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Baindu L. Bayon 

	

TRANSCRIPTION FACTOR REGULATION OF AMYLOID-BETA PATHWAY 

GENES BY SP1-MODULATING COMPOUNDS: A NOVEL APPROACH IN 

ALZHEIMER’S DISEASE 

Alzheimer's disease (AD) is a neurodegenerative disorder characterized 

by the presence of neuritic plaques consisting of extracellular amyloid-beta (Aβ) 

and neurofibrillary tangles comprised of hyperphosphorylated microtubule 

associated tau. Aβ is produced following the cleavage of amyloid precursor 

protein (APP) by the enzyme BACE1.  Transcription factors (TFs) are proteins 

involved in the regulation of gene transcription.  Expression levels of some TFs 

are perturbed in AD.  SP1 binding sites on both the APP and BACE1 promoters 

implicate its potential role in AD. Aβ peptide itself mediates activation of cyclin-

dependent kinase 5 (CDK5), an enzyme which phosphorylates the FOXO 

(Forkhead Box) TFs.  In order to study mechanisms of TF regulation of Aβ 

production in human models, neuronally differentiated cells as well as a primary 

human neurosphere culture were used to test the effects of TF-modulating 

compounds.  Our hypothesis is that by targeting relevant TFs via 

pharmacological inhibitors in human cells, BACE1 activity or APP expression will 

decrease and Aβ production will be reduced as a result.   

To test the involvement of TFs in the regulation of APP, we treated several 

mammalian cells lines and post-mitotic human neuronal cells with roscovitine, 

mithramycin A (MTM), MTM analogs (MTM-SDK, MTM-SK), and tolfenamic acid 
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(TA).  MTM and TA treatment of neurons differentially activated several TFs 

implicated in AD.  Treatment of differentiated neurospheres with MTM led to a 

significant decrease in APP and SP1 expression along with Aβ40 levels. 

Epigenetic mechanisms involve alteration of the binding affinity between DNA 

and transcription factors.  We predict that modulation of these TFs may be 

influenced by epigenetic modifications.  To test the effects of drugs on epigenetic 

markers, histone deacetylase (HDAC) and DNA methyltransferase (DNMT) 

activity was measured. MTM-SDK significantly decreased DNMT activity in 

differentiated neuroblastoma cells, this may enhance or decrease the ability of 

SP1 to bind to target DNA and affect transcription of BACE1 or APP.   

Targeting TF activity is a novel means to manipulate the amyloid pathway. 

Compounds modifying TF binding to sites on the BACE1 or APP promoters may 

provide a means to limit the production of amyloid-beta and slow the symptoms 

of AD. 

Debomoy K. Lahiri, Ph.D., Chair 
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I. Introduction 

Alzheimer’s disease (AD) is a major cause of death in the United States.  

The ways by which BACE1 is regulated likely plays a significant role in the way 

levels of amyloid-beta (Aβ) in the brain are controlled and therefore the 

symptoms of AD. BACE1 activity could play a critical role in the development of 

AD and may be an excellent drug target. Currently available BACE1 inhibiting 

drugs have been unsuccessful due to their many off-target effects. Widely used 

neuroscience models for AD study include cells derived from rodent or malignant 

sources.  We aim to focus on not simply globally blocking activity of BACE1, but 

on controlling how the expression of BACE1 and APP is regulated by 

transcription factors in dividing and non-dividing cells, including a novel primary 

human brain model, differentiated neurosphere culture.  Although it is known that 

SP1 is essential in the regulation of BACE1, the precise mechanism is not clear.  

It is imperative that the molecular mechanism related to transcription factor-

modulated reduction of amyloid pathway genes be understood in order to 

manipulate these effects on Aβ production.  Aβ peptide itself mediates activation 

of cyclin-dependent kinase 5 (CDK5), which phosphorylates the FOXO 

transcriptions factors.  We believe that SP1 and CDK5 dysregulation are key 

players in the production of Aβ.  Our hypothesis is that by targeting relevant 

transcription factors via both gene silencing and pharmacological inhibitors in 

human cells, BACE1 activity or APP expression will decrease and Aβ production 

will be reduced as a result.  The rationale for these studies is that this work will 

provide evidence for transcription factors as possible mechanistic targets for AD 
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study while also providing evidence for the value of a new cell culture model for 

the study of neurodegenerative diseases as a whole. 

A. Alzheimer’s disease & the amyloid hypothesis 

Alzheimer’s disease (AD) is the most common form of dementia in the 

elderly population of the United States [1]. AD is a progressive, 

neurodegenerative disorder characterized by loss of cognition and memory, 

personality changes, decline in physical capacity, and eventually leads to loss of 

life [2].  More Americans are surviving into their 80s and 90s, which has led to an 

increased interest among scientists to investigate diseases seen in the elderly as 

well as elucidating better treatments and potential cures. The segment of the 

American population over 65 is expected to grow drastically with the “baby 

boomer generation” having entered this stage in 2011.  Longer life expectancies 

and the aging baby boomers will dramatically increase the number of individuals 

at the highest risk of developing AD by 13 million people [3].  AD is currently the 

6th-leading cause of death in the United States [4].  It is difficult to accurately 

determine the number of deaths that are caused by AD because of the way the 

cause of death may have been recorded.  There is still a “blurred distinction 

between death with dementia and death from dementia [5].”  It is likely that AD is 

a contributing factor in the deaths of more patients than is actually reported by 

the Center for Disease Control.  Many patients with AD die from the disease itself 

or from conditions which AD caused, such as pneumonia.  Deaths attributed to 

AD increased 68% between 2000 and 2010, which is more than those attributed 

to heart disease [6].  The progression of AD can be quite variable among 
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patients.  Some patients over 65 survive four to eight years after diagnosis, while 

others may live up to 20 years with AD [7-10].  This is consistent with the slow, 

latent nature of this disease.  This insidious characteristic of AD is particularly the 

cause of the public health burden of the disease.  Most of the time patients spend 

in the severe stages of the disease require round-the-clock care, often in a 

nursing home or by unpaid caregivers [11].  The death rates for AD increase 

dramatically with age, which reflects the lack of effective treatments or a cure for 

this devastating illness. 

AD pathology is believed to result from the multiple factors including 

genes, the environment, as well as epigenetic mechanisms. The major 

pathological hallmarks of AD are extracellular amyloid plaques made up of 

fibrillar amyloid-β (Aβ) peptide and intracellular neurofibrillary tangles made up of 

hyperphosphorylated tau [12].  Synaptic loss is also a key pathological finding 

that correlates with the cognitive impairment seen in AD [13].  Importantly, the 

dysregulation of the production of the 40-42 amino acid-long Aβ peptides have 

been identified as an underlying cause of the formation of senile plaques 

observed in the brains of AD patients. Histologically, these Aβ peptide plaques 

are most pronounced in the hippocampus and cerebral cortex of the brain which 

represent regions critical to AD pathology [14]. To date, the deposition of Aβ in 

senile plaques at autopsy represents an important diagnostic criterion for AD 

pathology.  This project is aimed to address the hypothesis that the production of 

Aβ and its precursor (APP) can be modeled and studied in vitro in terms of 

neurobiology, transcription factor activation, and pharmacological effects. 
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i. The genetic basis of Alzheimer’s disease 

 Early-onset AD (EOAD) develops before the age of 65 and late-onset AD 

(LOAD; sporadic AD) develops after 65 years [15].  EOAD is caused by dominant 

mutations in APP, PSEN1, and PSEN2.  Sporadic AD has a genetic component 

of up to 60%-80%, however progression, disease severity, and onset are highly 

influenced by environmental factors as well [16].  

ii. Amyloid plaque formation pathways 

The rate-limiting step in the production of Aβ is the processing of amyloid- 

β precursor protein (APP) by a β-secretase, specifically β-site APP-cleaving 

enzyme (BACE1). Understanding the regulatory processes that modulate APP 

expression due to its direct role in the production of the precursor Aβ peptide is a 

key aim in proving the amyloid hypothesis.  However, these regulatory 

mechanisms that affect APP production still remain unclear. According to the 

“amyloid hypothesis,” AD is the result of the misregulation of the production or 

turnover of Aβ [17, 18].  There are mutations that may change how APP is 

cleaved to produce Aβ [19].  A key finding supporting the hypothesis is that most 

cases of EOAD are due to an increased ratio of the more toxic Aβ42 than Aβ40 

peptide [19, 20].  There is increased Aβ42 production when there are autosomal 

dominant mutations in the genes for APP, presenilin 1 (PSEN1), and presenilin 2 

(PSEN2) in EOFAD [21].  Furthermore, the late-onset AD risk factor, APOE-ε4, 

influences both Aβ clearance and its cerebral oligomerization [22].  In addition, 

individuals with Down’s syndrome with an increased dosage of the APP gene 

located on chromosome 21 overproduce Aβ42 and develop EOFAD [23].  
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Extracellular Aβ42 is known to be toxic to synapses and neurites by reducing 

synaptic plasticity and altering synaptic function in AD [24-26].   

iii. BACE1 dysregulation in Alzheimer’s disease 

One of the initial steps in the production of Aβ is the processing of APP by 

the aspartic protease BACE1.  APP is a type I membrane protein that is 

processed by three proteases (α-, β-, and γ-secretase) in two distinct pathways 

that are both part of normal processing: the amyloidogenic and the non-

amyloidogenic pathway.  Cleavage of APP by BACE1 at the N-terminus of the 

Aβ-domain yields secreted sAPPβ and a C-terminal fragment of APP (C99).  C99 

then is further processed by γ-secretase which leads to Aβ peptide secretion and 

generation of the C-terminal fragment (CTF) of APP [27].  This is the 

amyloidogenic pathway and the focus of this work (Figure 1).  .  Most γ-secretase 

cleavage occurs after residue 40, resulting in Aβ40 peptide.  Less commonly, 

however, cleavage occurs after residue 42.  This Aβ42 peptide is more 

hydrophobic and has a higher tendency to aggregate than Aβ40, which makes it 

the key component of amyloid plaques [28].  

Mice lacking BACE1 or γ-secretase do not produce Aβ or have cognitive 

deficits, making both secretases attractive drug targets [29-31].  Although BACE1 

is expressed ubiquitously, there are higher expression levels detected in neurons 

that have increased BACE1 activity [32].  BACE1 exhibits tissue-specific 

expression with the highest levels in the pancreas, then brain [33].  Brain BACE1 

expression is most profound in the hippocampus, a region known to have high 

expression of APP and Aβ.  Interestingly, BACE1 mRNA and protein levels can 
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also be detected in brain areas which lack APP and almost never produce Aβ 

[34, 35].  This may indicate other functions of BACE1 in other parts of the brain.  

BACE1 also has other transmembrane protein substrates besides APP including 

low-density lipoprotein receptor-related protein (LRP), β-amyloid precursor-like 

protein-1 (APLP1), β-amyloid precursor-like protein 2 (APLP2), the voltage-gated 

sodium channel β2 subunit (Navβ2), STGGal I, P-selectin glycoprotein ligand-1 

(PSGL-1), neuregulin-1(NRG1) and neuregulin-3 (NRG3) [36-44].  

Understanding these substrates and their functions is critical for understanding 

potential toxicity that could arise from inhibiting BACE1.  BACE1 mRNA and 

protein levels remain stable in human brain during aging, but BACE1 enzymatic 

activity is increased [45].  BACE1 protein levels and activity are both elevated in 

AD brain [46-48].  This increased BACE1 activity in AD brain correlates with 

reduced α-secretase activity [49].  BACE1 also is responsible for maintaining the 

balance of astrogenesis and neurogenesis in the hippocampus [50]. 

In rodents, the deletion of BACE1 prevents the production of Aβ and 

reduces AD-related symptoms [31]. However, the changes seen in BACE1 null 

mice are associated with subtle and transient defects that are actually restored 

later on in development [51].  These findings suggest that these behavioral 

effects are mostly significant during development, but not during mature stages 

of life [52]. Therefore, in addition to a pathological endpoint of AD, BACE1 

regulation likely represents an attractive drug target for treatment of AD 

pathogenesis. BACE1 is chiefly an attractive drug target because it is the rate-

limiting enzyme for Aβ production in cells [32].  There is also genetic evidence for 
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the role BACE1 plays in AD.  The Swedish double mutation responsible for a 

familial form of AD is located very close to the BACE1 cleavage site [28].  BACE1 

also cleaves this Swedish mutant APP 10- to 100-fold more efficiently than wild-

type APP [53, 54].  The 5’ UTR and the promoter region of BACE1 contain many 

transcription factor binding sites, such as nuclear factor (NF)-κB, signal 

transducer and activator of transcription (STAT1), and specificity protein 1 (SP1) 

[55, 56].  These regulatory elements and sites for regulation by transcription 

factors allow for further examination into how the BACE1 promoter specifically is 

involved in AD pathogenesis.  The BACE1 gene is located on chromosome 

11q.23.3.  It contains 9 exons and eight introns from a 30.6 kb region [57].  A 4.1 

kb promoter sequence (rising crosshatch) and a 5’ UTR (horizontal bars) are also 

present (Figure 2).  BACE1 expression is high in neuronal cells and has been 

well correlated with Aβ production.  Development of techniques to better 

understand the complex regulatory unit of the BACE1 gene and inhibit BACE1 

activity could be essential in reducing levels of Aβ and slowing AD pathogenesis. 
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Figure 1. Amyloid-beta production in AD.  The amyloid precursor protein 

(APP) is a transmembrane protein of 695, 751, or 770 amino acids depending 

on alternative splicing.  The most understood post-translational modification of 

APP is proteolytic cleavage by secretases, and in the production of Aβ, these 

secretases are BACE1 and γ-secretase. BACE1 cleaves APP at the β-

secretase site.  Source: Bayon, B.L. in preparation. 
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Figure 2.  Scale Schematic of BACE1 Genomic Sequence. Located on 

chromosome 11q23.  Indicating a 4.1 kb promoter sequence (rising cross-

hatch), a 5’-UTR (horizontal bars), nine exons (vertical lines), eight introns 

(horizontal line), and a 3’-UTR/terminator region of up to 4 kb (falling cross-

hatch). Lahiri et. al. 2006. J. Mol. Neurosci. 29; 65-80. Lahiri et. al. 2006. Curr. 

Alzheimer Res. 3(5): 475-483. 
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iv. APP dysregulation in Alzheimer’s disease  

Since its identification in 1987 by independent laboratories, many APP 

mutations have been identified that are associated with familial AD [58]. For 

instance, duplication or triplication of APP gene (seen in trisomy 21) leads to 

early-onset AD. Additionally, APP-deficient mice do not show notable changes 

other than decreased body mass, increased weakness of the extremities with 

increasing age, and gliosis of the brain [59].   

v. CDK5 dysregulation in Alzheimer’s disease 

Aβ peptide itself mediates activation of cyclin-dependent kinase 5 (CDK5) 

which is activated and localized to the cell membrane under physiological 

conditions [60]. CDK5 has been implicated in brain development, neuronal 

survival, learning and memory formation [61].  It is known that CDK5 is 

dysregulated in AD [62].  Aβ may over-activate CDK5, which can result in 

reactivation of the cell cycle and apoptosis in post-mitotic neurons [60].  CDK5 

activity can also result in phosphorylation of the tau protein [63].  The forkhead 

transcription factors (FOXO) have been implicated in many cellular processes.  It 

has been demonstrated that FOXO1 phosphorylation is lost in CDK5-deficient 

post-mitotic neurons [64].  CDK5 directly phosphorylates FOXO3 in the brain, 

leading to increased nuclear translocation of FOXO3 [65].  Activated FOXO3 

increases Aβ42 levels, which shows a relationship between phosphorylation of 

FOXO3 by CDK5 and AD [65]. This activation of the FOXO TFs Aβ could be 

targeted to treat AD.   
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B. Treatment of Alzheimer’s disease 

i. Current available treatments of Alzheimer’s disease 

There are three major therapeutic targets in the amyloid pathway to 

manipulate Aβ production: reduction of APP production, BACE1 inhibition, and γ-

secretase inhibition.  However, most of the treatments currently available for AD 

mostly aim to treat the late-stage symptoms of the disease.  There are no 

therapies which prevent or will delay the age of onset of AD [66].  Of all 

treatments yet developed for AD, none significantly change the course of the 

disease.  No drugs are available which target the APP processing pathway and 

Aβ production [28].  Many therapies are based on the idea that the cholinergic 

neurons undergo substantial progressive degeneration in AD [67, 68].  The 

development of cholinesterase inhibitors has been the focus of many 

pharmaceutical companies and in fact some have been approved by the US 

Food and Drug Administration (FDA) including donepezil, rivastigmine, and 

galantamine [69].  These therapies however are associated with small 

improvements in the symptoms associated with this devastating disease.  This 

has led to the need for alternative strategies for potential treatments.  An 

example of a new strategy is the targeting of microRNA (miRNA) to modulate 

AD-related gene expression [70].  It has been shown that miR-101 reduces APP 

levels in human cells [70].  Drug delivery is a key hurdle as there is not yet a 

delivery system that could get miRNAs to the cell population of interest.  Strides 

are being made by adding specific chemical modifications such as conjugation of 

lipid moieties to miRNA molecules to target the liver [71], but not yet to the brain.   
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Drug development failures include the non-steroidal anti-inflammatory 

agent (NSAID) tarenflurbil, and acetylcholinesterase inhibitors metrifonate and 

phenserine [72].  Semagacestat, a γ-secretase inhibitor, had to be pulled during 

Phase III trials due to side effects as well [73].  Another γ-secretase inhibitor, 

Avagacestat, made it to Phase II trials before being terminated due to clinical 

worsening [74].  From these studies, it seems focusing on a γ-secretase 

inhibition is unlikely to result in a viable drug treatment for AD.  Recently, the 

failure of Eli Lilly’s β-site APP-cleaving enzyme (BACE1) targeting drug 

LY2886721 made national headlines for its off-target effects on liver function [75]. 

However, it is not clear whether this toxicity was directly caused by BACE1 

inhibition [75].  Most recently, the November 2016 failure of solanezumab in 

phase 3 trials, cast further doubt on the amyloid hypothesis.  This drug, a 

monoclonal antibody, was designed to promote clearance of Aβ [76] and slow the 

progression of the disease [77].  There is a need to identify new drug targets in 

the preclinical setting, which may require reevaluation of current treatment 

agents or development of new model systems. 

ii. Treatment modalities under development in Alzheimer’s disease 

Emerging therapies include Aβ removal by immunization or intravenous 

immunoglobulins (IVIg), decreasing Aβ production, blocking Aβ signaling, and 

blocking tau-mediated toxicity [69].  Transcription factors themselves can be 

difficult drug targets as they can be involved in the regulation of several genes.  

However, modulating a transcription factor such as SP1 with tissue-specific 
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expression in the brain could produce a moderate decrease in BACE1 activity 

that could benefit AD patients in combination with other therapies. 

C. Transcription factors as druggable targets 

Transcription factors (TFs) as so-called “druggable” targets has been long 

debated.  The idea that a drug may regulate several genes by changing their 

activity may lead to many unwanted side effects.  TFs bind to specific sequences 

present within promoters, enhancers, and other regulatory regions of DNA, which 

is negatively charged. This means that TFs tend to be very positively charged 

and compounds targeting them would need to be negatively charged. Charged 

molecules do not easily cross cellular membranes, which makes them less than 

ideal for clinical practice.  There are, however, several advantages of targeting 

transcription factors in lieu of more conventional drug targets.  Specificity protein 

1 (SP1) is a transcription factor (TF) expressed in brain and involved in neuronal 

survival that may be dysregulated in Alzheimer’s disease (AD).  We aim to 

propose the continued study of SP1 as a transcription factor to target in AD.  

SP1, SP1-modulating drugs, their structures, and their effect of genes of the 

amyloid pathway are discussed in the following sections.   

i. Role of SP1 in Alzheimer’s disease 

The BACE1 promoter contains a number of transcription factor binding 

sites [55].  SP1 is a human transcription factor that binds to G-C rich motifs and 

can act as a repressor or as an activator.  SP1 regulates the transcription of a 

number of genes involved in a number of processes.  To better understand the 

mechanism of BACE1 gene expression and the relationship to SP1, Christensen 
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et. al. examined several cis-acting elements in the 5’ flanking region [78].  They 

demonstrated via transcriptional activation and gel shift assays that the BACE1 

promoter contains a functional SP1 response element.  They were also able to 

show that overexpression of Sp1 potentiates BACE1 expression and therefore 

generation of Aβ (Figure 3).  The BACE1 gene promoter was cloned and the 

transcription start site was mapped using a 5’ genome walking strategy and a 

primer extension assay.  Sequence analysis showed that the BACE1 gene had a 

complex transcriptional unit with a possible SP1 site.  This region, when deleted, 

showed marked BACE1 gene promoter activity.  Gel shift assays were performed 

to confirm whether or not this region was an SP1 site or not.  The gel shift assay 

showed the presence of an SP1 binding element at bp-911.  Deletion of this 

binding element from the BACE1 gene promoter resulted in a significant 

decrease in luciferase activity in a human embryonic kidney cell line (HEK293T).  

They performed experiments in a rat pheochromocytoma cell line (PC12), and 

deletion of the SP1 binding site again reduced the promoter activity as was seen 

in HEK293T.  The SP1-binding inhibitor mithramycin A (MTM) was used to treat 

cells since it has been shown to inhibit SP1 binding to DNA.  Treatment with 

MTM for 48 hours resulted in a significant reduction in BACE1 promoter activity 

in both a dose and time dependent manner (Figure 3).  They were also able to 

show that SP1 plays a critical role in the transcriptional regulation of the BACE1 

gene in humans by using SP1-/- ES cells (from SP1-KO mice).  Activation of 

BACE1 promoter activity was markedly reduced compared to that of wild type.  

This observation also demonstrated that SP1 is required for the BACE1 gene to 
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be properly transcribed.  To discover whether this requirement has an effect on 

APP processing and Aβ production, levels of BACE1, APP C99 (the major 

BACE1 cleavage product) and Aβ were analyzed in stably APP695-transfected 

HEK293 cells.  This stable cell line was then transfected with SP1 cDNA and 

then cells were treated with MTM.  MTM drastically reduced the generation of 

APP, C99, and Aβ.  These results suggest that inhibition of SP1 by MTM down 

regulates BACE1 expression and that BACE1 is a downstream target of SP1.   

Basha et al. were able to induce a robust and long-lasting increase in SP1 

expression in rats exposed to lead during the prenatal stage [79].  This protracted 

induction resulted in an increase in APP expression and Aβ production thus 

linking amyloidogenesis and SP1.  Studies outlined in this work look to expand 

on these findings by investigating mechanism of the effect SP1 inhibition of 

BACE1 expression has in human neurons.     
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Figure 3. Overexpression of SP1 in HEK293T cells increases BACE1 and 

Aβ; treatment with an SP1 inhibitor decreases BACE1 and Aβ. Christensen 

MA, Zhou W, Qing H, Lehman A, Philipsen S, Song W. 2004. Transcriptional 

regulation of bace1, the beta-amyloid precursor protein beta-secretase, by 

SP1. Molecular and cellular biology 24:865-874. 
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ii. The latent early-life regulation model: An epigenetic framework for 

transcription factor regulation of late-onset neurodegenerative 

disease 

The latent early-life associated regulation (LEARn) model provides specific 

mechanisms to predict targets for late-onset disorders such as AD [46].  This 

model is based on the environmental induction of dormant epigenetic changes 

[47].  LEARn explains idiopathic disorders on the basis of accumulation of ‘hits’ 

throughout life. Hits may be environmental, genetic or epigenetic [80]. After 

accumulating additional environmental insults, disease develops later in life.  

Proteins that are susceptible to this phenomenon can be called “LEARned [48]” 

This theory proposes that a first hit occurs early in life [47].  This could simply be 

an exposure to an environmental toxin, change in nutrition, or head trauma [49, 

50, 53, 54].  This exposure leads to stress than causes a change in regulatory 

sequences of the gene at some important, developmental stage of life.  This so-

called hit is maintained epigenetically (i.e. methylation or oxidation of DNA) 

during a latency period for what could be many years [46].  During this period of 

time, normal gene expression is observed and there are no phenotypic 

manifestations of the first hit.  Eventually, a second hit (i.e. exposure to metals, 

dietary factors) occurs and becomes an additional stressor.  This causes the 

accelerated loss of function of this gene expression and the threshold of disease 

and symptom development is crossed.  LEARn proposes a sort of intermediate 

step between genotype and phenotype. The environment induces this epigenetic 

modification of a gene to produce a “somatic epitype [54].” This somatic epitype 
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determines gene expression levels which correspond to the pathological state 

(Figure 4).  Therefore, the LEARn model operates through the regulatory region 

or promoter of a gene.  Basha et. al. demonstrated that rats exposed to lead (Pb) 

early in life showed a transient increase in APP expression, yet a delayed 

overexpression 20 months after exposure had ended [79].  This late increase in 

expression also correlated with an increase in SP1 activity.  They also observed 

that APP expression, SP1 activity, and Aβ levels did not respond to Pb exposure 

later on in life.  This suggests that these environmental influences that occur 

during development have a unique effect on amyloidogenesis later in life.  They 

profiled a number of transcription factors after developmental exposure to Pb 

including SP1 by performing a macroarray screen on postnatal day 5.  Postnatal 

day 5 is the day in rats that correlates with the highest APP levels.  SP1 levels 

were highly induced following Pb exposure.  Lifelong SP1 binding was then 

monitored.  SP1 DNA-binding increased dramatically 20 months after Pb 

exposure had ceased.  We propose that most AD cases would follow a LEARn 

etiology and specifically, that SP1 is a “LEARned” protein.  Although these 

studies are critical and quite informative in discovering the connection between 

APP, SP1, Pb, and Aβ levels, they are limited as they do not address these 

interactions in a human model.  Studies outlined in this work specifically address 

this limitation as some studies will be conducted in differentiated neurospheres 

derived from human fetal brain tissue.   
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Figure 4.  The latent early-life associated regulation model.  

(A) Genetic pathway for a ‘purely’ genetic disorder, such as Alzheimer’s 

disease (AD) due to familial dominant mutation. AD-associated genes’ DNA 

sequence variant determines the disease state. (B) Development of disease 

via LEARn pathway. A primary ‘hit’ between conception and a critical 

developmental time point leads to latent epigenetic changes. If followed by 

subsequent ‘hits’, accumulated risk factor effects will reach clinical disease 

state as in the sporadic AD. (C) LEARn pathway across generations: t-LEARn. 

Similar to LEARn progression except the original ‘hit’ has occurs in an earlier 

generation and is transmitted asymptomatically by epigenetic inheritance. (D) 
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Remediation pathway or ‘Averted’ LEARn. Given that many epigenetic marker 

states can be altered by environmental factors, including nutrition and drugs, 

the possibility exists that one or more of the effects of a given ‘hit’ may be 

reversed by these means. Should this occur, accumulated effects will not reach 

clinical disease [80].  
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iii. Transcription factor modulating compounds 

a. Mithramycin A 

Mithramycin A  (MTM) is a natural aureolic acid-type aromatic polykeditde 

antibiotic produced by various species of Streptomyces [81].  MTM binds GC-rich 

regions within the DNA minor groove and displaces SP1 family proteins from the 

binding sites of many genes [82].  MTM displaces SP1 from sites on the 

promoters of several oncogenes, which has made it an extensively studied 

chemotherapeutic agent for years [83].  By displacing SP1 from its binding sites 

on oncogene promoters, MTM induces apoptosis via down-regulation of myeloid 

cell leukemia-1 (Mcl-1) [84].  Sleiman et al. were able to show via promoter 

analysis and chromatin immunoprecipitations that MTM does not displace SP1 or 

SP3 from every promoter in neurons, illustrating that MTM is able to selectively 

displace SP1 at some sites and not others [83].  MTM diffuses rapidly into 

neuroblastoma cells to bind to DNA [85].  The affinity MTM has for GC-rich 

sequences and its ability to compete with SP1 for binding to BACE1 promoter 

DNA are two factors influencing its pharmacological potential in AD.  MTM is a 

tricyclic chromophore with a hydrophilic side chain at the 3-position [83].  Multiple 

acyl-CoA units proceed through type II polyketide synthase (PKS) mediated 

condensation to form demethylpremithramycinone and premithramycinone.  

Premithramycinone is glycosylated, then C-methylated to form premithramycin B.  

The fourth ring is cleaved, the 4’-keto group is decarboxylated and reduced 

catalyzed by oxygenase MtmOIV and ketoreductase MtmW [86].  MTM is FDA 

approved for treatment of testicular cancer and leukemia [83].  Other applications 
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for MTM use include Paget bone disease and hypercalcemia [87, 88].  MTM 

shows promise in the treatment of glioblastomas, inhibition of the Friend 

leukemia virus integration 1 (EWS-FLI1) transcription factor in pancreatic cancer, 

and in the inhibition of the multi-drug resistance efflux pump MDR1 [89-91].  

Because MTM inhibits SP1 interaction with binding sites of SV40 and c-myc 

promoters, it also has a potential role in AIDS therapy [92]   

A few studies have shown that MTM can enhance neuronal survival.  

Chatterjee et al. showed that MTM is able to suppress neuronal apoptosis as a 

result of DNA damage or oxidative stress while not affecting global protein 

synthesis [93].  MTM has been shown to improve behavior and increase survival 

of Huntington’s disease (HD) mice [94, 95]. Studies also suggest that MTM can 

protect against dopaminergic neurotoxicity in mice after the administration of 

methamphetamine [96].  The protective effects MTM has in neurons may derive 

from a reduction in SP1 binding promoters of typically associated with cancer 

[83].  There is a reduction in the expression of these select oncogenes that 

“covaries with a biological phenotype of neuroprotection in neurons” [83].  

Inhibition of Myc, c-Src, Erk, and Raf protects neurons [83, 97-101].  There may 

be a mechanistic connection between neurodegenerative and oncogenic 

pathways.  Mutations in APP can not only lead to AD, but also leukemia [102].  

The Cdc42/Rac and retinoblastoma p130 oncogenic pathways have also been 

shown to contribute to AD [103, 104].  If MTM is functioning in both oncogenic 

and neurodegenerative pathways, it will be interesting to elucidate the 

mechanistic pathway possibly related to aging.  These studies suggest the 
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potential for the use of MTM as a therapeutic agent in CNS diseases with 

neurodegeneration.  Use of MTM has been limited due to its side effects 

including gastrointestinal, bone marrow, hepatic, and renal toxicities [105-107].   

b. MTM-SDK and MTM-SK 

MTM analogs MTM-SDK and MTM-SK were created by genetic 

manipulation of the MTM biosynthetic pathway [108, 109]. MTM analogs have 

favorable characteristics such as enhanced potency and decreased toxicity to 

cells.  MTM-SDK (for Short side chain, DiKeto) differs from MTM in structure and 

length of the hydrophilic side chain [83].  It has been previously shown that the 3-

side chain is partially responsible for MTM interacting with the phosphate 

backbone of DNA [110, 111].  MTM-SDK has a shorter side chain at the 3-

position as compared to MTM.  MTM-SDK and MTM-SK (for Short side chain, 

Keto) have a greater ability to block SP1 binding to DNA than does MTM [85, 

112].  This leads to the idea that the 3-side chain is critical in the activity of MTM 

and therefore its analogs.  A genetically engineered S. argillaceus strain, M7W1, 

contains an inactivated mtmW gene.  The mtmW gene encodes MtmW, the last 

acting enzyme in the MTM biosynthetic pathway [113].  The inactivation of this 

gene produces the MTM analogs MTM-SDK and MTM-SK.  MTM-SDK and 

MTM-SK are formed from the spontaneous rearrangement of MTM-DK [114].  

Synthetic modifications allow for the introduction of different functions and 

properties of MTM analogs.  Both MTM-SDK and MTM-SK exhibit higher 

anticancer activity than does MTM [85, 115].  Both analogs are being used in 

studies looking to improve bioavailability and increase plasma retention time 
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[114].  MTM-SK has been shown to exhibit the same potency as MTM in 

neuroblastoma cells [85].   

c. Tolfenamic acid 

Tolfenamic acid (TA) is a non-steroid anti-inflammatory drug (NSAID) 

which inhibits cyclooxygenase (COX) activity and synthesis of prostaglandin 

[116].  TA has also been shown to attenuate the degradation of SP1 which 

reduces the transcription of both APP and BACE1 [117, 118].  Expression of 

BACE1 is reduced as well as Aβ production [119, 120].  TA has also been shown 

to rescue neuroblastoma cells from an increase in SP1, APP, and Aβ induced by 

lead exposure [118].  The exact mechanism by which TA promotes degradation 

of SP1 is unknown.  Intracellular neurofibrillary tau tangles are a hallmark in AD 

brain and in transgenic mice, and interestingly TA lowers both tau mRNA and 

protein [121].  TA has been implicated in the regulation of many tumor 

suppressive TFs such as CHOP and ATF3 [122].  Evidence suggests that TA 

blocks TNF-α- or LPS-induced NF-κB activation in human cells [123].  Caspases, 

survivin, c-Met, VEGF, c-PARP, and cyclin expression are all modulated by TA 

[124].  TA decreases the gene expression of CDK5, which is responsible for the 

phosphorylation of tau [125].  TA has been shown to interrupt the de novo 

synthesis of APP and to change downstream levels of Aβ in C57BL/6 mice and in 

hemizygous R1.40 transgenics [119, 120].  It is promising that TA reduces 

plaque pathology in AD mouse models along with improving memory [126].  

These many interactions indicate that TA can affect apoptotic, anti-inflammatory, 

as well as Aβ pathways.  This complex mechanism of action may allow TA to 
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partially mediate many effects, including the suppression of BACE1 promoter 

activity via SP1 degradation, while also interrupting the pathological tau tangle 

phosphorylation pathway leading to a promising use in AD studies. TA (brand 

name Clotam) has been used in Europe and Asia for the treatment of migraine 

headaches and rheumatoid arthritis for several decades [127, 128].  The safety 

profile and pharmacokinetics of TA in humans has already been well established 

with its long use for the treatment of migraine headaches in Europe.  Its 

interference with SP1 has not revealed worrying effects on adults taking this drug 

[129].  However, the side effects of TA are consistent with other NSAIDs.  

Gastrointestinal bleeding and ulcers can occur at high doses, but occurs less 

frequently that with ketoprofen, indomethacin, and naproxen [130].  Chronic 

administration of TA in mice did not result in changes in hemoglobin or 

hematocrit [124]. 

d. Roscovitine 

CDK5 has been implicated in AD.  Mice with increased cerebral CDK5 

activity were shown to have increased levels of BACE1 and Aβ [131, 132].  Also, 

CDK5 along with its activator proteins p25 and p35 have been shown to be 

dysregulated in post-mortem AD brain [133].  Forkhead box proteins are a 

transcriptional activator which triggers neuronal cell death upon oxidative stress 

(Brunet et al. 1999).  FOXO1 and FOXO3a are highly expressed in the human 

brain, specifically in areas susceptible to AD (Hoekman et al. 2006).  

Dysregulated CDK5 causes neurotoxic Aβ processing and cell death, by 

phosphorylating FOXO3a (Shi et al. 2016).  
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Roscovitine is a selective cyclin-dependent kinase (CDK) inhibitor with 

various anti-inflammatory, -proliferative, -apoptotic, and neuroprotective effects in 

different cell types [134].  It is being researched for the treatment of non-small 

cell lung cancer (NSCLC), leukemia, HIV infection, and cystic fibrosis [135].  

Roscovitine has been shown to interrupt activation of NF-κB and to reduce 

expression of TNF-α-induced proinflammatory gene [136].  It also downregulates 

Mcl-1 and decreases cyclin D1 expression [134, 137].  As a CDK5 inhibitor, 

treatment with roscovitine can influence phosphorylation of the FOXO proteins.  

CDK5 inhibition has been shown to stabilize FOXO1 leading to an increase in its 

transcriptional activity [138].   
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D. Research plan 

 In order to investigate the effect of TF-modulating drugs on other 

transcription factors and Aβ pathway genes, a well-characterized human cell 

culture model is needed.  Given the expense, unknown variables present, and 

differences in the development of AD-pathology of AD model animals, tissue 

culture has been chosen as the model for this work.  Tissue culture allows cells 

to provide information on cell response to transfection and drug treatment in a 

faster time frame than with model animals.  Although further removed from 

disease states than animal models, we choose human models which are more 

aligned with the species specific characteristics of AD.  Furthermore, our use of 

primary human neuronal (HFN) and differentiated neurospheres (dNSPc) allow a 

mixed culture with populations what recapitulate that of the brain.  These cells 

are a better approximation of the in vivo cell populations than can be available in 

cancer cell lines.  Fetal tissues will be used because they were obtainable in 

regular quantities and easy to dissociate, allowing for greater chances for data 

collection per shipment of tissue.  Prior to drug treatments and manipulations via 

siRNA, it was necessary to characterize the cultures and optimize culture 

conditions.  Human fetal neuron culture was previously described by our 

laboratory [139].  Characterization of both undifferentiated and differentiated 

neurosphere culture were done as part of this work in order to determine the 

nature of the cell population under particular cell culture conditions over time.   

 Cell lines were used in preliminary experiments to measure tolerance of 

cells to the drugs of interest, antibody characterization, and validation.  It is 

important to understand the differences in protein expression across cell types.  



28 

Human epithelial (HeLa), glial (U373), neuroblastoma (SK-N-SH, NBRA), and 

induced pluripotent stem cells (iPSCs) were all used for these purposes.  In 

addition, the rat pheochromocytoma cell line, PC12 was used to optimize plating 

conditions for the Incucyte Zoom.  This is due to the ease of detection of neurites 

in PC12 differentiated with neuronal growth factor (NGF).  It was presumed that 

in the primary cell cultures (HFN and NSPc), there would be more variation in 

protein expression.  Use of well-characterized, pre- and post-mitotic cell lines 

provide a detailed understanding of the effect of MTM, MTM-SDK, MTM-SK, TA, 

and roscovitine on protein expression.   

 Many proteins have been implicated in AD.  Of particular interest in this 

study is the aberrant expression of BACE1, APP, and SP1 (Figure 6).  Also of 

interest is CDK5 and its role in activation of TFs FOXO1 and FOXO3.  The 

proteins of interest in these cultures over time also include neuronal and glial 

markers NSE and GFAP, respectively.  Synaptic proteins synaptophysin and 

SNAP25 are both considered because they have been shown to be reduced in 

AD [140].  Of greater interest, however, is how SP1, FOXO1, FOXO3, and other 

transcription factors regulate AD-relevant genes.  Thus, understanding how these 

drugs, thought to be TF-modulators, potentially activate several other TFs that 

mediate the reduction of BACE1 activity, APP expression, and/or amyloid-beta 

production.  This was carried out by the transduction of both primary cells and 

cell lines with reporter genes driven by TF activation followed by the appropriate 

reporter assay.  These, along with predictive tools and literature searches, help 

to elucidate a possible mechanism for SP1 or other TF-modulation of Aβ pathway 
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genes.  It is expected that SP1 along with a few other TFs modulate BACE1 

activity, APP expression, and Aβ clearance/production in a manner that could be 

disease-modifying with the proper pharmacological intervention.   

II. Materials and Resources 

For a comprehensive list of reagents used in experiments, see Table 2. 

A. Tissue culture 

 Cells were maintained and treated according to cell line type.  HeLa, 

U373, and naïve SK-N-SH cells were cultured in MEM containing 10% fetal 

bovine serum (FBS) and 1X antibiotic.  PC12 were cultured in RPMI medium 

containing 10% heat-inactivated horse serum and 5% FBS.  Cells were seeded 

into tissue culture treated polystyrene multiwall plates (Corning).   

 MTM was obtained from Santa Cruz. Analogs MTM-SDK and MTM-SK 

were obtained from the laboratory of Rajiv Ratan of the Burke Medical Research 

Institute in Cornell University.  TA was obtained from Sigma.  All drugs were 

reconstituted in DMSO to make stock solutions that were diluted in media for 

treatments. 

B. Western immunoblotting 

Western immunoblotting was used in order to detect proteins of interest.   

i. BSA protein estimation and sample preparation 

Cells were lysed in RIPA buffer containing complete protease inhibitor 

cocktail.  Protein content of these samples was estimated using the Pierce BSA 

Protein Assay Kit (Thermo).  BSA was used to generate a standard curve to 

allow calculation of the protein content of each sample.  This estimation allowed 
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sample volume to be adjusted and for relatively equal loading of protein per lane.  

Loading volume in the gels were limiting, and in some cases, the maximum 

volume loaded was dependent on the least concentrated sample.  Samples were 

prepared in 4X Laemmli Sample Buffer (BIO-RAD) and heated to 95°C for 10 

minutes using a thermal cycler (BIO-RAD).   

ii. Electrophoresis conditions 

Samples were loaded onto SDS-PAGE gels and 200 V was applied for the 

time needed to allow the bromophenol blue tracking dye front to pass completely 

through the gel (generally 1 h).  The gels were then removed and transferred to 

membranes via wet or dry transfer methods. 

iii. Criterion XT Western blot system 

The Criterion XT Western Blot System (BIO-RAD) is a precast SDS-PAGE 

system.  In these experiments, the 12% polyacrylamide, 26-lane gels were used.  

Large numbers of samples were able to be resolved on the same gel (e.g. drug 

treatments with n ≥ 4 for each compound and dosage).   

iv. Mini Protean II Western blot system 

In experiments requiring a higher loading volume than the 26-lane gels 

allow, the Mimi Protean II System (BIO-RAD) was used.  Western blots produced 

by this system allow 10-15 samples, but at volumes up to 35 µL as compared to 

about 12 μL in the Criterion XT gels.   

v. Wet transfer system 

Gels were removed and placed in a tray of transfer buffer containing 20% 

methanol, and allowed to equilibrate for 10 min.  Proteins were then transferred 
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to a 0.22 µm pore size PDVF membrane (BIO-RAD).  Protein transfer was 

visualized using 0.1% (w/v) Ponceau S stain in 5% v/v acetic acid (Fisher).  

Excess stain not bound to protein was washed off with 5% acetic acid and the 

blot was electronically scanned using a desktop scanner.   

vi. iBlot gel transfer system 

The Invitrogen iBlot® 7-Minute Blotting System is comprised of the iBlot™ 

Gel Transfer Device and iBlot™ Gel Transfer Stacks.  An 8 min transfer protocol 

was used.  Gel was placed on the transfer membrane of the anode stack and air 

bubbles were removed with a roller.  One piece of water pre-soaked filter paper 

was placed on top of the gel.  The cathode stack was placed on the filter paper 

and air bubbles were again removed with a roller.  A disposable sponge was 

placed in the lid of the gel transfer device and the anode-filter paper-gel-cathode 

stack was placed on the blotting surface.  The lid of the device was closed and 

latched, then the 8 minute program was selected (20 V).  After transfer, the 

membrane was removed, quickly rinsed with methanol, then acetic acid before 

Ponceau S staining.   

vii. Antibody incubation conditions 

After Ponceau S stain was rinsed off with several washes of 1X Tris 

buffered saline (TBS; Thermo), primary antibodies were applied in a solution of 

casein blocker in TBS  at antibody-specific dilutions listed in Table 1.  Primary 

antibodies were applied overnight at 4°C.  The following day, blots were washed 

4 times for 5 minutes each in TBST before secondary antibody solution was 

added.  The appropriate host-specific HRP secondary antibody was also 
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prepared in casein blocker in TBS.  The blots were incubated in secondary 

antibody solution at room temperature for 1 h on a rocker.  After incubation, the 

blots were washed 6 times for 5 minutes each in TBST.  

viii. Detection  

Protein was detected using enhanced chemiluminenscence (ECL; 

Thermo) according to manufacturer’s instructions.  The detection reagents were 

applied to the blot for 2 min, then the blot was placed in a transparent plastic 

sheet protector and exposed to film (Thermo) for the required amount of time 

specific to each antibody.  Exposure times of between 30 sec to 3 min were 

required for most proteins depending on the relative abundance of the protein in 

a particular sample.   

ix. Antibodies 

Primary antibodies and source are listed in Table 1.  Horseradish 

peroxidase (HRP) conjugated secondary antibodies were obtained from Pierce 

(Rockford, IL; anti-mouse and anti-goat) or from Sigma.  For 

immunocytochemistry, secondary antibodies and avidin conjugates were all 

obtained from Jackson ImmunoResearch Laboratories (West Grove, PA).   

a. SP1, APP, and BACE1 levels in dividing cells vs. nondividing cells 

Antibodies were optimized for use in various cell types.  Decreasing 

concentrations of proteins from cell lysates of HeLa, SK-N-SH, differentiated 

neurospheres, and U373 were loaded onto a 10% polyacrylamide gel and 

separated by SDS-PAGE.  Protein was transferred to PVDF by iBlot gel transfer 

system and probed with SP1 antibody (Figure 5, 6).  Expression levels of SP1 
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are lower in glial and neuroblastoma cell lines then in human neurosphere cells 

and HeLa.  Specificity of the SP1 antibody was tested by SP1 siRNA transfection 

of HeLa cells (Figure 7b).  SP1 siRNA transfection significantly knocked down 

SP1 protein levels in HeLa as detected by Western blot.  

To optimize use of BACE1 antibody, 2 commercially available antibodies 

were tested which recognize different epitopes of BACE1 (Figure 9).  Human 

adult brain, human adult AD brain, human fetal brain (DIV0), U373, SK-N-SH 

cells differentiated with retinoic acid (NBRA), HeLa, and rat kidney were analyzed 

via Western blot for levels of BACE1 (Figure 9). BACE1 levels were detected in 

fetal brain by both abcam and R&D antibodies.  BACE1 is also easily detected in 

adult brain by the R&D antibody.  Probing with R&D BACE1 antibody, however, 

did not reveal bands in kidney, U373, NBRA, or HeLa cell lysates.  The abcam 

antibody was able to detect protein in adult brain, U373, NBRA, HeLa, and fetal 

brain, but not in kidney.  BACE1 abcam antibody was chosen for use in future 

experiments.  A cohort of human brain specimens from human cortex was 

obtained from the lab of Peter Nelson.  The cohort is comprised of 5 controls and 

15 AD specimens.  The AD specimens are further sub-grouped by exposure to 

AD therapeutics (Figure 10).  Brain specimens were analyzed for detection of 

BACE1 and housekeeping proteins.  To validate the authenticity of the APP 

antibody, an siRNA experiment was performed in U373 (Figure 11).   
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Table 1. Antibodies used in Western immunoblotting (WB), 
immunocytochemistry (ICC), and flow cytometry (FC) 

Antibody 
(Ab) Source Catalog  Host Use Ab 

Type 
Expected 
Size (kDa) Dilution 

Alzheimer 
Precursor 

Protein (APP) 
A4 

Millipore MAB348
-100UL 

mous
e WB 1° 110,120,13

0 1:3000 

BACE1 Vassar 
Lab  mous

e WB 1° 75 1:500 

BACE1 abcam ab2077 rabbit WB 1°  70 1:500 

BACE1 R&D MAB931 mous
e WB 1° 60-75 1:1000 

Biotin-SP-
conjugated 
AffiniPure 

Donkey Anti-
Mouse IgG 

Jackson-
Antibodie

s 

715065-
150 

donke
y 

ICC
, 

FC 
2°  1:1000 

CDK5 Cell 
Signaling 2506 rabbit WB 1° 30 1:1000 

Cy3-
conjugated 

Donkey Anti-
Goat 

Jackson-
Antibodie

s 

705-165-
147 

donke
y 

ICC
, 

FC 
2°   1:300 

Cy3-
conjugated 

Donkey Anti-
Rabbit 

Jackson-
Antibodie

s 

711-165-
152 

donke
y 

ICC
, 

FC 
2°   1:300 

Doublecortin Cell 
Signaling 4604 rabbit WB 2°  1:1000 

DTAF-
conjugated 
Streptavidin 

Jackson-
Antibodie

s 

016-010-
084  

ICC
, 

FC 
2°    

Foxo1 Cell 
Signaling 2880 Rabbit WB 1° 78-82 1:1000 

Foxo3a Cell 
Signaling 12829 Rabbit WB 1° 82-97 1:1000 

GAPDH Sigma G9545 rabbit WB 1° 36 1:10,000 

GFAP Sigma G9269 rabbit 

WB
, 

ICC
, 

FC 

1° 46 1:2000 

Goat anti-
Rabbit IgG 
Secondary 
Antibody, 

HRP 
conjugate 

Thermo 
Scientific 31460 goat 

ICC
, 

FC 
2°  1:3000 
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HRP Western 
Blot Anti-

Mouse IgG 
Rockland KCB002 goat WB 2°  1:200,00

0 

Nestin abcam ab22035 mous
e 

WB
, 

ICC 
1° 176 1:3000 

NSE Abcam ab16873 rabbit 

WB
, 

ICC
, 

FC 

1° 47 1:1000 

Pan-Neuronal Millipore MAB230
0 

mous
e 

ICC
, 

FC 
1°  1:1000 

PSD95 Neuroma
b 75-028 mous

e WB 1° 95-110 1:1000 

SNAP25 Chemico
n MAB331 mous

e WB 1° 26-27 1:1000 

SP1 Millipore 07-645 rabbit WB 1° 95-105 1:500 
Synaptophysi

n 
Cell 

Signaling 5461 rabbit WB 1° 38 1:1000 

α-tubulin Sigma-
Aldrich T9026 mous

e WB 1° 50 1:50,000 

β-actin Sigma-
Aldrich A5441 mous

e WB 1° 42 1:50,000 
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Figure 5. Differential expression of SP1 in various cell types.  Decreasing 

concentrations of protein from HeLa, SK-N-SH, differentiated neurospheres 

(NSP), and U373 were loaded on a gel, transferred by iBlot to PVDF 

membrane, and probed with SP1 antibody.  Signal is faint in U373 even at 

higher concentrations of lysate loaded.  Expression levels of SP1 are 

noticeably lower in glial and neuroblastoma cell lines. 
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Figure 6. SP1 is differentially expressed in various CNS cell types. A) SP1 

levels as detected by Western immunoblotting.  Relative levels of SP1 in U373 

are lower than that of HeLa, SK-N-SH (NB), or undifferentiated neurospheres 

(NSP).  B) siRNA knockdown in various cell lines. Transfection of HeLa cells 

with SP1 siRNA confirms the authenticity of the SP1 band. 
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Figure 7. Schematic comparing two commercially available BACE1 

antibodies.  BACE1 from R&D and abcam recognize different epitopes of 

BACE1 protein.  R&D detects between amino acids 22 – 460 and the abcam 

485 – 501. Source: Bayon, B.L., in preparation. 
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Figure 8. Comparison of two commercially available BACE1 antibodies 

and expression in various cell types.  The abcam and R&D antibodies 

differentially detect BACE1 in adult brain, U373, NBRA, and HeLa.  R&D 

antibody detects BACE1 at 60 kDa, abcam at 70 kDa.  An siRNA experiment in 

U373 was used to confirm the authenticity of the BACE1 band seen with the 

BACE1 antibody from the Vassar lab in U373.  A band was detected at nearly 

75 kDa in all but the BACE1 siRNA transfected lysates.  The abcam and 

Vassar lab antibody was used in subsequent experiments.   

 

  

           Mock               SP1 siRNA     BACE1 siRNA      APP siRNA 
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Figure 9. BACE1 expression in human brain samples. Control (n=5) and 

AD (n=15) human brain tissue samples examined by Western immunoblotting 

after SDS-PAGE.  AD specimens further sub-grouped by exposure to AD 

therapeutics Aricept/Razidine, Exelon, Namenda, or no drug treatment.  Alpha-

tubulin, beta-actin, and GAPDH were used as loading controls.  BACE1 

(abcam) antibody detects protein at about 70 kDa in human adult brain.  No 

significant changes were detected among controls versus AD subjects. 
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Figure 10.  APP Expression in U373.  The authenticity of the APP antibody 

was confirmed by siRNA transfection of U373 cells.  siRNA transfected cells 

show complete knockdown of APP levels.   
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C. Immunocytochemistry (ICC) 

After treatment, cells were washed with PBS in 24-well plates and fixed in 

4% paraformaldehyde for 10 min.  Wells were then washed twice with PBS to 

remove traces of paraformaldehyde.  All PBS was removed, and then 0.25% 

Triton-X (Sigma) was added for 15 min to permeabilize the cell membranes.  

Wells were then washed 3 times with PBS to remove all traces of Triton-X.  

Nonspecific binding was then blocked using 10% horse serum in PBS for 30 min.  

Primary antibodies were applied at the antibody-specific dilutions as indicated in 

Table 1 in 1% horse serum overnight at 4°C.  The following day, wells were 

washed 3 times for 5 minutes with PBS.  Host-appropriate secondary antibodies 

were applied in 1% horse serum for 1 h and washed 3 times for 5 minutes with 

PBS.  Secondary antibodies were conjugated to fluorescein isothyocyanate 

(FITC), cyanine-3 (Cy-3), or biotin.  Biotinylated secondary antibodies were 

subsequently incubated with either Cy-3 or FITC conjugated streptavidin.  Biotin 

and FITC conjugates were used at 1:300 dilutions, while Cy-3 secondary 

conjugates were used at a 1:1500 dilution.  All secondary agents and streptavidin 

conjugates were from Jackson Immunoresearch.   

D. Amyloid-beta 40 ELISA 

ELISA kits were obtained from Invitrogen.  The kits contained microwell 

plates pre-coated with capture antibodies, and HRP-labeled detection antibodies 

were provided in the same kit.  Samples (50 µL) were added to the plate followed 

by detection antibody and allowed to incubate for 3 h at room temperature (RT).  

Wells were washed 4 times, then 100 µL of HRP anti-rabbit antibody was added 
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for an incubation time of 30 min at RT.  Wells were washed 5 times, then 100 µL 

of stabilized chromogen was added for 30 min at RT.  Lastly, 100 µL stop 

solution was added to wells and absorbance read at 450 nm.  

E. Human Brain Samples 

 Two cohorts of adult human brain were used to measure relative protein 

expression levels.  One cohort was obtained from the Nelson Lab and the other 

from the Reddy Lab.  Samples were received and then processed in order to lyse 

proteins and kept in 1X Laemmli sample buffer for SDS-PAGE and Western 

immunoblotting.   
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Table 2. Reagents used in experiments 

   

Reagent Company 
Catalog 
Number 

10x FASTRun Tris SDS PAGE 
Running Buffer  Fisher BP881-500 
12-well Flate Bottom Culture Plate Corning 3513 
24-well Flat Bottom Culture Plate Corning 3526 
48-well Flat Bottom Culture Plate Corning 3585 
96-well Flat Bottom Culture Plate Corning 3596 
Albumin bovine fraction V ICN Biomedicals 160069 
all-trans-retinoic acid Sigma R2625 
Ammonium persulfate amresco 0486-256 
B27 Gibco 17504-044 
Blocker™ Casein in TBS Thermo Scientific 37528 
cellgro™ Eagle's Minimum Essential 
Medium (MEM) Corning 10-010-CV 
cellgro™ RPMI 1640 Medium Corning 10-104-CV 
CellTiter-Fluor™ Cell Viability Assay Promega G6080 
CellTiter-Glo® Luminescent Cell 
Viability Assay Promega G7570 
CL-XPosure Film Thermo Scientific 34090 
Collagen  Sigma C7521 
Criterion XT Bis-Tris Gel BioRad 345-0113 
Cytotoxicity Detection Kit (LDH) Sigma-Aldrich 11644793001 
Dimethyl sulfoxide (DMSO) Santa Cruz sc-358801 
DNMT Activity/Inhibition Assay Active Motif 55006 
Donor Horse Serum Cellgro 35-030-CV 
Fetal Bovine Serum Cellgro 35-015-CV 
FGF-Basic (AA 1-155) Recombinant 
Human Protein Life Technologies PHG0264 
Gibco™ Opti-MEM™ I Reduced 
Serum Media Life Technologies 31985070 
Glutamax Life Technologies 35050061 
HDAC (Colorimetric) Assay Kit Active Motif 56210 
Hoescht stain Invitrogen H1399 
Human Aβ40 ELISA Kit Invitrogen KHB3481 
Human BDNF Recombinant Protein Cell Signaling 3897 
iBlot® Transfer Stack, PVDF, regular 
size Invitrogen IB401001 
Lipofectamine® RNAiMAX 
Transfection Reagent Invitrogen 13778030 
Luc Photo TF Activation Reporter 
Assay Signosis BA-1001 
Luciferace Assay System Promega E1500 
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Mithramycin A Santa Cruz sc-200909 
M-PER™ Mammalian Protein 
Extraction Reagent Thermo Scientific 78501 
MTM-SDK Ratan Lab  
MTM-SK Ratan Lab  
Neurobasal Medium Life Technologies 12348-017 

Neurocult NS-A Basal Media 
StemCell 
Technologies 5750 

Neuronal Growth Factor (NGF) Life Technologies 11050HNAC50 
Normocin invivogen ant-nr-1 
One-Step TF Activation Reporter Array 
I Signosis BA-0001 
Paraformaldehyde Sigma-Aldrich P6148 
Penicillin-Streptomycin Solution  Cellgro 30-001-CL 
Phosphate-Buffered Saline (10X) Cellgro 20-031-CV 
Pierce™ BCA Protein Assay Kit Thermo Scientific 23227 
Pierce™ ECL Western Blotting 
Substrate Thermo Scientific 32106 
Pierce™ RIPA Lysis & Extraction 
Buffer Thermo Scientific 89900 
Poly-ᴅ-lysine Sigma P6407-5MG 
Ponceau S Stain Fisher BP103-10 
Precision Plus Protein™ Dual Color 
Standards BioRad 161-0374 
Protease Inhibitor Complete Mini Roche 11836153001 
Qproteome Nuclear Protein Kit QIAGEN 37582 
Restore Stripping Buffer Thermo Scientific 46430 
Roscovitine Sigma R7772 
Silencer Select siRNA (APP) ambion s13318 
Silencer Select siRNA (BACE1) ambion s24218 
Silencer Select siRNA (SP1) ambion s13318 
SuperSignal™ West Femto Maximum 
Sensitivity Substrate Thermo Scientific 34095 
SuperSignal™ West Pico 
Chemiluminescent Substrate Thermo Scientific 34077 
TF Activation Profiling Plate Array I Signosis FA-1001 
Tolfenamic Acid  Sigma T0535-5G 
Tris Buffered Saline (TBS) Cellgro 46-012-CM 
Triton X-100 Sigma X100-100ml 
Trypsin-EDTA 1X Cellgro 25-053-CI 
TWEEN 20 Calbiochem 655205 
XT-MOPS BioRad 161-0788 
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III. Experimental Methods 

A. Statistical analysis 

All experiments were performed at least three times unless otherwise 

indicated.  Treatments and assay loading was done with sample randomization in 

plates and gels to avoid bias.  Experiments described were repeated to confirm 

reproducibility.  Data are expressed as mean ± s.e.m. Statistical analysis was 

performed with GraphPad Prism (version 5.04, GraphPad Software, Inc., La 

Jolla, CA, USA). Statistical significance was assumed if P ≤ 0.05.  Statistically 

significant differences were determined by ANOVA followed by post-hoc 

Dunnett’s correction for multiple comparisons.   

B. Primary tissue culture 

Cell culture models are useful, especially when the aim is to observe the 

effects of pharmacological treatments on particular cell or tissue types.  Cell 

culture models allow evaluation of secreted molecules into the culture medium 

without the factor of clearance that is present with in vivo models.  For instance, it 

may be difficult to determine if Aβ peptide measurements in an animal are due to 

a change in production or a change in clearance after an experimental 

manipulation [141].  Morphological measurements are also an advantage to 

tissue culture models, especially with the live cell imaging technology of the 

Incucyte Zoom (See Methods).  Cells form a single layer in culture, allowing 

morphology to be observed in a single plane.   
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i. Preparation of tissue culture plates 

 Tissue culture plates were coated with poly D-lysine (PDL).  Powdered 

PDL was reconstituted in sterile water at 100 µg/mL, sterile filtered, and added to 

the center of each well of the tissue culture plates.  PDL was left on the plates 

overnight in the cell culture hood under UV light.  The following day, PDL was 

removed and wells were rinsed with sterile water.  Plates were allowed to dry for 

30 min before plating cells.   

ii. Tissue culture maintenance 

Cultures were maintained in a sterile tissue culture incubator at 5% CO2 

atmosphere at 37°C.  Cell culture media was changed as needed (typically every 

2-3 days).  At the conclusion of experiments, media samples were collected, cells 

were rinsed in 1X Dulbecco’s phosphate buffered saline (PBS; Invitrogen) to 

remove traces of media protein.  Cells were then lysed in RIPA buffer. 

iii. Isolation of neurospheres 

Neurospheres have been generated from various regions of the fetal CNS 

of various individuals.  This methods section describes the broad, overall 

methodology used to generate neurospheres from human primary mixed brain 

from fetuses at a gestational age between 90-110 days (Figure 12).  Preparation 

of human primary mixed brain cultures has been previously described [139].  The 

protocol used in our laboratory was approved by the Institutional Biosafety 

Committee (IRB) of Indiana University School of Medicine in Indianapolis, IN and 

conform to NIH guidelines.  Human fetal brain tissue were obtained from legally 

elective aborted fetus from the Laboratory of Developmental Biology in Seattle, 
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WA.  Brain tissues were shipped from the abortion clinic to our research 

laboratory in cold shipping media.   

Briefly, 100 mm tissue culture plate containing 5 mL of fresh shipping 

media was placed on ice.  Brain tissue was transferred to the fresh media using a 

wide-bore siliconized Pasteur pipette.  Visible blood vessels were removed and 

cleaned tissue was sliced with a scalpel to obtain 0.5 mm sections of tissue.  

These brain tissue sections were transferred into a 50 mL PET tube containing 

10 mL trypsin-EDTA.  This tube was placed in the water bath at 37°C and shaken 

at 150 RPM for 10 minutes to enzymatically digest the tissue.  This cell mass 

was then transferred by wide-bore glass Pasteur pipette into a 15 mL PET tube 

containing 5 mL media.  The mass was then triturated 10 times to obtain a 

homogenous suspension of cells.  Tubes were centrifuged at 400 g at room 

temperature for 5 min.  Supernatant was discarded and fresh shipping media 

was added into the tubes.  This trituration and centrifugation step was repeated, 

supernatant was removed, and 3 mL fresh shipping media was added.  

Homogenate was mixed by slow pipetting with a P1000 micropipette.  The 

resulting cell suspension (20 μL) was mixed with 180 μL of sterile PBS.  A 

sample was removed for counting by trypan blue exclusion. Cells for HFN were 

plated in PDL-coated plates at this step in defined culture medium (Neurobasal 

with supplements and antibiotics).  For neurosphere culture, however, this 

suspension was placed into flasks containing NeuroCult Proliferation Media 

supplemented with bFGF (10 ng/mL).  Half media changes were made every 48 

h until cells were ready for differentiation.   
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Figure 11. Processing of human CNS. Whole CNS was enzymatically 

digested, triturated, and either plated to yield human fetal neuron (HFN) 

culture, or placed into proliferation media to isolate neurospheres.  Ray, B., et 

al. Molecular Brain 2014 (7) 63. 
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Figure 12. Neurospheres derived from human CNS.  Free floating 

neurospheres were cultured in proliferation media.  Spheres were plated in 

differentiation media on plates treated with poly-D-lysine and allowed to mature 

for 10 days before being treated with drug or transfected with siRNA. 
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Figure 13. Human neurospheres in proliferation media vs. differentiation 

media. Free floating neurospheres form adherent, single layer cultures while 

differentiating.   
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iv. Characterization of neurosphere culture  

We have previously cultured and characterized primary human neuron 

culture [142].  Neurospheres were isolated from fetal human brain tissue (Figure 

13). Cells were cultured and maintained in Neurocult NS-A Basal Media (Stem 

Cell Technologies #05750) supplemented with Neurocult proliferation 

supplement in flasks for up to 5 days (Figure 14).   

To optimize media conditions for subculturing neurospheres, 

undifferentiated neurospheres in proliferation media with and without growth 

factors were harvested at several time points; day in vitro (DIV) 7, 14, 21, and 28.  

Cells were cultured in flasks in either proliferation media alone or proliferation 

media supplemented with EGF and bFGF for 14 days.  At DIV15, BDNF was 

added to both flasks (Figure 15).  Cells were collected and lysed for use in cell 

viability analysis using the Cell Titer Glo (CTG) assay (see Methods).  

Neurospheres cultured in media containing bFGF, EGF, and BDNF show a 

significant increase in cell viability up to DIV21.  By DIV28, cell viability was 

significantly decreased, signaling that cells should not be cultured past DIV21 in 

future experiments and should always be in media supplemented by bFGF and 

EGF.  Western blot analysis was performed to demonstrate protein levels of 

nestin (neural progenitor marker), NSE (neuronal marker), and SNAP25 

(synaptic marker) in these neurospheres over time (Figure 16).  When 

supplemented with bFGF and EGF, the neuroprogenitor population was 

maintained up to 14 days and up to 21 days with the addition of BDNF.  

However, this decreases at DIV28.  The mature cell protein levels were 
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consistent across various time points and regardless of absence or presence of 

growth factor supplements.  Synaptic protein expression was significantly 

decreased at DIV21 with the addition of BDNF in cultures supplemented with 

bFGF and EGF.  In future experiments, cells were cultured closer to DIV14 and 

in media supplemented by bFGF and EGF.   

Primary neurospheres were mechanically dissociated to a single-cell 

suspension and plated in media supplemented with Neurocult differentiation 

supplement, media plus 10 ng/mL bFGF, media plus 10 ng/mL BDNF, or media 

plus 10 ng/mL bFGF and 10 ng/mL BDNF.  Cells were plated in PDL-coated 24-

well plates, and cultured at 37°C for 21 days.  Cell morphology was monitored by 

phase contrast microscopy throughout.  We collected cell lysates at two time 

points; DIV 11 and 21 for use in cell viability analysis.  CTG revealed a significant 

decrease in cell viability in all media besides Neurocult media containing 

Neurocult Differentiation Supplement (Figure 17).  This was true at both DIV11 

and DIV21.   CTG also showed that cells cultured in Neurocult media plus 

Neurocult Differentiation Supplement experience no significant change in cell 

viability after 10 days (Figure 17).  On the other hand, cells in media 

supplemented with bFGF, BDNF, or a combination of both growth factors 

experienced significant decreases in cell viability between DIV11 and DIV2.  

These data revealed that although proprietary, the differentiation supplement 

provided commercially by StemCell Technologies maintains differentiated NSCs 

with the highest cell viability compared to other growth factors.  This recipe was 

used for future experiments.   
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Cells were cultured and plated in Neurocult media plus Neurocult 

Differentiation Supplement in a 24-well format.  Cell lysate was collected from 

cells at each time point (n=4; DIV5, 10, 15, 20 plate 1; DIV30, 35, 40, 45 plate 2).  

CTG reveals a time dependent decrease in cell viability from DIV5 to DIV20 

(Figure 18).  However, cell viability increased at DIV40 before decreasing at 

DIV45.  These data showed that dNSPc can be maintained for several weeks 

with relatively high cell viability as compared to that of cells plated for only a few 

days.   
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Figure 14.  Undifferentiated neurospheres in proliferation media.  Free 

floating neurospheres in culture are clusters of neuronal stem cells.  These 

neurospheres are comprised of varying percentages of neural stem cells.  

Neurospheres such as these were dissociated and distributed evenly into 

plates in order to be differentiated for use in drug treatments.   
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Figure 15. Undifferentiated NSPc in proliferation media supplemented with 

growth factors.  Isolated undifferentiated neurospheres plated in proliferation 

media OR proliferation media plus bFGF and EGF for 14 days; BDNF added at 

DIV15.  Near 5 fold increase in cell viability of NSP from DIV7 to DIV14 when 

media was supplemented with bFGF and EGF; while no change was seen at 

this time interval in media alone 
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(a)

 

Figure 16a. Optimizing media conditions by protein levels detected by 

Western immunoblotting. When supplemented with bFGF and EGF, the 

neuroprogenitor population was maintained up to 14 days and up to 21 days 

with the addition of BDNF.  However, this population decreased at DIV28. 
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(b)

 

Figure 16b. Optimizing media conditions by protein levels detected by 

Western immunoblotting.  The mature cell protein levels were consistent 

across various time points and regardless of absence or presence of growth 

factor supplements.   
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(c)  

Figure 16c. Optimizing media conditions by protein levels detected by 

Western immunoblotting. Synaptic protein expression was significantly 

decreased at DIV21 with the addition of BDNF in cultures supplemented with 

bFGF and EGF.   
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Figure 17. Optimization of media conditions for differentiated 

neurospheres.  Media with commercially available differentiation supplement 

yielded the highest cell viability among tested conditions.   
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Figure 18. Extended culture times reveal an increase in cell viability in 

differentiated neurosphere culture. dNSPc were harvested at 8 time points.  

Cell viability significantly decreased at DIV20, yet increased at DIV40 before 

decreasing at DIV45.  These data showed that dNSPc can be maintained for 

several weeks with relatively high cell viability as compared to that of cells 

plated for only a few days.   
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v. Protein marker characterization by Western immunoblot 

 Lysates of cells maintained in neurosphere culture before differentiation 

were subjected to Western blotting to determine relative expression levels of 

relevant proteins.   

a. Undifferentiated neurosphere culture 

 Free floating neurospheres were cultured in proliferation media containing 

bFGF or bFGF plus BDNF for 14 days.  At DIV7 and 14, cells were collected, 

harvested, and lysed for SDS-PAGE and Western blot analysis.  Significant basal 

levels of the astrocytic marker GFAP were consistent from DIV 7 and 14 (blot not 

shown).  Neuronal precursor and immature markers nestin and doublecortin were 

used to assess the neuroprogenitor protein expression in these cells (Figure 19).  

Post-synaptic marker PSD95 was detected at each time point as well as 

neuronal marker NSE (Figure 20).  Amyloid pathway proteins APP and BACE1 

are detected in undifferentiated NSP (Figure 21).    
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Figure 19. CNS stem cell and neuronal precursor/immature neuronal 

marker expression of undNSPc. Western immunoblot of lysates from 

undifferentiated neurosphere culture.  Cells were allowed to proliferate in 

media supplemented with bFGF alone, or with bFGF and BDNF combined for 

up to 14 days.  Lysates were collected at two time points, DIV7 and DIV14.  

Nestin, an intermediate filament expressed in developing neurons, was 

detected at both time points.  Doublecortin is a neuronal migration protein 

expressed by immature neurons and neuronal precursors.  Consistent levels of 

doublecortin were detected at both time points as well.   
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Figure 20. Post-synaptic and mature neuronal marker expression of 

undNSPc.  Western immunoblot of lysates from undifferentiated neurosphere 

culture.  Cells were allowed to proliferate in media supplemented with bFGF 

alone, or with bFGF and BDNF combined for up to 14 days.  Lysates were 

collected at two time points, DIV7 and DIV14.  PSD95 is a scaffolding protein 

located in the post-synapse of neurons.  NSE is an enzyme found in mature 

neurons.  Both postsynaptic and mature neuronal markers were detected in 

undNSPc at DIV7 and DIV14. 
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Figure 21. High basal levels of APP and BACE1 expressed in undNSPc. 

Western immunoblot of lysates from undifferentiated neurosphere culture.  

Cells were allowed to proliferate in media supplemented with bFGF alone, or 

with bFGF and BDNF combined for up to 14 days.  Lysates were collected at 

two time points, DIV7 and DIV14.  Expression of BACE1 increased with the 

addition of BDNF to proliferation media up to DIV7 and decreased at DIV14.  

APP was detected at both time points as well. 
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b. Differentiated neurosphere culture 

 Free floating neurospheres were differentiated as previously mentioned for 

14 days, lysed, and proteins were separated by SDS-PAGE.    Astrocytic and 

synaptic proteins were also detected in differentiated cultures along with 

neuronal markers (Figure 22).  Western immunoblotting was used to detect 

amyloid-pathway proteins APP and BACE1 (Figure 23). 
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Figure 22.  DIV 10 differentiated neurosphere culture.  Free floating 

neurospheres in proliferation media were dissociated and counted.  Cells were 

then transferred to differentiation media and plated at a density of 150,000 

cells/well for 10 days.   
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Figure 23. Western blot analysis shows human differentiated 

neurospheres express synaptic, neuronal, and astrocytic protein at Day 

14. Proteins of the amyloid pathway, APP and BACE1 were detected in 

dNSPc.  There was synaptic protein expression as detected by synaptophysin 

and SNAP25.  Neuronal marker NSE levels were also detected in dNSPc.  

GAPDH was used as a loading control.   
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vi. Location of proteins by immunocytochemistry 

Cells were fixed and stained as described above for ICC.  Three time 

points of DIV7, 14, 21 were chosen (Figure 24).  GFAP, pan-neuronal and 

nuclear (Hoechst) antibodies were used to visualize their localization and relative 

abundance in dNSPc culture (Figure 25).  The astrocytic (GFAP+) population 

was maintained in differentiated neurospheres through Day 21 while the pan-

neuronal (somatic, nuclear, dendritic, axonal protein marker cocktail) population 

decreased by Day 14. 

vii. Assessment of cell phenotype by flow cytometry 

 Neuronal, glial, and other relevant antibody markers were used to assess 

the different cellular populations in the neurosphere cell cultures.  Cells were 

fixed using 4% paraformaldehyde and permeabilized with 0.25% Triton X-100.  

Cells were then blocked with 10% horse serum and incubated overnight with the 

primary antibody of choice.  Appropriate corresponding secondary antibodies and 

fluorophores were used.   

Day 7, 14, 30 were time points used to assess differentiated cultures.  The 

immature cell population as detected by nestin labeling of differentiated 

neurosphere culture decreased from nearly 60% at day 7 to almost 40% by day 

30 as measured by flow cytometry (Figure 26).  Mature cell population (NSE 

antibody labeling) of differentiated neurosphere culture appeared consistent 

(about 40%) at each time point as measured by flow cytometry (Figure 27).   
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Figure 24. Immunocytochemistry of differentiated neurospheres at DIV7, 

14, and 21.  ICC shows astrocytic (GFAP) population is maintained in 

differentiated neurospheres through Day 21; Pan-Neuronal (somatic, nuclear, 

dendritic, axonal protein marker cocktail) decreases by Day 14. 
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Figure 25. Immature cell population of differentiated neurosphere culture 

decreases from nearly 60% at day 7 to almost 40% by day 30 as measured by 

flow cytometry (Nestin labeling) 

 

 

Figure 26. Mature cell population of differentiated neurosphere culture appears 

consistent (about 40%) at each time point as measured by flow cytometry 

(NSE labeling) 
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 The population of undNSPc was analyzed by flow cytometry at DIV7 and 

14.  Addition of BDNF decreases the neuroprogenitor (double labeled GFAP and 

pan-neuronal) cell population of undifferentiated NSPc by nearly 15% 

represented by the upper right quadrant (Figure 28a).  While maximum 

maturation level of the cell population (Pan-Neuronal labeled) of undNSPc by 

Day14 (Figure 28b). 
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Figure 27a.  Population of undifferentiated NSP as detected by flow 

cytometry. Upper left quadrant represents the GFAP positive cell population, 

of which there are very few represented at both DIV7 and 14 time points.  

Addition of BDNF decreases the neuroprogenitor (double labeled GFAP and 

pan-neuronal) cell population of undifferentiated NSPc by nearly 15% 

represented by the upper right quadrant.  The lower right quadrant shows a 

pan-neuronal population that increases from DIV7 to 14. 
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Figure 27b.  Population of undifferentiated NSP as detected by flow 

cytometry. Flow cytometry shows maximum maturation level of the cell 

population of undifferentiated NSPc is achieved in proliferation media plus 

or minus BDNF by Day14 (Pan-Neuronal labeled). 
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C. Viability and toxicity assays 

i. Cell Titer-Glo 

To measure cell viability, the luciferase based Cell Titer-Glo kit (CTG; 

Promega, Madison, WI) was used to compare relative ATP concentration from 

cells in our experiments.  The CTG assay was used to detect differences in cell 

density between wells.  After cells were collected from the culture plate and 

lysed, 5 µL of lysate, 25 µL PBS, and 30 µL of CTG assay solution were added to 

a white bottom plate.  The plate was placed on an orbital shaker for 10 minutes.  

Luminescence was measured with a Glomax luminometer (Promega) and 

reported at relative light units (RLUs).   

ii. Lactose Dehydrogenase Assay 

The lactose dehydrogenase (LDH) assay was used to quantify levels of 

LDH released by cells into the medium.  LDH is a cytosolic enzyme that is 

released into the medium in proportion to the number of damaged and dead cells 

in culture.  The commercially available LDH Cytotoxicity Kit (Roche) was used 

according to manufacturer protocol.  To quantify the amount of LDH released by 

the cells, samples were compared to a standard curve of known LDH 

concentration (Figure 29).  To determine the dilution of LDH that could be 

optimally read, various concentrations of LDH were assessed and absorption 

measured for linearity of OD reading (Figure 30).   
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Figure 28.  Standard curve for LDH Assay.  In order to quantify the amount 

of LDH released by the cells, samples were compared to a standard curve of 

known LDH concentration and the corresponding OD reading detected by an 

absorbance plate reader. R-squared indicates how closely the data are to the 

fitted regression line plotted here. 
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Figure 29.  Increasing concentrations of LDH were assessed and 

absorption measured for linearity of OD reading.  Concentrations of 1 ng/µL 

and 2.5 ng/µL produce readings that are close to the fitted regression line with an 

R2 close to 1, while a concentration as high as 10 ng/µL does not.   
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In addition to optimizing the volume of conditioned media to use for 

measurement, it was imperative to understand the number of cells that lead to a 

particular reading within the linear range of the assay.  An increasing number of 

HeLa cells produce a correlative amount of LDH that is reflected in the 

measurement detected by absorbance reading (Figure 31).  An additional control 

experiment was performed to understand the expected OD reading from 

increasing numbers of injured and dying cells.  HeLa cells were plated in a 48-

well plate at increasing cell densities and cultured for 24 h (Figure 32).  Triton-X 

was added to some wells (n=3) (Figure 32a) and remaining wells (n=3) were left 

untreated (Figure 32b).  Addition of triton-X to HeLa cells increases the OD 

reading correlating to the amount of LDH released from cells into conditioned 

media.   
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Figure 30.  Cell number vs. optical depth of the LDH assay.  An increasing 

number of cells produce a correlative amount of LDH that is reflected in the 

measurement detected by absorbance reading.   
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Figure 31a. .  Increasing numbers of cells produce correlative increased 

amounts of LDH when treated with Triton-X as measured by absorbance.   

	

 

Figure 31b.  Increasing numbers of cells produce correlative increased 

amounts of LDH as measured by absorbance.  These readings are lower than 

those of cells treated with the detergent Triton-X, which damages the cell 

membrane.   
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D. siRNA Transfection 

Cultured cells were grown in 24- or 48-well plates and transfected using 

Lipofectamine RNAiMax lipid-based transfection reagent (Life Technologies) per 

the manufacturer protocol.  Transfection complexes were made using 50 µL per 

well Opti-MEM media (Gibco).  Mock transfected cells contained Opti-MEM and 

75 µL per well RNAiMax with no RNA.  Cells were transfected for 48 h at 37ºC.  

Cells were then gently washed with PBS and lysed with RIPA buffer containing 

protease inhibitor.  Protein estimation was performed using the BSA Protein 

Assay kit (Thermo).   

E. Transcription Factor Activation Reporter Arrays 

i. LucPhoto TransActivation Array 

 One-Step LucPhoto TransActivation Array was obtained from Signosis 

(Santa Clara, CA) and used according to the manufacturer protocol.  Briefly, four 

sets of 24 baculovirus recombinant viruses (30 µL) were transferred into three 

columns of cell culture wells of a 96-well plate containing cells at 70% confluency 

and incubated for 24 h. MTM or TA was added to cells for 36 h to induce 

luciferase activity.  An equal volume of CellTiter-Fluor Reagent (Promega) was 

added to add wells to measure cell viability.  Plate was allowed to incubate for 

30min at 37ºC. Fluorescence was measured at 360EX 535EM.  Media was 

removed and cells were washed with PBS.  PBS was removed and 20 µL 

passive lysis buffer was added to each well for a 15 min incubation period at 

room temperature.  Luciferase substrate (100 µL) was added to each well and 
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mixed.   Plate was immediately read in a Glomax luminometer (Promega) and 

reported as relative light units (RLUs). 

ii. Transcription Factor Activation Profiling Array 

Transcription factor activation profiling plates were obtained from Signosis 

(Santa Clara, CA) and used according to manufacturer protocol (Figure 40a).  

Each well of the plate was specifically pre-coated with complementary 

sequences of probes.  Differentiated SK-N-SH cells were treated with vehicle, 

MTM, MTM-SDK, MTM-SK, TA, and the combination of MTM with TA in 100 mm 

dishes for 48 h.  Nuclear protein extraction was performed.  Biotin-labeled probes 

that are made based on consensus sequences of TF DNA-binding sites were 

incubated with nuclear extracts.  Individual probes found the corresponding TF 

and formed TF/probe complexes.  Bound probes were then detached from the 

complex and analyzed through hybridization with the plate.  Captured DNA probe 

was then detected with streptavidin-horseradish peroxidase.  Luminescence was 

measured with a Glomax luminometer (Promega) and reported as relative light 

units (RLUs).   

F. Epigenetic Enzyme Activity Assays 

i. DNMT Activity Assay 

Kit was obtained from Active Motif and used according to manufacturer 

protocol.  Differentiated SK-N-SH cells were treated with vehicle, MTM, MTM-

SDK, MTM-SK, TA, and the combination of MTM with TA in 100 mm dishes for 

48 h.  Nuclear protein extraction was performed and protein estimation was done 

with both the cytoplasmic and nuclear fractions.  Pseudoreplicates were used to 
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measure cell viability.  To calculate the activity of DNMTs, an average of the 

pseudoreplicate readings was taken.  The average blank OD was subtracted 

from this average pseudoreplicate OD.  This quantity was then divided by the 

amount of protein added to the reaction in µg multiplied by the incubation time in 

hours.  This total was then multiplied by 1000 to give activity in OD/h/mg. 

ii. HDAC Activity Assay  

Kit was obtained from Active Motif and used according to manufacturer 

protocol.  The assay uses a peptide substrate with an acetylated lysine group 

that can be deacetylated by HDAC enzymes.  When it has been deacetylated, 

the lysine reacts with the provided developing solution to release a chromophore.  

Differentiated SK-N-SH cells were treated with vehicle, MTM, MTM-SDK, MTM-

SK, TA, and the combination of MTM with TA in 100 mm dishes for 48 h.  

Nuclear protein extraction was performed and protein estimation was done.  In 

short, all components were thawed on ice and reagents prepared according to 

protocol.  Nuclear extract was used at a concentration of 3 µL and added to 27 µl 

assay buffer to bring the test sample volume to 30 µL total.  HDAC assay buffer, 

HDAC substrate, and test sample were added to wells of the plate and incubated 

at 37°C for 30 min.  HDAC reactions were stopped with the addition of 

developing solution, and then incubated for 10 min at room temperature.  

Standard curve was created to determine enzymatic activity (not shown). The 

total amount of protein added was calculated using protein concentration and 

volume used.  Absorbance was read in a plate reader at 415 nm.  
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G. Incucyte ZOOM  

 Incucyte ZOOM technology allows real-time live microscopic imaging of 

cells in culture.  There is direct access to microscopic imaging while 

pharmacological agents have been applied directly to the cells at varying 

concentrations in culture medium.  This access allows for genetic manipulations 

via siRNA transfection and reporter assays that cannot be done in whole animal 

models.  We expect that optimization of Incucyte Zoom technology with post-

mitotic tissue culture models will be a powerful contribution to the field of AD 

study.  Plating conditions of the Incucyte Zoom were done using PC12 cells 

differentiated by NGF (Figure 33).   

 

  



85 

IV. Aim 1:  Mechanistic study of the activation of Alzheimer’s disease 

relevant transcription factors in human cells 

A. Introduction 

 Transcription factors have been considered as possible therapeutic 

targets for years.  Hesitation for use of TFs as drug targets is partially due to the 

fact that the interacting surface between DNA and TFs is quite large and subject 

to many changes during DNA-binding [143]. As previously discussed, SP1 has 

been shown to be relevant in neurodegenerative disorders, including AD.  

Mechanistic investigations of compounds thought to target SP1 may lead to a 

better understanding of how these compounds affect amyloid-beta pathway 

proteins.  It is also important to understand whether these drugs act solely 

through SP1 or if in fact multiple TFs are involved in a pathway leading to 

changes in APP, BACE1, and Aβ.   

B. Prediction Tools & Literature Review 

A predicted gene network of SP1 with genes of the Aβ pathway was 

analyzed according to GeneMANIA (http://www.genemania.org August 2016 

Assembly). AD-associated genes predicted to directly or indirectly interact with 

SP1 and other TFs were shown (Figure 33). Connections include genetic and 

physical interactions, co-localization, and co-expression.  For example, ATF6 

(Activating transcription factor 6) showed a genetic interaction with SP1.  ATF6 

has been implicated in the accumulation of misfolded proteins in diseases such 

as AD [144].  Brains from deceased individuals with Down syndrome were 

examined and up-regulation of E2F-1 was observed, exhibiting similar 
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neuropathological features of dementia of Alzheimer’s type [145].  E2F-1 shares 

a pathway with SP1 and co-localizes with SP1 according to the gene prediction 

tool (Figure 33).  Additionally, subcellular distribution of E2F-1 has been shown to 

be altered during AD [146].  The angiogenic TF Ets-1 was observed to be 

differentially expressed in AD brain versus control brains.  Control brains showed 

little expression of Ets-1 whereas Ets-1 was ubiquitously expressed in the cortex 

and hippocampus of AD brain tissue [147].  Prediction tools along with an 

extensive literature review led to a working list of genes and TFs implicated in 

neurodegeneration and AD (Table 3).   
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Figure 32. Predicted gene network of SP1 and APP.  Connections include 

genetic and physical interactions, co-localization, and co-expression.  Many 

TFs of interest can be generated from prediction tools (GeneMANIA.org). 
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Table 3. Genes related to Alzheimer’s disease by literature review 

Name Full Name Aliases Role of Protein Relevance to AD 
APBA1 amyloid beta 

(A4) precursor 
protein-binding, 
family A, 
member 1 

MINT1, X11A, 
adapter 
protein 
X11alpha, 
D9S411E, 
LIN10 
(GeneCards, 
Sept 2016) 

Neuronal adaptor 
protein; involved 
in signal 
transduction; 
synaptic vesicle 
exocytosis by 
binding to 
Munc18-1 
(GeneCards, Sept 
2016) 

Stabilizes APP; 
inhibits production 
of proteolytic APP 
fragments (RefSeq, 
Jul 2008) 

APBB1 amyloid beta 
(A4) precursor 
protein-binding, 
family B, 
member 1  

RIR, FE65 
(GeneCards, 
Sept 2016) 

Adaptor protein; 
located in the 
nucleus; 
transcription 
coregulator; binds 
modified histones 
(UniProtKB, Sept 
2016) 

Forms 
transctriptionally 
active complex with 
gamma-secretase-
derived APP 
intracellular domain 
(Entrez, Sept 2016) 

APP amyloid beta 
(A4) precursor 
protein 

AD1, CVAP, 
Peptidase 
Nexin, AAA 
(GeneCards, 
Sept 2016) 

Cell surface 
receptor; involved 
in neurite growth, 
neuronal 
adhesion, 
axonogenesis and 
cell mobility 
(UniProtKB, Sept 
2016) 

Mutations in APP 
have been 
implicated in 
autosomal 
dominant AD; 
progressive 
cleavage can lead 
to amyloid-beta 
production (Tocris, 
Sept 2016) 

ATF6 activating 
transcription 
factor 6  

ATF6A 
(GeneCards, 
Sept 2016) 

Transcription 
factor; activates 
target genes for 
the unfolded 
protein response 
during ER stress 
(Entrez, Sept 
2016) 

Neuronal death in 
AD may arise from 
ER dysfunction  
(Katayama et al., 
2004) 

CREB cAMP 
response 
element-
binding protein 

CREB-1 Transcription 
factor; binds to 
cAMP response 
elements (CRE) 
[148]  

Critical role in 
memory 
consolidation [149] 
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E2F1 E2F 
transcription 
factor 1 

RBBP3, 
RBAP1, PBR3 
(GeneCards, 
Sept 2016) 

Transcription 
activator; binds 
DNA; mediates 
cell proliferation 
and TP53-
dependent 
apoptosis  
(UniProtKB, Sept 
2016) 

E2F1 mediates 
death of amyloid-
beta-treated cortical 
neurons (Jordan-
Sciutto et al., 2001) 

ETS1 v-ets avian 
erythroblastosis 
virus E26 
oncogene 
homolog 1 

EWSR2 
(GeneCards, 
Sept 2016) 

Transcription 
factor; controls 
expression of 
various cytokine 
and chemokines 
(UniProtKB, Sept 
2016) 

Differentially 
expressed in AD 
brain versus 
controls [147] 

HIF1 hypoxia-
inducible 
factor-1 

HIF1; MOP1; 
PASD8; HIF-
1A; bHLHe78; 
HIF-1alpha 
(GeneCards 
Mar 2017) 

Respond to 
decreases in 
available oxygen 
in the cellular 
environment [150] 

Stabilization of 
HIF1 levels is 
neuroprotective 
[151] 

IDE insulin 
degrading 
enzyme 

Abeta-
Degrading 
Protease, 
insulin 
(GeneCards, 
Sept 2016) 

Zinc 
metallopeptidase; 
degrades insulin 
(Entrez, Sept 
2016) 

Degrades amyloid 
formed by APP; 
Deficiencies are 
associated with AD 
(UniProtKB, Sept 
2014) 

IL1A interleukin 1 
alpha 

IL1, IL1F1 
(GeneCards, 
Sept 2016) 

Cytokine involved 
in various immune 
responses 
(Entrez, Sept 
2016) 

Induces synthesis 
and processing of 
APP (Griffin et al., 
1995) 

MME membrane 
metallo-
endopeptidase 

CALLA, NEP, 
neprilysin 
(GeneCards, 
Sept 2016) 

Acute lymphocytic 
leukemia antigen; 
neutral 
endopeptidase 
(Entrez, Sept 
2016) 

Amyloid-beta 
degrading enzyme ; 
regulation of 
neuropeptide 
signaling; levels are 
lower in AD brains 
(Akiyama et al., 
2001) 

NCSTN nicastrin  ATAG1874, 
KIAA0253 
(GeneCards, 
Sept 2016) 

Type I 
transmembrane 
glycoprotein ; 
component of 
gamma-secretase 
complex (Entrez, 
Sept 2016) 

Subunit of gamma-
secretase which 
cleaves  APP 
(UniProtKB, Sept 
2014) 
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NFAT nuclear factor 
of activated T-
cells 

NFAT1; 
NFATP; 
NFATC2 
(GeneCards 
Jan 2017) 

Induction of  gene 
transcription 
during the immune 
response  

Expressed by 
microglia which are 
stimulated by Aβ 
[152] 

NFκB nuclear factor 
kappa-light-
chain-enhancer 
of activated B 
cells 

p50; KBF1; 
p105; EBP-1; 
CVID12; NF-
kB1 
(GeneCards, 
Mar 2017) 

Transcription 
regulator activated 
by various intra- 
and extra-cellular 
stimuli 

Involved in Aβ-
induced 
neuroinflammation 
[153] 

PSEN1 presenilin 1  AD3, PS1, 
FAD, PSNL1 
(GeneCards, 
Sept 2016) 

Catalytic subunit 
of the gamma-
secretase 
complex 
(UniProtKB, Sept 
2016) 

Patients with 
inherited AD carry 
mutations in 
PSEN1 or APP 
which lead to 
increased amyloid 
production (Entrez, 
Sept 2014) 

SMAD  BSP1; JV41; 
BSP-1; JV4-1; 
MADH1; 
MADR1 
(GeneCards 
Mar 2017) 

signal transducers 
and transcriptional 
modulators that 
mediate multiple 
signaling 
pathways 

Colocalizes with 
both neurofibrillary 
tangles and β-
amyloid plaques 
[154, 155] 

SP1 Specificity 
protein 1 

 involved in cell 
differentiation, cell 
growth, apoptosis, 
immune 
responses, 
response to DNA 
damage, and 
chromatin 
remodeling 

Regulates 
expression of APP 
and BACE1 [78] 

STAT1 signal 
transducer and 
activator of 
transcription 1 

CANDF7; 
IMD31A; 
IMD31B; 
IMD31C; 
ISGF-3; 
STAT91 
(GeneCards, 
Mar 2017) 

activated by 
various ligands; 
mediates the 
expression of a 
variety of genes 

Binding sites 
present on the APP 
promoter [156] 
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TNF tumor necrosis 
factor 

TNFA, 
TNFSF2 
(GeneCards, 
Sept 2016) 

Proinflammatory 
cytokine; involved 
in regulation of 
cell proliferation, 
differentiation, 
apoptosis (Entez, 
Sept 2016) 

Neuroprotective in 
mice (RefSeq, Jul 
2008); located near 
a chromosomal 
region (∼30 Mb on 
6p21) that has 
shown genetic 
linkage and 
association with AD 
(Bertram and Tanzi, 
2004) 

TTR transthyretin PALB, CTS1 
(GeneCards, 
Sept 2016) 

A CSF protein; 
Carrier protein; 
transports thyroid 
hormones (Entez, 
Sept 2016) 

Lower 
concentrations of 
TTR in AD patients 
versus controls 
(Serot 2016) 
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C. Association Analysis 

The genetic data in the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) dataset, initiated in 2003 by the National Institute of Aging (NIA) has 

provided a source for quantitative endophenotype association studies [157].  A 

goal of ADNI studies has been to establish magnetic resonance imaging (MRI) 

and positron emission tomography (PET) imaging measures, as well as 

additional biomarkers from blood and cerebrospinal fluid (CSF), to influence 

eventual design of AD clinical trials [157].  We chose single nucleotide 

polymorphisms (SNPs) within the SP1 gene from the ADNI genome wide 

association study (GWAS) data and performed an association analysis with an 

AD-specific imaging biomarker (entorhinal cortex thickness).  We identified a 

significant SNP (rs11170553) associated with entorhinal cortex (ERC) thickness. 

The ERC is known to be affected in early AD.  It has been shown that AD 

subjects with thinner ERC demonstrate lower baseline cognitive scores and 

higher disease severity [158] and that reduction of ERC thickness of MCI patients 

can predict decline over time [159].  SNP rs11170553 was also associated with 

cerebral amyloid deposition (Figure 34).  
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Figure 33. Association results of SNPs in SP1 with an AD-specific 

neuroimaging phenotype (entorhinal cortex thickness).  Single nucleotide 

polymorphisms (SNPs) within ±20 kb of the SP1 gene were used and 

rs11170553 was significantly associated with entorhinal cortex thickness after 

multiple comparison adjustment. Source: ADNI dataset 
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D. Results 

i. Human Fetal Neurons  

To measure the activation of multiple TFs in human neurons, HFN were 

transduced with recombinant viruses containing a particular TF (Figure 35).  Four 

sets of 24 baculovirus recombinant viruses (30 µL) were transferred into three 

columns of cell culture wells of a 96-well plate containing cells at 70% confluency 

and incubated for 24 h. MTM was added to cells for 36 h to induce luciferase 

activity (Signosis, Inc.).  Conditioned media was removed and placed in a new 

96-well plate for cell toxicity to be measured by LDH assay.  Luciferase reporter 

activity was read by a luminometer. 

a. Effect of mithramycin A on cell toxicity of HFN 

 Cells treated with MTM (5 µM) changed cytotoxicity variably based on 

which TF construct was transduced into corresponding wells (Figure 36).  Only 

cells transduced with AP1, PPARγ, and HIF1 corresponded to a decrease in 

cytotoxicity after treatment with MTM.  SMAD-transduced cells and the CMV 

control showed no change in cell toxicity after MTM treatment.     

b. Effect of mithramycin A on transcription factor activation of HFN 

 MTM decreased activation of few TFs in HFN (Figure 37).  Notably, NFκB, 

NFAT, NRF2/ARE were decreased in luciferase activity by treatment with MTM.  

SP1 activation between vehicle and MTM treated cells was not different.  

Treatment with MTM increased activation of SMAD by nearly two-fold.   
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Figure 34.  Transcription Factor Activation Profiling in neurons.  Plate 

map of transcription factor. 3x 8 well strip, 4 reactions per TF.  24 recombinant 

viruses generated from insect cells with a modified baculovirus system that 

contains mammalian delivery element, TF consensus sequence, and 

luciferase reporter gene.  Source: Signosis, Inc. 

 

  



96 

 

Figure 35.  Effect of Mithramycin A treatment on human fetal neuron 

cytotoxicity. Cells treated with MTM (5 µM) changed cytotoxicity variably 

based on which TF construct was transduced into corresponding wells. Cells 

transduced with AP1, PPARγ, and HIF1 corresponded to a decrease in 

cytotoxicity after treatment with MTM.  SMAD-transduced cells and the CMV 

control showed no change in cell toxicity after MTM treatment. 
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Figure 36. Effect of MTM on luciferase expression of various transcription 

factors in human fetal neurons.  MTM decreased activation of few TFs.  In 

particular, NFκB, NFAT, NRF2/ARE were decreased in luciferase activity by 

treatment with MTM.  SP1 activation between vehicle and MTM treated cells 

was not different.  Treatment with MTM increased activation of SMAD by nearly 

two-fold.   
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ii. Differentiated Neuroblastoma Cells 

To measure the activation of multiple TFs and elucidate the status of 

signaling pathways after MTM or TA treatment, a TF reporter assay was 

performed in differentiated human neuroblastoma cells.  First, were transduced 

with recombinant viruses as described earlier (Figure 35).  Four sets of 24 

baculovirus recombinant viruses (30 µL) were transferred into three columns of 

cell culture wells of a 96-well plate containing cells at 70% confluency and 

incubated for 24 h. MTM or TA was added to cells for 36 h to induce luciferase 

activity (Signosis, Inc.).  Conditioned media was removed and placed in a new 

96-well plate for cell toxicity to be measured by LDH assay.  Luciferase reporter 

activity was read by luminometer. 

a. Effect of mithramycin A on cell toxicity of NBRA  

 Neurons transduced with IRF, SP1, and SRF showed increased 

cytotoxicity compared to vehicle treatment (Figure 38a).  YY1, NRF2/ARE, and 

XPB1 transduced cells showed a decrease in cell toxicity.  Others showed no 

change in toxicity as compared to vehicle.   

b. Effect of mithramycin A on transcription factor activation of NBRA 

MTM treatment led to nearly 80% decrease in SP1 reporter activity 

compared to vehicle treatment (Figure 38b). Several other TFs were decreased 

in activity by MTM treatment, including NFκB, NFAT, ER, AP1, and HIF1. 
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c. Effect of tolfenamic acid on cell toxicity of NBRA  

 Neurons transduced with XBP1 showed decreased cytotoxicity as 

detected by LDH assay (Figure 39a).  Transduction by other TFs was well 

tolerated with and without TA treatment.   

d. Effect of tolfenamic acid on transcription factor activation of NBRA 

TA treatment led to no change in SP1 reporter activity (Figure 39b).  

Several TFs showed no change in activation after treatment with TA.  However, 

NFκB was shown to be activated by TA treatment in NBRA.   
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Figure 37a.  Effect of MTM on cell toxicity in differentiated neuroblastoma 

cells as measured by LDH assay.  Neurons transduced with IRF, SP1, and 

SRF showed increased cytotoxicity compared to vehicle treatment.  YY1, 

NRF2/ARE, and XPB1 transduced cells showed a decrease in cell toxicity.  

Others showed no change in toxicity as compared to vehicle. 
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Figure 37b. Effect of MTM on luciferase expression of various 

transcription factors in differentiated neuroblastoma cells.  Four sets of 24 

baculovirus recombinant viruses (30 µL) were transferred into three columns of 

cell culture wells of a 96-well plate containing cells at 70% confluency and 

incubated for 24 h. MTM or TA was added to cells for 36 h to induce luciferase 

activity. MTM leads to nearly 80% decrease in SP1 reporter activity. 
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Figure 38a. Effect of TA on cell toxicity in differentiated neuroblastoma 

cells as measured by LDH assay.  Neurons transduced with XBP1 showed 

decreased cytotoxicity as detected by LDH assay.  Transduction by other TFs 

was well tolerated with and without TA treatment.   
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Figure 38b. Effect of TA on luciferase expression of various transcription 

factors in differentiated neuroblastoma cells. Four sets of 24 baculovirus 

recombinant viruses (30 µL) were transferred into three columns of cell culture 

wells of a 96-well plate containing cells at 70% confluency and incubated for 24 

h. MTM or TA was added to cells for 36 h to induce luciferase activitySeveral 

TFs showed no change in activation after treatment with TA, including SP1.  

However, NFκB was shown to be activated by TA treatment in NBRA. 
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e. Effect of mithramycin A and tolfenamic acid on transcription factor 

activation of NBRA 

 In order to directly assess the differences in TF activation between MTM 

and TA, a TF profile array was performed as depicted in Figure 40a.  In this 

experiment, 48 TFs were examined in NBRA treated with either MTM or TA 

(Figure 40b).  Several TFs including Brn-3, CAR, HIF, NFE2, and p53 show a 10-

fold change or higher in activation in MTM vs TA treated neurons.  FAST-1, IRF, 

and STAT5 all show a 5-fold change or higher.   
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Figure 39a. Transcription factor profile array. Biotin-labeled probes that are 

made based on consensus sequences of TF DNA-binding sites were incubated 

with nuclear extracts.  Individual probes found the corresponding TF and 

formed TF/probe complexes.  Bound probes were then detached from the 

complex and analyzed through hybridization with the plate.  Captured DNA 

probe was then detected with streptavidin-horseradish peroxidase. (Figure 

from Signosis Inc.) 
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Figure 39b. Transcription factor profile array.  An array of various TFs 

shown on the x-axis with the corresponding activation after treatment with MTM 

or TA measured by relative luminescence units (RLU) on the y-axis.  Several 

TFs including Brn-3, CAR, HIF, NFE2, and p53 show a 10-fold change or 

higher in activation in MTM vs TA treated neurons.  
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E. Discussion  

Treatment of a mixed brain cell culture system such as HFN with MTM 

yielded unexpected results in the activation of various TFs (Figure 37).  Although 

SP1 activity was decreased by treatment with MTM in NBRA, it is unchanged in 

HFN.  In a culture solely comprised of mature neurons, treatment with MTM 

decreases SP1 reporter activity as hypothesized.  The effect of glia and other 

cells in a mixed brain culture on the activation of TFs could be a cause of these 

differences.  For instance, it is known that particular cells of the CNS express 

certain TFs.  Microglia express the pro-inflammatory transcription factor, NFAT 

[152].  Neurons may secrete factors which induce the expression of TFs by 

astrocytes [160].  The influence of neurons on glia and vice versa in a mixed 

brain culture such as HFN may complicate the direct effects we see from a 

simple reporter assay.  Nevertheless, the NBRA culture allows us to observe the 

effects of two so-called SP1-modulating drugs, MTM and TA in a purely neuronal 

model.   

Treatment with MTM led to a decrease in NFκB activity, yet treatment with 

TA resulted in an increase.  This trend was observed in several of the TFs also 

predicted to be relevant of AD.  The transcription factor profile array allowed 

head to head comparison of the effects MTM and TA have on various TFs 

(Figure 40b).  Along with SP1, several other TFs show a decrease in activation 

when treated with MTM and no change with TA treatment.  TFs of interest show 

a decrease with MTM treatment and a corresponding decrease (or no change) 

with TA treatment, binding sites on AD-related gene promoters, or found in the 
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literature to be relevant to AD.  Understanding how these drugs differentially 

modulate various TFs may help elucidate a mechanism of action for these 

compounds relevant to AD.   

Transcription factor modulation by small compounds can be achieved by 

four main strategies [143].  The first strategy involves the inhibition of protein-

protein interactions, since many TFs rely on co-factors in order to function 

appropriately. Blocking TF binding to DNA requires detained understanding 

about the binding surface of the ligand.  Small, clearly defined protein surfaces 

are ideal.  Directly targeting and manipulating the TF DNA binding domain (DMD) 

by small molecules to either change its conformation of prevent DNA binding is 

yet another approach.  TA has been shown to promote the degradation of SP1 

[161].  Another strategy involves the targeting of chromatin remodeling/epigenetic 

reader proteins, which are essential for the access of TFs to DNA access. The 

fourth approach is based on compounds that would compete with TFs to block 

protein-DNA binding or by altering the conformation of target DNA sequences 

such that they cannot be recognized by TFs.  MTM is thought to compete with 

and displace SP1 from its binding sites.  The work presented here indicates that 

not only do MTM and TA activate SP1 differently; they also activate several other 

TFs.  This function speaks to their differences in mechanism of action and the 

possibility of multiple networks of TFs involved in their action on amyloid pathway 

genes.   

There is great future potential in compounds that work by any of these 

approaches. An HSP60-binding compound has been created, which prevents 
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HIF1 activation, likely by HIF1α crosslinking [162]. Another compound, inS3-54 

inhibits transcriptional activity of STAT3 [163].  Understanding the molecular 

mechanisms of TF activation and function will inevitably provide clues how 

modulating specific TF function by drugs such as MTM and TA can be achieved 

and possibly also applied for AD therapy. 
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V. Aim 2:  Examination of the effects of transcription factor modulating 

compounds on epigenetic markers in human neurons 

A. Introduction 

Epigenetic mechanisms are involved in the regulation of processes related 

to memory consolidation, aging, and cognition during the normal lifespan [164]. 

Environmental factors may play a role in the interaction with specific loci by 

modifying their expression through epigenetic mechanisms to increase 

susceptibility to disorders later in life [80, 165, 166].  Lifestyle, genetic factors, 

and environmental exposures in early life may all influence the epigenome in a 

latent manner [167, 168].  Possible treatments could target particular pathways 

associated with dysfunction.  DNA methylation, chromatin modifications, and 

even microRNA expression have all been shown to be altered in 

neurodegenerative disorders.  DNA methylation takes place when a methyl group 

is added at CpG dinucleotides which can	activate or repress the transcriptional 

activity of a gene [169].  Histone deacetylaces (HDACs) are involved in the 

regulation of histones and many neurological processes [170].  For example, 

DNA hypomethylation leads to expanded regulation of the TF NFκB [171]. 

Understanding how certain compounds influence methylation and/or histone 

modification is important for understanding how TF binding may be affected by 

them.  The experiments described in this section sought to discover the effect 

treatment with SP1-modulating compounds would have on histone deaceylase 

activity or DNA methyltransferase (DNMT) activity in human cells.  Differentiated 

SK-N-SH (NBRA) cells were treated with vehicle, MTM, MTM-SDK, MTM-SK, 
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TA, and the combination of MTM with TA in 100 mm dishes for 48 h.  Nuclear 

protein extraction was then performed. 

B. Results 

i. Effect of drug treatment on SP1 expression levels in nuclear extract 

Nuclear extracts from NBRA treated with compounds showed variation in 

SP1 protein levels via Western immunoblotting (Figure 41).  GAPDH was used 

as a loading control and levels of SP1 for each sample were normalized to the 

corresponding GAPDH level for that sample.  MTM treated neurons as well as 

those treated with combination MTM and TA showed a significant decrease in 

SP1 as compared to vehicle.  Cells treated with analog MTM-SK and those 

treated with TA showed an increase in SP1 levels.    
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Figure 40. Effect of treatment of differentiated neuroblastoma cells with 

MTM, its analogs, and TA on levels of SP1. Nuclear extracts from NBRA 

treated with compounds show variation in SP1 levels.  Lower levels were 

detected in the cytosolic fraction (not shown).  MTM treated neurons as well as 

those treated with combination MTM and TA show a significant decrease in 

SP1 as compared to vehicle.  Cells treated with analog MTM-SK and those 

treated with TA showed an increase in SP1 levels.   
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ii. Effect of drug treatment on DNMT activity 

 Retinoic acid-differentiated neurons (NBRA) were treated with compounds 

for 48 h. Cells were harvested and nuclear protein was extracted to measure 

DNMT activity.  MTM-SDK significantly reduced DNMT activity in these neurons 

(Figure 42). 

iii. Effect of drug treatment on HDAC activity 

Neurons (NBRA) were treated with compounds for 48 h. Cells were 

harvested and nuclear protein was extracted to measure HDAC activity.  MTM-

SDK significantly reduced HDAC activity in neurons (Figure 43). 
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Figure 41.  DNMT activity is significantly decreased in neurons treated 

with MTM-SDK. A sensitive ELISA-based enzyme activity assay using the high 

affinity binding of methyl CpG binding domain (MBD) protein towards 

methylated DNA to detect DNA methyltransferase activity on the provided 

CpG-enriched DNA substrate was used per manufacturer protocol.  Methylated 

DNA was recognized by His-tagged MBD in amounts proportional to enzyme 

activity.  An HRP-conjugated polyhistidine antibody provided the readout via 

spectrophotometer (OD/h/mg).  Differentiated SK-N-SH cells were treated with 

vehicle, MTM, MTM-SDK, MTM-SK, TA, and the combination of MTM with TA 

in 100 mm dishes for 48 h.  Nuclear protein extraction was performed and 

protein estimation was done with both the cytoplasmic and nuclear fractions.  

Pseudoreplicates were used (n=3).  To calculate the activity of DNMTs, an 

average of the pseudoreplicate readings was taken.  The average blank OD 

was subtracted from this average pseudoreplicate OD.  This quantity was then 
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divided by the amount of protein added to the reaction in µg multiplied by the 

incubation time in hours.  This total was then multiplied by 1000 to give activity 

in OD/h/mg. 
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Figure 42.  Treatment with SP1 modulating drugs does not significantly 

change histone deacetylase activity (HDAC) in neurons.  The assay uses a 

peptide substrate with an acetylated lysine group that can be deacetylated by 

HDAC enzymes.  When it has been deacetylated, the lysine reacts with the 

provided developing solution to release a chromophore.  Differentiated SK-N-

SH cells were treated with vehicle, MTM, MTM-SDK, MTM-SK, TA, and the 

combination of MTM with TA in 100 mm dishes for 48 h.  Nuclear protein 

extraction was performed and protein estimation was done.  Nuclear extract 

was used at a concentration of 3 µL and added to 27 µl assay buffer to bring 

the test sample volume to 30 µL total.  HDAC assay buffer, HDAC substrate, 

and test sample were added to wells of the plate and incubated at 37°C for 30 

min.  HDAC reactions were stopped with the addition of developing solution, 

and then incubated for 10 min at room temperature.  Standard curve was 

created to determine enzymatic activity (not shown). Absorbance was read in a 

plate reader at 415 nm. 
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C. Discussion 

DNA methylation is a key epigenetic mechanism regulating gene 

expression.  Understanding changes in the methylation state of the promoters of 

AD-relevant genes will provide insight into how to manipulate epigenetic 

modifications by various compounds.  It is unknown if MTM-SDK treatment leads 

to hypomethylation of SP1 or possibly the promoter regions to which SP1 binds.  

It would also be imperative to understand whether this possible hypomethylation 

would enhance or inhibit SP1 or other TF binding.  Moreover, understanding the 

cross-talk between TFs of interest and epigenetic programs will be critical in our 

understanding of how to manipulate these interactions and decrease amyloid-

beta production.  The effect MTM-SDK may have on the epigenetic state of the 

APP, BACE1, and other AD-relevant promoters may involve affecting how TFs 

such as SP1 bind and regulate their activity.   

The idea of “undoing epigenetics” is a concept worth investigating as 

modifications that altered gene expression in early life may be reversible later in 

life {Weaver, 2005 #643}.  DNMTs can be activated during both childhood and 

adulthood, and this plasticity can possibly be manipulated by compounds that 

target transcription regulators such as TFs.   

Ultimately, a mechanism of epigenetic control involving the APP or BACE1 

promoter, which potentially can be targeted by tailored small molecules toward 

TFs could be groundbreaking for AD research.  The TFs themselves may not be 

the target, but the epigenetic regulation of the binding of that TF may serve a 

better approach.  Elucidating the methylation status before and after treatment 
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with these compounds will be an important next step in evaluating the utility of 

MTM-SDK for AD.  As DNA methylation status varies between cell type [172], it 

will be critical to test the effects of these drugs in other human cell culture models 

to discover any changes in methyltransferase and HDAC activity also.  

Association studies investigating a link between methylation status of AD-

relevant promoters and AD-relevant phenotypes would also be valuable 

information to build a case for MTM or its analog MTM-SDK in AD therapy, as 

well as finding the roles of possible variants in altering TF binding.  These 

epigenetic alterations are both dynamic and reversible, making these 

mechanisms attractive for future small compound discovery.    
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VI. Aim 3:  Testing the effects of TF-modulating compounds on human 

glial, neuronal, and primary mixed brain cultures 

A. Introduction  

Cell lines derived from malignant brain tumors have been used in 

neuroscience studies for years.  However, using primary brain and neuron 

cultures is more useful when trying to mimic the biological behavior of these cells 

and trying to avoid artifacts that may arise from using immortalized cells.  Most 

neuronal cultures come from rodent brains, mostly because of their availability 

and cost [173].  Rodents do not, however, develop AD or other 

neurodegenerative diseases, which is a downside of these models.  Use of 

human neurons from induced pluripotent stem cells and cultures from nonhuman 

primates are other more expensive options for models in AD study [142].  

Recently, our laboratory was able to outline a protocol for the preparation and 

use of a human primary mixed brain culture derived from human fetal brain that 

has been successfully used in current work [142, 174].  Human fetal neurons are 

useful in AD studies, yet these cells, once plated, cannot be serially passaged or 

propagated for future experiments.  For this reason, we have begun isolating 

free-floating cultures of neural stem cells from human fetal brain tissue (See 

Methods).  These free-floating cultures are called neurospheres.  In 1992, 

Reynolds and Weiss isolated and expanded undifferentiated neurospheres and 

were able to dissociate these cells to form more secondary spheres [175, 176].  

These methods have been extensively used by research groups in numerous 

studies in animal models.  However, this system is used for the production of 
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human neural cells in culture that can be frozen, stored, thawed, and cultured 

again to provide a supply of neurons with banking potential for future 

experimental use.  These 3D neurospheres can also be induced to differentiate 

to form a monolayer of major CNS cell types using various growth factors [177-

180]. We seek to further elucidate the identity and stemness of human NSPc.  

Our studies further characterized these differentiated cells and the conditions 

needed to optimize its use as a model for AD study.   

In addition, use of the differentiated neuroblastoma cell line SK-N-SH 

(NBRA) as a post-mitotic human model allows us to easily manipulate neurons in 

a cancer cell line system.  In contrast to the dNSPc model, NBRA are not a 

mixed population culture.  Use of mature, differentiated neurons also permits the 

study of the neurobiology of these cells via real time live cell culture imaging with 

Incucyte Zoom technology (see Methods), assess amyloid beta levels via specific 

sandwich ELISA, and detect protein levels by Western immunoblotting. 

B. Results 

i. Drug dosage studies 

 Preliminary drug studies were performed in unique dividing cell lines to 

observe the effect of cell viability and toxicity across cell types.  It was imperative 

to know if partial inhibition of BACE1 or APP via SP1 modulation could allow 

reduction of Aβ without mechanism-based toxicities from its action on other 

substrates.  Also, use of purely neuronal (NBRA) and glial (U373) cell culture 

models provided insight into how these compounds affect particular cell types. 
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a. Human glioblastoma cells 

 The human glioblastoma cell line U373 was used in several preliminary 

studies along with NBRA to demonstrate which doses could be tolerated and 

used in future experiments.  U373 were plated in 24-well plates at 70% 

confluency in MEM supplemented with 10% FBS and 1X antibiotic.  Cells were 

treated with vehicle (0.01% DMSO), 0.05, 0.1, 0.5 1.0, and 10.0 µM MTM (Figure 

44a) or vehicle (0.01% DMSO), 0.1, 1.0, 10.0, 50.0 and 100.0 µM TA (Figure 

44b) for 16 h and 24 h.  Cell toxicity was measured via LDH cytotoxicity assay as 

previously described at 2 time points.  Treatment with increasing doses of MTM 

does not produce a dose-dependent increase in LDH production.  At 16 h, higher 

doses in fact decrease cytotoxicity in U373.  Although there are fluxations in LDH 

at increasing doses at the 24 h time point at the highest dose (10 µM), toxicity is 

20% less than the lowest dose of MTM.  Toxicity greatly increases at the 10 µM 

dose of TA at both time points in U373.  Lower doses of 0.1 and 1.0 µM TA are 

well tolerated in U373.   

 To discover a possible dose-dependent effect of MTM on APP, U373 were 

treated with two non-toxic doses of drug (0.5 and 1.0 µM) for 48 h.  Cells were 

harvested and Western immunoblotting was performed as previously described.  

GAPDH was used as a loading control and APP levels were normalized to it.  

APP levels are significantly decreased with MTM treatment, however, not in a 

dose dependent manner (Figure 46). Next, the effect of both MTM and TA on the 

levels of APP, SP1, and BACE1 in U373 was assessed via Western blot (Figure 

47).  U373 were plated in a 24-well plate at 70% confluency.  Cells were 
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transfected with APP, BACE1, and SP1 siRNAs as controls (n=4).  Other cells 

were treated with MTM or TA (1.0 or 5.0 µM).  Beta-actin was used as the 

loading control in this instance.  It was clear that both doses of MTM reduced 

APP levels in U373 and that TA caused no such change.  It is notable here that 

the transfection with APP siRNA reduced APP expression as well, yet SP1 

siRNA and BACE1 siRNA did not reduce their target proteins.   

b. Human neuroblastoma cells 

 Combination treatments were used to compare how MTM and TA affect 

human cells separately and in concert.  Increasing doses of MTM and TA in 

differentiation media were added to DIV7 NBRA.  Doses from 0.05 to 50,000 nM 

were used to cover a wide range.  Both cell viability and cell toxicity were 

assessed via CTG and LDH respectively (Figure 45).  Combination treatment 

decreases viability by 30% and increases toxicity by 20% of vehicle at the dose 

of 5 nM.  As expected, the toxicity and viability changes have an inverse 

relationship as peak toxicity (80% increase) is reached at 50 nM which 

corresponds to a 60% decrease in viability.     

c. Human fetal neuron culture 

The effect of these drugs on purely neuronal and glial cultures is important 

to understand, but ultimately we sought to understand their effect on the cell 

viability on primary mixed brain cultures.  HFN cultures were plated in a 24-well 

format and treated with 6 doses (0, 1, 10,100, 500, 1000nM) of MTM, TA, MTM-

SDK, MTM-SK, or combinations of MTM-SDK and TA or MTM-SK and TA for 48 

h (Figure 48). MTM analog MTM-SDK did not show a change in cell viability even 
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at higher doses and in combination with TA.  MTM-SK in combination with TA led 

to a significant decline in cell viability at the highest doses.  Mixed brain cultures 

again showed that the primary cells of different populations affected the overall 

response to SP1 modulating drugs.   
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Figure 43a.  Effect of MTM on cell toxicity in U373 as measured by the 

LDH assay. Cells were treated with vehicle (0.01% DMSO), 0.05, 0.1, 0.5 1.0, 

and 10.0 µM MTM for 16 h and 24 h. Treatment with increasing doses of MTM 

did not produce a dose-dependent increase in LDH production.   

	

 
Figure 43b. Effect of TA on cell toxicity in U373 as measured by LDH 

assay. Cells were treated with vehicle (0.01% DMSO), 0.1, 1.0, 10.0, 50.0 and 

100.0 µM TA for 16 h and 24 h. Toxicity greatly increased at the 10 µM dose. 

Lower doses of 0.1 and 1.0 µM TA were well tolerated in U373.   
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Figure 44.  Effect of MTM and TA combination treatment on the viability 

(CTG) and toxicity (LDH) of NBRA.  As expected, the toxicity and viability 

changes had an inverse relationship as peak toxicity (80% increase) was 

reached at 50 nM which corresponds to a 60% decrease in viability.     
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Figure 45. Effect of Mithramycin A on APP Expression in U373. U373 

cultured in a 12-well plate; n=4; Vehicle (0.02% DMSO), 0.5, 1.0 µM 

Mithramycin A (MTM), 48 h treatment. GAPDH was used as a loading control 

and to normalize for densitometry.  Relative APP levels were significantly 

decreased with MTM treatment, but not in a dose dependent manner.   
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Figure 46. Effect of MTM and TA on APP, SP1, and BACE1 Protein 

Expression in U373. U373 were plated in a 24-well plate at 70% confluency.  

Cells were transfected with APP, BACE1, and SP1 siRNAs as controls (n=4).  

Other cells were treated with MTM or TA (1.0 or 5.0 µM).  Beta-actin was used 

as the loading control in this instance.  Both doses of MTM reduced APP levels 

in U373 and that TA causes no such change.  Note that transfection with APP 

siRNA reduced APP expression as well, yet SP1 siRNA and BACE1 siRNA did 

not reduce their target proteins.   
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Figure 47. Effect of MTM, analogs, and TA on cell viability of human fetal 

neurons.  Human fetal neurons were treated with MTM analogs MTM-SDK 

and MTM-SK alone and in combination with TA for 48 h.  MTM analog MTM-

SDK did not show a change in cell viability even at higher doses and in 

combination with TA.  MTM-SK in combination with TA led to a significant 

decline in cell viability at the highest doses. 
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ii. Effect of transcription factor modulation on differentiated 

neurosphere cells 

a. Effect of mithramycin A and tolfenamic acid on cell viability 

 Free-floating neurospheres were transferred from proliferation media to 

differentiation media in a 24-well plate format as previously described (Methods).    

At DIV10, cells were transfected with mock, SP1 siRNA, BACE1 siRNA, or APP 

siRNA (n=4).  Cells in other wells were treated with two doses of either MTM or 

TA (n=4).  Images were captured via microscopy and cell viability measured via 

CTG (Figure 49).  SP1 inhibition by MTM, TA, or SP1 siRNA did not significantly 

affect cell viability of differentiated neurospheres as measured by CTG (Figure 

49). 

b. Effect of mithramycin A and tolfenamic acid on APP and SP1 levels 

At DIV10, dNSPc were treated with vehicle, two doses of MTM or TA (1 

µM or 5 µM) or combination treatment (1 µM) after 48 h (n=4).  Western 

immunoblot analysis revealed a decrease in both APP and SP1 levels with MTM 

treatment (Figure 50).  Combination treatment also led to a decrease in APP and 

SP1 levels in dNSPc, while TA treatment alone did not.   
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Figure 48. Effect of SP1 Modulation on cell morphology and viability of 

dNSPc.  At DIV10, cells were transfected with mock, SP1 siRNA, BACE1 

siRNA, or APP siRNA (n=4).  Cells in other wells were treated with two doses 

of either MTM or TA (n=4).  Images were captured via microscopy and cell 

viability measured via CTG after 48 h.  SP1 inhibition by MTM, TA, or SP1 

siRNA did not significantly affect cell viability of differentiated neurospheres as 

measured by CTG. 
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Figure 49. APP and SP1 levels measured by Western immunoblot in 

dNSPc. At DIV10, dNSPc were treated with vehicle, two doses of MTM or TA 

(1 µM or 5 µM) or combination treatment (1 µM) after 48 h (n=4).  Ponceau 

stain was used to normalize protein loading.  MTM, but not TA, treatment 

decreased APP and SP1 expression. 
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Figure 50.  APP siRNA and MTM reduce APP levels in dNSPc.  Western 

immunoblot and corresponding densitometry revealed a decrease in APP 

levels with treatment of the highest dose of MTM.  Cells were treated in sets of 

3 with error bars showing standard error of the mean. 

  

*	 *	

*	
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c. Effect of mithramycin A and tolfenamic acid on amyloid-beta 40 

levels 

The sensitive sandwich ELISA measuring Aβ40 in conditioned media of 

cells treated for 48 h revealed both doses of MTM led to significant decreases in 

Aβ40 in differentiated neurospheres (Figure 51).  By contrast, treatment with TA 

increased Aβ40 detected in dNSPc.   

  



134 

 

Figure 51. Specific Aβ40 sandwich ELISA. Sensitive sandwich ELISA 

measuring Aβ40 in conditioned media of cells treated for 48 h revealed both 

doses of MTM lead to significant decreases in Aβ40 in differentiated 

neurospheres. 
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iii. Effect of transcription factor modulation on differentiated 

neuroblastoma cells 

 DIV7 NBRA cells were transfected with mock or SP1 siRNA for 24 h in 

cells cultured on a 24-well plate.  A total of 12 wells were transfected with SP1 

siRNA.  Drug treatments were added the following day.  Vehicle (0.01% DMSO), 

MTM alone, TA alone, and combination MTM-TA treatment at 1 µM were added 

to cells.  MTM was added to 4 wells transfected with SP1 siRNA and TA was 

added to another set of 4 wells previously transfected with SP1 siRNA (Figure 

52).  Conditioned media was collected at 48 h after drug treatment to assess 

cytotoxicity via LDH assay.  Cells were harvested and lysed for cell viability 

reading via CTG assay.   

a. Effect of mithramycin A or tolfenamic acid alone on cell viability and 

toxicity 

 MTM or TA treatment alone did not affect viability of NBRA cells. MTM 

treatment alone did significantly increase toxicity from vehicle by nearly 20%. 

b. Effect of combination mithramycin A and tolfenamic acid treatment 

on cell viability and toxicity 

 Toxicity increased by nearly 40% in cells treated with MTM in combination 

with TA.  Cell viability was reduced to undetectably low levels by CTG.   

c. Effect of SP1 siRNA transfection on cell viability and toxicity 

 Knockdown of SP1 via siRNA alone did not change cell viability as 

compared to mock transfected cells.  Cytotoxicity was not significantly different in 

cells transfected by mock compared to those transfected by SP1 siRNA.   
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d. Effect of SP1 siRNA transfection and tolfenamic acid treatment of 

cell viability  

 Knockdown of SP1 via siRNA in combination with TA leads to a nearly 

70% LDH percent release by NBRA cells.  Cell viability was reduced to 

undetectably low levels by CTG 

e. Effect of SP1 siRNA transfection and mithramycin A treatment on 

cell viability 

 Treatment with MTM in combination with SP1 siRNA knockdown was well 

tolerated in human cells.  Cell viability was not significantly different from mock 

and no increase in toxicity was detected by LDH measurement.   
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Figure 52.  Effect of MTM and TA treatment on differentiated human 

neuroblastoma (NBRA) cells.  MTM or TA treatment alone was non-toxic in 

NBRA (NBRA) cells as measured by CTG and LDH. Knockdown of SP1 via 

siRNA alone was also non-toxic. However, MTM in combination with TA was 

toxic and knockdown of SP1 via siRNA in combination with TA was toxic. 
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f. Effect of mithramycin A, its analogs, and tolfenamic acid on cell 

viability of NBRA 

 Nuclear extracts from NBRA treated with compounds showed variation in 

cell viability.  MTM alone and MTM-SDK increased the cell viability (Figure 53). 

g. Effect of mithramycin A, its analogs, and tolfenamic acid on SP1 

levels by Western blot 

 Nuclear extracts from NBRA treated with compounds showed variation in 

SP1 levels (Figure 41).  MTM treated neurons as well as those treated with 

combination MTM and TA showed a significant decrease in SP1 as compared to 

vehicle.  Cells treated with analog MTM-SK and those treated with TA showed an 

increase in SP1 levels.   
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Figure 53.  Effect of MTM, MTM analogs, and TA on cell viability of NBRA 

cells. Nuclear extracts from NBRA treated with compounds show variation in 

viability.  Treatment with MTM and MTM-SDK increased cell viability as 

measured by CTG in NBRA.  ** p < 0.01 
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h. Effect of mithramycin A, its analogs, and tolfenamic acid on neurite 

branch points 

 Time (h) was separated into three stages according to inflection of slope 

of treatment. Comparisons are of slopes within a stage.  NBRA treated for 27 h 

were tracked via Incucyte ZOOM imaging.  MTM and MTM-SK maintained 

number of neurite branch points per cell body area (Figure 54). 

i. Effect of mithramycin A, its analogs, and tolfenamic acid on neurite 

length 

Time (h) was separated into three stages according to inflection of slope 

of treatment. Comparisons are of slopes within a stage.  NBRA treated for 27 h 

were tracked via Incucyte ZOOM imaging.  MTM and MTM-SK maintained 

number of neurite lengths per cell body area (Figure 55). 
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Figure 54.  Changes in neurite branch points per cell body area in NBRA 

as measured by the Incucyte Zoom.  Time (h) was separated into three 

stages according to inflection of slope of treatment. Comparisons are of slopes 

within a stage.  NBRA treated for 27 h were tracked via Incucyte ZOOM 

imaging.  MTM and MTM-SK maintained number of neurite branch points per 

cell body area. 
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Figure 55.  Changes in neurite lengths per cell body area in NBRA as 

measured by the Incucyte Zoom.  Time (h) was separated into three stages 

according to inflection of slope of treatment. Comparisons are of slopes within 

a stage.  NBRA treated for 27 h were tracked via Incucyte ZOOM imaging. 
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j. Induced pluripotent stem cell studies 

 Another valuable model for AD research includes induced fibroblasts from 

both control and AD subjects.  This model allows the same advantages of cell 

culture while providing a tissue source directly from AD patients.  Another 

advantage includes optimized, tailored media and reagents to support the 

cultures.  Cells obtained from AXOL were cultured up to DIV 16 per manufacturer 

protocol (Figure 56) and assessed at different time points for changes in cell 

viability by CTG assay.   

 Control cells were cultured up to DIV10 and treated with vehicle or MTM 

for 48 h.  Cells were harvested and lysed and assessed for cell viability via CTG 

(Figure 57).  Treatment with MTM resulted in no significant change in cell viability 

of control iPSCs as compared to those treated with vehicle.   
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Figure 56. Human iPSC-derived neural stem cell studies.  AXOL Human 

iPSC-Derived Neural Stem Cells - Alzheimer's Disease Patient (PSEN1 L286V 

mutation).  Cells were cultured for up to 16 days with cells harvested at DIV2, 

4, 6, 8, 10, 12, 14, and 16.  Cell viability of each samples (n=3) was assessed 

via CTG assay up to DIV12.   
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Figure 57. MTM in Control Patient iPSCs.  Commercially available induced 

pluripotent stem cells were cultured for 10 days and treated with MTM or 

vehicle for 48 h.  Treatment of iPSCs (control) with MTM (1 µM) showed no 

significant difference in viability versus vehicle. 
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iv. Understanding CDK5 modulation in human cells  

a. Relative expression of FOXO1, FOXO3a and CDK5 proteins in human 

neuronal and glial cell lines and primary human brain cultures 

A preliminary protein expression screen in cell lines and in lysates of 

primary brain cultures (Figure 58) revealed variable levels of forkhead box O 3a 

(Fox03a) protein in human neuronally-differentiated (HFN), glioblastoma, Jurkat 

cells and in primary human fetal brain cultures (HFB).  The PC12 lysates in these 

experiments was later found to be degraded and data was not considered.  

Neuronal cell line SK-N-SH differentiated with retinoic acid (NBRA) shows a 

distinct band at the same molecular weight at the band seen in HFN.  This band 

is also seen in the lysate of human T lymphocytes (jurkat).  It is known that 

Foxo3a can regulate the differentiation, metabolism, survival, and cell cycle 

processes and may regulate these functions uniquely in differentiated neurons 

[181].  It has been previously shown that Foxo3a shows higher expression in the 

brain than does Foxo1 [182] .  The data from the western blot in Figure 59was 

consistent with those findings as expression of FOXO1 protein levels were 

detected only in human glioblastoma (U373) and jurkat cells.  Expression of 

CDK5 protein was detected only in human glioblastoma and jurkat cells as 

shown in the western blot analysis.   
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Figure 58.  Foxo3a, Cdk5, and Foxo1 protein levels.  Western blot analysis 

of Foxo3a, Cdk5, and Foxo1 in HeLa, U373, differentiated SK-N-SH, fetal 

brain, differentiated fetal neurons and Jurkat cells.   
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b. Relative expression of FOXO1, FOXO3a and CDK5 proteins between 

human fetal brain (HFBT) and human old brain tissue specimens 

(HOBT) 

Western blot analysis of human brain samples of adult AD, and fetal 

origins revealed differences in expression of FOXO3a and CDK5 in these groups 

(Figure 59).  There was a presence of FOXO3a protein in human old but not in 

fetal brain tissue. Interestingly, however, FOXO3a was detected in differentiated 

human fetal neurons that were derived from human fetal brain tissue.  FOXO1 

could not be detected in these samples and this data was not shown. 
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Figure 59. FOXO3a and CDK5 protein levels in various cell types.  

Western blot analysis of FOXO3a, CDK5 in human adult brain samples from 

controls and Alzheimer’s disease patients, U373 human glioblastoma cell line, 

and human fetal brain. The blot was re-probed with FOXO1 antibody, but no 

signal could be detected. APP, BACE1, and GFAP levels were also assessed 

in these samples.   
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c. Effects of Aβ1-42 challenge on the expression of FOXO1, FOXO3a 

and CDK5 proteins in human neuronal cultures 

Differentiated human fetal neurons (DIV30) were treated with 1 µM Aβ1-

42, 100 µM glutamate, or 100 µM H2O2 for 20 h (Figure 60).  Human primary 

mixed brain cultures (HFB) were prepared and cultured as previously described 

(Ray et. al 2014).  Briefly, cells were cultured in Neurobasal medium (Invitrogen) 

without phenol red supplemented with 1X B27, 50 mM GlutaMAX, 1x antibiotic 

cocktail, 5 ng/mL recombinant fibroblast growth factor 2 (bFGF) (Invitrogen), and 

2 μL/mL Normocin (InVivoGen, San Diego, CA, USA).  Cells were counted and 

seeded onto poly-D-lysine (Sigma-Aldrich) coated 24-well plates (Corning, 

Lowell, MA, USA) at 1.5 x 105 cells per well and maintained at 37°C in a 5% 

CO2 incubator.  Half media changes were performed every fourth day of culture 

and morphology was monitored via IncucyteZOOM.  Culture medium was 

removed from cells on day in vitro (DIV) 30 and replaced with Neurobasal 

medium with B27 minus antioxidant and Aβ1-42, H2O2, or glutamate.  Cells were 

incubated at 37°C for 20 hours.  Cells were harvested after 20 hours.  Cells were 

rinsed with ice cold PBS, then lysed on plate with vigorous shaking using M-PER 

supplemented with 0.1% SDS and protease inhibitor (Roche).  Protein 

concentration was estimated using the BCA Protein Assay (Pierce) per product 

protocol. Cell viability was measured by CTG levels.   
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d. Effect of roscovitine on cell morphology, cell viability of human fetal 

neurons 

Roscovitine (ROSC) is a selective, competitive inhibitor of CDK5 [183].  

We sought to assess the toxicity of this compound in human fetal neurons and 

the effect of treatment on levels of FOXO1 and FOXO3.  Differentiated human 

fetal neurons (day in vitro 30) were treated with 1 µM Aβ1-42, 100 µM glutamate, 

or 100 µM H2O2 for 20 hours.  Human primary mixed brain cultures (HFB) were 

prepared and cultured as previously described (Ray et. al 2014).  Briefly, cells 

were cultured in Neurobasal medium (Invitrogen) without phenol red 

supplemented with 1X B27, 50 mM GlutaMAX, 1x antibiotic cocktail, 5 ng/mL 

recombinant fibroblast growth factor 2 (bFGF) (Invitrogen), and 2 μL/mL 

Normocin (InVivoGen, San Diego, CA, USA).  Cells were counted and seeded 

onto poly-D-lysine (Sigma-Aldrich) coated 24-well plates (Corning, Lowell, MA, 

USA) at 1.5 x 105 cells per well and maintained at 37°C in a 5% CO2 incubator.  

Half media changes were performed every fourth day of culture and morphology 

was monitored via IncucyteZOOM.  Culture medium was removed from cells on 

day in vitro (DIV) 31 and replaced with media with vehicle (2.5% DMSO), 0.1, 

1.0, 10.0, 100.0, or 700.00 µM Roscovitine (Sigma) for 60 hours.   
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Figure 60. Effect of CDK5 inhibitor on cell viability of human fetal 

neurons.  Treatment of HFN with increasing doses of roscovitine showed no 

significant change in cell viability as measured by CTG. % control is viability  
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C. Discussion 

 Of particular interest is the difference in the effect on viability and toxicity 

of MTM and TA when used in combination in a purely neuronal culture.  This 

effect was not observed in the other cell culture systems.  A compensatory 

mechanism involving other members of the SP family may account for the 

divergence in SP1 inhibition between MTM and TA when used separately and in 

combination in neurons.  Use of MTM or the less toxic analog MTM-SDK to 

target SP1 in humans could potentially be a novel drug target in AD.  

Maintenance of synaptic health is a characteristic of interest in a disease 

involving massive neuronal and synaptic loss such as AD.  MTM and MTM-SK 

maintain neurite length and neurite branch points, which could be key in 

preserving synaptic integrity in neurons early in the disease.  Continued use of 

real-time live imaging of cells when treated with these compounds will provide 

increased insight into their effects on the synapse.   

Preliminary data has shown tissue- and cell-specific expression of FOXO 

proteins and the effects of a CDK5 inhibiting drug on human cells.  Future 

experiments should focus on inhibition of CDK5 to degrade FOXO3a as an 

approach to prevent or delay the neurodegeneration associated with AD.  

According to the CTG assay (Figure 60), doses of up to 100 µM of Roscovitine 

are well tolerated in human fetal neurons. Post-translational modifications control 

FOXO protein activity [184].  There could be modifications during the process of 

differentiation leading to activation of FOXO proteins.  CDK5 expression in AD 

brains was decreased compared to controls.  FOXO3a as a substrate of CDK5 

may be differentially activated in AD.  Levels appeared to be decreased in fetal 
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samples as compared to expression levels in adult samples.  FOXO3 expression 

levels seemed to have an inverse relationship with BACE1 levels in these 

samples.   
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VII. Conclusions and future directions 

A. Summary 

Understanding how BACE1 can be regulated by a drug such as an 

antibiotic could lead to innovative therapies for patients suffering from AD.  With 

the LEARn model as the mechanistic framework, discovering a way to regulate 

BACE1 activity in humans could serve as groundbreaking in later onset diseases 

such as AD.  Use of drugs which target regulation of candidate genes at these 

earlier stages of disease will lead to improved bedside approach to patients 

presenting with early symptoms.  Understanding these complex networks of TFs 

and investigating pharmacological strategies to modulate their activity can be a 

novel approach in AD.  We believe that modest, yet specific reduction of BACE1 

via SP1 modulation will provide effective and safe benefit to the brain without 

numerous adverse side effects in combination with existing therapies.  Upon 

completion of this project, we have elucidated a possible mechanism by which 

SP1 regulates BACE1 activity and generation of Aβ in human cells.  A detailed 

understanding of the role SP1 plays in the amyloidogenic pathway in relation to 

the development of AD will have a positive impact by providing a new therapeutic 

target to slow the progression of this devastating disease.   

B.  Other novel approaches to understanding amyloid pathway proteins 

 In addition to understanding the effect of TF modulation of Aβ pathway 

genes, further work should incorporate other novel approaches to targeting 

BACE1 and APP, including miRNAs and trafficking proteins. 
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i. Understanding the effect of miRNAs on the epigenome 

Epigenetic regulation is often described as the alteration of gene 

expression without DNA sequence changes. These mechanisms are associated 

with histone modifications, DNA methylation, and microRNAs.  MicroRNAs target 

transcripts, degrade them, and therefore control the amount of those particular 

proteins [185].  This directly influences the physiological state whether it be 

immediate or after a period of latency.  It has been shown that miRNAs can be 

regulated by epigenetic means such as DNA methylation of their genes just as 

any other protein-coding gene [186, 187].  There are also miRNAs that can target 

DNA methyltransferases (DNMTs) [188].  Hypo- or hyper-methylation of the 

promoter regions of miRNAs can lead to these non-coding small RNAs 

functioning as tumor suppressors or other cancer prone phenotypes [189-191].  

However, changes in mRNA translation due to miRNAs are not truly epigenomic 

because in their case, proteins are the active molecules involved [192].  

Nevertheless, the close connection between the epigenome and miRNome 

means that epigenetically altered miRNAs can lead to pathogenesis that may 

function in a LEARned fashion [193]. The role of environment on the epigenome 

is a major focus on the LEARn model and its explanation of the progression of 

late onset neurodegenerative diseases such as Alzheimer’s disease (AD) and 

other psychiatric disorders [167, 168, 194].  How we interact with the 

environment may indeed affect how miRNAs are expressed and regulated over 

time.  Lifestyle, diet, chemical exposure, and trauma are all environmental 

influences that may lead to epigenetic “hits” that affect the genome in a latent 
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manner.  We know that childhood abuse and adversity can lead to methylation 

changes [195, 196]. Propensity for addiction can be highly influenced by stress 

and other environmental factors [197].  MiRNAs may modulate the cocaine 

response in individuals for which stress has had an epigenetic effect in early-life.  

It has been shown that there is a relationship between miRNA expression and 

reactions to fear and other emotional stimuli [198].  There are miRNAs which are 

induced in anxiety which regulate neurotransmitter pathways and can lead to 

dysregulation [199].  Some of these miRNAs respond to acute stress and may 

even contribute to depressive disorders [200, 201].  Studies have also revealed 

that overexpression of miRNAs is seen in the brains of AD mice, suggesting a 

potential link between these non-coding small RNAs and behavior [202]. It is 

quite possible that changes in DNA methylation caused by these stress or 

anxiety states are passed along through the germline.  There are several 

examples of the LEARn model functioning in a transgenerational manner [80].  It 

is not yet clear how epigenetic changes in miRNA expression can be inherited; it 

has recently been shown that elevated levels of certain miRNAs may be a 

marker for behavioral disorders across generations [203] .   

The case can be made that miRNA function in the same axis of the 

epigenetic process.  Because of their unique biogenesis and mechanism of 

action via mRNA targeting, they cannot be completely categorized as epigenomic 

in nature.  However, because of their unique interaction role in regulation of 

epigenetic processes and their ability to be regulated my epigenetic means, this 
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relationship merits examinations as putative approach to diseases which 

manifest in a latent manner. 

ii. Understanding the role of APP and BACE1 trafficking 

The regulation of APP and BACE1 activity is important in the goal of 

reducing amyloid-beta.  However, understanding how APP and BACE1 

physically interact at the cellular level is key to elucidating alternative strategies 

for changing their prevalence in AD.   

BACE1 is first produced in the endoplasmic reticulum (ER) as a larger 

precursor, pro-BACE1. Pro-BACE1 is subsequently modified by post-

translational glycosylation where the prodomain is removed allowing this protein 

to cross the Golgi apparatus.  BACE1 is then transported to the cell surface 

where BACE1 functions in the regulation of cellular signaling [204]. BACE1 is 

activated through phosphorylation at serine 498 by casein kinase I, and the 

dephosphorylation of this residue leads to endocytosis of BACE1 from the 

plasma membrane. As a result, BACE1 subsequently accumulates in early 

endosomes [205]. Previous studies demonstrate that BACE1 recycles between 

endosomes and the surface of the cell [206, 207]. In order for BACE1 to remain 

in the Golgi where APP processing occurs, a single transmembrane domain is 

required [208]. 

Physical proximity as well as duration plays an important role in the ability 

of enzymes and their substrates to interact with one another, and both factors are 

essential to the processing of APP via BACE1. Therefore, understanding the 

cellular conditions such as protein-protein interactions and cellular signaling 
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which modulate this proximity and subsequent convergence of APP and BACE1 

may provide an important mechanistic key to the regulation of Aβ production. 

Likewise, manipulation of trafficking pathways that decrease the interaction could 

provide a method to inhibit the production of Aβ and possibly provide a cellular 

target to prevent AD pathogenesis or treat the symptoms of AD. 

APP is cleaved by BACE1 to form sAPPβ, the secreted ectodomain and 

CTF99, the C-terminal fragment. Aβ is then liberated from APP is known as 

regulated intramembrane proteolysis (RIP) [209]. Aβ is comprised of a cluster of 

heterogenous peptides of 39-43 amino acids [17].  While the most prevalent 

peptide is Aβ40, the 42-amino acid peptide (Aβ42) has been identified as the 

critical isoform associated with AD. Aβ is typically released in its soluble form into 

the interstitial fluid (ISF) in the brain [21]. However, Aβ aggregates as both 

soluble oligomers and insoluble plaques in AD brain [210]. Pro-BACE1 in the ER 

also displays enzymatic activity that can cleave APP [211]. Consistent with this 

phenomenon, a minority of Aβ42 is generated in the ER, while a greater 

percentage of Aβ42 is observed in the trans-Golgi network [212, 213]. Therefore, 

differences in APP processing by BACE1 in the ER leading to Aβ aggregation 

may provide a key factor in the pathogenesis of AD.  

BACE1 is a transmembrane aspartyl protease with an acidic pH-optimum 

of 4.5 [28]. BACE1 is first localized to the Golgi, and then migrates to the trans-

Golgi network and finally to endosomes. Previous studies indicate that BACE1 

transport may proceed due to several mechanisms. For instance, one study 

found that BACE1 may use an endosomal retrograde transport pathway [214]. 
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Other studies indicate that BACE1 is transported from early endosomes to 

lysosomes [215], and may be recycled from endosomes to the plasma 

membrane [216]. 

The retromer complex is a heteropentameric complex that can be 

separated into two subcomplexes [217]. The trimer component consists of three 

active sites that mediate cargo selection including Vps35, Vps29, and Vps26. 

The dimer component consists of Vps5 and Vps17. In mammals, these 

components are known as members of the sorting nexin family and called SNX1 

or SNX2 and SNX5 or SNX6. Vps35 is the main component of the trimer. Studies 

demonstrate that reductions in Vps35 can lead to retromer malfunction [218]. 

The trimer is responsible for trafficking Vps10 from the vacuole to the 

trans-Golgi. If excessive levels of APP or BACE1 are present, the trimer is 

unable to function properly leading to a buildup of Aβ in the endosome. The 

selective targeting of this cellular mechanism may provide a method that can be 

used to modulate protein trafficking of APP and BACE1, and ultimately Aβ levels.  

In a recent study, the Mecozzi et al. propose that pharmacological chaperones 

can be utilized to manipulate retromer complex stability, thereby affecting how its 

cargo (i.e., APP and BACE) are trafficked throughout the cell. BACE1 and APP 

convergence are critical for the processing of APP. The manner in which APP 

converges with BACE-1 after neuronal activity indicates that neurons have 

developed a distinctive tactic to limit the proximity of APP and BACE-1. Perhaps 

the dysregulation of this mechanism may contribute to increased Aβ production 

and the pathology of AD.   
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iii. Unraveling the LEARn Model 

The link between TFs and AD-relevant processes has been shown.  It 

however, remains unclear the molecular mechanism of drugs that may target 

these TFs and how this can be manipulated at the cellular level.  Accumulation of 

Aβ peptide in the brain remains a key focus of AD pathology.  We postulate that 

non-familial AD is a late onset disease during which early-life exposure (i.e. 

nutrition, experiences, etc.) can lead to epigenetic changes over a period of 

latency that at some later time are triggered to alter phenotypic state.  We 

describe this hypothesis as the latent early life regulation (LEARn) model.  Such 

an early-life exposure that may contribute to this sporadic disease could be the 

environmental toxin lead (Pb).  Pb exposure has been part of recent alarming 

headlines as related to toxic levels in the water of residents of Flint, Michigan in 

the United States.  Pb has long been associated with cognitive decline in humans 

[219].  In rodents, early exposure to Pb resulted in poor performance on cognitive 

tests in aged animals.  [220].  Exposure to Pb in monkeys during development 

leads to an increase in expression of amyloid-precursor protein (APP) and that of 

its rate-limiting cleaving enzyme, BACE1 [221].  The TF known to regulate both 

of these genes, SP1, was also increased in subjects exposed to Pb during 

development.   

In order to test the LEARn hypothesis, experiments using a mouse model 

with human APP, BACE1, PSEN, and MAPT would be ideal for use.  Performing 

standard behavioral tests of these animals would be necessary to establish a 

baseline of epigenetic status.  In a select group of mice, trauma, neglect, 
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exposure to a toxin, or other insult would be introduced at a very young age 

(perhaps during nursing).  Varying periods of time of the exposure and different 

period of time for length of exposure would have to be carefully chosen.  

Behavior would need to be observed over time and compared to the control 

group later in life.  Again, methylation status and histone acetylation activity 

would be measured as well as a battery of behavioral tests.  If in fact mice 

exposed to an early life insult show changes in methylation that correspond to a 

decrease in cognitive function, increase in BACE1 activity, increased plaque and 

tangle production, along with changes in APP, MAPT, and PSEN, this would be 

strong evidence to support the hypothesis that LEARn is a mechanism for the 

development of AD. 

In future studies, we seek to understand the specific regulation of AD-

relevant genes by SP1 and the ability of compounds to modulate SP1 in cultures 

with or without previous exposure to Pb.  Primary human brain cultures and 

induced pluripotent stem cells from controls and AD subjects will be used to test 

the effects of drugs previously shown to decrease Aβ; mithramycin A (MTM) and 

its analogs (MTM-SDK, MTM-SK) at a later time point to observe changes in SP1 

and other TFs, as well as Aβ from neurons exposed to Pb and those without Pb 

treatment.  We wish to understand if Pb is functioning to trigger a period of 

epigenetic latency, and if so, how markers such as histone deacetylase (HDAC), 

DNA methyltransferase activity, and TF levels are affected over time.  Also of 

interest is whether MTM and its analogs can alter these changes when used to 

treat cells after a period of latency.  We expect that early Pb exposure leads to 
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changes in DNA methylation or histone acetylation in neurons that can be 

attenuated via TF-modulating drugs.AD is likely caused by several risk alleles 

across many different loci.  These genes also likely affect several pathways 

involved in the clearance or production of Aβ.  Neuroimaging consists fMRI, PET-

FDG, and other brain imaging techniques to gain structural and functional 

information on biomarkers used for AD classification and early 

diagnosis.  Genome-wide association studies will involve searching for SNPs 

located in genes of TFs that may be important according to AD imaging 

biomarkers.  This work will help to elucidate a possible mechanism for TF 

regulation of AD-related genes via well-characterized compounds in primary 

culture models as well as by candidate SNP searches in the AD Neuroimaging 

(ADNI) database.  The impact of understanding how environmental influences 

such as Pb exposure affect the epigenome of neurons and discovering how 

compounds can potentially reverse these influences is tremendous.  At a time 

when a massive number of US citizens have been highly exposed to toxic levels 

of Pb, it is very important to understand the mechanism by which early life 

changes caused by these tragic exposures may be reversed with available 

compounds such at MTM and its analogs. 
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C. Conclusions 

 The development of new cell culture model systems in neuroscience is 

imperative.  Use of human models in AD study is invaluable as rodent studies are 

not translating into successful clinical trial studies in human subjects.  The human 

fetal neuron culture and the human neurosphere culture both are mixed brain 

models that recapitulate the cellular populations of the CNS.  With this work, 

human dNSPCs, iPSCs, and NBRA cells have been successfully cultured and 

tested with novel drugs.  Testing compounds such as MTM, its analogs, TA, and 

roscovitine in a human system allows a more direct connection to effects that 

may be observed in patients in more advanced stages of study.   

 As use of MTM and TA in humans is extensive and has been well 

documented, we propose repurposing these drugs at nontoxic doses for use in 

AD to reduce amyloid-beta.  Specifically, MTM analogs should be more closely 

examined for their effects on neurobiology and amyloid-beta levels in these 

primary human cultures as they have been here in cell lines.  As MTM-SDK was 

shown to decrease DNMT activity, this may enhance or decrease the ability of 

SP1 to bind to target DNA.  Future studies should focus on how this lesser 

methyltransferase activity directly affects SP1 and other TF binding relevant to 

AD.   

 Broadening our view of TF targeting to include epigenetic modifications as 

well as miRNAs could be novel approaches to neurodegenerative disease 

therapies.  Furthermore, compounds that can alter APP and BACE1 trafficking to 

decrease the proximity of the β-secretase to its substrate may be useful for 
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decreasing amyloid burden.  Lastly, targeting multiple transcription repressors 

and activators such as the FOXO proteins can help us alter AD phenotypes as 

well.  These unique and novel approaches, perhaps if used in combination will 

prove more promising than any of them may be alone.   

Removing amyloid once people have established dementia may be the 

source of failure of prior approaches to AD therapy.  AD may in face be a 

continuum that begins well before any detectable changes in cognition.  Drugging 

TFs that regulate amyloid pathway genes still assumes the amyloid hypothesis is 

correct, however if tolerated could be given much earlier on the AD spectrum 

when early biomarkers become available.  Although TFs have commonly been 

viewed as “un-druggable,” their function as the regulators of gene expression 

make them absolutely necessary in the understanding of the mechanism of novel 

approaches to diseases such as AD that have alluded other solutions for so long.  

It is imperative that these networks continue to be studied and described so that 

treatment strategies can be made available for such a devastating disease.    



166 

REFERENCES 

1. Hebert, L.E., et al., Alzheimer disease in the US population: prevalence 

estimates using the 2000 census. Arch Neurol, 2003. 60(8): p. 1119-22. 

2. Alzheimer, A., et al., An English translation of Alzheimer's 1907 paper, 

"Uber eine eigenartige Erkankung der Hirnrinde". Clin Anat, 1995. 8(6): p. 

429-31. 

3. Hebert, L.E., et al., Alzheimer disease in the United States (2010-2050) 

estimated using the 2010 census. Neurology, 2013. 80(19): p. 1778-83. 

4. Murphy, S.L., J. Xu, and K.D. Kochanek, Deaths: final data for 2010. Natl 

Vital Stat Rep, 2013. 61(4): p. 1-117. 

5. Ganguli, M. and E.G. Rodriguez, Reporting of dementia on death 

certificates: a community study. J Am Geriatr Soc, 1999. 47(7): p. 842-9. 

6. Tinetti, M.E., et al., Contribution of individual diseases to death in older 

adults with multiple diseases. J Am Geriatr Soc, 2012. 60(8): p. 1448-56. 

7. Ganguli, M., et al., Alzheimer disease and mortality: a 15-year 

epidemiological study. Arch Neurol, 2005. 62(5): p. 779-84. 

8. Waring, S.C., et al., Survival among patients with dementia from a large 

multi-ethnic population. Alzheimer Dis Assoc Disord, 2005. 19(4): p. 178-

83. 

9. Brookmeyer, R., et al., Survival following a diagnosis of Alzheimer 

disease. Arch Neurol, 2002. 59(11): p. 1764-7. 

10. Larson, E.B., et al., Survival after initial diagnosis of Alzheimer disease. 

Ann Intern Med, 2004. 140(7): p. 501-9. 



167 

11. Arrighi, H.M., et al., Lethality of Alzheimer disease and its impact on 

nursing home placement. Alzheimer Dis Assoc Disord, 2010. 24(1): p. 90-

5. 

12. Alzheimer's, A., 2016 Alzheimer's disease facts and figures. Alzheimers 

Dement, 2016. 12(4): p. 459-509. 

13. Coleman, P.D. and P.J. Yao, Synaptic slaughter in Alzheimer's disease. 

Neurobiol Aging, 2003. 24(8): p. 1023-7. 

14. Bailey, J.A., et al., Rivastigmine lowers Abeta and increases sAPPalpha 

levels, which parallel elevated synaptic markers and metabolic activity in 

degenerating primary rat neurons. PLoS One, 2011. 6(7): p. e21954. 

15. Blennow, K., M.J. de Leon, and H. Zetterberg, Alzheimer's disease. 

Lancet, 2006. 368(9533): p. 387-403. 

16. Gatz, M., et al., Role of genes and environments for explaining Alzheimer 

disease. Arch Gen Psychiatry, 2006. 63(2): p. 168-74. 

17. Glenner, G.G. and C.W. Wong, Alzheimer's disease and Down's 

syndrome: sharing of a unique cerebrovascular amyloid fibril protein. 

Biochem Biophys Res Commun, 1984. 122(3): p. 1131-5. 

18. Hardy, J.A. and G.A. Higgins, Alzheimer's disease: the amyloid cascade 

hypothesis. Science, 1992. 256(5054): p. 184-5. 

19. Price, D.L., et al., Alzheimer's disease: genetic studies and transgenic 

models. Annu Rev Genet, 1998. 32: p. 461-93. 

20. Scheuner, D., et al., Secreted amyloid beta-protein similar to that in the 

senile plaques of Alzheimer's disease is increased in vivo by the presenilin 



168 

1 and 2 and APP mutations linked to familial Alzheimer's disease. Nat 

Med, 1996. 2(8): p. 864-70. 

21. Vassar, R., BACE1: the beta-secretase enzyme in Alzheimer's disease. J 

Mol Neurosci, 2004. 23(1-2): p. 105-14. 

22. Tanzi, R.E. and L. Bertram, Twenty years of the Alzheimer's disease 

amyloid hypothesis: a genetic perspective. Cell, 2005. 120(4): p. 545-55. 

23. Hardy, J., Amyloid double trouble. Nat Genet, 2006. 38(1): p. 11-2. 

24. Dong, H., et al., Spatial relationship between synapse loss and beta-

amyloid deposition in Tg2576 mice. J Comp Neurol, 2007. 500(2): p. 311-

21. 

25. Meyer-Luehmann, M., et al., A reporter of local dendritic translocation 

shows plaque- related loss of neural system function in APP-transgenic 

mice. J Neurosci, 2009. 29(40): p. 12636-40. 

26. Buckner, R.L., et al., Molecular, structural, and functional characterization 

of Alzheimer's disease: evidence for a relationship between default 

activity, amyloid, and memory. J Neurosci, 2005. 25(34): p. 7709-17. 

27. Selkoe, D.J. and D. Schenk, Alzheimer's disease: molecular 

understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol 

Toxicol, 2003. 43: p. 545-84. 

28. Rossner, S., et al., Transcriptional and translational regulation of BACE1 

expression--implications for Alzheimer's disease. Prog Neurobiol, 2006. 

79(2): p. 95-111. 



169 

29. Haass, C., Take five--BACE and the gamma-secretase quartet conduct 

Alzheimer's amyloid beta-peptide generation. EMBO J, 2004. 23(3): p. 

483-8. 

30. Cai, H., et al., BACE1 is the major beta-secretase for generation of Abeta 

peptides by neurons. Nat Neurosci, 2001. 4(3): p. 233-4. 

31. Luo, Y., et al., Mice deficient in BACE1, the Alzheimer's beta-secretase, 

have normal phenotype and abolished beta-amyloid generation. Nat 

Neurosci, 2001. 4(3): p. 231-2. 

32. Vassar, R., et al., Beta-secretase cleavage of Alzheimer's amyloid 

precursor protein by the transmembrane aspartic protease BACE. 

Science, 1999. 286(5440): p. 735-41. 

33. Yan, R., et al., Membrane-anchored aspartyl protease with Alzheimer's 

disease beta-secretase activity. Nature, 1999. 402(6761): p. 533-7. 

34. Bigl, M., et al., Expression of beta-secretase mRNA in transgenic Tg2576 

mouse brain with Alzheimer plaque pathology. Neurosci Lett, 2000. 

292(2): p. 107-10. 

35. Marcinkiewicz, M. and N.G. Seidah, Coordinated expression of beta-

amyloid precursor protein and the putative beta-secretase BACE and 

alpha-secretase ADAM10 in mouse and human brain. J Neurochem, 

2000. 75(5): p. 2133-43. 

36. von Arnim, C.A., et al., The low density lipoprotein receptor-related protein 

(LRP) is a novel beta-secretase (BACE1) substrate. J Biol Chem, 2005. 

280(18): p. 17777-85. 



170 

37. Li, Q. and T.C. Sudhof, Cleavage of amyloid-beta precursor protein and 

amyloid-beta precursor-like protein by BACE 1. J Biol Chem, 2004. 

279(11): p. 10542-50. 

38. Pastorino, L., et al., BACE (beta-secretase) modulates the processing of 

APLP2 in vivo. Mol Cell Neurosci, 2004. 25(4): p. 642-9. 

39. Kitazume, S., et al., Alzheimer's beta-secretase, beta-site amyloid 

precursor protein-cleaving enzyme, is responsible for cleavage secretion 

of a Golgi-resident sialyltransferase. Proc Natl Acad Sci U S A, 2001. 

98(24): p. 13554-9. 

40. Lichtenthaler, S.F., et al., The cell adhesion protein P-selectin glycoprotein 

ligand-1 is a substrate for the aspartyl protease BACE1. J Biol Chem, 

2003. 278(49): p. 48713-9. 

41. Hu, X., et al., Genetic deletion of BACE1 in mice affects remyelination of 

sciatic nerves. FASEB J, 2008. 22(8): p. 2970-80. 

42. Willem, M., et al., Control of peripheral nerve myelination by the beta-

secretase BACE1. Science, 2006. 314(5799): p. 664-6. 

43. Kim, D.Y., et al., Presenilin/gamma-secretase-mediated cleavage of the 

voltage-gated sodium channel beta2-subunit regulates cell adhesion and 

migration. J Biol Chem, 2005. 280(24): p. 23251-61. 

44. Wong, H.K., et al., beta Subunits of voltage-gated sodium channels are 

novel substrates of beta-site amyloid precursor protein-cleaving enzyme 

(BACE1) and gamma-secretase. J Biol Chem, 2005. 280(24): p. 23009-

17. 



171 

45. Fukumoto, H., et al., Beta-secretase activity increases with aging in 

human, monkey, and mouse brain. Am J Pathol, 2004. 164(2): p. 719-25. 

46. Fukumoto, H., et al., Beta-secretase protein and activity are increased in 

the neocortex in Alzheimer disease. Arch Neurol, 2002. 59(9): p. 1381-9. 

47. Yang, L.B., et al., Elevated beta-secretase expression and enzymatic 

activity detected in sporadic Alzheimer disease. Nat Med, 2003. 9(1): p. 3-

4. 

48. Li, R., et al., Amyloid beta peptide load is correlated with increased beta-

secretase activity in sporadic Alzheimer's disease patients. Proc Natl Acad 

Sci U S A, 2004. 101(10): p. 3632-7. 

49. Tyler, S.J., et al., alpha- and beta-secretase: profound changes in 

Alzheimer's disease. Biochem Biophys Res Commun, 2002. 299(3): p. 

373-6. 

50. Hu, X., et al., BACE1 regulates hippocampal astrogenesis via the 

Jagged1-Notch pathway. Cell Rep, 2013. 4(1): p. 40-9. 

51. Hu, X., et al., Bace1 modulates myelination in the central and peripheral 

nervous system. Nat Neurosci, 2006. 9(12): p. 1520-5. 

52. Sankaranarayanan, S., et al., In vivo beta-secretase 1 inhibition leads to 

brain Abeta lowering and increased alpha-secretase processing of 

amyloid precursor protein without effect on neuregulin-1. J Pharmacol Exp 

Ther, 2008. 324(3): p. 957-69. 



172 

53. Citron, M., et al., Mutation of the beta-amyloid precursor protein in familial 

Alzheimer's disease increases beta-protein production. Nature, 1992. 

360(6405): p. 672-4. 

54. Gruninger-Leitch, F., et al., Substrate and inhibitor profile of BACE (beta-

secretase) and comparison with other mammalian aspartic proteases. J 

Biol Chem, 2002. 277(7): p. 4687-93. 

55. Ge, Y.W., et al., Functional characterization of the 5' flanking region of the 

BACE gene: identification of a 91 bp fragment involved in basal level of 

BACE promoter expression. FASEB J, 2004. 18(9): p. 1037-9. 

56. Lahiri, D.K., et al., Taking down the unindicted co-conspirators of amyloid 

beta-peptide-mediated neuronal death: shared gene regulation of BACE1 

and APP genes interacting with CREB, Fe65 and YY1 transcription 

factors. Curr Alzheimer Res, 2006. 3(5): p. 475-83. 

57. Sambamurti, K., et al., Gene structure and organization of the human 

beta-secretase (BACE) promoter. FASEB J, 2004. 18(9): p. 1034-6. 

58. Cruts, M., J. Theuns, and C. Van Broeckhoven, Locus-specific mutation 

databases for neurodegenerative brain diseases. Hum Mutat, 2012. 33(9): 

p. 1340-4. 

59. Zheng, H., et al., beta-Amyloid precursor protein-deficient mice show 

reactive gliosis and decreased locomotor activity. Cell, 1995. 81(4): p. 

525-31. 



173 

60. Lopes, J.P., C.R. Oliveira, and P. Agostinho, Neurodegeneration in an 

Abeta-induced model of Alzheimer's disease: the role of Cdk5. Aging Cell, 

2010. 9(1): p. 64-77. 

61. Shah, K. and D.K. Lahiri, Cdk5 activity in the brain - multiple paths of 

regulation. J Cell Sci, 2014. 127(Pt 11): p. 2391-400. 

62. Shah, K. and D.K. Lahiri, A Tale of the Good and Bad: Remodeling of the 

Microtubule Network in the Brain by Cdk5. Mol Neurobiol, 2017. 54(3): p. 

2255-2268. 

63. Monaco, E.A., 3rd, Recent evidence regarding a role for Cdk5 

dysregulation in Alzheimer's disease. Curr Alzheimer Res, 2004. 1(1): p. 

33-8. 

64. Zhou, J., et al., The roles of Cdk5-mediated subcellular localization of 

FOXO1 in neuronal death. J Neurosci, 2015. 35(6): p. 2624-35. 

65. Shi, C., et al., Cdk5-Foxo3 axis: initially neuroprotective, eventually 

neurodegenerative in Alzheimer's disease models. J Cell Sci, 2016. 

129(9): p. 1815-1830. 

66. Sambamurti, K., et al., Targets for AD treatment: conflicting messages 

from gamma-secretase inhibitors. J Neurochem, 2011. 117(3): p. 359-74. 

67. Bartus, R.T., et al., The cholinergic hypothesis of geriatric memory 

dysfunction. Science, 1982. 217(4558): p. 408-14. 

68. Davis, K.L., et al., Cholinergic markers in elderly patients with early signs 

of Alzheimer disease. JAMA, 1999. 281(15): p. 1401-6. 



174 

69. Nygaard, H.B., Current and emerging therapies for Alzheimer's disease. 

Clin Ther, 2013. 35(10): p. 1480-9. 

70. Long, J.M. and D.K. Lahiri, MicroRNA-101 downregulates Alzheimer's 

amyloid-beta precursor protein levels in human cell cultures and is 

differentially expressed. Biochem Biophys Res Commun, 2011. 404(4): p. 

889-95. 

71. Czech, M.P., M. Aouadi, and G.J. Tesz, RNAi-based therapeutic 

strategies for metabolic disease. Nat Rev Endocrinol, 2011. 7(8): p. 473-

84. 

72. Becker, R.E. and N.H. Greig, Why so few drugs for Alzheimer's disease? 

Are methods failing drugs? Curr Alzheimer Res, 2010. 7(7): p. 642-51. 

73. Doody, R.S., et al., A phase 3 trial of semagacestat for treatment of 

Alzheimer's disease. N Engl J Med, 2013. 369(4): p. 341-50. 

74. Coric, V., et al., Safety and tolerability of the gamma-secretase inhibitor 

avagacestat in a phase 2 study of mild to moderate Alzheimer disease. 

Arch Neurol, 2012. 69(11): p. 1430-40. 

75. Lahiri, D.K., et al., Lessons from a BACE1 inhibitor trial: Off-site but not off 

base. Alzheimers Dement, 2014. 

76. Sacks, C.A., J. Avorn, and A.S. Kesselheim, The Failure of Solanezumab 

- How the FDA Saved Taxpayers Billions. N Engl J Med, 2017. 376(18): p. 

1706-1708. 

77. The Lancet, N., Solanezumab: too late in mild Alzheimer's disease? 

Lancet Neurol, 2017. 16(2): p. 97. 



175 

78. Christensen, M.A., et al., Transcriptional regulation of BACE1, the beta-

amyloid precursor protein beta-secretase, by Sp1. Mol Cell Biol, 2004. 

24(2): p. 865-74. 

79. Basha, M.R., et al., The fetal basis of amyloidogenesis: exposure to lead 

and latent overexpression of amyloid precursor protein and beta-amyloid 

in the aging brain. J Neurosci, 2005. 25(4): p. 823-9. 

80. Lahiri, D.K., et al., Transgenerational latent early-life associated regulation 

unites environment and genetics across generations. Epigenomics, 2016. 

8(3): p. 373-87. 

81. Lombo, F., et al., The aureolic acid family of antitumor compounds: 

structure, mode of action, biosynthesis, and novel derivatives. Appl 

Microbiol Biotechnol, 2006. 73(1): p. 1-14. 

82. Barcelo, F., et al., Entropically-driven binding of mithramycin in the minor 

groove of C/G-rich DNA sequences. Nucleic Acids Res, 2007. 35(7): p. 

2215-26. 

83. Sleiman, S.F., et al., Mithramycin is a gene-selective Sp1 inhibitor that 

identifies a biological intersection between cancer and neurodegeneration. 

J Neurosci, 2011. 31(18): p. 6858-70. 

84. Choi, E.S., et al., Mithramycin A induces apoptosis by regulating the 

mTOR/Mcl-1/tBid pathway in androgen-independent prostate cancer cells. 

J Clin Biochem Nutr, 2013. 53(2): p. 89-93. 

85. Albertini, V., et al., Novel GC-rich DNA-binding compound produced by a 

genetically engineered mutant of the mithramycin producer Streptomyces 



176 

argillaceus exhibits improved transcriptional repressor activity: implications 

for cancer therapy. Nucleic Acids Res, 2006. 34(6): p. 1721-34. 

86. Abdelfattah, M.S. and J. Rohr, Premithramycinone G, an early shunt 

product of the mithramycin biosynthetic pathway accumulated upon 

inactivation of oxygenase MtmOII. Angew Chem Int Ed Engl, 2006. 

45(34): p. 5685-9. 

87. Ryan, W.G., Mithramycin for Paget's disease of bone. N Engl J Med, 

1970. 283(21): p. 1171. 

88. Ryan, W.G., T.B. Schwartz, and G. Northrop, Experiences in the treatment 

of Paget's disease of bone with mithramycin. JAMA, 1970. 213(7): p. 

1153-7. 

89. Seznec, J., B. Silkenstedt, and U. Naumann, Therapeutic effects of the 

Sp1 inhibitor mithramycin A in glioblastoma. J Neurooncol, 2011. 101(3): 

p. 365-77. 

90. Gao, Y., et al., Combining betulinic acid and mithramycin a effectively 

suppresses pancreatic cancer by inhibiting proliferation, invasion, and 

angiogenesis. Cancer Res, 2011. 71(15): p. 5182-93. 

91. Grohar, P.J., et al., Identification of an inhibitor of the EWS-FLI1 

oncogenic transcription factor by high-throughput screening. J Natl Cancer 

Inst, 2011. 103(12): p. 962-78. 

92. Bianchi, N., et al., Targeting of the Sp1 binding sites of HIV-1 long terminal 

repeat with chromomycin. Disruption of nuclear factor.DNA complexes 



177 

and inhibition of in vitro transcription. Biochem Pharmacol, 1996. 52(10): 

p. 1489-98. 

93. Chatterjee, S., et al., Sequence-selective DNA binding drugs mithramycin 

A and chromomycin A3 are potent inhibitors of neuronal apoptosis 

induced by oxidative stress and DNA damage in cortical neurons. Ann 

Neurol, 2001. 49(3): p. 345-54. 

94. Ferrante, R.J., et al., Chemotherapy for the brain: the antitumor antibiotic 

mithramycin prolongs survival in a mouse model of Huntington's disease. 

J Neurosci, 2004. 24(46): p. 10335-42. 

95. Voisine, C., et al., Identification of potential therapeutic drugs for 

huntington's disease using Caenorhabditis elegans. PLoS One, 2007. 

2(6): p. e504. 

96. Hagiwara, H., M. Iyo, and K. Hashimoto, Mithramycin protects against 

dopaminergic neurotoxicity in the mouse brain after administration of 

methamphetamine. Brain Res, 2009. 1301: p. 189-96. 

97. Sen, C.K., et al., Molecular basis of vitamin E action. Tocotrienol potently 

inhibits glutamate-induced pp60(c-Src) kinase activation and death of HT4 

neuronal cells. J Biol Chem, 2000. 275(17): p. 13049-55. 

98. Khanna, S., et al., Glutamate-induced c-Src activation in neuronal cells. 

Methods Enzymol, 2002. 352: p. 191-8. 

99. Khanna, S., et al., Characterization of the potent neuroprotective 

properties of the natural vitamin E alpha-tocotrienol. J Neurochem, 2006. 

98(5): p. 1474-86. 



178 

100. Stanciu, M., et al., Persistent activation of ERK contributes to glutamate-

induced oxidative toxicity in a neuronal cell line and primary cortical 

neuron cultures. J Biol Chem, 2000. 275(16): p. 12200-6. 

101. Chin, P.C., et al., The c-Raf inhibitor GW5074 provides neuroprotection in 

vitro and in an animal model of neurodegeneration through a MEK-ERK 

and Akt-independent mechanism. J Neurochem, 2004. 90(3): p. 595-608. 

102. Baldus, C.D., et al., Acute myeloid leukemia with complex karyotypes and 

abnormal chromosome 21: Amplification discloses overexpression of APP, 

ETS2, and ERG genes. Proc Natl Acad Sci U S A, 2004. 101(11): p. 3915-

20. 

103. Zhu, X., et al., Activation of oncogenic pathways in degenerating neurons 

in Alzheimer disease. Int J Dev Neurosci, 2000. 18(4-5): p. 433-7. 

104. Previll, L.A., et al., Increased expression of p130 in Alzheimer disease. 

Neurochem Res, 2007. 32(4-5): p. 639-44. 

105. Kennedy, B.J., Metabolic and toxic effects of mithramycin during tumor 

therapy. Am J Med, 1970. 49(4): p. 494-503. 

106. Brown, J.H. and B.J. Kennedy, Mithramycin in the Treatment of 

Disseminated Testicular Neoplasms. N Engl J Med, 1965. 272: p. 111-8. 

107. Koller, C.A. and D.M. Miller, Preliminary observations on the therapy of 

the myeloid blast phase of chronic granulocytic leukemia with plicamycin 

and hydroxyurea. N Engl J Med, 1986. 315(23). 

108. Weidenbach, S., et al., Dimerization and DNA recognition rules of 

mithramycin and its analogues. J Inorg Biochem, 2016. 156: p. 40-7. 



179 

109. Previdi, S., et al., Inhibition of Sp1-dependent transcription and antitumor 

activity of the new aureolic acid analogues mithramycin SDK and SK in 

human ovarian cancer xenografts. Gynecol Oncol, 2010. 118(2): p. 182-8. 

110. Sastry, M. and D.J. Patel, Solution structure of the mithramycin dimer-

DNA complex. Biochemistry, 1993. 32(26): p. 6588-604. 

111. Sastry, M., R. Fiala, and D.J. Patel, Solution structure of mithramycin 

dimers bound to partially overlapping sites on DNA. J Mol Biol, 1995. 

251(5): p. 674-89. 

112. Malek, A., et al., Modulation of the activity of Sp transcription factors by 

mithramycin analogues as a new strategy for treatment of metastatic 

prostate cancer. PLoS One, 2012. 7(4): p. e35130. 

113. Scott, D., et al., Semi-synthetic mithramycin SA derivatives with improved 

anticancer activity. Chem Biol Drug Des, 2013. 81(5): p. 615-24. 

114. Scott, D., J. Rohr, and Y. Bae, Nanoparticulate formulations of 

mithramycin analogs for enhanced cytotoxicity. Int J Nanomedicine, 2011. 

6: p. 2757-67. 

115. Remsing, L.L., et al., Ketopremithramycins and ketomithramycins, four 

new aureolic acid-type compounds obtained upon inactivation of two 

genes involved in the biosynthesis of the deoxysugar moieties of the 

antitumor drug mithramycin by Streptomyces argillaceus, reveal novel 

insights into post-PKS tailoring steps of the mithramycin biosynthetic 

pathway. J Am Chem Soc, 2002. 124(8): p. 1606-14. 



180 

116. Corell, T., Pharmacology of tolfenamic acid. Pharmacol Toxicol, 1994. 75 

Suppl 2: p. 14-21. 

117. Abdelrahim, M., et al., Tolfenamic acid and pancreatic cancer growth, 

angiogenesis, and Sp protein degradation. J Natl Cancer Inst, 2006. 

98(12): p. 855-68. 

118. Adwan, L., G.M. Subaiea, and N.H. Zawia, Tolfenamic acid downregulates 

BACE1 and protects against lead-induced upregulation of Alzheimer's 

disease related biomarkers. Neuropharmacology, 2014. 79: p. 596-602. 

119. Adwan, L.I., et al., Tolfenamic acid interrupts the de novo synthesis of the 

beta-amyloid precursor protein and lowers amyloid beta via a 

transcriptional pathway. Curr Alzheimer Res, 2011. 8(4): p. 385-92. 

120. Subaiea, G.M., et al., Short-term treatment with tolfenamic acid improves 

cognitive functions in Alzheimer's disease mice. Neurobiol Aging, 2013. 

34(10): p. 2421-30. 

121. Adwan, L., et al., Tolfenamic acid reduces tau and CDK5 levels: 

implications for dementia and tauopathies. J Neurochem, 2014. 

122. Lee, S.H., et al., Activating transcription factor 2 (ATF2) controls 

tolfenamic acid-induced ATF3 expression via MAP kinase pathways. 

Oncogene, 2010. 29(37): p. 5182-92. 

123. Shao, H.J., et al., Tolfenamic Acid Suppresses Inflammatory Stimuli-

Mediated Activation of NF-kappaB Signaling. Biomol Ther (Seoul), 2015. 

23(1): p. 39-44. 



181 

124. Sankpal, U.T., et al., Cellular and organismal toxicity of the anti-cancer 

small molecule, tolfenamic acid: a pre-clinical evaluation. Cell Physiol 

Biochem, 2013. 32(3): p. 675-86. 

125. Medina, M., Recent developments in tau-based therapeutics for 

neurodegenerative diseases. Recent Pat CNS Drug Discov, 2011. 6(1): p. 

20-30. 

126. Subaiea, G.M., et al., Reduction of amyloid-beta deposition and 

attenuation of memory deficits by tolfenamic acid. J Alzheimers Dis, 2015. 

43(2): p. 425-33. 

127. Hakkarainen, H., et al., Tolfenamic acid and caffeine: a useful combination 

in migraine. Cephalalgia, 1982. 2(4): p. 173-7. 

128. Sutphin, R.M., et al., Anti-leukemic response of a NSAID, tolfenamic acid. 

Target Oncol, 2014. 9(2): p. 135-44. 

129. Marin, M., et al., Transcription factor Sp1 is essential for early embryonic 

development but dispensable for cell growth and differentiation. Cell, 

1997. 89(4): p. 619-28. 

130. Eskerod, O., Gastrointestinal tolerance studies on tolfenamic acid in 

humans and animals. Pharmacol Toxicol, 1994. 75 Suppl 2: p. 44-8. 

131. Cruz, J.C., et al., p25/cyclin-dependent kinase 5 induces production and 

intraneuronal accumulation of amyloid beta in vivo. J Neurosci, 2006. 

26(41): p. 10536-41. 



182 

132. Wen, Y., et al., Transcriptional regulation of beta-secretase by p25/cdk5 

leads to enhanced amyloidogenic processing. Neuron, 2008. 57(5): p. 

680-90. 

133. Sadleir, K.R. and R. Vassar, Cdk5 protein inhibition and Abeta42 increase 

BACE1 protein level in primary neurons by a post-transcriptional 

mechanism: implications of CDK5 as a therapeutic target for Alzheimer 

disease. J Biol Chem, 2012. 287(10): p. 7224-35. 

134. MacCallum, D.E., et al., Seliciclib (CYC202, R-Roscovitine) induces cell 

death in multiple myeloma cells by inhibition of RNA polymerase II-

dependent transcription and down-regulation of Mcl-1. Cancer Res, 2005. 

65(12): p. 5399-407. 

135. Noel, S., et al., Discovery of pyrrolo[2,3-b]pyrazines derivatives as 

submicromolar affinity activators of wild type, G551D, and F508del cystic 

fibrosis transmembrane conductance regulator chloride channels. J 

Pharmacol Exp Ther, 2006. 319(1): p. 349-59. 

136. He, M., et al., Roscovitine attenuates intimal hyperplasia via inhibiting NF-

kappaB and STAT3 activation induced by TNF-alpha in vascular smooth 

muscle cells. Biochem Pharmacol, 2017. 137: p. 51-60. 

137. Whittaker, S.R., et al., The Cyclin-dependent kinase inhibitor CYC202 (R-

roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of 

Cyclin D1, and activates the mitogen-activated protein kinase pathway. 

Cancer Res, 2004. 64(1): p. 262-72. 



183 

138. Mandl, M.M., et al., Inhibition of Cdk5 induces cell death of tumor-initiating 

cells. Br J Cancer, 2017. 116(7): p. 912-922. 

139. Ray, B., et al., Human primary mixed brain cultures: preparation, 

differentiation, characterization and application to neuroscience research. 

Mol Brain, 2014. 7: p. 63. 

140. Masliah, E., et al., Altered expression of synaptic proteins occurs early 

during progression of Alzheimer's disease. Neurology, 2001. 56(1): p. 127-

9. 

141. Alley, G.M., et al., Memantine lowers amyloid-beta peptide levels in 

neuronal cultures and in APP/PS1 transgenic mice. J Neurosci Res, 2010. 

88(1): p. 143-54. 

142. Ray, B., et al., Human primary mixed brain cultures: preparation, long-

term maintenance, characterization and application to neuroscience 

research. Mol Brain, 2014. 7(1): p. 63. 

143. Hagenbuchner, J. and M.J. Ausserlechner, Targeting transcription factors 

by small compounds--Current strategies and future implications. Biochem 

Pharmacol, 2016. 107: p. 1-13. 

144. Taylor, R.C. and A. Dillin, Aging as an event of proteostasis collapse. Cold 

Spring Harb Perspect Biol, 2011. 3(5). 

145. Motonaga, K., et al., Up-regulation of E2F-1 in Down's syndrome brain 

exhibiting neuropathological features of Alzheimer-type dementia. Brain 

Res, 2001. 905(1-2): p. 250-3. 



184 

146. Ranganathan, S., S. Scudiere, and R. Bowser, Hyperphosphorylation of 

the retinoblastoma gene product and altered subcellular distribution of 

E2F-1 during Alzheimer's disease and amyotrophic lateral sclerosis. J 

Alzheimers Dis, 2001. 3(4): p. 377-385. 

147. Jantaratnotai, N., et al., Upregulation and expression patterns of the 

angiogenic transcription factor ets-1 in Alzheimer's disease brain. J 

Alzheimers Dis, 2013. 37(2): p. 367-77. 

148. Bourtchuladze, R., et al., Deficient long-term memory in mice with a 

targeted mutation of the cAMP-responsive element-binding protein. Cell, 

1994. 79(1): p. 59-68. 

149. Ettcheto, M., et al., Early Preclinical Changes in Hippocampal CREB-

Binding Protein Expression in a Mouse Model of Familial Alzheimer's 

Disease. Mol Neurobiol, 2017. 

150. Smith, T.G., P.A. Robbins, and P.J. Ratcliffe, The human side of hypoxia-

inducible factor. Br J Haematol, 2008. 141(3): p. 325-34. 

151. Ashok, B.S., T.A. Ajith, and S. Sivanesan, Hypoxia-inducible factors as 

neuroprotective agent in Alzheimer's disease. Clin Exp Pharmacol Physiol, 

2017. 44(3): p. 327-334. 

152. Rojanathammanee, L., et al., Attenuation of microglial activation in a 

mouse model of Alzheimer's disease via NFAT inhibition. J 

Neuroinflammation, 2015. 12: p. 42. 



185 

153. Zhao, T., et al., Age-related increases in amyloid beta and membrane 

attack complex: evidence of inflammasome activation in the rodent eye. J 

Neuroinflammation, 2015. 12: p. 121. 

154. Ueberham, U., et al., Altered subcellular location of phosphorylated 

Smads in Alzheimer's disease. Eur J Neurosci, 2006. 24(8): p. 2327-34. 

155. Chalmers, K.A. and S. Love, Neurofibrillary tangles may interfere with 

Smad 2/3 signaling in neurons. J Neuropathol Exp Neurol, 2007. 66(2): p. 

158-67. 

156. Song, W. and D.K. Lahiri, Isolation of the genomic clone of the rhesus 

monkey beta-amyloid precursor protein. Biochem Mol Biol Int, 1998. 46(4): 

p. 755-64. 

157. Saykin, A.J., et al., Genetic studies of quantitative MCI and AD 

phenotypes in ADNI: Progress, opportunities, and plans. Alzheimers 

Dement, 2015. 11(7): p. 792-814. 

158. Velayudhan, L., et al., Entorhinal cortex thickness predicts cognitive 

decline in Alzheimer's disease. J Alzheimers Dis, 2013. 33(3): p. 755-66. 

159. Burggren, A.C., et al., Thickness in entorhinal and subicular cortex 

predicts episodic memory decline in mild cognitive impairment. Int J 

Alzheimers Dis, 2011. 2011: p. 956053. 

160. Lee, M.L., et al., Brain endothelial cells induce astrocytic expression of the 

glutamate transporter GLT-1 by a Notch-dependent mechanism. J 

Neurochem, 2017. 



186 

161. Adwan, L., et al., Tolfenamic acid reduces tau and CDK5 levels: 

implications for dementia and tauopathies. J Neurochem, 2015. 133(2): p. 

266-72. 

162. Ban, H.S., et al., Identification of HSP60 as a primary target of o-

carboranylphenoxyacetanilide, an HIF-1alpha inhibitor. J Am Chem Soc, 

2010. 132(34): p. 11870-1. 

163. Huang, W., et al., Small-molecule inhibitors targeting the DNA-binding 

domain of STAT3 suppress tumor growth, metastasis and STAT3 target 

gene expression in vivo. Oncogene, 2016. 35(6): p. 783-92. 

164. Delgado-Morales, R., et al., Epigenetic mechanisms during ageing and 

neurogenesis as novel therapeutic avenues in human brain disorders. Clin 

Epigenetics, 2017. 9: p. 67. 

165. Modgil, S., et al., Role of early life exposure and environment on 

neurodegeneration: implications on brain disorders. Transl Neurodegener, 

2014. 3: p. 9. 

166. Cannon, J.R. and J.T. Greenamyre, The role of environmental exposures 

in neurodegeneration and neurodegenerative diseases. Toxicol Sci, 2011. 

124(2): p. 225-50. 

167. Lahiri, D.K. and B. Maloney, The "LEARn" (latent early-life associated 

regulation) model: an epigenetic pathway linking metabolic and cognitive 

disorders. J Alzheimers Dis, 2012. 30 Suppl 2: p. S15-30. 



187 

168. Maloney, B., et al., Applying epigenetics to Alzheimer's disease via the 

latent early-life associated regulation (LEARn) model. Curr Alzheimer Res, 

2012. 9(5): p. 589-99. 

169. Henikoff, S. and M.A. Matzke, Exploring and explaining epigenetic effects. 

Trends Genet, 1997. 13(8): p. 293-5. 

170. Peleg, S., et al., Altered histone acetylation is associated with age-

dependent memory impairment in mice. Science, 2010. 328(5979): p. 753-

6. 

171. Rao, J.S., et al., Epigenetic modifications in frontal cortex from Alzheimer's 

disease and bipolar disorder patients. Transl Psychiatry, 2012. 2: p. e132. 

172. Ziller, M.J., et al., Charting a dynamic DNA methylation landscape of the 

human genome. Nature, 2013. 500(7463): p. 477-81. 

173. Brewer, G.J. and J.R. Torricelli, Isolation and culture of adult neurons and 

neurospheres. Nat Protoc, 2007. 2(6): p. 1490-8. 

174. Long, J.M., B. Ray, and D.K. Lahiri, MicroRNA-153 physiologically inhibits 

expression of amyloid-beta precursor protein in cultured human fetal brain 

cells and is dysregulated in a subset of Alzheimer disease patients. J Biol 

Chem, 2012. 287(37): p. 31298-310. 

175. Reynolds, B.A., W. Tetzlaff, and S. Weiss, A multipotent EGF-responsive 

striatal embryonic progenitor cell produces neurons and astrocytes. J 

Neurosci, 1992. 12(11): p. 4565-74. 



188 

176. Reynolds, B.A. and S. Weiss, Generation of neurons and astrocytes from 

isolated cells of the adult mammalian central nervous system. Science, 

1992. 255(5052): p. 1707-10. 

177. Gritti, A., et al., Epidermal and fibroblast growth factors behave as 

mitogenic regulators for a single multipotent stem cell-like population from 

the subventricular region of the adult mouse forebrain. J Neurosci, 1999. 

19(9): p. 3287-97. 

178. Gritti, A., et al., Multipotential stem cells from the adult mouse brain 

proliferate and self-renew in response to basic fibroblast growth factor. J 

Neurosci, 1996. 16(3): p. 1091-100. 

179. Gritti, A., et al., Basic fibroblast growth factor supports the proliferation of 

epidermal growth factor-generated neuronal precursor cells of the adult 

mouse CNS. Neurosci Lett, 1995. 185(3): p. 151-4. 

180. Reynolds, B.A. and S. Weiss, Clonal and population analyses 

demonstrate that an EGF-responsive mammalian embryonic CNS 

precursor is a stem cell. Dev Biol, 1996. 175(1): p. 1-13. 

181. Salih, D.A. and A. Brunet, FoxO transcription factors in the maintenance of 

cellular homeostasis during aging. Curr Opin Cell Biol, 2008. 20(2): p. 

126-36. 

182. Hoekman, M.F., et al., Spatial and temporal expression of FoxO 

transcription factors in the developing and adult murine brain. Gene Expr 

Patterns, 2006. 6(2): p. 134-40. 



189 

183. Meijer, L. and E. Raymond, Roscovitine and other purines as kinase 

inhibitors. From starfish oocytes to clinical trials. Acc Chem Res, 2003. 

36(6): p. 417-25. 

184. Calnan, D.R., et al., Methylation by Set9 modulates FoxO3 stability and 

transcriptional activity. Aging (Albany NY), 2012. 4(7): p. 462-79. 

185. Sengupta, D., et al., DNA methylation and not H3K4 trimethylation dictates 

the expression status of miR-152 gene which inhibits migration of breast 

cancer cells via DNMT1/CDH1 loop. Exp Cell Res, 2016. 346(2): p. 176-

87. 

186. Li, N., et al., Epigenetic silencing of MicroRNA-503 regulates FANCA 

expression in non-small cell lung cancer cell. Biochem Biophys Res 

Commun, 2014. 444(4): p. 611-6. 

187. Zhou, B., et al., MicroRNA-503 targets FGF2 and VEGFA and inhibits 

tumor angiogenesis and growth. Cancer Lett, 2013. 333(2): p. 159-69. 

188. Cao, C., et al., miR-125b targets DNMT3b and mediates p53 DNA 

methylation involving in the vascular smooth muscle cells proliferation 

induced by homocysteine. Exp Cell Res, 2016. 347(1): p. 95-104. 

189. Goeppert, B., et al., Cadherin-6 is a putative tumor suppressor and target 

of epigenetically dysregulated miR-429 in cholangiocarcinoma. 

Epigenetics, 2016: p. 0. 

190. Samuel, N., et al., Genome-Wide DNA Methylation Analysis Reveals 

Epigenetic Dysregulation of MicroRNA-34A in TP53-Associated Cancer 

Susceptibility. J Clin Oncol, 2016. 



190 

191. Kaur, S., et al., MicroRNA Methylation in Colorectal Cancer. Adv Exp Med 

Biol, 2016. 937: p. 109-22. 

192. Maloney, B. and D.K. Lahiri, Epigenetics of dementia: understanding the 

disease as a transformation rather than a state. Lancet Neurol, 2016. 

15(7): p. 760-774. 

193. Piletic, K. and T. Kunej, MicroRNA epigenetic signatures in human 

disease. Arch Toxicol, 2016. 

194. Lahiri, D.K., B. Maloney, and N.H. Zawia, The LEARn model: an 

epigenetic explanation for idiopathic neurobiological diseases. Mol 

Psychiatry, 2009. 14(11): p. 992-1003. 

195. Shields, A.E., et al., Childhood abuse, promoter methylation of leukocyte 

NR3C1 and the potential modifying effect of emotional support. 

Epigenomics, 2016. 

196. Provenzi, L., et al., SLC6A4 methylation as an epigenetic marker of life 

adversity exposures in humans: A systematic review of literature. Neurosci 

Biobehav Rev, 2016. 71: p. 7-20. 

197. Doura, M.B. and E.M. Unterwald, MicroRNAs Modulate Interactions 

between Stress and Risk for Cocaine Addiction. Front Cell Neurosci, 

2016. 10: p. 125. 

198. Wingo, A.P., et al., Genome-wide association study of positive emotion 

identifies a genetic variant and a role for microRNAs. Mol Psychiatry, 

2016. 



191 

199. Meydan, C., S. Shenhar-Tsarfaty, and H. Soreq, MicroRNA Regulators of 

Anxiety and Metabolic Disorders. Trends Mol Med, 2016. 22(9): p. 798-

812. 

200. Jin, J., et al., miR-17-92 Cluster Regulates Adult Hippocampal 

Neurogenesis, Anxiety, and Depression. Cell Rep, 2016. 16(6): p. 1653-

63. 

201. Vaisvaser, S., et al., Neuro-Epigenetic Indications of Acute Stress 

Response in Humans: The Case of MicroRNA-29c. PLoS One, 2016. 

11(1): p. e0146236. 

202. Zhang, Y.L., et al., Anxiety-like behavior and dysregulation of miR-34a in 

triple transgenic mice of Alzheimer's disease. Eur Rev Med Pharmacol 

Sci, 2016. 20(13): p. 2853-62. 

203. Short, A.K., et al., Elevated paternal glucocorticoid exposure alters the 

small noncoding RNA profile in sperm and modifies anxiety and 

depressive phenotypes in the offspring. Transl Psychiatry, 2016. 6(6): p. 

e837. 

204. Capell, A., et al., Maturation and pro-peptide cleavage of beta-secretase. J 

Biol Chem, 2000. 275(40): p. 30849-54. 

205. Walter, J., et al., Phosphorylation regulates intracellular trafficking of beta-

secretase. J Biol Chem, 2001. 276(18): p. 14634-41. 

206. Cole, S.L. and R. Vassar, The Alzheimer's disease beta-secretase 

enzyme, BACE1. Mol Neurodegener, 2007. 2: p. 22. 



192 

207. Thinakaran, G. and E.H. Koo, Amyloid precursor protein trafficking, 

processing, and function. J Biol Chem, 2008. 283(44): p. 29615-9. 

208. Yan, R., et al., The transmembrane domain of the Alzheimer's beta-

secretase (BACE1) determines its late Golgi localization and access to 

beta -amyloid precursor protein (APP) substrate. J Biol Chem, 2001. 

276(39): p. 36788-96. 

209. Brown, M.S., et al., Regulated intramembrane proteolysis: a control 

mechanism conserved from bacteria to humans. Cell, 2000. 100(4): p. 

391-8. 

210. Iwatsubo, T., The gamma-secretase complex: machinery for 

intramembrane proteolysis. Curr Opin Neurobiol, 2004. 14(3): p. 379-83. 

211. Benjannet, S., et al., Post-translational processing of beta-secretase 

(beta-amyloid-converting enzyme) and its ectodomain shedding. The pro- 

and transmembrane/cytosolic domains affect its cellular activity and 

amyloid-beta production. J Biol Chem, 2001. 276(14): p. 10879-87. 

212. Cook, D.G., et al., Alzheimer's A beta(1-42) is generated in the 

endoplasmic reticulum/intermediate compartment of NT2N cells. Nat Med, 

1997. 3(9): p. 1021-3. 

213. Hartmann, T., et al., Distinct sites of intracellular production for 

Alzheimer's disease A beta40/42 amyloid peptides. Nat Med, 1997. 3(9): 

p. 1016-20. 

214. Lieu, Z.Z. and P.A. Gleeson, Endosome-to-Golgi transport pathways in 

physiological processes. Histol Histopathol, 2011. 26(3): p. 395-408. 



193 

215. Koh, Y.H., et al., BACE is degraded via the lysosomal pathway. J Biol 

Chem, 2005. 280(37): p. 32499-504. 

216. Huse, J.T., et al., Maturation and endosomal targeting of beta-site amyloid 

precursor protein-cleaving enzyme. The Alzheimer's disease beta-

secretase. J Biol Chem, 2000. 275(43): p. 33729-37. 

217. Seaman, M.N., The retromer complex - endosomal protein recycling and 

beyond. J Cell Sci, 2012. 125(Pt 20): p. 4693-702. 

218. Small, S.A., et al., Model-guided microarray implicates the retromer 

complex in Alzheimer's disease. Ann Neurol, 2005. 58(6): p. 909-19. 

219. Nordberg, M., et al., Lead concentrations in elderly urban people related to 

blood pressure and mental performance: results from a population-based 

study. Am J Ind Med, 2000. 38(3): p. 290-4. 

220. Bihaqi, S.W., et al., Infantile exposure to lead and late-age cognitive 

decline: relevance to AD. Alzheimers Dement, 2014. 10(2): p. 187-95. 

221. Wu, J., et al., Alzheimer's disease (AD)-like pathology in aged monkeys 

after infantile exposure to environmental metal lead (Pb): evidence for a 

developmental origin and environmental link for AD. J Neurosci, 2008. 

28(1): p. 3-9. 

 

 

 



	

CURRICULUM VITAE 

Baindu L. Bayon 
 

Education 

2017 Indiana University, Indianapolis.  Ph.D. in Medical & 

Molecular Genetics with minor in Life Sciences. 

 Advisor: Debomoy K. Lahiri, Ph.D. 

2003 Indiana University, Bloomington, B.S. in Biology 

Awards 

2017 Indy’s Best & Brightest Award Finalist, Junior Achievement 

of Central Indiana  

2017 Women of Influence Advocate Trailblazer Award, Indiana 

University National Center of Excellence in Women’s Health 

2017 Alzheimer’s Association International Conference Travel 

Fellowship Award 

2017 Exchange Leadership Fellow, Indianapolis Urban League  

2017 IUPUI William M. Plater Civic Medallion Recipient, Indiana 

University Purdue University-Indianapolis  

2017 Indianapolis Business Journal Forty Under 40  

2017 Elite 50, Indiana University Purdue University-Indianapolis  

2016 Dr. George Rawls Emerging Leader Award, 100 Black Men 

of Indianapolis  

2016 Center for Leadership Development Achievers “Science & 

Technical Disciplines” Award 



	

2015 President’s Diversity Dissertation Fellowship Award, Indiana 

University Purdue University Indianapolis 

Publications 

§ Bayon BL, Maloney B, Zawia N, Lahiri DK. (2017) Leading the Lead (Pb) 

Crisis with the Four Rs: Restoration, Renovation, Research and Remediation. 

Environmental Health Perspectives. Submitted. 

§ Erickson, CA, Wink L, Bayon BL, Ray B, Schaefer T, Pedapati E, Lahiri DK. 

(2016) Analysis of Peripheral Amyloid Precursor Protein in Angelman 

Syndrome. Am J Med Genet Part A 9999A:1-4. 

§ Lahiri DK, Maloney B, Bayon BL, Chopra N, White F, Greig NH, Nurnberger 

JI. (2016) Transgenerational Latent Early-life Associated Regulation 

(tLEARn): Uniting environment, life exposures, and genetic inheritance across 

generations. Epigenomics 8(3):373-87 

§ Srinivasan M, Chopra N, Bayon BL, Lahiri DK. (2016) Novel Nuclear Factor-

KappaB Targeting Peptide Suppresses β-Amyloid Induced Inflammatory and 

Apoptotic Responses in Neuronal Cells.  PLoS One 11(10):e0160314. 

§ Erickson CA, Ray B, Wink LK, Bayon BL, Pedapati EV, Shaffer R, Schaeffer 

TL, Lahiri DK. (2016) Initial analysis of peripheral lymphocytic extracellular 

signal related kinase activation in autism. Journal of Psychiatric Research 

84:153-160 

 
 
 
 
 



	

Abstracts and Presentations 

§ Bayon BL, Maloney B, Xu X-M, Ratan RR, Lahiri DK. (2017) The role of Sp1-

modulating compounds in Alzheimer's disease. Abstract accepted. Society for 

Neuroscience Annual Meeting, Washington, D.C. Poster presentation. 

§ Bayon BL, Maloney B, Chopra N, White FA, Xu X-M, Ratan RR, Lahiri DK. 

(2017) Sp1-Modulating Compounds As a Novel Drug Target for Alzheimer's 

Disease (AD). Alzheimer’s Association International Conference, London, 

United Kingdom. Oral Presentation. O4-06-01 #18784. 

§ Bayon BL, Nho K, Saykin AJ, Srinivasan M, Lahiri DK. (2017) Role of SP1 

and Other Transcription Factors in Alzheimer’s Disease. Alzheimer’s 

Association International Conference, London, United Kingdom. Poster P4-02 

#18858 

§ Bayon BL, Nho K, Maloney B, Chopra N, Lahiri DK. (2016) Regulation of 

amyloid-beta precursor protein (APP) and beta-secretase 1 (BACE1) 

expression by transcription factor modulating compounds mithramycin A and 

tolfenamic acid in human cells.  Abstract from Society for Neuroscience 

Annual Meeting, San Diego, California. Presentation 785.20 

§ Bayon BL, Nho K, Maloney B, Chopra N, Lahiri DK. (2016) Differential 

regulation of amyloid-β precursor protein (APP) and β-secretase 1 (BACE1) 

by transcription factor (TF) modulating drugs in human cells.  Presented at 

the 66th Annual Meeting of The American Society of Human Genetics, 

Vancouver, British Columbia, Canada. Poster 2040 



	

§ Bayon, BL, Nho, K, Maloney, B, Chopra, N, Lahiri, DK. (2015).  Transcription 

factor mediated modulation of amyloid-beta precursor protein (APP) and beta-

site APP cleaving enzyme (BACE1) expression as a novel drug target in 

Alzheimer’s disease (AD). Abstract from Society for Neuroscience Annual 

Meeting, Chicago, Illinois. Presentation 214.09/C8 

§ Lahiri, DK, Maloney, B, Long, JM, Chopra, N, Sambamurti, B, Bayon, BL. 

(2015). Understanding the neurobiology of Alzheimer’s disease (AD) by 

correlating specific AD-associated miRNAs and the MMSE cognitive scale. 

Abstract from Society for Neuroscience Annual Meeting, Chicago, Illinois. 

Presentation 214.10/C9 

§ Bayon, BL, Nho, K, Maloney, B, Chopra, N, Lahiri, DK. (2015).  Transcription 

factor mediated modulation of amyloid-beta precursor protein (APP) and beta-

site APP cleaving enzyme (BACE1) expression as a novel drug target in 

Alzheimer’s disease (AD). Presented at the 65th Annual Meeting of The 

American Society of Human Genetics, Baltimore, Maryland. Poster 1218T. 

§ Bayon, BL, Bailey, JA, Ray, B, Sambamurti, K, Greig, N, Lahiri, DK. (2015). 

Role of Sp1 inhibiting drugs in the modulation of amyloid-beta precursor 

protein (APP) and beta-site APP cleaving enzyme (BACE1) activity in human 

cells: implications as a novel drug target for Alzheimer's disease.  Abstract 

from Indiana Clinical and Translational Sciences Institute (CTSI) Annual 

Meeting, Indianapolis, Indiana. 

 



	

§ Bayon, BL, Bailey, JA, Ray, B, Sambamurti, K, Greig, N, Lahiri, DK. (2014).  

SP1 inhibitors as modulators of APP and BACE1 levels in human cells: A 

novel drug target in Alzheimer’s disease.  Abstract from American Society of 

Human Genetics Annual Meeting, San Diego, California. Poster 1354S. 

§ Bayon, BL, Bailey, JA, Ray, B, Sambamurti, K, Greig, N, Lahiri, DK. (2014).  

SP1 inhibitors as modulators of APP and BACE1 levels in human cells: A 

novel drug target in Alzheimer’s disease.  Abstract from Drug Discovery and 

Therapy World Congress, Boston, Massachusetts. Session Lecture SL-

184(a). Poster PO-90. 

§ Bayon, BL, Lahiri, DK, Bailey, JA. (2013). BACE1 gene regulation: A novel 

drug target in Alzheimer's disease. Alzheimer's & Dementia, 2013. 9(4, 

Supplement): p. P304. Abstract from Alzheimer’s Association International 

Conference, Boston, Massachusetts. 

§ Bayon, BL, Bailey, JA, Lahiri, DK (2013).  BACE1 Gene Regulation: A Novel 

Drug Target in Alzheimer’s disease. Poster session presented at IUPUI 

Research Day 2013, Indianapolis, Indiana. 

https://scholarworks.iupui.edu/handle/1805/6938 

§ Bayon, BL, Celerin, M, Zolan, M (2001).  Mutation in the msh5 Gene of 0-376 

in Coprinus cinereus likely causes an N-Terminus Truncation of the Protein. 

Abstract from Annual Biomedical Research Conference for Minority Students 

(ABRCMS). Orlando, Florida. 

 
 
 
 



	

Societies and Organizations 
 
Board of Directors, Adult & Child Health, Indianapolis 2016 - present 
 
Board of Directors, TechIndy STEM High School, Indianapolis 2016 
 
Social Media Secretary, Midwest Africa Chamber of Commerce 2016 
 
Mentor, 100 Black Men of Indianapolis “Financial Literacy Program” 2015-
present 
 
Society for Neuroscience “Neuroscience Scholars Program Associate” 2015-
present 
 
Member, The American Society of Human Genetics, 2014 – present 
 
Member, Society for Neuroscience, 2013 – present 
 
Member, National Organization for the Professional Advancement of Black 
Chemists and Chemical Engineers, 2013 – present 
 
Mentor, College Prep Academy, St. Vincent Hospital 2012 
 
Member, Alpha Chi Sigma, 2002-present 
 


