
Graduate School Form 
30 Updated 12/26/2015 

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled 

For the degree of 

Is approved by the final examining committee: 

To the best of my knowledge and as understood by the student in the Thesis/Dissertation  
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), 
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of  
Integrity in Research” and the use of copyright material. 

Approved by Major Professor(s): 

Approved by: 
   Head of the Departmental Graduate Program     Date 

Aimee Lynn Rinas

Advancing the Applicability of Fast Photochemical Oxidation of Proteins to Complex Systems

Doctor of Philosophy

Lisa Jones
Chair

Millie Georgiadis
  

Eric Long
   

Nicholas Manicke

Lisa Jones

Eric Long 7/20/2016



ADVANCING THE APPLICABILITY OF FAST PHOTOCHEMICAL OXIDATION

OF PROTEINS TO COMPLEX SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Aimee Lynn Rinas

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

Indianapolis, Indiana



ii

To My family and friends for your unending love and support, and for keeping my

life balanced throughout this endeavor.

To Shilpi for walking in front of me when I needed guidance, with me when I

needed support and encouragement, and behind me when I needed you to have

my back. You are my favorite thing, my very favorite thing.



iii

ACKNOWLEDGMENTS

First and foremost, I would like express my gratitude to my mentor, Dr. Lisa

M. Jones, for accepting me into her group, and her guidance and dedication in my

development as a scientist. It was an honor to your first PhD student. Furthermore,

I am extremely grateful for her unending dedication to mentoring underprivileged

and underrepresented minority students. The experience I gained working working

with the high school and undergraduate students she brought into our group each

summer is immeasurable. Having the opportunity to mentor these students has

had a profound effect on my scientific and personal growth. Along with Dr. Jones,

I want to acknowledge Elmer Sanders and his commitment to the Indiana CTSI

Project SEED and Project STEM. I would also like to all of the members of the

Jones group for being an excellent sounding board and their willingness to help. I

truly enjoyed my time working with them.

In addition, I want to acknowledge my collaborators at IUPUI; Dr. Amber Mosley

for her guidance with MudPIT and Seth Winfree for his assistance with the fluores-

cence imaging of the in cell FPOP flow cell.

Lastly, I gratefully acknowledge the members of my Ph.D. committee; Dr. Millie

Georgiadis, Dr. Eric Long, and Dr. Nick Manicke. Thank you for your insightful

comments and making my defense a gratifying experience.



iv

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Aims: An Upgraded FPOP Method . . . . . . . . . . . . 1

1.1.1 Aim 1: Expedited Data Analysis . . . . . . . . . . . . . . . 2
1.1.2 Aim 2: Increased FPOP Identifications . . . . . . . . . . . . 2
1.1.3 Aim 3: An Updated Flow System . . . . . . . . . . . . . . . 2

1.2 Principles of Protein Analysis by Mass Spectrometry . . . . . . . . 3
1.2.1 Electrospray Ionization Mechanism . . . . . . . . . . . . . . 4
1.2.2 Protein Identification by Mass Spectrometry . . . . . . . . . 5

1.3 Protein Structure Characterization . . . . . . . . . . . . . . . . . . 8
1.3.1 High Resolution Structural Characterization . . . . . . . . . 8
1.3.2 Low Resolution Structural Characterization . . . . . . . . . 9

1.4 Protein Structural Characterization by Mass Spectrometry . . . . . 10
1.4.1 Chemical Cross-linking . . . . . . . . . . . . . . . . . . . . 11
1.4.2 Protein Footprinting . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Hydroxyl Radical-Mediated Protein Footprinting . . . . . . . . . . . 13
1.5.1 Methods for Generating Hydroxyl Radical Labels for Foot-

printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5.2 Fast Photochemical Oxidation of Proteins . . . . . . . . . . 14

1.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 ANEFFICIENTQUANTITATIONSTRATEGYFORHYDROXYLRADICAL-
MEDIATED PROTEIN FOOTPRINTING USING PROTEOME DISCOV-
ERER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 Protein Expression and Purification . . . . . . . . . . . . . 26
2.2.3 Oxidative Labeling . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Proteolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



v

Page
2.2.5 LC-MS/MS Acquisition . . . . . . . . . . . . . . . . . . . . . 28
2.2.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The Proteome Discoverer Analysis Strategy . . . . . . . . . . . . . 30
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Peptide Level FPOP Oxidation of GCaMP2 . . . . . . . . . 32
2.4.2 Residue Level FPOP Oxidation of GCaMP2 . . . . . . . . . 38

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 FAST PHOTOCHEMICAL OXIDATION OF PROTEINS COUPLED TO
MUDPIT: EXPANDING FOOTPRINTING STRATEGIES TO COMPLEX
SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.2 Oxidative Labeling . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.3 Proteolysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2.4 LC-MS/MS Acquisition . . . . . . . . . . . . . . . . . . . . . 56
3.2.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 LC-MS Method Comparison . . . . . . . . . . . . . . . . . . 58
3.3.2 Increases in Identifications by MudPIT . . . . . . . . . . . . 59
3.3.3 Properties of Peptides Identified by MudPIT . . . . . . . . . 62
3.3.4 MudPIT as a Method for Megadalton Protein Complexes . 64

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 DEVELOPMENT OF A MICRO-FLOW SYSTEM FOR IN CELL PROTEIN
FOOTPRINTING ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Experimental Section . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2.2 Flow Cell Construction . . . . . . . . . . . . . . . . . . . . . 74
4.2.3 Oxidative Labeling . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.4 Cell Lysis and Proteolysis . . . . . . . . . . . . . . . . . . . 76
4.2.5 LC-MS/MS . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2.6 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2.7 Fluorescence Imaging . . . . . . . . . . . . . . . . . . . . . 78

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Flow Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.2 IC-FPOP Using the Flow System . . . . . . . . . . . . . . . 84



vi

Page
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Appendix: Flow Assembly for Cells Patent Application . . . . . . . 95

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
PUBLICATIONS

An Efficient Quantitation Strategy for Hydroxyl Radical-Mediated Protein
Footprinting using Proteome Discoverer . . . . . . . . . . . . . . . 120

Fast Photochemical Oxidation of Proteins Coupled to Multidimensional
Protein Identification Technology (MudPIT): Expanding Footprinting
Strategies to Complex Systems . . . . . . . . . . . . . . . . . . . . 130



vii

LIST OF TABLES

Table Page

1.1 Residues and Associated Masses . . . . . . . . . . . . . . . . . . . . 7

1.2 Calculating Fragment Ion Masses . . . . . . . . . . . . . . . . . . . . 8

2.1 Workflow Modification Distribution . . . . . . . . . . . . . . . . . . . . 32

2.2 GCaMP2 Oxidized Peptides . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Rate Constants and Relative Intrinsic Activities . . . . . . . . . . . . . 35

2.4 GCaMP2 Oxidized Residues . . . . . . . . . . . . . . . . . . . . . . . 39

2.5 Comparison of CaM Domain PD Oxidation to Previously Published Data 45

3.1 Oxidatively Modified Residues Identified . . . . . . . . . . . . . . . . . 61



viii

LIST OF FIGURES

Figure Page

1.1 Diagram of Electrospray Ionization: 1. Liquid jet emitted from Taylor
cone. 2. Solvent evaporation from droplets. 3. Coulomb repulsion ex-
ceeding the surface tension of the droplet triggers droplet fission. Repro-
duced with permission under the Creative Commons Attribution-Share
Alike 4.0 International License.22 . . . . . . . . . . . . . . . . . . . . . 4

1.2 FPOP Schematic where UV laser pulses split H2O2 forming the ·OH that
label the solvent exposed areas of the proteins. . . . . . . . . . . . . . 14

2.1 PD workflow developed for FPOP analysis displaying the search hier-
archy with Mascot and Sequest HT search levels (dark orange nodes),
target-decoy validation (tan nodes), and precursor peak areas are cal-
culation (pink node). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Comparison of PD method to PM method showing the sequence cov-
erage (a) with PD total and footprinting coverage in blue and green, re-
spectively, and PM total and footprinting coverage in red and yellow,
respectively, as well as the agreement between the fold change (b) and
correlation (c). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Correlation between SASA and log PF for both peptide level (a, b, and
c) and residue level (d, e, and f) analysis for the CF state (a and d) and
the CB monomeric (b and e) and dimeric (c and f) states. . . . . . . . 37

2.4 Fold change between the CF and CB states for the 22 oxidized peptides
identified by the PD method. . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Conformational difference detected in the two residues in the M13-GFP
linker with an overlay of the calcium free (light gray and blue, PDB ID:
3EKJ) and the calcium bound structures (dark gray and red, PDB ID:
3EK4)(a) and the oxidation and the SASA of the two residues for each
conformation (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



ix

Figure Page

2.6 Inter-domain contacts between GFP (gray) and the N-terminal lobe of
CaM (light purple) in the CF conformation (a) and structural changes in
the CB conformation (b) with residues with higher oxidation in the CB
conformation colored blue, and a bar graph (c) of the oxidation level of
the highlighted residues. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 MS/MS spectra of FPOP modifications on D194 of peptide 185-199 with
an ambiguous assignment of a decarboxylation on D194 (a) that was re-
moved by the strict filtering scheme, and the same peptide and location
with a loss of CO (b) that pass the filters with fragment ions that validate
the oxidation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Visual comparison of IDs between MudPIT (red) and 1D-DDA (blue)
methods by proteins (top), peptides (middle), and oxidatively modified
peptides (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Distribution of the intensities of PSMs identified by MudPIT (red) and
1D-DDA (blue). (a) The spread of intensities is demonstrated in the
box-and-whisker plot with the box lines marking the upper median and
lower quartiles, and the whiskers marking the complete range. (b) The
frequency of the distributions of intensities is displayed in a histogram. 63

3.3 Two perspectives of the structural location of MudPIT determined FPOP
oxidation levels mapped to a yeast 80 s ribosomal crystal structure,
4V6I20. The lowest oxidation levels are in blue going to the highest
in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Fractional SASA values versus Log PF values ofMudPIT identified residues
of RACK1, chain Aa of the 4V6I20 ribosomal structure, illustrating the
linear relationship between the values. . . . . . . . . . . . . . . . . . . 66

4.1 Hydrodynamic focusing of particles. . . . . . . . . . . . . . . . . . . . 73

4.2 IC-FPOP Flow Cell Schematic: Blue arrows indicate flow direction, and
amber lines represent polyimide coated fused capillary tubing (not to
scale). The cellular solution and hydrogen peroxide are mixed in a tee
to prevent breakdown by endogenous catalase. The capillary containing
the cellular analyte is mounted so that the buffer surrounds the capillary,
creating a sheath to centrally focus the cells. Optimal conditions were
observed with a 10 to 1 sheath buffer to cellular analyte ratio. . . . . 75

4.3 Flow system average intensity projection showing the locations of the
sheath buffer(green) and cellular analyte (red) as they flow through the
flow cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



x

Figure Page

4.4 3D average intensity heat map with the sheath on top and cellular ana-
lyte on the bottom. Lowest intensity is blue and highest is red. . . . . 81

4.5 Maximum intensity heat map showing the locations of all detected cells.
A cutout of Figure 4.3 is shown on the bottom to illustrate overlap. . . 82

4.6 Cross-sectional YZ stack demonstrating 3D hydrodynamic focusing (a)
and location of cells (b, red) with the sheath and cellular analyte buffer
in gray for ease in viewing cells. . . . . . . . . . . . . . . . . . . . . . 83

4.7 Visual comparison of the oxidized proteins identified with (blue) and with-
out (red) using the flow system (a) and the flow system biological repli-
cates (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Amino acid distribution of oxidation events relative to its overall abun-
dance in all the proteins identified (a) and the average occurrence of
the residue being solvent exposed. . . . . . . . . . . . . . . . . . . . . 87

4.9 Hierarchical network of oxidized proteins identified using the flow system
mapped to the generic GO Slim ontologies for cellular components with
the nodes sized by the percentage proteins. . . . . . . . . . . . . . . . 88

4.10 Oxidation levels of 7 actin peptides (a) and correlation of residue level
log protection factors to the relative SASA of open (1HLU) and tight
(2BTF) states of actin (b). . . . . . . . . . . . . . . . . . . . . . . . . . 91



xi

ABSTRACT

Rinas, Aimee Lynn Ph.D., Purdue University, August 2016. Advancing the Appli-
cability of Fast Photochemical Oxidation of Proteins to Complex Systems. Major
Professor: Lisa M. Jones.

Hydroxyl radical protein footprinting coupled with mass spectrometry has be-

come an invaluable technique for protein structural characterization. In this method,

hydroxyl radicals react with solvent exposed amino acid side chains producing sta-

ble, covalently attached labels. Although this technique yields beneficial informa-

tion, the extensive list of known oxidation products produced increases the complex-

ity of identifying and quantifying oxidation products. The current methods available

for quantifying the extent of oxidation either involve manual analysis steps, or limit

the number of searchable modifications or the size of sequence database. This cre-

ates a bottleneck which can result in a long and arduous analysis process, which

is further compounded in a complex sample. In addition to the data complexity, the

peptides containing the oxidation products of hydroxyl radical-mediated protein foot-

printing experiments are typically much less abundant than their unoxidized coun-

terparts. This is inherent to the design of the experiment as excessive oxidationmay

lead to undesired conformational changes or unfolding of the protein, skewing the

results. Thus, as the complexity of the systems studied using this method expands,

the detection and identification of these oxidized species can be increasingly diffi-

cult with the limitations of data-dependent acquisition (DDA) and one-dimensional

chromatography. The recently published in cell FPOP method exemplifies where

this field is headed - larger and more complex systems. This dissertation describes

two new methodologies and one new technology for hydroxyl radical-mediated pro-
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tein footprinting, expanding the applicability of themethod. First is development of a

new footprinting analysis method for both peptide and residue level analysis, allow-

ing for faster quantification of results. This method utilizes a customized multilevel

search workflow developed for an on-market search platform in conjunction with

a quantitation platform developed using a free Excel add-in, expediting the anal-

ysis process. Second is the application of multidimensional protein identification

technology (MudPIT) in combination with hydroxyl radical footprinting as a method

to increase the identification of quantifiable peptides in these experiments. Last is

the design and implementation of a flow system for in cell FPOP, which hydrody-

namically focuses the cells, and when used yielded a 13-fold increase in oxidized

proteins and 2 orders of magnitude increase in the dynamic range of the method.
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1. INTRODUCTION

1.1 Research Aims: An Upgraded FPOP Method

Fast photochemical oxidation of proteins(FPOP)1 is amass spectrometry-based

protein footprinting method that is used to probe the solvent accessible surface ar-

eas of proteins. Hydroxyl radicals, generated through the photolyzation of hydrogen

peroxide, react with amino acid side chains forming stable, covalent labels that can

be detected using mass spectrometry. As with other protein footprinting methods,

FPOP is used to determine changes in solvent accessibility that arise from pro-

tein or ligand binding, the formation of aggregates, and other interactions that may

perturb the structure of the protein or induce conformational changes.

Although hydroxyl radical footprinting and more specifically FPOP offers several

advantages (discussed in more detail is section 1.3), data analysis for this method

remains arduous, hindering the broad use and the capability of the method.2 This

is a result of the large number of possible oxidation products which makes their

identification and quantification significantly more complex than a proteomics coun-

terpart, such as SILAC, where stable isotope ratios are quantified.3–5While several

efforts have been made to expedite data analysis, the available methods still have

limitations; they are manually intensive, cannot provide a level of confidence in

identifications, limit the number of modifications or protein sequences that the data

can be searched against, limit the resolution in localizing the modification, or some

combination of these.2,6–13 These limitations are further compounded by sample

complexity, forestalling the use of FPOP for complex systems.
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My overall research goal was to give the FPOP method an upgrade, expanding

its usability beyond single proteins or small interaction studies.

1.1.1 Aim 1: Expedited Data Analysis

Central to my overall goal was overcoming the hurdles of FPOP data analysis,

requiring a new data analysis method. My objective was to develop an identification

and quantitation platform that met the following design goals; it should be built-upon

established proteomics standards, have minimal manual steps, be compatible with

all levels of sample complexity, be adaptable for use any stable footprinting label,

and be built on or in software packages already widely used in proteomics.

1.1.2 Aim 2: Increased FPOP Identifications

In addition to data analysis, the identification of FPOP oxidized species needed

to be addressed. Typically, the oxidation products of FPOP have a lower abun-

dance than their unoxidized counterparts as a result of the experimental design;

excessive oxidation can induce protein unfolding.14 Fundamentally, their identifi-

cation becomes increasingly difficult as sample complexity increases. My objec-

tive here was to identify and adapt a better chromatographic separation method

that was compatible with FPOP while maintaining chromatographic peak quality

for quantitation.

1.1.3 Aim 3: An Updated Flow System

Complex samples also required an improved FPOP flow system. Adaptation of

the FPOP method for use with live cells was occurring in our group concurrently

with the analysis and identification upgrades. During this process, it was observed

that the flow system currently in use would continually clog when used with cells,

leading to sample-to-sample variability. As such, new flow system needed to be
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designed that would prevent this clogging. My objective here was to design a flow

cell that would prevent clogging and cell aggregation from a material that was both

low cost and transparent at 248 nm, the wavelength used to split hydrogen peroxide

to for the radicals.

1.2 Principles of Protein Analysis by Mass Spectrometry

Mass spectrometry (MS) is a gas phase analytical technique used to identify

and characterize the structure of molecules. The compound(s) in the analyte are

ionized generating charged species which are fragmented and identified by the

mass-to-charge ratios (m/z) of the ions.15 While MS has been used for decades

for characterizing small molecules, it was the development of “soft” ionization meth-

ods that expanded the technique to proteins and other macromolecules. “Soft” ion-

ization techniques are capable of generating ions of nonvolatile compounds with

little fragmentation, properties essential for protein characterization. As a charged

species is required for detection, an additive is typically combined with the analyte

to aid in generating intact protonated (M+nH)n+ or deprotonated (M-nH)n- molecu-

lar ions.16 The most frequently used ionization techniques for proteins are matrix

assisted desorption/ionization (MALDI) and electrospray ionization (ESI).16–18 In

MALDI, a pulsed laser triggers desorption of a crystalized mixture of analyte and

matrix, where the analyte is ionized in the gas formed by the laser ablation.18 In ESI,

the flowing liquid analyte transformed into gas phase ions by applying a high volt-

age to the solution.16,17,19 Although each “soft” ionization method offers benefits

over the others, ESI offers distinct advantages. ESI can be coupled to liquid-phase

separation techniques, such as liquid chromatography (LC-MS), allowing analysis

of more complex samples.20 Additionally, ESI tends to produce multiply charged

ions making the analysis of large molecular weight (MW) ions possible on instru-

ments with a narrow m/z range.21 This has made LC-MS is an indispensable tool

in proteomics, the study of the functions, structures, and interactions of proteins.
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1.2.1 Electrospray Ionization Mechanism

In ESI-MS, an electric potential is applied to the liquid analyte solution as it flows

through a capillary tube, forming a large charge density on the liquid surface at the

tip of the capillary.17,19 The electric field generated by this potential distorts the

liquid into a conical shape called a Taylor cone, and a jet of liquid emits from the

tip of this cone (Figure 1.122).23 At the threshold voltage, this jet breaks down into

Figure 1.1. Diagram of Electrospray Ionization: 1. Liquid jet emit-
ted from Taylor cone. 2. Solvent evaporation from droplets. 3.
Coulomb repulsion exceeding the surface tension of the droplet trig-
gers droplet fission. Reproduced with permission under the Cre-
ative Commons Attribution-Share Alike 4.0 International License.22

a spray of fine, highly charge droplets, and electrospray is initiated. Solvent evap-

oration from the droplets increases the charge density until the Coulomb repulsion
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exceeds the surface tension of the droplet, triggering droplet fission; a cascading

series of these evaporation and fission events occurs until nanoscale droplets are

formed and the charged analyte ions are ejected into the gas phase.24,25 Nano-ESI,

also referred to as nanospray, sources generate smaller initial droplets, offering an

increased ionization and sensitivity while requiring smaller sample sizes making

them ideal for protein analysis.26–28

1.2.2 Protein Identification by Mass Spectrometry

Early analysis of proteins was completed through Edman degradation.29 This

method, which required a considerable amount of purified protein, identifies the

amino acid (AA) sequence through stepwise chemical cleavages of the amino ter-

minus (N-terminus) AA. The arduous process was often unsuccessful for long se-

quences or proteins with N-terminal modifications.30With the development of “soft”

ionization techniques compatible with protein analysis, MS quickly replaced Edman

degradation and has become a primary tool in proteomics.

Commensurate with the ionization sources used for proteomic analysis are the

mass analyzers used in this field. There are four main types of mass analyzers,

each with differing performance advantages, used in this field: ion trap, quadrupole,

time of flight (TOF), Fourier transform ion cyclotron resonance (FT-ICR), and orbi-

trap.16,20,30,31 Hybrid analyzers which combine these technologies are also used

in this field; the objective is balancing mass accuracy, sensitivity, and resolution

with acquisition time to yield a more accurate representation of the inherently com-

plex samples in proteomics.

The key principle of orbitrap analyzers, like the Thermo Fisher Scientific Q Exac-

tive used for this work, is an orbital method of trapping ions.31 The ion trap consists

of two axially symmetric types of electrodes, a central spindle-like electrode and

barrel-like outer electrodes, that create an electric field. Ions are injected tangen-

tial to the electric field where they rotate around and move back and forth along the
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central electrode. These ions become electrostatically trapped due to the equilib-

rium between their attraction to the central electrode and the centrifugal force from

rotation. This creates rings of specific m/z ions that oscillate harmonically along

the widest part of the spindle.31–33 These oscillations induce a current on the outer

electrodes, which are used as a receiver to detect the image current of the oscilla-

tions. Similar to FT-ICR, all of the ions are detected simultaneously over a given

period of time, and the time domains of the image currents are Fourier transformed;

this data is used to generate the mass spectrum.31–33

Although intact proteins can be detected via MS, called “top-down” analysis,

it is often necessary to break the proteins down into peptides for a more thorough

“bottom-up” analysis. This is typically achieved via proteolytic digestion with trypsin.

Trypsin is a protease that cleaves on the carboxy-terminal (C-terminal) side of lysine

and arginine residues. This results in a basic residue on the C-terminal end of the

peptides, ensuring that each peptide will be protonated, with doubly protonated

(M+2H)2+ peptides being the predominant species in ESI; protein identification by

MS generally utilizes positive ions. Today, most m/z measurements are made in a

two-step process known as tandem MS (MS/MS).34,35 The first step, or MS1 scan,

measures m/z of the intact peptide ion, referred to as the parent or precursor ion.

In the second step, or MS2 scan, the parent ion is isolated and fragmented, and

the m/z of the resulting fragment ions are measured.

Just as there are several types of mass analyzers used, a number of methods

are used for gas-phase fragmentation of parent ions. Most frequently, fragment

ions are produced by collisions with gas molecules, called collision induced disso-

ciation (CID), and the process predominantly causes cleavage along the peptide

backbone.34–36 Fragment numbering extends from the terminal ends of the pep-

tide; a-, b-, and c-ions appear to lengthen from and retain the charge on the N-

terminus, while x-, y-, and z-ions appear to lengthen from and retain the charge

on the C-terminus. It is the amide bond that is most likely to break in this process

which produces the b- and y-ions.30,36,37 While this is not an all-inclusive list of all
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possible fragments, these ion series are most frequently used for CID spectra inter-

pretation. Table 1.1 lists themonoisotopic and commonly observed ionsmasses for

each of the amino acids.38,39 These masses along with the formulas in Table 1.2

Table 1.1
Residues and Associated Masses

Residue Monoisotopic Mass Immonium Iona Low Mass Ionsa

Alanine 71.037114 44

Arginine 156.101111 129 59,70,73,87,100,112

Asparagine 114.042927 87 70

Aspartic acid 115.026943 88 70

Cysteine 103.009185 76

Glutamic acid 129.042593 102

Glutamine 128.058578 101 56,84,129

Glycine 57.021464 30

Histidine 137.058912 110 82,121,123,138,166

Isoleucine 113.084064 86 44,72

Leucine 113.084064 86 44,72

Lysine 128.094963 101 70,84,112,129

Methionine 131.040485 104 61

Phenylalanine 147.068414 120 91

Proline 97.052764 70

Serine 87.032028 60

Threonine 101.047679 74

Tryptophan 186.079313 159 77,100,117,130,132,170

Tyrosine 163.06332 136 91,107

Valine 99.068414 72 41,55,69

a bold face indicates strong signals, italics indicates weak signals

are used to calculate the fragment m/z values.40 The values are used to interpret

the spectra and identify the sequence of the precursor peptide, which today is com-

pleted through software packages with search algorithms (discussed in Chapter 2).
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Table 1.2
Calculating Fragment Ion Masses

Ion Neutral Fragment Molecular Weight

a [N]+[M]-CO-H

b [N]+[M]-H

c [N]+[M]+NH2
x [C]+[M]-CO-H

y [C]+[M]-H

z [C]+[M]+NH2
a-, b-, y-NH3 -17.0266

a-, b-, y-H2O -18.0106

1.3 Protein Structure Characterization

1.3.1 High Resolution Structural Characterization

Structural biology has played an essential role in advancing our functional un-

derstanding of biological systems. At present, approximately 11% of Swiss-Prot

proteins have high resolution structures available, with roughly 90% of available

structures solved via X-ray crystallography.41–43 In this method, a beam of X-rays

is diffracted by the atoms in a high purity protein crystal. The intensities of the result-

ing diffraction pattern are measured and phases calculated to create an electron

density map, to which the primary sequence of the protein is modeled to fit. This pro-

cess yields a structure with atomic level coordinates. However, the ability to obtain

a high resolution structure by means of this method is limited by the ability to grow a

high quality crystal.42 This task is often difficult due to the inherent properties of the

protein or protein assembly, or the ability to purify the macromolecule in quantities

sufficient to obtain a quality crystal.44 The difficulties are compounded when in-

vestigating the structures of large, megadalton sized molecular assemblies. At the
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outset, it is often challenging to purify all of the protein components of megadalton

complexes, a necessity in obtaining a structure.45 Even when this is accomplished,

it can be equally difficult to crystallize these complexes, or the process may only

yield crystals too small for analysis.46

Another method used for obtaining high resolution structures is nuclear mag-

netic resonance (NMR) spectroscopy. This method utilizes the magnetic proper-

ties of the ½ spin isotopes 1H, 13C, and 15N. One advantage of this method is that

it generally completed on solution phase proteins, allowing for it to examine time-

dependent fluctuations in the protein’s structure versus the static structures that

are obtained by X-ray crystallography; NMR is sensitive to local structural dynam-

ics.47 However, the method is not without limitations. Like X-ray crystallography,

an ample quantity of high purity sample is required. And though crystal growth is

not necessary, proteins and large assemblies that cannot have structures solved

through X-ray crystallography may also not be amenable with this method either;

molecules with subunits larger than about 40 kDa are not amenable to structure de-

termination by NMR due to spectral overlap. Additionally, the acquired data does

not always yield structural coordinates resulting in lower resolution characterization.

1.3.2 Low Resolution Structural Characterization

Since high resolution structures have only been obtained for a fraction of known

proteins, researchers often turn to lower resolution methodologies to gain struc-

tural insight on their protein of interest. Circular dichroism spectroscopy, a solution

phase method, can characterize the secondary structure of a protein. This method

measures the absorption differences between left- and right-handed polarized light,

and the resulting signals are used to determine what percent each of the secondary

structure components exists in the protein.48

Fluorescence spectroscopy can also be used to investigate structural and dy-

namic properties of a protein. Phenylalanine (Phe), tyrosine (Tyr), and tryptophan
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(Trp) residues are all fluorescent; however, Trp is the most sensitive and conse-

quently, is most commonly used as an intrinsic fluorescent probe.49 The emission

spectra and changes in the emission spectra provide details on the local environ-

ment of the Trp residue. These changes are a result of unfolding, ligand or substrate

binding, or subunit assembly, probing the different conformational states.50 Simi-

lar to intrinsic fluorescence, Trp analogues, which are typically expressed recombi-

nantly, can be used as pseudo-intrinsic probes to assess the aforementioned prop-

erties.51 In addition, functional protein interactions can be quantified through tech-

niques where fluorophores are conjugated to proteins, such as Förster resonance

energy transfer (FRET) and fluorescence lifetime image microscopy (FLIM).52

Cryo-electronmicroscopy (cryo-EM) is a collection of techniques which are used

to acquire both two- and three-dimensional protein structures, but at a lower res-

olution than crystallography. Here, a protein solution, frozen at cryogenic temper-

atures, is hit with an electron beam. Scattered electrons magnified by passing

through a lens, creating a magnified image on the detector that are used to deter-

mine a structure.53 Since thin films of protein solutions are used, these methodolo-

gies are particularly suitable for large protein assemblies, filling a gap left by high

resolution techniques. Cryo-EM is also an emerging method for the determination

of high resolution structures of large macromolecular complexes. While it suffers

from the same limitations as X-ray crystallography for sample preparation, it is no

longer limited to low resolution information. A single particle cryo-EM structure of

human γ-secretase, an intermembrane protease, at 3.4 Å resolution was recently

published; cryo-em can provide high resolution structures of proteins that cannot

be solved by X-ray crystallography.54

1.4 Protein Structural Characterization by Mass Spectrometry

Structural MS-based methodologies, many of which utilize chemical reagents

for investigation, have become an invaluable tool for evaluating protein structure
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and function.55 These applications can provide structural information for mem-

brane proteins, which make up less than 3% of known structures, or used to study

conformational changes and folding dynamics.41,56–60 As such, the use of MS

based structural methodologies has become increasingly more popular in filling

in the structural void as well as offering complementary information to high resolu-

tion methodologies.55,61 Several strategies exist for this type of investigation, each

yielding different structural information about the protein(s) in inquiry.

1.4.1 Chemical Cross-linking

Chemical cross-linking can divulge tertiary and quaternary information through

both inter- and intramolecular covalent conjugation.62 Here, two proteins or protein

regions are covalently linked by a chemical cross-linker that reacts with the pro-

tein sidechain(s).63 While chemical cross-linkers utilize numerous reactive groups,

NHS ester cross-linkers are predominantly employed for this methodology. The

popularity of these linkers emanates from both the highly efficient stable bonds

formed with primary amine side chains, and prevalence of lysine residues in pro-

teins.64 Cross-linking experiments can also reveal global spatial relationships of

large protein complexes; the use of various lengths of cross-linkers provides a se-

ries of distance constraints, allowing for an interactome network to be generated

from the resulting data.63,65 Although this method can yield quaternary structural

information, there is a high level of complexity in identifying cross-linked species.66

1.4.2 Protein Footprinting

Protein footprinting utilizes chemical probes that covalently label proteins in so-

lution.55 Collectively, these methodologies are used to examine structural aspects

of a protein assembly, and protein-protein or protein-ligand interactions. The pri-

mary aim of MS-based protein footprinting is to determine which sites on a protein

are solvent accessible (SA), exploiting the fact that target site reactivities are dic-
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tated, in part, by the protein’s conformation.61 Strategies for chemical footprinting

vary in whether they probe the amino acid side chains or the peptide backbone, or

in the specificity of the chemical probe. One commonality between the strategies is

that the chemical probe changes the mass of the peptide compared to the theoret-

ical value by known amounts, a feature well suited for MS. Typically, the chemical

probes are used to assess sites on a protein that show a change in SA consequent

to being exposed to a ligand, or upon complexation with another protein(s).3,67–69

The exception is hydrogen deuterium exchange (HDX), which also takes hydrogen

bonding into account.70

HDX probes hydrogen bonding and solvent accessibility through monitoring the

exchange of backbone amide hydrogen atoms yielding secondary structural prop-

erties. In HDX, deuterium is exchanged with backbone amide protons to probe the

protein structure.71 The rate of exchange is a function of both the local protein struc-

ture and the SA, and is determined through the increase in mass compared to the

theoretical peptide mass. This protein footprinting method is widely used due to the

non-specific nature and labeling efficiency of the deuterium probe. However, the

instability of the deuterium label can lead to back exchange, requiring expeditious

sample proteolysis and analysis via MS.56,67,72

Protein footprinting methods that are complementary to HDX utilize chemical

probes to label side chains, revealing evidence of side chain solvent accessibility.

The main advantage of these labels is that unlike HDX, these covalent labels are

stable in solution.73 A diverse set of labels are used which vary in their specificity

from side chain specific labels. Highly specific label examples include organic anhy-

drides that can probe the SA of lysine residues, and carbodiimides that can probe

the SA of carboxyl groups.74 Conversely, hydroxyl radical (·OH) labels are indis-

criminative in their side chain specificity, and can probe the SA of nearly all aminio

acids.14,74,75
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1.5 Hydroxyl Radical-Mediated Protein Footprinting

The use of ·OH for protein footprinting, first coupled with mass spectrometry by

Chance and coworkers, has become more prevalent for probing sidechain SA due

to the advantages this chemical probe offers.76 Similar to deuterium in their speci-

ficity, ·OH are reactive with 19 of the 20 natural amino acids (excluding glycine), with

varying rates.75,77 Because of this property, these experiments can yield higher res-

olution information about the protein(s) SA regions than is achievable using other

side chain labels. It should be noted, however, that detecting the oxidation prod-

ucts of serine and threonine can be problematic and are usually excluded from

analysis.75 Unlike hydrogen-deuterium exchange, ·OH-induced modifications do

not undergo back-exchange and are stable, allowing for a higher, residue-level res-

olution.3,55 Additionally, since ·OH have properties similar to water they can readily

oxidize SA amino acid side chains without disrupting the structure when the expo-

sure is limited.

1.5.1 Methods for Generating Hydroxyl Radical Labels for Footprinting

Multiple methods may be employed for generating the ·OH radicals for footprint-

ing experiments, which was first used to identify protein binding sites on DNA. The

·OH non-specifically cleave surface exposed DNA along the backbone, which was

blocked where the protein was bound. This work used a Fenton reagent, generally

catalytic iron(II), to generate the ·OH from hydrogen peroxide (H2O2).78 The benefit

of using this method for ·OH radical generation is the low cost and wide availability

of the required reagents, though the EDTA used to neutralize the Fenton reagent’s

charge is thought to bias reactivity.79 Another method, pulse radiolysis of water,

generates ·OH through interactions with high energy particles from synchrotron X-

ray or γ-ray beams.79,80 Since the ·OH are generated from water in the sample

there is no need for added chemicals that may bias the results, but the need for

high energy radiation sources severely limits the accessibility of this method. Pho-
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tolysis employs UV radiation that homolytically cleaves H2O2 for ·OH generation.

However, prolonged exposure to H2O2 may cause protein unfolding, biasing the

results.81

1.5.2 Fast Photochemical Oxidation of Proteins

Fast photochemical oxidation of proteins (FPOP), used for the work presented

here, generates ·OH through laser induced flash photolysis of H2O2 (Figure 1.2).

This method minimizes the exposure time to H2O2 by several means. A KrF ex-

Figure 1.2. FPOP Schematic where UV laser pulses split H2O2
forming the ·OH that label the solvent exposed areas of the proteins.

cimer laser is used to deliver high energy pulses of 248 nm UV light for H2O2

cleavage. A microliter flow system is used to expose the samples to the radiation

source so that only a small bolus of sample is exposed at any given time and that

each bolus is exposed to only one pulse; this ensures uniform sample exposure to

the radiation source. The H2O2 is added to the sample immediately before irradia-

tion, and controls that are not exposed to the radiation source are used to account

for any oxidation caused by exposure to H2O2. Additionally, a radical scavenger,

glutamine, is added to the sample to reduce the radical lifetime to less than 1 mi-

crosecond to safeguard against radical induced protein unfolding.1,82 Moreover,
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the samples are immediately exposed to a second radical scavenger, methionine,

and catalase as the exit the flow system to eliminate any remaining ·OH or H2O2

in the sample. This results in a method that generates a concentration of ·OH

high enough to sufficiently oxidize SA areas of the protein in short bursts while

any excess ·OH should be consumed before protein unfolding is induced. These

properties have made FPOP increasingly popular in probing protein SA.

Although the method was published only a decade ago, the FPOP method14

has been cited 166 times to date and used to evaluate several protein systems

with a wide range of complexity. One popular use of FPOP is to probe protein

conformational changes that occur upon ligand binding. Calcium-bound calmod-

ulin (Cam), for example, was shown to undergo similar conformational changes

when complexed with two separate peptides, Cam-Mel and CaM-Mas, as it does

with M13, a complex with a resolved high resolution structure.68 This method has

also been used to characterize membrane proteins, with different labeling trends

observed between the lipid embedded core and aqueous exposed regions of bac-

teriorhodopsin58, and identifying a second heparin binding site on the Roundabout

homolog 1 protein.83

While effective for characterizing protein-ligand interactions, FPOP has recently

been used to evaluate more complex proteins and interactions. One such case is

characterization of protein therapeutics. The advent of these types of pharmaceu-

ticals has given rise to unique issues not present in small molecule therapeutics.

Contrary to small molecule drugs, the safety and efficacy of protein therapeutics

can vary between different conformations or if they undergo oligomerization.84,85

Additionally, the analytical strategies used for evaluation of biosimilars (generics)

have to demonstrate that differences between the branded and biosimilar protein

therapeutic are not clinically relevant, as they cannot be characterized as identical

to the branded form.84 As such, FPOP has been established as a method that

can provide higher order structural information for strengthening and protecting

intellectual property as well as lot-to-lot quality assessment of protein therapeu-
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tics.84–89 In addition to protein therapeutics, FPOP has recently been used for the

structural characterization of proteins in live cells. This method, called in cell FPOP

(IC-FPOP), was used to modify proteins in live African green monkey kidney (Vero)

cells.13 In this proof-of-concept paper, they were able to identify 105 FPOP mod-

ified proteins in a variety of cellular locations, demonstrating IC-FPOP as a novel

application for the structural characterization of proteins within their native environ-

ment.

The work presented in the following chapters aims to expand the usability of

FPOP, moving analysis by the method beyond single proteins or small interaction

studies. The focus of these studies is to work toward faster data analysis, better

identification of oxidized species, and bigger and more complex samples including

IC-FPOP. A new data analysis platform, multidimensional chromatographic sepa-

ration, and custom flow system are discussed, each of which can play a role in

moving this field towards the next generation of protein footprinting.
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2. AN EFFICIENT QUANTITATION STRATEGY FOR HYDROXYL

RADICAL-MEDIATED PROTEIN FOOTPRINTING USING PROTEOME

DISCOVERER

2.1 Introduction

Despite the advantages of ·OH footprinting, data analysis for this method re-

mains arduous, limiting the potential it has in the field of structural proteomics. Anal-

ysis generally follows a typical proteomics workflow; proteins are proteolyzed, the

resulting peptides are detected and identified using data-dependent LC-MS/MS,

and precursor peak intensities or areas are used for quantitation.1 However, the

large number of possible oxidation products produced by this method makes identi-

fication and quantitation significantly more complex than a proteomics counterpart

such as SILAC, where stable isotope ratios are quantified.2–4 Furthermore, the

vast quantity of data generated from these experiments makes manual analysis

cumbersome, which can lead to errors in interpretation.5

Several efforts have been made to expedite analysis of these data sets. Gau

et al. have developed a semiautomatic method that utilizes a Mascot error-tolerant

search and an in house built Excel spreadsheet for identification and quantita-

tion.6,7 However, this method is manually intensive, and the use of an error-tolerant

search prohibits the use of a decoy database search and, subsequently, a false dis-

covery rate (FDR) or a level of confidence in identifications. Hybrid software plat-

forms including ByOnic and InsPecT, that were developed for identifying post trans-

lational modifications, have been utilized for ·OH experiments.8–11 While these

platforms offer a better-quality database search, quantitation remains manually in-
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tensive. And although Kaur and coworkers5 developed an automated software

platform, ProtMapMS (PM), it was specifically designed for dose response studies

from water radiolysis. Furthermore, the presupposition that the protein of interest is

known excludes the platform from being used in highly complex samples, such as

cell lysate and in cell labeling strategies that have been developed recently.12,13

Andwhile the resolving power of ProtMapMS has been improved in themost current

version, the limitations that exclude its use on complex samples remains.14,15 For

each of these platforms, quantitation of the oxidation yield is performed using the

ratio of the identified oxidized species to the sum of the oxidized and corresponding

unoxidized species. However, the oxidation yield can also be determined indirectly

by monitoring the decrease in the unoxidized species, whereby this decrease is

attributed to the species being oxidized.16 While this has been shown to be quan-

titatively accurate, this approach can only be used at the peptide level, limiting the

resolution of the data.

2.2 Experimental Section

2.2.1 Materials

All chemicals were obtained from Thermo Fisher Scientific (Waltham, MA) un-

less otherwise noted.

2.2.2 Protein Expression and Purification

The pRSET vector containing GCamP2 was a generous gift from Michael Kot-

likoff (Cornell University). The expression and purification of GCaMP2 was previ-

ously described.17 Briefly, transformed BL21(DE3)pLysS (Promega, Madison, WI)

competent E. coli cells were grown in lysogeny broth media. After induction with 1

mM isopropyl β-D-1-thiogalactopyranoside, proteins were expressed for 12 hrs at

18°C. The proteins were purified using HisPur Ni-NTA agarose resin.
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2.2.3 Oxidative Labeling

Each 50 μL sample contained 10 mM phosphate buffered saline (PBS, Sigma

Aldrich, St. Louis, MO) 10 mM -glutamine, 7.5 mM hydrogen peroxide, 10 mM

ethylenediaminetetraacetic acid (calcium free, CF) or 10 mM calcium chloride (cal-

cium bound, CB), and purified GCaMP2 at a concentration of 0.18 mg/mL. The

hydrogen peroxide was added just prior to infusion. FPOP was performed similarly

as described.12,18,19 A 248 nm KrF excimer laser (GAM Laser Inc., Orlando, FL)

was used to irradiate the sample solution at 135 mJ/pulse. The laser was focused

through a 250 mm plano convex lens (Thorlabs, Inc., Newton, NJ) onto 150 μm

i.d. fused silica tubing (Polymicro Technologies, Pheonix, AZ) with the polyimide

coating removed, giving a 2.5 mm irradiation window. The flow rate, 33 μL/min,

was set to allow for a 20 percent exclusion fraction. A total of 3 FPOP samples and

3 controls (no irradiation) for each condition were prepared.

2.2.4 Proteolysis

Post FPOP, the GCaMP2 samples were subjected to a two-step digestion pro-

cess as previously described.12,20 Each sample was dried in a vacuum centrifuge,

and resuspended in 8 M urea 100 mM Tris-HCL pH 8.5 buffer. Proteins were re-

duced with tris(2-carboxyethyl)phosphine, alkylated with iodoacetamide (IAA) and

quenched with dithiothreitol. Lys-C was added at a 100:1 substrate to protease

ratio and incubated overnight at 37 °C. The samples were then diluted with 100

mM Tris buffer to bring the urea concentration down to 2 M. Trypsin was added at

a 20:1 substrate to protease ratio and incubated overnight at 37 °C. Digestion was

quenched with formic acid (Sigma Aldrich, St. Louis, MO) at a final concentration

of 5%. Samples were de-salted using NuTipC18 media tips (Glygen Corporation,

Columbia, MD), dried in a vacuum centrifuge, and resuspended in 20 μL of 2%

acetonitrile 0.1% formic acid.
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2.2.5 LC-MS/MS Acquisition

Analysis was completed using an UltiMate 3000 RSLC and a Q Exactive mass

spectrometer (Thermo Fisher Scientific, Waltham, MA) as previously described.12

For each experiment, 1 µg of the digest was loaded onto a 2 cm Acclaim Pepmap

100 C18 trap column (Thermo Fisher Scientific, Waltham, MA) and washed for 3

minutes with loading buffer (2% acetonitrile 0.1% formic acid) at a flow rate of 5

μ”/min. The samples were separated on a 75 μm inner diameter reverse phase

analytical column packed in-house with a 30 cm bed of Magic 5 μm C18 particles

(Michrom Bioresources Inc., Auburn, CA). Peptides were eluted with a 74 minute

linear gradient at a flow rate of 300 nL/min to 45% acetonitrile 0.1% formic acid.

The total run time was 97 minutes including loading, washing, and equilibration

time. MS1 spectra were acquired over an m/z range of 300–1500 at a resolving

power of 70,000 for 400 m/z ions, with a dynamic exclusion of 20 s. The 25 most

abundant ions were selected for MS2 at a resolving power of 17,500 for 400 m/z

ions. Ions with a charge-state of +1 and >+6 ions were rejected. AGC targets were

set to 3e6 for MS1 and 1e5 for data-dependent MS2 with an underfill ratio of 2.5%,

giving an intensity threshold of 5.0e4.

2.2.6 Data Analysis

All data files were searched using Proteome Discoverer (version 1.4; Thermo

Fisher Scientific, San Jose, CA, USA) with Mascot (version 2.4; Matrix Science,

London, UK) and Sequest HT (version 1.1.1.11; Thermo Fisher Scientific, San

Jose, CA, USA) using a custom multi-search node workflow (Figure 2.1), and the

ProtMapMS platform (version 2.5.0.30). For the PD method, files were searched

against a FASTA database consisting of the protein of interest (GCaMP2 synthetic

construct; NCBI GI 218681839) inserted into the cRAP (Common Repository of Ad-

ventitious Proteins) database (version 2012.01.01; http://www.thegpm.org/crap/),

and extracted ion chromatogram (EIC) areas for each peptide spectrum match
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(PSM) were calculated. For the PM method, all files were searched against the

GCaMP2 FASTA sequence only, restricted to tryptic peptides with up to onemissed

cleavage within a 350-5000 Da mass range. The precursor mass tolerance and the

m/z peak integration width were set to ± 10 ppm, and the fragment mass tolerance

to ± 0.02 Da.

Post search, peptides were ungrouped and filtered to a 1% FDR for both peptide

and residue level analysis. The data were exported to Excel and summarized using

the PowerPivot add-in that was customized for ·OH labeling experiments. The frac-

tional oxidation per peptide or residue was determined according to the following

equation:
Σ EIC area modified

Σ EIC area
(2.1)

where, for peptide level analysis, EIC area modified is the EIC area of a PSM con-

taining an FPOP modification, and EIC area the EIC area of any PSM with a se-

quence identical to that containing the modification. For residue level analysis, EIC

area modified is the EIC area of a PSM for a specific modified residue, and EIC

area the EIC area of any PSMs with sequences identical to those containing the

modification.

2.3 The Proteome Discoverer Analysis Strategy

The objective for the work presented in this chapter was to develop an identifi-

cation and quantitation strategy, with minimal manual steps, for use in protein foot-

printing studies with four main features. First, we wanted to use an identification

strategy that builds on the standards that have been established in the proteomics

community. Second, we wanted the platform to be compatible with all levels of sam-

ple complexity. Third, we wanted a platform that would work with any stable foot-

printing label. Last, we wanted our platform to be built on software packages that

are already widely used within the proteomics community. As follows, we created
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a workflow (Figure 2.1) in Thermo Scientific’s Proteome Discoverer (PD) that was

customized for deep searching of ·OH modifications, as well as a rapid quantitation

platform using the Excel PowerPivot add-in. Although our strategy was designed

for ·OH labeling experiments, each half may be easily modified to accommodate

any stable footprinting label.

The workflow (Figure 2.1) was constructed with five search algorithm levels,

each restricted to tryptic peptides greater than 5 residues, with up to one missed

cleavage, and within a 350-5000 Da mass range. The precursor mass tolerance

was set to ± 10 ppm, and the fragment mass tolerance to ± 0.02 Da; these parame-

ters are typical for a high resolution MS, such as the Thermo Scientific Q Exactive

that was used for this work. Alkylation, a modification present on cysteine residues

as a result of the addition of IAA during proteolysis, and all commonly observed

·OH modifications2,3 were distributed across each search level (Table 2.1). Each

raw file was searched against the FASTA database on each search level. After

each search level, PSMs are subjected to target-decoy validation, with a 1% FDR

setting for high confidence PSMs. The EICs for each precursor ion are calculated

using the PD precursor ion area detection node.

2.4 Results

The synthetic construct, GCaMP2, was used to evaluate the efficacy of the PD

method for both peptide and residue-level analysis. GCaMP2 belongs to a group

of synthetic proteins known as genetically encoded indicators.21 It is a calcium

sensor assembled from circularly permutated enhanced green fluorescent protein

(cpEGFP), theM13 helix of myosin light chain, and calmodulin (CaM).22 The sensor

undergoes conformational changes upon calcium binding that result in a change

in solvent accessibility of the chromophore allowing for calcium dependent sens-

ing in cells and tissues.17,21 At low concentrations, comparable to those used in

FPOP experiments, GCaMP2 exists as a monomer in both the calcium free (CF)
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Table 2.1
Workflow Modification Distribution

Search Level Amino Acid(s) Mass Shift (Da)

1 C (Static) 57

2 A,D,E,F,H,I,K,L,M,N,P,Q,R,V,W,Y 16

3 E,I,K,L,P,Q,R,V 14

C,F,M,W,Y 32

H -10

4 C,F,W,Y 48

D,E -28,-30

5 H 5

R -43

D,E -44

H -22,-23

and calcium bound (CB) states, with monomer crystal structures available for both

states.21 This makes GCaMP2 an ideal molecule for examining the ability of the

PD method in discerning conformational changes via localized changes in oxida-

tion, with the structures providing a means of validating the residue-level data.

2.4.1 Peptide Level FPOP Oxidation of GCaMP2

Peptide level FPOP oxidation of GCaMP2 was completed using both the PD

method and the PM method. PD analysis resulted in the detection of 62 peptides,

with 21 containing FPOP modifications (Table 2.2). There were a total of 443780

PSMs at a 1% FDR affiliated with the protein, with 11% corresponding to hydroxyl

radical oxidation events. These peptides correspond to a sequence coverage of
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Table 2.2
GCaMP2 Oxidized Peptides

Peptide
Calcium Free Calcium Bound

Ri
SASA (Å2)

Oxidation Log PF Oxidation Log PF 3EKJ 3EK4 3EK7

32-41 0.091±0.028 5.676 0.109±0.048 5.675 35.08

24-31 0.003±0.001 6.236 0.003±0.002 6.238 20.7

53-69 0.700±0.145 5.090 0.521±0.351 5.093 61.77 585 1063

57-69 0.035±0.006 5.249 0.101±0.088 5.239 54.29 537 704

82-119 0.062±0.030 4.524 0.270±0.119 4.509 111.5 1543 1586 1686

128-151 0.055±0.041 4.537 0.398±0.142 4.517 110.2

162-184 0.010±0.003 5.266 0.008±0.002 5.268 54.01 946 1023 1046

185-199 0.038±0.006 5.722 0.060±0.015 5.718 33.8 384 582 386

244-254 0.015±0.006 5.458 0.031±0.028 5.451 44.42 266 269 244

255-259 0.002±0.001 5.850 0.001±0.001 5.855 30.6 251 205 225

272-280 0.021±0.009 6.087 0.016±0.007 6.090 23.59 354 343 358

285-298 0.094±0.036 5.540 0.273±0.238 5.530 40.19 691 666 707

290-298 0.011±0.003 6.167 0.034±0.011 6.156 21.93 399 404 420

305-316 0.024±0.008 5.924 0.023±0.008 5.924 27.75 728

305-324 0.032±0.023 5.160 0.183±0.160 5.143 59.4 1178

317-324 0.014±0.003 5.797 0.008±0.002 5.802 31.65 450 302 353

379-389 0.007±0.005 5.678 0.021±0.011 5.667 35.91 777 890

381-393 0.020±0.011 5.911 0.001±0.001 5.942 28.14 940 923

394-409 0.139±0.083 5.475 0.006±0.005 5.506 42.73 1053 708

398-409 0.004±0.002 5.967 0.005±0.001 5.966 27.01 904 511

410-418 0.022±0.008 5.533 0.037±0.010 5.528 41.07 529

419-429 0.021±0.020 5.595 0.155±0.057 5.575 38.61 803

92% and a footprinting coverage of 66% of the protein (Figure 2.2a). By com-

parison, 83% of the sequence was covered using the PM method, with only 33%

footprinting coverage (Figure 2.2a). There were 8 oxidized peptides identified in

common between the two methods which were used to validate the accuracy of

the PD method’s quantitation strategy. Recently, Chance and coworkers have in-
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Figure 2.2. Comparison of PD method to PM method showing the
sequence coverage (a) with PD total and footprinting coverage in
blue and green, respectively, and PM total and footprinting coverage
in red and yellow, respectively, as well as the agreement between
the fold change (b) and correlation (c).

troduced an oxidation normalization factor, named protection factor (PF), where the

relative intrinsic activity (Ri, Table 2.3) of the peptide (or residue for residue level

analysis) is divided by the oxidation rate to account for the differing reactivities of
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each of the amino acids with ·OH, which we have applied to the data presented

in this paper.14,15 Comparison of the two methods shows a similar trend in fold

Table 2.3
Rate Constants and Relative Intrinsic Activities

Residue k·OH (M-1 sec-1) Ri

Cysteine 3.5e10 29.2

Methionine 8.5e9 20.5

Tryptophan 1.3e10 17.4

Tyrosine 1.3e10 12

Phenylalanine 6.9e9 11.2

Histidine 4.8e9 9.3

Isoleucine 1.8e9 4.4

Leucine 1.7e9 4.4

Arginine 3.5e9 2.9

Lysine 3.5e8 2.2

Valine 8.5e8 1.9

Threonine 5.1e8 1.6

Serine 3.2e8 1.4

Proline 6.5e8 1

Glutamine 5.4e8 0.69

Glutamic acid 2.3e8 0.66

Asparagine 4.9e7 0.44

Aspartic acid 7.5e7 0.42

Alanine 7.7e7 0.14

Glycine 1.7e7 0.04

change of oxidation (Figure 2.2b), and results in a correlation coefficient of 0.99

for both the CF and CB states (Figure 2.2c), with p-values of 3.59e-9 and 2.53e-9,
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respectively. These correlations demonstrate that the quantitative accuracy of the

PD platform is comparable to the previously validated PM platform.

To further establish the efficacy of the PD method, the solvent accessible sur-

face area (SASA) was calculated for each of the structures using VADAR23, and

compared to the natural log of the PFs for the 22 oxidized peptides identified (Fig-

ure 2.3), as previously demonstrated.14,15 This resulted in a correlation of -0.84

for the CF state, and -0.59 to the CB monomeric structure (3EK4) and -0.75 to the

CB dimeric structure (3EK7).21 The higher correlation to the dimeric CB structure

indicates that dimer was present in the CB samples, contrary to what was expected

at the low concentration (0.18 μg/μL) of GCaMP2 in each sample prepared. This

was most likely due to the method in which the samples were prepared. In order

to minimize the variability between samples, calcium chloride was added to a con-

centrated stock of GCaMP2 which was later spiked into each sample tube. Studies

completed by Akerboom and coworkers21 on GCaMP2 demonstrated that dimeric

CB GCaMP2 can be seen at concentrations of 10 μM and that the equilibrium ki-

netics between the monomeric and dimeric calcium-saturated forms was slow, with

the solution remaining stable over several days. With the stock concentration of CB

GCaMP2 for this study at 0.29 μM, nearly 3 times the concentration where dimer

has been shown to exist, there is a strong likelihood that dimeric CB GCaMP2 was

present in the samples at the time of oxidation.

Further discussion of GCaMP2 will be divided into two talking points: the GFP

domain (which, for ease of discussion, also includes the M13 peptide and the do-

main linkers) and the CaM domain. There are two areas of the GFP domain that

have unexpected differences in oxidation between the CF and CB states. The first

occurs between the 2 peptides spanning residues 255-284, with a higher relative

oxidation in the CF state. Alignment of the GFP domain (residues 62-301) of the

two structures (PDB IDs 3EKJ and 3EK4) using Pymol results in an RMS deviation

value of 0.35Å, indicating that there are only small structural changes in this domain

between the two states.21,24 To investigate further, the SASA was calculated for
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Figure 2.3. Correlation between SASA and log PF for both peptide
level (a, b, and c) and residue level (d, e, and f) analysis for the CF
state (a and d) and the CB monomeric (b and e) and dimeric (c and
f) states.

each of the structures using VADAR.23 Comparison of the SASA from residues 255-

284 revealed that there is an increased SASA for the CF structure, in agreement

with the FPOP oxidation analysis (Figure 2.4, Table 2.2). The 4% SASA difference
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Figure 2.4. Fold change between the CF and CB states for the 22
oxidized peptides identified by the PD method.

between the states is mainly associated with 6 lysine and arginine residues (K259,

K265, R267, K271, R280 and K284). Inspection of the PSMs for these peptides

provides additional agreement with the SASA analysis, as there are considerably

more oxidized PSMs associated with these residues in the CF state (105 vs 58

PSMs).

2.4.2 Residue Level FPOP Oxidation of GCaMP2

Residue level analysis of GCaMP2 using the strict filter settings resulted in a

substantial decrease in PSMs with only 87298 passing all the criteria. An even

more dramatic change can be seen when looking at oxidized PSMs, going from

443780 PSMs and 11% of the total, to 10384 PSMs and 7.4% of the total. This

resulted in a total of 61 singly oxidized residues identified, with an additional 11
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double oxidation identifications (Table 2.4). While drastic, these changes allow for

a more discriminative view of the conformational changes that occur between the

two states, as demonstrated by the M13-GFP linker.

Table 2.4: GCaMP2 Oxidized Residues

Residue
Calcium Free Calcium Bound

Ri
Fractional SASA (Å2)

Oxidation LN PF Oxidation LN PF 3EKJ 3EK4 3EK7

K31 4.38E-5 ± 6.7E-6 3.197 1.37E-3 ± 7E-4 3.159 2.2

D32 3.67E-4 ± 2.6E-5 1.517 1.07E-4 ± 3E-5 1.531 0.42

L33 7.51E-6 ± 1.7E-6 3.910 3.29E-5 ± 8E-6 3.893 4.4

M36 1.08E-2 ± 4.8E-3 5.369 1.20E-2 ± 3E-3 5.368 20.5

D38 1.33E-3 ± 8.7E-4 1.504 5.30E-4 ± 5E-4 1.514 0.42

L60 1.86E-5 ± 1.1E-5 3.900 5.14E-5 ± 3E-5 3.888 4.4 0.34 0.65 0.5

E61 8.99E-5 ± 2.1E-5 2.029 6.88E-5 ± 4E-5 2.032 0.69 0.3 0.1 0.4

Y64 4.28E-5 ± 1.4E-5 4.894 5.43E-4 ± 2E-5 4.866 12 0.49 0.21 0.35

I65 2.55E-5 ± 2.2E-5 3.896 1.93E-3 ± 9E-4 3.849 4.4 0.01 0 0

M66 2.17E-3 ± 7.2E-4 5.386 3.31E-3 ± 2E-3 5.382 20.5 0.42 0.44 0.29

D68 5.05E-5 ± 9.7E-6 1.539 9.98E-6 ± 5E-6 1.557 0.42 0.16 0 0.17

D103 1.68E-3 ± 1.1E-3 1.501 7.31E-4 ± 5E-4 1.510 0.42 1.05 1.07 1.07

D110 6.50E-6 ± 6.0E-6 1.562 2.79E-5 ± 2E-5 1.546 0.42 0.76 0.8 0.8

L144 7.68E-3 ± 5.5E-3 3.834 2.54E-2 ± 2E-2 3.822 4.4 1.03 0.92 0.82

F166 2.75E-5 ± 2.1E-5 4.829 2.23E-5 ± 2E-5 4.832 11.2 0 0.01 0.01

V169 5.46E-5 ± 1.9E-5 3.048 4.13E-5 ± 1E-5 3.051 1.9 0.5 0.48 0.48

V170 1.91E-5 ± 7.9E-6 3.059 4.43E-5 ± 1E-5 3.050 1.9 0.1 0.09 0.07

I172 7.43E-6 ± 1.3E-6 3.910 8.23E-6 ± 6E-6 3.909 4.4 0 0 0

E175 3.83E-4 ± 1.3E-4 2.013 3.00E-4 ± 2E-4 2.016 0.69 0.4 0.41 0.5

D177 2.33E-5 ± 1.1E-5 1.548 1.85E-5 ± 5E-6 1.550 0.42 0.75 0.67 0.77

K184 2.83E-5 ± 9.8E-6 3.202 3.51E-5 ± 1E-5 3.199 2.2 0.77 0.79 0.76

V187 4.29E-5 ± 3.8E-5 3.050 9.20E-5 ± 5E-5 3.042 1.9 0 0 0

E190 1.03E-3 ± 3.8E-4 2.003 1.97E-3 ± 9E-4 1.996 0.69 0.75 0.72 0.67

E192 4.73E-4 ± 3.5E-4 2.011 1.58E-4 ± 1E-4 2.023 0.69 0.53 0.55 0.54

Continued on next page
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Table 2.4: Continued

Residue
Calcium Free Calcium Bound

Ri
Fractional SASA (Å2)

Oxidation LN PF Oxidation LN PF 3EKJ 3EK4 3EK7

D194 2.38E-3 ± 7.4E-4 1.497 3.59E-3 ± 1E-3 1.493 0.42 0.16 0.21 0.12

Y197 1.53E-4 ± 7.3E-5 4.879 5.37E-4 ± 3E-4 4.866 12 0.09 0.67 0.14

K199 1.33E-4 ± 7.7E-5 3.185 4.93E-4 ± 3E-4 3.170 2.2 0.23 0.4 0.23

C206 3.11E-3 ± 2.4E-3 5.736 1.60E-2 ± 9E-3 5.719 29.2 0 0 0

Y224 1.00E-2 ± 9.4E-3 4.835 7.63E-2 ± 7E-2 4.814 12

M246 9.45E-4 ± 4.2E-4 5.395 2.31E-3 ± 1E-3 5.386 20.5 0 0 0

E248 1.55E-4 ± 6.5E-5 2.023 1.73E-4 ± 4E-5 2.022 0.69 0.49 0.55 0.47

E253 6.04E-4 ± 9.9E-5 2.009 6.26E-4 ± 1E-4 2.008 0.69 0.45 0.43 0.37

F257 3.27E-4 ± 1.1E-4 4.802 2.53E-4 ± 5E-5 4.805 11.2 0.5 0.49 0.48

F272 9.82E-4 ± 1.7E-4 4.790 1.08E-3 ± 2E-4 4.789 11.2 0.09 0.06 0.06

E273 5.52E-4 ± 1.5E-4 2.010 4.43E-4 ± 1E-4 2.012 0.69 0.33 0.38 0.39

D275 3.99E-4 ± 4.8E-5 1.517 3.01E-4 ± 9E-5 1.520 0.42 0.88 0.86 1.01

L277 7.72E-6 ± 6.8E-7 3.909 1.18E-5 ± 1E-5 3.905 4.4 0 0 0

D305 1.74E-4 ± 6.8E-5 1.526 1.38E-4 ± 5E-5 1.528 0.42 0.96

E309 2.03E-4 ± 7.5E-5 2.020 9.33E-5 ± 3E-5 2.029 0.69 0.5 0.85 0.48

E310 2.90E-4 ± 1.3E-5 2.016 1.47E-4 ± 8E-5 2.024 0.69 0.91 0.72 0.85

I312 2.87E-4 ± 2.5E-5 3.869 1.31E-4 ± 8E-5 3.878 4.4 0.05 0.43 0.08

E314 4.65E-4 ± 8.5E-5 2.011 1.14E-3 ± 2E-4 2.002 0.69 0.62 0.35 0.69

F315 2.77E-4 ± 9.4E-5 4.804 4.16E-5 ± 4E-5 4.825 11.2 0.06 0 0.2

E317 1.45E-4 ± 2.4E-6 2.024 5.91E-4 ± 5E-5 2.009 0.69 0.73 0.58 0.75

F319 2.47E-4 ± 6.8E-5 4.805 7.71E-4 ± 2E-4 4.793 11.2 0 0.03 0

F322 1.26E-3 ± 9.1E-5 4.788 3.74E-5 ± 4E-5 4.826 11.2 0.21 0 0.24

E385 7.89E-4 ± 4.6E-5 2.006 8.29E-3 ± 1E-3 1.981 0.69 0.8 0.49

D398 3.13E-4 ± 9.1E-5 1.519 7.08E-4 ± 2E-4 1.510 0.42 0.7 0.68

Y402 8.13E-5 ± 2.6E-5 4.886 1.30E-4 ± 7E-6 4.881 12 0.93 0.43

H410 2.50E-3 ± 1.1E-4 4.594 4.69E-3 ± 1E-4 4.588 9.3 0.58 0.43

L419 2.14E-5 ± 1.2E-5 3.898 3.33E-5 ± 1E-5 3.893 4.4 0.17

E422 7.63E-5 ± 2.7E-6 2.031 1.56E-4 ± 7E-5 2.023 0.69 0.79

Continued on next page
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Table 2.4: Continued

Residue
Calcium Free Calcium Bound

Ri
Fractional SASA (Å2)

Oxidation LN PF Oxidation LN PF 3EKJ 3EK4 3EK7

E423 1.27E-4 ± 4.3E-5 2.025 8.23E-4 ± 2E-4 2.005 0.69 0.52

D425 8.56E-5 ± 1.5E-5 1.533 1.04E-3 ± 2E-4 1.506 0.42 0.56

E426 2.32E-5 ± 5.7E-6 2.044 8.30E-4 ± 4E-4 2.005 0.69 0.61

M427 1.62E-3 ± 8.8E-4 5.389 9.27E-3 ± 1E-3 5.371 20.5 0.43

I433 9.39E-5 ± 5.6E-5 3.882 5.08E-5 ± 2E-5 3.888 4.4 0.56

D434 1.92E-4 ± 2.0E-5 1.525 5.91E-4 ± 9E-5 1.512 0.42 0.6

D436 1.21E-4 ± 3.1E-5 1.530 1.60E-3 ± 4E-4 1.502 0.42 0.49

E442 2.95E-4 ± 5.2E-5 2.016 6.81E-4 ± 2E-4 2.007 0.69 0.68

E443 2.34E-4 ± 1.1E-4 2.019 2.00E-4 ± 9E-5 2.021 0.69 0.04

L60,M66 7.34E-6 ± 9.5E-7 2.29E-5 ± 1E-5

N62,M66 2.02E-5 ± 1.0E-5 3.72E-4 ± 3E-5

Y64,M66 1.60E-5 ± 7.8E-6 3.10E-4 ± 5E-5

H82,H94 5.94E-5 ± 2.7E-5 9.34E-5 ± 9E-5

E190,E192 4.47E-6 ± 3.4E-6 9.84E-6 ± 9E-6

E190,D194 1.28E-5 ± 2.5E-6 1.46E-5 ± 1E-5

L295,K298 3.12E-2 ± 1.9E-2 4.84E-2 ± 5E-2

H297,K298 1.08E-1 ± 7.5E-2 3.38E-2 ± 3E-2

D434,D436 1.82E-6 ± 1.3E-6 8.04E-6 ± 2E-6

N440,M448 1.78E-5 ± 6.3E-6 1.48E-5 ± 1E-5

M447,M448 2.90E-4 ± 2.1E-4 8.66E-4 ± 3E-4

At the residue level, the PD method was able to detect the conformational

change between the two states on the L60-E61 linker betweenM13 and GFP. In the

CF state, the linker is integrated into the leading GFP β-strand, with the structure

stabilized through hydrogen bonding between E61 and R81. This integration de-

creases the SASA of L60, while exposing the E61 sidechain. However, the linker is

forced into a different conformation in the CB state as a result of the strong interac-

tion between theM13 peptide and the CaM domain (Figure 2.5a).21 This interaction
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Figure 2.5. Conformational difference detected in the two residues
in the M13-GFP linker with an overlay of the calcium free (light gray
and blue, PDB ID: 3EKJ) and the calcium bound structures (dark
gray and red, PDB ID: 3EK4)(a) and the oxidation and the SASA of
the two residues for each conformation (b).
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inverts the SASA for the linker residues, with L60 more exposed in the CB states.

Residue level analysis using the PD method matches this trend, with a higher ox-

idation on L60 in the CB state and E61 in the CF state (Figure 2.5b). In addition

to matching the trend for the linker, the correlations between % SASA (the frac-

tional SASA of the residue) and log PF of the 61 oxidized residues are comparable

to those that have been previously published, with -0.64 for the CF GCaMP2 and

-0.45 and -0.59 for monomeric and dimeric CB GCamP2 (Figure 2.2).14,15

Another structural change between the CF and CB states stems from the archi-

tecture of the calcium sensor. In designing the cpEGFP moiety, four residues were

removed from a GFP β strand. This creates an opening in the GFP barrel, resulting

in an increased solvent accessibility in the barrel interior. Conformational changes

induced by calcium binding cause the N-terminal domain of CaM to partially block

this opening, decreasing the solvent accessibility of the chromophore.21 In the CF

state, the N-terminal domain of CaM is packed against the cpEGFP domain, cre-

ating a region of decreased SASA on the surface of the cpEGFP domain (Figure

2.6a). However, in the CB state the interaction of the CaM domain with the M13

peptide increases the exposed SA in this region of the GFP domain (Figure 2.6b,

Table 2.3). Two oxidatively modified peptides were identified in this cpEGFP region.

At the peptide level, peptides 128-151 and 185-199 both have an increase in oxida-

tion in the CF state (Figure 2.4, Table 2.2). Residue level analysis also agrees with

the conformational differences, identifying three residues on the occluded cpEGFP

surface that have higher oxidation yields in the CB state (Figure 2.6c).

Although the surface of cpGFP has increased solvent exposure in the CB state,

the same claim cannot be made for the CaM domain. Helices 8 and 11 of GCaMP2,

which comprise the majority of the residues that are packed against the GFP do-

main in the CF state, are also complexed with the M13 peptide in the CB state.21

Additionally, the 2 crystal structures are for this domain are incomplete, making it

difficult to assess the CaM residue level data using the structures. However, the CB

CaM domain is structurally similar to the CaM-M13 crystal structure, with only small
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Figure 2.6. Inter-domain contacts between GFP (gray) and the N-
terminal lobe of CaM (light purple) in the CF conformation (a) and
structural changes in the CB conformation (b) with residues with
higher oxidation in the CB conformation colored blue, and a bar
graph (c) of the oxidation level of the highlighted residues.
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differences associated with the CaM linker helix.21,25 By reason of this structural

similarity, a previously published FPOP study of calmodulin with the M13 peptide

was used for comparison.26 Since definitive oxidation values for calmodulin were

not given, the trend of which state (CB or CF) yielded a higher oxidation was used

for comparison (Table 2.4). There is an agreement between the previously pub-

lished data and the data presented in this paper, with 2 of the residues in common

between this and the previous study differing. One residue, I312 (I9 in isolated

CaM), has nearly identical oxidation values in the CF and CB states in the previous

study. Another residue, M427 (M124 in isolated CaM) is not significantly different

in the previous study. This as well as the correlation between % SASA and log PF

demonstrates the efficacy of the PD method in identifying and quantifying residue

level oxidation.

Table 2.5
Comparison of CaM Domain PD Oxidation to Previously Published Data

GCaMP2 Res CaM Res GCamp2 Higher State CaM-M13 Higher Statea

I312 I9 CF CB

F319 F16 CB CB

L321 L18 CF CF

F322 F19 CF CF

Y402 Y99 CB CB

M412 M109 CF CF

M427 M124 CB Sameb

a CaM-M13 data taken from literature26

b Not significantly different
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2.5 Discussion

Using protein footprinting methodologies with mass spectrometry for protein

structural analysis can be advantageous, particularly when structural knowledge

from traditional methodologies like X-ray crystallography is not available. Although

these methods have the potential to fill the gap left by the traditional structural ap-

proaches, the potentially arduous task of analyzing the data can limit the size or

complexity of the systems that can be studied using footprinting methods. Fur-

thermore, any manual interpretation in the analysis steps can introduce a human

bias, leading to errors in interpretation. As such, while footprinting can provide ad-

vantages over traditional methods, there is an inherent limitation in their ability to

completely close the gap without a more comprehensive analysis strategy.

My goal was to develop a method that could rapidly analyze the raw data from

any stable label footprinting experiment, regardless of the size or complexity of

the data set. Developing a completely integrated software platform would have

required an exhaustive search of every footprinting label currently in use, and would

require an update for each newly published footprinting label. Additionally, this

would have required restrictions on the raw data file format(s) or a strict requirement

on file conversion.

To overcome these obstacles, I developed our strategy using a two pronged ap-

proach, separating database searching from quantitation. The PD workflow (Figure

2.1) used for this work can be adapted for any stable label by changing the variable

modifications search to those used in the experiment, adding or deleting search

levels as needed. Additionally, PD and the algorithms (Mascot and Sequest HT)

allow the addition of new modifications, making it accessible to labels that have not

yet been published. Nonetheless, PD is not required for quantitation in PowerPivot,

as the quantitation method can be adapted to any data set formatted to a similar

layout. By separating the search and quantitation strategies, our complete method

can be adapted for any footprinting label and quantitation can be completed with
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or without the use of PD. Furthermore, post search quantitation takes under two

hours, for one or thousands of proteins, regardless of the number or complexity of

samples to analyze. Only the search time increases, as would be the case for any

other platform.

The use of different filtering strategies for peptide and residue level analysis

minimizes the amount of manual interpretation and validation required, while still

providing a high level of confidence in the results obtained. For peptide level anal-

ysis, it is not necessary to know the exact location of the modification on a given

peptide. Therefore, it is reasonable to conclude that corresponding modified PSMs

identified within the mass tolerance are correct within a 95% confidence interval,

and that the ambiguity of the location assignment is inconsequential to the overall

outcome at this level of detail.

A more stringent approach must be taken to provide a high level of confidence in

modification assignments for residue level analysis. Restricting PSMs to only those

with one modification is necessary as there is not a reliable method to assign peak

area proportions to each modification in multiply oxidized PSMs. The additional re-

strictions of a 1% FDR and limiting the search engine rank to 1 allow for a high level

of confidence in per-residue analysis while limiting the amount of manual interpre-

tation required. Comparing the MS/MS scans for 2 identified modifications on the

same peptide in GCaMP2 best illustrates this point. A decarboxylation modifica-

tion on residue D194 was identified with high confidence and a search engine rank

of 3 (Figure 2.7a), but does not have fragment peaks to substantiate this assign-

ment. Without the filters, this assignment would have had to be validated manually,

increasing the amount of time required to complete analysis. For comparison, a

loss of CO on this same residue was identified with high confidence and a search

engine rank of 1 (Figure 2.7b), and has a more complete y-ion series coverage in

the MS/MS spectrum with a fragment matching the modification. By using strict

filters on the data up front, a high level of confidence in the assignments can be

obtained without the need to manually remove PSMs individually which drastically
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Figure 2.7. MS/MS spectra of FPOP modifications on D194 of pep-
tide 185-199 with an ambiguous assignment of a decarboxylation
on D194 (a) that was removed by the strict filtering scheme, and the
same peptide and location with a loss of CO (b) that pass the filters
with fragment ions that validate the oxidation.

decreases the time required for analysis. This is further demonstrated by the oxida-

tion levels of the two M13-cpEGFP linker residues, L60-E61 (Figure 2.2). Glutamic

acid is one of the least ·OH reactive amino acids, with a reactivity 2.3x108.2 Manual

interpretation may have been biased by the more highly reactive residues on the

peptide; including L61 with a 6-fold higher reactivity, Y64 with a 17 fold higher reac-

tivity, and M66 with a 30-fold higher reactivity. By letting the algorithms make the

assignment, no human bias can by factored into the analysis, and the detection of

oxidized residues with lower reactivities is not hindered. While there is still a small

probability of incorrect assignments, the use of an n number of PSMs threshold

decreases the likelihood of the incorrect assignments being included while inter-

preting the results. Furthermore, the upfront reduction of PSMs before analysis is

completed also decreases the number of data points, and therefore the time re-

quired for manual verification of the results, if desired.
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2.6 Conclusion

This chapter has demonstrated my PD method data analysis method, a com-

plete identification and quantitation strategy for mass spectrometry-based protein

footprinting studies. The data presented here has demonstrated the efficacy of the

PD method in detecting and analyzing hydroxyl radical-mediated protein footprint-

ing data. Use of this method on GCaMP2 has validated that this method not only

provides significant footprinting coverage while maintaining a high level of confi-

dence in the results obtained, but does so in less than two hours. Additionally, this

method can be adapted for use with any stable covalent label and any level of ex-

periment or sample complexity. The approach used when developing this method

will allow for it to be modified as new technologies and footprinting strategies are

developed.
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3. FAST PHOTOCHEMICAL OXIDATION OF PROTEINS COUPLED TO

MUDPIT: EXPANDING FOOTPRINTING STRATEGIES TO COMPLEX

SYSTEMS

3.1 Introduction

Hydroxyl radical (·OH) based footprinting, first coupled with mass spectrome-

try by Chance and coworkers1, is one of the most informative covalent labeling

methods for a number of reasons. The ·OHs have similar properties to water and

can freely oxidize solvent exposed side chains. Additionally, their reactivity is well

known and researchers can capitalize on their low selectivity, increasing the amount

of information obtained.2 Furthermore, there are multiple methods available for

generating ·OHs, increasing the accessibility of this method.3–5 FPOP, used for

the work in this chapter, generates ·OHs through laser induced photolysis of hy-

drogen peroxide.6 This technique modifies proteins on a microsecond timescale,

theoretically eliminating structural changes induced by labeling.6,7

A consequence of design features employed in FPOP experiments to eliminate

radical induced unfolding is that oxidized species are present in lower abundance

as compared to their unoxidized counterparts.6 Therefore, the difficulty in detect-

ing these species will grow concurrently with increasing sample complexity. Inves-

tigating the structures of large, megadalton sized molecular assemblies, has often

proven difficult. While there several methods for obtaining protein structures, the

majority come from X-ray crystallography.8 At the outset, it is often challenging to

purify all of the protein components of megadalton complexes, a necessity in ob-

taining a structure.9 Even when this is accomplished, it can be equally difficult to
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crystallize these complexes, or the process may only yield crystals too small for

analysis.8 While FPOP has the potential to start to fill this gap in information, it

is first necessary to overcome the hurdle of identifying the relatively low abundant

oxidized species in a sea of higher abundant peptides. A major obstacle is using

data-dependent acquisition (DDA) for MS/MS analysis. In this method, precursor

ions are selected for fragmentation based on their signal intensities. Often, if chro-

matographic separation is not sufficient, peptides with higher abundance are iden-

tified while lower abundance peptides are not. A more proficient chromatographic

separation could aid in increasing peptide identifications.

Multi-dimensional protein identification technology (MudPIT), is a method used

to overcome the inability of single-dimensional separations to resolve complex bio-

logical samples.10 The use of a biphasic analytical column increases the peak col-

umn capacity, and allows for online two-dimensional separations.10,11 Coupling of

FPOP labeling with MudPIT could provide an increase in identifications of oxidized

peptides in complex systems. The use of thismethod to identify oxidativelymodified

peptides has been previously reported.12 However, the study was mainly focused

on comparison of informatics methods rather than as a method to be utilized to

identify more oxidatively modified peptides for highly complex samples. Addition-

ally, the researchers used a low complexity sample with a “mini-MudPIT” method

consisting of only three salt steps. In this chapter, the combination of a full Mud-

PIT method with FPOP on a highly complex sample, Saccharomyces cerevisiae

yeast cell lysate is discussed. The objective was to improve the detection of FPOP

labeled species and expand the application of FPOP to more complex systems.

3.2 Experimental Section

3.2.1 Materials

All chemicals were obtained from Thermo Fisher Scientific (Waltham, MA) un-

less otherwise noted.
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3.2.2 Oxidative Labeling

Each 100 μL sample contained 10 mM PBS (Sigma Aldrich, St. Louis, MO) 10

mM L-glutamine, 7.5 mM hydrogen peroxide and yeast cell lysate (A gift from Dr.

Amber Mosley andWhitney Smith-Kinnaman, Department of Biochemistry, Indiana

University School of Medicine, Indianapolis, IN) at a concentration of 0.18 mg/mL.

The hydrogen peroxide was added just prior to infusion. FPOP was performed

similarly as described.6,7 A 248 nm KrF excimer laser (GAM Laser Inc., Orlando,

FL) was used to irradiate the sample solution at 135 mJ/pulse. The laser was

focused through a 250 mm plano convex lens (Thorlabs, Inc., Newton, NJ) onto

150 μm i.d. fused silica tubing (Polymicro Technologies, Phoenix, AZ) with the

polyimide coating removed, giving a 2.5 mm irradiation window. The flow rate, 33

μL/min, was set to allow for a 20 percent exclusion fraction. A total of 4 FPOP

samples and 3 controls (no irradiation) were prepared.

3.2.3 Proteolysis

Post FPOP, the yeast lysate samples were subjected to a two-step digestion

process as previously described.13 Each sample was acetone precipitated14 and

resuspended in 8 M urea 150 mM Tris-HCl pH 8.5 buffer. Proteins were reduced

with 10 mM tris(2-carboxyethyl) phosphine (TCEP) for 30 minutes at room temper-

ature (RT). They were then alkylated with 20 mM iodoacetamide for 30 minutes at

RT with a foil cover to protect the sample from light. The alkylation reaction was

quenched with 10 mM dithiothreitol for 15 minutes at RT. Lys-C was added at a

100:1 substrate to protease ratio and incubated overnight at 37 °C. The samples

were then diluted with 150 mM Tris buffer to bring the urea concentration to 2 M.

Trypsin was added at a 50:1 substrate to protease ratio and incubated overnight at

37 °C. Digestion was quenched with formic acid (Sigma Aldrich, St. Louis, MO) at

a final concentration of 5%.
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3.2.4 LC-MS/MS Acquisition

Analysis was completed using an UltiMate 3000 RSLC and a Q Exactive mass

spectrometer (Thermo Fisher Scientific, Waltham, MA). For each experiment, 1

µg of the digest was loaded onto a 2 cm Acclaim Pepmap 100 C18 trap column

(Thermo Fisher Scientific, Waltham, MA). MS1 spectra were acquired over an m/z

range of 350–2000 at a resolving power of 70�000. The 25 most abundant ions

were selected for MS2 at a resolving power of 17500. Ions with a charge-state of

+1 and >+8 ions were rejected.

One Dimensional LC-MS/MS

Samples were loaded onto a 100 µm x 2 cm Acclaim PepMap100 C18 nano

trap column (5 µm, 100 Å) (Thermo Scientific, Waltham, MA) and washed for 10

minutes with loading buffer (LB, 2% acetonitrile 0.1% formic acid) with a flow rate

of 5 μL/min. The samples were separated on a 75 μm inner diameter (ID) reverse

phase (RP) analytical column packed in-house with a 30 cm bed of Magic 5 μmC18

particles (Michrom Bioresources Inc., Auburn, CA) with a 67 minute linear gradient

at a flow rate of 300 nl/min to 40% acetonitrile 0.1% formic acid. The total run time

was 105 minutes including loading, washing and equilibration. AGC targets were

set to 3e6 for MS1 and 1e5 for data-dependent MS2 with an underfill ratio of 1.0%,

giving an intensity threshold of 2.0e4.

MudPIT LC-MS/MS

Fully automated analysis was completed in a similar manner as previously de-

scribed.15,16 Each sample was loaded onto a trap column and washed for 10 min-

utes with LB at a flow rate of 5 μL/min. Samples were separated on a 75 μm ID RP

analytical column packed in-house with a 26 cm bed of Magic 5 μm C18 particles

(Michrom Bioresources Inc., Auburn, CA) followed by a 4 cm bed of Luna strong



57

cation exchange (SCX) resin (Phenomenex, Torrence, CA). Peptide fractions were

displaced from the SCX resin to the RP resin using the following salt pulses: (1)

0% (2) 5% (3) 10% (4) 15% (5) 20% (6) 30% (7) 40% (8) 50% (9) 60% (10) 80%

of SCX buffer (SCXB, 500 mM ammonium acetate (Sigma Aldrich, St. Louis, MO)

in 5% acetonitrile and 0.1% formic acid) mixed with LB by the loading pump mixer.

The 0% fraction was used to displace the sample from the trap column to the ana-

lytical column. Each subsequent salt pulse was generated by increasing the SCXB

percentage to the next concentration with a loading pump gradient during the pre-

vious salt step. A 2.6 μL aliquot of salt (roughly 15x the SCX bed volume) was

collected by coupling a 30 cm 75 μm ID NanoViper line (Thermo Fisher Scientific,

Waltham, MA) to the trap column with a stainless steel union, and delivered when

the switching valve position was changed. Each salt pulse was pushed over the

analytical column by the gradient pump for 20 minutes at a flow rate of 300 nL/min.

Sample fractions were separated with a 67-minute linear gradient at a flow rate of

300 nL/min to 40% acetonitrile 0.1% formic acid. The total run time for each fraction

was 105 minutes including loading, washing and equilibration time. AGC targets

were set to 1e6 for MS1 and 5e4 for data-dependent MS2 with an underfill ratio of

1.0%, giving an intensity threshold of 1.0e4.

3.2.5 Data Analysis

All data files were searched using Proteome Discoverer version 1.4 (Thermo

Fisher Scientific, Waltham, MA.) with Sequest HT and Mascot version 2.4 (Matrix

Sciences Ltd., London, UK) against a Saccharomyces cerevisiae FASTA database

(strain ATCC 204508 / S288c, downloaded from Uniprot February 2014), and EIC

areas for each PSM were calculated using a custom multi-level workflow (as de-

scribed in chapter 2). Peptides were ungrouped and filtered to a 1% FDR. Only

PSMs identified as selected or unambiguous were used for analysis. The data was
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exported to Excel and summarized using the PowerPivot add-in. The fractional

oxidation per residue on a given sequence was determined according to Equation

2.1.

3.3 Results

3.3.1 LC-MS Method Comparison

In order to make the most direct comparison between the one-dimensional chro-

matography data-dependent analysis (1D-DDA) and MudPIT, when possible, all

processes and parameters were kept identical. However, some parameters were

altered for the analysis. First, the typical FPOP sample size was doubled to ensure

there was an adequate amount to analyze each sample by both methods. In addi-

tion, the total analytical column length was kept at 30 cm and the gradient for each

sample or step was constant over the entire experiment.

For comparison of the two methods, the sample loading procedure for MudPIT

had to be altered. In MudPIT analysis, samples are often pressure loaded or di-

rectly injected onto the analytical column.10 In this experiment, the samples were

loaded onto a trap column via the autosampler. There were several advantages to

loading the samples in this manner. First, sample washing was identical for both

methods. Any hydrophilic peptides that may have been washed off of the trap col-

umn should be the same over both methods. Directly loading the sample onto a

three phase analytical column could have created a bias between the two meth-

ods. Second, trap column loading allowed both method analyses to be completed

continuously, whereas pressure loading would require the MudPIT analysis to be

completed discontinuously. Other parameters that were altered were automatic

gain control (AGC) targets, for both MS1 and MS2, and dynamic exclusion times.

These parameters were optimized for each method to provide peak performance.
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3.3.2 Increases in Identifications by MudPIT

In agreement with previously reported results10,11, using the MudPIT method

to analyze the labeled yeast lysate samples gave a substantial increase in peptide

spectrum matches (Figure 3.1). When comparing the two methods at the protein

level, a 1.7-fold increase in protein group identifications (IDs), including 820 unique

proteins, was observed with MudPIT (Figure 3.1 top). At the peptide level, a 1.3-fold

increase in IDs with MudPIT was observed. Comparing unique peptides, MudPIT

had a 1.7-fold increase in IDs with almost 1700 more unique peptides observed

over 1D-DDA (Figure 3.1 middle). Although significant increases were observed

with MudPIT on the protein and peptide levels, the true value of using the method

in conjunction with protein footprinting is appreciated when looking at oxidatively

modified peptides (Figure 3.1 bottom). Here, a 2.7-fold increase in oxidized pep-

tide IDs was observed with MudPIT. Even more significant, MudPIT has a 4.6-fold

increase in IDs of unique oxidized peptides over 1D-DDA. This demonstrates the

efficacy for coupling MudPIT with FPOP. The higher sequence coverage of ox-

idatively modified peptides will provide a more complete description of the protein

system.

To further evaluate the increased IDs achieved with the MudPIT method, we

compared the identification of oxidatively modified residues on pyruvate kinase 1

(PK1, PDB ID: 1A3W)17 and phosphoglycerate kinase (PGK1, PDB ID: 3PGK)18.

These proteins were chosen as representative because both had high coverage

with each method (greater than 75%) and each had oxidatively modified peptides

identified by the search workflow. For both of these proteins, modifications were

only included if they were identified more than once in the samples (PSM ≥ 2) and if

the quantifiable oxidation levels were greater than the mean standard error. Table

3.1 shows residues that were identified by each method. For PK1, 1D-DDA identi-

fied only six of the fourteen oxidatively modified residues identified by MudPIT. For

PGK1, the fourth most abundant protein found in S. cerevisiae19, 1D-DDA only IDs
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Figure 3.1. Visual comparison of IDs between MudPIT (red) and
1D-DDA (blue) methods by proteins (top), peptides (middle), and
oxidatively modified peptides (bottom).

16 of the 41 residues that MudPIT identified. Since PKG1 is very abundant in yeast

lysate, it can be assumed that this protein is oxidized more frequently than lower

abundant proteins in the lysate. Consequently, the oxidized peptides from PKG1
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may be relatively abundant. Despite that, 1D-DDA IDs less than half the number

of oxidized residues as MudPIT.

Table 3.1
Oxidatively Modified Residues Identified

PK1 Residue 1D-DDA MudPIT PGK1 Residue 1D-DDA MudPIT

D185 N Y M174 Y Y

D187 N Y V175 Y Y

N249 N Y E200 N Y

F250 N Y N201 N Y

D251 Y Y P202 N Y

E252 N Y R204 N Y

D266 N Y I234 N Y

E270 N Y M238 N Y

I399 N Y A239 N Y

D451 Y Y E247 N Y

W452 Y Y D253 N Y

D454 Y Y E303 N Y

D455 Y Y I305 N Y

E457 Y Y P306 N Y

A307 N Y

W309 Y Y

Q310 N Y

D313 Y Y

I332 N Y

V333 N Y
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3.3.3 Properties of Peptides Identified by MudPIT

Wolters et al.10 demonstrated that MudPIT has a high dynamic range with the

ability to ID low abundance peptides. To determine whether the IDs from Mud-

PIT are lower abundance than those from 1D-DDA, the intensities of the identified

peptides were analyzed. Figure 3.2A compares the intensity of peptides identified

from MudPIT and 1D-DDA. The average intensity of the peptides identified by both

methods are similar. However, the minimum intensity of peptides identified by Mud-

PIT is lower than for 1D-DDA. A histogram of frequency of identifications of pep-

tides at varying intensities further demonstrates this (Figure 3.2B). Since the Mud-

PIT method has more overall identifications, the histogram has been normalized

to show the percent of total peptides. For both MudPIT and 1D-DDA the highest

number of identifications were from peptides with intensities in the range of 1.00e6

(1e6 - 9e6), followed by intensities in the range 1.00e5 (1e5 - 9e5) and 1.00e7 (1e7

- 9e7). In the lowest intensity bin, 1.00e4 (1e4 - 9e4), MudPIT facilitated detection

of three times as many peptides, 90 (1%) and 25 (0.4%) for MudPIT and 1D-DDA,

respectively. This increase in lower intensity identifications is even more significant

for oxidized peptides where 55 and 10 oxidatively modified peptides from MudPIT

and 1D-DDA were identified, respectively.

Comparing MudPIT identifications to yeast lysate protein abundance further

demonstrates the method can aid in identifying low abundance proteins. As men-

tioned previously, PGK1 is highly abundant in S. cerevisiae with an estimated abun-

dance of 21,000 parts per million (ppm);19 the sequence coverage for this protein is

75%. The ATP-dependent transporter protein YER036C is also identified by Mud-

PIT with 25% sequence coverage. This protein has an abundance of 743 ppm

29-fold lower than PGK11 indicating the dynamic range of the MudPIT method.
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Figure 3.2. Distribution of the intensities of PSMs identified by Mud-
PIT (red) and 1D-DDA (blue). (a) The spread of intensities is demon-
strated in the box-and-whisker plot with the box lines marking the
upper median and lower quartiles, and the whiskers marking the
complete range. (b) The frequency of the distributions of intensities
is displayed in a histogram.
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3.3.4 MudPIT as a Method for Megadalton Protein Complexes

A major obstacle in oxidative labeling experiments is the ability to obtain residue

level oxidation on large, macromolecular protein complexes. Given that the surface

area to volume ratio decreases as a particle increases in size, it stands to reason

that the proportion of oxidized species present when analyzing a MDa sized com-

plex would also decrease, making the likelihood of detecting modifications even

more difficult.

To demonstrate the power of using MudPIT analysis in oxidative footprinting ex-

periments, residue level oxidation was calculated on a yeast 80S ribosome, which

has a published structure (PDB ID 4V6I).20 Ribosomes are cellular organelles, con-

sisting of both protein and RNA, involved in protein assembly. The protein compo-

nent of the structure is assembled in two subunits, 40S and 60S, and contains a

total of 70 known proteins. We identified 52 of the 70 proteins in the MudPIT sam-

ples, with sequence coverage values ranging from 5 to 80 % (data not shown). A

total of 86 residues were identified as oxidized and mapped to the crystal struc-

ture for a visual representation (Figure 3.3). Since RNase was not added to the

sample at any time to remove the RNA, the structure is presented with the RNA

present. The mapping of oxidized residues onto a surface representation of the

crystal structure demonstrates that many solvent accessible residues are oxidized.

To further investigate the correlation between residue oxidation and solvent ac-

cessibility, the log protection factor (described in chapter 2) of residues identified

by MudPIT was compared to the fractional SASA values, calculated using VADAR

as described by Willard et al.21 Since FPOP was performed on yeast lysate where

various proteins could be interacting, we had to consider certain variables prior to

the comparison. While a binary interactome of yeast has been published22, it is

unlikely that every interaction with this complex has been documented. With this in

mind, it seemed unlikely that a comparison of SASA to oxidation over the complete

complex would yield any reliable assessment of the method. As a consequence, a
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Figure 3.3. Two perspectives of the structural location of MudPIT
determined FPOP oxidation levels mapped to a yeast 80 s riboso-
mal crystal structure, 4V6I20. The lowest oxidation levels are in blue
going to the highest in red.



66

comparison was done on a single protein within the complex. The SASA was deter-

mined on the RACK1 protein of the 40s ribosomal subunit (pdb: 4V6I20, UniProt ID

P38011). A plot that correlates the residue relative SASA values to the residue pro-

tection factor (described in chapter 2), demonstrates a good correlation between

the two parameters (Figure 3.4). The data fits well to a linear fit with an correlation

coefficient of -0.75 with a p-value of 0.02. There is a possibility that protein-protein

interactions are occurring that are not taken into account in the SASA calculations,

which could by why the correlation value is not higher.

Figure 3.4. Fractional SASA values versus Log PF values of Mud-
PIT identified residues of RACK1, chain Aa of the 4V6I20 ribosomal
structure, illustrating the linear relationship between the values.
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3.4 Discussion

An advantage of using protein footprinting coupled with mass spectrometry for

protein structural analysis is the ability to study large protein complexes. Analysis

of these complexes is often hampered with other structural tools such as X-ray

crystallography and NMR. Although MS analysis has the capability for analysis

of complex proteins systems, the nature of data dependent acquisition limits the

number of identifications achieved in analysis. Since DDA analysis focuses on the

highest abundant proteins at a given time, it is often difficult to identify low abun-

dant peptides with one-dimensional chromatography. This provides a challenge

for oxidative labeling where it is advantageous to limit the levels of oxidation; thus,

many oxidized peptides have a low abundance. The ability to carry out oxidative

labeling on large protein complexes requires the capability to identify low abundant

peptides.

The application of two-dimensional MudPIT chromatography to an oxidatively

modified yeast lysate sample increased the number of identified proteins and pep-

tides over one-dimensional chromatography. Yeast lysate (strain ATCC 204508 /

S288c) contains 6,721 proteins and is indicative of a complex system. The increase

in identification is most significant for oxidatively modified peptides where an almost

3-fold increase in identifications is observed (Figure 3.1 bottom). The higher abun-

dance of identifications for oxidized peptides provides more detailed information

on the proteins being analyzed. When investigating individual proteins, the benefit

of MudPIT is further revealed. For both pyruvate kinase 1 and phosphoglycerate

kinase, MudPIT identifies 5- and 2.6-fold higher numbers of oxidatively modified

residues than 1D-DDA. There were peptides identified by 1D-DDA that were not

observed with the MudPIT method, however. To gain as complete coverage as

possible, it may be necessary to perform 1D-DDA and MudPIT in tandem.

Examining the intensity of peptides identified by MudPIT indicates this method

is detecting lower abundant proteins. However, intensity alone does not account
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for the increased number of peptides identified by MudPIT. Another factor that may

influence the number of IDs is ionization efficiency. Co-elution of peptides that com-

pete for efficient ionization could lead to suppression of some peptides by higher

abundant peptides. These suppressed peptides may be of lower abundance than

their co-elution partners but are not low enough to be in the 1.00E+04 intensity

range. Two dimensional chromatography could lead to better separation and re-

duction in co-elution and ionization suppression.

The identification of 52 of the 70 proteins in the ribosome complex demonstrates

that coupling FPOP with MudPIT would be effective for studying large complexes

in lysates. However, this approach could likely be improved by further enriching

the protein complex with methods such as tandem affinity purification. Comparing

extent of oxidation of residues to SASA calculations established a good correlation

between the data. Since MudPIT analysis occurs over a longer time-scale than

one-dimensional chromatography, there is an opportunity for spurious oxidation.

Correlation of oxidative modification levels with solvent accessibility demonstrates

that the sample is not adversely affected by the long MudPIT analysis.

3.5 Conclusion

This chapter has demonstrated the coupling of the MudPIT separation strategy

with FPOP. The ability to obtain greater sequence coverage for oxidatively modi-

fied peptides increases the efficacy of FPOP for megadalton complexes. This is

necessary to obtain more complete structural information on proteins using oxida-

tive labeling. The data presented here has validated that MudPIT can provide this

increased sequence coverage, yielding a more comprehensive understanding of

the protein(s) or complex of interest.
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4. DEVELOPMENT OF A MICRO-FLOW SYSTEM FOR IN CELL PROTEIN

FOOTPRINTING ANALYSIS

4.1 Introduction

Hydroxyl radical (·OH) based footprinting coupled with mass spectrometry is

increasingly gaining popularity for studying the structure of proteins for a number

of reasons, including the similarity of ·OH to water, the various methods for gen-

erating radicals, and the well characterized ·OH reactivities with amino acid side

chains.1–3 FPOP, which was the method of ·OH generation used for the work in

this chapter, generates ·OH through laser induced photolysis of hydrogen perox-

ide, a reaction that occurs on a microsecond timescale, theoretically eliminating

structural changes induced by labeling.4,5 FPOP, as well as other means of radical

generation, are typically used for in vitro studies, which cannot fully account for the

numerous interactions and other variables taking place within a cell.

Recently, a novel in cell FPOP (IC-FPOP) application was reported in which

FPOP was used to label proteins in live cells, allowing for the complexity of the

cellular environment to be accounted for.6 While this initial report demonstrates a

new approach for probing the SA of proteins, they were only able to identify 105

endogenous proteins that were oxidatively modified, making up a small fraction of

the estimated 20,000 proteins (based on the number of human Swiss-Prot7 verified

proteins) in the Vero cells used in the study. The work in this chapter focuses on

improving IC-FPOP identifications, and discusses a flow system prototype that was

designed and built specifically for IC-FPOP.
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When considering the requirements for IC-FPOP, flow cytometers have a key

aspect in common; particles in solution are ordered into a centrally focused stream,

a process known as hydrodynamic focusing.8 Hydrodynamic focusing, an effect

of fluid dynamics, arises when two fluids in contact in a straight microfluidic chan-

nel are introduced at different velocities (Figure 4.1).9 The fluid moving at a higher

Figure 4.1. Hydrodynamic focusing of particles.

velocity, referred to as the sheath, fills a larger portion of that channel which com-

presses the slower moving fluid.

Like flow cytometry, this work requires that the cells be centrally focused so

there is an even distribution of the cells as the cells are irradiated with the excimer

laser used in our FPOP studies. Previous work has been done creating miniature

microfluidic flow cells that hydrodynamically focus the cells. However, the low cost

options to make these chips are not UV transparent at 248 nm, and UV transparent

materials would be costly. Additionally, our lab is not equipped with the equipment

that would be needed to manufacture a chip from these materials. My solution was

to use larger ID fused silica tubing, which is UV transparent with the coating re-
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moved, and would fit 1/16 flat bottom HPLC fittings as the flow cell. The remainder

of the parts used are common LC-MS fittings, with a design that makes it easy to

change out any part when necessary. The efficacy of the flow system was evalu-

ated for both its ability to centrally focus the cells as well as its performance when

used for IC-FPOP, with the results compared to those previously published.

4.2 Experimental Section

4.2.1 Materials

All chemicals were obtained from Thermo Fisher Scientific (Waltham, MA) un-

less otherwise noted. Flow cell fittings were obtained from IDEX Health & Sci-

ence (Oak Harbor, WA). Polyimide coated fused silica was obtained from Polymicro

Technologies (Phoenix, AZ).

4.2.2 Flow Cell Construction

The flow cell (Figure 4.2) was constructed entirely from standard IDEX parts

and Polymicro fused silica capillaries, with a modular design that can be adapted

for differing experimental requirements. The cellular analyte solution and H2O2 en-

ter the system through separate capillaries (360 µm OD, 75 µm ID) where they are

mixed in a PEEKmixing tee to keep the exposure time to H2O2 constant throughout

the experiment, and to prevent endogenous catalase from completely decompos-

ing the H2O2. The capillary carrying the mixed cellular analyte and H2O2 (360 µm

OD, 75 µm ID) is mounted so that it passes through the PEEK cross and is concen-

tric with the larger diameter flow cell capillary (673 µm OD, 450 µm ID). The two

capillaries (360 µm OD, 150 µm ID) carrying the sheath buffer are flush mounted

with the screw which enables the sheath buffer to completely surround the cellular

analyte/H2O2 capillary before any cells enter the capillary, centrally focusing the

cells and compressing the diameter of the solution carrying the cells/H2O2. Cells
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Figure 4.2. IC-FPOP Flow Cell Schematic: Blue arrows indicate
flow direction, and amber lines represent polyimide coated fused
capillary tubing (not to scale). The cellular solution and hydrogen
peroxide are mixed in a tee to prevent breakdown by endogenous
catalase. The capillary containing the cellular analyte is mounted so
that the buffer surrounds the capillary, creating a sheath to centrally
focus the cells. Optimal conditions were observed with a 10 to 1
sheath buffer to cellular analyte ratio.

are irradiated through a window in the flow cell capillary created by burning off a

portion of the polyimide coating.

4.2.3 Oxidative Labeling

IC-FPOP was completed as previously described.6 Vero cells (ATCC, Manas-

sas, VA) were grown to 70% confluence in a T75 flask in Dulbecco’s Modified Ea-

gle Medium (DMEM) with streptomycin/penicillin. The cells were trypsinized, cen-

trifuged, and resuspended in 6 mL sterile PBS. Each sample was prepared with

450 μL of cells and 50 µL PBS, and drawn into the flow system. The cells were

mixed in the syringe using a VP 710 tumble stirrer (V&P Scientific, San Diego, CA)
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with 6 VP 724F stir discs (V&P Scientific, San Diego, CA) to prevent cell settling.

Samples were passed through the flow cell system at a total flow rate of 484 μL/min.

The excimer laser was set to a pulse frequency of 20 Hz, with laser energy of 124

mJ, and a pulse width of 2.55 mm. Cells were collected in a tube containing 4 mL

of a quench solution comprised of 100 mM N,N′-Dimethylthiourea (DMTU, Sigma-

Aldrich, St. Louis, MO) and 100 mM N-tert-butyl-α-phenylnitrone (PBN). DMSO

(1%) added to the quench solution just prior to infusion to inhibit methionine sulfox-

ide reductase. Cells were labeled in biological duplicate, each in technical triplicate

with an equal number of controls (no laser irradiation).

4.2.4 Cell Lysis and Proteolysis

Post FPOP, cells were centrifuged, rinsed with PBS, resuspended in 100 µL

RIPA Lysis and extraction buffer, frozen in liquid nitrogen, and stored at -80 °C

overnight. Cells were thawed, incubated at 95 °C for 5 min, then cooled on ice for

5 min. After cooling, 2.5 units of nuclease were added to each sample, incubated at

room temperature for 15 min, centrifuged, and the supernatant was transferred to

a new tube. The cell lysate was reduced with DTT, alkylated with IAA and acetone

precipitated overnight. The precipitate was resuspended in 25 mM triethylammo-

nium bicarbonate buffer (TEABC, Sigma-Aldrich, St. Louis, MO) and digested with

trypsin at 37 °C overnight. Digestion was quenched by adding formic acid to a final

concentration of 5%.

4.2.5 LC-MS/MS

Analysis was completed using an UltiMate 3000 RSLC and a Q Exactive mass

spectrometer (Thermo Fisher Scientific, Waltham, MA) as previously described.6,10

For each experiment, the digest was loaded onto a 2 cm Acclaim Pepmap 100 C18

trap column (Thermo Fisher Scientific, Waltham, MA) and washed for 40 minutes

with loading buffer (2% acetonitrile 0.1% formic acid) at a flow rate of 2.5 μL/min.
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The samples were separated on a 75 μm inner diameter reverse phase analytical

column packed in-house with a 30 cm bed of Magic 5 μm C18 particles (Michrom

Bioresources Inc., Auburn, CA). Peptides were eluted with a 141 min stepped gra-

dient at a flow rate of 300 nL/min from 4% to 10% acetonitrile 0.1% formic acid

over 1 min and from 10% to 45% acetonitrile 0.1% formic acid over 140 min. The

total run time was 207 minutes including loading, washing, and equilibration time.

MS1 spectra were acquired over anm/z range of 300–2000 at a resolving power of

70,000 for 400 m/z ions, with a dynamic exclusion of 20 s. The 25 most abundant

ions were selected for MS2 at a resolving power of 17,500 for 400 m/z ions. Ions

with a charge-state of +7, +8, and >+8 ions were rejected. AGC targets were set to

3e6 for MS1 and 1e5 for data-dependent MS2 with an underfill ratio of 5%, giving

an intensity threshold of 5.0e3.

4.2.6 Data Analysis

All data files were searched using Proteome Discoverer version 1.4 (Thermo

Fisher Scientific, Waltham, MA.) with Sequest HT and Mascot version 2.4 (Ma-

trix Sciences Ltd., London, UK) against the Swiss-Prot reviewed human FASTA

database containing 20,193 proteins, and EIC areas for each PSM were calculated

using a custom multi-level workflow (as described in chapter 2). The fragment ion

tolerance was set at 0.02 Da and the parent ion tolerance at 10 ppm, and enzyme

specificity was set to trypsin with 1 missed cleavage. Peptides were ungrouped and

filtered to a 5% FDR. The data was exported to Excel and summarized using the

PowerPivot add-in. Proteins were accepted if at least 2 distinct peptides were iden-

tified with 5% FDR filter. Quantitation of FPOP oxidation on actin was completed

as described in chapter 2.
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4.2.7 Fluorescence Imaging

Vero cells were grown and harvested as described above. Cells were incubated

in 300 nM 4′,6-diamidino-2-phenylindole (DAPI) for 5 minutes and resuspended in

PBS. Tetramethylrhodamine (TMRM) and fluorescein sodium salt (FITC, Sigma-

Aldrich, St. Louis, MO) were added at a concentration of 5 µg/mL to the cells and

sheath buffer, respectively. Flow system imaging was completed on a Leica SP8

confocal laser scanning microscope (Leica Microsystems Inc., Buffalo Grove, IL)

with a Nikon Fluor 40x/0.80W DLL objective (Nikon Instruments Inc., Melville, NY)

4.3 Results and Discussion

4.3.1 Flow Dynamics

Similar to flow cytometry, the flow system has a central capillary through which

the cells are injected, surrounded by a faster flowing sheath buffer; laminar flow pre-

vents the cells and sheath from mixing. However, there is one significant design

difference between this flow system and those used in flow cytometers. Typically,

the central capillary is tapered, and this, along with the faster flowing sheath, hydro-

dynamically focuses the cells.8 The IC-FPOP experimental parameters as well as

the backpressure limitations of the syringe pump and fittings did not allow for the

central capillary to be tapered. As such, the blunt end of the central capillary in the

IC-FPOP flow system creates an area that may potentially cause turbulence and

disrupt laminar flow.

Fluorescence imaging was performed to evaluate the IC-FPOP flow system’s

effectiveness in hydrodynamically focusing the cells. Different fluorophores were

added to each solution to ensure laminar flow was maintained and to establish the

location of each solution within the flow cell; FITC (green) was added to the sheath

PBS and TMRM (red) was added to the cellular solution for imaging. PBS with

TMRM was used in place of H2O2 for imaging, and collectively, will be referred to
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as cellular analyte. In addition, cell nuclei were stained with DAPI (blue) prior to

imaging.

In order to establish the average position of each of the flowing solutions, an

average intensity projection was generated using the Icy bioimaging platform.11,12

This shows the average intensity of each pixel location over all of the 2666 frames

(recorded at 26.6 fps) in the run (Figure 4.3). To generate the projection, the RGB

Figure 4.3. Flow system average intensity projection showing the
locations of the sheath buffer(green) and cellular analyte (red) as
they flow through the flow cell.

channels were separated from the multi-channel image stack, and an average in-

tensity projection for the red (TMRM) and green (FITC) channels was performed;
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the resulting projections were then merged. Analysis shows the cellular analyte

was centrally compressed into a single stream approximately 50 µm in diameter.

This is 25 µm smaller than the capillary ID, demonstrating a stream compression of

33%. The blurring between the sheath and cellular analyte is expected as it is an

average over all of the frames; each individual frame is grainy due to the flow veloc-

ity and image capture speed. Other contributing factors may be vibrations causing

slight movements of the capillary and crosstalk between the FITC and TMRM (Fig-

ure 4.3). To address this issue, a 3D average intensity heat map was generated

(Figure 4.4) from the individual red and green projections. The map clarifies the

blur between the channels and clearly shows the highest intensity of the sheath to-

wards the sides of the field of view (left), and down the center for the cellular analyte

(right). This illustrates that the flow system operating under laminar flow conditions

as mixing due to turbulence would not display clear delineation in intensity.13

Fluorescence imaging was also used to determine the location of the cells as

they pass through the flow cell capillary. In addition to the DAPI, the TMRM dye

also stains the mitochondria of live cells as the accumulation of the dye is driven

by the mitochondria membrane potential.14,15 Again, an intensity projection was

generated to show the location of the cells. However, the maximum intensity was

used here, as each pixel location, on average, does not contain a cell. To generate

this projection, a median filter was applied to remove many of the individual pixels.

These pixels are likely from background noise or the TMRM that was in the cellular

analyte that was not taken up by the cells. The maximum intensity projections for

the filtered red (TMRM) and blue (DAPI) channels were merged and 2D heat map

was generated from the merged projections (Figure 4.5). Nearly all of the pixels

are from this map are located within the same dimensions of the cellular analyte

from Figure 4.3 (a cropped portion of Figure 4.3 was added to the bottom of Figure

4.4 for ease of comparison. This demonstrates that the cells are kept in a narrow

channel in the center of the flow cell capillary.
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Figure 4.4. 3D average intensity heat map with the sheath on top
and cellular analyte on the bottom. Lowest intensity is blue and
highest is red.
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Figure 4.5. Maximum intensity heat map showing the locations of
all detected cells. A cutout of Figure 4.3 is shown on the bottom to
illustrate overlap.

As a confocal microscope was used for imaging, the images can only demon-

strate that the cellular analyte is centrally focused in one XY plane of the flow cell

capillary and cannot provide any evidence of 3D hydrodynamic focusing. To assess

the 3D focusing, a cross-section YZ stack was collected (Figure 4.6). Although the

focusing in the YZ plane is not as condensed as the XY plane, the cellular ana-
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Figure 4.6. Cross-sectional YZ stack demonstrating 3D hydrody-
namic focusing (a) and location of cells (b, red) with the sheath and
cellular analyte buffer in gray for ease in viewing cells.

lyte is unquestionably centered through the flow cell capillary, confirming the flow

system is able to centrally focus the cells. Additionally, the cross-sectional stack

captured cells (Figure 4.6b) as they flowed through the capillary, verifying the cells

stay centrally focused both vertically and horizontally. The discrepancy in focusing
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is likely due to the cross since the sheath buffer enters the flow system horizon-

tally perpendicular to the cellular analyte capillary. While the focusing is adequate

for IC-FPOP, 3D focusing could be improved by using a 6 port flow through mani-

fold with the sheath buffer entering the flow system both horizontally and vertically

perpendicular to the cellular analyte capillary.

4.3.2 IC-FPOP Using the Flow System

Method Comparison

IC-FPOP of Vero cells was completed as previously described using the flow

system so the data could be compared to the previously published results.6 How-

ever, there were 3 experimental design parameters, aside from the flow system,

that deviated from those published. First, a flow rate of 484 µL/min was used. This

was the fastest that could be used while keeping the 20 Hz pulse frequency with no

exclusion volume. This is actually about half the published flow rate when scaled

for the flow system. Second, a magnetic stirrer was used to prevent the cells from

settling in the syringe. Lastly, there were minor deviations in the digestion protocol.

The Thermo Scientific Pierce mass spectrometry sample kit protocol was used, but

with reagent substitutions. RIPA and TEABC buffers were used, and only trypsin

was used for digestion. All other parameters including cell prep, sample volume,

quench and H2O2 final concentrations were kept consistent.

Increased Oxidized Protein Identifications

IC-FPOP using the flow system yielded a considerable number of oxidized pro-

teins. The database search, using the PD method described in chapter 2, was

completed against human FASTA sequences as the Vero cell proteome is incom-

plete with only 139 Swiss-Prot verified sequences. The search identified a total

of 1391 endogenous proteins that were oxidatively modified over the 2 biological
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replicates. This corresponds to a 13.25-fold increase in oxidized proteins identified

compared to the 105 identified in the previously published work (Figure 4.7a). Indi-

Figure 4.7. Visual comparison of the oxidized proteins identified
with (blue) and without (red) using the flow system (a) and the flow
system biological replicates (b).
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vidually, the biological replicates also had sizeable gains, with an 8.23-fold increase

for the first replicate (n = 864) and a 9.76-fold increase for the second (n = 1025)

with 498 proteins in common between the replicates (Figure 4.7b).

The discernible advantage of using the flow system for IC-FPOP is likely at-

tributed to several factors. First, the buffer sheath keeps the cells away from the

walls of the flow cell capillary. As such, any cell aggregates that may begin to

form will be pushed through the flow system and therefore cannot grow larger or

accumulate on the walls. One can postulate that some of the cells exposed to the

radiation will die and lyse, exposing the DNA which can lead to cell clumping.16

These clumps may then stick to the wall of the capillary as the DNA would be at-

tracted to the wall of the fused silica capillary.17 Another factor is the method of

adding the H2O2 to the sample. The H2O2 is in a separate syringe in the flow sys-

tem, and mixed with the cells via a mixing tee just prior to entering the flow cell

capillary. Based on the flow rate and sample volume in the published method, it

takes just under 10 minutes for the entire sample to be labeled. Since the H2O2 is

added as a single bolus, a significant portion of the H2O2 will be consumed prior to

irradiation given that catalytic efficiency of the endogenous catalase is close to that

of human catalase, 7.34e6 s-1M-1.18 Finally, the smaller ID of the capillary (75 µm

vs. 150 µm) used to deliver the cells in the flow system along with the compression

from the hydrodynamic focusing may have an overall smaller dead volume than

the published method depending on the length of the capillary used. The use of

the stirrer to keep the cells suspended may also play a factor if the cells fell out of

suspension before the end of the run in the published method.

Properties of Oxidized Proteins

There were a total of 1862 oxidized peptide sequences identified. The EIC peak

areas from the controls (no irradiation) was subtracted from the sample peak areas

to remove any background oxidation. Peptides were only included if the sample
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peak areas were greater than the controls. The number of oxidized sequences per

protein ranged from 18 to 1, with an average of 1.8 sequences per protein. There

were a total of 31229 PSMs corresponding to oxidation events, with oxidations

occurring on 18 of the 20 amino acids (Figure 4.8a).

Figure 4.8. Amino acid distribution of oxidation events relative to its
overall abundance in all the proteins identified (a) and the average
occurrence of the residue being solvent exposed.

The oxidized proteins identified from IC-FPOP using the flow system were an-

alyzed to identify from which cellular component they are found within the cell.

Uniprot identifiers from the oxidized proteins were uploaded into the BiNGO19 (ver-

sion 3.03) network gene ontology plugin for Cytoscape20 (version 3.3) to create a

hierarchal network mapped to the generic GO Slim ontologies for cellular compo-

nents (Figure 4.9). GO slim ontologies, which are a slimmed down version of GO

terms that provide a higher level view, were used to provide a broader overview of

the results. The proteins were found in 30 (out of 35) GO slim cellular component

terms. Similar to the previous results, there were a large number of proteins located

in the cytoplasm and membrane. However, there were also a significant number

of proteins identified that are located within protein complexes, the cytoskeleton,
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and organelles, such as the nucleus. When compared to the 10 locations found in

the previously published data, the results are fundamentally more comprehensive.

Furthermore, the previous results were annotated Uniprot which uses 501 subcel-

lular location terms In addition, identifying oxidized proteins in 86% of the GO slim

locations provides evidence that using the mixing tee does indeed mix the cells with

the H2O2, and does not affect the ability of H2O2 to fully permeate the cells before

irradiation.

The dynamic range of the IC-FPOP method was evaluated in the previous work

by comparing the oxidized proteins identified with their expression level (transcripts

per million, TPM) in human kidney cells. From this, they estimated a dynamic range

of 3 orders of magnitude. This was based on the fold change between the protein

with the highest TPMs, heat shock cognate protein at 4635, and the lowest TPMs,

protein shroom2 at 4 TPMs. Both of these proteins were identified as oxidized us-

ing the flow system, indicating that using the flow system does not decrease the

dynamic range of IC-FPOP. The full dynamic range of IC-FPOP using the flow sys-

tem was assessed using expression data acquired from the Human Protein Atlas.

The database contains expression profiles on 83 normal human cell lines from 44

tissues, including the kidney. The maximum and minimum fragments per kilobase

million (FKPM) for oxidized proteins was 1227 and 0.1, yielding a fold change of

1.25e4. The protein identified with the highest expression levels was elongation

factor 1-alpha 1 (EEF1A1), and 137 different identified proteins with the lowest ex-

pression levels. The proteins identified in published report were also evaluated with

this database for an equivalent comparison and resulted in a fold change of 350,

with 278 FKPM for heat shock cognate protein and 0.8 FKPM for shroom2. Based

on these expression profiles, using the flow system resulted in an approximately 2

orders of magnitude greater dynamic range.
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Correlation of FPOP Modification to Solvent Accessibility

FPOP coupled with MS is used as a method to probe solvent accessibility in

order to gain insight on protein structure. As previously reported, IC-FPOP, like

in vitro FPOP, does correlate to solvent accessibility.6 Oxidation events identified

using the flow system were also investigated to assess the correlation to SA. The

greatest number of oxidation events occurred on Glu and Asp, accounting for 22%

and 13% of the oxidations, respectively. This is expected as less than 3% of these

residues tend to be buried.21,22 However, Met had the highest percentage of oxi-

dation events relative to its overall abundance in all the proteins identified (Figure

4.8a). This is significantly higher than the average occurrence of this residue be-

ing solvent exposed (Figure 4.8b).22 Met is highly reactive with ·OH, with a rate

constant of 8.5e9, which is likely the reason relatively high number of oxidation

events.23

Oxidation of actin, at both peptide and residue levels, was completed as this pro-

tein was used previously as a measure of probing SA. A total of 20 peptides were

identified with 7 being oxidatively modified (Figure 4.10a). Generally, the overall

trend is similar to the previously published results; however, peptide 40-50 is less

oxidized with the flow system. This peptide has a total of 1467 PSMs for unoxidized

precursors and only 28 PSMs for the oxidized precursors, only 1.8% of the total

PSMs. Identification of oxidized species could be improved by increasing the dy-

namic exclusion and/or applyingMulitdimensional Protein Identification Technology

(MudPIT) which, as demonstrated in chapter 3. Residue level analysis identified

11 residues that were oxidized in actin. Protection factor values were calculated

(as described in chapter 2) and plotted against the relative SASA values (Figure

4.10b), obtained using VADAR24, for the open and tight states of actin (PDB 1HLU

and 2BTF). Correlations were in agreement with the previously published results,

with a stronger correlation to the open state, demonstrating that data obtained using

the flow system correlates to SA.
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Figure 4.10. Oxidation levels of 7 actin peptides (a) and correlation
of residue level log protection factors to the relative SASA of open
(1HLU) and tight (2BTF) states of actin (b).

4.4 Conclusion

The work presented in this chapter has demonstrated a process improvement

for IC-FPOP using a flow system prototype that was designed and built specifically

for IC-FPOP. This low cost, modular design hydrodynamically focuses the cells in

a small stream down the center of the flow cell capillary, which prevented cell ag-

gregation and system clogging. Additionally, the focusing of the cells ensures that

radiation exposure remains consistent throughout the experiment. The IC-FPOP

data presented here has validated that using the flow system for IC-FPOP results

in a dramatic increase in the identification of oxidized proteins, with a 13.25-fold

increase observed, without compromising the dynamic range of the method or the

ability to probe the SA of endogenous proteins.
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4.6 Appendix: Flow Assembly for Cells Patent Application

IURTC-2015-123-02-WO-e 

FLOW ASSEMBLY FOR CELLS 

 

CROSS-REFERENCE TO RELATED APPLICATIONS 

[0001] The present application claims priority to U.S. Provisional Patent Application 

Serial No. 62/144,542, filed on April 8, 2015, and entitled “FLOW ASSEMBLY FOR CELLS,” 5 

the complete disclosure of which is expressly incorporated by reference herein.  

 

FIELD OF THE INVENTION 

[0002] The present invention relates generally to an assembly configured for the flow of 

cells, and more particularly, to a micro-flow assembly configured for a single-file flow of cells. 10 

 

BACKGROUND OF THE DISCLOSURE 

[0003]  In cell fast photochemical oxidation of proteins (“IC-FPOP”) is a tool for 

characterizing protein structure within a cell.  Through IC-FPOP, hydrogen peroxide is 

photolyzed using an excimer laser to form hydroxyl radicals.  The hydroxyl radicals covalently 15 

label side chains of amino acids exposed to solvent, thereby allowing for oxidative 

characterization of the protein structure within a cell. 

[0004] However, current flow systems used for in vitro analysis of the protein structure 

within a cell may not be effective with IC-FPOP.  More particularly, current flow systems may 

lead to cell aggregation which may clog the flow system and/or lead to inconsistent labeling and 20 

characterization of the cells because not every cell is exposed to the laser equally.  

 

SUMMARY OF THE DISCLOSURE 

[0005] In one embodiment, a flow assembly for cells comprises a first flow path 

configured to receive a plurality of cells and having an inner diameter of 50 – 100 m, a second 25 

flow path configured to receive a buffer and having an inner diameter of 100-200 m, and a third 

flow path configured to receive the plurality of cells and the buffer.  The third flow path has an 

inner diameter greater than the inner diameters of the first and second flow paths.  The plurality 

of cells are in a single-file orientation and the buffer generally surrounds the single-file 

orientation of the plurality of cells when in the third flow path. 30 
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[0006] In another embodiment, a flow assembly for cells comprises a first flow path 

configured to receive a plurality of cells, a second flow path configured to receive a buffer, and a 

third flow path configured to receive the plurality of cells and the buffer.  The third flow path has 

an inner diameter of 0.3 – 2.0 mm.  The plurality of cells are configured to flow in a single-file 

orientation and the buffer generally surrounds the single-file orientation of the plurality of cells 5 

when in the third flow path.  At least one of the plurality of cells and the buffer has a flow rate of 

25-40 L/min. 

[0007] In a further embodiment, a method of characterizing protein structure within a cell 

comprises providing a first flow path, flowing a plurality of cells through the first flow path, 

providing a second flow path spaced apart from the first flow path, and flowing a buffer through 10 

the second flow path.  The method further comprises providing a third flow path with an inner 

diameter of 0.3 – 2.0 mm, surrounding the plurality of cells with the buffer, and flowing the 

plurality of cells in a single-file orientation through the third flow path.  The method also 

comprises emitting a light source through at least a portion of the third flow path, passing the 

single-file orientation of the plurality of cells through the light source, and identifying a protein 15 

structure within each of the plurality of cells. 

[0008] Additional features and advantages of the present invention will become apparent 

to those skilled in the art upon consideration of the following detailed description of the 

illustrative embodiment exemplifying the best mode of carrying out the invention as presently 

perceived.   20 

 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0009] The foregoing aspects and many of the intended advantages of this invention will 

become more readily appreciated as the same becomes better understood by reference to the 

following detailed description when taken in conjunction with the accompanying drawings. 25 

[0010] Figure 1 is a schematic view of a flow system of the present disclosure; 

[0011] Figure 2 is a schematic view of a portion of the flow system of Figure 1; 

[0012] Figure 3 is a schematic view of an alternative embodiment flow system of the 

present disclosure;  

[0013]  Figure 4 is a schematic view of a portion of the alternative flow system of Figure 30 

3;  
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[0014] Figure 5 is a schematic view of an alternative embodiment flow system of the 

present disclosure; and 

[0015] Figure 6 is a schematic view of a further alternative embodiment flow system of 

the present disclosure.  

[0016] Corresponding reference characters indicate corresponding parts throughout the 5 

several views.  Although the drawings represent embodiments of various features and 

components according to the present disclosure, the drawings are not necessarily to scale and 

certain features may be exaggerated in order to better illustrate and explain the present 

disclosure.  The exemplifications set out herein illustrate embodiments of the invention, and such 

exemplifications are not to be construed as limiting the scope of the invention in any manner. 10 

 

DETAILED DESCRIPTION OF THE DRAWINGS 

[0017] For the purposes of promoting an understanding of the principals of the invention, 

reference will now be made to the embodiments illustrated in the drawings, which are described 

below.  The embodiments disclosed below are not intended to be exhaustive or limit the 15 

invention to the precise form disclosed in the following detailed description.  Rather, the 

embodiments are chosen and described so that others skilled in the art may utilize their 

teachings.  It will be understood that no limitation of the scope of the invention is thereby 

intended.  The invention includes any alterations and further modifications in the illustrative 

devices and described methods and further applications of the principles of the invention which 20 

would normally occur to one skilled in the art to which the invention relates. 

[0018] Referring to Figure 1, a flow assembly 10 for a plurality of cells 12 (Figure 2) is 

provided.  Flow assembly 10 includes a first flow path or conduit 14, a second flow path 16 or 

conduit, a joining member 18, and a third flow path or conduit 20.  Flow assembly 10 is 

configured to move cells 12 through third flow path 20 in a single-file orientation, as shown in 25 

Figure 2 and disclosed further herein. 

[0019] In the illustrative embodiment of flow assembly 10, first flow path 14 is 

configured to receive cells 12 and provide a pathway to move cells 12 into joining member 18 

along a flow direction A. Cells 12 may be provided within a solution or other material to 

facilitate flow through flow assembly 10.  In one embodiment, cells 12 are provided within a 30 

phosphate buffer saline (“PBS”) solution and are configured to flow through flow assembly 10 at 
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a flow rate of 25-40 L/min.  More particularly, cells 12 within the PBS material are configured 

to flow through flow assembly 10 at a flow rate of 33 L/min.  

[0020] Cells 12 also may be mixed with an oxygen-based compound, mixture, or 

solution, such as hydrogen peroxide (H2O2) for characterizing the proteins within cells.  More 

particularly, cells 12 may be mixed with hydrogen peroxide prior to introducing cells 12 into 5 

flow assembly 10 such that the combination of cells 12 and hydrogen peroxide flow together 

through flow assembly 10.  As disclosed further herein, the hydrogen peroxide is photolyzed by 

a laser or light source to form hydroxyl radicals which covalently label side chains of the amino 

acids of cells 12 through an in cell fast photochemical oxidation of proteins (“IC-FPOP”) 

process.  In this way, the proteins within cells 12 are oxidatively characterized by the hydroxyl 10 

radicals when flowing through a portion of flow assembly 10.   

[0021] First flow path 14 is comprised of any material configured to allow cells 12 to 

flow therethrough without adhering to the surface of first flow path 14.  In one embodiment, first 

flow path 14 is comprised of fused silica capillary tubing coated with polyimide and/or quartz.  

Additionally, the length of first flow path 14 may vary to accommodate various configurations of 15 

flow assembly 10.  An inner diameter of first flow path 14 may be 50 m, 55 m, 60 m, 65 m, 

70 m, 75 m, 80 m, 85 m, 90 m, 95 m, 100 m, or within any range delimited by any pair 

of the foregoing values.  An outer diameter of first flow path 14 may be 300 m, 310 m, 320 

m, 330 m, 340 m, 350 m, 360 m, 370 m, 380 m, 390 m, 400 m, or within any range 

delimited by any pair of the foregoing values.  Illustrative first flow path 14 has an inner 20 

diameter of 75 m and an outer diameter of 360 m.  

[0022] Referring still to Figure 1, second flow path 16 is configured to receive a buffer 

material 22 and flow buffer material 22 into joining member 18 along a flow direction B.  

Illustratively, flow direction B is generally perpendicular to flow direction A, however the 

second flow path 16 and flow direction B may be in any orientation relative to first flow path 14 25 

and flow direction A (e.g., parallel, perpendicular, or at any angle).  Buffer 22 may be a PBS 

solution or any solution configured to flow through flow assembly 10 without mixing with cells 

12, as disclosed further herein.  In one embodiment, the flow rate of buffer 22 through flow 

assembly 10 is 25 – 40 L/min and, more particularly, is 33 L/min.  For example, in one 

embodiment, the flow rate of buffer 22 may be the same as the flow rate of cells 12. 30 
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[0023] Second flow path 16 is comprised of any material configured to flow buffer 22.  

In one embodiment, second flow path 16 is comprised of fused silica capillary tubing coated with 

polyimide and/or quartz.  Additionally, the length of second flow path 16 may vary to 

accommodate various configurations of flow assembly 10.  An inner diameter of second flow 

path 16 may be greater than the inner diameter of first flow path 14, for example 100 m, 110 5 

m, 120 m, 130 m, 140 m, 150 m, 160 m, 170 m, 180 m, 190 m, 200 m or within any 

range delimited by any pair of the foregoing values.  An outer diameter of second flow path 16 

may be 300 m, 310 m, 320 m, 330 m, 340 m, 350 m, 360 m, 370 m, 380 m, 390 m, 

400 m, or within any range delimited by any pair of the foregoing values.  Illustrative second 

flow path 16 has an inner diameter of 150 m and an outer diameter of 360 m. 10 

[0024] Referring to Figures 1 and 2, joining member 18 is a tee assembly comprised of a 

polymeric material, for example polyether ether ketone (“PEEK”).  Illustrative joining member 

18 includes a plurality of 1/16-inch tubes 25a, 25b, ¼-28 flat-bottom nuts 24a, 24b, 24c, each 

with a sleeve extending therethrough (not shown).  Each flat-bottom nut 24a, 24b, 24c has a 

through-hole with a diameter of 0.5 mm extending longitudinally along the length of nuts 24a, 15 

24b, 24c.  Because the diameter of the through-hole of each nut 24a, 24b, 24c is greater than the 

diameter of first and second flow paths 14, 16, the sleeves are included to control the size of the 

flow path for buffer 22 and cells 12.  In particular, the inner diameter of the sleeves are 

configured to receive the outer diameter of first and second flow paths 14, 16.  A plurality of 

respective ferrules 26a, 26b, 26c are provided to secure the sleeves to first and second flow paths 20 

14, 16.  Ferrules 26a, 26b, 26c may be comprised of the same material as joining member 18 and 

nuts 24a, 24b, 24c, however, illustrative ferrules 26a, 26b, 26c are comprised of ethylene 

tetrafluoroethylene (“ETFE”).  In one embodiment, the sleeves (not shown) are comprised of 

fluorinated ethylene propylene (“FEP”).  Flat-bottom nuts 24a, 24b, 24c may be comprised of the 

same material as joining member 18 or may be comprised of a different material.  Illustratively, 25 

flat-bottom nuts 24a, 24b, 24c are comprised of PEEK.   

[0025] Additionally, first flow path 14 extends between nuts 24a and 24c and is coupled 

to the sleeves therein with ferrules 26a and 26c.  Alternatively, first flow path 14 may terminate 

in the sleeve of nut 24a and an additional portion of tubing having the same dimensions and 

characteristics as first flow path 14 may be provided between nuts 24a and 24c. 30 
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[0026] Referring still to Figures 1 and 2, third flow path 20 is coupled to nut 24c of 

joining member 18.  Third flow path 20 is comprised of any material configured to flow buffer 

22 and cells 12.  In one embodiment, third flow path 20 is comprised of fused silica capillary 

tubing coated with polyimide.  Alternatively, third flow path 20 may be comprised of a quartz 

capillary.  Additionally, the length of third flow path 20 may vary to accommodate various 5 

configurations of flow assembly 10.  An inner diameter of third flow path 20 may be as little as 

0.3 mm, 0.35 mm, 0.4 mm, 0.45 mm, 0.5 mm, 0.55 mm, 0.6 mm, 0.65 mm, 0.7 mm, 0.75 mm, or 

as great as 1.0 mm, 1.25 mm, 1.5 mm, 1.75 mm, or 2.0 mm, or within any range delimited by 

any pair of the foregoing values.  An outer diameter of third flow path 20 may be as little as 0.5 

mm, 0.55 mm, 0.6 mm, 0.65 mm, 0.7 mm, 0.75 mm, 0.8 mm, 0.85 mm, or as great as 1.0 mm, 10 

1.25 mm, 1.5 mm, 1.75 mm, 2.0 mm, or within any range delimited by any pair of the foregoing 

values.  Illustrative third flow path 20 has an inner diameter of 0.45 mm and an outer diameter of 

0.76 mm. 

[0027] As shown in Figures 1 and 2, third flow path 20 includes a coated portion 20a and 

uncoated portion 20b.  Coated portion 20a includes the polyimide or quartz coating, however, the 15 

coating has been removed in uncoated portion 20b such that the bare capillary tubing is exposed. 

As disclosed further herein, by removing a portion of the coating in uncoated portion 20b, an 

irradiation window is defined so that a laser or other light source can pulse light through third 

flow path 20 as cells 12 pass therethrough, thereby oxidatively modifying the proteins within 

cells 12 to understand the structure of the proteins therein.  20 

[0028] In operation, cells 12 may be in a PBS solution and are mixed wtih hydrogen 

peroxide when flowing within first flow path 14 in flow direction A toward joining member 18.  

Simultaneously, buffer 22 flows within second flow path 16 in flow direction B toward joining 

member 18.  Once at joining member 18, cells 12 flow through nut 24a and buffer 22 flows 

through nut 24b.  Cells 12 continue to flow through first flow path 14 while buffer 22 flows 25 

around the outer diameter of first flow path 14.  In this way, buffer 22 generally surrounds cells 

12 but remains separated from and does not mix with cells 12.     

[0029] After flowing through nut 24c, buffer 22 and cells 12 simultaneously enter third 

flow path 20, where, despite exiting first flow path 14, cells still 12 do not mix with buffer 22.  

Instead, buffer 22 generally defines a chamber surrounding cells 12 such that cells 12 flow 30 

through the middle of buffer 22 in a single-file orientation.  As shown in Figure 2, when 
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surrounded by buffer 22, the single-file orientation of cells 12 allows each cell 12 to pass one at a 

time through a given portion of third flow path 20 such that cells 12 are longitudinally aligned 

but do not vertically stack on top of each other.  Both buffer 22 and cells 12 have the same flow 

rate, for example 33 L/min, when flowing through flow assembly 10.  The combination of this 

flow rate and the diameter of third flow path 20 allows cells 12 to flow in the single-file 5 

orientation through third flow path 20.   

[0030] Once in third flow path 20, buffer 22 and cells 12 remain separate from each other 

and do not mix, as shown in Figure 2.  Additionally, Figure 2 shows that a laser 50 or other light 

source is applied to uncoated portion 20b of third flow path 20.  Illustratively, laser 50 is pulsed 

at 248 nm and 18 Hz frequency.  Because cells 12 flow through third flow path 20 in a single-file 10 

orientation, laser 50 is applied equally to each cell 12.  Laser 50 oxidatively modifies the proteins 

within each cell 12 so that the protein structure of each cell 12 can be identified and understood.  

More particularly, laser 50 is applied at a wavelength and frequency sufficient to photolyze the 

hydrogen peroxide mixed with cells 12 to form hydroxyl radicals which covalently label side 

chains of amino acids within cells 12.  In this way, the interaction between the hydrogen 15 

peroxide and laser 50 characterize and/or identify the proteins within cells 12 through an IC-

FPOP process which allows for analysis of the proteins within cells 12.   

[0031] After flowing through third flow path 20 and experiencing laser 50, cells 12 and 

buffer 22 are collected.  Cells 12 are separated from buffer 22 and/or any remaining hydrogen 

peroxide or other compounds, elements, or solutions in a centrifuge and cells 12 subsequently 20 

undergo mass spectrometry to identify the peptides (comprised of the covalently-labeled amino 

acids) of the proteins within cells 12, which allows the protein structure of each cell 12 to be 

understood.  In one embodiment, cells 12 are spliced or otherwise cut into smaller pieces before 

undergoing mass spectrometry.   

[0032] Referring to Figures 3 and 4, an alternative embodiment of flow assembly 10 is 25 

shown as flow assembly 10’, wherein like components having the same structure and 

functionality as those of the embodiment of Figures 1 and 2 are identified with like reference 

numbers.  Flow assembly 10’ includes first flow path 14, a second flow path or conduit 16’, 

joining member 18, and a third flow path or conduit 20’.  Additionally, flow assembly 10’ 

includes a first cross-member 28, a second cross-member 30, a dead volume portion 32, and an 30 

outlet capillary or conduit 34.   
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[0033] Second flow path 16’ is comprised of any material configured to flow buffer 22.  

In one embodiment, second flow path 16’ is comprised of fused silica capillary tubing coated 

with polyimide and/or quartz.  Additionally, the length of second flow path 16’ may vary to 

accommodate various configurations of flow assembly 10’.  An inner diameter of second flow 

path 16’ may be 100 m, 110 m, 120 m, 130 m, 140 m, 150 m, 160 m, 170 m, 180 m, 5 

190 m, or 200 m or within any range delimited by any pair of the foregoing values.  An outer 

diameter of second flow path 16 may be 300 m, 310 m, 320 m, 330 m, 340 m, 350 m, 

360 m, 370 m, 380 m, 390 m, or 400 m, or within any range delimited by any pair of the 

foregoing values.  Illustrative second flow path 16’ has an inner diameter of 150 m and an outer 

diameter of 360 m. 10 

[0034] Second flow path 16’ has a first portion 16a’ configured to flow a first portion of 

buffer 22 into first cross-member 28, a second portion 16b’ configured to flow a second portion 

of buffer 22 into second cross-member 30, a third portion 16c’ configured to flow a third portion 

of buffer 22 into second cross-member 30, and a fourth portion 16d’ configured to flow a fourth 

portion of buffer 22 into joining member 18. 15 

[0035] As shown in Figure 3, first cross-member 28 includes four 1/16-inch tubing, ¼-28 

flat bottom nuts 28a, 28b, 28c, 28d, each with a sleeve extending therethrough (not shown).  

Each flat-bottom nut 28a, 28b, 28c, 28d has a through-hole with a diameter of 0.5 mm extending 

longitudinally along the length of nuts 28a, 28b, 28c, 28d.  Because the diameter of the through-

hole of each nut 28a, 28b, 28c, 28d is greater than the diameter of second flow path 16’, the 20 

sleeves are included to control the size of the flow path for buffer 22.  In particular, the inner 

diameter of the sleeves are configured to receive the outer diameter of second flow path 16’.  A 

plurality of ferrules 36a, 36b, 36c, 36d are provided to secure the sleeves to second flow path 

16’.  Ferrules 36a, 36b, 36c, 36d may be comprised of ETFE.  Flat-bottom nuts 28a, 28b, 28c, 

28d may be comprised PEEK.   25 

[0036] Referring still to Figure 3, second cross-member 30 includes four 1/16-inch 

tubing, ¼-28 flat bottom nuts 30a, 30b, 30c, 30d, each with a sleeve extending therethrough (not 

shown).  Each flat-bottom nut 30a, 30b, 30c, 30d has a through-hole with a diameter of 0.5 mm 

extending longitudinally along the length of nuts 30a, 30b, 30c, 30d.  Because the diameter of the 

through-hole of each nut 30a, 30b, 30c, 30d is greater than the diameter of first and second flow 30 

paths 14, 16’, the sleeves are included to control the size of the flow path for cells 12 and buffer 
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22.  In particular, the inner diameter of the sleeves are configured to receive the outer diameter of 

first and second flow paths 14, 16’.  A plurality of ferrules 38a, 38b, 38c, 38d are provided to 

secure the sleeves to first and second flow paths 14, 16’.  Ferrules 38a, 38b, 38c, 38d may be 

comprised of ETFE.  Flat-bottom nuts 30a, 30b, 30c, 30d may be comprised PEEK. 

[0037] As shown in Figure 3, nuts 28b and 30b are fluidly coupled together through 5 

second portion 16b’ of second flow path 16’ such that buffer 22 from first cross-member 28 

enters second cross-member 30 through second portion 16b’.  Similarly, nuts 28c and 30c are 

fluidly coupled together through third portion 16c’ of second flow path 16’ such that buffer 22 

from first cross-member 28 enters second cross-member 30 through third portion 16c’.  Nut 24c 

of joining member 18 is fluidly coupled to nut 30a of second cross-member 30 through first flow 10 

path 14 and nut 30d of second cross-member 30 is fluidly coupled to third flow path 20’.   

[0038] Third flow path 20’ is comprised of any material configured to flow buffer 22 and 

cells 12.  In one embodiment, third flow path 20’ is comprised of a quartz capillary.  

Additionally, the length of third flow path 20’ may vary to accommodate various configurations 

of flow assembly 10’.  An inner diameter of third flow path 20’ may be 1.0 mm, 1.1 mm, 1.2 15 

mm, 1.3 mm, 1.4 mm, 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2.0 mm, or within any range 

delimited by any pair of the foregoing values.  An outer diameter of third flow path 20’ may be 

as little as 1.5 mm, 1.6 mm, 1.7 mm, 1.8 mm, 1.9 mm, 2.0 mm, 2.1 mm, 2.2 mm, 2.3 mm, 2.4 

mm, 2.5 mm, or within any range delimited by any pair of the foregoing values.  Illustrative third 

flow path 20’ has an inner diameter of 1.5 mm and an outer diameter of 1.8 mm. 20 

[0039] Dead volume portion 32 is coupled to third flow path 20’ and includes two 1/16-

inch tubing, ¼-28 flat bottom nuts 40a, 40b.  Outlet capillary 34 is configured to be received 

through nuts 40a, 40b and secured with ferrules 42a, 42b, respectively.  As such, outlet capillary 

34 is fluidly coupled to third flow path 20’ through dead volume portion 32.  Outlet capillary 34 

is comprised of PEEK and, in one embodiment, has an inner diameter of 0.3 mm and an outer 25 

diameter of 1.6 mm.  Because the diameter of third flow path 20’ is greater than the diameter of 

outlet capillary 34, dead volume portion 32 is provided to reduce air bubbles in buffer 22 and/or 

the solution of cells 12 to ensure that there is no delay or break in the flow of cells 12 and/or 

buffer 22 when going from the larger diameter of third flow path 20’ to the smaller diameter of 

outlet capillary 34.  30 
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[0040] In operation, cells 12 may be in a PBS solution and mixed with hydrogen 

peroxide when flowing within first flow path 14 toward joining member 18.  Once at joining 

member 18, cells 12 flow through nuts 24a, 24c and into nut 30a of second cross-member 30.  

Simultaneously, a portion of buffer 22 flows through nut 28d of first cross-member 28, into nut 

24b of joining member 18, around first flow path 14, through nut 24c of joining member 18, and 5 

into nut 30a of second cross-member 30.  Additionally, a portion of buffer 22 simultaneously 

flows through nut 28b of first cross-member 28, through second portion 16b’ of second flow path 

16’, and into nut 30b of second cross-member 30.  In this way, the portion of buffer 22 within 

second portion 16b’ of second flow path 16’ defines the lower portion of the buffer chamber or 

sheath that generally surrounds cells 12 within third flow path 20’.  Additionally, another portion 10 

of buffer 22 simultaneously flows through nut 28c of first cross-member 28, through third 

portion 16c’ of second flow path 16’, and into nut 30c of second cross-member 30.  In this way, 

the portion of buffer 22 within third portion 16c’ of second flow path 16’ defines the upper 

portion of the buffer chamber or sheath that generally surrounds cells 12 within third flow path 

20’.  The amount of buffer 22 flowing through second and third portions 16b’, 16c’ of second 15 

flow path 16’ may be greater than the amount of buffer 22 flowing through fourth portion 16d’ 

and into joining member 18.   

[0041] Within joining member 18 and second cross-member 30, cells 12 (mixed with 

hydrogen peroxide) continue to flow through first flow path 14 while buffer 22 flows around the 

outer diameter of first flow path 14.  In this way, buffer 22 generally surrounds cells 12 but does 20 

not mix with cells 12.  After flowing through nut 30d of second cross-member, buffer 22 and 

cells 12 simultaneously enter third flow path 20, where, despite exiting first flow path 14, cells 

12 do not mix with buffer 22.  Instead, buffer 22 generally defines a chamber surrounding cells 

12 such that cells 12 flow through the middle of buffer 22 in a single-file orientation.  As shown 

in Figure 4, when surrounded by buffer 22, the single-file orientation of cells 12 allows each cell 25 

12 to pass one at a time through a given portion of third flow path 20’ such that cells 12 are 

longitudinally aligned but do not vertically stack on top of each other.  Both buffer 22 and cells 

12 have the same flow rate, for example 33 L/min, when flowing through flow assembly 10’.  

The combination of the flow rate and the diameter of third flow path 20’ allows for the single file 

orientation of cells 12 through third flow path 20’.   30 



105

IURTC-2015-123-02-WO-e 

[0042] Once in third flow path 20’, buffer 22 and cells 12 (mixed with hydrogen 

peroxide) remain separate from each other and do not mix, as shown in Figure 4.  Additionally, 

Figure 4 shows that laser 50 is applied to a portion of third flow path 20’.  Illustratively, laser 50 

is pulsed at 248 nm and 18 Hz frequency.  Because cells 12 flow through third flow path 20’ in a 

single-file orientation, laser 50 is applied equally to each cell 12. 5 

[0043] Laser 50 oxidatively modifies the proteins within each cell 12 through the IC-

FPOP process so that the protein structure of each cell 12 can be identified and understood, as 

disclosed herein.  After flowing through third flow path 20’ and experiencing laser 50, cells 12 

and buffer 22 flow through dead volume portion 32, through outlet capillary 34, and are 

collected.  Cells 12 are separated from buffer 22 and any remaining hydrogen peroxide or other 10 

compounds, solution, or elements in a centrifuge and cells 12 subsequently undergo mass 

spectrometry to identify the peptides of the proteins within cells 12, which allows the protein 

structure of each cell 12 to be understood.  In one embodiment, cells 12 are spliced or otherwise 

cut into smaller pieces before undergoing mass spectrometry. 

[0044] Referring to Figure 5, an alternative embodiment of flow assembly 10’ (Figure 3) 15 

is shown as flow assembly 110, wherein like components having the same structure and 

functionality as those of the embodiment of Figures 3 and 4 are identified with like reference 

numbers.  Flow assembly 110 includes first flow path 14 (which has the same structure and 

functionality as flow path 14 of Figure 3), a second flow path 16 (which has the same structure 

and functionality as flow path 16 of Figure 3), a third flow path 112, joining member 18 (which 20 

has the same structure and functionality as joining member 18 of Figure 3), a fourth flow path 

114 (which has the same structure and functionality as flow path 14 of Figure 3), a fifth flow 

path 20 (which has the same structure and functionality as flow path 20 of Figure 3), and cross-

member 28 (which has the same structure and functionality as cross-member 28 of Figure 3).   

[0045] As shown in Figure 5, joining member 18 is fluidly coupled to first flow path 14 25 

to provide cells 12 to joining member 18 through nut 24a.  Additionally, joining member 18 is 

fluidly coupled to third flow path 112 to provide an oxygen-based solution or compound, such as 

hydrogen peroxide, to joining member 18 through nut 24c.  In this way, cells 12 are separated 

from hydrogen peroxide until cells 12 and hydrogen peroxide flow to joining member 18.  

Because hydrogen peroxide may be toxic or damaging to cells 12, flow assembly 110 allows for 30 

separation of cells 12 and hydrogen peroxide until both cells 12 and hydrogen peroxide flow to 
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joining member 18, which decreases the length of time that cells 12 are in contact with hydrogen 

peroxide, thereby decreasing the likelihood that cells 12 may be damaged by hydrogen peroxide.  

In one embodiment, flow assembly 110 is provided for IC-FPOP processes. 

[0046] Once cells 12 and hydrogen peroxide are combined at joining member 18, the 

combination of cells 12 and hydrogen peroxide flow together through fourth flow path 114 5 

toward cross-member 28.  Once at cross-member 28, cells 12 (mixed with hydrogen peroxide) 

flow into cross-member through nut 28a.   

[0047] Buffer 22 also flows into cross-member 28 through at least one of the second flow 

paths 16 which are fluidly coupled to nuts 28b, 28d.  At cross-member 28, buffer 22 remains 

separated from cells 12 such that buffer 22 flows in the same direction as cells 12 but flows 10 

along the outer circumference of the flow path or conduit of cells 12.  In this way, cells 12 do not 

mix with buffer 22 when at cross-member 28. 

[0048] In operation, cells 12 may be in a PBS solution (separate from hydrogen peroxide) 

and flow within first flow path 14 toward joining member 18 in direction A.  Simultaneously, 

hydrogen peroxide flows within third flow path 112 toward joining member 18 in direction C.  15 

Once at joining member 18, cells 12 flow through nut 24a and hydrogen peroxide flows through 

nut 24c such that cells 12 mix with hydrogen peroxide once cells 12 and hydrogen peroxide are 

both within joining member 18.  The mixture of hydrogen peroxide and cells 12 flows in 

direction D through fourth flow path 114 toward cross-member 28. 

[0049] Simultaneously, at least a portion of buffer 22 flows through second flow path 16 20 

and nut 28b of cross-member 28 and, in some embodiments, at least another portion of buffer 22 

simultaneously flows through second flow path 16 and nut 28d of cross-member 28.  In this way, 

the portion of buffer 22 entering nut 28b of cross-member 28 defines the upper portion of the 

buffer chamber or sheath that generally surrounds cells 12 within fifth flow path 20 and the 

portion of buffer 22 entering nut 28d of cross-member 28 defines the lower portion of the buffer 25 

chamber or sheath that generally surrounds cells 12 within fifth flow path 20.  In this way, buffer 

22 generally surrounds cells 12 but does not mix with cells 12.   

[0050] Buffer 22 and cells 12 simultaneously enter fifth flow path 20, where, despite 

exiting fourth flow path 114, cells 12 do not mix with buffer 22.  Instead, buffer 22 generally 

defines a chamber surrounding cells 12 such that cells 12 flow through the middle of buffer 22 in 30 

a single-file orientation.  As shown in Figure 5, when surrounded by buffer 22, the single-file 
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orientation of cells 12 allows each cell 12 to pass one at a time through a given portion of fifth 

flow path 20 such that cells 12 are longitudinally aligned but do not vertically stack on top of 

each other.  Both buffer 22 and cells 12 have the same flow rate, for example 33 L/min, when 

flowing through flow assembly 110.  The combination of the flow rate and the diameter of fifth 

flow path 20 allows for the single file orientation of cells 12 through fifth flow path 20.   5 

[0051] Once in fifth flow path 20, buffer 22 and cells 12 (mixed with hydrogen peroxide) 

remain separate from each other and do not mix, as shown in Figure 5.  Additionally, Figure 5 

shows that laser 50 is applied to uncoated portion 20b of fifth flow path 20.  Illustratively, laser 

50 is pulsed at 248 nm and 18 Hz frequency.  Because cells 12 flow through fifth flow path 20 in 

a single-file orientation, laser 50 is applied equally to each cell 12. 10 

[0052] Laser 50 oxidatively modifies the proteins within each cell 12 so that the protein 

structure of each cell 12 can be identified and understood, as disclosed herein.  After flowing 

through fifth flow path 20 and experiencing laser 50, cells 12 are separated from buffer 22 and 

any remaining hydrogen peroxide or other compounds, solution, or elements in a centrifuge and 

cells 12 subsequently undergo mass spectrometry to identify the peptides of the proteins within 15 

cells 12, which allows the protein structure of each cell 12 to be understood.  In one embodiment, 

cells 12 are spliced or otherwise cut into smaller pieces before undergoing mass spectrometry. 

[0053] Referring to Figure 6, an alternative embodiment of flow assembly 110 is shown 

as flow assembly 210, wherein like components having the same structure and functionality as 

those of the embodiment of Figure 5 are identified with like reference numbers.  Flow assembly 20 

210 includes first flow path 14 (which has the same structure and functionality as flow path 14 of 

Figure 5), a second flow path 16 (which has the same structure and functionality as flow path 16 

of Figure 5), a third flow path 20 (which has the same structure and functionality as flow path 20 

of Figure 5), and cross-member 28 (which has the same structure and functionality as cross-

member 28 of Figure 5). 25 

[0054] As shown in Figure 6, joining member 18 of Figure 5 is removed such that cells 

12 are combined with hydrogen peroxide prior to entering first flow path 14.  As such, cells 12 

flow together with hydrogen peroxide through first flow path 14 toward cross-member 28.  Cells 

12 and hydrogen peroxide flow into cross-member 28 through nut 28a.      

[0055] Buffer 22 also flows into cross-member 28 through at least one of the second flow 30 

paths 16 (in direction B) which are fluidly coupled to nuts 28b, 28d.  At cross-member 28, buffer 
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22 remains separated from cells 12 such that buffer 22 flows in the same direction as cells 12 but 

flows along the outer circumference of the flow path or conduit provided for cells 12.  In this 

way, cells 12 do not mix with buffer 22 when at cross-member 28. 

[0056] In operation, cells 12 (mixed with hydrogen peroxide) may be in a PBS solution 

and flow within first flow path 14 in direction A toward cross-member 28.  Simultaneously, at 5 

least a portion of buffer 22 flows through nut 28b of cross-member 28 and, in some 

embodiments, at least another portion of buffer 22 simultaneously flows through nut 28d of 

cross-member 28.  In this way, the portion of buffer 22 entering nut 28b of cross-member 28 

defines the upper portion of the buffer chamber or sheath that generally surrounds cells 12 within 

third flow path 20 and the portion of buffer 22 entering nut 28d of cross-member 28 defines the 10 

lower portion of the buffer chamber or sheath that generally surrounds cells 12 within third flow 

path 20.  In this way, buffer 22 generally surrounds cells 12 but does not mix with cells 12.   

[0057] Buffer 22 and cells 12 simultaneously enter third flow path 20, where, despite 

exiting first flow path 14, cells 12 do not mix with buffer 22.  Instead, buffer 22 generally 

defines a chamber surrounding cells 12 such that cells 12 flow through the middle of buffer 22 in 15 

a single-file orientation.  As shown in Figure 6, when surrounded by buffer 22, the single-file 

orientation of cells 12 allows each cell 12 to pass one at a time through a given portion of third 

flow path 20 such that cells 12 are longitudinally aligned but do not vertically stack on top of 

each other.  Both buffer 22 and cells 12 have the same flow rate, for example 33 L/min, when 

flowing through flow assembly 110.  The combination of the flow rate and the diameter of third 20 

flow path 20 allows for the single file orientation of cells 12 through third flow path 20.   

[0058] Once in third flow path 20, buffer 22 and cells 12 (mixed with hydrogen 

peroxide) remain separate from each other and do not mix, as shown in Figure 6.  Additionally, 

Figure 6 shows that laser 50 is applied to uncoated portion 20b of third flow path 20.  

Illustratively, laser 50 is pulsed at 248 nm and 18 Hz frequency.  Because cells 12 flow through 25 

third flow path 20 in a single-file orientation, laser 50 is applied equally to each cell 12. 

[0059] Laser 50 oxidatively modifies the proteins within each cell 12 so that the protein 

structure of each cell 12 can be identified and understood, as disclosed herein.  After flowing 

through third flow path 20 and experiencing laser 50, cells 12 are separated from buffer 22 and 

any remaining hydrogen peroxide or other compounds, solution, or elements in a centrifuge and 30 

cells 12 subsequently undergo mass spectrometry to identify the peptides of the proteins within 
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cells 12, which allows the protein structure of each cell 12 to be understood.  In one embodiment, 

cells 12 are spliced or otherwise cut into smaller pieces before undergoing mass spectrometry. 

[0060] While this invention has been described as having an exemplary design, the 

present invention may be further modified within the spirit and scope of this disclosure.  This 

application is therefore intended to cover any variations, uses, or adaptations of the invention 5 

using its general principles.  Further, this application is intended to cover such departures from 

the present disclosure as come within known or customary practices in the art to which this 

invention pertains. 
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WHAT IS CLAIMED IS:  

1. A flow assembly for cells, comprising: 

a first flow path configured to receive a plurality of cells and having an inner diameter of 

50 – 100 m; 

a second flow path configured to receive a buffer and having an inner diameter of 100-5 

200 m; and  

a third flow path configured to receive the plurality of cells and the buffer and having an 

inner diameter greater than the inner diameters of the first and second flow paths, the plurality of 

cells being in a single-file orientation and the buffer generally surrounding the single-file 

orientation of the plurality of cells when in the third flow path. 10 

2. The flow assembly of claim 1, wherein the inner diameter of the first flow path is 75 m. 

3. The flow assembly of claim 1, wherein the inner diameter of the second flow path is 150 

m. 

4. The flow assembly of claim 1, wherein the inner diameter of the third flow path is 0.3 

mm – 2.0 mm. 15 

5. The flow assembly of claim 1, wherein the buffer is phosphate buffered saline. 

6. A flow assembly for cells, comprising: 

a first flow path configured to receive a plurality of cells; 

a second flow path configured to receive a buffer; and 

a third flow path configured to receive the plurality of cells and the buffer and having an 20 

inner diameter of 0.3 – 2.0 mm, the plurality of cells being configured to flow in a single-file 

orientation and the buffer generally surrounding the single-file orientation of the plurality of cells 

when in the third flow path, and at least one of the plurality of cells and the buffer having a flow 

rate of 25-40 L/min. 

7. The flow assembly of claim 6, wherein the plurality of cells has a flow rate of 33 L/min. 25 

8. The flow assembly of claim 6, wherein the buffer has a flow rate of 33 L/min. 

9. The flow assembly of claim 6, wherein the inner diameter of the third flow path is 0.45-

1.5 mm. 

10. The flow of assembly of claim 6, wherein an inner diameter of the first flow path is less 

than an inner diameter of the second flow path, and the inner diameters of the first and second 30 

flow paths are less than the inner diameter of the third flow path. 
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11. The flow assembly of claim 6, wherein the buffer is phosphate buffered saline.  

12. A method of characterizing protein structure within a cell, comprising: 

providing a first flow path; 

flowing a plurality of cells through the first flow path; 

providing a second flow path spaced apart from the first flow path; 5 

flowing a buffer through the second flow path; 

providing a third flow path with an inner diameter of 0.3 – 2.0 mm; 

surrounding the plurality of cells with the buffer; 

flowing the plurality of cells in a single-file orientation through the third flow path; 

emitting a light source through at least a portion of the third flow path; 10 

passing the single-file orientation of the plurality of cells through the light source; and 

identifying a protein structure within each of the plurality of cells. 

13. The method of claim 12, wherein the light source has a wavelength of 248 nm. 

14. The method of claim 12, wherein the first flow path has an inner diameter of 50 – 100 

m. 15 

15. The method of claim 12, wherein the second flow path has an inner diameter of 100 – 

200 m. 

16. The method of claim 12, wherein the inner diameter of the third flow path is 0.45 – 1.5 

mm. 

17. The method of claim 12, wherein flowing the plurality of cells in a single-file orientation 20 

including flowing the plurality of cells at a flow rate of 25-40 L/min. 

18. The method of claim 17, wherein the flow rate is 33 L/min. 

19. The method of claim 12, wherein identifying the protein structure within each of the 

plurality of cells includes performing mass spectrometry on the plurality of cells. 

20. The method of claim 12, further comprising providing a fourth flow path, flowing an 25 

oxygen-based compound through the fourth flow path, and mixing the oxygen-based compound 

with the plurality of cells prior to passing the single-file orientation of the plurality of cells 

through the light source. 

 

 30 
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ABSTRACT 

 

In one embodiment, a flow assembly for cells comprises a first flow path configured to 

receive a plurality of cells, a second flow path configured to receive a buffer, and a third flow 

path configured to receive the plurality of cells and the buffer.  The plurality of cells are in a 5 

single-file orientation and the buffer generally surrounds the single-file orientation of the 

plurality of cells when in the third flow path. 
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Abstract Hydroxyl radical protein footprinting coupled with

mass spectrometry has become an invaluable technique for

protein structural characterization. In this method, hydroxyl

radicals react with solvent exposed amino acid side chains

producing stable, covalently attached labels. Although this

technique yields beneficial information, the extensive list of

known oxidation products produced make the identification

and quantitation process considerably complex. Currently, the

methods available for analysis either involve manual analysis

steps, or limit the amount of searchable modifications or the

size of sequence database. This creates a bottleneck which can

result in a long and arduous analysis process, which is further

compounded in a complex sample. Here, we report the use of

a new footprinting analysis method for both peptide and

residue-level analysis, demonstrated on the GCaMP2 synthet-

ic construct in calcium free and calcium bound states. This

method utilizes a customized multi-search node workflow de-

veloped for an on-market search platform in conjunction with

a quantitation platform developed using a free Excel add-in.

Moreover, the method expedites the analysis process, requir-

ing only two post-search hours to complete quantitation,

regardless of the size of the experiment or the sample

complexity.

Keywords Oxidativemodification .Massspectrometry .Data

analysis . Protein footprinting

Introduction

Structural biology has played an essential role in advancing

our functional understanding of biological systems. At pres-

ent, approximately 11 % of Swiss-Prot proteins have high-

resolution structures available [1, 2], with roughly 90 % of

available structures solved via X-ray crystallography [1].

However, the ability to obtain a high-resolution structure by

means of this method is limited by the ability to obtain a high-

quality crystal [3]. This task is often difficult due to the inher-

ent properties of the protein or protein assembly, or the ability

to purify the macromolecule in quantities sufficient to obtain a

quality crystal [4]. As such, the use of mass spectrometry

(MS)-based structural methodologies has become increasing-

ly more popular in filling the structural void as well as offering

complementary information to high-resolution methodologies

[5, 6]. Additionally, these applications can provide structural

information for membrane proteins [7, 8], which make up less

than 3 % of known structures [1], or to study conformational

changes and folding dynamics [9–11].

One type of MS-based structural method, protein

footprinting, utilizes a chemical probe that covalently labels

the protein in solution [6]. These approaches are used to probe

structural features of the protein. The primary aim of MS-

based protein footprinting is to determine which sites on a

protein are solvent accessible (SA), exploiting the fact that

target site reactivities are dictated, in part, by the protein’s

conformation [5]. The exception is hydrogen-deuterium
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exchange (HDX), which also takes hydrogen bonding into

account [12]. Typically, chemical probes are used to assess

sites on a protein that show a change in SA consequent to

being exposed to a ligand [13, 14], or upon complexation with

another protein(s) [15, 16].

There are several different strategies for chemical

footprinting that vary in whether they probe the amino acid

side chains or the peptide backbone, or in the specificity of the

chemical probe. In HDX, the non-specific label, deuterium, is

exchanged with backbone amide protons to probe the protein

structure [17]. In contrast, amino acid-specific labels may be

used, such as using organic anhydrides to probe the SA of

lysine residues [18].

The use of hydroxyl radicals (·OH) for protein footprinting,

first coupled with mass spectrometry by Chance and coworkers

[19], has become more prevalent for probing sidechain SA due

to the advantages this chemical probe offers. Similar to deute-

rium in their specificity, ·OH are reactive with 19 of the 20

natural amino acids (excluding glycine), with varying rates

[20, 21]. It should be noted, however, that detecting the oxida-

tion products of serine and threonine can be problematic and

are usually excluded from analysis [21]. Unlike hydrogen-

deuterium exchange, ·OH-induced modifications do not under-

go back-exchange and are stable, allowing for a higher, residue-

level resolution [6, 16]. Additionally, since ·OH have properties

similar to water, they can readily oxidize SA amino acid side

chains without disrupting the structure when the exposure is

limited [6]. Furthermore, multiple methods may be employed

for generating the ·OH radicals, including pulse radiolysis of

water, Fenton chemistry, and flash photolysis of hydrogen per-

oxide, making the ·OH labeling method available to a wide

array of researchers [22–24].

Despite the advantages of ·OH footprinting, data analysis for

this method remains arduous, limiting the potential it has in the

field of structural proteomics. Analysis generally follows a typ-

ical proteomics workflow; proteins are proteolyzed, the resulting

peptides are detected and identified using data-dependent LC-

MS/MS, and precursor peak intensities or areas are used for

quantitation [25]. However, the abundant amount of possible

oxidation products produced by thismethodmakes identification

and quantitation significantly more complex than a proteomics

counterpart such as SILAC, where stable isotope ratios are quan-

tified [16, 26, 27]. Furthermore, the vast quantity of data gener-

ated from these experiments makes manual analysis cumber-

some, which can lead to errors in interpretation [28].

Several efforts have been made to expedite analysis of these

data sets. Gau et al. have developed a semiautomatic method that

utilizes a Mascot error-tolerant search and a house-built Excel

spreadsheet for identification and quantitation [29, 30].

However, this method is manually intensive, and the use of an

error-tolerant search prohibits the use of a decoy database search

and, subsequently, a false discovery rate (FDR) or a level of

confidence in identifications. Hybrid software platforms

including ByOnic and InsPecT, that were developed for identify-

ing post-translational modifications, have been utilized for ·OH

experiments [31–34]. While these platforms offer a better-quality

database search, quantitation remains manually intensive. And

although Kaur and coworkers [28] developed an automated soft-

ware platform, ProtMapMS (PM), it was specifically designed

for dose response studies from water radiolysis. Furthermore, the

presupposition that the protein of interest is known excludes the

platform frombeing used in highly complex samples, such as cell

lysate and in cell labeling strategies that have been developed

recently [35, 36]. And while the resolving power of

ProtMapMS has been improved in the most current version, the

limitations that exclude its use on complex samples remain [37,

38]. For each of these platforms, quantitation of the oxidation

yield is performed using the ratio of the identified oxidized spe-

cies to the sum of the oxidized and corresponding unoxidized

species. However, the oxidation yield can also be determined

indirectly by monitoring the decrease in the unoxidized species,

whereby this decrease is attributed to the species being oxidized

[39].While this has been shown to be quantitatively accurate, this

approach can only be used at a peptide level, limiting the resolu-

tion of identifying the oxidized locations.

In this paper, we present our Proteome Discoverer (PD)

analysis strategy using fast photochemical oxidation of pro-

teins (FPOP) as the footprinting method. To illustrate the ef-

ficacy of the strategy, both peptide and residue-level analysis

of the GCaMP2 synthetic construct in the apo and holo con-

formations is provided, comparing the results between the

conformations to the available crystal structures and results

from ProtMapMS [28, 40].

Materials and methods

Materials

All chemicals were obtained from Thermo Fisher Scientific

(Waltham, MA) unless otherwise noted.

Protein expression and purification

The pRSET vector containing GCamP2 was a kind gift from

Michael Kotlikoff (Cornell University). The expression and

purification of GCaMP2 was previously described [41].

Briefly, transformed BL21(DE3)pLysS (Promega, Madison,

WI) E. coli cells were grown in LBmedia. After induction with

1 mM IPTG, proteins were expressed for 12 h at 18 °C.

Proteins were purified using the HisPur Ni-NTA agarose resin.

Oxidative labeling

Each 50-μL sample contained 10 mM phosphate-buffered sa-

line (PBS, Sigma Aldrich, St. Louis, MO) 10 mM
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L-glutamine, 7.5 mM hydrogen peroxide, 10 mM ethylenedi-

aminetetraacetic acid (calcium free, CF) or 10mM calcium chlo-

ride (calcium bound, CB), and purified GCaMP2 at a concentra-

tion of 0.18 mg/ml. The hydrogen peroxide was added just prior

to infusion. FPOP was performed similarly as described [24, 35,

42]. A 248-nm KrF excimer laser (GAM Laser Inc., Orlando,

FL) was used to irradiate the sample solution at 135 mJ/pulse.

The laser was focused through a 250-mm plano convex lens

(Thorlabs, Inc., Newton, NJ) onto 150μm i.d. fused silica tubing

(Polymicro Technologies, Pheonix, AZ) with the polyimide

coating removed, giving a 2.5-mm irradiation window. The flow

rate, 33 μl/min, was set to allow for a 20% exclusion fraction. A

total of three FPOP samples and three controls (no irradiation)

were prepared for each condition were prepared.

Proteolysis

Post FPOP, the GCaMP2 samples were subjected to a two-

step digestion process as previously described [15, 35]. Each

sample dried in a vacuum centrifuge, and resuspended in 8 M

urea 100 mM Tris–HCl pH 8.5 buffer. Proteins were reduced

with tris(2-carboxyethyl)phosphine, alkylated with

iodoacetamide and quenched with dithiothreitol. Lys-C was

added at a 100:1 substrate to protease ratio and incubated

overnight at 37 °C. The samples were then diluted with

100 mM Tris buffer to bring the urea concentration down to

2 M. Trypsin was added at a 20:1 substrate to protease ratio

and incubated overnight at 37 °C. Digestion was quenched

with formic acid (Sigma Aldrich, St. Louis, MO) at a final

concentration of 5 %. Samples were de-salted using

NuTipC18 media tips (Glygen Corporation, Columbia, MD),

dried in a vacuum centrifuge, and resuspended in 20 μl 2 %

acetonitrile 0.1 % formic acid.

LC-MS/MS acquisition

Analysis was completed using an UltiMate 3000 RSLC and a

Q Exactive mass spectrometer (Thermo Fisher Scientific,

Waltham, MA) as previously described [35]. For each exper-

iment, 1 μg of the digest was loaded onto a 2 cm Acclaim

Pepmap 100 C18 trap column (Thermo Fisher Scientific,

Waltham, MA) and washed for 3 min with loading buffer

(2 % acetonitrile 0.1 % formic acid) at a flow rate of 5 μl/

min. The samples were separated on a 75-μm inner diameter

reverse phase analytical column packed in-house with a 30 cm

bed ofMagic 5μmC18 particles (MichromBioresources Inc.,

Auburn, CA). Peptides were eluted with a 74-min linear gra-

dient at a flow rate of 300 nl/min to 45 % acetonitrile 0.1 %

formic acid. The total run time was 97 min including loading,

washing, and equilibration time. MS1 spectra were acquired

over anm/z range of 300–1500 at a resolving power of 70,000

for 400m/z ions, with a dynamic exclusion of 20 s. The 25

most abundant ions were selected for MS2 at a resolving

power of 17,500 for 400m/z ions. Ions with a charge-state of

+1 and > +6 ions were rejected. AGC targets were set to 3e6

for MS1 and 1e5 for data-dependent MS2 with an underfill

ratio of 2.5 %, giving an intensity threshold of 5.0e4.

Data analysis

All data files were searched using Proteome Discoverer (ver-

sion 1.4; Thermo Fisher Scientific, San Jose, CA, USA) with

Mascot (version 2.4; Matrix Science, London, UK) and

Sequest HT (version 1.1.1.11; Thermo Fisher Scientific, San

Jose, CA, USA) using a custom multi-search node workflow

(Fig. 1), and the ProtMapMS platform (version 2.5.0.30). For

the PDmethod, files were searched against a FASTA database

consisting of the protein of interest (GCaMP2 synthetic con-

struct; NCBI GI 218681839) inserted into the cRAP

(Common Repository of Adventitious Proteins) database (ver-

sion 2012.01.01; http://www.thegpm.org/crap/), and extracted

ion chromatogram (EIC) areas for each peptide spectrum

match (PSM) were calculated. For the PM method, files were

searched against the GCaMP2 FASTA sequence only, restrict-

ed to tryptic peptides with up to one missed cleavage within a

350–5000 Da mass range. The precursor mass tolerance and

the m/z peak integration width were set to±10 ppm, and the

fragment mass tolerance to ±0.02 Da.

Post search, peptides were ungrouped and filtered to a 1 %

FDR for both peptide and residue-level analysis. The data

were exported to Excel and summarized using the

PowerPivot add-in that was customized for ·OH labeling ex-

periments. The fractional oxidation per peptide or residue was

determined according to the following equation:

X
EIC area modified
X

EIC area
ð1Þ

where, for peptide level analysis, EIC area modified is the EIC

area of a PSM containing an FPOPmodification, and EIC area

the EIC area of any PSM with a sequence identical to that

containing the modification. For residue-level analysis, EIC

area modified is the EIC area of a PSM for a specific modified

residue, and EIC area the EIC area of any PSMs with se-

quences identical to those containing the modification.

Results

Analysis platform

Our objective for the work presented here was to develop an

identification and quantitation strategy, with minimal manual

steps, for use in protein footprinting studies and with four

main features. First, we wanted to use an identification
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strategy that builds on the standards that have been established

in the proteomics community. Second, we wanted the plat-

form to be compatible with all levels of sample complexity.

Third, we wanted a platform that would work with any stable

footprinting label. Last, we wanted our platform to be built on

software packages that are already widely used within the

proteomics community. As follows, we created a workflow

(Fig. 1) in Thermo Scientific’s Proteome Discoverer (PD) that

was customized for deep searching of hydroxyl radical mod-

ifications, as well as a rapid quantitation platform using the

Excel PowerPivot add-in. Although our strategy was designed

for hydroxyl radical labeling experiments, each half may be

easily modified to accommodate any stable footprinting label.

The workflow (Fig. 1) was constructed with five search

algorithm levels, each restricted to tryptic peptides greater

than 5 residues, with up to one missed cleavage, and within

a 350–5000 Da mass range. The precursor mass tolerance was

set to±10 ppm, and the fragment mass tolerance to±0.02 Da.

Alkylation and all commonly observed ·OH modifications

[16, 26] were distributed across each search level (Table 1),

and each data set was searched against the FASTA database.

After each search level, PSMs are subjected to target-decoy

validation, with a 1 % FDR setting for high confidence PSMs.

Extracted ion chromatograms (EICs) for each precursor are

calculated using the PD precursor ion area detection node.

After the search is completed, the ungrouped (all visible

PSMs) peptide PSMs matching the protein(s) of interest are

filtered appropriately (1% FDR for peptide level analysis; 1%

FDR and search engine rank of 1 for residue level analysis),

removing PSMs that do not have a calculated peak area; peak

areas are only calculated by PD when the expected precursor

pattern is detected. The resulting data is then exported to an

Excel spreadsheet, where it is prepared for import into

PowerPivot. Once imported, a series of PowerPivot measures

that were formulated specifically for hydroxyl radical labeling,

quantitate the extent of oxidation for each peptide or residue

(Eq. 1). The time required for all post search steps, including

filtering, exporting, preparation, and quantitation, generally

takes under 2 h; this is typical regardless of the number of

samples, proteins, or conditions for the given experiment.

In order to complete residue-level analysis with confi-

dence, changes were made to how the data was pre-filtered

before tabulation. First, all PSMs with more than one oxida-

tion location are calculated independent from the singly oxi-

dized counterparts as there is no way to discern what percent-

age of the area associated with that PSM can be attributed to

each oxidation location. Second, PSMs are restricted to those

assigned a search engine rank of 1 to reduce the number of

PSMs that have a low probability of having a b or y ion

specifically identifying the labeled residue, and to ensure that

each MS/MS spectrum has at most one match per search al-

gorithm (Sequest HTandMascot) node. These strict filters are

applied up front to minimize the amount of manual validation

of MS/MS spectra required post analysis.

Analysis of GCaMP2 in calcium-free and calcium-bound

states

The synthetic construct, GCaMP2, was used to evaluate the

efficacy of the PD method for both peptide and residue-level

analysis. GCaMP2 belongs to a group of synthetic proteins

known as genetically encoded indicators [40]. It is a calcium

sensor assembled from circularly permutated enhanced green

fluorescent protein (cpEGFP), the M13 helix of myosin light

chain, and calmodulin (CaM) [43]. The sensor undergoes con-

formational changes upon calcium binding that result in a

change in solvent accessibility of the chromophore allowing

for calcium dependent sensing in cells and tissues [40, 41]. At

low concentrations, comparable to those used in FPOP exper-

iments, GCaMP2 exists as a monomer in both the calcium-

Fig. 1 PD workflow developed for FPOP analysis displaying the search hierarchy with Mascot and Sequest HT search levels (dark orange nodes),

target-decoy validation (tan nodes), and precursor peak areas are calculation (pink node)

Table 1 Workflow modification distribution

Search Level Amino Acid(s) Mass Shift (Da)

1 C (Static) +57

2 A,D,E,F,H,I,K,L,M,N,P,Q,R,V,W,Y +16

3 E,I,K,L,P,Q,R,V +14

C,F,M,W,Y +32

H −10

4 C,F,W,Y +48

D,E −28,-30

H +5

R −43

5 D,E −44

H −22,-23
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free (CF) and calcium-bound (CB) states, with monomer crys-

tal structures available for both states [40]. This makes

GCaMP2 an ideal molecule for examining the ability of the

PD method in discerning conformational changes via local-

ized changes in oxidation, with the structures providing a

means of validating the residue-level data.

Peptide level FPOP oxidation of GCaMP2 was completed

using both the PD method and the PM method. PD analysis

resulted in the detection of 62 peptides, with 21 containing

FPOP modifications which are presented in the Electronic

Supplementary Material (ESM, Table S1). There were a total

of 443,780 PSMs at a 1 % FDR affiliated with the protein,

with 11% corresponding to hydroxyl radical oxidation events.

These peptides correspond to a sequence coverage of 92 %

and a footprinting coverage of 66 % of the protein (Fig. 2a).

By comparison, 83 % of the sequence was covered using the

PM method with only 33 % footprinting coverage (Fig. 2a).

There were eight oxidized peptides identified in common be-

tween the two methods which were used to validate the accu-

racy of the PD method’s quantitation strategy. Recently,

Chance and coworkers have introduced an oxidation normal-

ization factor, named protection factor (PF), where the relative

intrinsic activity (Ri) of the peptide (or residue for residue-

level analysis) is divided by the oxidation rate to account for

the differing reactivities of each of the amino acids with ·OH,

which we have applied to the data presented in this paper [37,

38]. Comparison of the two methods shows a similar trend in

fold change of oxidation (Fig. 2b), and results in a correlation

coefficient of 0.99 for both the CF and CB states (Fig. 2c),

with p values of 3.59e−9 and 2.53e−9, respectively. These

correlations demonstrate that the quantitative accuracy of the

PD platform is comparable to the previously validated PM

platform. To further establish the efficacy of the PD method,

the solvent accessible surface area (SASA) was calculated for

each of the structures using VADAR [44], and compared to

the natural log of the PFs for the 22 oxidized peptides identi-

fied (Fig. 3), as previously demonstrated [37, 38]. This result-

ed in a correlation of −0.84 for the CF state, and −0.59 to the

CBmonomeric structure (3EK4) and −0.75 to the CB dimeric

structure [40]. The higher correlation to the dimeric CB struc-

ture indicates that dimer was present in the CB samples, con-

trary to what was expected at the low concentration (0.18 μg/

μl) of GCaMP2 in each sample prepared. This was most likely

due to the method in which the samples were prepared. In

order to minimize the variability between samples, calcium

chloride was added to a concentrated stock of GCaMP2 which

was later spiked into each sample tube. Studies completed by

Akerboom and coworkers [40] on GCaMP2 demonstrated

that dimeric CB GCaMP2 can be seen at concentrations of

10 μM and that the equilibrium kinetics between the mono-

meric and dimeric calcium-saturated forms was slow, with the

solution remaining stable over several days. With the stock

concentration of CB GCaMP2 for this study at 0.29 μM,

nearly three times the concentration where dimer has been

shown to exist, there is a strong likelihood that dimeric CB

GCaMP2 was present in the samples at the time of oxidation.

Further discussion of GCaMP2 will be divided into two

talking points: the GFP domain (which, for ease of discussion,

also includes the M13 peptide and the domain linkers) and the

CaM domain. There are two areas of the GFP domain that

have unexpected differences in oxidation between the CF

and CB states. The first occurs between the two peptides

spanning residues 255–284, with a higher relative oxidation

in the CF state. Alignment of the GFP domain (residues 62–

301) of the two structures (PDB IDs 3EKJ and 3EK4) using

Pymol results in an RMS deviation value of 0.347 Å, indicat-

ing that there are only small structural changes in this domain

between the two states [40, 45]. To investigate further, the

solvent-accessible surface area (SASA) was calculated for

each of the structures using VADAR [44]. Comparison of

the SASA from residues 255–284 revealed that there is an

increased SASA for the CF structure, in agreement with the

FPOP oxidation analysis (Fig. 4, ESM Table S1). The 4 %

SASA difference between the states is mainly associated with

six lysine and arginine residues (K259, K265, R267, K271,

R280, and K284). Inspection of the PSMs for these peptides

provides additional agreement with the SASA analysis, as

there are considerably more oxidized PSMs associated with

these residues in the CF state (105 vs 58 PSMs).

Another point of interest in the GFP domain is with peptides

53–69 and 57–69 (Fig. 4, ESM Table S1). These two peptides

contain a portion of the M13 peptide, the linker joining M13 to

GFP, and the beginning of the C-terminal half of GFP. At first it

would seem unlikely that in overlapping peptides there would be

a change in which state would have a greater relative oxidation.

This is especially true considering there is only a four-residue

difference between the two peptides. However, this change can

be explained by the structures. The CF structure (PDB ID 3EKJ)

is lacking the M13 peptide due to its flexibility, while in the CB

state (PDB ID 3EK4) M13 is complexed with the CaM domain

[40]. This would correlate to a higher oxidation on the M13

peptide in the CF state, as is seen in peptide 53–69. Peptide

57–69 has fewer M13 residues, so it is likely that higher oxida-

tion in the CB state is associated with the subtle structural chang-

es in the M13-GFP linker between the two states. These differ-

ences, however, may be better assessed on a per-residue basis.

Residue-level analysis of GCaMP2 using the strict filter set-

tings resulted in a substantial decrease in PSMswith only 87,298

passing all the criteria. An even more dramatic change can be

seen when looking at oxidized PSMs, going from 443,780

PSMs and 11 % of the total, to 10,384 PSMs and 7.4 % of the

total. This resulted in a total of 61 singly oxidized residues iden-

tified, with an additional 11 double oxidation identifications

(ESM Table S2). While drastic, these changes allow for a more

discriminative view of the conformational changes that occur

between the two states, as demonstrated by theM13-GFP linker.

Quantitation strategy for hydroxyl radical-mediated protein footprinting
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At a residue level, the PD method was able to detect the

conformational change between the two states on the L60-E61

linker between M13 and GFP. In the CF state, the linker is

integrated into the leading GFP β-strand, with the structure

stabilized through hydrogen bonding between E61 and R81.

This integration decreases the SASA of L60, while exposing

the E61 sidechain. However, the linker is forced into a differ-

ent conformation in the CB state as a result of the strong

Fig. 2 Comparison of PD method to PM method showing the sequence

coverage (a) with PD total and footprinting coverage in blue and green,

respectively, and PM total and footprinting coverage in red and yellow,

respectively, as well as the agreement between the fold change (b) and

correlation (c)
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interaction between the M13 peptide and the CaM domain

(Fig. 5a) [40]. This interaction inverts the SASA for the linker

residues, with L60 more exposed in the CB states. Residue-

level analysis using the PD method matches this trend, with a

higher oxidation on L60 in the CB state and E61 in the CF

state (Fig. 5b). In addition to matching the trend for the linker,

the correlations between %SASA (the fractional SASA of the

residue) and log PF of the 61 oxidized residues are compara-

ble to those that have been previously published, with −0.64

for the CF GCaMP2 and −0.45 and −0.59 for monomeric and

dimeric CB GCamP2 (Fig. 2) [37, 38].

Another structural change between the CF and CB states

stems from the architecture of the calcium sensor. In designing

the cpEGFPmoiety, four residues were removed from a GFPβ

strand. This creates an opening in the GFP barrel, resulting in

an increased solvent accessibility in the barrel interior.

Conformational changes induced by calcium binding cause

the N-terminal domain of CaM to partially block this opening,

decreasing the solvent accessibility of the chromophore [40]. In

the CF state, the N-terminal domain of CaM is packed against

the cpEGFP domain, creating a region of decreased SASA on

the surface of the cpEGFP domain (Fig. 6a). However, in the

CB state, the interaction of the CaM domain with the M13

peptide increases the exposed SA in this region of the GFP

domain (Fig. 6b, ESM Table S2). Two oxidatively modified

peptides were identified in this cpEGFP region. At the peptide

level, peptides 128–151 and 185–199 both have an increase in

oxidation in the CF state (Fig. 4, ESM Table S1). Residue-level

analysis also agrees with the conformational differences, iden-

tifying three residues on the occluded cpEGFP surface that

have higher oxidation yields in the CB state (Fig. 6c).

Although the surface of cpGFP has increased solvent expo-

sure in the CB state, the same claim cannot be made for the

CaM domain. Helices 8 and 11 of GCaMP2, which comprise

the majority of the residues that are packed against the GFP

domain in the CF state, are also complexed with the M13

peptide in the CB state [40]. Additionally, the two crystal struc-

tures for this domain are incomplete, making it difficult to

assess the CaM residue level data using the structures.

However, the CB CaM domain is structurally similar to the

CaM-M13 crystal structure, with only small differences asso-

ciated with the CaM linker helix [40, 46]. By reason of this

structural similarity, a previously published FPOP study of cal-

modulin with the M13 peptide was used for comparison [14].

Fig. 4 Fold change between the CF and CB states for the 22 oxidized peptides identified by the PD method

Fig. 3 Correlation between SASA and log PF for both peptide level (a,

b, and c) and residue level (d, e, and f) analysis for the CF state (a and d)

and the CB monomeric (b and e) and dimeric (c and f) states
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Since definitive oxidation values for calmodulin were not giv-

en, the trend of which state (CB or CF) yielded a higher oxida-

tion was used for comparison (Table 2). There is an agreement

between the previously published data and the data presented in

this paper, with two of the residues in common between this

and the previous study differing. One residue, I312 (I9 in iso-

lated CaM), has nearly identical oxidation values in the CF and

CB states in the previous study. Another residue, M427 (M124

in isolated CaM) is not significantly different in the previous

study. This as well as the correlation between %SASA and log

PF demonstrates the efficacy of the PD method in identifying

and quantifying residue level oxidation.

Discussion

Using protein footprinting methodologies with mass spec-

trometry for protein structural analysis can be advantageous,

particularly when structural knowledge from traditional meth-

odologies like X-ray crystallography is not available.

Although these methods have the potential to fill the gap left

by the traditional structural approaches, the potentially ardu-

ous task of analyzing the data can limit the size or complexity

of the systems that can be studied using footprinting methods.

Furthermore, any manual interpretation in the analysis steps

can introduce a human bias, leading to errors in interpretation.

As such, while footprinting can provide advantages over

Fig. 5 Conformational difference detected in the two residues in the

M13-GFP linker with an overlay of the calcium free (light gray and

blue, PDB ID: 3EKJ) and the calcium bound structures (dark gray and

red, PDB ID: 3EK4) (a) and the oxidation and the SASA of the two

residues for each conformation (b)

Table 2 Comparison of CaM domain PD oxidation to previously

published data

GCaMP2 Residue CaM Residue GCamp2

Higher State

CaM-M13

Higher State

I312 I9 CF CB

F319 F16 CB CB

L321 L18 CF CF

F322 F19 CF CF

Y402 Y99 CB CB

M412 M109 CF CF

M427 M124 CB Samea

CaM-M13 data taken from literature [14]
aNot significantly different

Fig. 6 Inter-domain contacts between GFP (gray) and the N-terminal

lobe of CaM (light purple) in the CF conformation (a) and structural

changes in the CB conformation (b) with residues with higher oxidation

in the CB conformation colored blue, and a bar graph (c) of the oxidation

level of the highlighted residues
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traditional methods, there is an inherent limitation in their

ability to completely close the gap without a more compre-

hensive analysis strategy.

Our goal was to develop a method that could rapidly analyze

the raw data from any stable label footprinting experiment, re-

gardless of the size or complexity of the data set. Developing a

completely integrated software platform would have required an

exhaustive search of every footprinting label currently in use, and

would require an update for each newly published footprinting

label. Additionally, this would have required restrictions on the

raw data file format(s) or a strict requirement on file conversion.

To overcome these obstacles, we developed our strategy

using a two-pronged approach, separating database searching

from quantitation. The PDworkflow (Fig. 1) used for this work

can be adapted for any stable label by changing the variable

modifications search to those used in the experiment, adding or

deleting search levels as needed. Additionally, PD and the al-

gorithms (Mascot and Sequest HT) allow the addition of new

modifications, making it accessible to labels that have not yet

been published. Nonetheless, PD is not required for quantita-

tion in PowerPivot, as the quantitation method can be adapted

to any data set formatted to a similar layout. By separating the

search and quantitation strategies, our complete method can be

adapted for any footprinting label and quantitation can be com-

pleted with or without the use of PD. Furthermore, post-search

quantitation takes under 2 h, for one or thousands of proteins,

regardless of the number of samples to analyze. Only the search

time increases, as would be the case for any other platform.

The use of different filtering strategies for peptide and

residue-level analysis minimizes the amount of manual inter-

pretation and validation required, while still providing a high

level of confidence in the results obtained. For peptide level

analysis, it is not necessary to know the exact location of the

modification on a given peptide. Therefore, it is reasonable to

conclude that corresponding modified PSMs identified within

the mass tolerance are correct within a 95 % confidence inter-

val, and that the ambiguity of the location assignment is in-

consequential to the overall outcome at this level of detail.

A more stringent approach must be taken to provide a high

level of confidence in modification assignments for residue-level

analysis. Restricting PSMs to only those with one modification

is necessary as there is not a reliable method to assign peak area

proportions to each modification multiply oxidized PSMs. The

additional restrictions of a 1 % FDR and limiting the search

engine rank to 1 allow for a high level of confidence in per-

residue analysis while limiting the amount of manual interpreta-

tion required. Comparing the MS/MS scans for two identified

modifications on the same peptide in GCaMP2 best illustrates

this point. A decarboxylation modification on residue D194 was

identified with high confidence and a search engine rank of 3

(ESM Fig. S1a), but does not have fragment peaks to substanti-

ate this assignment. Without the filters, this assignment would

have had to be validatedmanually, increasing the amount of time

required to complete analysis. For comparison, a loss of CO on

this same residue was identified with high confidence and a

search engine rank of 1 (ESMFig.S1b), and has amore complete

y ion series coverage in the MS/MS spectrum with a fragment

matching the modification. By using strict filters on the data up

front, a high level of confidence in the assignments can be ob-

tained without the need to manually remove PSMs individually

which drastically decreases the time required for analysis. This is

further demonstrated by the oxidation levels of the two M13-

cpEGFP linker residues, L60-E61 (Fig. 2). Glutamic acid is one

of the least ·OH-reactive amino acids, with a reactivity 2.3×108

[16]. Manual interpretation may have been biased by the more

highly reactive residues on the peptide; including L61 with a 6-

fold higher reactivity, Y64 with a 17-fold higher reactivity, and

M66 with a 30 fold higher reactivity. By letting the algorithms

make the assignment, no human bias can by factored into the

analysis, and the detection of oxidized residues with lower reac-

tivities is not hindered. While there is still a small probability of

incorrect assignments, the use of an n number of PSMs threshold

decreases the likelihood of the incorrect assignments being in-

cluded while interpreting the results. Furthermore, the upfront

reduction of PSMs before analysis is completed also decreases

the number of data points, and therefore the time required for

manual verification of the results, if desired.

Conclusions

In this work, we have demonstrated our PD method is a com-

plete identification and quantitation strategy for mass

spectrometry-based protein footprinting studies. The data pre-

sented here demonstrates the efficacy of the PD method in

detecting and analyzing protein footprinting data. Use of this

method on GCaMP2 validates that this method not only pro-

vides significant footprinting coverage while maintaining a

high level of confidence in the results obtained, but does so

in less than 2 h. Additionally, our method can be adapted for

use with any stable covalent label and any level of experiment

or sample complexity. The approach we used when develop-

ing our method will allow for it to be modified as new tech-

nologies and footprinting strategies are developed.
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Abstract. Peptides containing the oxidation products of hydroxyl radical-mediated

protein footprinting experiments are typically much less abundant than their

unoxidized counterparts. This is inherent to the design of the experiment as exces-

sive oxidation may lead to undesired conformational changes or unfolding of the

protein, skewing the results. Thus, as the complexity of the systems studied using this

method expands, the detection and identification of these oxidized species can be

increasingly difficult with the limitations of data-dependent acquisition (DDA) and one-

dimensional chromatography. Here we report the application of multidimensional

protein identification technology (MudPIT) in combination with hydroxyl radical

footprinting as amethod to increase the identification of quantifiable peptides in these

experiments. Using this method led to a 37% increase in unique peptide identifications as well as a 70% increase

in protein group identifications over one-dimensional data-dependent acquisition on the same samples. Further-

more, we demonstrate the combination of these methods as a means to investigate megadalton complexes.
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Introduction

S tructural mass spectrometry-based methodologies, many

of which utilize chemical reagents for investigation, have

become an invaluable tool for evaluating protein structure and

function [1]. Several strategies exist for this type of investiga-

tion, each yielding different structural information about the

protein(s) in inquiry. One such method is chemical

crosslinking, which can divulge tertiary and quaternary infor-

mation through both inter- and intramolecular covalent conju-

gation [2]. Hydrogen-deuterium exchange probes hydrogen

bonding and solvent accessibility through monitoring the ex-

change of backbone amide hydrogen atoms yielding secondary

structural properties [3]. Another method complementary to

hydrogen-deuterium exchange is protein footprinting. Here,

chemical probes are used to label side chains, revealing evi-

dence of side chain solvent accessibility [4].

Hydroxyl radical (·OH) based footprinting, first coupled

with mass spectrometry by Chance and coworkers [5], is one

of the most informative covalent labeling methods for a num-

ber of reasons. The · OHs have similar properties to water and

can freely oxidize solvent exposed side chains. Additionally,

their reactivity is well known and researchers can capitalize on

their low selectivity [6], increasing the amount of information

obtained. Furthermore, there are multiple methods [1, 7, 8]

available for generating · OHs, increasing the accessibility of

this method. Fast photochemical oxidation of proteins (FPOP),

used for this work, generates · OHs through laser induced

photolysis of hydrogen peroxide [9]. This technique modifies

proteins on a microsecond timescale [9], theoretically eliminat-

ing structural changes induced by labeling [10].

A consequence of design features employed in FPOP ex-

periments to eliminate radical induced unfolding [9] is that

oxidized species are present in lower abundance comparedwith

their unoxidized counterparts. Therefore, the difficulty in de-

tecting these species will grow concurrently with increasing

sample complexity. Investigating the structures of large,

megadalton-sized molecular assemblies has often proven diffi-

cult. Although there are several methods for obtaining protein

structures, the majority come from X-ray crystallography [11].

At the outset, it is often challenging to purify all of the proteinCorrespondence to: Lisa M. Jones; e-mail: joneslis@iupui.edu
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components of megadalton complexes [12], a necessity in
obtaining a structure. Even when this is accomplished, it can
be equally difficult to crystallize these complexes, or the pro-
cess may only yield crystals too small for analysis [11]. Al-
though FPOP has the potential to start to fill this gap in
information, it is first necessary to overcome the hurdle of
identifying the relatively low abundant oxidized species in a
sea of higher abundant peptides. Amajor obstacle is using data-
dependent acquisition (DDA) for MS/MS analysis. In this
method, precursor ions are selected for fragmentation based
on their signal intensities. Often, if chromatographic separation
is not sufficient, peptides with higher abundance are identified
whereas lower abundance peptides are not. A more proficient
chromatographic separation could aid in increased peptide
identifications.

Multidimensional protein identification technology
(MudPIT), is a method used to overcome the inability of
single-dimensional separations to resolve complex biological
samples [13]. The use of a biphasic analytical column increases
the peak column capacity and allows for online two-
dimensional separations [13, 14]. The coupling of FPOP label-
ing withMudPIT could provide an increase in identifications of
oxidized peptides in complex systems. The use of this method
to identify oxidatively modified peptides has been previously
reported [15]. However, the study was mainly focused on
comparison of informatics methods rather than as a method to
be utilized to identify more oxidatively modified peptides for
highly complex samples. Additionally, the researchers used a
low complexity sample with a “mini-MudPIT” method
consisting of only three salt steps. In this paper, we describe
the combination of a full MudPIT method with FPOP on a
highly complex sample, Saccharomyces cerevisiae yeast cell
lysate. Our objective is to improve the detection of FPOP
labeled species and expand the application of FPOP to more
complex systems.

Materials and Methods

All chemicals were obtained from Thermo Fisher Scientific
(Waltham, MA, USA) unless otherwise noted.

Oxidative Labeling

Each 100 μL sample contained 10 mM phosphate buffered
saline (PBS; Sigma Aldrich, St. Louis, MO, USA) 10 mM -
glutamine, 7.5 mM hydrogen peroxide, and yeast cell lysate (a
gift from Dr. Amber Mosley and Whitney Smith-Kinnaman,
Department of Biochemistry, Indiana University School of
Medicine, Indianapolis, IN) at a concentration of 0.18 mg/
mL. The hydrogen peroxide was added just prior to infusion.
FPOP was performed similarly as described [9, 10]. A 248 nm
KrF excimer laser (GAM Laser Inc., Orlando, FL, USA) was
used to irradiate the sample solution at 135 mJ/pulse. The laser
was focused through a 250 mm plano convex lens (Thorlabs,
Inc., Newton, NJ, USA) onto 150 μm i.d. fused silica tubing

(Polymicro Technologies, Phoenix, AZ, USA) with the poly-
imide coating removed, giving a 2.5 mm irradiation window.
The flow rate, 33 μL/min, was set to allow for a 20% exclusion
fraction. A total of four FPOP samples and three controls (no
irradiation) were prepared.

Proteolysis

Post-FPOP, the yeast lysate samples were subjected to a
two-step digestion process as previously described [16].
Each sample was acetone precipitated [17] and re-
suspended in 8 M urea 150 mM tris-HCL pH 8.5 buffer.
Proteins were reduced with 10 mM tris(2-carboxyethyl)
phosphine (TCEP) for 30 min at room temperature (RT).
They were then alkylated with 20 mM iodoacetamide for
30 min at RT with a foil cover to protect the sample from
light. The alkylation reaction was quenched with 10 mM
dithiothreitol (DTT) for 15 min at RT. Lys-C was added
at a 100:1 substrate to protease ratio and incubated over-
night at 37°C. The samples were then diluted with 150
mM Tris buffer to bring the urea concentration to 2 M.
Trypsin was added at a 50:1 substrate to protease ratio
and incubated overnight at 37°C. Digestion was quenched
with formic acid (Sigma Aldrich) at a final concentration
of 5%.

LC-MS

Analysis was completed using an UltiMate 3000 RSLC
and a Q Exactive mass spectrometer (Thermo Fisher Sci-
entific). For each experiment, 1 μg of the digest was
loaded onto a 2 cm Acclaim Pepmap 100 C18 trap col-
umn (Thermo Fisher Scientific). MS1 spectra were ac-
quired over an m/z range of 350–2000 at a resolving
power of 70,000. The 25 most abundant ions were select-
ed for MS2 at a resolving power of 17,500. Ions with a
charge-state of +1 and 9 +8 ions were rejected.

One-Dimensional LC-MS

Samples were loaded onto a 100 μm × 2 cm Acclaim
PepMap100 C18 nano trap column (5 μm, 100 Å) (Ther-
mo Scientific, Waltham, MA, USA) and washed for 10
min with loading buffer (LB, 2% acetonitrile 0.1%
formic acid) with a flow rate of 5 μL/min. The samples
were separated on a 75 μm i.d. reverse phase (RP)
analytical column packed in-house with a 30 cm bed of
Magic 5 μm C18 particles (Michrom Bioresources Inc.,
Auburn, CA, USA) with a 67 min linear gradient at a
flow rate of 300 nL/min to 40% acetonitrile 0.1% formic
acid. The total run time was 105 min including loading,
washing, and equilibration. AGC targets were set to 3e6
for MS1 and 1e5 for data-dependent MS2 with an
underfill ratio of 1.0%, giving an intensity threshold of
2.0 e4
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MudPIT LC-MS

Fully automated analysis was completed in a similar manner as
previously described [18, 19]. Each sample was loaded onto a
trap column and washed for 10 min with LB at a flow rate of 5
μL/min. Samples were separated on a 75 μm i.d. RP analytical
column packed in-house with a 26-cm bed of Magic 5 μmC18
particles (Michrom Bioresources Inc.) followed by a 4-cm bed
of Luna strong cation exchange (SCX) resin (Phenomenex,
Torrence, CA, USA). Peptide fractions were displaced from
the SCX resin to the RP resin using the following salt pulses:
(1) 0% (2) 5% (3) 10% (4) 15% (5) 20% (6) 30% (7) 40% (8)
50% (9) 60% (10) 80% of SCX buffer (SCXB, 500 mM
ammonium acetate (Sigma Aldrich) in 5% acetonitrile and
0.1% formic acid) mixed with LB by the loading pump mixer.
The 0% fraction was used to displace the sample from the trap
column to the analytical column. Each subsequent salt pulse
was generated by increasing the SCXB percentage to the next
concentration with a loading pump gradient during the previ-
ous salt step. A 2.6 μL aliquot of salt (roughly 15× the SCX bed
volume) was collected by coupling a 30 cm 75 μm i.d.
NanoViper line (Thermo Fisher Scientific) to the trap column
with a stainless steel union, and delivered when the switching
valve position was changed. Each salt pulse was pushed over
the analytical column by the gradient pump for 20min at a flow
rate of 300 nL/min. Sample fractions were separated with a 67-
min linear gradient at a flow rate of 300 nL/min to 40%
acetonitrile 0.1% formic acid. The total run time for each
fraction was 105 min including loading, washing and equili-
bration time. AGC targets were set to 1e6 for MS1 and 5e4 for
data-dependent MS2 with an underfill ratio of 1.0%, giving an
intensity threshold of 1.0e4.

Analysis of MS/MS Data

All data files were searched using Proteome Discoverer
version 1.4 (Thermo Fisher Scientific) with Sequest HT
and Mascot ver. 2.4 (Matrix Sciences Ltd., London, UK)
against a Saccharomyces cerevisiae FASTA database
(strain ATCC 204508/S288c, downloaded from Uniprot
February 2014), and extracted ion chromatogram (EIC)
areas for each peptide spectrum match (PSM) were calcu-
lated using a custom multi-level workflow. Peptides were
ungrouped and filtered to a 1% false discovery rate (FDR).
Only PSMs identified as selected or unambiguous were
used for analysis. The data was exported to Excel and
summarized using the PowerPivot add-in. The fractional
oxidation per residue on a given sequence was determined
according to Equation 1:

X
EIC area modified
X

EIC area
ð1Þ

where EIC area modified is the EIC area of a specific
modified residue and EIC area the EIC area of any

PSMs with a peptide sequence identical to that contain-
ing the modification.

Results and Discussion

Method Comparison

In order to make the most direct comparison between the one-
dimensional chromatography data-dependent analysis (1D-
DDA) and MudPIT, when possible, all processes and parame-
ters were kept identical. However, some parameters were al-
tered for the analysis. First, we doubled typical FPOP sample
size to ensure there was an adequate amount to analyze each
sample by both methods. In addition, the total analytical col-
umn length was kept at 30 cm and the gradient for each sample
or step was constant over the entire experiment.

For comparison of the two methods, the sample loading
procedure for MudPIT had to be altered. In MudPIT analysis,
samples are often pressure loaded or directly injected onto the
analytical column [13]. In this experiment, the samples were
loaded onto a trap column via the autosampler. There were
several advantages to loading the samples in this manner. First,
sample washing was identical for both methods. Any hydro-
philic peptides that may have been washed off of the trap
column should be the same over both methods. Directly load-
ing the sample onto a three phase analytical column could have
created a bias between the two methods. Second, trap column
loading allowed both method analyses to be completed contin-
uously, whereas pressure loading would require the MudPIT
analysis to be completed discontinuously. Other parameters
that were altered were automatic gain control (AGC) targets,
for both MS1 and MS2 (see section 2), and dynamic exclusion
times. These parameters were optimized for each method to
provide peak performance.

Increases in Identifications by MudPIT

In agreement with previously reported results [13, 14], using
theMudPITmethod to analyze the labeled yeast lysate samples
gave a substantial increase in peptide spectrummatches (Figure
1). Comparing the two methods at the protein level, a 1.7-fold
increase in protein group identifications (IDs), including 820
unique proteins, was observed with MudPIT (Figure 1 top). At
the peptide level, a 1.3-fold increase in IDs with MudPIT was
observed. Comparing unique peptides, MudPIT had a 1.7-fold
increase in IDs with almost 1700 more unique peptides ob-
served over 1D-DDA (Figure 1 middle). Although significant
increases were observed with MudPIT on the protein and
peptide levels, the true value of using the method in conjunc-
tion with protein footprinting is appreciated when looking at
oxidatively modified peptides (Figure 1 bottom). Here, a 2.7-
fold increase in oxidized peptide IDs was observed with
MudPIT. Even more significant, MudPIT has a 4.6-fold in-
crease in IDs of unique oxidized peptides over 1D-DDA. This
demonstrates the efficacy for coupling MudPIT with FPOP.
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The higher sequence coverage of oxidatively modified peptides

will provide a more complete description of the protein system.

To further evaluate the increased IDs achieved with the

MudPIT method, we compared the identification of oxida-

tively modified residues on pyruvate kinase 1 (PK1, PDB

ID: 1A3W [20]) and phosphoglycerate kinase (PGK1, PDB

ID: 3PGK [21]). These proteins were chosen as a repre-

sentation because both had high coverage with each meth-

od (greater than 75%) and each had oxidatively modified

peptides identified by the search workflow. For both of

these proteins, modifications were only included if they

were identified more than once in the samples (PSM ≥2)

and if the quantifiable oxidation levels were greater than

the mean standard error. Table 1 shows residues that were

identified by each method. For PK1, 1D-DDA identified

only six of the 14 oxidatively modified residues identified

by MudPIT. For PGK1, the fourth most abundant protein

found in S. cerevisiae [22], 1D-DDA only IDs 16 of the 41

residues that MudPIT identified. Since PKG1 is very abun-

dant in yeast lysate, it can be assumed that this protein is

oxidized more frequently than lower abundant proteins in

the lysate. Consequently, the oxidized peptides from PKG1

may be relatively abundant. Despite that, 1D-DDA only

IDs less than half the number of oxidized residues as

MudPIT.

Properties of Peptides Identified by MudPIT

Wolters et al. [13] demonstrated that MudPIT has a high

dynamic range with the ability to ID low abundant peptides.

To determine whether the IDs from MudPIT are lower abun-

dance than those from 1D-DDA, the intensities of the identified

peptides were analyzed. Figure 2a compares the intensity of

peptides identified from MudPIT and 1D-DDA. The average

intensity of the peptides identified by both methods is similar.

However, the minimum intensity of peptides identified by

MudPIT is lower than for 1D-DDA. A histogram of frequency

of identifications of peptides at varying intensities further dem-

onstrates this (Figure 2b). Since the MudPIT method has more

overall identifications, the histogram has been normalized to

show the percent of total peptides. For both MudPIT and 1D-

DDA, the highest number of identifications were from peptides

with intensities in the range of 1.00E + 06 (1E + 06–9E + 06),

followed by intensities in the range 1.00E + 05 (1E + 05–9E +

05) and 1.00E + 07 (1E + 07–9E + 07). At the lowest intensity

bin, 1.00e + 04 (1E + 04–9E + 04), MudPIT facilitated detec-

tion of three times as many peptides, 90 (1%) and 25 (0.4%) for

Figure 1. Visual comparison of IDs between MudPIT (red) and

1D-DDA (blue) methods by proteins (a), peptides (b), and oxi-

datively modified peptides (c)

Table 1. Identified Oxidatively Modified Residues

Residue 1D-DDA oxidation MudPIT oxidation

PK1 D185 N Y
D187 N Y
N249 N Y
F250 N Y
D251 Y Y
E252 N Y
D266 N Y
E270 N Y
I399 N Y
D451 Y Y
W452 Y Y
D454 Y Y
D455 Y Y
E457 Y Y

PGK1 M174 Y Y
V175 Y Y
E200 N Y
N201 N Y
P202 N Y
R204 N Y
I234 N Y
M238 N Y
A239 N Y
E247 N Y
D253 N Y
E303 N Y
I305 N Y
P306 N Y
A307 N Y
W309 Y Y
Q310 N Y
D313 Y Y
I332 N Y
V333 N Y
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MudPIT and 1D-DDA, respectively. This increase in lower

intensity identifications is even more significant for oxidized

peptides where 55 and 10 oxidatively modified peptides from

MudPIT and 1D-DDA were identified, respectively.

Comparing MudPIT identifications to yeast lysate protein

abundance further demonstrates that the method can aid in

identifying low abundance proteins. As mentioned previously,

PGK1 is highly abundant in S. cerevisiae with an estimated

abundance of 21,000 parts per million (ppm) [22]. The se-

quence coverage for this protein is 75%. The ATP-dependent

transporter protein YER036C is also identified by MudPIT

with 25% sequence coverage. This protein has an abundance

of 743 ppm, 29-fold lower than PGK11 indicating the dynamic

range of the MudPIT method.

MudPIT as a Method for Megadalton Protein
Complexes

A major obstacle in oxidative labeling experiments is the

ability to obtain residue level oxidation on large, macromolec-

ular protein complexes. Given that the surface area to volume

ratio decreases as a particle increases in size, it stands to reason

that the proportion of oxidized species present when analyzing

a MDa sized complex would also decrease, making the likeli-

hood of detecting modifications even more difficult.

To demonstrate the power of using MudPIT analysis in

oxidative footprinting experiments, residue level oxidation

was calculated on a yeast 80S ribosome, which has a published

structure (PDB ID 4V6I) [23]. Ribosomes are cellular organ-

elles, consisting of both protein and RNA, involved in protein

assembly. The protein component of the structure is assembled

in two subunits, 40S and 60S, and contains a total of 70 known

proteins. We identified 52 of the 70 proteins in the MudPIT

samples, with sequence coverage values ranging from 5% to

80% (data not shown). A total of 86 residues were identified as

oxidized and mapped to the crystal structure for a visual rep-

resentation (Figure 3). Since RNase was not added to the

sample at any time to remove the RNA, the structure is pre-

sented with the RNA present. The mapping of oxidized resi-

dues onto a surface representation of the crystal structure

demonstrates that many solvent-accessible residues are

oxidized.

To further investigate the correlation between residue oxi-

dation and solvent accessibility, the extent of oxidation of

residues identified by MudPIT was compared with solvent

accessibility surface area (SASA) calculations. Since FPOP

was performed on yeast lysate where various proteins could

be interacting, we had to consider certain variables prior to the

comparison. While a binary interactome of yeast has been

published [24], it is unlikely that every interaction with this

complex has been documented. With this in mind, it seemed

unlikely that a comparison of SASA to oxidation over the

complete complex would yield any reliable assessment of the

method. As a consequence, we chose to do this comparison on

a single protein within the complex. The SASA was deter-

mined on an asymmetric unit of the 40s ribosome (pdb:

31ZB). A plot that correlates the extent of oxidation compared

to the residue SASA, demonstrates a good correlation between

the two parameters (Figure 4). The data fits well to a linear fit

with an R2 of 0.7. There is a possibility that protein–protein

interactions are occurring that are not taken into account in the

SASA calculations, which could explain why the R2 value is

not higher.

Discussion

An advantage of using protein footprinting coupled with mass

spectrometry for protein structural analysis is the ability to

study large protein complexes. Analysis of these complexes

Figure 2. Distribution of the intensities of PSMs identified by MudPIT (red) and 1D-DDA (blue). (a) The spread of intensities is

demonstrated in the box-and-whisker plot with the box lines marking the upper median and lower quartiles, and the whiskers

marking the complete range. (b) The frequency of the distributions of intensities is displayed in a histogram
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is often hampered with other structural tools such as X-ray

crystallography and NMR. Although MS analysis has the

capability for analysis of complex protein systems, the nature

of data-dependent acquisition limits the number of identifica-

tions achieved in analysis. Since DDA analysis focuses on the

highest abundant peptides at a given time, it is often difficult to

identify low abundant peptides with one-dimensional chroma-

tography. This provides a challenge for oxidative labeling

where it is advantageous to limit the levels of oxidation; thus,

many oxidized peptides are of low abundance. Therefore, the

ability to carry out oxidative labeling on large protein com-

plexes hinges upon the capability to identify low abundant

peptides.

The application of two-dimensional MudPIT chromatogra-

phy to an oxidatively modified yeast lysate sample increased

the number of identified proteins and peptides over one-

dimensional chromatography. Yeast lysate contains thousands

of proteins and is indicative of a complex system. The increase

in identification is most significant for oxidatively modified

peptides where an almost 3-fold increase in identifications is

observed (Figure 1c). The higher abundance of identifications

for oxidized peptides provides more detailed information on

the proteins being analyzed. When investigating individual

proteins, the benefit of MudPIT is further revealed. For both

pyruvate kinase 1 and phosphoglycerate kinase, MudPIT iden-

tifies 5- and 2.6-fold higher numbers of oxidatively modified

residues than 1D-DDA. There were peptides identified by 1D-

DDA that were not observed with the MudPIT method, how-

ever. To gain as complete a coverage as possible, it may be

necessary to perform 1D-DDA and MudPIT in tandem.

Examining the intensity of peptides identified by MudPIT

indicates this method is detecting lower abundant proteins. How-

ever, intensity alone does not account for the increased number of

peptides identified byMudPIT. Another factor that may influence

the number of IDs is ionization efficiency. Co-elution of peptides

that compete for efficient ionization could lead to suppression of

some peptides by higher abundant peptides. These suppressed

peptidesmay be of lower abundance than their co-elution partners

but are not low enough to be in the 1.00E + 04 intensity range.

Two-dimensional chromatography could lead to better separation

and reduction in co-elution and ionization suppression.

The identification of 52 of the 70 proteins in the ribosome

complex demonstrates that coupling FPOP with MudPIT

would be effective for studying large complexes in lysates.

However, this approach could likely be improved by further

enriching the protein complex with methods such as tandem

affinity purification. Comparing extent of oxidation of residues

to SASA calculations established a good correlation between

the data. Since MudPIT analysis occurs over a longer time-

scale than one-dimensional chromatography, there is an oppor-

tunity for spurious oxidation. Correlation of oxidative modifi-

cation levels with solvent accessibility demonstrates that the

sample is not adversely affected by the long MudPIT analysis.

The ability to obtain greater sequence coverage for oxida-

tively modified peptides increases the efficacy of FPOP for

Figure 4. Extent of oxidation on MudPIT identified residues

versus the calculated SASA factor for ASC1, chain a of the 3IBZ

portion of the complete ribosomal structure, illustrating the

linear relationship between them

Figure 3. Two perspectives of the structural location of MudPIT determined FPOP oxidation levels mapped to a yeast 80 s

ribosomal crystal structure, 4V6I [23]. The lowest oxidation levels are in blue going to the highest in red
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megadalton complexes. In order to obtain structural informa-
tion on proteins using oxidative labeling, it is imperative to
have good sequence coverage of your oxidative modified pep-
tides. The data presented here demonstrates that MudPIT can
provide this increased sequence coverage.

Conclusions

A hallmark of scientific progress is the unceasing march of new
technological frontiers and solutions. This holds true in the
field of structural mass spectrometry. In order for the use and
application of hydroxyl radical-mediated covalent labeling to
continue to expand, we must look for new approaches in
analysis. In this work, we have demonstrated the use of
MudPIT in conjunction with FPOP as a means for increased
detection of modified species, and expansion of protein
footprinting for complex systems.
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