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ABSTRACT

Reynolds, Joshua M.S.E.C.E., Purdue University, May 2015. Particle Swarm Opti-
mization Applied to Real-time Asset Allocation. Major Professor: Lauren Christo-
pher.

Particle Swam Optimization (PSO) is especially useful for rapid optimization of

problems involving multiple objectives and constraints in dynamic environments. It

regularly and substantially outperforms other algorithms in benchmark tests. This

paper describes research leading to the application of PSO to the autonomous asset

management problem in electronic warfare. The PSO speed provides fast optimiza-

tion of frequency allocations for receivers and jammers in highly complex and dynamic

environments. The key contribution is the simultaneous optimization of the frequency

allocations, signal priority, signal strength, and the spatial locations of the assets. The

�tness function takes into account the assets' locations in 2 dimensions, maximizing

their spatial distribution while maintaining allocations based on signal priority and

power. The fast speed of the optimization enables rapid responses to changing con-

ditions in these complex signal environments, which can have real-time battle�eld

impact. Results optimizing receiver frequencies and locations in 2 dimensions have

been successful. Current run-times are between 450ms (3 receivers, 30 transmitters)

and 1100ms (7 receivers, 50 transmitters) on a single-threaded x86 based PC. Run-

times can be substantially decreased by an order of magnitude when smaller swarm

populations and smart swarm termination methods are used, however a trade o� ex-

ists between run-time and repeatability of solutions. The results of the research on

the PSO parameters and �tness function for this problem are demonstrated.
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1. INTRODUCTION

1.1 Overview and Problem Statement

Particle Swarm Optimization (PSO) is an exciting computational tool for opti-

mization applications in scheduling and logistics, hardware development, arti�cial

neural networks, and many other areas. Examples include optimization of mission

planning, optimization of allocation of electronic warfare resources, medical analysis

and diagnosis, electric utility system load stabilization, and product mix optimization.

PSO is exciting because of the ease and speed with applications can be developed (of-

ten weeks or months instead of years) and the performance of the solutions, which is

often better and orders of magnitude faster than traditional solutions for complex or

computationally-intensive problems.

PSO is an evolutionary computation technique developed in 1995 by James Kennedy

and Russell Eberhart [1] [2]; with a text on the subject by Eberhart, Simpson, and

Dobbins in 1996 [3] and by Eberhart and Shi in 1998 [4]. PSO methods were included

in a formal textbook by Eberhart in 2007 [5]. At the time of the writing of this paper,

PSO has been around for two decades; it is being researched and utilized in over 30

countries.

PSO has already been applied to some problems in real-time allocation. For

weapons allocation for defensive purposes as seen in [6], PSO was shown successful

for small scale problems. In this thesis, the application of PSO to real-time asset

allocation in the area of electronic warfare (EW) is explored. This is follow-on work to

a project done for the Expeditionary Electronic Warfare Division, Spectrum Warfare

Systems Department, at the Naval Surface Warfare Center (NSWC) Crane [7]. PSO

was used in that project to allocate electronic warfare resources in the frequency

spectrum in a rapidly changing environment on a near-real-time basis.
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The goal of this research was to extend the previous work to optimize the re-

sources simultaneously in 3D space and across the frequency spectrum. This di�ers

from the previous work in [7] which assumed that all of the assets were co-located

at a single point in space. Each RF receiver has a certain programmable bandwidth

and maximum allowable input power. The receivers must be allocated to a number of

transmitters, where each transmitter has a priority, power, and location. In addition,

the transmitters are placed in a de�ned area, simulating the EW battle�eld. It is

desirable to receive signals with the highest priority and power while not overloading

the RF front end of any receiver. Furthermore, it is advantageous for the receivers to

be spread out in 3D space. A viable solution should not compromise frequency allo-

cations that were obtainable with the previous work while at the same time achieving

spatial optimization.

In an operational scenario involving the allocation of multiple receiver resources

against a suite of dozens of signals with varying powers and priorities in the past

required a state-of-the-art system (available to the Navy). This system took nearly

two hours to calculate the optimal receiver center frequencies. Of course, this is clearly

not useful in an operational environment. The reported PSO solution optimally

allocates resources in under one second.

The changes made to the optimizer are described in Section 2. Section 3 describes

the implementation details. Section 4 details our analysis and Section 5 summarizes

and outlines potential future work.

1.2 Research Starting Point

Phoenix Data Corp. provided two pieces of software source code that were used

as a starting point for this research. First, we received C++ implementation of

generic PSO algorithm minus the �tness function. Secondly, we were provided with

a C# to implementation of a PSO optimizer �nding the center frequency allocation

of assets (receivers). The input to this optimizer consisted of a collection of narrow
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Figure 1.1. Previous Research

band signals, their frequencies, priorities, and powers. Frequencies ranged on an

arbitrary scale of 0 to 100 units with a resolution of 0.1, giving a total of 1000

frequencies. Generic integers were assigned to each signal to indicate its power and

priority. The optimizer used PSO to assign center frequencies for 3 receivers to a

spectrum of 30 signals. Run times averaged 38 ms to run 100 generations with a

swarm population size of 30. A graphical user interface (GUI) was developed that

allowed basic initialization and running of the PSO. Results were shown in textual

format and graphical format in the form of a spectrum plot. The GUI is shown in

Figure 1.1. Both of these software contributions were used and expanded upon in

this research.

1.3 New Approach

To achieve the optimization goals outlined in the introduction, the �tness function

from the previous work was expanded to take into account the spatial location of the

assets. A new GUI was developed to support the visualization of spatial location of
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assets. All of the new implementation in this research was performed in C++. This

language was chosen because of its generally high performance for computationally

intensive applications. The C++ PSO implementation provided by Phoenix provided

a solid foundation upon which to build. The �tness function from the previous C#

project was converted to C++ and used as an initial starting point. The new GUI was

also implemented in C++ using the Qt software framework and is described further

in Section 3.2.
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2. PSO AND FITNESS FUNCTION

2.1 Fitness Function Design

The new �tness function is based on the �tness function found in the previous

work. Elements from the old �tness function pertaining to power and priority were

modularized so that weights could be independently assigned to each component.

Additional �tness components were added to achieve the goal of optimizing in space

as well as frequency. The �tness function returns a single �oating point value that

represents the overall desirability of the input solution. This �tness value is composed

of a weighted sum of several �tness components. Each of these �tness components

addresses one aspect of the problem. These components are as follows: (1) priority,

(2) power, (3) spread, and (4) distance. Each component is described in the following

subsections. The overall �tness is calculated according to Equation 2.1.

Overall F itness =
∑

i∈Fitness Components

Fitness Component(i) ∗ Component Weight(i)

(2.1)

2.1.1 Fitness Priority Component

Each signal in the spectrum has been assigned a priority that remains constant

through the duration of the problem. As was the case with the previous work, a

uniformly distributed random variable is used to assign priorities to signals from the

set {1, 3, 5}, where a higher number represents a higher priority. Priority assignment

is done upon initialization of the problem. The �tness function calculates the prior-

ity �tness component as the sum of the all of the priorities of the received signals

according to Equation 2.2. As in the previous work, it is possible for two or more
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receivers to overlap in frequency such that they are both receiving the same signal. In

this case, the �tness function only counts the priority once for each unique received

signal.

Fitness Priority Component =
∑

i∈Received Signals

Priority of Signal(i) (2.2)

2.1.2 Fitness Power Component

In a manner similar to the way in which the priority component is calculated, the

power component is found by summing the powers of the received signals. As with the

priorities, each transmitter is given a random transmit power upon initialization. This

random initialization simulates a varied RF environment that may be encountered in

the �eld. When summing the signal powers, the redesigned �tness function accounts

for the distance between the receiver and signal source. After calculating the distance,

the free space path loss of the signal is calculated according to dBLoss = 20∗log10(d)+

20 ∗ log10(f) + 32.45 where d is in kilometers and f is in MHz. Thus, the power

of each signal is calculated from the perspective of each asset. The power of each

received signal is then summed in magnitude form. As with the priority component,

the �tness function does not count twice any signal that is received by two or more

receivers. The total sum of the received power is converted to dB scale and used in

the �tness component. A problem arises when negative dB values are encountered. If

the conversion to dB scale results in a negative value, the returned �tness component

would subtract from the overall �tness even though it may be bene�cial to receive the

signals. To overcome this, we add an appropriate o�set to the �nal dB value such that

the returned value is guaranteed to be a positive value. This method of calculation

is summarized in Equation 2.3. In this equation, Power of Signal(i) represents the

magnitude of the signal as seen by the asset that is receiving it.
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Fitness Power Component = 10∗log10

[ ∑
i∈Received Signals

Power of Signal(i)

]
+Offset

(2.3)

2.1.3 Fitness Spread Component

One of the main requirements of this research is to ensure that the optimizer

produces a solution where the assets are spatially dispersed as much as possible.

This spatial dispersion is useful for optimization of problems like battle�eld resource

distribution of mobile assets, cell phone tower locations, distribution hubs for order

ful�llment, etc. Achieving spatial dispersion was accomplished by adding a spread

component to the �tness function. Two methods of calculating the spread component

were investigated. First, the spread component was calculated by �nding the sum of

the Euclidean distances between all of the receivers. Our testing showed that this

did not e�ectively spread out the assets. In many cases when optimizing for three

assets, the optimizer would place two of the assets near each other and place the

third a far away at the edge of the solution space. Through testing, we found that it

was possible to e�ectively counter this behavior by calculating the spread component

as the distance between the two closest assets. Calculating the spread component in

this manner forced the optimizer to more evenly spread the assets around the solution

space.

By design, the spread component and power component of the �tness will �ght

each other. It is not possible to maximize both at the same time, since a high-spread

�tness solution will place the receivers far away from the signals and thus cause the

power �tness component to have a lower score. A challenge arises from the fact that

RF loss is input to the system in dB, and follows a log function as distance increases.

On the other hand, the spread component is linearly proportional to distance. Two

�tness functions need to balance each other for proper operation, so a log of the
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distance between receivers is the better choice both theoretically and experimentally.

The calculation of the �tness spread component is according to Equation 2.4, in which

Distance(ij) represents the euclidean distance between receiver(i) and receiver(j).

Fitness Spread Component = log10
[
min

(
Distance(ij), i 6=j

)]
(2.4)

2.1.4 Fitness Distance Component

While the �tness spread component successfully disperses the receivers in space,

it does not provide any means to distribute the assets near the receivers. It is true

that the power �tness component tends to place the assets near the receivers in order

to achieve a higher overall power. However, in our testing this sometimes produced

unsatisfactory results due to the way in which the spread component and power

component tend to �ght each other. Prior to adding this �tness component, we

observed cases where one asset that had relatively few signals assigned to it would be

placed an in�nite distance (if the boundaries were removed) from the signals. In these

cases, the optimizer �sacri�ced� one of the assets by causing its power contribution

to become almost non-existent in order to gain an increase in the �tness spread

component. Attempts to counter this behavior by adjusting weights on the �tness

components were not very successful. Increasing the weight on the power component

or decreasing the weight on the spread component had the e�ect of causing the assets

to congregate too close to the receivers. Thus it was di�cult to achieve a good

middle ground. The addition of the �tness distance component gave more stability

to the solutions obtained. This component is calculated by taking the mean of the

distances between each asset and the center of mass of the transmitters that it is

receiving as shown in Equation 2.5. In this equation, D(i) represents the distance

between receiver(i) and the center of mass of the transmitters that receiver(i) is

receiving. This distance, D(ij) is subtracted from a constant Max Distance to so
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that a higher score is given to smaller distances and so that a positive value is always

returned. Section 4.1 describes a further analysis that led to the addition of this

�tness component.

Fitness Distance Component =
1

N

N∑
i=1

Max Distance−D(i) (2.5)

2.1.5 Keep Away Penalty

A keep-away penalty has been added to enforce spatial separation between the

assets and signal sources. A sharp penalty is added to the overall �tness when any

receiver enters a pre-de�ned boundary around the signal sources. This boundary takes

on one of two shapes, depending on the selected problem layout. Either a circular

boundary is used as seen in Figure 4.1 or a straight line boundary as seen in Figure 3.3.

For every asset that is past this boundary, overall �tness is multiplied by 0.5. Prior to

adding this boundary, at least one of the receivers ended up on top of the transmitter

signals in order to achieve a high power score. In a real-world scenario battle�eld

application, it is desirable to keep assets spatially separate from de�ned target areas.

The keep away-penalty addresses this concern by adding a harsh penalty when any

asset crosses into the boundary. After the addition of this penalty, the optimizer did

not place any assets inside the keep-away boundary for all con�gurations that were

tested.

2.2 PSO Parameters

PSO parameters are provided to the optimizer in the form of an Extensible Markup

Language (XML) �le that is read upon start up of the optimizer program. Selection of

the PSO settings was done according to which of the following two tasks was taking

place: (1) development of the �tness function or (2) performance testing. Fitness
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Table 2.1.
Test PSO Parameters

Parameter Value

Inertia Type Noisy uniform between 0.2 and 0.9

C1 1.49

C2 1.49

Population Size 200

Neighborhood Size 10

Generations 1000 Fixed

Table 2.2.
Performance PSO Parameters

Parameter Value

Inertia Type Noisy uniform between 0.3 and 0.8

C1 1.49

C2 1.49

Population Size 50

Neighborhood Size 1

Generations Variable

parameters for testing were chosen to ensure that su�ciently optimized solutions were

found without regard to run-time or performance. The testing swarm parameters are

shown in Table 2.1.

As the �nal application of this research will be for real-time asset allocation, it was

necessary to test the real-time feasibility of our work. A new set of PSO parameters

was chosen that would substantially decrease run-time while still providing adequate

solutions. Table 2.2 shows the parameters used in the run-time test as described in

Section 4.4. Section 4 describes comparison between these two sets of parameters.
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In Table 2.2, the number of generations is listed as variable. This is because

the number of actual generations depends on the convergence of the swarm. After

each generation, the change in global best �tness value is examined. This delta-�tness

value is averaged over a window size of 50 generations. When the average delta-�tness

decreases below 0.01, the swarm will terminate. The swarm will also terminate after

1000 generations regardless of average delta-�tness value.
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3. IMPLEMENTATION

3.1 PSO Implementation

As stated in the introduction, C++ was chosen as the language for implementa-

tion. C++ has several advantages in that it is a high-level language that still provides

speed for computationally intensive problems. The C++ PSO implementation pro-

vided by Phoenix Data Corporation gave a foundation upon which to build. Most

of the required modi�cations were to the �tness function. Using the �tness function

from the previous project, a new �tness function was developed according to 2.1.

The code was modularized by creating subroutines to calculate each of the �tness

components. Figure 3.1, generated using Doxygen1, shows a calling graph for the cal-

culation of the overall �tness value. The function names follow the C++ convention

of namespace::class::function-name. Figure 3.2 shows a code snippet of the top level

C++ �tness function.

The code in Figure 3.2 shows the function taking a vector of double precision

values. This vector represents one point the solution space. The �tness of this point

is returned as a double precision value. The �tness function �rst checks to see that the

solution point has the correct number of dimensions. This is mostly a sanity check,

because the swarm should have been set up with the correct number of dimensions.

The double-nested for-loop following this check is used to arrange the input values

into a meaningful structure. For each receiver, N+1 dimensions are required, where

N is the number of dimensions the receivers are allowed to move. The +1 dimension

speci�es the center frequency of the receiver.

1Doxygen is a tool for generating source code documentation. It can be obtained from
http://www.doxygen.org Last Date Accessed: 04/20/2015
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Figure 3.1. Doxygen Call Graph for Fitness Function
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The function assignSignals looks at the center frequency of each receiver and

checks to see which signals in the spectrum fall within the bandwidth of that receiver.

Signals are assigned to receivers so that these can be used later to calculate the �tness.

If two receivers have an overlapping bandwidth, any signal in the overlapping portion

of the spectrum is only counted once.

The checkOverPower function checks to make sure the RF front-end of each re-

ceiver is not overloaded. This is done by summing the magnitudes of all the signals

within the bandwidth of a receiver. If this sum exceeds a de�ned limit, this receiver

is said to be saturated. In this case, the receiver is unable to provide any useful

intelligence and will not contribute to the overall �tness. The next several lines of

code get values for each of the four �tness components and �nd their weighted sum.

The weights are class members which have been set by functions in the GUI. Lastly,

the keep-away penalty is applied as described in Section 2.1.5 of this document.

The C++ PSO code together with the �tness function have been compiled as a

dynamically linked library (DLL). The GUI application loads this DLL at run time

and passes settings and commands to the PSO layer. This architecture allows the

PSO code to be independent of the GUI. In subsequent sections of this paper, the

PSO layer is referred to as the PSO back-end and the GUI layer is referred to as the

GUI front-end.

The PSO back-end depends on the Boost C++ libraries. Boost is a well-respected

set of C++ classes that are used in the PSO code to provide random number gen-

eration, high precision time keeping, XML parsing, and other small computational

tasks. The Boost libraries can be built for the common desktop platforms in use

today (Windows, Linux, and Mac). By default, Boost libraries are set up for static

linking, meaning that they do not have to be installed on the target machine.
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Figure 3.2. Top Level Fitness Function
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Figure 3.3. New GUI

3.2 GUI Implementation

A signi�cant portion of this research was the design of a GUI that facilitates

easy analysis and testing. The Qt software framework was chosen to develop the

new GUI. Qt is an open-source, cross-platform framework for developing interactive

applications. Its C++ interface makes it easy to integrate into the PSO code, which

was also written in C++. In addition to the Qt libraries, the Qwt library was used

for all of the plotting functionality. A screenshot of the GUI is shown in Figure 3.3.
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The Allocation Plot on the top left shows the spatial location of the assets and

signal sources. A black line represents a hard boundary between the assets and signal

sources. The signal sources, which are color coded according to their priority, are

randomly distributed in the center. Beneath the allocation plot is the spectrum view.

This shows the signals sources according to their power and priority, using the same

color scheme as the allocation plot. The spectrum view shows the bandwidth of

each asset as a grey colored box. To the right of the allocation plot is a graph that

shows the global best �tness value for each generation from the last run of the PSO

optimizer. Figure 3.3 shows a run with 30 signals and 3 assets.

3.3 Platform Considerations

Research and experimentation was performed in a Windows environment. Mi-

crosoft Visual Studio 2013 was used to create and compile the PSO back-end. Qt

creator, an IDE developed for Qt, was used to create the GUI front-end. All of the

libraries and frameworks used are cross platform. As such, all of the software work

from this research can be ported to run under Linux or Mac OS.
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4. ANALYSIS

4.1 Analysis of Fourth Fitness Component.

The original design included three �tness components: priority, power, and spread.

These three components would were designed to provide a balanced solution satis-

fying the requirements for each of the �tness components. Initial tests showed that

the optimizer did not always produce consistent solutions. Figures 4.1 and 4.2 show

the output from consecutive runs of the optimizer. Figure 4.1 shows the assets con-

centrated near the receivers while Figure 4.2 shows that two of the assets have been

pushed out to the edge of the boundary. With only the three �tness components, it

was not possible to adjust the �tness component weights to achieve consistent and

useful solutions between runs from the same initial conditions.

Therefore, another �tness component was added as described in Section 2.1.4.

Qualitative analysis showed that the solutions obtained were indeed more consistent

between each run of the optimizer. A quantitative analysis was done to determine the

e�ect that the addition of this component had on the priority score. The optimizer

was run 15 times each with and without the distance �tness component using the

same initialization of the signals. The priority score for each run was saved. The

mean priority scores without and with the distance component were 390.0 and 404.4

respectively. A Mann-Whitney U test was done to determine the signi�cance of this

statistic. The Mann-Whitney U test has been successfully used for evaluation of PSO

optimizer con�gurations as seen in [8]. In our case, we obtained a U value of 45,

giving a level of signi�cance near 0.005, meaning that there is a 0.5% chance that

increase in priority score is due to chance. Both quantitative and qualitative tests

show that the addition of this fourth �tness component is bene�cial.
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Figure 4.1. Sample PSO Run #1

Figure 4.2. Sample PSO Run #2
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4.2 Selection of Fitness Component Weights

The weights for the �tness components were determined experimentally. Initially,

the weights were adjusted so that the dynamic range of each of the �tness components

was roughly similar. Because the priority assignments is the most important aspect

of the problem, the priority �tness component weight was increased substantially

relative to the other weights.

In order to �ne tune the �tness component weights, a series of tests were run

with varying component weights. The priority component weight was �xed and the

remaining three were allowed to vary. To determine what counted as a good com-

bination of weights, the value of the priority score was used. For each combination

of �tness component weights, the optimizer was run 30 times and the the priority

score was averaged over the 30 runs. There were a number of weight combinations

that allowed for a high priority score. Of these, one combination was selected that

qualitatively produced a good compromise between power and spread. In any �nal

implementation, the end user would need to make small adjustments to the power

and spread component weights to give the desired trade-o� between those two com-

ponents. The weights that we ended up using are as follows: priority: 6.0, power: 0.1

spread: 75, distance: 1.0.

4.3 Repeatability Analysis

In order to determine the repeatability of obtained solutions, we ran a statistical

analysis on the �tness values obtained from the optimizer. The PSO optimizer was

run using a number of di�erent initialization settings and PSO parameters. For each

con�guration, the optimizer was run 50 times. Statistical means and variances were

obtained for each con�guration. Tests were run using the test parameters from Table

2.1 and the performance parameters from Table 2.2. The results are detailed in Table

4.1.
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Table 4.1.
Fitness Means and Variances

Con�guration Mean Standard Deviation

3 Receivers, 30 transmitters,

left-right layout, test PSO parameters

804 1.18

4 Receivers, 30 transmitters,

left-right layout, test PSO parameters

891 5.57

5 Receivers, 50 transmitters,

left-right layout, test PSO parameters

1234 11.6

3 Receivers, 30 transmitters,

left-right layout, performance PSO parameters

794 10.7

4 Receivers, 30 transmitters,

left-right layout, performance PSO parameters

868 14.4

5 Receivers, 50 transmitters,

left-right layout, performance PSO parameters

1197 25.8
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Figure 4.3. Repeatability Test Case

As a further repeatability test, a special test problem was designed with a known

global maximum solution. The test problem was designed to contain local maxima

in which the PSO might become stuck. A statistical analysis was run using this

test setup to determine how well the PSO �nds the global best solution without

becoming stuck in local maxima. Figure 4.3 shows the test case where 4 transmitters

of alternating priority and equal power are uniformly spaced along the battle�eld

line. Figure 4.3 shows the global best solution for two assets. Any other solution is

a local maximum solution. Using the PSO parameters from Table 2.1, it was found

that the optimizer found the global best solution with a probability greater than 0.99.

Running the swarm in this con�guration for 50 con�gurations gave an mean �tness

value of 645.8 and a standard deviation of 0.001. However, when the performance

PSO parameters from Table 2.2 were used, the probability of �nding the global best

solution dropped to 0.77. The mean �tness value in this case was 628.9 and the

standard deviation of �tness was 37.8.
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An unexpected �nding resulted from the repeatability testing described in the

previous paragraph. It was noticed that the priority and power �tness components

were highly dependent on the spectral density of the signals. The test case as seen

in Figure 4.3 required the priority weight and power weight to be increased in order

to compensate for the sparse spectrum. Because a dense or sparse spectrum will

respectively result in more or less signals being received by each asset, the power and

priority �tness components will increase or decrease relative to the spectral density

of the operating environment of the optimizer. The �tness component weights found

to work with the test case in Figure 4.3 are priority: 20.0, power: 1.0 spread: 75,

distance: 1.0. Future work will address this issue.

4.4 Run-time Analysis

Several run-time analyses were performed on the optimizer. Run-times were found

for varying problem sizes and varying swarm parameters. For each run-time analysis,

the PSO was run 50 times and the resulting run-times were averaged. Tests were run

with both sets of PSO parameters as described in Tables 2.1 and 2.2. All run-time

tests were performed on an Intel Core i7-4710HQ processor. All tests were run using

a single thread of execution. Table 4.2 shows the results from the run-time analysis.



24

Table 4.2.
Run-time Results

Con�guration Average Run-time

3 Receivers, 30 transmitters,

left-right layout, test PSO parameters

452ms

5 Receivers, 30 transmitters,

left-right layout, test PSO parameters

667ms

7 Receivers, 50 transmitters,

left-right layout, test PSO parameters

1098ms

3 Receivers, 30 transmitters,

left-right layout, performance PSO parameters

24ms

5 Receivers, 30 transmitters,

left-right layout, performance PSO parameters

45ms

7 Receivers, 50 transmitters,

left-right layout, performance PSO parameters

85ms
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5. CONCLUSIONS

5.1 Summary

The results of this research show that PSO is applicable to real-time optimization

of a complex spatial and frequency asset allocation problems. The main contribution

of this research was an extension of the optimizer to include spatial awareness of the

assets by the addition of two new parameters in the �tness function. The test results

show fast run times which are between 1100ms and 450ms with a 99% repeatability

of �nding the global best solution in our test problem. Much faster run-times of 24ms

85ms have been achieved with a repeatability of 77% in the same test case. Results

are visualized on a newly-developed and user-friendly GUI that is cross-platform.

5.2 Future work

All work in this research assumed that the assets were constrained to move in

two dimensions. As real world applications often work in three dimensional space,

it will be necessary to research the e�ectiveness of this optimizer when applied to

thee-dimensional space. The move to three dimensions will require support in both

the PSO back-end and the GUI front-end. The code in the PSO back-end has been

written in a dimensionally generic way so that it should be compatible with three

dimensions after a simple re-compile, although this has not been tested yet. Changes

to the GUI will need to be made in order to visualize three-dimensional assets.

As mentioned in Section 4.3, there is a slight issue with two of the swarm parame-

ters being sensitive to the spectral density. Future work could experiment with a way

to normalize the priority and power �tness component so that a given set of �tness

component weights can apply to all operating environments.
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Researchers in swarm technology have experimented with humans in the swarm

and human-swarm hybrid optimizers as seen in [9]. Human assisted swarms use the

input from a human to steer the convergence to a desired solution. A follow-on

project to this research will be to determine the applicability of human in the swarm

technology to problems presented in this paper.



REFERENCES



27

REFERENCES

[1] J. Kennedy and R. Eberhart, �Particle swarm optimization,� in 1995 IEEE Inter-
national Conference on Neural Networks, Proceedings, vol. 4, November 1995, pp.
1942�1948 vol.4.

[2] R. Eberhart and J. Kennedy, �A new optimizer using particle swarm theory,� in
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, October 1995, pp. 39�43.

[3] R. Eberhart, P. Simpson, and R. Dobbins, Computational Intelligence PC Tools.
San Diego, CA, USA: Academic Press Professional, Inc., 1996.

[4] Y. Shi and R. Eberhart, �A modi�ed particle swarm optimizer,� in The 1998 IEEE
International Conference on Evolutionary Computation Proceedings, 1998 IEEE
World Congress on Computational Intelligence, May 1998, pp. 69�73.

[5] R. C. Eberhart and Y. Shi, Computational Intelligence: Concepts to Implementa-
tions. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[6] F. Johansson and G. Falkman, �Real-time allocation of defensive resources to
rockets, artillery, and mortars,� in 2010 13th Conference on Information Fusion
(FUSION), July 2010, pp. 1�8.

[7] R. Eberhart, J. Keller, J. Kraft, and J. Verdon, �Plenary speakers and invited
tutorial speakers,� in 2012 IEEE Symposium on Computational Intelligence for
Security and Defence Applications (CISDA), July 2012, pp. 1�6.

[8] I. L. Schoeman, �Niching in particle swarm optimization,� Ph.D. dissertation,
University of Pretoria, 2010.

[9] D. Palmer, M. Kirschenbaum, E. Mustee, and J. Dengler, �Human-swarm hybrids
outperform both humans and swarms solving digital jigsaw puzzles,� in 2014 IEEE
Symposium on Swarm Intelligence (SIS), December 2014, pp. 1�8.



APPENDIX



28

APPENDIX

A.1 GUI Manual

The GUI has been designed to allow easy analysis and testing of the optimizer.

Most of the GUI is contained within one window as shown in Figure A.1. The

Allocation Plot on the top left shows the spatial location of the assets and signal

Figure A.1. GUI Showing Mouse Interaction
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sources. A black line represents a hard boundary between the assets and signal

sources. The signal sources, which are color coded according to their priority, are

randomly distributed in the center. Beneath the allocation plot is the spectrum view.

This shows the signal sources according to their power and priority, using the same

color scheme as the allocation plot. The spectrum view shows the bandwidth of

each asset as a grey colored box. To the right of the allocation plot is a graph that

shows the global best �tness value for each generation from the last run of the PSO

optimizer. Figure A.1 shows a run with 30 signals and 3 assets.

Figure A.1 shows the mouse interaction of the GUI. Hovering the mouse over any

receiver or its associated bandwidth will cause both the receiver bandwidth to be

highlighted as well as the receiver dot and any signals that are within the bandwidth.

This allows for easier analysis. After each run, additional textual information is

given that shows exact locations and frequencies of the receivers. Weights for each of

the �tness function components are easily adjusted from GUI. Figure A.2 shows the

additional settings which can be changed from within the GUI. Table A.1 describes

the functions of each of the initialization options.

There exist three ways for the PSO to terminate. The �rst and most basic method

is termination by number of generations. Running for a �xed number of generations

is an easy and e�ective method to use when testing. Most tests were run for a large

number of �xed generations to ensure that the swarm had su�ciently converged.

A more sophisticated method is to examine the global best �tness value after each

generation. When the di�erence in �tness values between consecutive generations

decreases below a set threshold, the swarm will terminate. This method e�ectively

examines the slope of the �tness vs generation plot to determine an appropriate

time to terminate. Often, the slope is averaged over a �xed window size in order

to account for variations in the swarm. A �nal method of termination is to run for

a �xed time. We incorporated all three of these methods and allowed them to be

used simultaneously. The swarm will terminate when any of the three termination

conditions is met.
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Figure A.2. Additional GUI Settings
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Table A.1.
Initialization Options

Option Description

Receivers: The number of receivers (assets) that will be optimized.

Transmitters: The number of transmitters (signal sources) that will exist in

the spectrum.

Tx Spread

Radius:

Transmitters are uniformly distributed in an area with this

radius. If the left-right layout is used, transmitters are

uniformly spaced in a semicircle on the left side.

Layout: Select the battle�eld layout: either circular or left-right.

Tx

Keep-Away

Speci�es the radius from the center that is o� limits to assets

(for a circular layout) or the location of the divider line (for a

left-right layout).

Frequency

Step:

The minimum step size for the tuners of the assets.

Receiver

Bandwidth:

The bandwidth of each receiver.

Receiver RF

Front-end

Limit: (dB)

Any receiver whose RF front end exceeds this limit will be

considered over powered and unusable.

Max

Generations:

The PSO will stop after this number of generations, regardless

of other settings.

Max Run

Time (ms)

The PSO will stop after this time has elapsed, regardless of

other settings. Set to 0 to disable this termination method.

Swarm

Termination

Fitness Slope:

The PSO will terminate after the slope of the �tness value vs

generation is less than this value, regardless of other settings.

Swarm

Termination

Window Size:

The window size (in generations) over which to average the

slope of the �tness value. Set to 0 to disable this termination

method.

Initialization

Seed:

Seed to use for the random initialization of the signals. Set to

0 to use the current time as the seed.
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An option exists to run the PSO in slow time. By clicking the �Run PSO Slow�

button on the main GUI, the software will add a delay between each generation.

Additionally, all the plots are updated between each generation. This allows the user

to visually see the swarm converging to a solution. The amount of delay between

each generation is user-adjustable from the main GUI.

A.2 Build Instructions

All of the development and research as outlined in this paper was performed

under a Windows environment. The machine used was a standard laptop PC running

Windows 8.1. The processor equipped is an Intel Core i7-710HQ with 8 GB of installed

memory. As there were no Microsoft Windows speci�c libraries used, the code created

by this research should be portable to other environments such as Linux or Mac OS,

however, the instructions that follow will be speci�c to a Windows environment.

The code has been kept in two separate projects: the PSO back-end and the GUI

front-end. The PSO back-end compiles to a dynamically linked library. The GUI

front-end compiled to a binary executable and is dependent of the PSO back-end

library. Build instructions for each project are described below. The instructions are

written for someone who is already familiar with C++ compiling and linking.

A.2.1 PSO Back-end

The PSO Back-end was built using Microsoft Visual Studio 2013 Express. Some

of the C++ source code requires a compiler with C++ 11 support. As such, Microsoft

Visual Studio 2010 and earlier will not work to compile this project. Before proceeding

with building the PSO Back-end, the BOOST C++ libraries need to be present on

the development machine. Boost1 is licensed for royalty-free use in closed-source and

open-source project. Boost 1.56.0 was used in this research. Follow the instructions

1Boost can be obtained from http://www.boost.org Last Date Accessed: 04/20/2015
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included in the BOOST download in order to build the BOOST libraries using the

Microsoft Visual Studio command prompt. After setting up the PSO back-end project

to link into the BOOST libraries, it can be built as a DLL library.

A.2.2 GUI Front-end

The PSO back-end project must be build before compiling or running the GUI

front-end. Two additional dependencies must be met before compiling the GUI. First,

Qt2 must be downloaded and installed. Qt is available as a pre-built package, however

for the work done in this research, Qt was built manually from source because no

pre-built version was available for the Microsoft Visual Studio 2013 compiler. The

version of Qt used is 5.3. By default, the Qt libraries build for dynamic linking. This

requires the Qt libraries to be installed on any machine that the �nal software is to

be run on. As was done in this project, it is possible to build Qt to support static

linking. The second dependency is Qwt3. Instructions to build Qwt are included in

the download.

When developing applications using Qt, it is very advantageous to use in included

IDE, Qt Creator. Qt Creator provides drag-and-drop tools for creating a GUI. Ad-

ditionally, it takes care of most of the work to link the Qt libraries. Qt Creator will

automatically detect the compilers that are installed on the machine. It is important

to use the same compiler that was used to create the PSO back-end DLL.

The GUI front-end project should compile to and executable (EXE) �le. In order

for it to run, the PSO back-end DLL must exist in the same directory from which the

EXE is being run. Additionally, the directory must contain an XML con�guration

�le which speci�es the PSO parameters.

2Qt can be obtained from http://www.qt.io Last Date Accessed: 04/20/2015
3Qwt can be obtained from http://qwt.sourceforge.net Last Date Accessed: 04/20/2015
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