also responsible for mapping between ports of OF switches

in Data Plane to the virtual interfaces of the VMs in Control Plane. For example,

35

an OSPF LSU packet destined to a particular interface of a VM arrives at the OVS.

POX sees this packet and raises an OFPT PACKET IN event listened by the RF-

Proxy. RF-Proxy informs this event to RF-server for solving the mapping between

VM interface and the port of the OVS. RF-Server solves this mapping by looking at

the .CSV file in which it holds mapping information and then instructs RF-Proxy to

send that packet to respective port as an OFPT PACKET OUT message.

The Control Plane VMs, controller (POX) and all of the RouteFlow components

are started first. Then the Data Plane is connected to the emulated virtual environ-

ment with the help of OpenFlow and RouteFlow as described above.

36

5. TESTING METHODOLOGY AND RESULTS

In order to test the proposed idea of link failure detection using OpenFlow protocol

in OSPF network, we simulate the link failures in Data Plane. The link failures are

simulated using Mininet commands and Python scripts. A sample script is provided

in the Appendix (Script 3) which takes down link between switches A and B in the Fig

4.7. But, the current version of RouteFlow does not handle link failures of Data Plane.

So in RF-Proxy module, a code has been added to handle the PortStatus (generated

when the link/port goes up/down of an OF switch) events of the Data Plane. As

soon as RF-Proxy gets an OFPT PORT STATUS message from the respective switch

ports, it instructs the RF-Client daemon to shutdown the mapped interface of the

respective VM in Control Plane. This way the link failure detection time is reduced

without waiting for the RouterDeadInterval to be fired.

5.1 Testing methodology

All the experiments were performed on an Ubuntu 12.04 (LTS) server which has

4GB of RAM, 80GB of QEMU Hard-disk and 4 CPU cores. We perform the exper-

iments on traditional OSPF and repeat the same set of experiments for OpenFlow

based OSPF. In both the cases the time taken to detect the link failure are determined.

The topology used for this experiment is shown in the Fig 5.1. The figure shows

three Routers R1, R2 and R3 and the networks they handle. The emulation of all

these routers and connections between them are created as per Section 4.1. First, we

perform the experiment on the traditional OSPF. The HelloInterval and RouterDead-

Interval time are set for 1 and 4 seconds respectively in the ospfd configuration file.

37

The ospfd daemon is started and all the routers start sending the Hello packets out

of their interfaces. The neighbors are discovered dynamically by the Hello protocol in

OSPF and adjacencies are formed. After few seconds routers exchange DD packets,

LSU packets and finally converge. We open wireshark to capture OSPF packets by

applying an OSPF filter. At this point, we simulate the link failure situation by delet-

ing the link between R1s virtual interface eth1 and port of the OVS Bridge connected

to it. Also, the time when the link failure occurred is noted. Now, we wait for the

first LSU message to arrive at the wireshark after the link failure. The time when

the LSU arrives is noted and the time difference between both the times is the time

taken by OSPF to detect the link failure.

Fig. 5.1. Topology used in the experiment

38

The same experiment is conducted with OpenFlow based OSPF network. The

three routers are now part of Control Plane and the Data Plane is emulated with

three OF switches. Both the Control and Data Plane are connected together accord-

ing to the procedure in Section 4.2. After the initial convergence in the Control Plane,

the Flow rules are installed in the OpenFlow switches with the help of RouteFlow.

At this point, we simulate the link failure between switches S5 and S6 with Mininet

command link S5 S6 down. This commands breaks the link between both the switches

and immediately OFPT PORT STATUS messages are received at the POX. These

OF messages are logged along with their timestamps. Now, RF-Proxy sees this event

and signals RF-Client to shutdown the mapped interface of the VM in the Control

Plane. With this, OSPF is forced to send LSU packet out of its interface immediately

and the time it generates this message is captured in the wireshark. Once again the

time is measured for the link failure to be detected.

The experiment is repeated five times and the average time to detect the link

failure is noted in both the cases. Also, the HelloInterval and RouterDeadInterval

time is increased sequentially from 1 second to 10 seconds and 4 seconds to 40 seconds

respectively.

The same experiment is performed with four and five routers with 5 and 7 links

between them. The same steps are followed as mentioned in the above experiment

and the topology used for these experiments are provided in the Fig 5.2 and Fig 5.3

respectively.

39

Fig. 5.2. 4 node topology used in experiment

40

Fig. 5.3. 5 node topology used in experiment

5.2 Results

With the information from above experiments, graphs are plotted to compare the

link failure detection time between traditional OSPF and OpenFlow based OSPF.

41

Fig. 5.4. Traditional OSPF

Fig. 5.5. OpenFlow based OSPF

42

Fig. 5.6. Traditional OSPF

Fig. 5.7. OpenFlow based OSPF

43

Fig. 5.8. Traditional OSPF

Fig. 5.9. OpenFlow based OSPF

44

The X-axis in graphs corresponds to HelloInterval time in traditional OSPF and

OF based OSPF network and Y-axis is the time taken to detect the link failure.

Fig 5.4 and 5.5 shows the result from the first experiment that was performed

with three Routers and three links. As the HelloInterval duration was increased from

1 second to 10 seconds, the time taken by the traditional OSPF to detect the failure

is increased linearly (refer to Fig 5.4). Whereas in the proposed approach of OF

based OSPF (refer to Fig 5.5) there is a significant improvement in detecting the link

failures. The variation of time that is observed in the Fig 5.5 is due to the controller

receiving OFPT PORT STATUS message at different instance of times. This is be-

cause OVS is software switch and the processing of OpenFlow packets is not done

at line rate. Also, the processing delays of RF-Proxy, RF-Client and POX controller

were also added to the failure detection time which resulted in the variation of time.

Similarly, Fig 5.6 and 5.7 shows the results from the experiment done with four

routers and five links. Same set of single link failures were simulated and the results

were close to what was observed in the previous experiment. And the results from

the last experiment that was performed with five routers and seven links can be seen

in the Fig 5.8 and 5.9.

From the graphs it is evident that the time taken by OpenFlow based OSPF

network to detect the link failures is far less than the time taken by the traditional

OSPF.

45

6. FUTURE SCOPE AND CONCLUSION

The approach proposed in this thesis has reduced the link failure detection and

thereby reducing the overall time of the network convergence. But, there are few

disadvantages that can be rectified in the future. Though RouteFlow architecture

provided routing capability to OpenFlow network, it has lot of components and sig-

naling involved. As the number of routers and links between them are scaled, the

amount of processing time introduced by these components might increase the time

to detect the link failure further. Also, controller POX is a single point of failure

in the network. If it fails, then the impact would be on the entire network. This is

because OpenFlow 1.0 does not support multiple controllers for the same network.

But in future with OpenFlow 1.2 and later, a network can have multiple controllers.

In this way, even if one of the controllers fail, the backup controller would still be

able to see all the network elements.

In future, with the help of OpenFlow enabled routers, the need to use RouteFlow

architecture can be totally reduced. This way, the delays involved in processing time

can be greatly reduced. Moreover with OpenFlow enabled routers, the controller can

take care of routing services of the OpenFlow network directly. This gives the network

administrator greater flexibility to manage and program the networks Control Plane

according to the varying needs.

The use of SDN and OpenFlow in the industry is growing rapidly. Their services

are used by technology giants like Google in their Data centers across the world.

In a presentation at Open Networking Summit, Google presented the advantages of

using OpenFlow protocol, which helped them to have improved manageability over

46

the network. With the help of OpenFlow based SDN architecture the network can be

more programmable and manageable by decoupling network Control and Data plane.

LIST OF REFERENCES

47

LIST OF REFERENCES

[1] T. Narten, “Internet routing,” in Symposium proceedings on Communications
architectures & protocols, SIGCOMM ’89, (New York, NY, USA), pp. 271–
282, ACM, 1989.

[2] “Routing.” http://en.wikipedia.org/w/index.php?title=Routingoldid=579584360.
Date last accessed: November 9, 2013.

[3] J. Moy, “Ospf version 2,” 1998.

[4] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen, “Introduction to
algorithms,” pp. 588–591, 2001.

[5] E. W. Dijkstra, “A note on two problems in connexion with graphs,” NU-
MERISCHE MATHEMATIK, vol. 1, no. 1, pp. 269–271, 1959.

[6] ONF, “Software-defined networking architecture: The new norm for netwoks.”
http:www.opennetworking.org/ images/stories/downloads/sdn-resources/white-
papers/wp-sdn-newnorm.pdf. Date last accessed: July 19, 2013.

[7] G. Scheets, M. Parperis, and R. Singh, “Voice over the internet: A tutorial
discussing problems and solutions associated with alternative transport,” Com-
munications Surveys Tutorials, IEEE, vol. 6, no. 2, pp. 1–10, 2004.

[8] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, Y. Ganjali, and
C. Diot, “Characterization of failures in an operational ip backbone network,”
Networking, IEEE/ACM Transactions on, vol. 16, no. 4, pp. 749–762, 2008.

[9] C. Alaettinoglu, I. Draft, H. Yu, and V. Jacobson, “Towards milli-second igp
convergence,” 2000.

[10] A. Basu and J. Riecke, “Stabilitu issues in ospf routing,” Computer Communi-
cation Review, vol. 31, no. 4, 2001.

[11] M. Goyal, K. Ramakrishnan, and W. chi Feng, “Achieving faster failure detec-
tion in ospf networks,” in Communications, 2003. ICC ’03. IEEE International
Conference on, vol. 1, pp. 296–300 vol.1, 2003.

[12] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyp-
ing for software-defined networks,” in Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, pp. 19:1–19:6, ACM, 2010.

[13] ONF, “Openflow switch specification 1.0.” http:www.opennetworking.org
/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf.
Date last accessed: July 19, 2013.

48

[14] Horman, “Open vswitch.” http://openvswitch.org/slides/openvswitch.en-2.pdf.
Date last accessed: September 4, 2013.

[15] M. Murphy, “Pox controller.” https://github.com/noxrepo/pox. Date last ac-
cessed: August 20, 2013.

[16] “Wireshark: Network protocol analyzer.” http://en.wikipedia.org/Wireshark.
Date last accessed: September 26, 2013.

[17] “Cbench.” http://www.openflowhub.org/display/floodlightcontroller/Cbench.
Date last accessed: October 28, 2013.

[18] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa, S. C.
de Lucena, and M. F. Magalhães, “Virtual routers as a service: the routeflow
approach leveraging software-defined networks,” in Proceedings of the 6th Inter-
national Conference on Future Internet Technologies, CFI ’11, (New York, NY,
USA), pp. 34–37, ACM, 2011.

[19] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open platform for network
research,” in ACM SIGCOMM Computer Communication Review, pp. 53–57,
2002.

[20] L. Surhone, M. Tennoe, and S. Henssonow, Bird Internet Routing Daemon. VDM
Publishing, 2011.

[21] “Lxc.” http://en.wikipedia.org/w/index.php?title=LXColdid=580678290. Date
last accessed: November 4, 2013.

[22] “Lxc-linux containers.” http://lxc.sourceforge.net/man/lxc.html. Date last ac-
cessed: November 4, 2013.

[23] “Bridging (networking).” http://en.wikipedia.org/wiki/Bridging (networking)/.
Date last accessed: November 5, 2013.

[24] “Netlink.” http://man7.org/linux/man-pages/man7/netlink.7.html. Date last
accessed: October 28, 2013.

APPENDIX

49

APPENDIX

Script 1

#!/usr/bin/python

"""

This code links two switches S1 ----- S2 and then hooks it to a

remote controller POX.

This code is used in calculating the time taken by

OFPT_PORT_STATUS message to be detected by controller

"""

from mininet.log import setLogLevel, info

from mininet.net import Mininet

from mininet.node import RemoteController

from mininet.cli import CLI

from time import sleep

from mininet.topo import Topo

import os

class MyTopo(Topo):

"Simple topology example."

def __init__(self):

"Create custom topo."

50

Initialize topology

Topo.__init__(self)

Add switche

leftSwitch = self.addSwitch(’s3’)

rightSwitch = self.addSwitch(’s4’)

Add links

self.addLink(leftSwitch, rightSwitch)

topo = MyTopo()

net = Mininet(topo=topo, controller=lambda name:

RemoteController(name, ip=’127.0.0.1’))

Start wirehark

os.system("wireshark &")

net.start()

s3, s4 = net.get(’s3’, ’s4’)

comm = "s3 s4 down"

arg = comm.split()

sleep(15)

net.configLinkStatus(*arg)

os.system("/home/ospf/Bashscripts/dite.sh

> /home/ospf/timelogs/mininetlinkdown.txt")

CLI(net)

net.stop()

51

#Kill wireshark

os.system("kill $(ps -ef | grep ’[w]ireshark’ | awk ’{print $2}’)")

LXC commands

/*

Type the following commands on a bash shell

1. To create a LXC container:

lxc-create -n R1 -t ubuntu

where -n is the name of the container and -t is the template

to be used for creating container.

2. To clone a container:

lxc-clone -o R1 -n R2

where -o is the container to be cloned to create a new

container named R2

3. To start a contiaer:

lxc-start -n R1 -d

where -d will start the container as a daemon and user can log into

container with "lxc-console -n R1" command

*/

LXC network config file

/* Network config file used to boot a container */

lxc.network.type=veth

lxc.network.link=lxcbr0

lxc.network.flags=up

lxc.network.hwaddr = 00:16:3e:10:f5:54

lxc.utsname = R1

lxc.network.type=veth

52

lxc.network.link=lxcbr0

lxc.network.flags=up

lxc.network.hwaddr=00:00:00:00:00:01

lxc.network.veth.pair=R1.1

lxc.devttydir = lxc

lxc.tty = 4

lxc.pts = 1024

lxc.rootfs = /var/lib/lxc/R1/rootfs

lxc.mount = /var/lib/lxc/R1/fstab

lxc.arch = amd64

lxc.cap.drop = sys_module mac_admin

lxc.pivotdir = lxc_putold

lxc.cgroup.devices.deny = a

Allow any mknod (but not using the node)

lxc.cgroup.devices.allow = c *:* m

lxc.cgroup.devices.allow = b *:* m

/dev/null and zero

lxc.cgroup.devices.allow = c 1:3 rwm

lxc.cgroup.devices.allow = c 1:5 rwm

consoles

lxc.cgroup.devices.allow = c 5:1 rwm

lxc.cgroup.devices.allow = c 5:0 rwm

#lxc.cgroup.devices.allow = c 4:0 rwm

#lxc.cgroup.devices.allow = c 4:1 rwm

/dev/{,u}random

lxc.cgroup.devices.allow = c 1:9 rwm

lxc.cgroup.devices.allow = c 1:8 rwm

53

lxc.cgroup.devices.allow = c 136:* rwm

lxc.cgroup.devices.allow = c 5:2 rwm

rtc

lxc.cgroup.devices.allow = c 254:0 rwm

#fuse

lxc.cgroup.devices.allow = c 10:229 rwm

#tun

lxc.cgroup.devices.allow = c 10:200 rwm

#full

lxc.cgroup.devices.allow = c 1:7 rwm

#hpet

lxc.cgroup.devices.allow = c 10:228 rwm

#kvm

lxc.cgroup.devices.allow = c 10:232 rwm

OVS commands

/* These commands are used to create OVS bridge

and ports in the bridge. OVS should be installed

prior to this */

1. ovs-vsctl add-br cd0

Createa a bridge with name cd0

2. ovs-vsctl add-port cd0 R1.1

Adds a port to the bridge and connects an

interface of VM to the port

3. ovs-vsctl set Bridge cd0 other-config:datapath-id=1245678

Sets the DPID of the switch (OpenFlow specific parameter)

54

4. ovs-vsctl set-controller cd0 tcp:127.0.0.1:6633

Attaches OVS to an OpenFlow controller

5. ovs-ofctl show cd0

Prints the information of OF switches and its flow table and ports

Script 2

/* This script starts ospfd, Vitual Machines of Control Plane,

starts the controller POX along with RF-Proxy,

Starts RF-Server, loads RF-Clinet application to all VM’s and

waits for the DataPlane connections. This script emulates

3 VM’s and coonects it OVS*/

echo_bold "-> Configuring the virtual machines..."

Create the rfclient dir

mkdir /var/lib/lxc/rfvmA/rootfs/opt/rfclient

mkdir /var/lib/lxc/rfvmB/rootfs/opt/rfclient

mkdir /var/lib/lxc/rfvmC/rootfs/opt/rfclient

Copy the rfclient executable

cp build/rfclient /var/lib/lxc/rfvmA/rootfs/opt/rfclient/rfclient

cp build/rfclient /var/lib/lxc/rfvmB/rootfs/opt/rfclient/rfclient

cp build/rfclient /var/lib/lxc/rfvmC/rootfs/opt/rfclient/rfclient

We sleep for a few seconds to wait for the interfaces to go up

echo "#!/bin/sh" > /var/lib/lxc/rfvmA/rootfs/root/run_rfclient.sh

echo "sleep 3" >> /var/lib/lxc/rfvmA/rootfs/root/run_rfclient.sh

echo "/etc/init.d/quagga start" >> /var/lib/lxc/rfvmA/rootfs/

root/run_rfclient.sh

55

echo "/opt/rfclient/rfclient > /var/log/rfclient.log" >> /var/lib/

lxc/rfvmA/rootfs/root/run_rfclient.sh

echo "#!/bin/sh" > /var/lib/lxc/rfvmB/rootfs/root/run_rfclient.sh

echo "sleep 3" >> /var/lib/lxc/rfvmB/rootfs/root/run_rfclient.sh

echo "/etc/init.d/quagga start" >> /var/lib/lxc/rfvmB/rootfs/

root/run_rfclient.sh

echo "/opt/rfclient/rfclient > /var/log/rfclient.log" >> /var/lib/

lxc/rfvmB/rootfs/root/run_rfclient.sh

echo "#!/bin/sh" > /var/lib/lxc/rfvmC/rootfs/root/run_rfclient.sh

echo "sleep 3" >> /var/lib/lxc/rfvmC/rootfs/root/run_rfclient.sh

echo "/etc/init.d/quagga start" >> /var/lib/lxc/rfvmC/rootfs/

root/run_rfclient.sh

echo "/opt/rfclient/rfclient > /var/log/rfclient.log" >> /var/lib/

lxc/rfvmC/rootfs/root/run_rfclient.sh

chmod +x /var/lib/lxc/rfvmA/rootfs/root/run_rfclient.sh

chmod +x /var/lib/lxc/rfvmB/rootfs/root/run_rfclient.sh

chmod +x /var/lib/lxc/rfvmC/rootfs/root/run_rfclient.sh

echo_bold "-> Starting the virtual machines..."

lxc-start -n rfvmA -d

lxc-start -n rfvmB -d

lxc-start -n rfvmC -d

echo_bold "-> Starting the controller and RFPRoxy..."

cd pox

./pox.py log.level --=INFO topology openflow.topology

56

openflow.discovery rfproxy rfstats &

cd -

wait_port_listen $CONTROLLER_PORT

echo_bold "-> Starting RFServer..."

./rfserver/rfserver.py rftest/rf3config.csv &

echo_bold "-> Starting the control plane network (dp0 VS)..."

ovs-vsctl add-br dp0

ovs-vsctl add-port dp0 rfvmA.1

ovs-vsctl add-port dp0 rfvmA.2

ovs-vsctl add-port dp0 rfvmA.3

ovs-vsctl add-port dp0 rfvmB.1

ovs-vsctl add-port dp0 rfvmB.2

ovs-vsctl add-port dp0 rfvmB.3

ovs-vsctl add-port dp0 rfvmC.1

ovs-vsctl add-port dp0 rfvmC.2

ovs-vsctl add-port dp0 rfvmC.3

ovs-vsctl set Bridge dp0 other-config:datapath-id=7266767372667673

ovs-vsctl set-controller dp0 tcp:127.0.0.1:$CONTROLLER_PORT

Script 3

""" Script of Data Plane "rf3" topology

Three OF switches connected in mesh topology

and a each switch serves a host in different subnet.

This is connected to POX which is already running.

Controller must be started first.

57

h1 --- sA

| \

| \

| \

| \

h2 --- sB ---- sC --- h3

"""

from mininet.topo import Topo

class rftest2(Topo):

def __init__(self, enable_all = True):

"Create custom topo."

Topo.__init__(self)

h1 = self.addHost("h1",

ip="172.31.1.100/24",

defaultRoute="gw 172.31.1.1")

h2 = self.addHost("h2",

ip="172.31.2.100/24",

defaultRoute="gw 172.31.2.1")

h3 = self.addHost("h3",

ip="172.31.3.100/24",

defaultRoute="gw 172.31.3.1")

58

sA = self.addSwitch("s5")

sB = self.addSwitch("s6")

sC = self.addSwitch("s7")

self.addLink(h1, sA)

self.addLink(h2, sB)

self.addLink(h3, sC)

self.addLink(sA, sB)

self.addLink(sC, sA)

self.addLink(sB, sC)

topos = { ’rftest2’: (lambda: rftest2()) }

	SanthanETDForm9
	SanthanFinal2

