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ABSTRACT 

 

 

Goulding, Ann Marie. Ph.D., Purdue University, August 2010.  Biochemical 
Applications of DsRed-Monomer Utilizing Fluorescence and Metal-Binding Affinity.  
Major Professor:  Sapna K. Deo. 
 

 

The discovery and isolation of naturally occurring fluorescent proteins, FPs, have 

provided much needed tools for molecular and cellular level studies.  Specifically the 

cloning of green fluorescent protein, GFP, revolutionized the field of biotechnology and 

biochemical research.  Recently, a red fluorescent protein, DsRed, isolated from the 

Discosoma coral has further expanded the pallet of available fluorescent tools.  DsRed 

shares only 23 % amino acid sequence homology with GFP, however the X-ray crystal 

structures of the two proteins are nearly identical.  DsRed has been subjected to a number 

of mutagenesis studies, which have been found to offer improved physical and spectral 

characteristics.  One such mutant, DsRed-Monomer, with a total of 45 amino acid 

substitutions in native DsRed, has shown improved fluorescence characteristics without 

the toxic oligomerization seen for the native protein.  In our laboratory, we have 

demonstrated that DsRed proteins have a unique and selective copper-binding affinity, 

which results in fluorescence quenching.  This copper-binding property was utilized in 

the purification of DsRed proteins using copper-bound affinity columns.  

The work presented here has explored the mechanism of copper-binding by 

DsRed-Monomer using binding studies, molecular biology, and other biochemical 

techniques.  Another focus of this thesis work was to demonstrate the applications of 

DsRed-Monomer in biochemical studies based on the copper-binding affinity and 



  xi 

fluorescence properties of the protein.  To achieve this, we have focused on genetic 

fusions of DsRed-Monomer with peptides and proteins.  The work with these fusions 

have demonstrated the feasibility of using DsRed-Monomer as a dual functional tag, as 

both an affinity tag and as a label in the development of a fluorescence assay to detect a 

ligand of interest.  Further, a complex between DsRed-Monomer-bait peptide/protein 

fusion and an interacting protein has been isolated taking advantage of the copper-

binding affinity of DsRed-Monomer.  We have also demonstrated the use of non-natural 

amino acid analogues, incorporated into the fluorophore of DsRed-Monomer, as a tool 

for varying the spectral properties of the protein.  These mutations demonstrated not only 

shifted fluorescence emission compared to the native protein, but also improved 

extinction coefficients and quantum yields.  
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CHAPTER 1.  FLUORESCENT PROTEINS 

 

 

1.1 Fluorescent Proteins 

 

In recent years a number of optically active proteins have been isolated and 

examined.  These proteins have revolutionized the field of biotechnology and 

biochemical research.  Such proteins emit fluorescence and bioluminescence in a number 

of ways including autocatalytic chromophore formation, and addition of an interacting 

substrate.  One such family of proteins forms a fluorescently active chromophore from a 

tri-peptide sequence surrounded by a beta-barrel.  These chromoproteins include a green 

fluorescent protein, GFP, and a red fluorescent protein, DsRed, and their mutants.  While 

fluorescent proteins have offered many advantages to various fields of research, a number 

of disadvantages have been identified.  Many of these proteins form oligomeric structures 

upon maturation, causing slow maturation and often, cellular toxicity.  Additionally many 

of these naturally occurring proteins show poor extinction coefficients and quantum 

yields.   Various mutagenesis studies have been done on fluorescent proteins, including 

directed evolution and point mutations, to address these issues, often resulting in 

improved biological and spectral properties.  Fluorescent proteins have been utilized for a 

number of biochemical and detection studies including cell tracking studies, to explore 

folding pathways, as qualitative reporters, and labels for analytical applications.  
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1.2 DsRed 

 

1.2.1 Discovery and Spectral Properties of DsRed 

 

 DsRed is a naturally occurring red fluorescent protein, initially isolated in 1999, 

by Lukyanov and colleagues [1].  The gene for this protein was isolated from the Indo-

Pacific sea anemone Discosoma striata.  It was speculated that such corals contain 

fluorescent pigments to protect them from harmful UV radiation.  This fluorescence also 

permits conversion of blue light to a longer wavelength suitable for photosynthesis by 

algal endosymbionts.  Organisms living in deeper ocean environments, where ambient 

light is depleted of low-energy components, need this conversion mechanism from short 

to longer wavelength light.  Therefore the presence of fluorescence activity in coral is 

crucial to the survival of sea organisms.  While corals utilize the red pigments as 

sunscreen against damaging radiation, we can use these pigments for a number of 

biochemical studies, based on their red emission spectra. 

Lukyanov and coworkers successfully isolated six brightly fluorescent proteins 

[2], from a number of body parts of the coral.  This work resulted in the isolation of genes 

for six proteins with 26-30 % amino acid sequence identity to GFP.  Of the six proteins 

isolated five of them were green emitting and one red emitting, DsRed.  DsRed is 

composed of 225 amino acid residues with a molecular mass of 25.4 kDa, with an 

excitation and emission wavelength maximum of 558 and 583 nm, respectively.  DsRed 

shares 26 % amino acid sequence identity with GFP, while the excitation and emission 

maximum are far red-shifted, indicating distinct differences in the chromophore 

structures of the two proteins (Table 1).    
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Table 1:  Spectroscopic properties of green fluorescent protein (GFP), tetrameric DsRed-
Express, and DsRed-Monomer 
  Size 

(kDa) 
λexcitation 
(nm) 

λemission 
(nm) 

ε (M‐1cm‐1)  Quantum 
Yield (%) 

GFP  26.9  488  509  55,000  0.60 

DsRed‐
Express 

89.0  557  579  38,000  0.40 

DsRed‐
Monomer 

26.8  556  586  35,000  0.04 – 
0.25 

 
While DsRed demonstrates a number of desirable properties: resistance to 

photobleaching, pH insensitivity over a wide pH range, stable conformation, and red 

region emission, a number of limitations have also been identified for this protein.  For 

practical laboratory purposes the most problematic issues of these characteristics include 

the slow maturation, green emitting intermediate and oligomerization.  The chromophore 

of the tetrameric DsRed takes several days to fully mature, limiting its possible use as a 

reporter for gene expression studies [3].  DsRed also demonstrates high molecular weight 

aggregates, as seen for other Anthozoan GFP-like proteins.  It has been suggested, based 

on computational studies that these aggregates form as a result of electrostatic 

interactions between the negatively charged protein surface and the positively charged, 

basic, residues at the N-terminus.  These limitations described for DsRed have been 

addressed through a number of mutation studies, utilizing both random and site-directed 

mutagenesis techniques. 

 

1.2.2 Maturation and Oligomerization of DsRed 

 

The DsRed chromophore is extremely slow to mature, taking several days at room 

temperature to reach full red expression.  This red chromophore forms through a green 

intermediate, which is seen at about 7 hours post induction.  After 48 hours this green 
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emission completely disappears and red fluorescence reaches > 90 % maximal intensity 

[3].  

Crystallographic studies of DsRed reveal that it exists as a tetramer even at 

nanomolar concentration.  This oligomerization has been the speculated cause of the slow 

maturation seen for DsRed; since it requires more time for all four chromophores within 

the tetramer structure to fully mature.  It has also been suggested that this tetrameric form 

may be responsible for DsRed’s resistance to photobleaching, which is four to fivefold 

greater than that of GFP [4, 5].  

The DsRed tetramer, based on X-ray crystallography studies, forms from four 

individual units, each made up of an 11-stranded β barrel with a central helix (Figure 1).  

This central helix consists of the chromophore and α helical caps on each of the ends of 

the barrel [6].  Although, as previously stated, DsRed shares only 26 % amino acid 

sequence identity with GFP, their three dimensional structures are nearly identical.  The 

superimposed structures reveals that the loops in DsRed are shorter than those in GFP, 

due to a reduced number of amino acids in the comparable loop regions and higher 

hydrophobicity of the residues present.  Further, a pronounced bulge is seen centered 

around Ser146 in DsRed, a similar bulge is not seen for GFP in this region.  Finally 

residues 97-100 and 140-145 are significantly closer to the chromophore in DsRed, 

compared to GFP, which probably impacts chromophore formation. 
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Figure 1:  X-ray crystal structure of DsRed [7] 

 

 

1.3 DsRed-Monomer 

 

1.3.1 Construction of DsRed-Monomer 

 

Since the discovery of DsRed, work has been done to address the limitations seen 

for the native tetrameric protein; much of this work has focused on the need to create a 

monomeric mutant.  Yanushevich et al. [8] developed the first commercially available 

non-aggregating mutant of DsRed, in 2002.  This group focused on mutations at the 

charged N-terminus of a number of previously described mutants, E57 (V105A, I161T, 

S197A) [9], E5 (V105A, S197T) [10], and ds/drFP616 [11].  From the results of these 

initial N-terminally focused studies, further substitutions; R2A, K5E, and K9T, in 
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different combinations were examined.  The R2A showed the greatest effect on the 

aggregation of the E57 mutant.  However, mutant E57-NA with all three of these 

mutations showed the best results with regard to aggregation and spectroscopic 

properties, which are comparable to E57.  This E57-NA mutant became the first 

commercially available non-aggregating DsRed, DsRed2. 

    While Yanushevich’s DsRed2 was the first commercially available non-

aggregating mutant of DsRed, Campbell et al. [4] produced a further monomeric DsRed 

shortly after.  Campbell initially reduced the tetrameric DsRed to a dimer via a single 

point mutation, I125R.  This mutation however led to a decrease in the red fluorescence 

of the protein with an increase in the green intermediate component, and increased 

maturation time.  Utilizing directed evolution Campbell et al. identified mutants of this 

dimer, which showed the desired optical and physical properties.  From this pool of 

mutants Dimer2 was isolated with 16 additional mutations.  These 17 mutations are 

located at a number of sites within the final protein structure, specifically eight internal to 

the β-barrel, two at the AB interface, four surface mutations and three that are known to 

reduce aggregation.  From this Dimer2 a tandem dimer, tdimer2, was produced, via a 

polypeptide linker of 12 amino acids, which demonstrated excitation and emission 

identical to Dimer2 with an improved extinction coefficient.  This increased extinction 

coefficient was attributed to the presence of the two absorbing chromophores. Through a 

series of point mutations in this tdimer2, a first generation monomer, mRFP.1, was 

identified.  Further use of directed evolution yielded mRFP1, the first true monomer of 

DsRed with 33 amino acid substitutions in native DsRed.  

This mRFP1 mutant was further improved by Shaner et al. [12] through a series 

of mutation studies and screened both manually and by fluorescence-activated cell 

sorting (FACS)-based screening.  From these mutation studies a number of mutants were 

isolated which showed differing emission maxima, increased tolerance to N- and C-

terminal fusions, improved extinction coefficients, quantum yields and high 

photostability.  While individual improvements were seen for all of the mutants no one 

mutant showed improvement in all of these areas.  This was addressed by a further series 

of amino acid substitutions, focusing on the residues around the chromophore, leading to 
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mutant mRFP1.1.  The sensitivity of this mutant to N-terminal fusion was addressed by 

replacing the first seven amino acids with MVSKGEE followed by a four amino acid 

linker, NNMA (6a-6d).  The C-terminal of the protein was also replaced with the last 

seven residues of GFP (mRFP1.3).  Two additional point mutations in this mutant created 

mRFP1.4, which showed improved chromophore folding.   

The work of Yanushevich, Shaner, Campbell and others, described above, lead to 

the optimized monomeric DsRed, DsRed.M1 described by Strongin et al. [13].  This 

protein DsRed.M1, or DsRed-Monomer, is now commercially available through 

Clontech.  DsRed-Monomer contains 45 amino acid substitutions in native DsRed; it 

overcomes the oligomerization seen for the native protein.  This non-aggregating species 

was verified via a number of methods, which led to an obtained molecular weight of 

~28kDa, consistent with a single DsRed unit.  The DsRed monomers generated by both 

directed evolution and site-specific mutagenesis of amino acid residues have an almost 

ideal set of properties for biological sensing and analytical applications.  A more detailed 

discussion of the work, which led to the creation of this monomeric DsRed variant, is 

presented in Appendix A. 

 

1.3.2 Spectral Properties of DsRed-Monomer 

 

While the spectral properties of DsRed-Monomer are less ideal than those seen 

for the tetrameric DsRed, DsRed-Express (Clontech, Palo Alto, CA), the maturation is 

much faster.  The chromophore of this protein fully matures within hours of induction 

and shows none of the parasitic green florescence reported for the native DsRed.  DsRed-

Monomer displays a fluorescence excitation maximum at 556 nm and emission at 586 

nm, however the range of quantum yields reported, by a number of groups, for this 

protein is much lower (Table 1) [4, 13].    
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1.3.3 X-ray Crystal Structure of DsRed-Monomer 

 

The chromophore of DsRed-Monomer is formed internally from a tripeptide 

sequence composed of Gln66-Tyr67-Gly68.  This chromophore is autocatalytically 

formed via cyclization and dehydrogenation of the tripeptide (Figure 2).  The 

environment around this chromophore is more polar than that of GFP, consisting of 

charged residues such as lysine (residues 70, 83, and 163) and glutamine (residue 148) 

which closely interact with the chromophore [6].  The phenolate oxygen of the 

chromophore interacts with Ser146 and Lys63, while Gln223 and Asn42 form hydrogen 

bonds with Gln66.  These interactions help position the Gln66, necessary for red 

fluorescence.  

The crystal structure of DsRed-Monomer was generated by Strongin et al. [13], 

the results of these studies are presented in Table 2 and displayed in Figure 3.  The 

crystallized DsRed-Monomer displays spacegroup P212121 with one molecule in the 

asymmetric unit.  Since native DsRed is a naturally occurring tetramer, as previously 

discussed, the intermolecular contacts in the DsRed-Monomer crystal lattice differ 

significantly from those of DsRed, specifically the intermolecular interactions that define 

the 222 symmetry of the tetramer are completely disrupted.  Additionally, the 

intersubunit distances and orientations are different from those in the tetramer.  

Regardless of the numerous amino acid substitutions in this monomer, a total of 45, the 

structure reveals no gross distortion of the GFP-like fold, seen in the units of the tetramer.  

The largest conformational distortions appear in the loop regions.  There are several 

surface mutations that disrupt intramolecular interactions in the tetramer and that actually 

form interactions in the monomer.  These include Arg153 and Lys158, which mediate 

interactions in the polar and hydrophobic interfaces.  In the monomer this 153 residue is 

replaced with a Gln disrupting the salt bridge with Glu100 and forming a new 

intramolecular hydrogen bond between Gln153 and Lys158.  In DsRed-Monomer the 

Tyr26 fills a void by packing against the service and forming hydrogen bonds with 

Glu28. 
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Figure 2:  The chromophore of DsRed, generated autocatalytically in the presence of 
molecular oxygen from the Gln66-Tyr67-Gly68 tripeptide [6]  
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Figure 3:  X-ray crystal structure of DsRed-Monomer [13] 
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Table 2:  X-ray crystal structure data for DsRed (wild type) and DsRed-Monomer [7, 13] 
  DsRed (wild type)  DsRed‐Monomer 

Space group  P21  P212121 

Unit cell dimensions (Å)  a=55.7, b=127.2, c=57.1 
β=100.4° 

a=38.9, b=62.2, 
c=81.9 
α=β=γ=90° 

Molecules per 
asymmetric unit 

4  1 

X‐ray source  ALS beamline 5.0.1  APS 14BM‐C 

Wavelength (Å)  1.000  0.900 

Resolution range (Å)  40‐1.4 (1.45‐1.40)  50‐1.59 (1.65‐1.59) 

Total/unique 
observations 

363894/148353  181 013/27 397 

Completeness (%)  96.8 (93.2)  99.7 (99.6)  

<I/sigI>  18 (1.9)  43.7 (6.7) 

Rsym (%)  5.1 (35.7)  5.5 (39.7) 

 
Further deviations in structure from the tetramer were seen in and around the 

chromophore of the DsRed-Monomer.  Specifically a +10 degrees and -11 degrees 

deviation from coplanarity from the phenolate plane is seen for the chromophore of the 

monomer.  Additionally the Lys70 no longer interacts with Glu215 or Ser197; instead 

this residue forms a salt bridge with Glu148.  Replacing this Lys70 side chains, a water 

molecule mediates a network of hydrogen bonds between Glu215, Ser197 and the 

repositioned Lys70.  This Lys residue may also adopt multiple conformations and sweep 

out in an arc above the chromophore.  This Lys70 may also be further modulated by the 

V71A and S179T.  
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1.3.4 Advantages of DsRed-Monomer 

 

 Through the use of point mutations and directed evolution a true monomer of 

DsRed, DsRed-Monomer, is now commercially available.  This protein offers a variety of 

spectral characteristics with advantages and disadvantages compared to the commercially 

available tetramer of DsRed.  This protein offers strong emission in the red region of the 

spectrum, ideal for use as markers for gene expression and protein localization in 

biological systems, due to decreased background signal in the red region of the spectrum, 

as compared to the green, for most organisms.  Additionally this monomer demonstrates 

no aggregation or oligomerization and allows for full maturation of the chromophore 

within hours.        

 

 

1.4 Copper-Binding Characteristics of DsRed and its Variants 

 

 DsRed and its mutants have demonstrated the ability to bind copper ions, 

resulting in a quenching of their fluorescence [14, 15].  Kopelman and colleagues [15] 

developed a sensitive fluorescent probe for the detection of mono- and divalent copper 

ions, utilizing wild type DsRed.  Copper ions are important for numerous biological and 

biosynthesis pathways, copper-containing proteins are key players in the human nervous 

system and many neurological conditions are linked to defects in copper homoeostasis.  

For example Menkes’ and Wilson’s disease, both neurological disorders, are caused by 

an inability to metabolize copper.   Additionally copper has been widely used in 

industrial processes and is a source of pollution in the environment, micromolar amounts 

of copper are toxic within a biological environment.  The availability of copper detection 

methods for biological and environmental samples is of great significance. 

 The work of Kopelman and colleagues yielded a nanomolar detection limit, with 

90 % fluorescence quenching at 2.5 µM Cu2+ and 75 % at 2.5 µM Cu+.  Kd values for this 

tetrameric DsRed from this work were found to be 540 ± 90 nM and 450 ± 60 nM for 

Cu2+ and Cu+ respectively.  The binding, and subsequent fluorescence quenching, was 
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also found to be very selective to copper ions, compared to Mn2+, Fe2+/3+, Co2+, Ni2+, 

Cd2+, Ag2+, Hg2+, Pb2+, Mg2+, and Ca2+.  Finally, studies indicated that this quenching 

was reversible, with up to 90 % of fluorescence retrieved, within two minutes, upon the 

addition of a metal chelator such as ethylenediaminetetraacetic acid (EDTA). Such 

studies indicate that the tetrameric DsRed contains a copper-binding site, which is not 

present in other fluorescent proteins, for example GFP.   

Further studies by Eli and Chakrabartty [14] explored the metal binding affinity of 

red shifted DsRed mutants.  One mutant, tetrameric Rmu13 (F91L, V105A) demonstrated 

copper sensitivity with a binding constant of ~11 µM for this mutant and ~15 µM for 

DsRed.  Eli et al. demonstrated that their copper sensor, utilizing the Rmu13 mutant, 

could reliably detect Cu2+ at concentrations between 0.1 and 100 µM, in vitro or in vivo.  

Initial work in our laboratory has demonstrated the selective copper-binding affinity and 

fluorescence quenching of DsRed-Monomer.  Rahimi et al. reported that the fluorescence 

of DsRed-Monomer was quenched by greater than 90 % in the presence of 500 µM of 

copper ions (Figure 4).  This work lead to a detection limit for Cu2+ of 0.8 µM [16], 

indicating that DsRed-Monomer can be used in the development of a copper sensor.  This 

study also demonstrated that the metal affinity seen for DsRed-Monomer was selective 

for copper, compared to a number of other mono- and divalent metals, namely calcium, 

magnesium, iron, cobalt, nickel, zinc, and barium [17].  
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Figure 4:  Fluorescence quenching of DsRed-Monomer in the presence of increasing 
concentrations of Cu2+ [17] 
 

Further, this copper-binding affinity has also been utilized by Rahimi et al. [16] as 

an efficient purification strategy for DsRed-Monomer.  The crude DsRed-Monomer was 

bound to an immobilized copper charged column and eluted with an imidazole-

containing buffer (Figure 5).  Purification of DsRed-Monomer, using this strategy, 

demonstrated greater than 95 % purity of recovered protein, and 95 % recovery of total 

protein [16].  Subsequent work, presented in this thesis, has been done to determine the 

mechanism of this quenching and to utilize this, and other properties of DsRed-Monomer, 

for sensing and detection applications. 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Figure 5:  SDS-PAGE gel of copper-affinity purified DsRed-Monomer, crude DsRed-
Monomer (lane 1), pure DsRed-Monomer (lane 2), molecular weight protein marker 
(lane 3) [16] 
 

 

1.5 Copper-Binding Proteins 

 

 Copper is an essential trace element in living organisms.  It plays a critical role in 

the activation of a variety of proteins with functions including electron transfer, oxygen 

transport in the body and oxygen insertion into a substrate [18].  However, in addition to 

these necessary functions, free copper ions within the cellular environment can be toxic, 

even at µM concentrations.  As reported by us and other groups DsRed proteins show a 

unique and selective copper-binding affinity, however in addition to this fluorescent 

protein a number of naturally occurring copper-binding proteins have also been identified 

which control these levels of free copper within the cell, restricting their movement.  

Such proteins are frequently employed within the cellular environment to bind free 

copper ions, guiding them to their appropriate locations in the cell.  Copper-binding 

proteins can be classified by a number of characteristics, including spectral properties, 

function, binding site, and binding affinity [19, 20].  These proteins demonstrate a wide 
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range of copper dissociation constants from 10-6 – 10-17 M.  One such group of copper-

binding proteins, the copper chaperones, is divided into three types. 

 Type 1 “blue” copper proteins have a visible absorption band near 600 nm.  These 

copper enzymes generally contain a four-coordinated, distorted tetrahedral, copper ion.  

However a five-coordinated copper ion has also been seen for a limited group of these 

proteins.  The structural motif at the active site consists of a (His)2CysX sequence, where 

X is normally a Met residue (Figure 6).  Type 2 “non-blue” copper proteins, have a 

visible absorption band between 350 and 420 nm.  The copper in this type of proteins is 

usually found in a square planar or tetragonal coordination.  These proteins form their 

copper-binding site through a number of motifs including (Cys)4, (His)4H2O, 

(His)2(Tyr)2(H2O), or (His)2(Tyr)2 with the copper coordinated to N, O, or S of these 

residues (Figure 7).  Type 3 “binuclear” copper proteins have a strong absorption band 

near 330 nm.  These are characterized by an antiferromagnetically-coupled pair of copper 

ions (Figure 8), each coordinated by three His residues.  

  
 

 

 

  

 

 

 

 

 

 

 

 

 
Figure 6:  Copper-binding site of azurin, a type 1 copper chaperone [21] 
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Figure 7:  Copper-binding site of HAH1 (Atx1), a type 2 copper chaperone [19] 
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Figure 8:  Copper-binding site of hemocyanin, a type 3 copper chaperone, demonstrating 
the binuclear copper complex [19] 
 
 In addition to the binding motifs described above, more complex cooper-binding 

sites have also been identified for copper chaperones.  These copper-binding sites, with di 

and trinuclear copper centers, display properties indicative of both type 2 and 3 copper 

chaperones.  For example trinuclear copper centers, such as those seen for blue oxidases, 

which demonstrate type 2 and type 3 properties as well as dinuclear copper centers seen 

for cytomchrome c oxidase have been described.  Copper-binding proteins have been 

shown to utilize both single and combinations of multiple copper-binding motifs within a 

single protein.  The proteins and binding motifs described above belong to the group 

commonly referred to as copper chaperones, a second group of copper-binding proteins, 

so called prion proteins, also demonstrate copper-binding affinity within the cellular 

environment. These prion proteins form complexes with the copper ions in a 4 

coordinated structure, similar to that seen for the type 1 blue copper proteins, from a 

HGGGQ peptide sequence.  A variety of dissociation constants have been reported for 

prion proteins from 0.03 nM – 100 nM [22-24].  A further copper-binding site, frequently 

referred to as the copper-binding peptide, demonstrates one of the lowest dissociation 
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constant of these copper-binding proteins, 1 x 10-17 M.  This simple tripeptide acts as a 

quadridentate ligand to create complexes with copper through an amino group, two 

deprotonated amide groups and an imidazole pyridine nitrogen (Figure 9) [25].  The 

initial work in this thesis has focused on defining the mechanism of the unique 

fluorescence quenching seen for DsRed-Monomer in the presence of copper ions.  In 

addition to defining this mechanism, further work aimed at identifying the binding site of 

this protein has also been explored. 

 

 

 

  

 

 

 

 

 

 

 

Figure 9:  Copper-binding site of the copper-binding peptide, GlyGlyHis    
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CHAPTER 2.  MECHANISM OF COPPER INDUCED FLUORESCENCE 

QUENCHING OF RED FLUORESCENCE PROTEIN, DSRED-MONOMER 

 

 

2.1 Introduction 

 

As discussed in the previous chapter, a number of fluorescent proteins have 

recently been isolated and explored.  Isolation and characterization of these proteins has 

expanded the possible applications of fluorescent proteins into multi-color labeling, 

resonance energy transfer, and intracellular tracking studies [26-29].  To date, red 

fluorescent proteins have been mainly employed as genetically encoded fluorescent 

probes for cellular applications.  However, other fluorescent proteins have also been 

employed in novel applications, for example GFP was employed as an intracellular 

calcium detector, as a chloride indicator, as a pH indicator and in ligand monitoring using 

receptor inserted GFPs [30-35].  Only recently we, and others, have found that red 

fluorescent proteins, namely DsRed and its variants, bind copper ions selectively in the 

presence of other divalent cations resulting in a quenching of their native fluorescence 

[14-17].  By relating fluorescence quenching of DsRed with copper concentration, in 

vitro biosensing systems for copper determination have been developed [15, 17].  

Moreover, this ability to bind copper ions can now be utilized in the intracellular 

detection of copper, at µM levels based on the fluorescence of DsRed.   

Copper is an important cofactor of several enzymes and plays a significant role in 

several cellular pathways and disease pathogenesis [36-38].  Therefore, the availability of 

genetically encodable probes such as DsRed, which can be targeted to specific organelles 

for detection of copper, would prove highly beneficial.  Furthermore, this copper-binding 

can serve as a unique tool for affinity purification, as well as for cooper sensing.  In that
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regard, it is essential to understand the binding of copper to DsRed, its mechanism of 

quenching, and the spectral changes in DsRed proteins in the presence of copper.   

In the work presented in this chapter, we have characterized the mechanism of 

fluorescence quenching of DsRed-Monomer in the presence of copper, using 

spectroscopic tools.  We have also performed studies to identify possible amino acid 

residues involved in this binding.  Sequence comparison with known copper-binding 

proteins and computational studies have been used to explore possible copper-binding 

motifs within the protein.  DsRed-Monomer was selected for this study because our 

laboratory has, previously, developed biosensors for copper detection utilizing this 

DsRed variant [39].  In addition, other copper-binding DsRed proteins, specifically, 

DsRed2, native DsRed, and Rmu13 share > 80 % identity with DsRed-Monomer, 

suggesting that DsRed-Monomer may serve as a representative member of the copper-

binding family of DsRed proteins.  

 

 

2.2 Materials and Methods 

 

2.2.1 Protein Expression and Purification 

 

 Expression and purification of DsRed-Monomer was performed using previously 

established protocols.  Briefly, the plasmid DsRed-Monomer was obtained from 

Clontech.  This plasmid was transformed into E. coli, JM107 and expressed in LB broth.  

LB media containing 100 µg mL-1 ampicillin was prepared.  A 5 mL sample of LB was 

inoculated with the E. coli containing the plasmid pSKD1 and incubated overnight in a 

shaker at 37 °C.  The culture was transferred to a 200 mL sample of LB and grown to an 

OD420 of 0.5 and induced with isopropyl-β-D-thiogalactoside (IPTG, 0.5 mM final 

concentration), and grown for a further 5 h, with shaking, 250 r.p.m., at 37 °C and 

collected by centrifugation, 4000 r.p.m., for 30 min at 4 °C.  The pellet was dissolved in 

the PBS-binding buffer (100 mM Na2PO3, 50 mM NaCl, pH 7.0) and sonicated for 5 min 

to lyse the cells.   
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The protein was purified using a Ni Sepharose high-performance affinity column, 

charged with copper [16].  A volume of 1.5 mL of the Ni Sepharose high-performance 

beads was centrifuged and the storage ethanol poured off.  The beads were resuspended 

in sterile water and applied to the column.  A volume of 2 mL of the stripping buffer 

(0.02 M sodium phosphate, 0.5 M NaCl, 0.05 M EDTA, pH 7.4) was applied to the 

column.  The column was rotated overnight to fully remove the Ni from the beads.  The 

column was washed with multiple column volumes of sterile water, and 1.5 mL copper 

sulfate (0.1 M) was applied.  The column was again rotated, for at least 2 h to assure full 

binding of the Cu2+ ions to the beads.  The column was washed with up to 10 column 

volumes of PBS-binding buffer to remove all unbound copper.  A volume of 1.5 mL 

aliquots of the crude protein was applied to the column, with the column being rotated for 

2 h between additions.  The column was again washed with up to 10 column volumes of 

PBS-binding buffer to remove anything not bound to the copper immobilized column.  

Wash buffers (0.05 M sodium phosphate, 0.3 M NaCl, ph 8.0, containing 0.001 to 0.01 M 

imidazole) were used to wash the column.  The protein was eluted by the final wash step, 

with the buffer containing 0.01 M imidazole (0.05 sodium phosphate, 0.3 M NaCl, pH 

8.0).  The purified protein was collected and dialyzed to remove the imidazole, using 

PBS buffer (0.05 M sodium phosphate, 0.05 M NaCl, pH 8.0).   Protein purity was 

determined via SDS-PAGE gel electrophoresis and concentration by BioRad assay. 

 

2.2.2 Determination of Dissociation Constant for Cu2+ 

 

 The purified protein was dialyzed against 20 mM MOPS buffer, pH 7.4, to 

remove the imidazole.  The imidazole-free protein solution was passed through a Chelex-

100 column to remove any trace levels of Cu2+.   For the binding study 100 µL of 

different concentrations of a copper solution were added to 100 µL of 1 µM of DsRed-

Monomer.  The fluorescence readings were obtained and buffer corrected.  The 

fluorescence intensity ratio, [F/F0], was plotted against the copper concentration to obtain 

the copper dissociation constant for DsRed-Monomer.  This fluorescence was measured 
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(Varian Cary Eclipse Fluorescence Reader, Palo Alto, CA) by exciting the sample at 556 

nm and reading the emission at 597 nm. 

 

2.2.3 Stern-Volmer Plots 

 

 A volume of 100 µL of different concentrations of Cu2+ solution was added to 

100 µL of 1 µM protein in 20 mM MOPS, pH 7.4, in an individual microtiter well.  After 

the addition of the copper, the sample was incubated at a number of different 

temperatures (16, 25 and 30 °C).  Fluorescence readings were recorded for each 

temperature at each concentration, as described above.  Again the results were buffer 

corrected and plotted. 

 

2.2.4 Spectroscopic Studies 

 

 The CD spectrum was obtained for the DsRed-Monomer.  A volume of 250 µL of 

3.3 µM protein in 20 mM MOPS, pH 7.4, was placed in a 0.2 cm cell and the CD 

absorption spectra obtained, at room temperature (Jasco J-720 Spectropolarimeter, 

Tokyo, Japan).  A volume of 10 µL of copper was added to the protein to a final 

concentration of 0.5 mM and the spectra recorded.  The collected spectra were again 

buffer corrected. 

 The UV-visible spectra were also obtained for DsRed-Monomer.  A volume of 1 

mL of 3.4 µM in 10 mM MOPS buffer, pH 7.4, was placed in a cuvette and the 

absorption spectra of the protein recorded (Perkin-Elmer UV/vis/NIR LAMBDA), at 

room temperature.  To this sample 10 µL of copper solution was added, to a final 

concentration of 0.5 mM, and the absorbance spectra recorded.  The spectra were once 

again buffer corrected. 
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2.2.5 pH Study 

 

 MOPS buffers ranging from pH 5.5 to 10.5 were prepared.  A protein solution of 

3 µM DsRed-Monomer in 10 mM MOPS buffer, pH 7.4, was mixed with the different 

pH buffers to obtain a final concentration of 1 µM at the desired pH.  Fluorescence 

intensity was recorded for each of these samples, with and without copper (300 µM). 

 

2.2.6 Metal-binding Prediction Studies  

 

 The amino acid sequence of DsRed-Monomer was examined via MetalMine [40], 

and Metsite [41].  MetalMine compares the target protein sequence with a compiled list 

of metal binding proteins and enzymes.  Metsite looks for metal binding sites within the 

sequence computationally.  MetSite uses a set of neural network classifiers trained to 

identify potential cation ion sites.  MetSite uses relative residue position, to identify 

possible metal binding sites, and therefore does not require exact side-chain atom 

placement.  This allows the results to be generated for predicted structures. 

 

 

2.3 Results and Discussion 

 

 Recent studies from a number of laboratories have found that DsRed and its 

variants bind Cu2+ selectively, resulting in quenching of the natural fluorescence emission 

at its characteristic wavelength [14, 15, 17].  Copper ion-binding of DsRed has shown 

greater than 90 % fluorescence quenching reversibility with the addition of a metal ion 

chelator, such as EDTA [15].  This selectivity and reversibility increases the usability of 

these proteins in a variety of sensing applications.  DsRed proteins can also serve as 

genetically encodable copper ion-binding fluorescent probes, which can be targeted to a 

specific subcellular compartment.  Such work would open up new avenues of research.  

This copper-binding property of DsRed-Monomer has also been utilized for affinity 

purification of the protein, using metal chelating columns [16].  The copper-binding 
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selectivity observed for DsRed is unique since GFP, and a variety of other fluorescent 

proteins, do not show any inherent metal-binding properties. 

   Fluorescence quenching seen for DsRed proteins in the presence of copper has 

been shown to have no effect on the emission wavelength maximum.  One variant of 

DsRed, DsRed2, has been examined as a highly selective and sensitive copper biosensor 

with a reported dissociation constant of 0.54 ± 0.09 µM [15].  Copper ion concentrations 

of 2.5 µM have shown greater than 90 % quenching with this protein.  Further studies 

utilizing mutants of DsRed showed moderate quenching with copper concentrations of 10 

µM [14].  Dissociation constants for these mutants, drFP583 (native DsRed) and Rmu13, 

were reported as 14.8 ± 1.7 and 10.9 ± 1.7 µM, respectively.  These constants vary 

greatly from those reported for DsRed2 by Eli et al.  Studies performed in our laboratory 

have demonstrated that DsRed-Monomer binds Cu2+ selectively.  Additionally, DsRed-

Monomer showed greater than 50 % quenching at concentrations of 3 µM copper [16].  

Using DsRed-Monomer, a detection limit for copper was found, 0.8 µM [17].  All of the 

studies reported so far have focused on the use of DsRed in the construction of copper 

biosensors. However studies were lacking, which characterize the effect of copper-

binding on DsRed-Monomer, in terms of the changes in spectral properties or the 

mechanism of this observed quenching.  To investigate these properties we have 

performed a series of spectroscopic studies using DsRed-Monomer in the presence of 

Cu2+. 

 Initially the copper dissociation constant for DsRed-Monomer was calculated, as 

a measure of the affinity for binding Cu2+.  This was calculated using the equation below 

[42]. 

 

€ 

ΔF
ΔFmax

 = 

€ 

Kd + [P]+ [Cu]± (Kd + [P]+ [Cu])2 − (4[P][Cu])
2[P]

 

 
where ΔF is the change in the measured fluorescence, ΔFMAX the maximum fluorescence 

change, [P] the total protein concentration, Kd the dissociation constant of the copper-

binding site, and [Cu] the total concentration of copper.  The curve of ΔF/ΔFmax against 
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copper concentration was fitted using this equation (Figure 10).  A detailed derivation of 

this equation is presented in Appendix B.  From this data a dissociation constant of 1.7 ± 

0.3 µM was calculated for DsRed-Monomer.  This dissociation constant shows that 

DsRed-Monomer has a similar affinity for copper as that seen for DsRed2, and higher 

affinity than other DsRed variants, specifically, drFP583 and Rmu13.  Other naturally 

available copper-binding proteins and peptides have reported Kd values ranging from 10-6 

to 10-17 M [20, 23].  In comparison DsRed-Monomer, and other DsRed variants, appear to 

be relatively weak copper-binding proteins.  However, the inherent fluorescence of these 

proteins and their high selectivity for copper ions can be an advantage over other copper-

binding proteins for sensing applications. 

 

 
Figure 10:  Plot of ΔF/ΔFmax against copper concentration, where ΔF is the change in 
measured fluorescence and ΔF is the maximum fluorescence change   
 
  Fluorescence quenching was observed for DsRed-Monomer in the presence of 

Cu2+.  To investigate whether the mechanism of this quenching is a dynamic or static 

process we generated a Stern-Volmer plot [43] for DsRed-Monomer.  This plot was 

generated by measuring the fluorescence of the protein upon the addition of copper at a 
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variety of points of temperatures (Figure 11).  This plot showed a linear relationship, 

indicating that only one type of quenching was occurring.  From the slope of this plot the 

Stern-Volmer constant (Ksv) was calculated, as displayed in Table 3 [43].  This constant 

showed an increase, with a decrease in temperature, indicating that a static quenching 

interaction is occurring between the protein and the copper ions.  In static quenching the 

quencher forms a non-fluorescent ground-state complex with the fluorophore [43].  To 

further define the quenching seen between DsRed proteins and Cu2+, the Ksv value, 

obtained from the Stern-Volmer plot was used to calculate the quenching rate constant, 

Kq, by the following equation 

 
Kq = Ksv / τ0 

 
where τ0 represents the lifetime of the fluorophore of the protein, reported as 3.3 ns for 

DsRed [44].  The Kq value obtained for DsRed-Monomer from this study, 1012 to 1013   

M-1s-1, is 100-fold larger than the maximum scatter collision quenching constant for 

quenchers (2.0 x 1010 M-1s-1) [45].  Therefore the Kq obtained for DsRed-Monomer 

indicates that the observed quenching of this protein in the presence of copper must be 

due to the formation of a complex, as observed in static quenching. 
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Figure 11:  Stern-Volmer plots generated by adding Cu2+ to DsRed-Monomer followed 
by incubation at (square) 16 °C, (diamond) 25 °C, and (triangle) 30 °C 
 
Table 3:  Stern-Volmer constants (Ksv) determined from the slope of the Stern-Volmer 
plot and quenching rate constants determined using the equation Kq = Ksv/τ0 where Ksv is 
the Stern-Volmer constant and τ0 is the lifetime of the fluorophore  

T (°C)  Ksv (M‐1)  Kq (M‐1 s‐1)  

16  48,800  1.47 x 10‐13 

25  41,200  1.24 x 10‐13 

30  30,100  9.12 x 10‐12 

 
  To further validate that the mechanism of this fluorescence quenching in the 

presence of copper is static, we performed UV absorption scans of DsRed-Monomer, in 

the presence and absence of Cu2+.  Dynamic quenching affects only the excited states of 

the fluorophore whereas a static quenching process affects its’ ground state [43].  

Therefore the static quenching process leads to a change in the absorption spectra.  The 

absorption spectra obtained for DsRed-Monomer in the presence of copper, showed that 
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the absorbance intensity was affected by the addition of copper, compared to the same 

protein concentration in the absence of copper (Figure 12).  With a single equivalence of 

bound copper, the absorbance and the extinction coefficient of the protein decreased at its 

characteristic wavelength of 556 nm (Figure 12, Table 4).  The overall shape and pattern 

of peaks was retained for the protein in the presence of copper compared to the peaks 

obtained for the protein alone.  A static quenching process typically yields changes in the 

absorption profile [43, 45], however, this was not seen for DsRed-Monomer.  The 

observed anomalous behavior seen for DsRed-Monomer can be explained as following.  

It is known, that in the case of proteins, only fluorophores located at the surface can be 

dynamically quenched whereas a static process quenches internal fluorophores.  This 

dynamic process is excluded for internal fluorophores due to the higher hydrophobicity in 

the protein’s interior.  In the case of DsRed, the chromophore is well shielded inside a β-

barrel and hence is not accessible for dynamic or collisional quenching.  Taking this 

factor into consideration and the Stern-Volmer constants obtained in our study, we 

hypothesize that the fluorescence quenching of DsRed-Monomer in the presence of 

copper follows a sphere of action static quenching model.  This indicates that the 

quencher forms a contact at a defined site on the protein, adjacent to the fluorophore, 

leading to the formation of a non-fluorescent species.  This is further supported by the 

observation that the absorption spectral profile of this protein does not change in the 

presence of copper, only the intensities of the peaks were seen to change, as expected for 

a sphere of action static mechanism [43, 45]. In a static quenching model the quencher 

forms a non-fluorescent ground-state complex with the fluorophore.  However, in a 

sphere of action static quenching model, the quencher forms a complex on a specific site 

on the surface of the protein, adjacent to the fluorophore.  This close proximity, of the 

quencher to the fluorophore, at the moment of excitation leads to the formation of the 

non-fluorescent species.  The radii of the solvent shells of both the fluorophore and the 

quencher define the maximum distance between the fluorophore and the quencher for this 

type of fluorescence quenching to occur.  Based upon the interactions seen for the four 

chromophores within the tetrameric DsRed structure [6], we believe that this maximum 

distance would be within ~30 angstroms of the chromophore for such a quenching effect 
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to be seen.  Since we hypothesize that in the case of DsRed proteins, copper ions form a 

complex with specific amino acid residues on the protein, further work was done to 

identify this binding site.  This complex formation can lead to the formation of a non-

fluorescent species in three ways, (i) by affecting the hydrogen-bonding network of the 

chromophore, (ii) by bringing copper close to the chromophore such that it contacts the 

excited-state of the chromophore, (iii) by causing conformational/structural changes in 

the protein.  

 

 
Figure 12:  UV-Visible absorption spectra of DsRed-Monomer in the presence () and 
absence (---) of Cu2+ 
 
Table 4:  UV-Visible and CD spectral characteristics of DsRed-Monomer in the presence 
and absence of Cu2+ 
DsRed‐
Monomer 

ε  
(M‐1cm‐1) 

α‐helix 
(%)  

β‐sheet 
(%) 

Random 
coil (%) 

With Copper  62,700  5  47  48 

Without Copper  57,600  5   47  48 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We investigated whether the binding of copper to DsRed-Monomer caused any 

structural or conformational changes within the protein, leading to quenching of the 

fluorescence.  To achieve this we monitored the far-UV CD spectra of the protein with 

and without copper.  The spectra and the percentages of the secondary structure (Table 4) 

were found to be identical both in the presence and absence of copper.  This result 

suggests that the observed quenching in DsRed-Monomer is not due to any structural or 

conformational changes in the protein upon copper-binding. 

 From the Stern-Volmer study and the CD spectroscopy results we can deduce that 

copper forms a complex with specific amino acid residues of DsRed-Monomer, while the 

structural and conformational integrity is maintained.  To identify possible amino acid 

residues involved in this copper-binding we studied the effect of pH on this copper-

binding, by monitoring any change in the fluorescence intensity of DsRed-Monomer with 

a change in pH, both in the presence and absence of copper.  In the absence of copper the 

protein showed no pH dependence across a range of pH from 5 to 12, showing no change 

in fluorescence intensity.  However in the presence of copper this plot showed a dramatic 

shift in fluorescence intensity from pH 6 to 8.5.  The pKa value of 7.3 calculated for 

DsRed-Monomer was obtained from this plot (Figure 13).  This pKa value suggests that 

either Cys or His residues may be involved in the copper-binding of DsRed-Monomer. 
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Figure 13:  The plot represents the effect of pH change on the fluorescence intensity of 
DsRed-Monomer in the presence (squares) and absence (triangles) of Cu2+  
 
  To further evaluate the identity and position of possible metal binding motifs 

within the structure and sequence of DsRed-Monomer, two computational programs were 

utilized.  MetalMine and Metsite were used to help locate metal-binding sites within the 

DsRed-Monomer.  Sequence identity comparison with known metal-binding proteins is a 

common method of locating metal-binding sites within a protein or enzyme.  MetalMine 

evaluated the sequence of DsRed-Monomer compared to known copper-binding motifs, 

in an attempt to identify sequence homology.  Furthermore, the x-ray crystal structure of 

a protein can be evaluated computationally to determine the possibility of metal-biding 

sites within a sequence.  For DsRed-Monomer we utilized the Metsite website for such a 

computational study.  The MetalMine sequence comparison did not indicate the presence 

of any known copper-binding motifs, within the sequence of DsRed-Monomer, 

comparable to known copper-binding proteins and enzymes.  This suggests that the 

copper-binding site present in DsRed-Monomer is not one of the traditionally accepted 

binding motifs discussed in Chapter 1.  This result is not surprising since the dissociation 

constant for DsRed-Monomer, 1.7 µM, is relatively low compared to those reported for 

traditional copper-binding proteins, 10-6 – 10-17 M.  The Metsite predictive program, 
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however, did identify a number of possible metal binding sites with varying degrees of 

metal affinity.  By comparing the results of the Metsite predictions with the X-ray crystal 

structure of DsRed-Monomer, two possible binding sites were identified that include two 

His residues, His25 and His216 (Figure 14).  Both of these His residues are external to 

the beta barrel of DsRed-Monomer and have neighboring Gly residues, which could also 

assist in copper-binding.  His25 has one set of neighboring Gly residues (Gly126-Gly20) 

which could assist in copper-binding.  The His216 residues, on the opposite side of the 

beta barrel of DsRed-Monomer, has another set of Gly residues (Gly40-Gly35) in 

neighboring positions.  Either of these sites may yield a GlyGlyHis copper-binding 

peptide, which, as described in the previous chapter, demonstrates one of the strongest 

copper-binding affinities, 10-17 M.  However, the X-ray crystal structure suggests that 

these Gly residues will be internal to the beta barrel and not available for binding.  These 

internally arranged Gly residues might still help the bound copper ions to come into 

contact with the chromophore as described in our quenching model, while their less than 

ideal positioning may explain the low dissociation constant seen for DsRed-Monomer.  

Alternatively, the low binding constant observed for DsRed-Monomer, compared to other 

known copper-binding proteins, may suggest that the His residues bind these copper ions 

alone or with only minor assistance from the neighboring residues.  
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Figure 14:  The possible copper-binding sites of DsRed-Monomer using the reported x-
ray crystal structure [13] (A) His216 (green), Gly35 (red), Gly40 (peach), (B) His25 
(green), Gly20 (peach), Gly126 (plum) 
 

 

2.4 Conclusion 

 

 In summary, DsRed-Monomer has previously shown a unique selectivity for 

copper-binding.  This copper-binding has been used in the development of affinity-based 

purification of DsRed and copper sensing applications [15, 16].  The work presented here 

has focused on biochemical; spectroscopic and computational studies to determine the 

mechanism of this observed fluorescence quenching in the presence of copper.  The 

binding of copper to DsRed-Monomer appears to have no effect on the overall structure 

of this protein, as seen by far-UV CD spectral analysis.  Deviations in the UV-visible 

absorbance values were seen in the presence of copper, however no shift in the 

absorbance peaks was observed in the presence of copper.  Both the UV-visible and the 

Stern-Volmer constants suggest that the fluorescence quenching seen for DsRed-

Monomer follows a sphere of action static quenching model, indicating the formation of a 
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complex between specific residues of the protein and copper ions.  This binding brings 

the copper ion into close proximity to the excited state of the chromophore, creating a 

non-fluorescent species.  Based on the pH study, either cysteine or histidine residues 

were identified to be involved in binding copper ions in DsRed-Monomer.  Furthermore 

the Metsite results, when compared to the X-ray crystal structure of DsRed-Monomer, 

indicated the possible involvement of His25 or His216 in the copper-binding, possibly 

creating a GlyGlyHis binding site with neighboring Gly residues.  The results presented 

here provide the groundwork for future investigations in identifying the copper-binding 

site in DsRed-Monomer.  In that regard, site-directed mutagenesis, of His25 and His216, 

is envisioned to further evaluate their role in copper-binding.    
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CHAPTER 3.  DUAL FUNCTION LABELING OF BIOMOLECULES BASED ON 

DSRED-MONOMER 

 

 

3.1 Introduction 

 

 Genetically encoded tags are powerful tools for protein research.  A variety of 

tags have been developed:  fluorescent probes for imaging and visualization, affinity tags 

for isolation and purification and epitope tags for immunological detections.  The ability 

to purify and visualize a protein of interest is of great importance to proteomics and 

biomolecular research [46-48].  Currently a number of affinity-based methods of protein 

purification are available, with either chemical or biological tags [49-51].  For efficient 

purification, either peptides or proteins are used as affinity tags [52-54].  However, a 

single affinity tag is now seldom used because of its limitations on purification 

effectiveness, but is rather used in tandem to achieve better results [55-57].  Additionally, 

for protein detection or localization, fluorescent probes such as fluorescent proteins, 

quantum dots, or fluorophores are fused to the protein as reporter tags [58-63].  Such 

systems require two separate tags to be fused to the target to accomplish protein 

purification and detection.  This double tagging limits the flexibility in terms of available 

termini for protein fusions, making the ability to use a single tag for both purposes 

desirable.  To address this issue we have designed a DsRed-Monomer fusion tag, which 

can be utilized to both purify a protein of interest and in fluorescence-based detection 

studies.   

Prior to this work only a few reports had been published demonstrating methods 

that offer dual functionality of tags.  Paramban et al. demonstrated the use of GFP for 

both localization and purification of a fused target protein.  In order to utilize GFP as a 

purification tag this group engineered a 6-His tag into the loop region of GFP, between



  37 

Gln172 and Asp173 of the GFP [64].  The insertion of this histidine tag, however, lead to 

a 40 % loss of fluorescence but the remaining signal was sufficient for the detection of 

the fused target.  This work was expanded by Kobayashi et al. [65] who engineered a 

“multifunctional GFP” with an 8-His tag and a streptavidin-binding peptide, for affinity 

purification, and a c-Myc tag for immunological detection.  For this work the tags were 

engineered to be located between Asp173 and Gly174.  Similarly, dye and antidye-

antibody combinations have been used as dual function tags [66]. In a recent report, 

protein labeling was performed using the phosphopantetheinyltransferase (PPTase) to 

incorporate a stilbene reporter into a carrier protein fused to the target protein [67]. When 

the stilbene reporter binds to the anti-stillbene antibody, the fluorescence of the stilbene 

reporter group is turned on.  The stilbene labeled fusion protein can then be purified using 

the antibody bound column.  Such tags, however, present problems including high cost 

and low stability since they rely on immobilized antibodies. 

 The work presented in this chapter describes the use of site-specific tagging of a 

protein with DsRed-Monomer, for both purification and detection purposes.  In this work, 

we have demonstrated that DsRed-Monomer can be employed, based upon its inherent 

fluorescence and copper-binding properties, as an efficient purification and visualization 

tag.  As discussed in the preceding chapters, our group has reported on the natural, and 

selective, copper-binding affinity of DsRed-Monomer [17, 39].  We have utilized this 

copper-binding affinity to create an efficient, single-step, purification system for DsRed-

Monomer [16].  Here we have used DsRed-Monomer as an affinity tag to purify a fusion 

partner.  Furthermore, we show that this tag can also act as a reporter, utilizing DsRed-

Monomer’s natural fluorescence to perform bioassays.  Using such tagging systems 

offers a number of advantages including the flexibility to attach the target protein to 

either termini and to perform site-specific genetic encoding, and to the achievement of 

efficient detection due to DsRed-Monomers excitation and emission in the red region of 

the spectrum.  Protein-based affinity tags have also been shown to aid in the folding of 

the fusion partner, enhancing solubility, in comparison with peptide-based tags [52].  

Finally the use of copper-immobilized columns for purification offers an inexpensive, 
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stable and reusable platform, compared to the antibody-immobilized columns utilized by 

other systems. 

 To demonstrate the ability of DsRed-Monomer to function as a dual-function tag 

and to show its flexibility in genetic fusions of proteins, we constructed a fusion protein 

of DsRed-Monomer.  As a proof-of-concept study, a fusion protein between DsRed-

Monomer and a model protein calmodulin (CaM) was constructed through the N-

terminus of DsRed-Monomer.  CaM is a Ca2+-binding protein that is involved in the 

regulation of several cellular responses through its interaction with other proteins [68, 

69].  In the absence of Ca2+, the CaM has a collapsed conformation [70, 71].  In the 

presence of Ca2+, CaM changes its conformation from a collapsed to a “dumbbell” 

configuration exposing its hydrophobic region that acts as a docking area for target 

peptides, proteins, and the tricyclic phenothiazene class of compounds [70, 72-75].  This 

CaM-DsRed-Monomer fusion protein was expressed in E. coli and purified using a 

copper-immobilized column.  It was further employed as a fluorescent tag to evaluate the 

binding of a known CaM ligand, chlorpromazine, to this fusion protein [74, 75].  

Furthermore, we demonstrated that this DsRed-Monomer tag could be separated from its 

fusion partner, CaM, by simply inserting a protease cleavage between the DsRed-

Monomer and CaM.   

 

 

3.2 Materials and Methods 

 

3.2.1 Construction of Calmodulin-DsRed-Monomer Fusions 

 

 The PCR primers were designed to introduce the sequences for the restriction 

enzymes, SphI and XmaI on the CaM gene (Table 5).  The plasmid pVUC-1 was used as 

a template.  The CaM gene obtained after PCR and the pDsRed-Monomer were digested 

with SphI and XmaI followed by ligation of the CaM gene into pDsRed-Monomer 

plasmid to obtain pSKD104 (Figure 15).  The plasmid pSKD104 was transformed into E. 
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coli ER2566 strain.  The colonies were picked and miniprep was performed.  DNA 

sequencing was utilized to determine the sequence of the fusion protein.   

 

 
Figure 15:  CaM-DsRed-Monomer plasmid map, ~3.8 kb 
 
Table 5:  PCR primers used to create Calmodulin-DsRed-Monomer fusion   
Primer  Sequence 

CaMSphI  ATATATGCATGCGATGGCTGATCAGCTGACTGACGAGCAG 

CaMXmaI‐Rev  ATATATCCCGGGCCTTAGCCATCATAACCTGAAACGAACTC 

CaMXmaITEV
‐Rev 

CCCGGGCCCCCTGGAAGTACAGGTTTTCCTTAGCCATCATAACC
TGAACG 

 
  To construct the fusion gene, incorporating the TEV protease cleavage site 

between the calmodulin and DsRed-Monomer genes, the same forward primers, 
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restriction enzymes, and molecular biology techniques were used as above for the CaM-

DsRed-Monomer fusion.  However, a new reverse primer was designed (Table 5) which 

incorporated the TEV cleavage site, Glu-Asn-Leu-Tyr-Phe-Gln-Gly, before the XmaI 

restriction site.  The DNA coding for TEV cleavage site is in italics and the DNA coding 

for XmaI is underlined.  The PCR product was ligated into pDsRed-Monomer plasmid to 

obtain the plasmid pSKD104-TEV.  This plasmid was transformed into E. coli JM107 

strain.       

 

3.2.2 Expression and Purification of Calmodulin-DsRed-Monomer Fusions 

 

 The fusion proteins of DsRed-Monomer were expressed in JM107 E. coli as 

previously described in Chapter 2 [76].  Briefly, 5 mL cultures of LB broth (containing 

100 µg/mL ampicillin) with the prepared plasmids pSKD104 and pSKD104-TEV in E. 

coli were grown overnight.  These cultures were transferred to 200 mL samples and 

grown to an OD420 of 0.5.  Protein expression was induced by the addition of IPTG (0.5 

mM), and grown overnight at 37 °C for CaM-DsRed-Monomer and at 30 °C for CaM-

TEV-DsRed-Monomer.  The cells were then collected by centrifugation at 4 °C, 4000 x 

g, for 15 min and sonicated using 20 s on 20 s off for 5 min.  The crude fusion proteins 

were collected by centrifugation at room temperature, 4000 x g for 30 min.  The crude 

fusion proteins were purified as described previously in Chapter 2 [77], utilizing a copper 

charged metal affinity column.  Purity and concentration were found by SDS-PAGE gel 

electrophoresis and Bradford assay, respectively.  

 

3.2.3 Protease Cleavage of Calmodulin from DsRed-Monomer 

 

 Promega ProTEV protease was used according to the manufacturer’s 

recommendations with the supplied buffer to cleave the CaM from the purified CaM-

TEV-DsRed-Monomer fusion protein.  The reaction was allowed to continue for 24 h at 

37 °C.  Complete cleavage of CaM was verified by SDS-PAGE gel electrophoresis, with 

Coomassie staining. 
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3.2.4 Spectral Analysis of Fusion Protein 

 

 The fluorescence spectrum of CaM-DsRed-Monomer was collected.  A volume of 

200 µL of 1.0 µM CaM-DsRed-Monomer was placed into the well of a microtiter plate 

and the excitation and emission scans of the protein recorded.  These scans were 

collected at room temperature using a Cary Eclipse fluorescence spectrophotometer. 

 

3.2.5 Calmodulin Ligand-Binding Study 

 

 Initially, a dilution study was prepared for the CaM-DsRed-Monomer.  Standard 

solutions of CaM-DsRed-Monomer fusion protein were prepared by serially diluting the 

stock solution of the protein in assay buffer 1 (30 mM Tris containing 10 mM calcium, 

pH 7.2). A volume of 100 µL of these solutions was mixed with 100 µL of assay buffer 

1, placed in a microtiter plate, and the fluorescence intensity measured using an 

excitation maximum wavelength of 556 nm and emission wavelength maximum of 597 

nm.  All fluorescence intensities were obtained in triplicate. 

 A Dose-Response curve was generated for the fusion protein in the presence of 

chlorpromazine from the tricyclic phenothiazene class of drugs.  Different concentrations 

of chlorpromazine were prepared by diluting in assay buffer 1.  A volume of 100 µL of 

1.0 µM CaM-DsRed-Monomer was mixed with 100 µL of chlorpromazine, at different 

concentrations.  The fluorescence intensity was monitored corresponding to DsRed-

Monomer excitation/emission wavelength.  A control study was performed using DsRed-

Monomer and chlorpromazine.  In another control study, solutions of varying 

concentrations of chlorpromazine (1 x 10-3 to 1 x 10-6 M) were excited at 556 nm and the 

fluorescence emission monitored at 597 nm. 
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3.3 Results and Discussion 

 

The results obtained from this study demonstrate the dual application of DsRed-

Monomer.  Reporter proteins, such as DsRed, are commonly fused to a target protein for 

fluorescence-based bioassay development.  However, if the same reporter protein can 

also function as an affinity purification tag, then this will reduce the assay development 

time and simplify the assay development process.  To demonstrate the versatility of 

DsRed-Monomer as a dual-function tag we have selected a calcium-binding, biologically 

relevant protein, calmodulin, as the fusion partner for this proof-of-concept study. 

The DNA encoding for the calmodulin gene was fused to the gene coding for 

DsRed-Monomer using genetic engineering tools to construct a genetic fusion.  Plasmid 

pSKD104 and pSKD104-TEV containing the fusion gene, and the fusion gene with a 

TEV protease cleavage site between the CaM and the DsRed-Monomer were transformed 

into E. coli cells and expressed.  The fusion proteins were then purified using a copper-

immobilized column, utilizing DsRed-Monomer as an affinity tag.  Briefly, the crude 

fusion proteins were bound, via DsRed-Monomer’s natural copper affinity, to 

immobilized copper ions on a metal affinity column.  The purified fusion protein 

fractions were collected after wash steps by passing through an elution buffer, containing 

imidazole.  The elution of the purified fusion proteins was monitored by the pink 

coloration of DsRed-Monomer, and by measuring the fluorescence of the collected 

fragments.  The purity of the fusion proteins was verified by SDS-PAGE gel 

electrophoresis using Coomassie staining (Figure 16).  The single band, at 41.5 kDa, 

demonstrates the efficiency of the CaM-DsRed-Monomer purification.  We also 

performed an expression study to compare the effect of fusion of calmodulin to DsRed-

Monomer on the expression yield.  For this study we expressed wild-type calmodulin and 

CaM-DsRed-Monomer proteins under identical conditions.  The conditions followed 

were the same as those used to express the fusion protein, described above.  SDS-PAGE 

gel electrophoresis was performed that showed similar expression yields for calmodulin 

and CaM-DsRed-Monomer proteins (Figure 17).  Additionally, the total protein yield for 

the two proteins was similar, as seen on this gel.  For both of these proteins identical 
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expression and sonication protocols and volumes were used for both expressions.  These 

observations indicate that the fusion of the target protein to DsRed-Monomer does not 

affect the expression of the target protein.  The concentration of the purified protein was 

determined using Bradford assay.  Percent recovery of the purified protein was estimated 

by passing a known quantity of purified fusion protein through the copper-immobilized 

column.  The purification procedure was followed and the concentration of the eluted 

protein determined.  The amount of eluted protein was compared to the amount of the 

protein initially loaded onto the column.  The recovered protein was calculated to be ~96 

% for the CaM-DsRed-Monomer fusion. 

 

 
Figure 16:  SDS-PAGE gel of CaM-DsRed-Monomer fusion protein molecular weight 
protein marker (lane 1), crude (lane 2), and purified (lane 3) CaM-DsRed-Monomer 
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Figure 17:  SDS-PAGE gel of expression yield comparison of CaM-DsRed-Monomer 
fusion protein and wild-type CaM, both expressed in E. coli 
 

To demonstrate that the target protein can be separated after purification, from 

DsRed-Monomer, we incorporated a TEV protease cleavage site between the CaM and 

the DsRed-Monomer genes.  The fusion protein was again purified on a copper 

immobilized column employing DsRed-Monomer as an affinity tag.  The DsRed-

Monomer was cleaved off easily and completely from the CaM-TEV recognition site-

DsRed-Monomer fusion protein within a 24 h time period.  This was verified, again, by 

SDS-PAGE gel electrophoresis (Figure 18), this gel shows two bands corresponding to 

calmodulin (~15 kDa) and DsRed-Monomer (~27 kDa).  Therefore, it is reasonable to 

conclude that although DsRed-Monomer is a large affinity tag it can be efficiently 

separated from the target protein if desired. 
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Figure 18:  SDS-PAGE gel of protease cleavage of DsRed-Monomer from CaM-TEV 
recognition site-DsRed-Monomer, molecular weight protein marker (lane 1), separated 
CaM and DsRed-Monomer proteins (lane 2) 
 

Although variants of DsRed have been employed as fusion tags in other studies, 

there have previously been no published reports on fusions of DsRed-Monomer.  

Therefore, the spectral characteristics of the fusion protein were evaluated to determine 

any effect of protein fusion on the DsRed-Monomer protein structure and fluorescence 

emission (Table 6).  Fluorescence excitation and emission scans were performed for the 

CaM-DsRed-Monomer fusion protein, with an observed excitation and emission 

wavelength maximum of 556 nm and 597 nm, respectively.  This observed fluorescence 

excitation and emission is indicative of DsRed-Monomer [16].  UV-visible absorbance 

spectrum of the fusion protein showed two peaks 480 nm and 556 nm, again, these are 

the representative peaks observed for DsRed-Monomer [77].  A comparison of the 

spectral properties of the fusion protein with DsRed-Monomer showed no effect of 

protein fusion on the DsRed-Monomer fluorescence activity.  These studies indicate that 

the fusion of a protein to DsRed-Monomer does not affect the fluorescence excitation or 

emission wavelength maxima of the protein. 
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Table 6:  Characteristics of DsRed-Monomer and the CaM fusion protein   
  λexcitation 

(nm)  
λemission 
(nm) 

Absorbance Max 
(nm) 

ε (M‐1cm‐1) 

DsRed‐Monomer  556  597  480, 556  35,000 

CaM‐DsRed‐
Monomer 

556  597  480, 556  59,000 

 
The purification and spectroscopic analysis of the CaM-DsRed-Monomer fusion 

protein showed that a protein of interest could be fused to the DsRed-Monomer without 

affecting its copper-binding affinity, fluorescence or absorbance.  This should prove 

useful in the visualization of fusion proteins, followed by their isolation.  Furthermore, 

we wanted to demonstrate that a fusion with DsRed-Monomer could also be utilized in 

the optical detection of the interactions of a fused target protein with its ligands.  In that 

respect, calmodulin is a well-studied protein with known ligands that are commercially 

available: therefore, we decided to study binding of CaM ligands to CaM-DsRed-

Monomer fusion protein.  This can be performed in two ways.  The CaM-DsRed-

Monomer fusion protein can be genetically encoded to study calmodulin interacting 

proteins or ligands in vivo, or the isolated fusion protein can be used to study calmodulin 

interacting molecules in vitro.  It has been reported by other groups that fusions between 

GFP and calmodulin can be utilized in screening ligands that bind calmodulin [32, 33, 

78] in solution-phase assay.  On the basis of this, we performed a solution-based study by 

mixing CaM-DsRed-Monomer and a known representative CaM ligand, chlorpromazine.  

The addition of chlorpromazine resulted in a quenching of CaM-DsRed-Monomer 

fluorescence.  This change in fluorescence can be attributed to the conformational change 

that occurs in calmodulin upon binding its ligand.  It has been hypothesized that the 

conformational change in calmodulin may lead to a change in the microenvironment of 

the fused fluorescent proteins affecting their fluorescence output.  A dose-response curve 

was generated for this assay by varying the amount of chlorpromazine added to the CaM-

DsRed-Monomer fusion and relating this concentration to the change in fluorescence 

intensity (Figure 19).  A detection limit of 5 x 10-6 M was obtained for chlorpromazine, 

which is comparable to that achieved with other reported fluorescence-based assays for 
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chlorpromazine [73, 78].  A control study was performed, by adding chlorpromazine to 

DsRed-Monomer protein, which did not result in fluorescence quenching (data not 

shown).  In another control study, we evaluated the effect of fluorescence excitation at 

556 nm on chlorpromazine, which is inherently fluorescent.  For this study, solutions of 

varying concentrations of chlorpromazine were excited at 556 nm, and the resulting 

emission monitored at 597 nm.  The fluorescence intensity obtained from these samples 

was the same as for the buffer blank, demonstrating no effect of fluorescence excitation 

on chlorpromazine.  Overall, the study performed shows that the binding between 

calmodulin and its ligand can be monitored using the fluorescence of DsRed-Monomer.  

Furthermore, the observed fluorescence quenching is due to the specific binding of 

chlorpromazine to calmodulin.  We hypothesize that binding of other phenothiazene-

based CaM ligands would yield similar results and could be evaluated if desired.  It 

should be noted that the fluorescence change observed upon binding of ligands to CaM 

might not be universally applicable to other target protein-ligand pairs.  Nevertheless, the 

fluorescence of DsRed-Monomer could still be used in the evaluation of target-protein 

ligand pair using solid-phase competitive assay techniques.  
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Figure 19:  Dose-response curve for chlorpromazine generated by monitoring 
fluorescence change upon the addition of different concentrations of chlorpromazine to 
CaM-DsRed-Monomer fusion protein.  Fluorescence was measured using 556 nm 
emission wavelength maximum 
 

 

3.4 Conclusion 

 

 The work presented in this chapter, has demonstrated that DsRed-Monomer can 

be utilized as both an affinity and reporter tag.  DsRed-Monomer offers a unique 

collection of properties, which allow its use in these roles, for both in vivo and in vitro 

protein analysis.  We believe that in the future new vectors based on DsRed-Monomer 

could be designed that allows the insertion of any protein.  The recombinant proteins 

produced could then be expressed in different organisms, monitored optically, purified, 

and employed in assay development.  Further, if desired, protease cleavage sites can be 

incorporated into the fusion protein designs to isolate the target protein following 

purification.  We did not experience any problems with the protease cleavage between 

DsRed-Monomer and the target protein.  This technique is well developed and has been 

performed with DsRed previously [79-82].  Additionally, the DsRed-Tetramer/GFP pair 
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has been employed to design fluorescence resonance energy transfer assays for the 

detection of protease activity by inserting substrate for the protease between the genes of 

the two fluorescent proteins [80-82].  This is the first report of the fusion of a protein to 

DsRed-Monomer and its use as a label in the detection of protein-ligand binding.  

Through the work presented here we envision that DsRed-Monomer will, in future, be 

employed as a tag inserted directly into cells, expanding its utility in such biomolecular 

research.   
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CHAPTER 4. UTILIZING DSRED-MONOMER AS AN AFFINITY TAG TO 

ISOLATE PROTEIN-PROTEIN/PEPTIDE COMPLEXES 

 

 

4.1 Introduction 

 

 Protein complexes mediate the majority of cellular processes.  The ability to 

localize and isolate such complexes may provide key insights into protein functions. 

Purification of protein complexes, in combination with mass spectrometry, allows 

identification of interacting partners, and is becoming an important tool to define 

relationships between proteins [83, 84].  Since, currently, as little as 100 fmol of a protein 

can be evaluated by mass spectrometry, rapid characterization of a protein present in a 

complex mixture is easily accomplished.  This characterization, however, requires that 

the protein complex be easily and selectively isolated in a reasonable quantity; hence 

protein characterization is frequently limited by the ability to isolate protein complexes of 

interest [85].  In this work we present a proof-of-concept study, which overcomes some 

of these challenges, by utilizing the copper-binding properties of DsRed-Monomer.  

Fusions of DsRed-Monomer were used to isolate protein-peptide and protein-protein 

complexes. 

Affinity tags have been demonstrated as efficient tools for purifying protein 

complexes [86].  Additionally, the mild conditions used to elute these tags make them 

useful tools for purifying protein complexes, under native conditions.  Affinity tags allow 

a diverse group of proteins and protein complexes to be purified using general and simple 

protocols.  This simplicity and native condition elution, in contrast to highly customized 

procedures associated with conventional chromatography generally used for proteomics 

and structural genomics, are their primary advantages.  Most of the commonly used 

protein and peptide affinity tags have been developed within the last 20 years and can be
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categorized depending on the nature of the affinity tag and its target.  Affinity tags have 

been designed, which utilize peptide or protein fusions, to bind small molecules on a 

solid support or chromatography resin [87].  Further affinity tags have utilized antibodies 

on a chromatography resin to bind a specific peptide [86].  

A number of affinity purification approaches have been developed, including 

immunoaffinity, epitope tagging, and glutathione S-transferase (GST) pulldown.  Among 

these, tandem affinity tag purification (TAP) has recently become the focus of native 

purification for protein complexes [56, 85, 88].  This strategy allows for fast purification 

of protein complexes with high yield.  The TAP tag method involves the fusion of the tag 

to a target protein and the introduction of this construct into a host cell [85].  The TAP 

tag is composed of two IgG binding domains of Staphylococcus aureus protein A (ProtA) 

and a calmodulin binding peptide (CBP) with a TEV protease cleavage site between the 

IgG and CBP [85].  These TAP tags have been designed for both the N- and C-terminal 

fusion.  This method of affinity purification has been optimized for the purification of a 

number of different proteins and protein complexes.  

Fluorescent proteins have been widely applied for in vivo visualization of proteins 

however, isolation studies using fluorescent proteins have largely been ignored.  GFP has 

been used to genomically tag more than 4000 proteins for large-scale analysis of protein 

localization in Saccharomyces cerevisiae [89].  GFP variants with an incorporated 

histidine tag have demonstrated the potential to serve both as a visualization and isolation 

tags.  Such GFP fusions with a poly histidine tag have recently been utilized for isolation 

studies [64, 65].  Studies have also been reported which utilized GFP in immunoaffinity 

purifications [90-96].  Such work with GFP has further led to the design of GFP fusion 

tags that can visualize proteins in live cells and capture their interactions via 

immunoaffinity purification on magnetic beads coated with anti-GFP antibodies [97].   

These immunoaffinity methods, however, rely on antibody-coated beads; such strategies 

present unique problems, including the high cost and limited stability of these antibodies.          

Based on previous work in our laboratory [16], we believe that DsRed-

Monomer’s natural copper-binding affinity could provide an ideal partner for affinity 

purification of an interacting protein or peptide complex.  This method offers advantages 
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over previous methods since it requires only one purification step, making it a faster 

method.  Fusions of DsRed-Monomer have also been shown to retain full fluorescence 

emission, compared to GFP tags with an incorporated poly His tag.  Additionally, this 

method uses a stable and inexpensive affinity column.  In this chapter, we have 

demonstrated the use of fusions of DsRed-Monomer to isolate and purify a protein 

complex, utilizing the natural copper-binding affinity of DsRed-Monomer (Figure 20).  

Two fusions of DsRed-Monomer were used for this purification strategy, M13-DsRed-

Monomer and CaM-TEV-DsRed-Monomer.  The first of these fusions, M13-DsRed-

Monomer, utilized the calmodulin-binding domain of skeletal muscle myosin light chain 

kinase (skMLCK) (residues 577-602), M13, fused to the N-terminus of DsRed-Monomer.  

This fusion was then used to isolate and purify CaM from a crude cellular sample.  For 

this work crude calmodulin was combined with the crude M13-DsRed-Monomer fusion 

protein and allowed to bind.  This complex was then isolated, via affinity 

chromatography, on a copper charged metal affinity column.   

 

 
Figure 20:  Schematic of protein complex isolation strategy 
 

Additionally, we further utilized the CaM-TEV-DsRed-Monomer fusion, 

previously created and discussed in Chapter 3 [76], to isolate a CaM interacting protein, 
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caldesmon.  Caldesmon is primarily an F-actin binding protein, isolated from smooth 

muscle cells.  Such F-actin binding proteins are believed to be responsible for both the 

functional organization of microfilaments and their reorganization during normal 

functioning of cells [98].  The C-terminal region of this protein is also a primary binding 

site for the Ca2+-CaM complex [99].  As seen for the CaM binding discussed in the 

previous chapter, the binding of caldesmon to CaM is also calcium dependent.  The 

copper-binding affinity of DsRed-Monomer was used, again, to isolate this CaM-

caldesmon complex.  We have used the M13-DsRed-Monomer and CaM-TEV-DsRed-

Monomer fusions to demonstrate the ability of DsRed-Monomer to isolate and purify 

interacting protein-protein and protein-peptide complexes.     

 

 

4.2 Materials and Methods 

 

4.2.1 M13-DsRed-Monomer and CaM-TEV-DsRed-Monomer Plasmid Construction 

 

The plasmid pDsRed-Monomer was used as a template for the PCR reaction; 

primers were designed that encode the DNA sequence of the M13 peptide.  Using four 

consecutive PCR reactions, the DNA sequence for the peptide, with a 5 amino acid linker 

(GGSGG), was inserted at the N-terminus of the DsRed-Monomer sequence present in 

the plasmid.  These primers are displayed in Table 7.  The product of each PCR was run 

on an agarose gel and the band of interest extracted for the subsequent PCR step.  A final 

PCR was run to correct the reading frame of the DNA.  This final product, plasmid 

pSKD105, was digested with Dpn1 for 1 h at 37 °C and transformed into ER2566 E. coli.  

The CaM-TEV-DsRed-Monomer fusion, plasmid pSKD104-TEV, was prepared as 

described in Chapter 3 [76]. 
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Table 7:  Primers for the insertion of the M13 peptide at the N-terminus of DsRed-
Monomer 
Primer   Sequence 

Forward 
Primer PCR1 

GCATTAGGTAGTGGTGGTCCCCGGGTACCGGTCGCC 

Forward 
Primer PCR2 

AATAGATTTAAAAAAATTAGTAGTAGTGGAGCATTAGGTGG
TAGTGGT 

Forward 
Primer PCR3 

AGATGGAAAAAAAATTTTATTGCAGTAAGTGCAGCAAATAGA
TTTAAAAAAATT 

Forward 
Primer PCR4 

ATATATAAGCTTGGTGGTAGTGGTGGTAAAAGAAGATGGAA
AAAAAATTTT 

Reverse Primer 
PCRRev 

TATTATTATGAATTCGCTCTACTGGGAGCCGGAGTGGCGGGC 

Forward 
Primer 
PCRcorrection 

GACCATGATTACGCCAAGCTTGGGTGGTAGTGGTGGTAAAAG
AAGATGG 

Reverse Primer 
PCRcorrection
Rev 

CCATCTTCTTTTACCACCACTACCACCCAAGCTTGGCGTAATC
ATGGTC 

 

4.2.2 Fusion Protein Expression 

 

 The cells containing the plasmids (pSKD104-TEV, pSKD105, and pVUC-1) that 

encode for the DsRed-Monomer fusion proteins, and spinach CaM, were grown as 

previously described in LB containing ampicillin with shaking at 250 rpm at 37 °C to an 

OD600 of 0.5.  The protein expression was induced using IPTG (0.5 mM) and the cells 

were allowed to grow for an additional 24 h at room temperature for the spinach CaM, 

and 5 h at 37 °C for the DsRed-Monomer fusions.  The cells were harvested by 

centrifugation and the pellets resuspended in TBS (30 mM Tris, 300 mM NaCl, with 10 

mM Ca2+, pH 7.2) and sonicated using 20 s on and 15 s off for 3 min.  The crude proteins 

were obtained by centrifugation (4000 x g for 30 min) at room temperature.  The DsRed-
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Monomer fusions were purified for spectroscopic studies using our previously developed 

copper purification method, described in Chapter 2 [16].     

 

4.2.3 Caldesmon Extraction 

 

 Crude Caldesmon was prepared from fresh chicken gizzards [98].  A 20 g sample 

of trimmed smooth muscle from fresh chicken gizzards was collected and washed in cold 

water, containing 0.25 mM phenylmethylsulfonyl fluoride.  The washed chicken gizzards 

were minced and suspended in six volumes of extraction buffer (0.3 M KCl, 1 mM 

EGTA, 0.5 mM MgCl2, 0.25 mM phenylmethylsulfonyl fluoride, 50 mM imidazole-HCl, 

pH 6.9) at 4 °C, and blended at high speed until finely homogenized.  The slurry was then 

heated in boiling water for five min, at least 2 min at 90 °C, and chilled on ice.  The 

slurry was then centrifuged for 30 min at 47,000 x g, and the solid discarded.  

Ammonium sulfate was added to the supernatant to a concentration of 30 %, and the 

precipitate removed by centrifugation.  Ammonium sulfate was again added to the 

supernatant to a final concentration of 50 %, and the precipitate collected by 

centrifugation.  This precipitate was dissolved in 5 mL of buffer A (0.1 M NaCl, 0.1 mM 

EGTA, 0.1 mM DTT, 10 mM imidazole-HCl, pH 7.0).  The crude caldesmon was run on 

an SDS-PAGE gel and buffer exchanged into TBS buffer (30 mM Tris, 300 mM NaCl) 

and then into Tris with calcium (30 mM Tris, 300 mM NaCl, 10 mM CaCl2), for binding 

studies with DsRed-Monomer fusion protein.   

 

4.2.4 Binding Studies Utilizing DsRed-Monomer Fusion Proteins 

 

 Crude M13-DsRed-Monomer, 2 mL, was combined with 2 mL crude CaM and 

mixed for 1 h at room temperature.  The crude mixture was passed through a syringe 

filter onto a copper charged metal affinity column, and rotated for 1 h to allow the 

DsRed-Monomer to bind to the immobilized copper.  The column was washed with 

multiple column volumes of TBS buffer (up to 10 mL).  A volume of 5 – 10 mL of TBS 

buffer with increasing concentrations of imidazole (1 – 4 mM) were used to wash the 
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column.  The CaM-M13-DsRed-Monomer complex was eluted with TBS containing 5 

mM imidazole, until the entire red color band had been collected.  A similar protocol was 

utilized to isolate the caldesmon-CaM-TEV-DsRed-Monomer complex.  For this 

complex 500 µL of concentrated crude caldesmon, in TBS buffer with calcium, was 

combined with 500 µL CaM-TEV-DsRed-Monomer fusion, diluted to 5 mL with TBS 

buffer with calcium and mixed overnight at 4 °C.  This complex was applied to a copper 

charged metal affinity column, rotated for 1 h and washed with increasing concentration 

of imidazole-containing TBS buffer with calcium.  Each wash used a volume of 5 – 7 mL 

of buffer.  The Caldesmon-CaM-TEV-DsRed-Monomer complex was eluted with TBS 

buffer containing 5 mM imidazole.  

 

4.2.5 Spectroscopic Analysis of M13-DsRed-Monomer Fusion 

 

The UV-visible and fluorescence spectra of the M13-DsRed-Monomer fusion 

were collected as previously described for CaM-TEV-DsRed-Monomer [76].  Briefly, A 

volume of 1 mL of (0.1 µM) the M13-DsRed-Monomer fusion was placed in a cuvette, 

and the absorption spectra of the fusion recorded at room temperature, using an Agilent 

8453 UV-visible spectrometer from Agilent Technologies (Santa Clara, CA).  For the 

fluorescence spectra, a 200 µL volume of the fusion protein was placed in a microtiter 

plate and the excitation and emission spectra obtained at room temperature using a Cary 

Eclipse Fluorescence Microtiter Plate Reader from Varian Inc. (Walnut Creek, CA).  The 

absorbance, excitation, and emission wavelength of the CaM-TEV-DsRed-Monomer 

fusion protein are tabulated in Table 6, seen in Chapter 3 [76].   

 

4.2.6 SDS-PAGE and Blot Analysis of Eluted Complexes 

 

 The purified CaM-M13-DsRed-Monomer and caldesmon-CaM-TEV-DsRed-

Monomer complexes were run on an SDS-PAGE gel.  For the dot blot analysis a volume 

of 1.5 µL of the purified CaM-M13-DsRed-Monomer complex was spotted onto a piece 

of nitrocellulose, dried, and incubated for 1 h, in Tris/Ca2+ buffer with 0.5 % skim milk, 
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at room temperature.  The nitrocellulose was then washed three times for 5 min in PBS 

buffer, and incubated with the Tris/Ca2+ buffer containing a 1:500 dilution of a primary 

anti-CaM antibody for at least 30 min.  This was again washed three times for 5 min with 

Tris/Ca2+ buffer and incubated for a further hour with a 1:5000 dilution of the secondary 

antibody.  The nitrocellulose was again dried and then incubated with a horseradish 

peroxidase substrate.  The same protocol was used for the caldesmon-CaM-TEV-DsRed-

Monomer complex, utilizing an anti-caldesmon primary antibody.  The Caldesmon-CaM-

TEV-DsRed-Monomer complex was further subjected to western-blotting.  The complex 

was run on a 10 % SDS-PAGE gel and transferred to a nitrocellulose membrane using 

electrophoretic blotting, 20 V, 100 mA for 4.5 h, in TOWBIN buffer (25 mM Tris, 192 

mM glycine, 20 % (vol/vol) methanol, pH 8.3).  The membrane was blocked for 1 h in 

the Tris/Ca2+ buffer with 5 % powered milk, and incubated overnight, at 4 °C, with the 

primary anti-caldesmon antibody (1:5000 dilution).  The membrane was washed three 

times for 10 min with the Tris/Ca2+ buffer and incubated for a further hour with a 1:5000 

dilution of the secondary antibody.  The blot was, again, visualized with horseradish 

peroxidase substrate. 

 

 

4.3 Results and Discussion 

 

 The work presented in this chapter demonstrates the use of DsRed-Monomer as 

an affinity tag for the isolation of protein-peptide and protein-protein complexes.  DsRed-

Monomer’s natural copper-binding affinity has been utilized to purify itself, as well as 

genetically fused proteins and peptides, as discussed in Chapter 3 and in previous reports 

[16].  The fusions of DsRed-Monomer prepared here have allowed for the isolation of 

interacting protein complexes, again utilizing this natural copper-binding affinity.  We 

have isolated a protein-peptide complex, CaM-M13, and a protein-protein complex, 

caldesmon-CaM, from a crude cellular extract using DsRed-Monomer as an affinity tag 

(Figure 20). 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 The M13-DsRed-Monomer fusion gene was prepared by PCR technique as 

described in the methods section.  This gene was evaluated via DNA sequencing to verify 

the presence of the M13 peptide and the reading frame of the gene.  This was further 

confirmed by the lack of red fluorescence seen for the expressed protein.  A shift in the 

M13-DsRed-Monomer reading frame was observed due to wrong primer design.  To 

correct this error another primer was designed.  The sequencing results of the new 

plasmid showed that the M13 DNA sequence and the DsRed-Monomer gene were both 

present and in the correct reading frame.  This gene was transformed and expressed in E. 

coli.  The M13-DsRed-Monomer fusion protein was initially purified on a copper 

immobilized column and run on an SDS-PAGE gel to verify its purity (Figure 21).  The 

spectral characteristics of the purified fusion protein were monitored.  The UV-vis 

absorbance spectra, of M13-DsRed-Monomer, yielded results comparable to those seen 

for native DsRed-Monomer, with peaks at ~480 and ~556 nm.  Additionally the 

excitation and emission wavelength maxima obtained for the purified M13-DsRed-

Monomer, 556 and 597 nm, are the same as that reported for DsRed-Monomer previously 

in this work.  The CaM-TEV-DsRed-Monomer fusion was prepared, expressed, purified, 

and spectrally evaluated as described in the previous chapter [76].  As previously 

reported this DsRed-Monomer fusion showed the same absorbance and excitation and 

emission wavelength maxima as DsRed-Monomer (Table 8).  While these two DsRed-

Monomer fusions were purified for spectral analysis, crude fusion proteins were used for 

the subsequent binding studies.   

 

 

 

 

 

 

 

 

 



  59 

 

 

 

 
 
 
   

 

 

 

 
Figure 21:  SDS-PAGE gel of purified M13-DsRed-Monomer, (lane 1) molecular weight 
protein marker, (lane 2) crude M13-DsRed-Monomer, molecular weight marker (lane 3), 
pure M13-DsRed-Monomer (lane 4) 
 
Table 8:  Characteristics of DsRed-Monomer and the CaM and M13 fusions 
  λexcitation (nm)   λemission (nm)  Absorbance 

Max (nm) 

DsRed‐
Monomer 

556  597  480, 556 

CaM‐TEV‐
DsRed‐
Monomer 

556  597  480, 556 

M13‐DsRed‐
Monomer 

556  597  480, 556 

 
The spinach CaM encoded into the pVUC-1 plasmid was expressed in E. coli and 

run on an SDS-PAGE gel, a strong band was observed at ~15 kDa, indicative of the crude 

CaM (Figure 22).  Initial control studies were done to determine if any copper-binding 

affinity existed for the CaM alone.  Crude CaM was applied to an immobilized copper 

column, allowed to bind to the column for 1 h and washed with TBS buffer, containing 

no imidazole.  Further washes were done with increasing imidazole concentrations (1 – 5 

mM) and the whole series run on an SDS-PAGE gel.  This gel showed that the CaM 

eluted in the initial wash step, prior to the addition of the imidazole, demonstrating that 

CaM has no copper-binding affinity.  To isolate the CaM-M13-DsRed-Monomer 
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complex, 2 mL of both the crude spinach CaM and the M13-DsRed-Monomer fusion was 

mixed for at least an hour at room temperature.  Since this CaM-M13 interaction is 

calcium dependent, all buffers used for the purification contained 10 mM CaCl2.  The 

binding time for the CaM-M13 complex formation was chosen based on a number of 

studies, these studies allowed an optimal time to be determined.  Binding the CaM to the 

M13-DsRed-Monomer for less than 1 hour resulted in poor isolation of the CaM-M13 

complex, whereas longer than 1 hour showed no noticeable improvement.  The binding 

kinetics between the CaM protein and the M13 peptide would be much faster in an 

optimal cellular environment.  However, in our studies performed in cellular extract, we 

believe that the environment is not ideal for binding, which may have resulted in the 

longer binding time seen for these studies.  The crude complex mixture was applied to a 

copper charged metal affinity column, and bound for at least 1 h at room temperature.  

The column was washed with multiple column volumes of TBS buffer, containing 

calcium.  Further washes were done with TBS with increasing concentrations of 

imidazole (from 1 to 4 mM).  To elute the purified complex, 2 to 5 mL of a TBS buffer 

with 5 mM imidazole were passed through the column.  Since the DsRed-Monomer has a 

vibrant red color the eluted complex was easily observed as it flowed off the column.   
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Figure 22:  SDS-PAGE gel of crude fusion protein and crude CaM, molecular weight 
protein marker (Lane 1), crude CaM M13-DsRed-Monomer complex (Lane 2), and crude 
CaM (Lane 3) 

 
The purity of the isolated complex was evaluated by SDS-PAGE gel 

electrophoresis, which yielded two bands, one at ~15 kDa, consistent with spinach CaM 

and one at ~29 kDa coinciding with M13-DsRed-Monomer (Figure 23).  The eluted 

complex was further analyzed by dot blot assay, to confirm that the isolated protein is 

indeed CaM.  A 1.5 µL sample of the purified complex, along with a 1.5 µL sample of 

the collected flow through from the initial wash steps of the purification, was spotted 

onto a nitrocellulose membrane, and incubated with an anti-CaM primary antibody.  This 

was then incubated with a secondary antibody and then with a horseradish peroxidase.  A 

strong blue color was observed within minutes of the addition of the peroxidase substrate, 

indicating the presence of CaM within the complex on the spot (Figure 24).  The flow 

through from the initial wash steps of the purification was also blotted to determine if any 

of the CaM was washing off the column prior to its elution as the complex with M13-

DsRed-Monomer.    
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Figure 23:  SDS-PAGE gel of isolated CaM-M13-DsRed-Monomer complex (lane 1), 
molecular weight protein marker (lane 2) 

 

 
 
Figure 24:  Dot blot assay of isolated CaM-M13-DsRed-Monomer (right panel) collected 
flow through from the initial wash step of the purification (left panel) 
 
  Using a similar protocol, the caldesmon-CaM-TEV-DsRed-Monomer complex 

was also isolated.  For this study, crude caldesmon was extracted from smooth muscle, 

obtained from fresh chicken gizzards, and run on an SDS-PAGE gel (Figure 25).  A 

control study was also conducted with the caldesmon protein to determine if it bound to 

the copper column in the absence of the CaM-TEV-DsRed-Monomer.  This protein also 

eluted in the initial wash step, indicating that caldesmon does not bind to the copper 

column in the absence of CaM-DsRed-Monomer.  To isolate the caldesmon-CaM 

complex, both crude proteins, caldesmon and CaM-TEV-DsRed-Monomer, were 
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combined, mixed overnight at 4 °C, and applied to a copper charged metal affinity 

column.  As described previously, this binding time was determined by a series of time 

studies, which determined the optimal time required for the binding of the caldesmon-

CaM complex.  The complex was allowed to bind to the column for at least 1 hour and 

washed with multiple column volumes of TBS buffer.  All TBS buffers used for this 

purification contained 10 mM CaCl2, again, since the interaction between caldesmon and 

CaM is also calcium dependent.  The column was washed with TBS buffer with 

increasing concentrations of imidazole (from 1 to 4 mM).  The complex was eluted with 

TBS buffer containing 5 mM imidazole.  The color of the DsRed-Monomer was again 

used to indicate when the complex had fully eluted.  The collected elution was run on an 

SDS-PAGE gel and evaluated via dot blot as described for the CaM-M13-DsRed-

Monomer (Figure 26).  Although the caldesmon selected for this study was isolated from 

chicken gizzards, we expected it to bind to the spinach calmodulin.  Calmodulin proteins, 

from a variety of sources, with differing amino acid sequence identity have been found to 

retain the necessary sequence required to form the binding site, for enzyme and protein 

binding [100].  For the isolated caldesmon-CaM complex a clear band was seen at ~90 

kDa for the caldesmon protein and a second band at ~42 kDa for the CaM-TEV-DsRed-

Monomer fusion.  A further band seen at ~70 kDa is believed to represent a low 

molecular weight form of caldesmon [101, 102], also extracted from the chicken 

gizzards.  In order to verify the identity of the caldesmon protein a dot blot assay was 

done, using the same protocol as for the CaM-M13-DsRed-Monomer complex.  The dot 

blot, with the anti-caldesmon primary antibody, clearly showed the presence of 

caldesmon in the eluted protein complex (Figure 27).  Again this dot blot was compared 

to the flow through from the initial wash of the column to determine if any of the 

caldesmon was being washed off before its elution with CaM-TEV-DsRed-Monomer.  

Utilizing the same anti-caldesmon primary antibody, the caldesmon-CaM-TEV-DsRed-

Monomer complex was examined by western-blotting (Figure 28).  This western-blotting 

showed only a single band, representing the high molecular weight caldesmon.   
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Figure 25:  SDS-PAGE gel of crude caldesmon extracted from chicken gizzards (lane 2), 
molecular weight protein marker (lane 1) 
 

Figure 26:  SDS-PAGE gel of isolated caldesmon-CaM-TEV-DsRed-Monomer complex 
(lane 2), molecular weight protein marker (lane 1) 
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Figure 27:  Dot blot assay of isolated caldesmon-CaM-TEV-DsRed-Monomer complex 
(left panel), collected flow through from the initial wash steps (right panel)  
 

 
Figure 28:  Western-blot of caldesmon-CaM-TEV-DsRed-Monomer 
 
  To identify this second band (~70 kDa) as a low molecular weight caldesmon, 

rather than a second calmodulin-binding protein, additional western-blotting studies are 

currently underway in our laboratory.  Furthermore, as demonstrated in the previous 

chapter, the TEV cleavage site, coded between the CaM and DsRed-Monomer, could be 

utilized to separate the caldesmon-CaM complex from the DsRed-Monomer, for 

additional studies. 
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4.4 Conclusion 

 

 The work presented in this chapter demonstrates a proof-of-concept use of 

DsRed-Monomer, to isolate a protein-protein or protein-peptide complex.  Two 

representative complexes were chosen for these studies, CaM-M13 and caldesmon-CaM.  

While both of these interactions are well understood, we envision that the method 

described here could be used to isolate unknown binding partners from a crude cellular 

matrix as well as for in vivo studies.  The studies presented here address a number of 

problems identified for other isolation/purification tags, such as the expense and stability 

of antibodies for immunoaffinity, or the multiple tags required for TAP.  DsRed-

Monomer tags have been demonstrated here and in previous work to have no effect on 

protein expression, or folding, allowing their use in native environments.  The natural 

copper-binding affinity of this protein also allows for a simple, one-step, purification on 

an inexpensive metal-affinity column.  The fluorescence of DsRed-Monomer can also be 

utilized for tracking protein-protein complexes in vivo, for future studies.  Additionally, 

the natural red color of the DsRed-Monomer protein, simplifies this purification, 

allowing the eluted complex to be visually observed during the purification.   
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CHAPTER 5.  RED FLUORESCENT PROTEIN VARIANTS WITH INCORPORATED 

NON-NATURAL AMINO ACID ANALOGUES 

 

 

5.1 Introduction 

 

The discovery and mutation of DsRed has expanded the possible uses of 

fluorescent proteins beyond those demonstrated for the more commonly used GFP.  

While the bulk of the genetic modifications performed on DsRed, have been aimed at 

improving the many limitations observed for native DsRed [3, 4, 8, 12, 103, 104], as 

discussed in Chapter 1, recent studies have focused on the possibility of expanding the 

color pallet of its fluorescence.  To date a few traditional mutagenesis studies have been 

done with DsRed and its variant, to shift the fluorescence excitation and emission 

wavelengths.  Such studies have primarily focused on the amino acid residues in and 

around the chromophore of the protein.  The chromophore of DsRed, as described in 

Chapter 1 of this work, is made up of a tri-peptide sequence of amino acids, specifically 

Gln-Tyr-Gly (residues 66-68) [7].  These residues form a fluorescently active 

chromophore autocatalytically through a three-step process, a cyclization reaction 

followed by two sequential dehydrogenations [26, 105].  The cyclization and initial 

dehydrogenation lead to a green emitting chromophore [106], this is shifted to a red 

emitting chromophore by the second dehydrogenation reaction.  This second 

dehydrogenation extends the conjugated π-system of the chromophore which creates the 

red fluorescence [107].  Here we describe exploratory studies in the construction and 

characterization of variants of DsRed-Monomer with altered spectral properties by 

incorporating non-natural amino acids into the protein.   

Rational mutagenesis has, so far, been a choice method to create variants of 

proteins with altered properties and to study structure-function relationships [3, 104].  In 
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this method, canonical amino acids are inserted into specific positions within the protein.  

For example, site-directed mutagenesis performed on mRFP1 resulted in the creation of 

variants with shifted excitation and emission wavelength maxima of up to 18 nm.  These 

shifts have been attributed to altered electrostatic interactions with the chromophore of 

the protein [108].  However, incorporation of non-natural amino acids offers an 

alternative method, allowing for the addition of novel functional groups into proteins 

[104, 109-112].  For example, site-specific incorporation of non-natural amino acids has 

been used to create mutants of GFP [113-116], which show a variety of fluorescence 

shifts and properties.  Specifically, incorporation of Trp analogues into GFP using a 

method of forced biosynthetic incorporation, has produced a number of “gold”-shifted 

fluorescent proteins [114].  In addition mutations at the Tyr66 position within the 

chromophore of GFP created mutants with no fluorescence or blue-shifted emission 

maximum depending on the analogue [115, 116].  Further incorporation of aromatic 

natural and non-natural amino acids into this same Tyr66 residue, of GFP, has shown a 

variety of emission shifts [115].  The fluorescence shifts observed for these mutants 

suggest the possibility of obtaining alternative, and biochemically appropriate fluorescent 

proteins by incorporating non-natural amino acid analogues into DsRed-Monomer. 

Although incorporation of non-natural amino acids has been successfully 

demonstrated in GFP [117], prior to the work presented here, such studies had not 

previously been done on DsRed, its mutants, or any red fluorescent proteins.  In this 

chapter we describe the incorporation of two Tyr analogues into DsRed-Monomer, 

creating variants with non-natural amino acid residues within the chromophore of the 

protein.  The position of the Tyr67 residue, as part of the DsRed chromophore, prompted 

the use of tyrosine analogues in our study to shift the fluorescence of the protein.  The 

non-natural amino acid analogues were incorporated into the protein by a system of 

forced biosynthetic incorporation [118], a simpler and quicker method than tRNA-based 

site-specific genetic incorporation.  This method relies on the use of a minimal media, 

starved of the amino acid targeted for incorporation.  The amino acid analogue of choice 

is added upon induction of the protein, allowing only the non-natural amino acid 

analogue to be incorporated into the final protein, in place of the native amino acid.  
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Hyun Bae et al. [114] showed that forced biosynthetic incorporation could be used for the 

overall incorporation of amino acid analogues into GFP.  However, further studies 

showed that incorporation of non-natural amino acids into any position, outside of the 

chromophore had no effect on the spectral properties of GFP [114].  On the basis of this 

we selected fluoro- and amino- analogues of tyrosine for our study, specifically 3-fluoro-

L-tyrosine and 3-amino-L-tyrosine [6].  Furthermore, X-ray crystal structure studies of 

DsRed has shown that the other Tyr residues within the protein do not interact with the 

chromophore and therefore should not affect the spectral properties of the protein [6].  

The fluoro- analogue was selected due to its significantly different pKa than the hydroxy 

functional group.  This has previously been used to alter the pKa of functional groups 

within the active site of enzymes, changing their catalytic properties [118, 119].  The 

addition of fluorinated amino acid analogues has also been found to affect the 

conjugation of the π-system of the chromophore and to cause limited changes in the bond 

lengths within such systems.  In addition, this analogue may promote the formation of 

additional hydrogen bonds within the system [118, 119].  In contrast, the amino- group, 

on the 3-amino-L-tyrosine, should primarily affect the electrostatic charge within the 

aromatic ring of the tyrosine and allow either a different pattern of hydrogen bonding 

with surrounding amino acid residues, or contribute to the conjugation of the 

chromophore.  The study here demonstrates that incorporation of non-natural amino acid 

analogues into DsRed-Monomer is a viable approach to alter the spectral characteristics 

of the protein.  We envision that this study will open up the door to non-natural amino 

acid incorporation studies with red fluorescent proteins and its mutants. 
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5.2 Materials and Methods 

 

5.2.1 Expression and Purification of DsRed-Monomer with Incorporated Non-Natural 

Amino Acids 

 

 The gene for DsRed-Monomer was digested with BamHI and EcoRI and cloned 

into pRSetB to construct the plasmid pSKD1, as previously described.  M9 minimal 

media [120, 121] containing 100 µg mL-1 ampicillin was prepared without tyrosine, 

tryptophan and phenylalanine.  A 5 mL sample of the minimal media was inoculated with 

E. coli, JM107, containing the plasmid pSKD1 and incubated overnight in a shaker at 37 

°C.  The culture was transferred to a 200 mL sample of the minimal media and grown to 

an OD420 of 1.00 and induced with isopropyl-β-D-thiogalactoside (IPTG, 0.5 mM final 

concentration, from Sigma).  Tryptophan, phenylalanine, and either tyrosine or the 

appropriate tyrosine analogue (1 mM final concentration of each amino acid, from 

Spectrum Chemicals) [118] was also added at that time.  The cultures were grown for a 

further 5 h with shaking, 250 r.p.m., at 37 °C and collected by centrifugation, 4000 

r.p.m., for 30 min at 4 °C.  The pellet was dissolved in the PBS-binding buffer (100 mM 

Na2PO3, 50 mM NaCl, pH 7.0) and sonicated for 5 min to lyse the cells.  The crude 

native DsRed-Monomer and the non-natural variants were purified on an immobilized 

copper charged sepharose column, as described in the previous chapter [16].  

 

5.2.2 Determination of Protein Purity and Concentration 

 

 Protein purity was determined by running an SDS-PAGE assay with 12.5 % 

acrylamide gel at 150 V for 90 min at room temperature.  Coomassie Brilliant Blue R-

250 solution was used to stain the gels overnight and destained for at least 2 h.  Protein 

concentration was determined by Bradford assay. 
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5.2.3 Spectral Analysis of Purified DsRed-Monomer with Incorporated Non-Natural 

Amino Acid and Comparison with Native DsRed-Monomer 

 

 Mass spectrometry analysis was performed by following the protocol of Gross et 

al. [5].  Approximately 2 nmol of purified protein was lyophilized and dissolved in 15 µL 

of sterilized water, 3 µL of guanidinium chloride (6 M) was added and the solution 

heated to 80 °C until it turned yellow.  The solution was cooled to room temperature and 

1 µL of HCl (0.33 M) was added followed by 10 µL of LysC endoprotease (0.05 µg/µL 

in 100 mM Tris, pH 9.2).  The digestion proceeded for 22 h at 37 °C and was quenched 

with trifluoroacetic acid (0.1 % vol/vol).  The mass spectra of each of the digested 

proteins were recorded on an Agilent 1100 Series LC/MSD, from Agilent Technologies 

(Santa Clara, CA) by direct injection, passing through the LC column 

 To obtain the fluorescence spectra, a volume of 200 µL (0.1 µM) of each of the 

non-natural mutants and the native DsRed-Monomer was placed into a microtiter plate, 

and excitation and emission scans of the proteins collected, using a Cary Eclipse 

Fluorescence Microtiter Plate Reader (Varian Inc, Walnut Creek, CA). 

 The UV-visible spectra were also collected.  A volume of 1 mL (0.1 µM) of the 

two mutants and the native DsRed-Monomer was placed in a cuvette, and the absorption 

spectra recorded at room temperature, using an Agilent 8453 UV-visible spectrometer 

(Agilent Technologies, Santa Clara, CA) 

 The CD spectra of the proteins were also collected.  The purified non-natural 

mutants and the native protein (250 µL, 0.1 µM) were placed in a 0.2 cm cell, and the 

adsorption spectrum was obtained at room temperature, using a Jasco Corporation 

spectropolarimeter (Tokyo, Japan). 

 Temperature and pH stability was also evaluated.  Fluorescence spectra were 

recorded at 4 °C, room temperature (25 °C) and 37 °C for both the native protein and the 

two variants.  Each protein was incubated for at least 2 h, at their respective temperature, 

prior to their spectra being collected.  The pH of the proteins was adjusted from 4 to 11, 

with MOPS buffer, in increments of 1 pH unit, and the fluorescence emission of each 

protein recorded.    
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5.3 Results and Discussion 

 

 Fluorescent protein variants with differing spectral characteristics are highly 

desirable for biotechnology and cell biology studies.  To obtain these variants a number 

of approaches including random mutagenesis, directed evolution, and non-natural 

mutagenesis have been successfully used.  Previously in these studies GFP was primarily 

used as the scaffold.  The availability of the red fluorescent protein, DsRed, provides a 

unique opportunity to further extend the spectral diversity of FPs.  Thus far only 

mutagenesis of naturally available amino acids has been attempted with DsRed.  Here we 

studied incorporation of non-natural amino acid analogues into DsRed-Monomer, to 

construct variants that yield alterations in the spectral characteristics of the protein.  In 

our study, DsRed-Monomer and its variants with non-natural amino acids were expressed 

in minimal media using a method of forced biosynthetic incorporation.  For this method 

the non-natural analogue was added to the culture media at a stage right before the 

protein expression.  This method was chosen, for this study, rather than directed 

incorporation of non-natural amino acids because the latter method is complicated and 

time consuming, and the aim of this study was an initial demonstration of amenability of 

DsRed to non-natural mutagenesis. 

 The plasmid pSKD1 was transformed into E. coli cells and the proteins were 

expressed.  During expression the time for the initial observation of color and the time to 

reach maximum fluorescence for the mutants were comparable to native DsRed-

Monomer, in the minimal media.  This indicates no change in the folding ability of the 

proteins upon mutation.  Furthermore, we did not observe any formation of protein 

aggregates in the mutants as well as in the native DsRed-Monomer, implying no effect on 

the solubility of the proteins.  The proteins were purified using an immobilized copper 

column, as previously discussed [16].  The purified proteins were run on an SDS-PAGE 

gel to verify purity (Figure 29).  The non-natural variants of DsRed-Monomer were 

analyzed by spectroscopic and spectrometry techniques, and their characteristics were 

compared to those of native DsRed-Monomer prepared in the same manner. 
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Figure 29:  SDS-PAGE gel of crude (left panel) and purified (right panel) non-natural 
analogues of DsRed-Monomer.  Molecular weight protein marker (lane 1 and 5), crude 
DsRed-Monomer (lane 2), crude 3-amino-L-tyrosine variant (lane 3), crude 3-fluoro-L-
tyrosine variant (lane 4), pure DsRed-Monomer (lane 6), pure 3-amino-L-tyrosine variant 
(lane 7), and pure 3-fluoro-L-tyrosine variant (lane 8) 
 
  To verify the incorporation of the non-natural analogues into the chromophore of 

the protein, the mass spectra were collected for the DsRed-Monomer and for the non-

natural mutants. The proteins were subjected to LysC digestion, which produced a 

peptide that included the chromophore of the protein, of mass 2185 for the native DsRed-

Monomer [5].  The spectra of the non-natural variants showed the expected increases in 

mass, compared to the native protein (Table 9).  A mass increase of approximately 15 

was seen for the peptide of the amino- mutant compared to the chromophoric peptide 

obtained from the native protein.  This increase coincides with the addition of an amino- 

group onto the aromatic ring of tyrosine, within the chromophore.  The fluoro- mutant 

showed a mass increase of approximately 18 compared with the native protein, 

corresponding to the addition of fluorine onto the tyrosine ring.  This mass analysis 

confirms the presence of non-natural amino acid analogues into the peptide forming the 

chromophore.  Furthermore, the mass spectra of the mutants did not show any peak 

corresponding to the native DsRed-Monomer, suggesting the full incorporation of the 

non-natural analogues into the protein. 
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Table 9:  Characteristics of DsRed-Monomer and its non-natural variants 
  λexcitation 

(nm)  
λemission 
(nm)  

ε  
(M‐1cm‐1)  

Quantum 
Yield (%) 

Mass of 
Chromophore 
peptide 

DsRed‐
Monomer 

556  603  59,000  0.04  2185 

Amino‐ 
Variant 

556  615  59,000  0.20  2199.6 

Fluoro‐ 
Variant 

556  591  47,000  0.13  2205 

 
  The fluorescence excitation and emission spectra of both the purified DsRed-

Monomer and the purified non-natural mutants were recorded.  The incorporated 

analogues showed no effect on the excitation spectra of the proteins, with the expected 

excitation maxima of 556 nm seen for each of the mutants.  However, variations in peak 

intensity were seen, the amino- mutant showed the strongest fluorescence excitation 

intensity, with the fluoro- mutant intermediate, and native DsRed-Monomer the weakest.  

Spectral shifts, however, were observed in the emission spectra.  The fluoro-tyrosine 

incorporated mutant showed a distinct blue shift of 12 nm (λmax 591 nm) compared to 

native DsRed-Monomer (λmax 603 nm), whereas the amino-tyrosine incorporated mutant 

showed a red shift of 12 nm (λmax 615 nm) (Figure 30).  These opposite shifts in emission 

wavelength maximum were expected since the two analogues would have opposite 

effects on the conjugated electron system of the chromophore.  The addition of the 

amino- group will lead to a more expanded π-conjugated chromophore system [116], at 

the aromatic ring, because of the electron donation of this group.  We expected that this 

would stabilize the conjugation in the chromophore leading to the observed red shift in 

the emission spectra.  The fluoro- addition, however, would withdraw electrons from the 

conjugated system of the aromatic ring and chromophore in general.  This reduction in 

the aromaticity of the Tyr phenyl ring may cause destabilization of the conjugation 

leading to the observed blue shift in emission.  The absence of any secondary peaks or 

shoulders indicates 100 % incorporation of the non-natural amino acid of interest into the 

protein occurred.  Any partial incorporation could have also given peaks or shoulder 
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similar to the native protein, which, were not observed.  These results were obtained from 

a number of different expressions, and demonstrate the reproducibility of these 

observations.  Emission spectra were recorded using the same concentration of all three 

proteins (data not shown); these spectra showed that the amino- mutant gave the most 

intense fluorescence followed by the fluoro- mutant and native DsRed-Monomer giving 

the lowest intensity emission at their respective emission wavelength maxima.  Further 

studies showed that temperature insensitivity (between 4 and 37 °C) of the protein’s 

fluorescence was maintained for the mutants compared with native DsRed-Monomer.  

The pH dependence of the fluorescence intensity of native DsRed-Monomer, the amino- 

and fluoro- variant was studied.  The fluorescence intensity was found to be unaffected 

between pH 5 and 11.  This is consistent with the results obtained by Baird et al. [3] that 

showed negligible dependence of DsRed-Monomer’s fluorescence intensity on pH. 

 

 
Figure 30:  Normalized fluorescence emission spectra of DsRed-Monomer and non-
natural mutants.  (■) native DsRed-Monomer, (▲) 3-amino-L-tyrosine DsRed variant, 
(Δ) 3-fluoro-L-tyrosine DsRed variant 
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The UV-Visible spectra of the purified DsRed-Monomer and the purified non-

natural mutants were recorded from 400 to 650 nm to further explore the spectral 

properties of these mutants.  It has previously been reported [4, 122] that the UV 

absorption spectra of a monomeric DsRed, mRFP1, showed a strong peak at 556 nm 

corresponding to the red fluorescent species.  The spectra also showed two additional 

peaks at ~480 and ~520 nm [1].  The peak at 480 nm has previously been attributed to a 

green-emitting intermediate for native (oligomerized) DsRed [3, 106].  The UV-visible 

spectra of DsRed-Monomer and the non-natural mutants (Figure 31) showed that the 

chromophore of all the proteins was absorbed strongly at the expected 556 nm and 

showed two additional peaks at 480 and 520 nm.  An excitation study performed at 480 

nm yielded only minimal fluorescence, on the order of 20 % of that seen at 603 nm.  The 

same pattern of peaks was seen for all three proteins; however, the intensity of the 

absorbance peaks varied.  Of the three proteins, the fluoro- variant showed the most 

pronounced peak at 480 nm.  Within the spectra of the fluoro- mutant, the peak at 480 nm 

appeared more intense than the peak at 556 nm corresponding to the red fluorescent 

species.  This suggests that incorporation of the fluoro- group may hinder the conjugation 

necessary for the red chromophore formation, locking the chromophore at an 

intermediate stage.  This also may account for the decrease in fluorescence emission, 

seen for this protein compared to the amino- mutant.  The amino- mutant showed the 

most pronounced peak at 556 nm, corresponding to emission from the major red 

fluorescent species.  The 556 nm peak of the amino- mutant was also of highest 

absorbance units among the three proteins. This coincides with the fluorescence emission 

spectra of the proteins in which the amino- mutant showed the most intense fluorescence 

emission.  This variant also showed an absorbance intermediate to both native DsRed-

Monomer and the fluoro- variant, at 480 nm.  The native DsRed-Monomer showed the 

lowered absorbance at both 480 and 556 nm; however the shoulder at 520 nm was more 

pronounced for this protein than for either of the variants.  This shoulder was almost 

undetectable for the two variants.  These fluorescence and absorbance observations 

further indicate that the position and electron density on Tyr67 are crucial for red 

chromophore formation in addition to the amino acids (Gln66 and Gly68) necessary for 
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the extended conjugation observed in DsRed.  Further, Tyr67 can potentially be targeted 

to generate variants with far red-shifted emission wavelengths. 

 

 
Figure 31:  UV-Visible absorption spectra of DsRed-Monomer and non-natural mutants.  
(■) native DsRed-Monomer, (▲) 3-amino-L-tyrosine DsRed variant, (Δ) 3-fluoro-L-
tyrosine DsRed variant 
 
  From the UV and fluorescence data, the extinction coefficients and quantum 

yields of DsRed-Monomer and each of the mutants were determined (Table 9).  The 

quantum yield for all three proteins was calculated using DsRed-Express with a known 

quantum yield as the standard and by using the following equation [123]: 

 
Q = QR (I/IR)(ODR/OD)(n2/nR

2) 

 
where Q represents the quantum yield, I the intensity of the fluorescence, OD the optical 

density and n the refractive index.  The values with subscript R correspond to the 

reference protein, DsRed-Express.  This protein was chosen as the reference because it is 

the tetrameric form of DsRed-Monomer.  For DsRed-Monomer, a surprisingly low 
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quantum yield of 0.05 was calculated.  The quantum yield of the two variants appeared to 

be closer to the value of 0.4 reported for DsRed-Express.  The quantum yields calculated 

here show that the variants obtained have improved brightness compared with the native 

DsRed-Monomer.  This is an interesting observation since increases in quantum yield is 

obtained for both the amino- and fluoro- variants.  This indicates that this increase is not 

due specifically to the presence of the fluoro- or amino- group on the Tyr.  The quantum 

yield of DsRed-Monomer compared with DsRed-Express [4] is significantly lower.  This 

has previously been attributed to the loss of shielding of the chromophore in the 

monomer.  Therefore, we speculate that the presence of the amino- or fluoro- group on 

the Tyr ring, increasing the bulkiness of the Tyr, may improve this shielding of the 

chromophore in the mutated DsRed-Monomer, leading to the improved quantum yield 

observed here.  

 The far UV CD spectra of the native DsRed-Monomer and the non-natural 

variants were also recorded (Figure 32).  This information was submitted for k2D 

analysis.  These spectra showed that the overall secondary structural characteristics of the 

protein were maintained after the incorporation of the tyrosine analogues. 
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Figure 32:  CD spectra of DsRed-Monomer and non-natural mutants.  (■) native DsRed-
Monomer, (▲) 3-amino-L-tyrosine DsRed variant, (Δ) 3-fluoro-L-tyrosine DsRed 
variant.  Some data sets are not visible due to the exact overlap of all data points 

 

 

5.4 Conclusion 

 

 The incorporation of non-natural amino acid residues into the chromophore of 

DsRed-Monomer caused a shift in the fluorescence emission.  The fluoro- variant showed 

a 12 nm blue shift and the amino- variant a 12 nm red shift in fluorescence emission.  The 

incorporation of these tyrosine analogues was verified by mass analysis of the peptide 

containing the chromophore.  These variants also displayed improvements in their 

quantum yields and fluorescence emission intensities, compared to the native DsRed-

Monomer.  In addition, the absorption spectra of all three showed the same pattern of 

peaks, with variations in their relative intensities.  The incorporation of the tyrosine 

analogues into the chromophore of DsRed-Monomer appears to have no effect on the 

overall structure of the variants.  The studies performed by us demonstrate that the 

spectral properties of red fluorescent proteins can be altered by non-natural mutagenesis.  
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The variants produced in our study can be purified and used as labels for in vitro 

multicolor applications.  Furthermore, the studies performed show that the Tyr in the 

chromophore, of DsRed-Monomer, can be manipulated to produce variants with unique 

properties.  For in vivo applications, such variants can be produced using modified 

tRNAs that code for non-natural amino acids. 
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CHAPTER 6.  CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

6.1 Conclusions and Future Directions 

 

The work presented in this thesis has focused on the biochemical applications of a 

red fluorescent protein, DsRed-Monomer.  In this work both DsRed-Monomer’s natural 

fluorescence and its unique copper-binding affinity, which results in fluorescence 

quenching, have been exploited.  This unique metal-binding affinity has previously been 

utilized for the purification of DsRed-Monomer and in the development of copper 

sensing systems.  In this thesis work we have performed studies to identify the 

mechanism of this fluorescence quenching seen for DsRed-Monomer in the presence of 

copper.  Through a series of studies, as described in Chapter 2, which included 

determining the copper dissociation constant, spectroscopic studies in the presence and 

absence of copper, the effect of pH on this copper-binding affinity, and computational 

studies, we were able to shed light on the fluorescence quenching mechanism of DsRed-

Monomer and hypothesized possible copper-binding residues within the protein.  These 

studies suggested that, upon copper-binding, a sphere of action static quenching 

mechanism results in the observed fluorescence quenching.  These studies, specifically 

the pH and computational studies, indicated the possible involvement of His and/or Cys 

residues in this copper-binding.  Further studies with this protein will be required to 

formally identify the copper-binding site of DsRed-Monomer and other RFP variants.  

Based on our studies within this chapter, two specific His residues, His25 and His216, 

could be targeted for future studies.  These studies will include site-directed mutagenesis 

and chemical modifications, which can be monitored by fluorescence quenching assay, to 

study their effect on the DsRed-Monomer’s copper-binding affinity.  The copper-binding 

site, once identified, can be subjected to further rational mutagenesis with the aim of 
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improving the copper-binding affinity constant for DsRed-Monomer, while retaining this 

unique copper specificity.  Such improvements of this affinity (KD), to nM levels, would 

allow for improved use of DsRed-Monomer as an affinity tag for isolation and 

purification, while retaining the ability to elute this tag under relatively mild conditions.  

By understanding this quenching mechanism and identifying the copper-binding site of 

DsRed-Monomer, we believe that improvements can be made in the copper-binding 

affinity.  Such improvements may enhance the utility of DsRed-Monomer as an affinity 

tag for purification and isolation assays as well as offering possible expansion to the uses 

of the fluorescence of this protein. 

Another work in this thesis focused on the use of DsRed-Monomer for both 

purification and detection of a fusion partner, exploiting the copper-binding affinity and 

the fluorescence of the protein.  We designed and created, via molecular biology 

techniques, an N-terminal fusion of DsRed-Monomer with a protein, calmodulin.  Using 

DsRed-Monomer’s natural copper-binding affinity we were able to purify this fusion 

partner, calmodulin, on an immobilized copper column.  The calmodulin fusion partner 

was then separated from the DsRed-Monomer tag, via proteolytic cleavage, of a TEV site 

encoded between calmodulin and the DsRed-Monomer tag.  Additionally, we used 

DsRed-Monomer’s fluorescence to design a detection assay for a calmodulin-binding 

ligand, chlorpromazine.  We observed a decrease in fluorescence emission with 

increasing concentrations of chlorpromazine.  We attributed this to the binding of 

chlorpromazine to calmodulin, causing a structural change in the calmodulin and 

subsequently the environment of the DsRed-Monomer, resulting in this decrease in the 

fluorescence emission.  We would like to continue to explore this type of DsRed-

Monomer fusion assay by expanding the selection of fusion partners.  Such work would 

utilize an additional set of fusion partners to explore this method to purify other target 

proteins.  We would also like to expand on the use of the fluorescence-based detection 

assay, of such DsRed-Monomer fusion proteins, by demonstrating the viability of 

developing further assays for studying target protein-ligand pair binding.  The use of this 

assay in a cellular environment is also of interest to the continuation of this work, since 
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the work to date has utilized a buffer matrix only.  For this work we would express 

DsRed-Monomer fusions in vivo where a target ligand is also present.  

 The aim of our next work was to utilize DsRed-Monomer’s natural copper-

binding affinity, in the design of an isolation tag, for interacting peptide-protein or 

protein-protein complexes.  This work utilized N-terminal fusions of DsRed-Monomer 

with either a peptide or protein bait partner.  One such fusion of DsRed-Monomer was 

designed, utilizing molecular biology, to fuse a peptide to the N-terminus of the DsRed-

Monomer protein.  For this work the M13 peptide from skeletal muscle myosin light 

chain kinase, a calmodulin-binding peptide, was selected as the fusion partner.  Initial 

studies with this fusion were done to demonstrate DsRed-Monomers use as an affinity tag 

to isolate a peptide-protein complex, calmodulin-M13, via copper-affinity purification.  

In this study DsRed-Monomer’s natural fluorescence was not specifically used in a 

detection sense, however, it did simplify the purification as the red band could be 

observed eluting off the column.  The previously discussed calmodulin-DsRed-Monomer 

fusion was also used in these studies to explore the use of a protein-DsRed-Monomer 

fusion as an affinity tag for isolating protein-protein complexes.  In this work we 

demonstrated isolation of a caldesmon-calmodulin complex, again using DsRed-

Monomer’s copper-affinity.  The current study has been performed using a cellular 

extract as a matrix; however, we can also employ DsRed-Monomer as an affinity tag to 

isolate protein-protein interacting complexes in an in vivo system.  In the future we 

envision using these, and other, DsRed-Monomer fusions to isolate unknown binding 

partners in in vivo studies.  Again such work will require expressing the DsRed-

Monomer-target protein fusions within cells, to which an interacting protein binds.  This 

complex once isolated, using the copper-based affinity of DsRed-Monomer, can be 

subjected to mass spectrometry analysis for identification of interacting proteins or 

ligands. 

 The final study in this thesis demonstrates the amenability of this protein to non-

natural mutagenesis.  These studies were aimed at increasing the color pallet of possible 

fluorescent reporters and tags.  Here we focused on the three amino acids residues, which 

form the internal chromophore of DsRed-Monomer.  Utilizing forced biochemical 
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incorporation we replaced the tyrosine residues within the sequence of DsRed-Monomer 

with either a fluoro- or amino- variant.  These non-natural variants of DsRed-Monomer 

were spectroscopically analyzed, showing a shift in the observed fluorescence emission.  

The fluoro- variant showed a 12 nm blue shift and the amino- variant showed a 12 nm red 

shift, compared to DsRed-Monomer expressed in the minimal media.  This work 

demonstrated the ability to shift the fluorescence emission, and other spectral 

characteristics, of DsRed-Monomer via non-natural mutagenesis.  We envision these 

variants being used in the future as reporter tags, such as those discussed in the previous 

chapters of this and in other works for native DsRed-Monomer.  Such reporters have 

been designed for both in vitro and in vivo studies.  We believe that non-natural variants 

of this, and other fluorescent proteins, will be efficient tools for such methods, as well as 

for two-color labeling studies.  Future non-natural mutagenesis studies will focus on the 

incorporation of additional non-natural Tyr analogues into the chromophore of the 

protein, as well as non-natural Gln and Gly analogues.  Additionally, we will explore the 

use of modified tRNAs for efficient, site-specific incorporation of non-natural amino 

acids into DsRed-Monomer. 

 Since it’s discovery DsRed and its variants have been utilized in a number of 

biochemical applications, the work presented in this thesis aims to expand these 

applications of one such variant, DsRed-Monomer.  The initial studies, described in this 

work, aimed at defining the mechanism of copper-induced fluorescence quenching will 

ideally lead to a better understanding and future improvements of this protein’s copper-

based fluorescence behavior and of the copper-affinity.  Further, we have explored 

biochemical applications for this protein, based upon both copper-binding affinity and 

fluorescence.  We have demonstrated the amenability of this protein to N-terminal fusion 

with both peptides and proteins, with no effect on its overall structure or spectroscopic 

properties.  Additionally, we have shown that DsRed-Monomer can serve as an affinity 

tag for efficient purification of target proteins, as a fluorescent reporter tag for interacting 

ligands, and as a tag to isolate interacting protein complexes.  We envision that these 

findings can be potentially expanded to various biochemical studies and applications. 

Furthermore, we believe that the expansion of the color pallet of DsRed-Monomer 
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demonstrated here by non-natural mutagenesis could be of great interest for future 

multicolor labeling studies. 
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Appendix A:  Creation of DsRed-Monomer 

 

The major problems associated with native DsRed have involved the 

intermediate/parasitic green fluorescence, low extinction coefficient, and the tendency for 

oligomerization.  The previous section of this chapter described how the former two have 

been addressed through directed evolution and site-directed mutagenesis.  However the 

problem of oligomerization presented more challenges.  The native DsRed protein is 

primarily negatively charged, with the exception of a short length at the N- terminal 

region which contains a group of positively charged amino acid residues.  This positively 

charged region was thought to be the most likely cause of the high molecular weight 

aggregates, primarily tetramers, seen with this protein [124].  It also appears to be 

possible for each tetramer to form up to four salt bridges with adjacent tetramers, forming 

stable polymeric structures.  Since the isolation of DsRed, a number of groups have 

attempted to resolve the problem of aggregation, the results of which will be discussed 

below.       

It has long been known that native DsRed formed extensive oligomers both in 

vitro and in vivo, however the exact behavior of the protein and degree of aggregation 

were not fully understood.  Baird et al. [3] explored this oligomerization of native DsRed 

by comparing SDS-PAGE gels of boiled and un-boiled samples of DsRed.  The un-boiled 

samples showed a band at >110 kDa, while after boiling this band was no longer seen.  

This suggested that an oligomerized form of the protein was present in the un-boiled 

sample.  This was further studied by analytical equilibrium centrifugation, which showed 

molecular weights corresponding to a tetrameric form of the protein.  To determine if this 

aggregation was seen in vivo, the oligomerization was further explored by a FRET study 

in mammalian cells and a two-hybrid assay in yeast.  Both of these confirmed that native 

DsRed forms a tetramer in vivo. 

The aggregation of native DsRed was reduced by Bevis et al. [124]  both in vivo 

and in vitro by decreasing the net positive charge at the N- terminal region of the protein.  

As previously observed, native DsRed is unusually basic.  These basic patches on the 

surface of the protein interact with acidic patches on a second unit of DsRed (or other 
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macromolecules) forming high order aggregates.  By eliminating the cluster of positive 

charges near the N- terminus through point mutations, these interactions can be 

minimized.  A decrease in the strength of these oligomeric interactions was observed 

upon mutation; however complete elimination of aggregation was not achieved. 

The first commercially available non-aggregating mutant of DsRed was generated 

by Yanushevich et al. [8].  This group focused on minimizing the aggregation of a 

number of fluorescent proteins, including three DsRed mutants; E57 [9], E5 [10] and 

ds/drFP616 [11].  Following the example of Bevis’ and Baird’s groups [3, 124], this work 

focused on the fully charged N- terminal residues.  A series of mutants of E57, containing 

R2A, K5E, and K9T substitutions in different combinations were created.  Of these 

mutations, R2A appeared to have the strongest impact on the overall aggregation of the 

proteins.  One mutant, E57-NA, with all three mutations, showed no aggregation.  This 

mutant also showed spectroscopic properties similar to E57; with similar maturation time, 

brightness of colonies, and excitation/emission wavelength maxima.  This mutant was the 

first commercially available monomer of DsRed, specifically called DsRed2.  These 

mutations were generated for both E5 and ds/drFP616 with similar results, creating 

mutants which appear to be monomeric on SDS-PAGE gels.  Additionally these mutants 

appeared to retain the spectral properties of the respective parent mutant, E5 and 

ds/drFP616.  

An improved monomeric DsRed was generated by Campbell et al. [4].  Initially a 

dimer of DsRed was prepared by a single point mutation, I125R.  This mutant gave poor 

red fluorescence with an increased green component and a much longer maturation time.  

To improve the fluorescence of this dimer directed evolution was used to identify 

mutants with the desired properties.  Dimer2, with 16 additional mutations, was isolated 

from this pool of mutants.  Of the 17 mutations present in the final dimer, eight are 

internal to the β-barrel, three are aggregation reducing R2A, K5E, and N6D, two are at 

the AB interface of two single units I125R, V127T, and the final four are surface 

mutations.  Using this dimer2, a tandem dimer, tdimer2 [125], was generated.  A 

polypeptide linker was used to attach two dimer2 units, such that critical dimer 

interactions were satisfied by this tandem linker.  Linkers of 9, 12, 13, or 22 amino acid 
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residues were used to form these tandem dimers.  All of these tandem dimers, showed 

essentially the same behavior except the clone with the 9 residue linker, which was 

slower to mature.  The tandem dimer with the 12 residue linker, tdimer2 [125], was 

chosen for further study.  This tandem dimer showed excitation and emission wavelength 

maxima identical to that of dimer2, with an extinction coefficient twice that of dimer2, 

due to the presence of the two absorbing chromophores per polypeptide chain.  tdimer2 

[125] became the focus of forming a true DsRed monomer.  By a series of directed 

evolution steps targeting H162 and A164 of the tandem dimer a first generation 

monomer, mRFP0.1, was identified.  This monomer was further mutated, by directed 

evolution, through six generations yielding mRFP1, with a total of 33 amino acid 

substitutions, relative to DsRed.  Of these substitutions 13 are internal to the β-barrel, 

three are aggregation reducing mutants R2A, K5E, and N6D, three are AB interface 

mutations I125R, V127T and I180T, ten are AC interface mutations R153E, H162K, 

A164R, L174D, Y192A, Y194K, H222S, L223T, F224G, and L225A, and the remaining 

four are non-specific beneficial mutations.  Both the dimers and monomers generated by 

this group appear to overcome the major problem, which previously prevented the 

formation of a stable non-aggregating form of DsRed.  Decreasing the charge of the N- 

terminal region of the protein had the greatest effect on the protein’s aggregation and 

oligomerization. 

Shaner et al. [12] reported a further improvement in mRFP1 [4].  mRFP1 was 

subjected to many rounds of directed evolution, the resulting colonies were screened both 

manually and by fluorescence-activated cell sorting (FACS)-based screening.  This 

screening isolated many mutants with differing emission maxima, increased tolerance to 

N- and C- terminal fusions, improved extinction coefficients, higher quantum yields, and 

high photostability.  However none of these mutants showed improvements in all of these 

properties.  A second approach was examined by substituting residues around the 

chromophore of the protein, Gln66, Tyr67, and Gly68.  One clone from this library, 

mRFP1.1, with a Q66M substitution, showed a minor fluorescence shift of 5 nm, in both 

excitation and emission, and more complete maturation.  This mutant was further 

modified, to reduce its sensitivity to the N- terminal fusion, by replacing the first seven 
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amino acid residues with the corresponding residues from enhanced GFP, MVSKGEE 

followed by a spacer, consisting of residues NNMA (6a-6d).  Additionally the last seven 

residues at the C- terminus were also appended to that of GFP, creating mRFP1.3.  This 

fluorescent mutant of mRFP1 was not affected by the N- terminal fusion.  The clone 

mRFP1.4 was generated by the addition of two more point mutations, V7I and M182K, 

which showed improved folding of the protein’s chromophore.  An additional 

substitution of M163Q resulted in a complete loss of green fluorescence.  The final 

optimized monomer, mCherry, included the additional mutations R17H, T195V, D196N, 

and N6aD.  Further mutations, at the 66 position of both mRFP1.1 and mRFP1.4, along 

with additional rounds of directed evolution, yielded a series of fluorescently shifted 

mutants: mTangerine, mHoneydew, mOrange, and mStrawberry.  Each of these 

monomers showed an improvement in a specific area of fluorescent protein research, 

offering an improved quantum yield, extinction coefficient, or fluorescence intensity; 

however mCherry is the most promising overall.  The fluorescence excitation and 

emission wavelength maximum of mCherry showed a significant red shift to 587 nm and 

610 nm, respectively.   This mutant also showed shorter maturation times than native 

DsRed and mRFP1.  However mCherry showed quantum yields, extinction coefficients, 

and brightness of colonies comparable to mRFP1.  Through directed evolution on the 

dimer, dimer2 [4], a promising new dimer mutant, dTomato, was generated.  The 

dTomato mutant showed higher tolerance to N- and C- terminal fusion, as seen for 

mCherry.  Since tandem dimers of DsRed reduced its oligomerization [4], a tandem 

dimer, tdTomato, was generated from the dTomato mutant.  Both dTomato and tdTomato 

showed improved maturation kinetics.  Additionally, both showed limited parasitic green 

fluorescence and a minor red shift in excitation and emission wavelength maxima to 554 

nm and 581 nm.  

A DsRed monomer is now commercially available from Clontech, denoted as 

DsRed-Monomer.  This monomer contains 45 amino acid substitutions in native DsRed.  

This protein overcame the oligomerization seen with native DsRed, which has been 

confirmed by a number of methods including gel filtration chromatography that showed a 

single uniform peak.  The retention time obtained for this peak is consistent with a 28 
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kDa molecular weight.  The spectral and maturation properties of this protein are 

comparable to those of the commercially available tetrameric DsRed, DsRed-Express, 

also from Clontech.  This protein displays a fluorescence excitation and emission 

wavelength maxima of 556 nm and 586 nm respectively. 

The DsRed monomers generated by both directed evolution and site-specific 

mutagenesis of amino acid residues have an ideal set of properties for biological and 

analytical applications.  The high quantum yields and extinction coefficients of these 

monomers have allowed for further uses of this protein to be explored and developed.  

Additionally the faster maturation and lack of oligomerization seen with these monomers 

should be an advantage for their use as fusion tags.  
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Appendix B:  Derivation of Dissociation Constant Equation  

 

The equilibrium constant for dissociation is a function of the ratios of the 

dissociation and association rates, kon and koff.  kon is often limited only by diffusion, so 

koff is the discriminator for differential binding.  KD can be measured if the concentration 

of the protein-ligand complex ([PD]) and either the free concentration of the protein ([P]) 

or the ligand ([D]) can be measured experimentally, for example through titration.  In 

practice [PD] is rarely measured, rather a spectroscopic change, such as fluorescence, 

upon binding of ligand to protein is measured. 

 

• KD =  = 

€ 

koff
kon

    

Bound fraction of protein/ligand, from conservation of mass 

[P] = [PT] – [PD] 

[D] = [DT] – [PD] 

• KD = 

€ 

([PT ]− [PD])([DT ]− [PD])
[PD]

  

• 0 = [PT][DT] – (KD + [DT] + [PT]) [PD] + [PD]2 

• [PD] = 

€ 

(KD + [DT ]+ [PT ]) − (KD + [DT ]+ [PT ])
2 − 4[DT ][PT ]

2
 

 FP – Signal from free protein 

 FPD – Signal from the complex 

 F – Total fluorescence signal 

• F = FP[P] + FPD [PD] 

• F = Fp([PT] – [PD]) + FPD [PD] 
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• F = FP (1 – ) + FPD  

• F = FP  – FP  + FPD  

• F = FP + (FPD – FP)  

• F = FP + (FPD – FP)

€ 

(KD + [DT ]+ [PT ]) ± (KD + [DT ]+ [PT ])
2 − 4[DT ][PT ]

2[PT ]
 

•  =  = 

€ 

(KD + [DT ]+ [PT ]) ± (KD + [DT ]+ [PT ])
2 − 4[DT ][PT ]

2[PT ]
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