
Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

Jiaxiang Yan

Modeling, Monitoring and Optimization of Discrete Event Systems Using Petri Nets

Master of Science in Electrical and Computer Engineering

Lingxi Li

Brian King

Yaobin Chen

Lingxi Li

Brian King 04/10/2013

MODELING, MONITORING AND OPTIMIZATION OF DISCRETE EVENT

SYSTEMS USING PETRI NETS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jiaxiang Yan

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2013

Purdue University

Indianapolis, Indiana

ii

To my parents Shijun and Longying, and my grandparents, for their love and

support.

iii

ACKNOWLEDGMENTS

In the first and foremost place, I would like to express my most sincere appreciation

to my adviser, Professor Lingxi Li, for his outstanding guidance and unconditional

support throughout my graduate study. It is Professor Li who introduced to me the

fantastic world of discrete event systems. Without his instruction and encouragement,

this thesis would not have reached its current form.

I am also grateful to many faculty members at IUPUI for their help and contri-

bution to my thesis work. My committee member, Professor Brian King, was always

a nice resource for discussion and inspiration. His experience in algorithm design

and error control coding helped me to improve my algorithm structure and efficiency

and enhance my fault-tolerant controller. His expertise in LaTex also did me a great

favor in refurbishing my thesis. Another committee member, Professor Yaobin Chen,

usually gave me inspiration to combine my research with industrial needs based on

his rich industrial experience and insights. I also would like to thank Professor Eliza

Du, Stanley Chien, and Dongsoo Kim. The various project and paper experience

with them benefited me a lot in my thesis research.

I would like to thank all my group members, Dr. Maria Paola Cabasino, Harpreet,

Adam, Omar, Mingye, and Ali, for their very useful suggestions on my thesis research.

Dr. Cabasino is an expert in Petri nets. Her experience in fault diagnosis provided me

plenty of suggestions on transition firing sequence reconstruction and fault-tolerant

controller. Omar and I both focus on Petri net research. His effort in applying Petri

nets to traffic system modeling lent me much inspiration on my own work. Harpreet

and Adam are familiar with practical system control and helped me build my research

direction. The discussion with Mingye, who focuses on vehicular communication and

adaptive cruise control, provided many helpful advices on my research in intelligent

iv

transportation systems. Ali gave me many useful suggestions on my slides design and

presentation skills.

I also want to acknowledge my family members and friends for their support,

especially my officemates Pingge, Kai, Shan, Feng, Renran and Jie. They made

my study at SL 023 and SL 063 productive and enjoyable. Special thanks go to

Sherrie and Valerie for their help with administrative issues (and in the preparation

of morning coffee and donuts to keep us energetic).

Finally, I would like to acknowledge IUPUI and TOYOTA for their financial sup-

port at various stages of my graduate research.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . x

1 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.1.1 Background . 1

1.1.2 Motivation . 4

1.2 Related Work . 6

1.2.1 Traffic System Modeling Based on Petri Nets 6

1.2.2 Transition Firing Sequence Reconstruction in Petri Nets . . 8

1.2.3 Optimization of Fault-Tolerant Controllers for Petri Net Models 8

1.3 Major Contributions . 9

1.3.1 Signalized Intersection Modeling Through Timed Petri Nets 10

1.3.2 Decentralized Algorithm for Transition Firing Sequence Recon-
struction in Petri Nets . 10

1.3.3 Optimal Fault-Tolerant Controllers with Least Number of Con-
nections for Petri Net Models 11

1.4 Organization . 11

2 NOTATION AND PRELIMINARIES . 13

2.1 Introduction . 13

2.2 Petri Nets . 13

2.3 Timed Petri Nets . 15

2.4 Inequalities and Absolute Values of Matrix and Vector 15

2.5 Summary . 16

vi

Page

3 MODELINGOF SIGNALIZED INTERSECTION BASEDON TIMED PETRI
NETS . 17

3.1 Introduction . 17

3.2 Urban Intersection Model . 18

3.2.1 Division and Usage of Intersection 18

3.2.2 Traffic Light System . 19

3.3 Petri Net Representation . 21

3.3.1 Petri Net Representation of Intersection 22

3.3.2 Petri Net Representation of Traffic Light System 22

3.3.3 Cooperation of Places and Transitions in Petri Net Represen-
tation . 29

3.4 Summary . 33

4 SENSOR NETWORKMONITORING BASEDONASYNCHRONOUS OB-
SERVATIONS . 34

4.1 Introduction . 34

4.2 Basic Definitions . 35

4.3 Problem Formulation . 39

4.4 Transition Firing Sequence Reconstruction 42

4.4.1 Reconstruction Algorithm 42

4.4.2 Complexity Analysis . 48

4.5 Summary . 48

5 OPTIMIZATION OF FAULT-TOLERANT CONTROLLERS FOR PETRI
NET MODELS . 50

5.1 Introduction . 50

5.2 Design of Fault-Tolerant Redundant Petri Net Controllers 50

5.2.1 Fault-Tolerant Redundant Controllers 51

5.2.2 Fault Detection and Identification 52

5.3 Algorithm Design for Fault-Tolerant Redundant Petri Net Controllers 54

5.3.1 Problem Formulation . 54

vii

Page

5.3.2 Algorithm Development . 59

5.3.3 Proof of Algorithm Correctness 63

5.4 An Illustrative Example . 64

5.5 Summary . 69

6 SUMMARY . 70

6.1 Conclusions . 70

6.1.1 Signalized Intersection Modeling Based on Timed Petri Nets 70

6.1.2 Event Sequence Reconstruction of Sensor Networks Modeled by
Petri Nets . 71

6.1.3 Optimization of Fault-Tolerant Controllers for Petri Net Models 71

6.2 Future Work . 72

6.2.1 Modular Modeling and Optimization of Traffic Networks . . 72

6.2.2 Optimal Division Strategy and Structure Utilization for Tran-
sition Firing Sequence Reconstruction 72

6.2.3 Extension and Optimization of Fault-Tolerant Controller . . 73

LIST OF REFERENCES . 74

viii

LIST OF TABLES

Table Page

3.1 The definitions of the places in Fig.3.2 23

3.2 The definitions of the transitions in Fig.3.2 24

3.3 The definitions of the places in Fig.3.3 27

3.4 The definitions of the transitions in Fig.3.3 28

5.1 Summary of color-changing processes 62

ix

LIST OF FIGURES

Figure Page

3.1 An intersection with four crossing sections 19

3.2 The Petri net representation of the intersection of Fig. 3.1 25

3.3 The Petri net representation of the traffic light system 26

3.4 The representation subnet of the crossing section A of Fig. 3.1 30

4.1 A simple Petri net . 37

4.2 Petri net N extracted from Example 4 in [20] 39

4.3 Construction of counting places for Petri net shown in Fig 4.2 39

4.4 Complete results for Fig. 4.3 . 47

5.1 The bi-direction merge flow-path layout 65

5.2 The corresponding Petri net model for Fig. 5.1 66

5.3 The Petri net model with the controller 67

x

ABSTRACT

Yan, Jiaxiang. M.S.E.C.E., Purdue University, May 2013. Modeling, Monitoring and
Optimization of Discrete Event Systems Using Petri Nets. Major Professor: Lingxi
Li.

In last decades, the research of discrete event systems (DESs) has attracts more

and more attention because of the fast development of intelligent control strate-

gies. Such control measures combine the conventional control strategies with discrete

decision-making processes which simulate human decision-making processes. Due to

the scale and complexity of common DESs, the dedicated models, monitoring methods

and optimal control strategies for them are necessary. Among various DES models,

Petri nets are famous for the advantage in dealing with asynchronous processes. They

have been widely applied in intelligent transportation systems (ITS) and communi-

cation technology in recent years. With encoding of the Petri net state, we can also

enable fault detection and identification capability in DESs and mitigate potential hu-

man errors. This thesis studies various problems in the context of DESs that can be

modeled by Petri nets. In particular, we focus on systematic modeling, asynchronous

monitoring and optimal control strategies design of Petri nets.

This thesis starts by looking at the systematic modeling of ITS. A microscopic

model of signalized intersection and its two-layer timed Petri net representation is

proposed in this thesis, where the first layer is the representation of the intersection

and the second layer is the representation of the traffic light system. Deterministic and

stochastic transitions are both involved in such Petri net representation. The detailed

operation process of such Petri net representation is stated. The improvement of such

Petri net representation is also provided with comparison to previous models.

xi

Then we study the asynchronous monitoring of sensor networks. An event se-

quence reconstruction algorithm for a given sensor network based on asynchronous

observations of its state changes is proposed in this thesis. We assume that the sen-

sor network is modeled as a Petri net and the asynchronous observations are in the

form of state (token) changes at different places in the Petri net. More specifically,

the observed sequences of state changes are provided by local sensors and are asyn-

chronous, i.e., they only contain partial information about the ordering of the state

changes that occur. We propose an approach that is able to partition the given net

into several subnets and reconstruct the event sequence for each subnet. Then we

develop an algorithm that is able to reconstruct the event sequences for the entire

net that are consistent with: 1) the asynchronous observations of state changes; 2)

the event sequences of each subnet; and 3) the structure of the given Petri net. We

discuss the algorithmic complexity.

The final problem studied in this thesis is the optimal design method of Petri

net controllers with fault-tolerant ability. In particular, we consider multiple faults

detection and identification in Petri nets that have state machine structures (i.e.,

every transition in the net has only one input place and one output place). We

develop the approximation algorithms to design the fault-tolerant Petri net controller

which achieves the minimal number of connections with the original controller. A

design example for an automated guided vehicle (AGV) system is also provided to

illustrate our approaches.

1

1. INTRODUCTION

1.1 Background and Motivation

1.1.1 Background

Many systems, particularly technological ones, are in fact discrete-state systems

[1]. Even if this is not the case, for many applications of interest a discrete-state

view of a complex system may be necessary. The drawbacks of continuous-variable

dynamic systems (CVDS), which are famous for continuous states and time-driven

dynamics, in representing the above systems, encourage the development of discrete

event dynamic systems (DEDS). To be more general, we call them discrete event

systems (DESs). In contrast to CVDS, discrete states and event-driven dynamics are

the most important features of DESs. We give the standard definition of DESs as

follows.

Definition 1.1.1 [1] A Discrete Event System (DES) is a discrete-state, event-

driven system, that is, its state evolution depends entirely on the occurrence of asyn-

chronous discrete events over time.

In this thesis, we focus on a particular DES model, i.e., Petri nets. Petri nets are

a graphical and mathematical modeling tool applicable to many systems [2]. They

are a promising tool for describing and studying information processing systems that

are characterized as being concurrent, asynchronous, distributed, parallel, nondeter-

ministic, and/or stochastic. As a graphical tool, Petri nets can be used as a visual-

communication aid similar to flow charts, block diagrams, and networks. In addition,

tokens are used in these nets to simulate the dynamic and concurrent activities of

systems. As a mathematical tool, it is possible to set up state equations, algebraic

equations, and other mathematical models governing the behavior of systems. Petri

2

nets can be used by both practitioners and theoreticians. They are widely applied

in many practical areas, such as intelligent transportation systems (ITS), sensor net-

works, and communication networks due to their event-driven feature and advantages

in dealing with asynchronous processes.

Traffic system modeling and controlling is attracting more and more research

attentions recently because of the increasing frequency of traffic congestions and acci-

dents. Traffic systems are characterized by the continuous competition among vehicles

for the occupation of certain physical zones in or around the intersections, which re-

quires careful synchronization. Such problem is further complicated by the different

physical layouts, vehicle-flow rates, turning movements, and pedestrian movements

of each intersection.

Due to the scale and complexity of traffic systems, the dedicated models and

control methods for them are necessary. Because of the synchronization requirement

for resource sharing and the event-driven feature of the traffic light systems, Petri

nets are powerful tools to solve traffic system modeling and controlling problems. In

literature, Petri nets were used to build car safety controller model in road tunnels [3],

construct safeness-enforcing supervisory control systems for railway networks [4], and

build interaction model in intelligent vehicle control systems [5].

One of the important application areas of Petri nets in ITS is the control and

deadlock avoidance in automated guided vehicles systems (AGVs). The authors of [6]

implemented the automated manufacturing system using AGVs and modeled it by col-

ored resource-oriented Petri net. Based on the model, the M-policy with polynomial

complexity for deadlock avoidance was proposed. In [7], the authors transformed the

simultaneous dispatching and routing problems for AGVs to the optimal transition

firing problem in timed Petri nets and applied Petri net decomposition approaches to

reduce the computational complexity. In [8], the AGV layout and paths were modeled

by colored timed Petri nets and a deadlock avoidance strategy was proposed based

on the results of the simulations.

3

Petri nets are used to model sensor networks and verify communication algo-

rithms, too. Some properties of Petri nets, such as reachability, safeness, liveness,

are important issues in this research area. With encoding of the Petri net state, we

can also enable fault detection and identification capability in sensor networks and

mitigate potential human errors.

In [9], the authors used space time Petri net (STPN) to model temporal and spatial

information of sensor networks and simulate different behaviors. In [10], the authors

utilized e-Petri net to provide suitable programming platform, seamless networking,

data management, and service/resource discovery in wireless sensor networks (WSNs).

In [11], the authors employed an augmented Petri net formalism called Extended El-

ementary Object System to model sensor networks. A synchronous firing mechanism

was utilized as a security measure to detect malicious node attacks to sensor data

and information flow. In [12], the authors proposed a decentralized Petri net based

wireless sensor node architecture (PN-WSNA) which realized a reconfigurable WSN

architecture and offered an easy graphical editing environment for constructing intel-

ligent agents. In [13], the authors used Petri net to specify an attack-driven model in

wireless sensor networks and verified their attack-resistant and efficient localization

scheme when considering distance enlargement attacks. Through reachability analy-

sis, they proved that the potential insecure states are unreachable. The authors in [14]

developed a probabilistic model based on Petri nets to minimize energy consumption

in wireless sensor networks. Their model showed advantages to Markov model in

experiments. In [15], the author used the Petri net to model the operated behaviors

in semiautonomous mobile sensor networks (MSNs) and utilized the supervisory con-

trol of Petri nets to implement the command filters, which effectively eliminated the

undesirable executions. An interesting example of mobile wireless surveillance system

involving mobile robots, MSNs, and command filters was provided in [15] to illustrate

the above method.

In the aforementioned models based on Petri nets, the controllers synthesized were

typically assumed to be fault-free. However, due to the complex operation dynamics,

4

faults (such as sensor error and/or hardware interference) could occur at any time,

which might cause the controller state to be corrupted and the control functionality to

be significantly compromised. For this reason, fault-tolerance has received consider-

able attention in Petri net models. The basic rules for fault-tolerant controller design

in Petri nets usually leave much flexibility for the choice of controller parameters.

Then how to devise those parameters to achieve some optimization purposes directly

affects the cost of implementing such fault-tolerant controllers. Plenty of research has

been carried out on this topic like [16], [17], [18], and [19].

1.1.2 Motivation

After reviewing the preliminaries and standard notations of Petri nets in Chap-

ter 2, we first study the modeling issue of traffic systems via Petri nets in Chapter 3.

Some existed models describe the traffic systems thorough macroscopic indices, such

as density, average speed and flow rate. Although the above strategies simplify the

modeling process of traffic systems, they lose the functionality to guide individual

drivers. Their common-used tools are continuous Petri nets and hybrid Petri nets,

which require more complicated control schemes than the supervisory control strate-

gies for discrete Petri nets. In contrast, there are several microscopic models which

treat each vehicle as individual token. This feature is very important in AGVs. How-

ever, these microscopic models are not dedicated enough and ignore some practical

issues. Besides the aforementioned problems, both kinds of models do not put enough

attention on the traffic light system, which is the most common measure to regulate

urban traffic flows. If we make the best of existed infrastructure, we can minimize the

cost to implement the control strategies corresponding to our models. In this thesis,

we focus on the microscopic modeling of intersections through timed discrete Petri

nets and upgrade the traffic light system as another layer of the Petri net represen-

tation.

5

In Chapter 4, we study the event sequence reconstruction for sensor networks

based on asynchronous observations. Consider the situation where sensors are used

to gather information about state change of a sensor network and report their obser-

vations to a centralized observer. The absence of a global clock in the overall system

implies that the centralized observer collects asynchronous information. However,

some subsets of sensors may share some local clocks due to their similarity in con-

struction or their short physical distances. This is one of the reasons that we introduce

local observers to the original Petri net. As we will see later in Chapter 4, by adding

the counting places, we can reduce the complexity of the algorithm to some extent

compared to that of the algorithm proposed in [20]. The application prospect of our

algorithm is quite promising. For instance, ITS is full of sensors to gather necessary

data for the online adjustment of its control strategies. To ensure the fault-tolerant

ability of its sensor system, it also has malfunction monitoring system. When several

faults are detected together, we always hope to figure out which one is the source for

the knock-on effect of faults.

Finally, we study the optimal design method of fault-tolerant controllers in systems

modeled by Petri nets in Chapter 5. To guarantee the steady operation of controllers

under possible faults, redundancy is necessary but cost increases at the same time.

The optimization in this area is to minimize cost increment while keeping the same

reliability and never interfering the original normal operation of controllers. Such

redundancy is usually obtained through adding additional places and corresponding

arcs to the original controller. The number of places added is determined by the

number of faults we want to detect and identify simultaneously, which is a system

specifications determined in advance.

Recall that in Petri net models, each arc (connection) corresponds to an nonzero

entry in the input (or output) incident matrix of the net. In practice, each connection

between the fault-tolerant controller and the plant is implemented by a programmable

device and/or a circuit [21]. Assuming that each connection has the same hardware

cost to be implemented, the problem of minimizing the overall hardware cost reduces

6

to the problem of minimizing the total number of connections between the redundant

controller and the original controller, and then to the problem of minimizing the total

number of nonzero entries in the input and output incident matrices of the redundant

controller. Such optimization criterion is more practical than that in [19], because

in most contemporary controller implementation methods, the change of the value of

arc weight (not the change from zero to nonzero or the change from nonzero to zero)

does not affect the controller hardware implementation cost.

Before further discussing our approaches for modeling, monitoring and optimiza-

tion of DESs, we state in more detail related work on these subjects and point out

the similarities and differences with our research.

1.2 Related Work

1.2.1 Traffic System Modeling Based on Petri Nets

A variety of models based on Petri nets have been proposed for traffic systems.

In terms of whether each vehicle in the traffic system is accurately described, these

models are classified into two categories: macroscopic models and microscopic models.

In macroscopic traffic system models, continuous Petri nets and hybrid Petri nets

(HPN) are usually used to describe the three key macroscopic parameters of the traf-

fic systems, i.e., density, average speed and flow rate. Based on the infinite servers

semantics, the discrete time model of continuous Petri net, and the finite-time emp-

tying rule of places, the authors of [22] proposed a modular representation of road

section through continuous Petri net, which served as building block in the complete

traffic system model synthesis. Model predictive control (MPC) was applied to such

model as verification in [23] with the purpose to minimize the total time delay of

vehicles in the traffic system. Although such modular representations accurately de-

scribed the capacity, inflow, outflow, and flow limitation of road sections, they are

complicated when integrated to form a intersection model. A HPN model for urban

traffic control was provided in [24]. Such model is composed of the subnets for the

7

phase of traffic light, the incoming direction and the road section. The model of a

T-shape intersection was used as example in [24].

Microscopic traffic system models usually utilize discrete Petri nets to simulate

the detailed behavior of vehicles when they are approaching and crossing the inter-

sections. Such dedicated models are able to lend vehicle drivers more guidance in or

around the urban intersections. In recent years, more and more automatic manufac-

turing factories come out, which are famous for automatic material handling systems

composed of AGVs. In AGV traffic systems, accurate guidance to cross the inter-

sections is necessary for AGV’s, which indicates the necessity of microscopic traffic

system models. In [25], [8], and [19], AGV traffic systems were modeled by Petri nets

and controlled through supervisory control strategies.

In [26], an ordinary Petri net model of a four-way intersection with a two-phase

traffic light is proposed. The physical zones of the intersection is divided into four

crossing sections (represented by four places). The availability of these crossing sec-

tions is controlled by corresponding controller places. However, the connection be-

tween crossing section places and the transferring transitions of these places suffers

some synchronization problems. Moreover, the traffic light system subnet does not

consider the time-driven characteristic.

In [27], the authors put forward a deterministic-timed Petri net model for the traf-

fic system with multi-stage traffic light system. Such model is subsequently modified

in [28], [29], and [30]. The authors of [31] improved such model. They considered

different movements separately. They treated the interval times of vehicles in the

traffic network, the time to travel a crossing section, and the cycle time of traffic light

stage as stochastic values. However, one drawback of the model in [31] is that no

left turn is allowed in the above model, which limits its application prospect. More-

over, some circular waiting deadlocks of the model in [31] is solved “autonomously”

through some auxiliary Petri nets which is not helpful for the research of vehicular

behaviors.

8

1.2.2 Transition Firing Sequence Reconstruction in Petri Nets

Using Petri nets to model and analyze sensor networks is a common method like

the previous research results from [9] to [15] that we mentioned in Section 1.1.1. The

problem of transition firing sequence reconstruction in Petri nets is also well-studied.

However, most of existed reconstruction algorithms for transition firing sequence are

conducted in labeled Petri nets, where each transition is assigned an observable or

unobservable label. Such algorithms mainly deal with the languages generated by the

labeled Petri nets.

In [20], the authors addressed the problem of reconstructing the transition firing

sequences of a given Petri net based on asynchronous observations of token changes

at different places of the Petri net. More specifically, they assumed that there exists a

set of local sensors, each of which provided information about the token changes at a

particular place of the Petri net. Having received information regarding the ordering

of token changes at various places in the Petri net, the task of their algorithm was

to reconstruct all possible transition firing sequences that were consistent with all

sequences of token changes observed and the structure of the Petri net. The local

sensors did not share any global timing information and were unaware of transitions

that fired without affecting the tokens at their corresponding place. Therefore, the

observed sequences of token changes only provided partial information about the order

in which the number of tokens at different places changed. In this thesis, we consider

the similar problem setup to that in [20] but develop a more efficient algorithm. Our

initial result is presented in [32].

1.2.3 Optimization of Fault-Tolerant Controllers for Petri Net Models

The design of fault-tolerant controllers for Petri net models needs to ensure that

the normal operation of original controllers are not interfered and that a certain

number of faults (designated by control specifications in advance) can be detected and

identified at the same time. In [16], the authors developed approaches for the design

9

of redundant Petri net controllers with fault tolerance capabilities. The authors also

provided the necessary and sufficient conditions for the design of such controllers but

no optimal design criteria were discussed. In [17], the authors considered the similar

setting in [16] and developed an algorithm to minimize the initial state of fault-tolerant

Petri net controller. In [18], the authors considered another optimization criterion

to minimize the sum of arc weights of the (input and output) incident matrices of

the redundant controller and proposed an partial-order tree approach. However, they

only considered the problem of single fault detection and identification. The authors

of [19] put forward an approximation algorithm to minimize of the sum of arc weights

of the incident matrices of the redundant controller with multiple faults detection and

identification capability.

1.3 Major Contributions

Petri nets are powerful graphical and mathematical tools to model, analyze, and

control large-scale systems, especially those display event-driven and asynchronous

properties. Petri nets have received wide application in many practical fields such as

ITS, sensor networks, and automatic manufacturing. As a result, the deep research

on Petri nets lends us the insight to better understanding the complicated operation

dynamics of various practical systems.

This thesis studies three important problems in Petri net models, i.e., traffic sys-

tem modeling, transition firing sequence reconstruction and optimization of fault-

tolerant controller. Our research in this thesis covers the complete process of applying

Petri nets to solve practical problems, namely, modeling, monitoring, and optimiza-

tion. Moreover,our solutions to the above problems are systematic. For traffic system

modeling, we focus on modular representations of fundamental components. For

transition firing sequence reconstruction, we divide the graphical solution into the

steps of algorithms. For optimization of fault-tolerant controller, we conduct strict

mathematical deduction and conclude the algorithm to achieve optimal purpose. Our

10

goals are three-folds: 1) Design microscopic model of signalized intersection based on

timed Petri nets to describe all kinds of vehicular behaviors and avoid deadlocks. 2)

Develop decentralized algorithm to make the best of sensor network structure and

solve transition firing sequence reconstruction problem with higher efficiency. 3) Pro-

pose the optimal design method of fault-tolerant controllers of Petri net models which

minimized the number of connections between the original controller and the redun-

dant part. Below is the detailed statement of our approaches and contributions to

the above goals.

1.3.1 Signalized Intersection Modeling Through Timed Petri Nets

We propose a two-layer timed Petri net model for the signalized intersection in

the microscopic sense. The first layer is the representation of the intersection which

involves both deterministic-timed and stochastic-timed transitions. The second layer

is the representation of the traffic light system which involves deterministic-timed and

immediate transitions. Due to the more detailed division of the traffic light system

cycle, our model allows all the three kinds of turning behaviors: going straight, turning

left, and turning right. The different control policy in the yellow cycle (when the

traffic light is yellow) compared to that of the green cycle solves the circular waiting

deadlocks mentioned in [31].

1.3.2 Decentralized Algorithm for Transition Firing Sequence Recon-

struction in Petri Nets

We consider the similar problem setup to that in [20] but develop a more efficient

algorithm. More specifically, besides the set of asynchronously observed token change

sequences, we assume that we have some local synchronous information. We first

divide the original Petri net into several subnets. For each subnet, we add a local

observer to the net which is called the counting place (which will be introduced in

Chapter 4). Through the observed token change sequence of the counting place,

11

we can reconstruct the transition firing sequence of each subnet. Then we develop

an algorithm that is able to reconstruct the event sequences for the entire net that

are consistent with: 1) the asynchronous observations of state changes; 2) the event

sequences of each subnet; and 3) the structure of the given Petri net. We also discuss

the algorithmic complexity and present an example to illustrate our approach.

1.3.3 Optimal Fault-Tolerant Controllers with Least Number of Connec-

tions for Petri Net Models

We consider the minimization of the number of arcs (the number of nonzero entries

in the input and output incident matrices) of the redundant controller, rather than the

minimization of the sum of the arc weights of redundant controllers in [19]. With the

help of Reed-Solomon coding [33], we are able to develop an approximation algorithm

to design the fault-tolerant Petri net controller in a systematic manner. A design

example for an AGV system is also provided to illustrate our approach.

1.4 Organization

This thesis is organized as follows. After reviewing the standard notations and

preliminaries of Petri nets in Chapter 2, we explain the timed Petri net model for the

signalized intersection in Chapter 3. The characteristics and modeling requirements

of the signalized intersection are stated at first. Then the corresponding Petri net

representations to satisfy the above requirements is presented. In Chapter 4, we study

the event sequence reconstruction in sensor networks modeled by Petri nets. Following

some fundamental definitions, we formulate the problem. Then the algorithm to

solve such problem is proposed and its complexity is analyzed. An example extracted

from [20] is given to show our improvement. In Chapter 5, we put forward the

approximation algorithm to optimize the structure of fault-tolerant controllers of

Petri net models. After conducting detailed mathematical deduction, we give the

approximation algorithm and prove its correctness. An example of AGV system is

12

utilized to illustrate the procedure of such algorithm. We conclude this thesis and

list the future research directions related to this thesis in Chapter 6.

13

2. NOTATION AND PRELIMINARIES

2.1 Introduction

Petri nets, due to their event-driven characteristic, are good at dealing with asyn-

chronous process. It can clearly display the precedence relation among events. More-

over, the graphical representation of Petri nets are tightly related to mathematical

operations, especially to the linear algebra theory and probability theory. Such rela-

tion makes Petri nets suitable for both practitioners and researchers, and emphasizes

the importance to build necessary mathematical foundations before conducting deep

research on Petri nets.

This section provides some basic definitions and terminology that will be used

throughout the thesis. In Section 2.2, the graphical definitions and corresponding

mathematical representations of Petri nets are given. The transition enabling con-

dition and evolution pattern of Petri nets are also presented. The definition and

transition enabling condition of timed Petri nets (deterministic and stochastic) are

presented in Section 2.3. Some mathematical definitions that are useful in the de-

duction of Chapter 5 is listed in Section 2.4. We summarize our presentation in this

chapter in Section 2.5. More details about Petri nets can be found in [2] and [1].

2.2 Petri Nets

A Petri net structure is a directed weighted bipartite graph N = (P, T,A,W)

where P = {p1, p2, . . . , pn} is a finite set of places (drawn as circles), T = {t1, t2, . . . , tm}

is a finite set of (immediate) transitions (drawn as black bars), A ⊆ (P ×T)∪ (T ×P)

is a set of arcs (from places to transitions and from transitions to places), and

W : A→ {1, 2, 3, . . .} is the weight function on the arcs.

14

A marking is a vector M : P → N (in what follows, N = {0, 1, 2, . . .} denotes

the set of nonnegative integer numbers) that assigns to each place in the Petri net

a nonnegative integer number of tokens (drawn as black dots). We say a place is

l-bounded (l ∈ {1, 2, 3, . . .}) if there are at most l tokens in this place. We use M [0]

to denote the initial marking of the Petri net.

We use •p (•t) to denote the set of input transitions (places) of a place p (transition

t) and p• (t•) to denote the set of output transitions (places) of a place p (transition

t). Let b−ij denote the integer weight of the arc from place pi to transition tj, and

b+ij denote the integer weight of the arc from transition tj to place pi (1 ≤ i ≤ n,

1 ≤ j ≤ m). Note that b−ij (b+ij) is taken to be zero if there is no arc from place

pi to transition tj (or vice versa). We define the input incident matrix B− = [b−ij]

(respectively the output incident matrix B+ = [b+ij]) to be the n×m matrix with b−ij

(respectively b+ij) at its i-th row, j-th column position. The incident matrix of the

Petri net is defined to be B ≡ B+ − B−. The state (or marking) evolution of Petri

net is given by

M [k + 1] = M [k] + (B+ −B−)x[k] ≡M [k] +Bx[k], (2.1)

where M [k] is the marking of the Petri net at time epoch k, and x [k] is the firing

vector that is restricted to have exactly one nonzero entry with value “1,” (when

the j-th entry is “1,” transition tj fires at time epoch k). Note that transition tj is

enabled at time epoch k if and only if M [k] ≥ B− (:, j), where the inequality is taken

element-wise and B− (:, j) denotes the j-th column of B−.

Let σ = ti1ti2 . . . tik (tij ∈ T) be a transition firing sequence. We say σ is enabled

with respect to M if M [ti1⟩M1[ti2⟩ . . .Mk−1[tik⟩ where Mj ≥ 0 (j ∈ {1, 2, . . . , k − 1})

denote a set of intermediate markings; this is denoted by M [σ⟩. Let M [σ⟩M ′ denote

that the firing of σ fromM yieldsM ′ and let σ(t) be the total number of occurrences of

transition t in σ. More specifically, σ = [σ(t1), σ(t2), . . . , σ(tm)]
T is the characteristic

vector that corresponds to σ. Note that after firing an enabled sequence σ from

marking M , the new marking M ′ can also be computed as M ′ = M +Bσ.

15

2.3 Timed Petri Nets

If time delays associated with transitions and/or places are introduced, then we

obtain timed Petri nets. If the delays are deterministic, such a Petri net model is called

a deterministic-timed Petri net. If the delays follow some probability distribution,

such a Petri net model is called a stochastic-timed Petri net. In this thesis, we only

consider time delays that are associated with transitions and that describe the time

from the enabling to the firing of transitions. The deterministic-timed transitions are

illustrated by the white boxes while the stochastic-timed transitions are illustrated by

the black boxes. In contrast, we assume that the immediate transitions (represented

by the black bars) fire instantly once they are enabled.

Suppose the delay dj, associated with transition tj, is a nonnegative continuous

random variable X with the exponential distribution function

FX(x) = Pr[X ≤ x] = 1− e−λjx, (2.2)

and the probability density function

fX(x) = λje
−λjx. (2.3)

Then, the average delay of tj is

dj =

∫ ∞

0

[1− FX(x)]dx =

∫ ∞

0

e−λjxdx =
1

λj

, (2.4)

where λj is the firing rate of tj.

Observation 2.3.1 In a case where several timed transitions (deterministic or stochas-

tic) are simultaneously enabled, the transition that has the shortest delay will fire first.

2.4 Inequalities and Absolute Values of Matrix and Vector

Let L be the set of integer numbers. Given matrices A = [aij] and B = [bij] in

Ln×m, A (respectively B) is said to be nonnegative if A ≥ 0 (respectively B ≥ 0),

i.e., if aij ≥ 0 (respectively bij ≥ 0) for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}.

16

Define A ≥ B if aij ≥ bij for every i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}; A ≤ B is

defined in a similar way. The absolute value of matrix A, denoted by |A|, is to replace

every element in A with its absolute value. That is, |A| = [|aij|].

2.5 Summary

In this chapter, we reviewed some basics of Petri nets, such as the graphical rep-

resentations and corresponding mathematical meanings, the markings, the transition

enabling condition, and the evolution pattern. The difference between Petri nets and

timed Petri nets was also discussed. Some important mathematical definitions were

also presented. This chapter builds consolidate foundation for the following research

in this thesis. In the next chapter, we will address the first problem of this thesis,

namely, the traffic system modeling based on Petri nets.

17

3. MODELING OF SIGNALIZED INTERSECTION

BASED ON TIMED PETRI NETS

3.1 Introduction

In this chapter, we propose a two-layer timed Petri net model for the signalized

intersection in the microscopic sense. The first layer represents the intersection while

the second layer represents the traffic light system. Timed transitions are involved in

both of the two layers. The time delays of deterministic-timed transitions in the first

layer corresponds to the time vehicles spend to cross certain physical zones in the

intersection. The average time delays of stochastic-timed transitions in the first layer

are used to distinguish vehicles with different turning behaviors. The time delays

of deterministic-timed transitions in the second layer determine the duration of each

light stage. There are also immediate transitions in the second layer to represents the

shift of light stages. Our division strategy of the traffic light system cycle is dedicated

enough to allow all the three kinds of turning behaviors: going straight, turning left,

and turning right. The control policy in the yellow cycle (when the traffic light is

yellow) solves the circular waiting deadlocks mentioned in [31]. Our initial results are

presented in [34].

The organization of this chapter is as follows. In Section 3.2, we state the charac-

teristics and functionalities of the signalized intersection model. In Section 3.2, the

two-layer Petri net representation is provided which simulates the characteristics and

functionalities stated in Section 3.3. The operation process of such Petri net model

is also described in this section. We conclude this chapter in Section 3.4.

18

3.2 Urban Intersection Model

In this section, we first introduce the physical zone division of the intersection.

Then we illustrate the physical zone occupation situation of vehicles under different

movement behaviors (left turn, right turn and going straight). Based on the afore-

mentioned structure, the traffic light system with phase division is proposed to rule

all kinds of turning behaviors.

3.2.1 Division and Usage of Intersection

In this chapter, a signalized four-way intersection in the urban traffic network is

divided into four crossing sections A, B, C, and D in counterclockwise order in order

to clearly model vehicular behaviors when the vehicle crosses the intersection (see

Fig. 3.1). Every crossing section can hold at most one vehicle at any time. A vehicle

coming from left side (approaching section A) and going up (exiting from section

C) crosses at first section A, then section B, and finally section C. As a result, to

accomplish a left turn, a vehicle needs to cross three sections. A vehicle coming from

left side (approaching section A) and going down (exiting from section A) crosses only

zone A. To finish a right turn, a vehicle only needs to cross one section. A vehicle

coming from left side (approaching section A) and going to right (exiting from section

B) crosses at first section A and then section B. To go straight, a vehicle needs to

cross two sections. Similar analysis can be applied to vehicles coming from down side

(approaching section B), right side (approaching section C), and up side (approaching

section D).

Observation 3.2.1 In what follows, when we say “the vehicles approaching section

A”, we always mean the vehicles coming from the left side of the intersection and

trying to across the intersection. It is similar when we say “the vehicles approach-

ing section B”, “the vehicles approaching section C” and “the vehicles approaching

section D”.

19

Fig. 3.1. An intersection with four crossing sections

3.2.2 Traffic Light System

The traffic light system cycle for the signalized urban intersection is designed to

have two phases. In phase 1, the vehicles approaching sections A and C are allowed

to cross the intersection while the vehicles approaching sections B and D are stopped

from entering the intersection. In phase 2, the vehicles approaching sections B and

D are allowed to cross the intersection while the vehicles approaching sections A and

C are stopped from entering the intersection.

Each phase is again divided into two stages: left turn stage (L stage) and going

straight or right turn stage (SR stage). L stage proceeds SR stage in a phase. When

L stage begins (for example, the L stage of phase 1), the left turns of the vehicles

approaching section A are allowed while the left turns of the vehicles approaching

section C are prohibited. No going straight or right turn behavior is allowed. The

vehicles approaching sections B and D are stopped from entering the intersection for

sure. This is called the green cycle of section A of the L stage of phase 1. When the

green cycle of section A of the L stage of phase 1 ends, the yellow cycle of of section

A of the L stage of phase 1 begins. No vehicle is allowed to enter the intersection

during this period. This period is used for vehicles staying in the intersection to finish

20

their left turns. When the yellow cycle of section A of the L stage of phase 1 ends,

another pair of green and yellow cycles follows which is designated to the vehicles

approaching section C. After that, the L stage of phase 1 ends.

Observation 3.2.2 The reason for the separation between the left turn from section

A and the left turn from section C is as follows. The left turn from section A will

occupy sections A, B and C in turn. The left turn from section C will occupy sections

C, D and A in turn. Because of the common usage of sections A and C, such two

kinds of left turn behaviors exclude each other. If one vehicle enters section A and

tries to turn left while another vehicle enters section C at the same time and also tries

to turn left, the traffic system will arrive in a circular wait deadlock. As a result, the

separation of two kinds of left turn behaviors effectively avoids such deadlock. The

above strategy is also widely used in urban traffic light systems.

When the L stage of phase 1 ends, the SR stage of phase 1 begins. The green cycle

of the SR stage of phase 1 starts at first. In this period, the vehicles approaching

sections A and C can enter the intersection one by one and go straight or turn right

freely. Notice that in this stage, the going straight behaviors and right turn behaviors

of the vehicles approaching section A do not interfere the going straight behaviors

and right turn behaviors of the vehicles approaching section C and vice versa. When

the green cycle of the SR stage of phase 1 ends, the yellow cycle of the SR stage

of phase 1 begins. No vehicles is allowed to enter the intersection. This period is

used for the vehicles staying in the intersection to accomplish their going straight

behaviors or right turn behaviors.

After the yellow cycle of the SR stage of phase 1 expires, phase 1 ends and phase

2 starts. The operation of phase 2 is similar to that of phase 1. After phase 2 ends,

one whole cycle of the traffic light system ends and the next cycle begins.

Observation 3.2.3 The design of the yellow cycles in both the L stage and the SR

stage is utilized to eliminate the circular wait deadlock mentioned in [31] without the

help of the deadlock-recovery stochastic-timed Petri nets. For example, the yellow

21

cycle of the SR stage in the end of phase 1 leaves enough time for vehicles staying

in the intersection and originally approaching sections A and C to accomplish their

going straight behaviors or right turn behaviors. During this period, no new vehicle are

allowed to enter the intersection. As a result, when phase 2 begins, there is no vehicle

staying in the intersection. We can conclude that the vehicles for different phases

never affect each other. Based on the similar analysis, we can even conclude that

the vehicles for different cycles and different stages never affect each other. Hence,

the situation mentioned in [31], where four vehicles originally approaching the four

crossing sections and trying to go straight occupy the four sections at the same time

and therefore lead to a deadlock, can never happen under the design of this chapter.

3.3 Petri Net Representation

The two-layer Petri net representation of the above signalized intersection model

is provided in this section with detailed definitions of each place and transition. We

first show the Petri net representation of the intersection with the four crossing sec-

tions. Then we propose the Petri net representation for the traffic light system, which

regulations the operation of the Petri net representation of the intersection. We fi-

nally focus on the representation subnet of one crossing section A and explain the

interaction between the above two layers of Petri net representations.

To better understand the Petri net representations, we introduce the notation

rules for the places and transitions as follows. The capital letters “A”, “B”, “C”,

and “D” represent the four crossing sections A, B, C, and D. The capital letter

“L” means “left turn”, the capital letter “S” means “going straight”, and the capital

letter “R” means “right turn”. The lower case letter “q” represents “queue”. The

lower case letter “a” means “availability”. The lower case letters “oc” means “output

controller”. The lower case letter “b” means “begin” while the lower case letter “e”

means “end”. The lower case letter ”g” represents “green” and the lower case letter

“y” represents “yellow”. The ”→” represents the transfer of the states.

22

The double arrow arc between a place and a transition means that this place is

both the input place and the output place of the transition. Moreover, the input arc

weight and the output arc weight are the same. Recall that the immediate transition

is represented by the black bar, that the deterministic-timed transition is represented

by the white box, and that the stochastic-timed transition is represented by the black

box.

3.3.1 Petri Net Representation of Intersection

We display the Petri net representation of the intersection in Fig. 3.2. In places

pAa, pBa, pCa, and pDa, a token means the availability of the corresponding crossing

section. In places pAoc, pAoc, pAoc, and pAoc, a token means that the corresponding

crossing section allow exiting. The above places are all 1-bounded. In other places,

tokens represent single vehicles. Because the operation of the Petri net representation

of the intersection is regulated by the Petri net representation of the traffic light

system, we will analyze the Petri net representation of the intersection in details after

we introduced the Petri net representation of the traffic light system. We provide

the definitions of the places and transitions of the Petri net representation of the

intersection in Table 3.1 and Table 3.2 respectively.

3.3.2 Petri Net Representation of Traffic Light System

The Petri net representation of the traffic light system is shown in Fig. 3.3. All

places in Fig. 3.3 are 1-bounded. It interacts with the Petri net representation of the

intersection in Fig. 3.2 through places pAL, pCL, pASR, pCSR, pBL, pDL, pBSR, and

pDSR. For instance, pAL is both the input place and the output place of transition

tAL in the Petri net representation of the intersection. tAL is enabled only if there

is one token in pAL. Other places interacts with the corresponding transitions in the

Petri net representation of the intersection in similar ways.

23

Table 3.1 The definitions of the places in Fig.3.2

Places Definitions

pXq

(X ∈ {A,B,C,D})
Each token in pXq represents a vehicle approaching

section X and trying to cross intersection.

pXLq

(X ∈ {A,B,C,D})
Each token in pXLq represents a vehicle approach-

ing section X and trying to turn left at intersec-

tion.

pXSRq

(X ∈ {A,B,C,D})
Each token in pXSRq represents a vehicle approach-

ing section X and trying to go straight or turn

right at intersection.

pXa

(X ∈ {A,B,C,D})
A token in pXa means section X is available and

no vehicle occupies this section. No token in pXa

means section X is not available.

pXout

(X ∈ {A,B,C,D})
Each token in pXout represents a vehicle ready to

exit from the intersection through section X.

pXoc

(X ∈ {A,B,C,D})
A token in pXoc means section X allows exiting.

No token in pXoc means section X does not allow

exiting.

24

Table 3.2 The definitions of the transitions in Fig.3.2

Transitions Definitions

tXin

(X ∈ {A,B,C,D})
Firing of tXin simulates the flow of vehicles ap-

proaching section X.

tXLin and tXSRin

(X ∈ {A,B,C,D})
Firing of tXLin and tXSRin divides vehicles ap-

proaching section X into those turning left and

those going straight or turning right.

tXS and tXR

(X ∈ {A,B,C,D})
Firing of tXS and tXR specifies vehicles approach-

ing section X and going straight and vehicles ap-

proaching section X and turning right. When tXS

or tXR fires, a vehicle enters intersection through

section X.

tXL

(X ∈ {A,B,C,D})
Time delay of tXL represents the extra time that

a vehicle approaching section X spends turning

left compared to the time that a vehicle approach-

ing section X spends going straight or turning

right. When tXL fires, a vehicle enters intersec-

tion through section X.

tXout

(X ∈ {A,B,C,D})
Firing of tXout represents a vehicle exits from in-

tersection through section X. Time delay of tXout

represents the time that a vehicle takes to cross

intersection.

25

Fig. 3.2. The Petri net representation of the intersection of Fig. 3.1

Each deterministic-timed transition (the white box) in Fig. 3.3 represents a state

of the traffic light system. When there is one token in its input place (notice that

every deterministic-timed transition in Fig. 3.3 has only one input place), it means

the traffic light system stays in the state corresponding to such deterministic-timed

transition (such transition is also enabled). The time delay of such deterministic-

timed transition defines how long the traffic light system stays in the corresponding

state. Each deterministic-timed transition also has only one output place. When

26

such transition fires and there is one token in its output place, it means the duration

of the corresponding state of such transition expires. Each immediate transition (the

black bar) represents the transfer between the corresponding states. The definitions

of the places and transitions in Fig. 3.3 are listed in Table 3.3 and Table 3.4.

Fig. 3.3. The Petri net representation of the traffic light system

Observation 3.3.1 In Fig. 3.3, one token is deposited in both places pASR and pCSR

when transition t1L→SR fires. pASR interacts with transitions tAS and tAR while pCSR

interacts with transitions tCS and tCR. Such separation satisfies the requirement that

27

Table 3.3 The definitions of the places in Fig.3.3

Places Definitions

pXLgb

(X ∈ {A,B,C,D})
A token in pXLgb means that green cycle of section

X in corresponding L stage begins.

pXLge

(X ∈ {A,B,C,D})
A token in pXLge means that green cycle of section

X in corresponding L stage ends.

pXL

(X ∈ {A,B,C,D})
A token in pXL means that vehicles approaching

section X can turn left.

pXLyb

(X ∈ {A,B,C,D})
A token in pXLyb means that yellow cycle of section

X in corresponding L stage begins.

pXLye

(X ∈ {A,B,C,D})
A token in pXLye means that yellow cycle of section

X in corresponding L stage ends.

pxSRgb

(x ∈ {1, 2})
A token in pxSRgb means that green cycle of SR

stage of phase x begins.

pxSRge

(x ∈ {1, 2})
A token in pxSRge means that green cycle of SR

stage of phase x ends.

pXSR

(X ∈ {A,B,C,D})
A token in pXSR means that vehicles approaching

section X can go straight or turn right.

pxSRyb

(x ∈ {1, 2})
A token in pxSRyb means that yellow cycle of SR

stage of phase x begins.

pxSRye

(x ∈ {1, 2})
A token in pxSRye means that yellow cycle of SR

stage of phase x ends.

28

Table 3.4 The definitions of the transitions in Fig.3.3

Transitions Definitions

tx→x′

(x, x′ ∈ {1, 2} and x ̸= x′)
Firing of tx→x′ represents phase x ends and phase

x′ begins.

tXLg

(X ∈ {A,B,C,D})
Time delay of tXLg represents duration of green

cycle of section X in corresponding L stage.

tXLg→y

(X ∈ {A,B,C,D})
Firing of tXLg→y represents green cycle of section

X in corresponding L stage ends and yellow cycle

of section X in corresponding L stage begins.

tXLy

(X ∈ {A,B,C,D})
Time delay of tXLy represents duration of yellow

cycle of section X in corresponding L stage.

txLX→X′

(x = 1, X = A,

and X ′ = C, or x = 2,

X = B, and X ′ = D)

Firing of txLX→X′ represents yellow cycle of section

X in corresponding stage ends and green cycle of

section X ′ in corresponding stage begins.

txL→SR

(x ∈ {1, 2})
Firing of txL→SR represents L stage of phase x ends

and SR stage of phase x begins.

txSRg

(x ∈ {1, 2})
Time delay of txSRg represents duration of green

cycle of SR stage of phase x.

txSRg→y

(x ∈ {1, 2})
Firing of txSRg→y represents green cycle of SR

stage of phase x ends and yellow cycle of SR stage

of phase x begins.

txSRy

(x ∈ {1, 2})
Time delay of txSRy represents duration of yellow

cycle of SR stage of phase x.

29

in the SR stage of phase 1, the going straight and right turn behaviors of the vehicles

approaching section A do not interfere the going straight or right turn behaviors of

the vehicles approaching section C and vice versa. Places pBSR and pDSR work in the

similar way. This is an significant improvement compared to the traffic light system

controlling rule in [31]. In [31], vehicles approaching different crossing sections which

belong to the same phase need to compete for the traffic light system resource in the

SR stage, which is not realistic.

3.3.3 Cooperation of Places and Transitions in Petri Net Representation

The definitions of the places and transitions in the Petri net representation of

the signalized urban intersection are listed in Section 3.3.1 and Section 3.3.2. Based

on the above definitions, the cooperation process of those places and transitions to

simulate and regulate the traffic flow across the intersection will be stated in details

in this section. Due to the symmetry of the four crossing sections, we will focus on the

representation subnet of section A and the corresponding transitions and places in the

Petri net representation of the traffic light system. The representation subnets of other

sections and their corresponding transitions and places in the Petri net representation

of the traffic light system operate similarly. We abstract the places, transitions and

arcs related to the subnet of section A from Fig. 3.2 and show them in Fig. 3.4.

In Fig. 3.4, transition tAin is a stochastic-timed transition with the exponential

distribution. tAin models the vehicle approaching process for section A. All the

vehicles (tokens) approaching section A are queued (contained) in place pAq.

Transitions tALin and tASRin are two stochastic-timed transitions with very small

time delay since they are used for decision-making to divide the vehicles approaching

section A into those turning left and those going straight or turning right. The ratio of

average time delays between tALin and tASRin equals the ratio between the percentage

of vehicles approaching section A and turning left and the percentage of vehicles

approaching section A and going straight or turning right. Such decision-making

30

Fig. 3.4. The representation subnet of the crossing section A of Fig. 3.1

process should be very fast compared to the intersection crossing process of vehicles.

This idea is enlightened by the decision-making transitions in the conflict-solved small

stochastic-timed Petri net in [31]. Such two kinds of vehicles (tokens) are queued

(contained) in places pALq and pASRq respectively. Similarly, transitions tAS and tAR

are two stochastic-timed transitions with very small time delay. The ratio of average

time delays between tAS and tAR equals the ratio between the percentage of vehicles

approaching section A and going straight and the percentage of vehicles approaching

section A and turning right. tAS and tAR distinguish the vehicles approaching section

A and going straight from those approaching section A and turning right.

In contrast, transition tAL is a deterministic-timed transition. The time delay of

tAL equals the average extra time that a vehicle approaching section A spends turning

left compared to the time that a vehicle approaching section A spends going straight

or turning right. The reason of such extra time cost for left turn is that a vehicle needs

to cross three crossing sections to finish a left turn and vehicles always slow down

when turning. We do not distinguish between the time that a vehicle spends going

straight and the time that a vehicle spends turning right. Although a vehicle only

31

crosses one crossing section when turning right compared to two crossing sections for

going straight, the speed of a vehicle when it goes straight is higher than its speed

when it turns right.

When each of places pAa, pBa, and pCa contains one token (sections A, B, and

C are available), there is one token in place pCoc (vehicles are allowed to exit from

the intersection through section C), and there is one token in place pAL of Fig. 3.3

(which means the traffic light system stays in the green cycle for vehicles approaching

section A of the L stage of phase 1 based on the analysis in Section 3.3.2), then

tAL is enabled. When the time delay of tAL expires, a token is removed from pAq

and is deposited in pCout (there is also one token removed from pCoc, which stops

other vehicles approaching section A from turning left). Then deterministic-timed

transition tCout is enabled. When the time delay of tCout expires, a token is removed

from pCout (a vehicle finishes the left turn and exits from the intersection through

section C) and is deposited in pCoc (other vehicles approaching section A are allowed

to turn left now). The time that a vehicle approaching section A spends finishing a

left turn is the summation of the time delays of tAL and tCout.

The enabling and firing process of transitions tAS and tAR are similar to the

enabling and firing process of tAL. However, tAS and tAR may be enabled at the same

time and therefore in the conflict for the token in pAa, pASR of Fig. 3.3, and pASRq

(if there is only one token in pASRq). The above three places are the common input

places for tAS and tAR. Such conflict is solved by the different average time delays

between tAS and tAR. The transition with less average time delay is more likely to

fire. Recall that the ratio of the average time delays between tAS and tAR equals to

the ratio between the percentage of vehicles approaching section A and going straight

and the percentage of vehicles approaching section A and turning right. The time

a vehicle approaching section A spends finishing a right turn is the time delay of

tAout while the time a vehicle approaching section A spends finishing a going straight

behavior is the time delay of tBout.

32

Observation 3.3.2 The reason why we queue the vehicles (tokens) approaching sec-

tion A and turning left in pALq separately from the vehicles (tokens) approaching

section A and going straight or turning right is as follows. tAL is enabled and fires

under the green cycle for section A of the L stage of phase 1, prior to the SR stage

of phase 1 when tAS and tAR are enabled and fire. If we delete tASRin, tALin, pASRq,

and pALq, change tAL into the stochastic-timed transition (the ratio of the average

time delays among tAL, tAS, and tAR equals the ratio of the percentages of vehicles

approaching section A and taking corresponding turning behaviors), and set tAL, tAS,

and tAR as the output transitions of pAq, then the firing times of tAL may be much

larger than the real number of vehicles approaching section A and turning left since

tAL does not have “competitors” during the green cycle for section A of the L stage of

phase 1. As a result, we separate the vehicles approaching section A and turning left

from the vehicles approaching section A and going straight or turning right one step

earlier (in tALin and tASRin) than when we separate the vehicles approaching section

A and going straight from the vehicles approaching section A and turning right (in

tAR and tAS). We do not split tASRin into tASin and tARin or split pASRq into pASq and

pARq due to the competition between tAS and tAR under the same state of the traffic

light system.

From Fig. 3.1 and Fig. 3.2, we see that sectionA is the exit of the right turn vehicles

from section A, the going straight vehicles from section D and the left turn vehicles

from section C. Since the time that a vehicle approaching section C spends finishing

a left turn can be adjusted by the time delay of tCL, the time delay of tAout should be

the average between the time that a vehicle approaching section A spends finishing a

right turn and the time that a vehicle approaching section D spends finishing a going

straight behavior. Based on similar analysis, we can deduct the formulas for the time

delays of transitions tBout, tCout, and tDout.

Observation 3.3.3 We integrate the output controller places pAout, pBout, pCout, and

pDout into the Petri net representation of the intersection of Fig. 3.2 due to the fol-

lowing reason. (We will focus our analysis on section A.) tAin simulates the vehicles

33

approaching process for section A so that its time delay is physically meaningful. The

time delays of decision-making transitions tAS and tAR are extremely short compared

to that of tAin. As a result, we need tAout and tBout with physically meaningful time

delays to match the time delay of tAin and simulate the going straight and right turn

behaviors of vehicles approaching section A. Without the control of pAout and pBout,

vehicles (tokens) approaching section A and going straight or turning right gather to-

gether in pAout and pBout even under the rule of the traffic light system since the time

delays of tAS and tAR are extremely short. In the real world, this corresponds to the

situation that many vehicles crowd in the intersection and lead to traffic jam. With

the control of pAout and pBout, vehicles approaching section A and going straight or

turning right can only cross the intersection one by one.

3.4 Summary

In this chapter, a two-layer timed Petri net model was proposed for the signalized

intersection in the microscopic sense. The first layer was the representation of the

intersection and the second layer was the representation of the traffic light system.

We stated the definitions of places and transitions in the above two Petri net repre-

sentations. Based on these definitions, we described the cooperation process between

the two Petri net representations to simulate and regulate the vehicle flow across the

signalized intersection. The improvements of such model compared to the previous

models were also discussed. In the next chapter, we will discuss the algorithm to

reconstruct transition firing sequences in Petri net models.

34

4. SENSOR NETWORK MONITORING BASED ON

ASYNCHRONOUS OBSERVATIONS

4.1 Introduction

In this chapter, we consider the similar problem setup to that in [20] but develop a

more efficient algorithm. More specifically, besides the set of asynchronously observed

token change sequences, we utilize some local synchronous information. We divide the

original Petri net into several subnets at first. For each subnet, we add a local observer

to it, which is called the counting place and will be introduced in the next section.

Through the observed token change sequence of the counting place, we can reconstruct

the transition firing sequence of each subnet. Then we develop an algorithm that is

able to reconstruct the event sequences for the entire net that are consistent with:

1) the asynchronous observations of state changes; 2) the event sequences of each

subnet; and 3) the structure of the given Petri net. We also discuss the algorithmic

complexity and present an example to illustrate our approach. As we will see later

in this chapter, by adding the counting places, we can reduce the complexity of the

algorithm to some extent compared to the one proposed in [20].

The remainder of this chapter is organized as follows. In Section 4.2, some basic

definitions are given with several illustrative examples. In Section 4.3, we formulate

our problem to be studied. We propose our reconstruction algorithm and analyze its

complexity in Section 4.4. An example is also provided for illustration and comparison

with the algorithm proposed in [20]. We conclude this chapter in Section 4.5.

35

4.2 Basic Definitions

We first list some definitions specific to this chapter. These definitions are quite

useful when we state the transition firing sequence reconstruction problem in Sec-

tion 4.3 and when we explain the reconstruction algorithm procedure in Section 4.4.

Several illustrative examples accompany these definitions.

Definition 4.2.1 Let Sn denote the space of sequences of markings in (Z+)n and

define ΓA : Sn → SA be the projection that focuses on the sequence of marking

changes at places indexed by the set A and also removes repeated elements in the

sequence.

For example, the projection Γpi of the sequence of markings M [0],M [1], . . . ,M [k]

at the i-th place is given by

Γpi(M [0]→M [1]→ . . .→M [j1 − 1]→M [j1]→M [j1 + 1]→ . . .

→M [jk]→ . . .→M [k])

=M(pi)[0]→M(pi)[j1]→M(pi)[j2]→ . . .→M(pi)[jk],

where {j1, j2, . . . jk} is exactly the set of time epochs at which the number of tokens

in place pi changes. More specifically,

{j1, j2, . . . jk} satisfies

M(pi)[0] = M(pi)[1] = . . . = M(pi)[j1 − 1] ̸= M(pi)[j1],

M(pi)[j1] = M(pi)[j1 + 1] = . . . = M(pi)[j2 − 1] ̸= M(pi)[j2],

...

Consider a sequence of markings in (Z+)3 that is given by
1

1

0

 −→


0

1

2

 −→


0

3

2

 .

If A = {1, 3},

36

ΓA




1

1

0

 −→


0

1

2

 −→


0

3

2


 =

 1

0

→
 0

2

 .

Assume that each sensor is responsible for reporting token changes in one place

in the net. We denote the observed token change sequence at each place pi (i ∈

{1, 2, . . . , n}) by si = M(pi)[0] → M(pi)[ji1] → M(pi)[ji2] → . . . → M(pi)[jik] (note

that 0 < ji1 < ji2 < . . . < jik). Let M(pi)[0] (M(pi)[jik]) denote the initial (final)

number of tokens in place pi. We use S to denote the set of all observed sequences of

token changes, i.e., S = {s1, s2, . . . , sn}.

Definition 4.2.2 [20] Let σ = ti1ti2 . . . tik be a transition firing sequence such that

M0[ti1⟩M1[ti2⟩ . . . [tik⟩Mk, where Mj ≥ 0 (j ∈ {1, 2, . . . , k}) denote a sequence of

markings in the net. We say σ is a consistent transition firing sequence with respect

to the observed sequence si of token changes at place pi if it satisfies Γpi(M0 →M1 →

M2 → . . .→Mk) = si. Similarly, given the set of observed sequences of token changes

S = {s1, s2 . . . sn}, σ is said to be a consistent transition firing sequence with respect

to S if it is consistent with each sequence si (i ∈ {1, 2, . . . , n}).

For each sequence si (i ∈ {1, 2, . . . , n}), let Ii = {0, 1, 2, . . . , |si| − 1} be the set of

possible position indices for sequence si. The indexing process assigns to each element

in si (from left to right) a unique nonnegative integer in the set {0, 1, 2, . . . , |si| − 1},

in increasing order from left to right, to denote its position in the sequence (|si| is

the length of the observed sequence si and the leftmost element in the sequence is

assigned index 0). More specifically, for ki ∈ Ii, si[ki] is the number of tokens at place

pi after ki-th token changes at that place. We use I = [I1 I2 . . . In] to denote the

n-dimensional position index vector that captures the position indices of all observed

sequences in S.

37

Consider the Petri net shown in Fig. 4.1 with three places {p1, p2, p3}, three transi-

tions {t1, t2, t3}, and the initial marking M [0] = [3 0 0]T . Suppose the set of observed

token change sequences S = {s1, s2, s3} are given by

s1 : 3→ 1→ 0,

s2 : 0→ 1→ 0,

s3 : 0→ 1→ 3.

Fig. 4.1. A simple Petri net

In this case, it is not hard to show that {t1t2t3} is the only transition sequence

that can possibly generate the observations in S. The marking evolution under t1t2t3

is given by 
3

0

0

 t1−→


1

1

0

 t2−→


0

1

1

 t3−→


0

0

3

 ,

and one can verify that the evolution of the number of tokens at each place (after

projection Γpi for each place pi) satisfies

Γp1(M [0]→M [1]→M [2]→M [3]) = s1,

Γp2(M [0]→M [1]→M [2]→M [3]) = s2,

Γp3(M [0]→M [1]→M [2]→M [3]) = s3.

38

Note that the evolution of the position index vector I that is associated with each

consistent marking is given by[
0 0 0

]
t1−→

[
1 1 0

]
t2−→

[
2 1 1

]
t3−→

[
2 2 2

]
.

In [20], the authors proposed a centralized transition firing sequence reconstruc-

tion algorithm without any synchronous information. In this thesis, we consider the

situation where the given net have some locally synchronous information. This prop-

erty is achieved by adding the counting place to the net, which is similar to the concept

of observer in the setting of labeled Petri nets. We first partition the Petri net N into

several subnets N1, N2, . . . , Nq where q is the number of subnets. Such partition is

in terms of the transition set T . The corresponding transition sets for N1, N2, . . . , Nq

are T1, T2, . . . , Tq respectively. The place set P is not affected by this partition. Some

transitions can belong to more than one subnet. Such transitions are called the com-

mon transition of these subnets. Then we add to each subnet Ni(i = 1, 2, . . . , q) a

counting place pci. Each transition in Ni has an output arc to the counting place

pci. The weights of such output arcs in Ni are all distinct. Thus, when we obtain the

observed token change sequence sci from pci, we can deduce which transition in Ni has

fired according to the token increment at each time epoch. Following this approach,

we are able to find the sub transition firing sequence Fi of each subnet Ni. We use

the following example to illustrate the construction process of the counting places.

The Petri net N shown in Fig. 4.2 is extracted from Example 4 in [20]. In Fig. 4.3,

N is partitioned into two subnets Np and Nq, where the partition is illustrated by the

dotted line in Fig. 3. Np includes the transitions t1, t3, and t5. The transitions t2, t4,

and t5 are contained in Nq. We construct the counting place pcp (which is illustrated

by the bold circle) for Np. The (dashed) output arc weights from t1, t3, and t5 to

pcp are 1, 2, and 3, respectively. Similarly, we construct pcq for Nq and the (dashed)

output arc weights from t2, t4, and t5 to pcq are 1, 2, and 3, respectively. Note that

t5 is the common transition between Np and Nq.

39

1
p

2
p

3
p

1
t

4
t
 2
t

3
t

1

1

1

1

1
 1

2

4
p

1

1
1

5
t

1

Fig. 4.2. Petri net N extracted from Example 4 in [20]

Fig. 4.3. Construction of counting places for Petri net shown in Fig 4.2

4.3 Problem Formulation

The problem we deal with in this thesis is as follows. We are given a Petri

net N with initial marking M [0], a set of n observed token change sequences S =

[s1 s2 . . . sn] that are provided asynchronously by local sensors for each of the n

40

places of the net, and a partition of N into two subnets Np and Nq
1. Our goal is to

find all possible transition firing sequences that are consistent with both S and the

structure of N . We assume that at each time epoch only one transition may fire. We

also assume that the firing of each transition in the net changes the number of tokens

in at least one of its input/output places.

Notice that the set of observed token change sequences S is provided asynchronously

by local sensors; this implies that we only have partial information about the tran-

sition sequences that have fired (and the consistent markings associated with them).

Moreover, in order to reconstruct the transition firing sequences, we need to cap-

ture the evolution of actual markings in the net based on S, the structure of the

net, and the transition firing sequences of Np and Nq which is provided by the

counting places. Given the (asynchronously observed) set of token change sequences

S = {s1, s2, . . . , sn} for each place in the net, the difficulty with this problem is how to

determine the ordering with which different transitions have fired. One important ob-

servation to keep in mind is that the token changes of each place pi (i ∈ {1, 2, . . . , n})

take place exactly in the order given in S; in addition, the structure of the net pro-

vides information about transitions that can fire under a particular marking M ; in

addition, the progress of the transition firing sequence of N should be compatible

with the progress of the transition firing sequences of Np and Nq.

Definition 4.3.1 [20] The current marking M [k] (i.e., the marking at current time

epoch k) is given by M [k] = [S[ki]] = [s1[k1] s2[k2] . . . sn[kn]]
T , where ki denotes the

index within si and si[ki] denotes the current marking of place pi.

In the remainder of this section we describe informally an algorithm that can be

used to reconstruct all possible transition firing sequences given knowledge of the

Petri net structure, the observation of sequences of token changes at different places

in the net, and the transition firing sequences of the subnets. We will describe the

algorithm more formally in the next section.

1This setup can be easily extended to cases where N is partitioned into multiple subnets.

41

We assume that the counting place for a subnet is connected to each transition

belonging to this subnet through an output arc. The weights of these output arcs

in a subnet are all distinct. As a result, if we obtain the observed token change

sequence of a counting place, we can easily reconstruct the transition firing sequence

for the corresponding subnet. Note that different subnets may share some common

transitions. The firings of such common transitions are captured in different subnets.

Hence, these common transitions play as the role of synchronization points among

subnets.

The idea of our algorithm is as follows. Starting from the initial marking M [0],

we first find the set of transitions that can fire in the next step of each transition

firing sequence of each subnet. Then, we figure out the set of transitions that are

enabled under the current marking (which is initially M [0]). After that, we obtain

the intersection of these two sets. We compute the markings after the firings of the

transitions in this intersection set and check the consistency with the set of observed

sequences of token changes S; for those markings that are consistent, we update

the position index vector and store the marking information (re-defined as current

marking) and the corresponding transition that has fired (in order to reach this current

marking). We also record the progress of each transition firing sequence for each

subnet. Then, we go on to find, for each marking information stored, the next possible

firing transitions, by repeating the steps described above.

Observation 4.3.1 When there are several valid transitions that can fire, the algo-

rithm chooses one transition and keeps on searching with it; others are considered

only after we finish searching with this transition, i.e., the algorithm searches valid

transition firing sequences in depth-first fashion [35].

Observation 4.3.2 If the transition firing sequence of one subnet reaches a common

transition while the transition firing sequence of the other subnet does not, then the

first transition firing sequence will “wait” for the latter one until it reaches the same

common transition.

42

Each time the position index vector matches those of the last element in each si

(to ensure that there are no further token changes); the algorithm returns a solution

according to the information stored. Then it goes back to the previous (stored but

not explored) transition to keep looking for other possible firing sequences. The

algorithm stops after exploring all transition sequences that could lead us from the

initial marking to the final marking. A breadth-first search version of the algorithm

that can be modified for online applications is also possible but it is not presented

here due to space limitations.

4.4 Transition Firing Sequence Reconstruction

4.4.1 Reconstruction Algorithm

In this section, we describe an iterative algorithm that recovers the transition

firing sequences in depth-first fashion. In the algorithm, we suppose that the original

Petri net N is divided into two subnets Np and Nq. However, note that our algorithm

here can be easily extended to the cases with more than two subnets.

We first introduce some variables that will be used in our algorithm. Fp (or

respectively, Fq) denotes the transition firing sequence of Np (or respectively, Nq).

Define lp (or respectively, lq) as the length of Fp (or respectively, Fq). The index of

Fp (or respectively, Fq) is from 0 to lp− 1 (or respectively, lq− 1). fp (or respectively,

fq) denotes the current index of Fp (or respectively, Fq).

Tpq denotes the set of common transitions between Np and Nq. Define Xp (or

respectively, Xq) as the position (the index in Fp or Fq) sequence of the common

transitions for Np (or respectively, Nq). The length of Xp and Xq is the same and

is denoted by lx. The index of Xp and Xq is from 0 to lx − 1. We add an element

Xp[lx] = lp (or respectively, Xq[lx] = lq) to the end of Xp (or respectively, Xq). Xp[lx]

and Xq[lx] serve as sentinels. The current index of Xp and Xq is l. If there are more

than one common transition between Np and Nq, all of their positions will be included

in Xp and Xq. The common transitions play as the synchronization points between Fp

43

and Fq and divide Fp and Fq into corresponding segments. We only need to combine

the corresponding segments.

Fc denotes the combined transition firing sequence of Np and Nq. The length of

Fc is lc = lp + lq − lx. Define the current time epoch as k and the current index of Fc

is just k. The index of Fc is from 0 to lc − 1.

I[k] = [k1 k2 . . . kn] denotes the position index vector associated with the current

marking M [k], where k is the current time epoch. ki(i = 1, 2, . . . , n) is the current

index of the observed token change sequence si and M(pi)[k] = si[ki].

Tf [k] denotes the set of transitions consistent with the progress of Fp and Fq at

time epoch k. Te[k] denotes the set of enabled transitions consistent with the structure

of the Petri net N under M [k]. Tp[k] = Tf [k]
∩
Te[k] denotes the set of transitions

that we will use to check whether they satisfy the process of the set of observer token

change sequences S.

We use structure C[k] = {M [k], tin,M [k − 1], I[k], l, fp, fq, Tp[k]} to capture the

information we need to store each time a new marking is explored, where the transition

tin is enabled under M [k − 1] at the previous time epoch k − 1 such that M [k −

1][tin⟩M [k].

The transition firing sequence reconstruction algorithm (which we call Algorithm 1)

is described as follows.

Algorithm 1 starts at the initial marking and finds possible firing transitions iter-

atively by checking the consistency of markings that are obtained after their firings

with the transition firing sequences Fp and Fq of the subnets Np and Nq (Line 7 to

Line 15), the structure of the Petri net N (Line 16 to Line 17), and the set of observed

sequences of token changes S (Line 18 to Line 19). We first choose the set Tf [k] of

transitions that are consistent with the progress of the two transition firing sequences

Fp and Fq. If none of the progress of Fp and Fq arrive at a common transition, then

the two current transitions of Fp and Fq will be included in Tf [k]. If Fp arrives at a

common transition and Fq does not, only the current transition of Fq will be included

into Tf [k]. It means that Fp will wait for Fq. The common transitions serve as the

44

Algorithm 1 Transition firing sequence reconstruction
Input

• Petri netN with input/output incident matrix B−/B+ and initial markingM [0]

• A set of observed token change sequences S = {s1, s2, . . . , sn}
• The set of common transitions Tpq between subnets Np and Nq

• The observed token change sequences sp and sq of counting place pcp and pcq

1: Construct the transition firing sequence Fp and Fq of the subnets Np and Nq

according to sp and sq, respectively

2: Construct the common transition position sequence Xp and Xq according to Fp,

Fq and Tpq

3: Set the current index l of Xp and Xq, the current index fp of Fp and the current

index fq of Fq all by 0

4: Set the current time epoch k = 0. Set the current indices of the observed token

change sequences as k1 = k2 = · · · = kn = 0 and construct the position index

vector I[0] accordingly

5: Store C[0] = {M [0], ϕ, ϕ, I[0], 0, 0, 0, ϕ}

6: Let M [k] = [s1[k1] s2[k2] . . . sn[kn]]
T

7: if fp < Xp[l] and fq < Xq[l] then

8: Tf [k] = {Fp[fp], Fq[fq]}

9: else

10: if fp == Xp[l] and fq < Xq[l] then

11: Tf [k] = {Fq[fq]}

12: else

13: Tf [k] = {Fp[fp]}

14: if fp == Xp[l] and fq == Xq[l] then

15: l = l + 1

16: Te[k] = {tj ∈ T | C.M [k] ≥ B−(:, tj)}

17: Store C[k].Tp[k] = Tf [k]
∩

Te[k]

45

18: if There exists tj ∈ C[k].Tp[k] that has not been explored then

19: Pick up tj and mark tj as explored in C[k].Tp[k]

20: M ′[k] = C.M [k] +B(:, tj)

21: Calculate M ′′[k] = [s1[k
′
1] s2[k

′
2] . . . sn[k

′
n]]

T according to S, where k′
i = ki + 1

22: (i = 1, 2, . . . , n) for pi ∈ •tj or pi ∈ t•j with b+ij− b−ij ̸= 0 and k′
i = ki for others

23: if M ′[k] ̸= M ′′[k] then

24: Goto Line 18

25: else

26: Update I[k + 1] as ki = k′
i(i = 1, 2, . . . , n)

27: if tj == Fp[fp] then

28: fp = fp + 1

29: else

30: fq = fq + 1

31: Store C[k + 1] = {M ′[k], tj,M [k], I[k + 1], l, fp, fq, Tp[k]}

32: Fc[k] = C[k + 1].tin

33: k = k + 1

34: if fp == Xp[l] and fq == Xq[l] and l == lx then

35: Goto Line 39

36: else

37: Goto Line 7

38: else

39: Goto Line 41

40: if k == (lp + lq − lx) then

41: Store Fc as a solution

42: k = k − 1

43: if k == −1 then

44: Done

45: else

46: Return to C[k] and Goto Line 18

46

synchronization points between Fp and Fq. The situation for Fq arrives at a common

transition and Fp does not is similar. When both Fp and Fq arrive at a common

transition, such common transition will be included into Tf [k]. Then we construct

the set Te[k] of transitions enabled under marking M [k]. The intersection of Tf [k]

and Te[k] consists of the transition set Tp[k] that will be evaluated whether they are

valid or not by checking consistency with S; if a transition is valid, the algorithm

stores the necessary marking information and keeps searching for new possible firing

transitions from this marking onwards. When we reach the final marking (given in

S) and there are no remaining entries in S, the algorithm returns the corresponding

transition firing sequence with the information stored; then, it goes back to search

for other possible (stored but not unexplored) transition firing sequences.

Observation 4.4.1 In Algorithm 1, Line 31 is to update the structure C. Note that

the component Tp[k] in C has not been updated yet at the moment and it will be updated

in the next time when we execute Step 5.

Let us consider Fig. 4.3.We assume that the set of token change sequences S =

{s1, s2, s3, s4} are given by

s1 : 2→ 1→ 2→ 3→ 2→ 3,

s2 : 1→ 2→ 1,

s3 : 1→ 2→ 0→ 1,

s4 : 1→ 2→ 1→ 0,

scp : 0→ 1→ 3→ 6→ 9,

scq : 0→ 2→ 5→ 6→ 9.

scp and scq are the observed token change sequences of the counting places pcp and

pcq, respectively. According to scp and scq, we can construct the transition firing

47

sequences Fp and Fq of the subnets Np and Nq, respectively. The common transition

t5 between Np and Nq has been underlined.

Fp : t1 → t3 → t5 → t5,

Fq : t4 → t5 → t2 → t5.

The initial marking is M [0] = [2 1 1 1]T . Clearly, the set of transitions consistent

with the progress of Fp and Fq is Tf [0] = {t1, t4}. The set of enabled transitions under

initial marking are Te[0] = {t1, t2, t3, t5}. Tp[0] = Tf [0]
∩
Te[0] = {t1}. The firing of

t1 is consistent with S. Therefore, Algorithm 1 runs iteratively from t1 in depth-first

search fashion. We obtain M [1] = [1 2 1 1]T after firing t1 from M [0]. The complete

result is shown in Fig. 4.4, where ID captures the order of markings visited. The

position index vector is also shown under each marking explored.

Fig. 4.4. Complete results for Fig. 4.3

Regarding the data structure stored, for marking [1 2 1 1]T (with ID = 1 as shown

in Fig. 4.4), the information stored is given by C[1] = {[1 2 1 1]T , t1, [2 1 1 1], [1 1 0 0], 0,

1, 0, {t1}}. Note that although the markings with ID = 0 and ID = 5 are identical,

they behave differently because their position indices are different.

Finally, the set of possible transition firing sequences that are consistent with both

S, the net N , Fp and Fq are given by:

{{t1 t3 t4 t5 t2 t5}}.

Recall that Fig. 4.2 is extracted from [20]. We add counting places to the Petri

net shown in Fig. 4.2 and obtain Fig. 4.3. The Petri net shown in Fig. 4.2 is also

48

the algorithm illustration example in [20]. It takes more steps to finish the algorithm

running in [20] compared to the steps of our algorithm running displayed in Fig. 4.4.

4.4.2 Complexity Analysis

In [20], the authors proved that the space complexity of their algorithm is O(md)

and the computational complexity is O(md), where m is the number of transitions

and d is the upper bound of the maximum length of the possible transition firing

sequences.

For our algorithm, the space complexity is O(2d) = O(d). The computational

complexity is O(2d) because the maximum number of transitions we explore under

each marking is 2 (due to the progress of Fp and Fq). Note that if the original Petri net

N is partitioned into b subnets where b > 2, then the space complexity is O(bd) and

the computational complexity is O(bd) because the maximum number of transitions

we explore for each marking is b.

4.5 Summary

In this chapter, we proposed a methodology for reconstructing possible transition

firing sequences in a given Petri net based on asynchronous observations of the set

of sequences of token changes in its places. We assumed that the observation of each

marking change sequence was made by a local sensor and that there was no global

timing (so that each sensor only knew the order of local marking changes). The orig-

inal Petri net was partitioned into several subnets and the transition firing sequence

of each subnet could be reconstructed through some special local observers. Based

on the local observations from each sensor and each local observers, we developed

an algorithm that was able to reconstruct all transition firing sequences that were

consistent with these observations and the structure of the Petri net. The proposed

algorithm proceeded in depth-first search fashion and iteratively reconstructed pos-

sible transition firing sequences. We also discussed the complexity of the algorithm

49

and presented an example for illustration. We will state our optimization work on

fault-tolerant controllers for Petri net models in the next chapter.

50

5. OPTIMIZATION OF FAULT-TOLERANT

CONTROLLERS FOR PETRI NET MODELS

5.1 Introduction

In this chapter, we focus on multiple faults detection and identification, but with

a completely different optimization criterion as proposed in [19]. More specifically,

we consider the minimization of the number of arcs (the number of nonzero entries in

the input and output incident matrices) of the redundant controller, rather than the

minimization of the sum of the arc weights of redundant controllers in [19]. With the

help of Reed-Solomon coding [33], we are able to develop an approximation algorithm

to design the fault-tolerant Petri net controller in a systematic manner. A design

example for an AGV system is also provided to illustrate our approach.

The organization of this chapter is as follows. In Section 5.2, we present the neces-

sary and sufficient conditions to construct fault-tolerant controllers. The characteris-

tics of such fault-tolerant controllers are also illustrated. We propose the optimization

purpose in Section 5.3. Following the optimization purpose and the characteristics

of fault-tolerant controllers, we deduct the approximation algorithm to achieve such

optimization purpose. The correctness of such algorithm is also proved in this section.

In Section 5.4, an example about AGV system is presented to show the procedure of

the approximation algorithm. We conclude this chapter in Section 5.5.

5.2 Design of Fault-Tolerant Redundant Petri Net Controllers

In this section we briefly review the design approach for the fault-tolerant redun-

dant Petri net controller and the procedure to perform fault detection and identifica-

51

tion that were proposed in [16]. The optimal design of such redundant controller will

be discussed in the next section.

5.2.1 Fault-Tolerant Redundant Controllers

In [16], the authors proposed approaches for the design of fault-tolerant Petri net

controllers, which can be summarized as follows.

Let C be a given Petri net controller with nc places, m transitions, and state

evolution given by

Mc [k + 1] = Mc [k] +
(
B+

c −B−
c

)
x [k] ≡Mc [k] +Bcx [k] , (5.1)

where x [k] is the firing vector, B+
c is the output incident matrix of C, B−

c is the input

incident matrix of C, and Bc ≡ B+
c −B−

c is the incident matrix of C.

Consider a larger Petri net H with η = nc+2d (d > 0) places1, m transitions, and

state evolution given by

Mh [k + 1] = Mh [k] +
(
B+
c − B−

c

)
x [k] ≡Mh [k] + Bcx [k] , (5.2)

where x [k] is the firing vector, B+
c is the output incident matrix of H, B−

c is the input

incident matrix of H, and Bc ≡ B+
c − B−

c is the incident matrix of H.

Proposition 5.2.1 [16] A fault-tolerant redundant controllerH is bisimulation equiv-

alent to the given controller net C if and only if there exists matrices C and D satis-

fying conditions (C1) and (C2) as follows.

(C1) C ≥ 0 is a 2d× nc matrix with nonnegative integer entries and;

(C2) D ≥ 0 is a 2d × m matrix with nonnegative integer entries such that D ≤

min (CB+
c , CB−

c), where the inequality taken element-wise.

Conditions (C1) and (C2) characterize necessary and sufficient conditions for the

design of matrices C and D such that the fault-tolerant redundant controller H is

bisimulation equivalent to the original controller C (i.e., any transition firing sequence

enabled in the original controller is also enabled in the redundant one, and vice versa).

1It has been shown in [36] that by adding 2d places, we can detect and identify d place faults.

52

5.2.2 Fault Detection and Identification

In [16], the authors considered the detection and identification of place faults.

Place faults at time epoch k results in an erroneous marking Mf [k] that can be

expressed as

Mf [k] = Mh [k] + ep, (5.3)

where Mh [k] is the marking of the redundant controller that would have been reached

under fault-free conditions, and ep is the place error vector. A possibly erroneous

marking Mf [k] can be checked by using the parity check matrix

P =
[
−C I2d

]
, (5.4)

where I2d is the 2d× 2d identity matrix, to verify whether the syndrome, defined as

s [k] ≡ PMf [k] , (5.5)

is equal to 0. Clearly, in the place fault model, the syndrome at time epoch k is given

by

s [k] ≡ PMf [k] = P (Mh [k] + ep)

= P (GMc [k] + ep) = 0 + Pep = Pep, (5.6)

and fault detection and identification is exclusively determined by matrix P . We

assume that the number of tokens in the redundant Petri net does not get affected

by place faults, therefore, the syndrome in (5.6) is reduced to the form as follows.

s∗ [k] = Ce∗p, (5.7)

where e∗p contains the first nc entries of ep. To be able to detect and identify d place

faults, we can choose matrix C such that any linear combination of d or less columns

of matrix C is unique. In other words, matrix C should satisfy condition (C3) for

multiple faults detection and identification given as follows.

(C3) The choice of C should guarantee that any linear combination of d or less columns

of matrix C is unique.

53

In [36], the author used Reed-Solomon coding to design matrix C (matrix H

in [36]), which satisfies condition (C3). C is in the form as follows.

C ≡


α1 α2 . . . αnc

α2
1 mod p α2

2 mod p . . . α2
nc

mod p
...

...
. . .

...

α2d
1 mod p α2d

2 mod p . . . α2d
nc

mod p

 , (5.8)

where the prime p > nc, 2d ≤ nc and α1, α2, . . . , αnc are nc distinct nonzero elements

in GF (p).

Observation 5.2.1 The columns of C are interchangeable. In Reed-Solomon coding,

the first line in matrix C consists of nc distinct nonzero elements in GF (p) without

certain order. Furthermore, we will see in the following proposition that we could only

focus on the linear combination of the columns in C.

Proposition 5.2.2 [37] Let C be the matrix defined in (5.8) and assume the prime

p > nc and 2d ≤ nc. Then,

(i) Any 2d columns are linearly independent;

(ii) Any linear combination of d or less columns is unique.

Proposition 5.2.3 All the entries in the matrix C are nonzero.

Proof We claim that if qk mod p ̸= 0 where q ∈ GF (p) and q ̸= 0, then qk+1 mod

p ̸= 0. We prove our claim by contradiction. Suppose qk+1 mod p = 0. According to

Lemma 5 in Section 2 of [38], qk mod p = 0 or q mod p = 0. However, qk mod p ̸= 0

and q mod p ̸= 0 according to given conditions. As a result, qk+1 mod p ̸= 0 and our

claim is true.

We already know that the first row of C, i.e., 1, 2, . . . , nc are nonzero elements in

GF (p). Then 1i, 2i, . . . , ni
c(i = 1, 2, . . . , 2d) are all nonzero according to our claim.

Hence, all the entries in C are nonzero.

54

Note that there are many choices of matrices C and D that satisfy conditions

(C1), (C2), and (C3) given above. In the next section, we will discuss our approach

to design these matrices in order to minimize the sum of arc weights of the (input

and output) incident matrices of the redundant controller.

5.3 Algorithm Design for Fault-Tolerant Redundant Petri Net Controllers

5.3.1 Problem Formulation

The problem we deal with in this thesis is the following. Consider a Petri net con-

troller C (with nc places, m transitions, and state evolution given in Equation (5.1)),

design matrices C and D such that the resulting fault-tolerant redundant Petri net

controller H (with η = nc + 2d places, m transitions, and state evolution given in

Equation (5.2)) satisfies:

(i) H is bisimultion equivalent to C (i.e., satisfies conditions (C1) and (C2));

(ii) H is able to detect and identify d place faults (i.e., satisfies condition (C3));

(iii) the number of nonzero entries in the input and output incident matrices of H

is minimized.

We introduce the definition of the zero identification function sgn(x) here.

sgn (x) =

 0, if x = 0;

1, if x ̸= 0.
(5.9)

Since the input incident matrix of H is an η ×m matrix denoted by B−
c and the

output incident matrix of H is an η ×m matrix denoted by B+
c , this problem can be

formulated as an optimization problem as follows.

argmin
C,D

η∑
i=1

m∑
j=1

(
sgn(

[
B−
c

]
ij
) + sgn(

[
B+
c

]
ij
)
)
, (5.10)

such that matrices C and D satisfy conditions (C1), (C2), and (C3), where [B−
c]ij

(respectively, [B+
c]ij) denotes the entry at the i-th row, j-th column in matrix B−

c

55

(respectively, B+
c), i.e., the arc weight from the place pi to the transition tj (respec-

tively, from the transition tj to the place pi). If [B−
c]ij = 0, there is no arc from the

place pi to the transition tj. If nonzero, there is such arc. Similarly, if [B+
c]ij = 0,

there is no arc from the transition tj to the place pi. If nonzero, there is such arc.

The choices of C and D do not affect the solution of the problem in (5.10) for the

first nc rows but the rest 2d rows. Therefore, the problem in (5.10) can be reduced

to (5.11) as follows.

argmin
C,D

2d∑
i=1

m∑
j=1

(
sgn

([
CB+

c

]
ij
−Dij

)
+ sgn

([
CB−

c

]
ij
−Dij

))
, (5.11)

such that matrices C and D satisfy conditions (C1), (C2), and (C3).

Note that condition (C2) requires that matrix D is a matrix with nonnegative

integer entries such that 0 ≤ D ≤ min (CB+
c , CB−

c). Similar as the proof in [18], we

proved the following proposition.

Proposition 5.3.1 The solution of (5.11) subject to condition (C2) corresponds to

the choice of matrix D such that D satisfies Dij = min
(
[CB+

c]ij, [CB−
c]ij

)
for every

i ∈ {1, 2, . . . , 2d} and j ∈ {1, 2, . . . ,m}.

Proof We prove this proposition by contradiction. Suppose the matrix D satisfies

Dij = min
(
[CB+

c]ij, [CB−
c]ij

)
for every i ∈ {1, 2, . . . , 2d} and j ∈ {1, 2, . . . ,m}

except a single entry Dkl (0 ≤ Dkl < min([CB−
c]kl, [CB+

c]kl)) at its k-th row, l-th

column position.

Dkl < min([CB−
c]kl, [CB+

c]kl) implies that [CB−
c]kl − Dkl ̸= 0 and [CB+

c]kl −

Dkl ̸= 0. As a result, sgn([CB−
c]kl − Dkl) + sgn([CB+

c]kl − Dkl) = 2. Since one of

[CB−
c]kl − min([CB−

c]kl, [CB+
c]kl) and [CB+

c]kl − min([CB−
c]kl, [CB+

c]kl) equals zero

and the other is nonzero, sgn([CB−
c]kl − min([CB−

c]kl, [CB+
c]kl)) + sgn([CB+

c]kl −

min([CB−
c]kl, [CB+

c]kl)) = 1. This implies that (5.11) is not minimized. Contra-

diction comes out.

56

From Proposition 5.3.1, it is not difficult to show the following three cases.

1) If [CB+
c]ij > [CB−

c]ij, then we have Dij = [CB−
c]ij, sgn([CB−

c]ij − Dij) = 0

and sgn([CB+
c]ij −Dij) = 1. Moreover, sgn([CB−

c]ij − [CB+
c]ij) = 1. Therefore,

sgn([CB+
c]ij − [CB−

c]ij) = sgn([CB−
c]ij −Dij) + sgn([CB+

c]ij −Dij).

2) If [CB+
c]ij < [CB−

c]ij, we have Dij = [CB+
c]ij, sgn([CB−

c]ij − Dij) = 1 and

sgn([CB+
c]ij − Dij) = 0. Moreover, sgn([CB−

c]ij − [CB+
c]ij) = 1. Therefore,

sgn([CB+
c]ij − [CB−

c]ij) = sgn([CB−
c]ij −Dij) + sgn([CB+

c]ij −Dij).

3) If [CB+
c]ij = [CB−

c]ij, we haveDij = [CB−
c]ij = [CB+

c]ij, sgn([CB−
c]ij−Dij) = 0

and sgn([CB+
c]ij −Dij) = 0. Moreover, sgn([CB−

c]ij − [CB+
c]ij) = 0. Therefore,

sgn([CB+
c]ij − [CB−

c]ij) = sgn([CB−
c]ij −Dij) + sgn([CB+

c]ij −Dij).

As a result, the problem in (5.11) can be transformed to the following problem in

(5.12) as follows.

argmin
C,D

2d∑
i=1

m∑
j=1

sgn(
[
CB+

c

]
ij
−
[
CB−

c

]
ij
),

=argmin
C,D

2d∑
i=1

m∑
j=1

sgn(
[
C
(
B+

c −B−
c

)]
ij
)

= argmin
2d∑
i=1

m∑
j=1

sgn([CBc]ij), (5.12)

such that matrices C and D satisfy conditions (C1), (C2), and (C3).

In this thesis, we consider the Petri nets that have state machine structure (i.e.,

every transition in the Petri net model has only one input place and one output

place). This is the common case in the transportation systems modeled by Petri

nets where the transition is used to model the uni-directional passage between two

locations (modeled by the places). Therefore, the incident matrix B of the original

Petri net has the property that, every column of B has only one entry “1” and one

entry “−1”. All the rest elements in this matrix are zeros.

57

The control specifications in the transportation systems usually require certain

location (place) can only hold a limited number of vehicles (modeled by the tokens).

Reflected into the matrix L in [39], this implies that each row of L has only one

nonzero entry. Moreover, since we usually have at most one control specification for

each location (place), each column of L can have at most one nonzero entry. If a

nonzero entries in L is not 1, we can make it and the corresponding element in the

vector b introduced in [39] divided by itself. We call the matrix L in such form a

nearly identity matrix. With such B and L, we can prove the following proposition

for the incident matrix Bc of the original Petri net controller.

Proposition 5.3.2 If the matrix B is the incident matrix of the state machine N

and the matrix L for the given control specifications is a nearly identity matrix, the

every column of the incident matrix Bc for the controller of N must belong to one of

the following three cases.

1. The column is a 0-vector;

2. The column has only one nonzero element (either 1 or −1);

3. The column has only two nonzero elements (1 and −1).

Proof Suppose Li(i = 1, 2, . . . , nc) is the i-th row of the matrix L and the j-th

(j = 1, 2, . . . , n) element of Li, i.e., Lij = 1. Suppose Bl(l = 1, 2, . . . ,m) is the l-th

column of the matrix B.

From [39] we know the matrix Bc = −LB. Hence, the entry in the i-th row and

l-th column of Bc, i.e., [Bc]i,l = −LiBl = −Bjl. As a result, [Bc]i,1 = −Bj1, [Bc]i,2 =

−Bj2, . . . , [Bc]i,m = −Bjm. We obtain that [Bc]i = −Bj where [Bc]i is the i-th row

of Bc. Since each column of L can have at most one nonzero entry, each row in Bc

corresponds to a distinct row in B. We treat BC as the reordering of some rows of B

and then multiplied by −1. Since every column of B has only one entry “1” and one

entry “−1”, we can easily conclude that each column of B must belong to one of the

above three cases.

58

If one column [Bc]h of the matrix Bc belongs to Case 1 of Proposition 5.3.2,

then sgn([CBc]ih) = 0(i = 1, 2, . . . , 2d) whatever the columns of the matrix C is in-

terchanged. If one column [Bc]k of Bc belongs to Case 2 of Proposition 5.3.2 and

[Bc]lk ̸= 0, then sgn([CBc]jk) = sgn(Cjl) = 1(j = 1, 2, . . . , 2d) according to Propo-

sition 5.2.3 and whatever the columns of C is interchanged. As a result, when we

try to optimize Equation 5.12, the columns of Bc that belongs to Case 1 and 2 of

Proposition 5.3.2 are not considered.

Suppose in the j-th column of Bc, the k-th element [Bc]kj = 1 and the l-th element

[Bc]lj = −1. So [CBc]ij = Cik−Cil and sgn([CBc]ij) = sgn(Cik − Cil), where Cik and

Cil are the k-th and l-th elements in the i-th row of C. Define

dif (k, l) = sgn(C1k − C2l) + sgn(C2k − C2l) + · · ·+

+ sgn(C2dk − C2dl)

= sgn([CBc]1j) + sgn([CBc]2j) + · · ·+

+ sgn([CBc]2dj)

(5.13)

as the distance between the k-th column and l-th column of matrix C.
2d∑
i=1

m∑
j=1

sgn([CBc]ij) is just the sum of such distances. For all columns in Bc, the

number of times that the k-th and the l-th (for all k, l ∈ {1, 2, . . . , nc} and k ̸= l)

elements are nonzero are not necessarily equal. For the purpose of minimization, we

always hope that, if the appearance frequency of (k, l) (i.e., the k-th and l-th elements

of Bc’s one column are nonzero) is high, the distance between the k-th column and

l-th column of C should be less. Based on this idea, we develop an approximation

algorithm to obtain matrix C. Once matrix C is determined, matrix D can be derived

from Proposition 5.3.1.

59

5.3.2 Algorithm Development

Define C0 as the original C matrix where C0
i (i ∈ {1, 2, . . . , nc}) is the i-th column

of C0. Define Cf as the final C matrix where Cf
j (j ∈ {1, 2, . . . , nc}) is the j-th column

of Cf . We treat C0
i ’s as objects and Cf

j ’s as positions to hold objects. Both C0
i and

Cf
j have three indicators: color, position set P , and related columns Cr. For C0

i (or

respectively Cf
j), color white indicates this column has not been explored yet; color

gray indicates this column has been explored but its precise position (or which object

to be put in) has not been decided yet; color black indicates this column’s precise

position (or which object to be put in) has been decided. When color is white, P = ϕ;

when color is gray, P equals the indices of two possible positions (or objects); when

color is black, P is the index of the corresponding position (or object). Cr is only used

when color is gray. If C0
i .P = {l, r}, then C0

i and C0
i .Cr together capture positions

about Cf
l and Cf

r . Cr is set to ϕ in other two cases.

For simplicity, define L =

 2

nc

 = nc(nc−1)
2

. Define dif (i, j) (= dif (j, i)) as

the distance between columns C0
i and C0

j . Dif [1 . . . L] is the reverse-sorted array of

dif (i, j)’s and is called the distance sequence. Dif [1] represents the largest one among

dif (i, j)’s. Dif ∗ [1 . . . L∗] copies Dif [1 . . . L] initially, but its length L∗ is dynamic.

The current index of Dif ∗ [1 . . . L∗] is Dif ∗in.

k (i, j) is the number of columns whose i-th and j-th elements are nonzero in Bc.

It also indicates the frequency of subtraction operations between columns Cf
i and Cf

j .

K [1 . . . L] is the sorted array of k (i, j)’s and is called the frequency sequence. K [1]

represents the least one among k (i, j)’s. The current index of K [1 . . . L] is Kin.

Based on the above analysis and variable definitions, now we present the algorithm

as follows (we call it Algorithm 2). The five color-changing processes in C0 (or Cf)

are summarized in Table 5.1. Double-Black is not considered since there is no color-

changing happening in this case.

Observation 5.3.1 The algorithm has two nested for loops. In each iteration of the

outer loop, we pick up K [Kin] and want to find an element in Dif∗ [1 . . . L∗] to match

60

Algorithm 2 Fault-tolerant controller optimization
INPUT

• A Petri net controller C with nc places and m transitions

• The input incident matrix B−
c , the output incident matrix B+

c

• The prime p

• The maximum number d of place faults that may have occurred

1: Compute Bc = B+
c −B−

c and |Bc|

2: Construct the original ”C matrix” C0

3: Construct distance sequence Dif [1 . . . L]

4: Copy Dif [1 . . . L] to obtain Dif ∗ [1 . . . L∗]

5: Construct frequency sequence K [1 . . . L]

6: Set all color ← white, P ← ϕ and Cr ← ϕ

7: Kin ← 1, Dif ∗in ← 1 and B count← 0

8: for Kin ← 1 to m Do do

9: for Dif ∗in ← 1 to L∗ Do do

10: flag ← 0

11: if Color combinations of Dif ∗ [Dif ∗in] and K [Kin] match then

12: Case 1 Double-White

13: Paint the 4 columns gray

14: Set 2 columns from Cf as P ’s of 2 columns from C0 and vice versa

15: Set each of the 2 columns from C0 as Cr of another one and set each

16: of the 2 columns from Cf as Cr of another one

17: flag ← 1

18: Case 2 Double-Gray If P checking matches

19: Call Gray-Operation

20: flag ← 1.

21: B count← B count+ 4

22: Case 3 Double-Black If P checking matches

23: flag ← 1

61

24: Case 4 White-Gray If P checking of gray columns matches

25: Call White-Operation

26: Call Gray-Operation

27: flag ← 1

28: B count← B count+ 3

29: Case 5 White-Black If P checking of black columns matches

30: Call White-Operation

31: flag ← 1

32: B count← B count+ 1

33: Case 6 Gray-Black If P checking matches

34: Call Gray-Operation

35: flag ← 1

36: B count← B count+ 2

37: if flag then

38: Remove Dif ∗ [Dif ∗in] from Dif ∗ [1 . . . L∗]

39: L∗ ← L∗ − 1

40: Break

41: if B count == nc then

42: Break

43: White-Operation

44: Paint the white columns from C0 and Cf black

45: Set white column from Cf as P of white column from C0 and vice versa

46: Return

47: Gray-Operation

48: Paint the gray columns from C0 and Cf and their Cr black

49: Update gray’s P ’s according to corresponding relation

50: Set Cr’s of both the gray columns and their original Cr as ϕ

51: Return

62

Table 5.1 Summary of color-changing processes

Color Combination Type Column Color Change White Gray Black

Double-White 2W → 2G -2 +2 0

Double-Gray 4G→ 4B 0 -4 +4

White-Gray 1W + 2G→ 3B -1 -2 +3

White-Black 1W + 1B → 2B -1 0 +1

Gray-Black 2G+ 1B → 3B 0 -2 +2

it. For each element in Dif∗ [1 . . . L∗] (the current Dif∗ [Dif∗in]), we examine whether

their color combination matches or not. If the color combination matches, we go to

the corresponding color combination case in Algorithm 1. In each of the six color

combination cases, we do P checking first, where the P checking between two gray

columns from C0 and Cf respectively is to check whether the index of each of the

two columns belongs to another column’s P , while the P checking between two black

columns is to check whether the index of each of the two columns equals to another

column’s P . Once Dif∗ [Dif∗in] matches K [Kin] (we set flag = 1), we follow some

color-changing operations and change indicators of the involved columns accordingly.

We then remove Dif∗ [Dif∗in] from Dif∗ [1 . . . L∗], reduce the length of Dif∗ [1 . . . L∗] by

one and break out of the inner loop. B count records the number of black columns in

C0 (or Cr). We then check whether every column in C0 (or Cf) has become black.

If it is true, we break out of the outer loop and the algorithm terminates.

Observation 5.3.2 In fact, there are at most m (recall that m is the number of

columns in Bc) non-zero elements in K [1 . . . L]. We only need to execute the outer

loop for m times. The inner loop needs to be executed at most L, L−1, . . ., L−m+1

times after each iteration of the outer loop. Recall that L =

 2

nc

 = nc(nc−1)
2

. As

a result, the computational complexity of Algorithm 1 can be obtained as O(n2
cm).

63

5.3.3 Proof of Algorithm Correctness

The following theorem, together with the two propositions, proves the complete-

ness of the algorithm, i.e., for each K [Kin] we are always able to find a suitable

element in Dif ∗ [1 . . . L∗] to match it.

Proposition 5.3.3 The number of white, gray, and black columns respectively in C0

and Cf is always the same. The number of six kinds of elements (Double-White,

Double-Gray, Double-Black, White-Gray, White-Black and Gray-Black) respectively

in Dif [1 . . . L] and K [1 . . . L] is always the same.

Proof Initially, C0 and Cf contain only white columns; Dif [1 . . . L] and K [1 . . . L]

contain only Double-White elements. Proposition 5.3.3 holds trivially.

Due to the color-matching judge, the color-changing processes that happen in

Dif [1 . . . L] and K [1 . . . L] are the same. The number of white, gray and black

columns respectively in C0 and Cf always keeps the same. The number of six kinds

of elements in Dif [1 . . . L] and K [1 . . . L] is still the same, too.

Proposition 5.3.4 Dif∗ [1 . . . L∗] contains all the Double-White, White-Gray and

White-Black elements in Dif [1 . . . L] and K [Kin . . . L] contains all the Double-White,

White-Gray and White-Black elements in K [1 . . . L].

Proof Initially, L∗ = L andKin = 1, soDif ∗ [1 . . . L∗] = Dif [1 . . . L] andK [Kin . . . L]

= K [1 . . . L]. Proposition 5.3.4 holds trivially.

None of the five color-changing processes will produce new white columns. When

Dif ∗ [Dif ∗in] matches K [Kin], all involved columns from C0 and Cf will not be

white any more. Then Dif ∗ [Dif ∗in] and K [Kin] are removed from Dif ∗ [1 . . . L∗] and

K [Kin . . . L]. So Dif ∗ [1 . . . L∗] will still contain all the Double-White, White-Gray

and White-Black elements in Dif [1 . . . L] and K [Kin . . . L] will still contain all the

Double-White, White-Gray and White-Black elements in K [1 . . . L].

Theorem 5.3.1 K [Kin] is always able to find a suitable element in Dif∗ [1 . . . L∗] to

match it.

64

Proof We prove Theorem 5.3.1 in three cases.

Case 1: K [Kin] is Double-White.

From Proposition 5.3.3 and Proposition 5.3.4 we know that, there must exists a

Double-White element in Dif ∗ [1 . . . L∗]. Then from the Double-White case of the

optimal algorithm, this element is suitable for K [Kin].

Case 2: K [Kin] is composed of a white column Cf
i′ and a non-white column Cf

j′ .

We first claim that there must exists an element in Dif [1 . . . L] that is composed

of a white column from C0 and a column belonging to Cf
j′ .P . If our claim is not

true, then all columns in C0 is non-white. This contradicts Proposition 5.3.3 since

there is white columns in Cf . We then claim that such element of Dif [1 . . . L] must

stay in Dif ∗ [1 . . . L∗] according to Proposition 5.3.4. Then this element is suitable

for K [Kin].

Case 3: K [Kin] is composed of two non-white columns from Cf .

If K [Kin] is Double-Black, according to the corresponding relation of P , there

is only one element in Dif [1 . . . L] that is suitable for it. This element can not

have already been explored, or K [Kin] can not appear in K [Kin . . . L]. If K [Kin] is

not Double-Black, according to the corresponding relation of P , we can obtain the

elements in Dif [1 . . . L] that are suitable for K [Kin]. We claim that these elements

from Dif [1 . . . L] can not have already been explored. If one of them has already

been explored, K [Kin] will be painted as Double-Black. So all of these elements stay

in Dif ∗ [1 . . . L∗] and are suitable for K [Kin].

5.4 An Illustrative Example

In this section, we use an AGV system proposed in [25] as our illustrative example.

This system has a bi-directional merge flow-path layout shown in Fig. 5.1 (with solid

arcs and bolded places). The corresponding Petri net model is shown in Fig. 5.2.

Tokens represent vehicles. The places p7, p8, p9 and p10 represent the zones that

65

cover the intersection of two or more paths. The initial marking of the Petri net is

[1 1 1 0 0 0 0 0 0 0]T .

Fig. 5.1. The bi-direction merge flow-path layout

For the purpose of collision-free, we require thatM (p7) ≤ 1, M (p8) ≤ 1, M (p9) ≤

1, and M (p10) ≤ 1. As a result, the matrix L introduced in [39] is a nearly identity

matrix and shown as follows.

L =


0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

 .

The vector b introduced in [39] is b = [1 1 1 1]T . By enforcing the above constraints on

the original system, a Petri net controller is derived based on the approach proposed

in [39] and is shown in Fig. 5.3. In particular, places pc7, pc8, pc9 and pc10 are con-

troller places and the dashed arcs are connections between these controller places and

the transitions in the original system (to enforce the constraints mentioned above).

66

Fig. 5.2. The corresponding Petri net model for Fig. 5.1

67

Fig. 5.3. The Petri net model with the controller

68

The initial marking of the controller is M(Pc7) = 1, M(Pc8) = 1, M(Pc9) = 1 and

M(Pc10) = 1.

It is not difficult to see that the Petri net in Fig. 5.2 has a state machine structure.

The incident matrix Bc of the Petri net controller is shown as follows.

Bc =


0 0 0 0 0 −1 −1 0 0 1 0 0

0 0 0 0 −1 0 0 −1 0 0 1 0

0 0 0 −1 0 0 0 0 −1 0 0 1

−1 −1 −1 1 1 1 0 0 0 0 0 0

 .

Note that there are four controller places, i.e., nc = 4 and there are twelve tran-

sitions, i.e., m = 12. In this example, suppose we would like to detect and identify

two place faults (i.e., we have d = 2), we pick up the prime p such that p = 7 > nc.

We randomly choose the original C matrix C0 as follows (α1 = 4, α2 = 2, α3 = 3 and

α4 = 1). Then we now get all necessary inputs for Algorithm 2.

C0 =


4 2 3 1

2 4 2 1

1 1 6 1

4 2 4 1

 ,

dif (1, 2) = 3, dif (1, 3) = 2, dif (1, 4) = 3,

dif (2, 3) = 4, dif (2, 4) = 3, dif (3, 4) = 4,

Dif [1 . . . 6] =
[
(2, 3) (3, 4) (1, 2) (1, 4) (2, 4) (1, 3)

]
,

k (1, 4) = 1, k (2, 4) = 1, k (3, 4) = 1,

k (1, 2) = 0, k (1, 3) = 0, k (2, 3) = 0,

K [1 . . . 6] =
[
(1, 2) (1, 3) (2, 3) (1, 4) (2, 4) (3, 4)

]
.

69

Notice that we have omitted the columns in Bc that belongs to Case 1 and 2 of

Proposition 5.3.2.

After the execution of Algorithm 2, we obtain that

Cf =


3 2 1 4

2 4 1 2

6 1 1 1

4 2 1 4

 .

With Cf , we obtain the results for (5.12) as

2d∑
i=1

m∑
j=1

sgn([CBc]ij) = 44.

With C0, we obtain the results for (5.12) as

2d∑
i=1

m∑
j=1

sgn([CBc]ij) = 46.

It is clear that 44 < 46 and after running the algorithm, we are able to obtain a

fault-tolerant Petri net controller with a smaller number of arc weights when summed

up, which illustrate the effectiveness of the proposed approach.

5.5 Summary

In this chapter, we proposed an approach for the design of fault-tolerant Petri

net controllers for large-scale dynamic systems. In particular, we considered multiple

faults detection and identification and developed an approximation algorithm to de-

sign such fault-tolerant controller to minimize the number of arcs in the redundant

controller. An example of the fault-tolerant controller design for an AGV system was

also provided to illustrate our approach.

70

6. SUMMARY

With the development of intelligent control strategies which simulate the human

decision-making process and the improvement of the computation capability of mi-

cro controllers in recent years, DES have received considerable attention from both

academy and industry. Among various DES models, Petri net is a hot research

topic and has many practical applications. The graphical representation of Petri nets

lends practitioners much convenience in modeling, analyzing, and controlling prac-

tical systems. The mathematical meaning under the graphical representation allow

researchers to use Petri nets as the platform to study plenty of theories. Thus the

research of Petri nets is quite important both in academy and industry.

6.1 Conclusions

In this thesis, we focused on three vital problems of Petri nets, namely, traffic sys-

tem modeling, transition firing sequence reconstruction, and fault-tolerant controller

optimization. For each problem, we used one chapter to discuss it. We conclude our

work on these three problems separately as follows.

6.1.1 Signalized Intersection Modeling Based on Timed Petri Nets

In Chapter 3, a two-layer timed Petri net model was proposed for the signalized

intersection in the microscopic sense. The first layer was the representation of the

intersection and the second layer was the representation of the traffic light system.

This model satisfied the modeling characteristics and requirements of the signalized

intersection as we stated before. We listed the definitions of places and transitions

in the above two Petri net representations. Based on these definitions, we described

71

the cooperation process between the two Petri net representations to simulate and

regulate the vehicle flow across the signalized intersection. The improvements of

such model in describing all three kinds of turning behaviors and avoiding deadlocks,

compared to the previous models, were also discussed.

6.1.2 Event Sequence Reconstruction of Sensor Networks Modeled by

Petri Nets

In Chapter 4, we proposed a methodology for reconstructing possible transition

firing sequences in a given Petri net based on asynchronous observations of the set

of sequences of token changes in its places. The observation of each marking change

sequence was assumed to be captured by a local sensor. Moreover, there was no

global timing so that each sensor only captured the order of local marking changes.

The original Petri net was partitioned into several subnets. The transition firing

sequence of each subnet can be reconstructed through some special local observers.

Based on the local observations from each sensor and each local observers, we devel-

oped an algorithm that was able to reconstruct all transition firing sequences that

were consistent with these observations and the structure of the Petri net. The pro-

posed algorithm proceeded in depth-first search fashion and iteratively reconstructed

possible transition firing sequences. The complexity of the algorithm was discussed,

too. An illustrative example was given to show the improvement of our algorithm

compared to the previous algorithm.

6.1.3 Optimization of Fault-Tolerant Controllers for Petri Net Models

In Chapter 5, we proposed an approach for the design of fault-tolerant Petri net

controllers for large-scale dynamic systems. Such redundancy was obtained through

adding additional places and arcs to the original controller. The necessary and suffi-

cient conditions for such redundant controllers not to interfere the normal operation

of the original controllers were also provided. We devised the fault-tolerant controllers

72

with multiple faults detection and identification ability. We developed an approxi-

mation algorithm to systematically design such fault-tolerant controller to minimize

the number of arcs in the redundant controller. An example of the fault-tolerant

controller design for an AGV system was also provided to illustrate our approach.

6.2 Future Work

Although our research about Petri nets in this thesis covers the complete process

to apply Petri nets to practical systems, i.e., modeling, monitoring, and optimization,

many research topics in this thesis are just the beginnings of a series of research work.

Some extensions of our research topics will make our Petri net methodologies more

suitable to practical systems. Other extensions may pioneer the new application fields

of Petri nets. We list the main future research directions following the work in this

thesis as follows.

6.2.1 Modular Modeling and Optimization of Traffic Networks

One of our future focuses on traffic system modeling is to model the road section

and combine the models of the signalized intersections and road sections to construct

the generic model of the traffic network. We will verify our model of the traffic

network through the simulation with some urban traffic data sets. Another research

direction on traffic system modeling is to apply some control strategies to achieve

different optimization purposes, such as the minimization of total vehicular delay and

the minimization of the traveling time of priority vehicles.

6.2.2 Optimal Division Strategy and Structure Utilization for Transition

Firing Sequence Reconstruction

The local observer corresponding to each subnet of the Petri net model reduces the

complexity of transition firing sequence reconstruction algorithm to a great extent.

73

If we can find certain optimal partition strategies of Petri nets, the complexity of

the algorithm can be reduced further. However, the searching work of the optimal

partition strategy for general Petri nets is quite labor-consumed. Then trying to find

some optimal partition strategies for certain special subclasses of Petri nets is a nice

entry point since we can make the best of the structural characteristics belonging to

such subclasses of Petri nets. The experience on subclasses of Petri nets is also likely

to lend us some inspiration for the research on general Petri nets.

6.2.3 Extension and Optimization of Fault-Tolerant Controller

Future extensions of the optimization algorithm for the fault-tolerant controllers

include the development of optimization algorithms based on other practically mean-

ingful criterions. We notice that the fault-tolerant ability of Petri net controllers is

enabled under the coding of Petri net states (markings). Then another important

future direction is to study other coding approaches (e.g., low-density parity-check

codes) to explore more efficient ways for multiple faults detection and identification.

Based on different coding schemes, we can develop other new optimization algorithms

again.

LIST OF REFERENCES

74

LIST OF REFERENCES

[1] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems,
vol. 11. Kluwer academic publishers, 1999.

[2] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of
the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[3] A. Bobbio, M. Gribaudo, and A. Horváth, “Modelling a car safety controller
in road tunnels using hybrid petri nets,” in Intelligent Transportation Systems
Conference, 2006. ITSC’06. IEEE, pp. 1436–1441, IEEE, 2006.

[4] F. Diana, A. Giua, and C. Seatzu, “Safeness-enforcing supervisory control for
railway networks,” in Advanced Intelligent Mechatronics, 2001. Proceedings. 2001
IEEE/ASME International Conference on, vol. 1, pp. 99–104, IEEE, 2001.

[5] H. Takahashi and K. Kuroda, “Intelligent vehicle control considering driver’s vi-
sual perception,” in Intelligent Transportation Systems, 1999. Proceedings. 1999
IEEE/IEEJ/JSAI International Conference on, pp. 252–257, IEEE, 1999.

[6] N. Wu and M. Zhou, “Modeling and deadlock avoidance of automated man-
ufacturing systems with multiple automated guided vehicles,” Systems, Man,
and Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 35, no. 6,
pp. 1193–1202, 2005.

[7] T. Nishi and Y. Tanaka, “Petri net decomposition approach for dispatching and
conflict-free routing of bidirectional automated guided vehicle systems,” Systems,
Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on,
vol. 42, no. 5, pp. 1230–1243, 2012.

[8] M. P. Fanti, “A deadlock avoidance strategy for agv systems modelled by
coloured petri nets,” in Discrete Event Systems, 2002. Proceedings. Sixth In-
ternational Workshop on, pp. 61–66, IEEE, 2002.

[9] Y. Luo and J. Tsai, “A graphical simulation system for modeling and analysis
of sensor networks,” in Multimedia, Seventh IEEE International Symposium on,
IEEE, 2005.

[10] R. AdiMallikarjuna, A. Kumar, and D. Janakiram, “e-petri net model for pro-
gramming integrated network of wireless sensor networks and grids,” in Com-
puter and Information Technology, 2007. CIT 2007. 7th IEEE International Con-
ference on, pp. 1038–1043, IEEE, 2007.

[11] V. Devarashetty, J. J. Tsai, L. Ma, and D. Zhang, “Modeling a secure sensor
network system using an extended elementary object system,” in Cognitive In-
formatics, 2008. ICCI 2008. 7th IEEE International Conference on, pp. 67–74,
IEEE, 2008.

75

[12] C.-H. Kuo and J.-W. Siao, “Petri net based reconfigurable wireless sensor net-
works for intelligent monitoring systems,” in Computational Science and Engi-
neering, 2009. CSE’09. International Conference on, vol. 2, pp. 897–902, IEEE,
2009.

[13] D. He, L. Cui, H. Huang, and M. Ma, “Design and verification of enhanced
secure localization scheme in wireless sensor networks,” Parallel and Distributed
Systems, IEEE Transactions on, vol. 20, no. 7, pp. 1050–1058, 2009.

[14] A. Shareef and Y. Zhu, “Energy modeling of wireless sensor nodes based on
petri nets,” in Parallel Processing (ICPP), 2010 39th International Conference
on, pp. 101–110, IEEE, 2010.

[15] J.-S. Lee, “A petri net design of command filters for semiautonomous mobile
sensor networks,” Industrial Electronics, IEEE Transactions on, vol. 55, no. 4,
pp. 1835–1841, 2008.

[16] L. Li, C. N. Hadjicostis, and R. S. Sreenivas, “Designs of bisimilar petri net
controllers with fault tolerance capabilities,” Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, vol. 38, no. 1, pp. 207–
217, 2008.

[17] Y. Qu, L. Li, Y. Chen, and Y. Dai, “Fault-tolerant controller design using petri
nets with minimum initial state specifications,” in Networking, Sensing and Con-
trol (ICNSC), 2010 International Conference on, pp. 189–194, IEEE, 2010.

[18] Y. Qu, L. Li, Y. Chen, and Y. Dai, “Optimal design of fault-tolerant petri
net controllers,” in American Control Conference (ACC), 2010, pp. 2607–2612,
IEEE, 2010.

[19] J. Yan and L. Li, “Fault-tolerant controller design for automated guided vehicle
systems based on petri nets,” in Intelligent Transportation Systems (ITSC), 2012
15th International IEEE Conference on, pp. 1531–1536, IEEE, 2012.

[20] L. Li and C. N. Hadjicostis, “Reconstruction of transition firing sequences based
on asynchronous observations of place token changes,” in Decision and Control,
2007 46th IEEE Conference on, pp. 1898–1903, IEEE, 2007.

[21] G. Frey, “Automatic implementation of petri net based control algorithms on
plc,” in American Control Conference, 2000. Proceedings of the 2000, vol. 4,
pp. 2819–2823, IEEE, 2000.

[22] J. Júlvez and R. Boel, “Modelling and controlling traffic behaviour with contin-
uous petri nets,” in Proc. 16th IFAC World Congress, 2005.

[23] J. Júlvez and R. K. Boel, “A continuous petri net approach for model predictive
control of traffic systems,” Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 40, no. 4, pp. 686–697, 2010.

[24] A. Di Febbraro, D. Giglio, and N. Sacco, “Urban traffic control structure based
on hybrid petri nets,” Intelligent Transportation Systems, IEEE Transactions
on, vol. 5, no. 4, pp. 224–237, 2004.

[25] S. Hsieh and Y.-J. Shih, “Automated guided vehicle systems and their petri-
net properties,” Journal of Intelligent Manufacturing, vol. 3, no. 6, pp. 379–390,
1992.

76

[26] A. Di Febbraro, D. Giglio, and N. Sacco, “Modular representation of urban traffic
systems based on hybrid petri nets,” in Intelligent Transportation Systems, 2001.
Proceedings. 2001 IEEE, pp. 866–871, IEEE, 2001.

[27] A. Di Febbraro and D. Giglio, “On representing signalized urban areas by means
of deterministic-timed petri nets,” in Intelligent Transportation Systems, 2004.
Proceedings. The 7th International IEEE Conference on, pp. 372–377, IEEE,
2004.

[28] A. Di Febbraro and D. Giglio, “On adopting a petri net-based switching mod-
elling system to represent and control urban areas,” in Intelligent Transportation
Systems, 2005. Proceedings. 2005 IEEE, pp. 185–190, IEEE, 2005.

[29] A. Di Febbraro and D. Giglio, “Traffic-responsive signalling control through a
modular/switching model represented via dtpn,” in Intelligent Transportation
Systems Conference, 2006. ITSC’06. IEEE, pp. 1430–1435, IEEE, 2006.

[30] A. Di Febbraro and D. Giglio, “Urban traffic control in modular/switching
deterministic-timed petri nets,” in Control in Transportation Systems, vol. 11,
pp. 153–158, 2006.

[31] A. Di Febbraro, N. Sacco, and D. Giglio, “On using petri nets for representing
and controlling signalized urban areas: New model and results,” in Intelligent
Transportation Systems, 2009. ITSC’09. 12th International IEEE Conference
on, pp. 1–8, IEEE, 2009.

[32] J. Yan, L. Li, and D. S. Kim, “Reconstruction of event sequences based on asyn-
chronous observations in sensor networks,” in Proceedings of the 7th International
Conference on Ubiquitous Information Management and Communication, ACM,
2013.

[33] S. Lin and D. J. Costello, “Error correcting coding: Fundamentals and applica-
tions,” 1983.

[34] J. Yan and L. Li, “Microscopic modeling of a signalized intersection using timed
petri nets.” submitted, 2013.

[35] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, Artificial
intelligence: a modern approach, vol. 2. Prentice hall Englewood Cliffs, NJ, 1995.

[36] Y. Wu and C. N. Hadjicostis, “Algebraic approaches for fault identification
in discrete-event systems,” Automatic Control, IEEE Transactions on, vol. 50,
no. 12, pp. 2048–2055, 2005.

[37] Y. Wu and C. N. Hadjicostis, “Non-concurrent fault identification in discrete
event systems using encoded petri net states,” in Decision and Control, 2002,
Proceedings of the 41st IEEE Conference on, vol. 4, pp. 4018–4023, IEEE, 2002.

[38] U. Dudley, Elementary number theory. W. H. Freeman and Company, 1969.

[39] K. Yamalidou, J. Moody, M. Lemmon, and P. Antsaklis, “Feedback control of
petri nets based on place invariants,” Automatica, vol. 32, no. 1, pp. 15–28, 1996.

	ETDForm9 (Printable)
	thesis

