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ABSTRACT 

 

Feldmann, Jeanna Marie.  M.S., Purdue University, May 2013.   Discrimination of Color 
Copier/Laser Printer Toners by Raman Spectroscopy and Subsequent Chemometric 
Analysis.  Major Professors: John Goodpaster and Jay Siegel. 
 
 
 

Toner analysis has become an area of increased interest due to the wide 

availability of laser printers and photocopiers.  Toner is most often encountered on paper 

in questioned document analysis.  Because of this, it is important to develop methods that 

limit the interference of paper without damaging or destroying the document.  Previous 

research using Fourier transform infrared spectroscopy (FTIR) has differentiated toners 

based on their polymer resin components.  However, Raman spectroscopy and 

chemometric analysis are not typically used for the examination of this material.  

Raman spectroscopy is a popular tool for the chemical analysis of pigmented 

samples and was used to characterize cyan, yellow, and magenta toners.  Analyses were 

performed using a dispersive micro-Raman spectrometer equipped with a 785nm diode 

laser, a CCD detector, and an objective at 20X magnification.  One hundred samples of 

each color toner were collected.  Three different and separate methods were developed 

for cyan, yellow, and magenta toners on paper to optimize results.   Further analysis of 

the magenta toners was excluded due to a weak signal and significant paper interference.  

The data collected from the analyses of the blue and yellow toners was then processed 
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using a combination of statistical procedures, including principal component analysis 

(PCA), agglomerative hierarchal clustering (AHC), and discriminative analysis (DA).  

Ninety-six blue toners were analyzed by PCA and three classes of spectra were 

suggested.  Discriminant analysis showed that the three classes were well-differentiated 

with a cross-validation accuracy of 100% for the training set and 100% cross-validation 

accuracy for the external validation set.  Eighty-eight yellow toners were analyzed by 

AHC and four classes of spectra were suggested.  Discriminant analysis showed good 

differentiation between the classes with a cross-validation accuracy of 95.45% for the 

training set, but showed poor differentiation for the external validation set with a cross-

validation accuracy of 72%.  While these toners were able to be discriminated, no 

correlation could be made between the manufacturer, printer make and model, and the 

toner sample.    
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CHAPTER 1. INTRODUCTION 

 

 The purpose of this study was to develop a method to analyze color laser 

printer/copier toners in situ via Raman Spectroscopy.  A quick, non-destructive method 

that would limit any interference from the paper substrate was the primary focus.  The 

second aim of this study was then to discriminate these toners using multivariate 

statistical methods often referred to as chemometrics.     

 

1.1. Copier Toners and Their Analysis 
 

1.1.1. Background 

There are two main types of printer cartridges: inkjet and xerographic toner.  The 

latter is used in laser printer and xerographic copier processes.  These toners are the focus 

of this study.  Unlike inkjet cartridges which use liquid ink, toner cartridges use a dry 

powder containing a variety of components.  These components include a fusible 

copolymeric resin, iron oxide, carbon black, dyes or pigments, charge control agents, 

amorphous silica, paraffin wax, and surfactants.1,2  Each of these components serve a 

specific function in the xerographic printing process. 

Copolymeric resins make up anywhere from 65-80% of the mixture that is used in 

toner.  Exact formulations vary from manufacturer to manufacturer and are considered 
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trade secret; however, polyester, polystyrene, or polyacrylate are the base polymers of 

most of these copolymers.2  The role of these specially formulated copolymers is to act as 

a binder for the dyes, pigments, and other components needed to adhere toner to its paper 

substrate.    

Magnetite is an iron oxide that is used as a medium in toner to carry electrostatic 

charges necessary in the xerographic process.  Its use can also double as a pigment in 

black toner.2  Iron oxide is needed to carry the toner to the metal revolving drum, but it is 

not transferred or fused to the paper. 

Dyes and pigments are used to add color to the toner making up the familiar cyan, 

yellow, and magenta colors. Nigrosine, Victoria blue, methyl violet, pthalocyanines, azo-

pigments, acetamides, and quinacridones are some of the pigments known to be added to 

toner.  The charge control agents are often complexorganometallic compounds, which 

can also act as dyes, or quaternary ammonium salts (both aromatic and aliphatic).1 

Surfactants, amorphous silica, and paraffin wax are all components involved in 

the adhesion process.  Surfactants are usually fluorinated compounds used to help ease 

the surface tension between the paper and the toner.  Amorphous silica comes from 

naturally occurring silica.  Amorphous basically means that the compound is not in 

crystalline form and has a two dimensional molecular geometry.  It is exclusively used in 

toner.2  Paraffin wax is used in the xerographic process to provide a medium to fuse the 

toner onto the paper with the help of heat from the printing device.  It is either a colorless 

or white, in some cases translucent, wax composed of solid straight chain hydrocarbons.2 

Toner cartridges work by using three main parts: the toner hopper which holds the 

toner powder, the developer unit which is an assortment of negatively charged magnetic 
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beads, and a metal drum that the beads are attached to.  The revolving drum coats the 

entire sheet of paper with a positive electric charge.  Then a laser removes the positive 

charge in the places where the image is going to be printed, leaving behind a negatively 

charged electrostatic image.  Since the toner contains compounds that carry a positive 

charge, namely iron oxide, the negatively charged beads pick up the toner from the 

hopper.  As it is being rolled over the paper, the toner is attracted to the places where the 

laser created a negative image.  Before the page is printed it out, it goes through a pair of 

heated rollers called a fuser which melts the toner onto the page.2   

Unlike ink, which absorbs into the fibers of the paper, toner remains on the 

surface of the paper, due to the physical process described above.  In quadra-color 

(BCYM) printing processes, the colors are placed down in layers.  This can make it 

difficult to pinpoint a specific color toner in documents containing multiple colors.  

However, separation of colors can be seen along the edges of the images, making analysis 

of individual color toners possible when a microscopic aperture is employed. 

 

1.1.2. Current Methods of Analysis/Research 

  For general information, several reviews on the forensic analysis of photocopies 

have been written by Totty.3,4  Nondestructive techniques have become of particular 

focus for the analysis of forensic evidence with the use of optical techniques, such as 

infrared luminescence, infrared reflectance, and laser luminescence, for the examination 

of color photocopies.5-7  Scanning  electron  microscopy coupled with energy dispersive 

X-ray (SEM-EDX) has been used to study the surface morphology  and elemental  

composition  of  photocopy  toner  on documents.8,9  Other important analytical 
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techniques used in the analysis of toners are gas chromatography/mass spectrometry 

(GC/MS),10-17 laser ablation inductively coupled plasma time-of-flight mass spectrometry 

(LA-ICP-TOF-MS),18 infrared spectroscopy [IR, Fourier transform infrared 

(FTIR)],15,16,19-24 and diffuse reflectance  (DR).5,25-27  Several studies have also explored 

the use of Raman spectroscopy for the analysis of various pigments.28,29  Most recently, 

some studies have emerged examining color toners using Raman spectroscopy;30,31 

however, these studies involved a low number of samples, lacked chemometric analysis, 

and varied in parameters when compared with this work.   

A brief study using Differential Scanning Calorimetry  (DSC)  showed  potential  

usefulness  for thermal  analysis but  was  not  pursued  due  to  the  time-consuming  

nature  of  the technique.9  DSC was also initially considered in this study.  The aim was 

to sample the various toners in situ.  Minimal destruction to the original document 

occurred by the use of microplug samples.  However, the paper proved to be too large of 

an interferent in the thermogram.  An attempt to spectrally subtract the paper was 

explored, but proved unsuccessful.  The paper to toner ratio was too large, resulting in a 

minimal toner sample which could not be detected.  The sample size was limited to the 

sample holder, thus preventing a larger sample from being analyzed.  Extraction of the 

toner was also attempted using a variety of solvents, however not all components were 

able to be removed, limiting the information that could ultimately be obtained.  In 

addition, the extraction showed inconsistent results between documents and colors.  The 

extraction process required a large area of the document, destroying the sample in 

question.  The use of a microDSC with modulation capabilities was pursued and showed 

potential results.  The toner was able to be minimally detected on paper, as this 
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instrument had greater sensitivity and lower levels of detection.  However, this technique 

was ultimately unsuccessful due to the dominance of paper interference, its time 

consuming nature, and instrument unavailability.    

 

1.2. Chemometric Techniques for Data Analysis 

Chemometrics is the application of multivariate statistical analysis to chemical 

data, e.g. spectra and chromatograms.  Multivariate statistical analysis is becoming more 

common in forensic chemistry settings where data interpretation and comparison is 

standard practice.  Identifying patterns and interpreting differences in data is typically 

done visually by the analyst, but chemometrics has made this task more accurate, 

objective, and manageable.32  Chemometric analysis is particularly useful in analyses 

involving large data sets with large quantities of variables, as is the case with this study.  

Multivariate statistics have already been applied to many types of trace evidence since it 

was first introduced into the forensic discipline, including accelerants, inks, fibers, 

document examination, ammunition, gun powder, glass and paint.32  

As just mentioned, forensic scientists often rely on visual comparisons of spectra 

to determine the possibility of a common source of origin in known and unknown 

analyses.  However, this results in conclusions with no statistical basis, thus raising 

concerns of admissibility into a court of law.  These concerns were raised in Daubert v. 

Merrell Dow Pharmaceuticals and again brought forth by the National Academy of 

Sciences in their report: “Strengthening Forensic Science in the United States: A Path 

Forward.”33,34  Incorporating chemometric analysis into forensic casework can address 

two of the recommendations set forth in the NAS report.  Recommendation 3 addresses 
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the accuracy, reliability, and validity of trace evidence analysis, while recommendation 5 

addresses human observer bias and sources of human error that occur during trace 

evidence analysis.34   

Chemometric methods are utilized to (1) reduce the complexity of data, (2) sort 

and group variables of large data sets, and (3) investigate the dependence or correlation 

of variables with one another, thus predicting placement of unknown samples, or 

constructing hypotheses.35  Chemometric techniques are a highly effective  tool when 

large, complex data sets have been acquired.32  After preprocessing the data, three 

chemometric techniques were utilized in this study: Principal Component Analysis 

(PCA), Agglomerative Hierarchical Clustering (AHC), and Discriminant Analysis (DA).  

The underlying principles of some of these techniques are not new, but rather, have been 

around since the early 20th century.32  The theory behind PCA was first introduced by 

Pearson in 1901.  However, the algorithm for computing principal components was not 

introduced until 1933 by Hotelling.  In 1936, Fisher developed DA and Mahalanobis 

developed the distance measurement bearing his name which would be utilized in DA.32   

 

1.2.1. Preprocessing 

Preprocessing is defined as any mathematical manipulation of the data prior to the 

primary analysis.36  Preprocessing data is used to reduce or remove any irrelevant sources 

of variation that could cause confusion in the primary modeling tool and complicate data 

interpretation.  However, preprocessing can sometimes negatively impact the data, so 

techniques should be chosen and applied carefully based on known characteristics of the 

data.  Preprocessing techniques can be applied to either the samples or the variables in a 
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data set.  Four common preprocessing techniques were employed in this study: 

background correction, smoothing, baseline correction, and normalization. 

Background correction is used to keep variation in background levels from 

creating confusion during interpretation.  In Raman spectroscopy, fluorescence is often 

problematic and can dominate the background of the spectrum.32  Background correction 

can be accomplished in several ways.  The first way is to subtract a straight line or 

polynomial from the baseline of the spectrum.  A Savitzky-Golay algorithm exists for 

background correction.  This algorithm replaces each data point with the derivative of the 

smoothing polynomial at that given data point.  In addition, background correction can be 

done by replacing sample vectors with their first derivative.32,36  

Data smoothing can increase the signal-to-noise ratio by removing unnecessary 

noise from the spectrum.  However, smoothing can have adverse effects on a spectrum 

causing distortions in peak height and width, impair resolutions of peaks, and result in the 

loss of some features.32  Smoothing can take place in one of several ways.  Mean 

smoother, running mean smoother, running median smoother, and running polynomial 

smoother are discussed here.32,36  A mean smoother is used to decrease the number of 

variables in a sample vector.  Running mean and median smoothers cause “end effects” 

because the ends of the vector cannot be smoothed in the same manner as the other 

points.  These running smoothers are complementary and sometimes a combination of the 

two are used, as one is more effective at reducing noise and the other more effective at 

removing arbitrary spikes.  The running polynomial smoother, including the Savitsky-

Golay algorithm, is most commonly used and accomplishes its task by using a low order 

polynomial to fit to the points in a given window.  These methods all require a window 
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width, where the points inside the window are considered during the calculations.  

Therefore, the window width chosen is very important.36   

Baseline correction accounts for systematic variation and varying background 

levels that may cause confusion during interpretation.32,36  The sample vector can be 

written as a function equal to the signal of interest plus some background features, as 

presented in Equation 1.1, where r (̃x) is the signal of interest and the remaining 

coefficients are the baseline features. 

r(x)= r (̃x)+ α+ βx+ γx2+ δx3+ ⋯            Equation 1.1 

Therefore, the baseline can be accounted for by estimating the necessary coefficients and 

subtracting them from each element in the sample.  If an offset baseline is present, as is 

the case in this study, then Equation 1.1 becomes simplified as the signal of interest and 

the first coefficient term, α, demonstrated by Equation 1.2.   

r(x)= r (̃x)+ α    Equation 1.2 

Then the baseline can be accounted for by estimating α and subtracting it.32     

Normalization of spectra eliminates variations due to sample size, concentration, 

amount, and instrument response.32,36  It typically takes place after smoothing, 

background, and baseline correction are completed.  Normalization of spectra places all 

the samples in the data set on the same scale allowing for easier comparison.  Samples 

can be normalized to unit area or unit length.  The latter was performed in this study.  

Normalizing the data set to unit area is achieved by dividing each variable in the sample 

by the sum of the absolute value of all variables in the sample.  To normalize to unit 

length each variable in the sample is divided by the square root of the sum of all values 

squared.  Equation 1.3 represents normalizing to unit length.36,37-39 
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𝑥𝑛𝑜𝑟𝑚 = 𝑥𝑖

�∑ 𝑥𝑖
2𝑛

𝑖=1

   Equation 1.3 

Another approach is to normalize to the maximum value, which is accomplished by 

dividing each variable in the sample by the maximum value among all variables in the 

sample. 

    

1.2.2. Principal Component Analysis 

Principal component analysis is a dimensionality reduction technique that takes 

advantage of the fact that the variables may not be independent of one another, but are 

often correlated because of the underlying information.32  The original variables (e.g., 

wavenumbers) are reduced into a lower number of orthogonal and uncorrelated variables, 

referred to as principal components (PCs) or factor scores, that have maximum variance.  

The first principal component will account for the greatest variance in the data set.  The 

second principal component accounts for the next greatest variance in a direction 

perpendicular to the first PC.32  Each successive PC represents a portion of the remaining 

variance in the data set and is always orthogonal to the previous PC.  The total number of 

possible principal components is the smaller of the number of samples or variables.32  

The majority of the variance is captured in the first few PCs making those containing 

relatively small amounts of variance negligible.   

The information provided by PCA can be visualized using a scores plot and a 

factor loadings plot.  The scores plot, shown in Figure 1.1, plots the factor score of one 

PC against the factor score of another for each sample.  This allows one to view the 

information in multiple dimensions, sometimes revealing the separation or grouping of 
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samples based on similarities.  A factor loadings plot allows the analyst to view which 

variables contribute to the respective principal component.  The contribution of each 

variable to the new principal component can be defined as the cosine of the angle 

between the variable axis and the principal component axis.  These cosine values are 

called factor loadings, which can have the value between ±1.  The factor loadings are 

plotted against each variable (i.e., wavenumber).  When the value is positive, the variable 

and PC are positively correlated.  If the value is negative, then a negative correlation 

exists between the variable and the PC.  Areas where the value is close to zero have no 

correlation between the variable and the PC.38 

 

Figure 1.1. Example of a scores plot from PCA. 
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Principal components have eigenvalues associated with them that reflect the 

variance, percent variance, and cumulative variance for the principal component.  The 

eigenvalue refers to the sum of squares of each principal component or score.32  These 

eigenvalues can be used to determine the appropriate number of principal components to 

represent the data set in further analysis, such as DA.  The first method for this 

determination uses a scree plot which plots eigenvalues versus factor numbers (shown in 

Figure 1.2).  A sharp decrease in the eigenvalues is seen followed by a steady decline 

forming an approximate 108 degree angle.  This sudden change in direction indicates the 

number of significant principal components.  Anything to the right of this location is 

considered “factorial scree,” or debris.40  The second method is referred to as the Kaiser 

criterion, introduced in 1960 by Kaiser, which states that only factors with eigenvalues 

greater than one are significant.40  This method can often result in too many PC’s.  The 

third and final method is to set a value of cumulative variance (i.e. 95%) that must be 

retained.  The PC’s that explain 95% of the total variance are retained and all remaining 

PC’s are discarded.  The first method was chosen for this study because it resulted in a 

fewer number of factors compared to the other two methods, introducing less noise into 

subsequent discriminant analysis. 
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Figure 1.2.  Example of PCA scree plot (courtesy of Eric Reichard).  

 

PCA is one of the most common multivariate statistical methods used as it allows 

one to manage large, complex data sets by reducing the number of variables.  In addition, 

PCA provides information as to which variable contribute to the most variance in the data 

set.  PCA has been used in the analysis of counterfeit coins,41 electrical tape,42,43 

gasoline,44,45 hair dye,46 ignitable liquids,47 illicit drugs,48 soil,49 paints,50 and inks.51 

 

1.2.3. Agglomerative Hierarchical Clustering 

Cluster analysis is an unsupervised technique that examines the interpoint 

distances between all of the samples and represents that information in the form of a two-

dimensional plot called a dendrogram (shown in Figure 1.3).32  This analysis allows one 

to view groupings of individual samples, detect outliers, validate the data set, and 

evaluate any underlying behavior of the data set.  There are two main types of 
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hierarchical cluster analysis techniques: divisive (DHC) and agglomerative (AHC).35  

These techniques begin by determining the similarity or dissimilarity between objects 

(i.e., the distance of each sample to all the remaining samples).  In DHC all samples 

begin in a single cluster and are divided into smaller clusters until all samples are their 

own group.  The sample with the largest distance separates from the group first.35,52  In 

AHC, the opposite occurs with all samples beginning as their own group and the samples 

with the closest distance are clustered together until a single cluster remains.35,36,52  The 

latter was performed in this work.  

 

Figure 1.3. Example of an AHC dendrogram.  

 

The distances between objects can be measured as similarity or dissimilarity using 

one of several mathematical approaches.  Euclidean, Manhattan, and Mahalanobis 

Sample 1 
Sample 2 
Sample 3 
Sample 4 
Sample 5 
Sample 6 
Sample 7 
Sample 8 
Sample 9 

Sample 10 
Sample 11 
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distance are three ways to calculate the dissimilarity between samples.  Euclidean 

distance, or ruler distance, is based on the Pythagorean theorem and is calculated using 

Equation 1.4, where (x-y)’ is the transpose of the matrix (x-y) and dxy is the distance 

between them.32,35,38  The smaller the value of dxy, the more similar the two samples are.38 

𝑑𝑥,𝑦 =  �(𝑥 − 𝑦)′(𝑥 − 𝑦)                         Equation 1.4 

Euclidean distance is the most common method utilized and the one used in this study.  

While Euclidean distance represents the length of the hypotenuse of a right triangle, 

Manhattan distance represents the distance along the other two sides of the triangle, thus 

always greater than Euclidean distance.38,39  Equation 1.5 represents the Manhattan 

distance.40 

𝑑𝑥,𝑦 =  ∑ |𝑥𝑖 − 𝑦𝑖|𝑖                               Equation 1.5 

The Mahalanobis distance is the final method which can be used to calculate 

dissimilarity.  This method, unlike the other two, takes into account that some variables 

may be correlated and therefore uses the inverse of the variance-covariance matrix as a 

scaling factor.  It is calculated according to Equation 1.6 where C is the variance-

covariance matrix.38,39  

𝑑𝑥,𝑦 =  �(𝑥 − 𝑦)𝐶−1(𝑥 − 𝑦)′                      Equation 1.6 

 However, this method is inappropriate if the number of variables exceeds the number of 

samples.  In addition to these three methods of determining dissimilarity, there are 

several other methods to determine similarity not discussed here.38,39   

 Once the distance is calculated, the samples are linked together using one of 

several methods.  These methods include, but are not limited to, nearest neighbor, 
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furthest neighbor, and Ward’s method.  Nearest neighbor, or single linkage, links clusters 

based on the distance between the two closest samples of each respective group.  Farthest 

neighbor, or complete linkage, links clusters based on the distance between the two 

farthest members of each group.53  Ward’s method, the method used in this work, seeks 

to minimize the “loss of information,” or an increase in the error sum of squares, when 

linking two clusters.  An error sum of squares is determined by measuring the sum of 

squared deviation of each sample from the mean of the cluster.  This method must 

consider all possible linkages of clusters during every step and the two clusters whose 

linkage results in the smallest sum of squares are linked.38,39   

 Overall, AHC is a valuable technique for initially analyzing a large data set for 

relationships between samples based on either similarity or dissimilarity.  However, AHC 

does not provide information about which variables have the greatest influence on these 

relationships.  Cluster analysis, including the AHC method, has previously been applied 

to the analysis of counterfeit coins,41 electrical tape,42,43 hair dye,46 lighter fuel,54 illicit 

drugs,48 soil,49,55 paint,50 pen ink,51 and polymers.56  

 

1.2.4. Discriminant Analysis 

Linear discriminant analysis, also called canonical variates analysis, is a 

dimensionality reduction technique as well as a pattern recognition technique.  DA is a 

supervised technique because knowledge of group membership or class for each sample 

is required.57  Similar to PCA, in which the sum of squares is maximized, the criterion 

maximized by DA is the Fisher ratio.  This criterion, first described by Fisher, is the ratio 

of the variance between groups (i.e., separation between groups) divided by the variance 
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within groups (i.e., experimental variability among spectra belonging to the same 

group).32 

In DA, a new set of axes that best separates data into groups is created, placing 

members of the same group as close together as possible while moving the groups as far 

apart from one another as possible.32,38  These discriminant axes, or canonical variates 

(CVs), are linear combinations of the original features as shown in Equation 1.7.  The 

new axes are defined by 𝑓𝑖, while �̅�𝐴 𝑜𝑟 𝐵 represent the centroids of the classes, 𝑥𝑖′ is a 

row vector corresponding to sample i, and 𝐶𝐴𝐵 is the pooled variance-covariance matrix 

for groups A and B.   

𝑓𝑖 = (�̅�𝐴 − �̅�𝐵)𝐶𝐴𝐵−1𝑥𝑖′                           Equation 1.7 

This matrix is calculated according to Equation 1.8 where 𝑁𝐴 is the number of samples in 

group A and 𝑁𝐵 is the number of samples in group B.  The calculation of 𝐶𝐴𝐵 is for two 

groups but this can be expanded if more than two groups are present in the data.   

𝐶𝐴𝐵 =  (𝑁𝐴−1)𝐶𝐴+(𝑁𝐵−1)𝐶𝐵
(𝑁𝐴+𝑁𝐵−2)

                     Equation 1.8 

The new axes can be plotted against one another to produce an observations plot as 

shown in Figure 1.4.  The number of samples must exceed the number of variables so that 

the variance-covariance matrix can be inverted.32,57  Therefore, PCA often precedes DA 

to reduce the number of variables.  In addition, the Mahalanobis distance from the sample 

to the centroid of any given group is calculated.  Samples are classified into groups based 

on the smallest distance value. 
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Figure 1.4.  Example of an observations plot from DA.    

 

 Once these calculations have been performed and samples classified, the 

classification accuracy is tested by cross-validation.  Cross-validation determines the 

probability of the sample belonging to each of the groups by removing each sample in 

turn from the data set, creating a classification rule, and predicting the classification of 

the sample.32  There are several ways to carry out cross-validation: resubstitution, hold-

out, and leave-one out method.  In resubstitution, the complete data set is employed as a 

training set to develop a classification procedure based on the known class membership 

of each sample.  The class membership of every sample in the data set is then predicted 

by the model and the accuracy of correct classification determined.57  The hold-out 

method partitions the available data into two portions: a training set for development of 

the classification model, and a test set for prediction of classification.  By separating the 

data used to build the classification model from the data used to evaluate its performance, 
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the estimate of error is unbiased.57  The leave-one-out method temporarily deletes a 

sample from the data set, a classifier is built from the training set of remaining 

observations, and the model is used to predict the group membership of the deleted 

sample.  This is then repeated for each sample in the data set resulting in a nearly 

unbiased estimate of classification accuracy.57  Each of these methods has its drawbacks 

which should be considered when selecting a method.   

DA has been used for the analysis of electrical tape,42,43 gasoline,58 hair dye,46 

soil,49 pen ink,51 and tire rubber.59  
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CHAPTER 2. RAMAN SPECTROSCOPY 

 

2.1. Review of Raman Spectroscopy 

Raman spectroscopy is a vibrational spectroscopic technique based on inelastic 

scattering of monochromatic light, usually from a laser source.  Inelastic scattering means 

that the frequency of photons in monochromatic light changes upon interaction with an 

analyte.  In a Raman experiment, photons of the laser light are absorbed by the sample 

and then reemitted.  The frequency of the reemitted photons is shifted up or down in 

comparison with the original monochromatic frequency, which is called the Raman 

effect.  This shift provides information about vibrational, rotational and other low 

frequency transitions in molecules.  Raman spectroscopy can be used to study solid, 

liquid and gaseous samples.60 

 The Raman effect is based on molecular deformations in the electric field 

determined by molecular polarizability.  The polarizability measures the ease with which 

the electron cloud around a molecule can be distorted.61  Scattered light arises from three 

different scattering phenomena: Rayleigh, Stokes, and anti-Stokes.  Rayleigh scattering is 

a form of elastic scattering, while Stokes and anti-Stokes are forms of inelastic scattering.  

A molecule absorbs a photon and is excited from the ground state to a virtual excited 

state.  Rayleigh scattering occurs when the excited molecule returns back to the same 

basic vibrational state and emits light with the same frequency as the excitation source.  If 
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the final vibrational state of the molecule is more energetic than the initial state, then the 

emitted photon will be shifted to a lower frequency in order for the total energy of the 

system to remain balanced.  This shift in frequency is designated as a Stokes shift.  If the 

final vibrational state is less energetic than the initial state, then the emitted photon will 

be shifted to a higher frequency, and this is designated as an anti-Stokes shift.  This is 

illustrated in Figure 2.1. 

 

 

 

 

 

 

Figure 2.1. Schematic demonstrating formation of Stokes and anti-Stokes lines.62 

 

 Raman spectroscopy has the advantage of being a quick, non-destructive 

technique requiring only a small sample size.  This makes Raman an ideal technique for 

forensic applications where preservation of evidence is crucial.  Sample preparation is 

often minimal with highly reproducible spectra.  Raman is only hindered by its low 

sensitivity and fluorescence interference.  The fluorescence can sometimes be controlled 

by increasing the wavelength of the exciting laser.  Caution should also be taken as the 

laser can be destructive to some samples at high power levels.   
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2.2. Blue Toners 

 

2.2.1. Materials and Methods 

 

2.2.1.1. Instrumental Analysis 

A Foster and Freeman FORAM Raman Spectral Comparator (Foster and 

Freeman, Worcestershire UK) outfitted with a 30mW, 785nm laser and adjustable power 

source was used to acquire the data.  The FORAM can be run at 100%, 25%, and 10% 

laser power and has approximately 8cm-1 resolution.  One hundred blue toner samples 

affixed to non-standardized paper were obtained from the United States Secret Service 

library.  This library was created with the majority of samples being obtained from 

Original Equipment Manufacturer (OEM) printers.  The toner was sampled by obtaining 

printouts from various printers.  The printouts were assigned to the printer make and 

model; however, the cartridge number was not recorded.  Therefore, it cannot be 

guaranteed that a non-OEM cartridge was used in the OEM printer. 

The samples were provided as two fifty-sample sets.  The first set contained 

various sized cutouts ranging from test strips to pictures and was used as a training set.  

These samples were stored in plastic page protectors numbered accordingly within a 

cardboard envelope.  The second set contained 4mm circular hole punches taken from 

either a test strip or a picture.  The hole punches were affixed to individual glass 

microscope slides using double sided tape, numbered accordingly, and stored in a 

microscope box.  Both sets were stored away from light at a room temperature fluctuating 

between 20-25°C.   
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A method was developed to sample the toner directly on the paper substrate 

without interference from the paper.  The sample was exposed to the 785nm laser for 15 

scans at 9 seconds each with the laser power at 10%.  A range from 400-2000 cm-1 was 

sampled with an approximate resolution of 8 cm-1.  Three replicates were taken for each 

sample at locations as distant from one another as possible.  Four of the original samples 

were deemed unsuitable for analysis resulting in a final total of ninety-six samples.  

Figure 2.2 illustrates the lack of interference from the paper in the toner samples.  One 

minor peak from the paper can be seen in the toner spectrum near 1100 cm-1.  However, 

this peak appears in every spectrum in the same manor allowing it to be negated in 

further analysis.  All spectra were found to be highly reproducible within a sample as 

seen in Appendix A. 
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Figure 2.2. Spectral Comparison illustrating lack of paper interference in blue toner 
spectrum. 
 
 
 
2.2.1.2. Data Analysis 

Data Analysis was performed using FORAM and XLSTAT2010 (Addinsoft, Paris 

France) software.  All spectra were background corrected and smoothed in the FORAM 

software, then exported to Excel 2010 (Microsoft Corporation, Redmond WA).  Baseline 

subtraction was then performed using the average of the baseline between 1800 and 2000 

cm-1.  The final step of preprocessing was normalization by the square root of the sum of 

squares.  This data was then analyzed by PCA and AHC in XLSTAT2010.  DA was then  
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performed using the data from PCA.  Seven principle components were used based on the 

scree plot.  Classes were then assigned to each sample using the observations plot from 

PCA.    

 

2.2.2. Results and Discussion 

 

2.2.2.1. Statistical Results 

The PCA observations plot for blue toners analyzed by Raman spectroscopy is 

shown in Figure 2.3 below.  PCA analysis indicates three main classes based on plotting 

the observations according to the first two principal components, which account for 

39.36% of the total variance in the sample set.  Further separation could occur when more 

principal components are examined in additional dimensions.  However, the use of 

additional dimensions does not provide any clear separation that would allow all three 

replicates to remain in the same class.  This is necessary to account for intra-sample 

variability, therefore a conservative three class system was chosen.     
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Figure 2.3. Observations plot from PCA for the blue toners with three groups/classes 
shown. 
 
 

DA was performed using the data gained from PCA.  Table 2.1 shows the 

eigenvalues relevant to this study.  A number of principal components had to be selected 

to perform DA.  To determine the appropriate number, the scree plot shown in Figure 2.4 

was utilized.  Seven principal components with an approximate variance of 70% were 

decided upon.  To meet or exceed 95% cumulative variance, 52 principal components 

would have been required.  The Kaiser criterion also resulted in the need for 52 principal 

components. 
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Table 2.1. Eigenvalues and variability associated with each principal component (PC). 
Principal Component Eigenvalue Variability (%) Cumulative (%) 

PC1 (F1) 142.322 22.203 22.203 

PC2 (F2) 109.991 17.159 39.362 

PC3 (F3) 62.786 9.795 49.158 

PC4 (F4) 50.829 7.930 57.087 

PC5 (F5) 41.901 6.537 63.624 

PC6 (F6) 24.093 3.759 67.383 

PC7 (F7) 16.051 2.504 69.887 

PC8 (F8) 14.529 2.267 72.153 

PC9 (F9) 12.567 1.961 74.114 

PC10 (F10) 11.450 1.786 75.900 

PC11 (F11) 9.078 1.416 77.316 

PC12 (F12) 8.381 1.308 78.624 

PC13 (F13) 7.993 1.247 79.871 

PC14 (F14) 6.778 1.057 80.928 

PC15 (F15) 6.023 0.940 81.868 

PC16 (F16) 5.304 0.827 82.695 

PC17 (F17) 5.064 0.790 83.485 

PC18 (F18) 4.831 0.754 84.239 

PC19 (F19) 4.240 0.661 84.900 

PC20 (F20) 3.792 0.592 85.492 

PC21 (F21) 3.683 0.575 86.067 
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PC 22 (F22) 3.414 0.533 86.599 

PC23 (F23) 3.251 0.507 87.106 

PC24 (F24) 3.056 0.477 87.583 

PC25 (F25) 2.906 0.453 88.036 

PC26 (F26) 2.850 0.445 88.481 

PC27 (F27) 2.679 0.418 88.899 

PC28 (F28) 2.431 0.379 89.278 

PC29 (F29) 2.349 0.366 89.645 

PC30 (F30) 2.283 0.356 90.001 

PC31 (F31) 2.128 0.332 90.333 

PC32 (F32) 2.001 0.312 90.645 

PC33 (F33) 1.959 0.306 90.951 

PC34 (F34) 1.889 0.295 91.245 

PC35 (F35) 1.851 0.289 91.534 

PC36 (F36) 1.800 0.281 91.815 

PC37 (F37) 1.689 0.264 92.078 

PC38 (F38) 1.656 0.258 92.337 

PC39 (F39) 1.563 0.244 92.581 

PC40 (F40) 1.526 0.238 92.819 

PC41 (F41) 1.485 0.232 93.050 

PC42 (F42) 1.450 0.226 93.277 

PC43 (F43) 1.373 0.214 93.491 

PC44 (F44) 1.352 0.211 93.702 
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PC45 (F45) 1.251 0.195 93.897 

PC46 (F46) 1.220 0.190 94.087 

PC47 (F47) 1.175 0.183 94.271 

PC48 (F48) 1.127 0.176 94.446 

PC49 (F49) 1.101 0.172 94.618 

PC50 (F50) 1.047 0.163 94.781 

PC51 (F51) 1.014 0.158 94.940 

PC52 (F52) 0.990 0.155 95.094 

 

 

 

Figure 2.4. Scree plot of principal component factor scores F1-F50 for blue toners. 
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Figure 2.5 shows the results of DA using the first seven principal components and 

three classes based on the PCA results.  DA resulted in 100% of the between class to 

within class variance accounted for in two dimensions.  The three classes are completely 

separate with no overlap between the confidence ellipses.  Due to this separation, the 

cross-validation results are exceptional.  This is seen in the confusion matrix in Table 2.2. 

The samples located along the diagonal indicate those correctly classified, while samples 

outside the diagonal were incorrectly classified.  Based on the three classes used, 100% 

of the samples were correctly classified.  Some samples can be seen outside of the 

confidence ellipses due to additional variability that can be seen toward the lower end of 

the spectrum, resulting from minor paper fluorescence.  These samples were not 

considered outliers, as this interference occurred in a region of the spectrum containing 

no pertinent information from the toner.    
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Figure 2.5. Observations plot from DA based on three classes of blue toners. 

 

Table 2.2. Confusion matrix for cross-validation results from DA based on three classes. 
From\To 1 2 3 Total % correct 

1 3 0 0 3 100.00% 

2 0 45 0 45 100.00% 

3 0 0 239 239 100.00% 

Total 3 45 239 287 100.00% 
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2.2.2.2. External Validation 

 Twenty-five of the original samples were randomly selected and run a second 

time as a blind external validation.  A random sampling tool within XLSTAT was used to 

select a representative sample of the original three classes.  DA treated the external 

validation samples as supplemental data and predicted their class membership.  The 

correct class was then determined by comparing this result to the original grouping of the 

sample.  The results are shown in Table 2.3.  100% of the external validation samples 

were correctly predicted and classified.  This is an exceptional result and is supported by 

the conservativeness of a three-class membership scheme.     

 

Table 2.3. Confusion matrix for the external validation results of the supplemental data 
from DA. 

From \ To 1 2 3 Total % correct 

1 3 0 0 3 100.00% 

2 0 12 0 12 100.00% 

3 0 0 60 60 100.00% 

Total 3 12 60 75 100.00% 

 

 

2.2.2.3. Formation of Classes 

 Chemometric analysis showed that there are three classes that contain reliably 

differentiable spectra.  The next step was to determine if the manufacturer information 

was influencing the formation of these classes.  Upon examining the printer make and 

model, no pattern between the classes emerged based solely on this information.  Table 
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2.4 shows known manufacturer information by class.  It is important to note that several 

manufacturers are interchangeable or compatible, (e.g. Canon and Kodak, Sharp and 

Ricoh, Konica and Minolta, and Okidata and Xerox).  For example, a Xerox cartridge can 

be used in an Okidata printer, therefore obtaining cartridge information is important.  

Several manufacturers can be found in more than one class, such as Canon, Kodak, IBM, 

Ricoh, Lexmark, and Xerox.  This could imply that manufacturer information may not be 

valuable for differentiating toners, or it may support the speculation that more than one 

composition is used within a manufacturer.   

The composition of the toner cartridges was examined next.  While most of the 

detailed information involving composition is proprietary, evidence from the MSDS 

sheets suggests that manufacturers use more than one composition depending on the 

printer.  Based on what we know about Raman, the spectra were finally examined to 

determine if the formation of these three classes was influenced by a difference in 

pigment within the composition.  Figure 2.6 shows the central object of each class 

determined by DA. 
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Table 2.4. Manufacturer information separated by class. 
Class 1 Xerox 

 
Class 2 Canon 

Kodak 
IBM 
Ricoh 
Lexmark 
Digital Colorwriter 
 

Class 3 Canon 
Kodak 
IBM 
Ricoh 
Lexmark 
Sharp 
HP 
Konica 
Minolta 
Mita 
QMS 
Panasonic 
Xerox 
Toshiba 
Tektronix 
Okidata 
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Figure 2.6. Blue toner central objects of each class determined by DA. 

 

 Copper phthalocyanine, Victoria blue, and azo pigments are all possible 

contributors to these three classes.  All three classes contain a band that can be assigned 

to an azo bond (-N=N-) or phenyl group at 1560 cm-1.  Other characteristic bands from 

these three pigments can be seen in Figure 2.6 above. 

 

2.2.3. Conclusions 

 Raman has proven to be an effective method of analyzing blue toner on paper.  

Sample preparation is minimal and nondestructive.  Spectra are also highly reproducible 

between replicates making this a quick and effective method of analysis. 
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 The chemometric analysis of the samples using PCA and DA resulted in 

significant results.  Three classes formed within the sample set with high internal and 

external validation accuracy.  Significant differences between the classes can be seen at 

approximately 700, 825, 950, 1100, 1300, 1450, and 1750 cm-1.  Analyzing the factor 

loadings plot provides information as to which spectral regions are contributing the most 

to each principal component and thus, which variables are being used to discriminate the 

classes.  

 

2.3. Yellow Toners 

 

2.3.1. Materials and Methods 

 

2.3.1.1. Instrumental Analysis 

Sampling and instrumental conditions were the same as described for the blue 

toners in section 2.2.1.1.  A method was developed to sample the toner directly on the 

paper substrate.  The sample was exposed to the 785nm laser for 15 scans at 10 seconds 

each with the laser power at 100%.  A range from 400-2000 cm-1 was sampled with an 

approximate resolution of 8 cm-1.  Three replicates were taken for each sample at 

locations as distant from one another as possible.  Due to interference from the paper, a 

blank area on the paper, front or back, was also sampled using the same parameters and 

method described above. 
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2.3.1.2. Data Analysis 

Data Analysis was performed using FORAM software and XLSTAT2010 

Addinsoft Software (Addinsoft, Paris France).  All spectra were background corrected 

and smoothed in the FORAM software, then exported to Excel 2010 (Microsoft 

Corporation, Redmond WA).  Baseline subtraction was then performed using the average 

of the baseline between 1830 and 1900 cm-1.  Spectral subtraction was then performed 

using R=A-X*B where A is the yellow toner data point, B is the paper data point, and X 

is the ratio of the paper peak to toner peak at 515 cm-1.  This peak was determined to be 

solely contributed by the paper in both spectra.  Some negative peaks were introduced 

into the spectrum as a result of this subtraction; therefore, the coefficient (X) was 

manually changed to the point of least negative contribution.  Figure 2.7 illustrates the 

substantial paper interference making spectral subtraction necessary.  An example of the 

spectrally subtracted data can be seen in Figure 2.8.  The resultant data was normalized 

by the square root of the sum of squares to prepare for chemometric analysis.  This data 

was then analyzed by PCA and AHC in XLSTAT.  DA was then performed using the 

data from both PCA and AHC.  Five principle components were used based on the scree 

plot. Classes were then assigned to each sample using the pre-assigned classes from 

AHC. 
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Figure 2.7. Spectral comparison illustrating the interference of paper in the yellow toner 
spectrum. 
 
 
 

 
Figure 2.8. Example of a yellow toner resultant spectrum after spectral subtraction of 
paper. 
 

Toner on Paper vs. Paper 

Resultant Spectrum of Yellow Toner after 
Spectral Subtraction 
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2.3.2. Results and Discussion 

 

2.3.2.1. Statistical Results 

 The AHC dendrogram for yellow toners on paper analyzed by Raman 

spectroscopy is shown in Figure 2.9 below.  AHC analysis suggests that there are four 

classes based on the location of the truncation line, as determined by a histogram of node 

positions.  Divisions at nodes to the right of the truncation line are most significant in 

establishing the number of classes.  AHC was performed on the spectrally subtracted data 

for each yellow toner sample.  The spectra of the central objects from AHC, shown in 

Figure 2.10, show several distinct differences between each class’ spectra.   

 

Figure 2.9. Dendrogram from AHC of yellow toner replicates forming four classes. 
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Figure 2.10. Central objects of the four yellow classes as determined by AHC. 

 

The spectrally subtracted data was analyzed by PCA followed by DA.  The 

observations plot from PCA yielded little useful information in determining classes; 

therefore, AHC was solely used for a classification scheme.  A number of principal 

components had to be selected to perform DA.  To determine the appropriate number, the 

scree plot shown in Figure 2.11 was utilized.  Five principal components with a 

cumulative variance of 64% were selected.  To meet or exceed 95% cumulative variance, 

46 principal components would have been required.  The Kaiser criterion would have 

resulted in the need for 52 principal components.  
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Figure 2.11. Scree plot of principal component factor scores F1-F35 for yellow toners. 

 

Figure 2.12 shows the results of DA using the first four principal components and 

four classes based on the PCA and AHC results.  DA resulted in 83.05% of the between 

class to within class variance accounted for in two dimensions.  Class four is completely 

separated from the other three classes; however, the overlap of the confidence ellipses of 

class one, two, and three resulted in a slightly lower cross-validation result.  This is seen 

in the confusion matrix in Table 2.5.  The samples located along the diagonal indicate 

those correctly classified, while samples outside the diagonal were incorrectly classified.  

Based on the four classes used, 95.45% of the samples were correctly classified. 
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Figure 2.12. Observations plot from DA based on four classes of yellow toners. 

 

Table 2.5. Confusion matrix for cross-validation results from DA based on four classes. 
From \ To 1 2 3 4 Total % correct 

1 129 6 0 0 135 95.56% 

2 0 59 3 0 62 95.16% 

3 0 3 43 0 46 93.48% 

4 0 0 0 21 21 100.00% 

Total 129 68 46 21 264 95.45% 
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2.3.2.2. External Validation 

Twenty-five of the original samples were randomly selected and run a second 

time as a blind external validation.  A random sampling tool within XLSTAT was used to 

select a representative sample of the original three classes.  DA treated the external 

validation samples as supplemental data and predicted which classes they would be 

grouped into.  The correct class was then determined by the grouping of the original 

sample.  The results are shown in Table 2.6.  72% of the external validation samples were 

correctly predicted and classified.  The only samples incorrectly classified came from 

group two, skewing the overall prediction accuracy.  Regardless, this is a poor result, 

making this model unsuitable for accurately discriminating yellow toners. 

 

Table 2.6. Confusion matrix for the external validation results of the supplemental data 
from DA. 

From \ To 1 2 3 4 Total % correct 

1 42 0 0 0 42 100.00% 

2 7 3 14 0 24 12.50% 

3 0 0 6 0 6 100.00% 

4 0 0 0 3 3 100.00% 

Total 49 3 20 3 75 72.00% 

 
 
 

2.3.3. Conclusions 

Raman analysis within the above parameters has proven to be an ineffective 

method of analyzing yellow toner on paper.  While sample preparation is minimal and 
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nondestructive, the spectra obtained were not highly differentiable when subjected to 

chemometric analysis.  However, the spectra did prove to be highly reproducible between 

replicates making this a quick and effective method of analysis.  An adjustment to the 

method’s laser wavelength could limit the paper interference and increase the signal 

response providing a more accurate statistical analysis.  This optimization is discussed in 

further detail in Chapter 4.   

 The chemometric analysis of the samples using PCA, AHC, and DA resulted in 

non-significant results.  Four classes formed within the sample set with high internal 

validation accuracy but poor external validation accuracy.  The paper proved to have too 

much interference in the spectrum producing confusing and uninterpretable results upon 

spectral subtraction and subsequent statistical analysis. 

 

2.4. Magenta Toners 

 

2.4.1. Materials and Methods 

Sampling and instrumental conditions were the same as described for the blue 

toners in section 2.2.1.1.  A method was developed and optimized to sample the toner 

directly on the paper substrate.  The sample was exposed to the 785nm laser for 35 scans 

at 10 seconds each with the laser power at 25%.  A range from 400-2000 cm-1 was 

sampled with an approximate resolution of 8 cm-1.  Three replicates were taken for each 

sample at locations as distant from one another as possible.  Due to a weak signal and 

interference from the paper, no usable data could be acquired with these parameters. 
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2.4.2. Conclusions 

 Raman analysis within the above parameters is ineffective in sampling and 

discriminating magenta toners on paper.  The weak signal from the toner is overwhelmed 

by the paper signal in the spectrum.  This is not surprising based on the wavelength of the 

laser.  Resonance Raman could prove to be a more effective technique for these samples.  

Raman, in general, is a quick, non-destructive sampling techniques requiring little to no 

sample preparation.  A minor adjustment in laser wavelength with optimization of the 

method described above could result in a stronger toner signal and subsequent 

discrimination using chemometric analysis.  
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CHAPTER 3. OVERALL CONCLUSIONS OF THE STUDY 

 

 Developing a method using Raman Spectroscopy that limited the interference of 

paper was successful for the blue toners; however, it was less successful for the yellow 

toners and completely unsuccessful for the magenta toners.  Minor adjustments to the 

parameters may yield more successful results and will be discussed in further detail in the 

following chapter.  Chemometric analysis also yielded valuable data for the blue toners 

suggesting a three class schematic.  After all the data was collected and analyzed in this 

study, it was important to determine what the individual classes represent.  Previous 

research has already suggested that the pigments within the toner are responsible for the 

Raman signal, as opposed to the polymer resins which are seen in infrared spectroscopy.1  

As previously stated, Victoria blue, copper phthalocyanine, and azo pigments and dyes 

are all possible contributors to these three classes.  Figure 3.1 shows the chemical 

structures of these pigments and dyes.  As for the yellow toners, while the paper 

interference was much more substantial, making accurate class determination difficult, 

possible contributors to these classes are acetamide and azo pigments.  Figure 3.2 shows 

the chemical structure of some of these pigments.  Further, more destructive, studies are 

needed to determine which pigments and dyes are truly present, including others that are 

not mentioned here.   
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Figure 3.1. Blue pigments (a). copper phthalocyanine, (b). victoria blue, (c). azo-pigment. 

Figure 3.2. Yellow pigments (a). acetamide, (b). azo-pigment. 

 

a. 
b. 

c. 

a. 

b. 
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The research conducted in this work demonstrates the discrimination ability 

chemometrics can provide to a large varied data set.  While no correlation between 

printer make, model, and cartridge number and toner could be determined, this 

instrumental technique can still be proven valuable in forensic case work.  An examiner 

may not be able to trace a particular toner to its source, but this analysis could assist in 

question versus known examinations allowing exclusions, especially when combined 

with a complementary technique such as IR. 

In a real world setting, a forensic document examiner would receive a questioned 

document and list of suspected printers.  The examiner would then collect a test strip 

from each suspected printer.  Each document would then be examined under a 

microscope to determine the presence of colored portions of the document.  Figure 3.3 

illustrates the separation of colors that can be seen from the individual color toner 

particles as they were melted to the paper.  Raman spectra can be collected from each of 

these colored areas on each document.  The samples can then be treated as a prediction 

set and analyzed using the already established chemometric models to determine class.  

The classification information gained for the unknown and knowns can then allow 

elimination or inclusion of each sample.  If more colors are present in the document, it 

will provide more discriminating information to allow exclusion of a known.  Table 3.1 

illustrates the various combinations based on the blue and yellow classification 

information.  A total of twelve combinations can be seen using only two toners.  The 

addition of the third toner (i.e. magenta) would only increase the number of possible 

combinations, thus increasing the discriminating power of this technique.  This method 
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provides a quick, non-destructive way to narrow the number of samples during an 

analysis before continuing onto other more time consuming and destructive techniques.  

 

Figure 3.3. Micro pictograph of colored documents under 20X magnification.  
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Table 3.1. Discrimination of samples using combined class information for each sample’s 
results utilizing two colors. 
 Blue    Yellow   
Class 

1 
Class 

2 
Class  

3 
 Class  

1 
Class  

2 
Class 

3 
Class 

4 
85 1 4 34 71  1 52 14 24 29 

 2 5 35 72  2 53 15 46 54 
 3 6 36 74  3 56 18 47 55 
 11 7 37 75  4 58 19 60 68 
 13 8 38 76  5 62 20 64 69 
 29 9 42 77  6 63 21 65 73 
 40 12 43 78  7 77 23 66 85 
 41 14 44 79  8 78 27 67  
 45 15 46 80  9 79 32 70  
 50 16 47 81  10 81 37 71  
 51 17 48 82  11 87 48 72  
 52 18 49 83  12 88 57 74  
 58 19 53 86  13 92 59 75  
 62 20 54 87  17 94 61 76  
 63 21 55 88  22 97 80 93  
 100 22 56 89  30 98 82   
  23 57 90  33 99 84   
  24 59 91  35 100 90   
  25 60 92  38  91   
  26 61 93  39  95   
  27 64 94  40  96   
  28 65 95  41     
  29 66 96  42     
  30 67 97  43     
  31 68 99  44     
  32 69   50     
  33 70   51     

 
Legend: 
            
Blue1 Blue2 Blue2 Blue2 Blue3 Blue3 Blue3 Blue3 Blue3    
Yell.4 Yell.1 Yell.4  Yell.1 Yell.2 Yell.3 Yell.4  Yell.1 Yell.2 Yell.4 
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CHAPTER 4. FUTURE RESEARCH AND RECOMMENDATIONS 

 

 This work has laid the groundwork for future research in this area.  Due to some 

of the shortcomings (i.e., lack of cartridge information, unavailability of various laser 

wavelengths, and lack of proportional representation of samples within each 

manufacturer), this work can be treated as a preliminary characterization.  The first 

recommendation is to acquire a data set with known history and parameters.  Make, 

model, and cartridge number should be recorded for each sample.  In addition to a printed 

test strip, the pure toner should be collected for comparison purposes.  Next, each sample 

should be collected on a variety of common printer and copier papers to account for any 

differences that may occur between paper types.  Multiple papers from the same batch 

and from varying batches for each paper type should also be used.  The laser printers 

chosen should contain a variety of manufacturers, cover a range of products within each 

manufacturer, and include the most common printer types.  Care should be taken to 

include an appropriate and consistent amount of samples from each manufacturer.  

Information should also be gathered on the fusing temperature used in each laser printer 

and how this affects compatible toner cartridges used on that respective printer, which are 

known to vary in composition.  Changing each of these parameters allows one to analyze 

and take into account real world variation.   
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 The second recommendation would be to use a different laser to collect spectra 

from the yellow and magenta toners.  Since we are evaluating the different pigments used 

in toners, resonance Raman should be employed.  Resonance Raman can amplify the 

signal intensity by 106 and allows for selectivity of the pigments and dyes by selecting a 

laser wavelength at or approaching the absorption line of the analyte.  For yellow toners, 

a 457nm or 473nm blue laser should be used.  For magenta toners, a 488nm or 514nm 

blue/green laser should be used.  A tunable dye laser that allows the analyst to change the 

specific wavelength would be more practical and beneficial in this type of analysis.  In 

addition, collecting reflectance spectra of each sample would assist in determining the 

true maximum absorbance and thus allow a more accurate laser wavelength selection to 

optimize results.  This also provides an additional variable for discrimination.  The main 

priority is to use a method that is non-destructive to the document, preserving its original 

state.  However, fluorescence can be a problem when using lasers approaching the lower 

end of the visible range.  Minor fluorescence was observed in some of our spectra in this 

study, this was most likely contributed by the paper in these samples.  If major 

fluorescence proves to be a problem with the toner samples, surfaced-enhanced resonance 

Raman (SERRS) should be considered.  Also, a 1064nm laser could be considered to 

avoid any fluorescence problems; however, the paper interference could possibly increase 

as the toner signal would be weaker than if resonance Raman was employed.   

 The third recommendation would involve extending the project to create a 

database of various currencies around the world.  Counterfeiting currency is a major issue 

with new techniques constantly surfacing.  Some of the latest counterfeiting techniques 

have involved using laser printers.  The ultimate goal would be to compile a database of 
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all the current printer toners on the market and be able to trace them back to a source 

printer.  However, this may be unpractical and difficult to maintain as new products are 

constantly being created.  Rather, composing a database of all the existing currencies 

from various countries would allow for an easy detection method of counterfeit bills.  

This would not require obtaining the specific inks, as this information is tightly controlled 

by each individual country.  The database would be composed of solely the spectra 

obtained from a range of banknotes or dollar bills to allow for a quick screening method 

of counterfeit currency.  Also, including the spectra of counterfeit currency that has 

already been recovered would assist in screening for new and different counterfeit bills 

on the market.  However, in building this database, any variation from bill to bill and 

variation that may occur over time should be studied.   

 Any future analysis on laser printer toners should take into consideration the 

degradation of samples that may occur from a variety of sources.  As most real world 

samples do not occur in perfect conditions, studying the effects degradation has on both 

the toner and paper is necessary.           
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Appendix A. Blue Toner Spectra by Raman Spectroscopy 

 

A.1 Training Samples 
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A.2 External Validation 
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A.3 External Validation Key 

 

External Validation Sample Original Sample 

EVB01 2-Canon 

EVB02 13-Lexmark 

EVB03 15-Mita 

EVB04 16-Ricoh 

EVB05 17-Ricoh 

EVB06 21-QMS 

EVB07 22-Panasonic 

EVB08 23-Xerox 

EVB09 28-Ricoh 

EVB10 31-Toshiba 

EVB11 36-Ricoh 

EVB12 42-Lexmark 

EVB13 43-Konica 

EVB14 46-Okidata 

EVB15 48-Ricoh 

EVB16 53-Canon CLC 800 

EVB17 58-Canon CLC 950 

EVB18 63-IBM Network Color Printer 

EVB19 66-Okidata C711 

EVB20 68-Hewlett Packard Color Laser Jet 5550 

EVB21 85-Xerox 1005 

EVB22 88-Xerox 5765/5760/5760ADF 

EVB23 94-Panasonic FP C1/FP C1XE 

EVB24 95-QMS MagiColor LX 

EVB25 96-Mita Ci 7600 
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Appendix B. Yellow Toner Spectra by Raman Spectroscopy 

 

B.1 Training Samples 
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B.2 External Validation 
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B.3 External Validation Key 

 

External Validation Sample Original Sample 

EVY01 4-Sharp 

EVY02 7-Hewlett Packard  

EVY03 10-Kodak 

EVY04 15-Mita 

EVY05 21-QMS 

EVY06 22-Panasonic 

EVY07 30-Xerox 

EVY08 33-Tektronix 

EVY09 35-Sharp 

EVY10 44-Mita 

EVY11 46-Okidata 

EVY12 48-Ricoh 

EVY13 52-Kodak Color Edge 1560   

EVY14 53-Konica 7728 

EVY15 57-Ricoh Savin SC 106   

EVY16 58-Canon CLC 950   

EVY17 63-IBM Network Color Printer   

EVY18 66-Okidata C711  

EVY19 69-Hewlett Packard Hummingbird  

EVY20 82-Tektronix Phaser 780  

EVY21 84-Ricoh Aficio Color 5000 Series  

EVY22 91-Mita Ci 7600  

EVY23 94-Panasonic FP C1/FP C1XE  

EVY24 95-QMS MagiColor LX  

EVY25 98-Kodak Color Edge  

 


