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ABSTRACT 
 
 
 
Minner, Daniel Eugene. Ph.D., Purdue University, December, 2010. Design of 
Biomembrane-Mimicking Substrates of Tunable Viscosity to Regulate Cellular 
Mechanoresponse. Major Professor: Christoph Naumann. 
 
 
 
Tissue cells display mechanosensitivity in their ability to discern and respond to 

changes in the viscoelastic properties of their surroundings.  By anchoring and 

pulling, cells are capable of translating mechanical stimuli into a biological 

response through a process known as mechanotransduction, a pathway believed 

to critically impact cell adhesion, morphology and multiple cellular processes 

from migration to differentiation.  While previous studies on polymeric gels have 

revealed the influence of substrate elasticity on cellular shape and function, a 

lack of suitable substrates (i.e. with mobile cell-substrate linkers) has hindered 

research on the role of substrate viscosity.  This work presents the successful 

design and characterization of lipid-bilayer based cell substrates of tunable 

viscosity affecting cell-substrate linker mobility through changes in viscous drag.  

Here, two complementary membrane systems were employed to span a wide 

range of viscosity.  Single polymer-tethered lipid bilayers were used to generate 

subtle changes in substrate viscosity while multiple, polymer-interconnected lipid 

bilayer stacks were capable of producing dramatic changes in substrate 
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viscosity.  The homogeneity and integrity of these novel multibilayer systems in 

the presence of adherent cells was confirmed using optical microscopy 

techniques.  Profound changes in cellular growth, phenotype and cytoskeletal 

organization confirm the ability of cells to sense changes in viscosity.  Moreover, 

increased migration speeds coupled with rapid area fluctuations suggest a 

transition to a different migration mode in response to the dramatic changes in 

substrate viscosity.  
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CHAPTER 1. INTRODUCTION 

 

 

1.1. Rationale and Objectives 

An important aspect of mechanobiology is that tissue cells are anchorage-

dependent and respond to viscoelastic changes in their environments.  Adherent 

cells continually probe their surrounding environment through actomyosin 

generated pulling forces.  Mechanical information gained in this sensing process 

is then translated into an appropriate biological response through a process 

known as mechanotransduction.  Thus, mechanical properties such as substrate 

viscoelasticity and dimensionality are increasingly recognized as key 

components in cellular mechanoresponse and changes in these substrate 

properties have been observed to induce changes in cellular responses from 

phenotype to migration, and even non-localized processes such as 

differentiation.  Moreover, with changes in tissue stiffness arising in such 

pathogenic states as fibrosis and cancer, many researchers have proposed a 

correlation between disease and mechanical stimuli [1-10].  However, despite its 

accepted importance, many elements of the mechanotransduction process 

remain elusive.  While particular components have been identified, it remains 

largely unclear how these components orchestrate a specific cellular response 
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toward mechanical stimuli.  A major obstacle in this area of research has been a 

lack of suitable cell substrates.       

 

Traditional cell substrates such as culture glass and plastic fail to replicate a 

cell’s native environment and often induce cellular morphologies and functions 

that are uncharacteristic, and at times strikingly different, than those found in 

tissue.  The development of 2D polyacrylamide (PAA) gels and 3D collagen 

matrices with adjustable viscoelastic properties better replicate tissue 

environments and have been used to demonstrate a cell’s ability to respond to 

changes in substrate viscoelasticity in the absence of external chemical signals.  

These platforms have provided insight into the process of mechanotransduction 

by revealing the mechanical-dependence of cell morphologies, motility, 

proliferation, differentiation, and more [2, 3, 8, 9, 11-17]. 

 

However, while viscoelastic properties of the aforementioned substrates can be 

tuned through varying the concentration of polymer crosslinkers, design aspects 

of these substrates predict that changes primarily impact elasticity.  This is a 

result of the immobilized cell/substrate linkers present in these substrates.  

Though the degree of crosslinking in these gels does simultaneously affect the 

amount a cell can push/pull and remodel the substrate, the distance a cell linker 

can be displaced is finite.  Thus, the immobilized cell linkers present in PAA gels 

fall short of replicating the dynamic cell-cell attachments present in the 

extracellular matrix (ECM) of tissue cells.  Only a fluid system containing mobile 
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cell/substrate linkers can truly address the role of substrate viscosity in the 

mechanotransduction process.  Viscosity is expected to influence various cell 

behaviors including cell morphology and migration, as these processes are 

closely related to the assembly and disassembly of focal adhesions or focal 

complexes, processes that appear to depend, at least partially, on the lateral 

diffusion of adhesion receptors in the plasma membrane [7, 18-22].  In order to 

separately investigate the contributions of substrate elasticity and viscosity, a 

substrate comprised of mobile cell-substrate linkers must be designed. 

 

Herein, phospholipid bilayer-based cell substrates were designed and 

constructed to complement existing polymeric substrates in the study of 

mechanotransduction.  Contrary to PAA gels, lipid bilayers represent 

comparatively thin substrates ill-suited for elasticity regulation.  However, the fluid 

nature of lipids comprising artificial membranes makes them ideal candidates for 

studies exploring the impact of substrate viscosity.  The viscosity of lipid bilayers 

can be regulated in a variety of ways from lipid composition to altering the degree 

of frictional coupling experienced by solid-supported lipid bilayers.  Lipid bilayer-

based systems, containing specific cell linkers of adjustable density, can be used 

to regulate cellular mechanoresponse through substrate viscosity affecting linker 

mobility, as shown in Figure 1.1.  

 

In addition, lipid bilayers behave similarly to plasma membranes and are 

routinely modified with various proteins.  Thus, not only can viscosity, a 
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mechanical aspect, be tuned, but lipid-bilayer substrates can be made to express 

various biological stimuli as well.  This allows the fine tuning of these substrates 

for specific applications and extends their ability to truly mimic biological 

membranes in biochemical, mechanical, and dynamic aspects.       

 

 

Figure 1.1. A phospholipid bilayer, which behaves as a two dimensional fluid 
results in mobile cell-substrate linkers.  
 

 

The research described within this dissertation focuses on the development of 

artificial cell substrates well suited to investigate the impact of viscosity on 

cellular mechanoresponse.  This report will be divided into four main objectives: 

Objective 1: Design, fabrication, and characterization of fluid, lipid bilayer-based, 

biomembrane-mimicking cell substrates of adjustable viscosity 

Objective 2: Confirming substrate integrity under the force of adherent cells 

Objective 3: Design and fabrication of suitable cell-substrate linkers 

Objective 4: Exploring the role of substrate viscosity in cellular mechanoresponse  
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1.2. Organization 

This dissertation is organized into five chapters.  The first chapter provides the 

rationale and key objectives of this study and describes the organizational 

structure of the dissertation.  The second chapter introduces various methods 

and instrumentation utilized in this research.  The second chapter also contains 

theoretical introductions to the structure and function of phospholipid bilayers, 

lipid membrane diffusion theory, and cellular mechanotransduction and motility.  

The third chapter details the materials and technical procedures utilized to 

construct cell substrates, to link cells to these substrates, to test and characterize 

these substrates and to identify and quantify cellular response on these 

substrates.  The fourth chapter contains results and discussion regarding cell 

substrate design and characterization, including substrate integrity confirmation 

linker design and functionality, and cellular mechanoresponse toward substrate 

viscosity.  Lastly, chapter five summarizes the key conclusions put forth by this 

research. 
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CHAPTER 2. BACKGROUND 

 

 

2.1. Methodology 

 

 

2.1.1. Langmuir-Blodgett Film Deposition 

Solid supported phospholipid bilayers were assembled using previously reported 

Langmuir-Blodgett (LB)/Langmuir Schaefer (LS) film deposition techniques [23-

25] or through the fusion of giant unilamellar vesicles (GUVs).  It was desirable to 

have the most homogeneous, defect-free phospholipid bilayers possible to 

minimize any unwanted cellular interaction is the underlying glass support. While 

vesicle fusion techniques are straightforward and perhaps the most routinely 

used procedures for creating supported lipid bilayers, they are prone to more 

bilayer defects and are limited to the formation of symmetric bilayers.  In contrast, 

asymmetric, polymer-tethered lipid bilayers are easily prepared using a LB/LS 

approach and reliably provide the well-defined, homogenous films needed for 

single bilayer cell substrates [26, 27], as well as a uniform starting layer for the 

assembly of multibilayer substrates.  The ability to prepare asymmetric films 

using a LB/LS technique comes from the two-part procedure depicted in Figure 
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2.1, where the inner and outer leaflets of lipid bilayers are deposited sequentially.  

Using this technique, the inner leaflet of an asymmetric (or symmetric) bilayer is 

first prepared through LB transfer, Figure 2.1 (A), where a glass substrate is 

submerged in a Teflon-coated trough and a lipid mixture is spread. Lipids are 

then compressed via a motorized barrier arm to a surface pressure of 30mN, as 

monitored by a surface pressure detector.  The amphiphilic character of lipids 

causes them to properly self-orient at the air-water interface so that the 

hydrophobic lipid tails are exposed to air and the hydrophilic head groups 

(including the polymer moieties of lipopolymers in this case) interact with the 

water.  A lipid monolayer is deposited onto a glass substrate by attaching the 

glass substrate to a motorized dipper arm and raising the assembly through the 

aqueous subphase, while the motorized barrier maintains a constant surface 

pressure.  

 

The outer leaflet of an asymmetric (or symmetric) bilayer is completed using the 

LS procedure shown in Figure 2.1 (B).  In a similar approach, a lipid mixture is 

spread and compressed.  However, here the LB-monolayer is deposited onto the 

LS monolayer, to form a complete bilayer, by pressing the glass substrate 

through the air-water interface.      
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Figure 2.1. Phospholipid bilayer fabrication with the use of a Langmuir trough and 
LB (A) and LS (B) techniques.  
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2.1.2. Single Molecule Fluorescence Microscopy 

Single molecule fluorescence microscopy (SMFM) is an experimental technique 

used to determine the position of fluorescent molecules at a sub-diffraction 

resolution.  Thus, this technique is ideal for studying the dynamic properties of 

small, nanometer-sized molecules (e.g. dye-labeled lipids in phospholipid 

bilayers).  Moreover, this technique which has increased resolving power over 

ensemble averaging techniques such as fluorescence recovery after 

photobleaching, FRAP, provides a more accurate depiction of diffusion 

properties.  While diffraction-limited techniques like FRAP are readily used to 

obtain lateral diffusion coefficients of lipid bilayers, the information acquired 

represents the average diffusion characteristics of a large population of lipids.  In 

contrast, imaging and tracking through SMFM provides a detailed account of an 

individual fluorophore’s movement over time.  SMFM is particularly superior in 

describing diffusion in heterogeneous systems as SMFM imparts the ability to 

see subpopulations with different diffusion properties, as well as specific types of 

diffusion (e.g. confined, directed, anomalous), information which is lost in the 

ensemble techniques, but that proves valuable in understanding diffusion within a 

complex biological system such as a plasma membrane of cells.  Here 

subpopulations with differing diffusion properties (e.g. domains) are anticipated 

and bilayer fluidity is thought to serve a role in regulating biological functions 

within biomembranes. 
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Two forms of SMFM were employed in the experiments conducted within this 

thesis, namely SMFM using wide-field fluorescence and SMFM using total 

internal reflectance (SMFM-TF).   While both methods allow for accurate SMFM, 

one can prove advantageous over the other depending on the properties of the 

sample to be imaged.  More traditional wide-field techniques are well suited for 

imaging applications on thicker samples, samples requiring longer working 

distance objectives, and samples where autofluorescence is not a concern.  

Wide-field SMFM was used to characterize the fluidity of the newly designed 

phospholipid bilayer-based cell substrates, as these samples do not display any 

autofluorescent properties.  However, TIRF-based SMFM (SMFM-TF) was used 

in the characterization of QD-based cell-substrate linkers.  Here QD-tagged lipids 

were tracked in live cell membranes, making cellular autofluorescence an 

obvious issue.  TIRF images result in improved signal-to-noise by reducing 

background.  By directing light to a sample at an extremely oblique angle, TIRF is 

capable of illuminating thin planes.  Here, evanescent waves selectively excite 

fluorophores present in this plane and with the evanescent field decaying rapidly, 

out of plane fluorescence is largely eliminated.  In the case of studying dynamics 

within the cellular plasma membrane, TIRF proves beneficial in reducing 

background caused by cellular autofluorescence.  SMFM imaging and tracking 

analysis are described, in detail, in Chapters 3.2.2 and 3.2.7. 
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2.1.3. Fluorescence Correlation Spectroscopy 

Fluorescence Correlation Spectroscopy (FCS) is a confocal technique capable of 

measuring the diffusion time, brightness, and size (hydrodynamic radius) of 

fluorophores at the single molecule level.  Its application to the characterization 

of quantum dots can reveal the aggregation state, emission intensity, and 

concentration of these nanoparticles.  The concept of FCS is outlined in Figure 

2.2.    

 

Figure 2.2. Schematic of FCS instrumental setup (A) and the confocal volume 
created (B).  Fluorescent fluctuations (C) are recorded as fluorophores diffuse 
through the confocal volume and are used to calculate an autocorrelation curve 
(D). 
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In Figure 2.2, (a) represents a general schematic for a FCS microscope where a 

laser beam is expanded and then focused onto a fluorescent sample which, in 

this case, is a bulk solution.  Fluorescent signal from the sample is then reflected 

by a dichroic mirror and is eventually passed through a confocal aperture before 

reaching avalanche photodiode detectors.  The confocal aperture blocks out of 

plane fluorescence to create a small, discrete confocal volume, as shown in 

Figure 2.2. (b). The observation volume depicted in Figure 2.2 (b) represents the 

actual confocal volume, on the order of a femtoliter, in which fluorescent particles 

are excited and detected.          

 

Fluctuations in the fluorescence signal, resulting from fluorophores diffusing 

through the confocal volume, are recorded over time as shown in Figure 2.2. (c). 

These fluctuations along with the average fluorescent signal, F(t), are then 

translated into an autocorrelation function using computer software, Figure 2.2. 

(d).  Here, the fluorescent fluctuation from the average intensity, δF(t), is 

correlated to a later time, (t+  ), to produce an autocorrelation function, G(t),  

shown below.   

                                               
              

       
                             Eq. 2.1 

The confocal excitation volume is best described as 3D Gaussian volume, and 

setting Eq. 2.1 equal to the autocorrelation function of a 3D Gaussian allows 

specific fluorophore properties such as diffusion times, average single particle 

intensities, and the number of particles present in the confocal volume to be  
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extracted.  A detailed description of FCS data analysis, and how it can be used to 

determine nanoparticle aggregation state and concentration, is found in Chapter 

3.2.6 

 

. 

2.1.4. Differential Interference and Phase Contrast Microscopy 

Brightfield microscopy, which simply requires a basic light microscope, relies on 

differences in light absorption to produce contrast.  However, absorbance 

differences among transparent cellular components are subtle.  Differential 

Interference Contrast (DIC) and Phase Contrast microscopy are complementary 

techniques used to add contrast to cellular images, allowing organelles and other 

cellular components to be observed.  Both techniques rely on changes in the 

phase shift of light passing through a sample. 

 

Phase contrast microscopy amplifies these changes in light phase by inserting a 

phase annulus (or phase ring) with a matched objective containing a phase plate 

into the light path.  The phase plate contains a centered, ring-shaped area, which 

matches the annulus, and that retards light exactly a quarter-wavelength.  A light 

source is directed through the annulus, the sample, and then the objective before 

hitting the phase plate.  If the annulus is properly aligned with the phase plate, 

direct (non-diffracted, or background) light is passed through the phase plate and 

is retarded in phase by a quarter-wavelength, before it reaches the eyepiece (or 

camera).  However, light that passes through the sample is diffracted due to 
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differences in thickness and refractive index within the specimen.  This light, 

when passing through the phase plate, is retarded by up to an additional quarter- 

wavelength.  Light from both diffracted and non-diffracted light interact at the 

image plane to create interference.  Here, the interference resulting from 

differences in phase create bright and dark regions within the specimen (i.e. 

constructive and destructive interference).  One disadvantage of phase contrast, 

depending on its application, is the formation of “phase halos” or glowing edges 

along the boundaries of specimen and background.  These are a consequence of 

the phase-retarding ring of the phase plate also transmitting small amounts of the 

light diffracted from the specimen. 

 

While similar to phase contrast, DIC uses a more sophisticated light path 

containing polarizing filters and prisms to transform changes in the refractive 

index of cellular components into visible contrast in the image.  A key benefit to 

this technique is the disappearance of phase halo artifacts present in phase 

contrast images.  Additionally, eliminating the masking effects of the phase annuli 

raises the working numerical aperture and adds resolution.  With DIC, polarized 

light is passed through a Wollaston prism where it is separated into a sampling 

ray and a reference ray that are then focused on a condenser lens, which in 

effect supplies the sample with two light sources roughly 0.2µm apart.  As the 

two rays penetrate the sample, their optical path is determined by changes in the 

refractive index of various components within the cell sample and their phase 

becomes different.  Upon exciting the sample, the two rays are recombined via a 
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second Wollaston prism.  However, their phase differences result in interference 

at the prism, which is revealed as brighter or darker areas.  When imaging thicker 

cells with DIC, it is important to note that any dimensionality seen in the images 

is a merely a result of optical, not true geometrical, topographical changes.  This 

is a result of DIC using differences in optical path to add contrast.  In fact, even 

thin cells are given an artificial 3D appearance.  However, DIC proves extremely 

valuable when analyzing adherent cells for information such as cellular 

phenotype, cellular area, migration, and more.  With DIC being an interference 

technique, the edges of cell shapes are easily visualized when compared to 

phase contrast images where more 3D (i.e. thicker) cells appear to have 

“glowing” edges (i.e. phase halos).  Instead, resulting DIC images are typically 

characterized by dark edges and bright cell shapes against a dark grey 

background. 

 

 

2.1.5. Epi and Confocal Microscopy 

Fluorescence microscopy holds several advantages over conventional light 

microscopy.  Primarily, it allows imaging of specific components within a sample, 

through the addition of fluorescent markers to regions of interest.  Unlike 

conventional light microscopy, fluorescent microscopy uses a higher intensity 

light source to excite specific fluorophores, which in turn, emit a distinct 

wavelength longer than that of the excitation source.  This fluorophore property, 

known as the Stoke’s shift, enables excitation light to be separated from emitted 
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light, using specific optical filters, to create a fluorescent image.  In the case of 

Epi microscopy, a mercury arc-discharge lamp is commonly used as a low 

wavelength excitation source that is passed through a set of excitation filters that 

allow only a specific window of wavelengths to proceed to a dichroic mirror, 

through the objective, and onto the sample; proper excitation filters are chosen 

based on the specific absorption properties of the fluorophore used.  Light 

emitted by the sample is then directed back through the objective, dichroic mirror, 

and through a set of emission filters before reaching the detector (or camera).  

Emission filters are used to remove excitation light, or background, from the 

image by allowing only a specific window of wavelengths (characteristic to the 

fluorophore) to pass.  Thus, properly chosen filter sets also allow for dual labeling 

and imaging of multiple components.  While Epi microscopy creates bright, 

vibrant fluorescent images through the use of a high intensity lamp generating a 

large excitation volume, this factor may prove disadvantageous depending on the 

properties of the sample.  Epi microscopy may be ill-suited in studies with low 

signal, and where photobleaching is a concern.  Moreover, resolution is lost in 

thicker samples due to a large excitation volume exciting out-of-plane 

fluorophores.  Such samples are better candidates for confocal microscopy. 

 

Confocal microscopy operates in a similar manner to Epi microscopy, but the 

addition of a monochromatic excitation source and a confocal aperture aid in 

eliminating out of plane (background) fluorescence.  Here, the excitation lamp is 

replaced by a laser, which scans the sample.  The use of a scanning laser results 
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in smaller excitation volumes which help to eliminate background by exciting only 

a thin plane through x-y scanning; this difference is depicted in Figure 2.3.       

Additionally, a confocal aperture, added before the detector, blocks out-of-focus 

light, resulting in a sharper image.  In this system, a camera is no longer used to 

capture images.  Instead, images are reconstructed by computer from intensity 

information acquired point by point through scanning.  With these components in 

place, resolution in x-y, and z are enhanced.  In the case of thicker samples, the 

ability to image optical sections with reduced background fluorescence results in 

clearer fluorescent images throughout a sample and allows for 3D rendering.  

Additionally, different scanning modes can be used to simultaneously acquire 

multi-labeled images, while eliminating fluorophore cross talk much more 

efficiently than Epi microscopy. 

 

 

Figure 2.3.  Comparison of the excitation volumes created using confocal and 
wide-field illumination techniques.  
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2.1.6. Traction Force Microscopy 

Many cell types, including fibroblasts, are anchorage dependent and require 

adhesion to a substrate to survive [28-30].  Following attachment, such cells 

generate internal pulling forces that trigger various biological responses through 

the process of mechanotransduction, which is discussed in detail in Chapter 2.4.  

Cellular traction forces (CTFs) play roles in key processes including 

inflammation, wound healing, embryogenesis, angiogenesis, metastasis, and 

more [29].  The biological relevance of CTFs has prompted various methods 

designed to measure these forces. 

 

Early methods of measuring CTFs consisted of embedding cells within collagen 

gels.  Here, a reduction in the diameter of the collagen disk, resulting from cells 

pulling, could be used to estimate the CTFs exerted by the embedded cells [29, 

31].  However, this method suffers from being an ensemble averaging technique 

unable to provide CTF information for individual cells.  In an effort to obtain such 

data, thin silicone membranes were designed to wrinkle under the stress of 

individual, adherent cells.  However, while wrinkling was easily observed, 

determining the amount of force required to generate these wrinkles posed a 

problem; this information was approximated by determining the amount of force 

needed for a flexible microneedle to reverse the effect [29, 32].  Another 

approach has involved the creation of micromachined cantilever arrays [33].  In 

this system CTFs of individual cells are determined through beam deflection as 
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the cantilevers are displaced.  However, only deflection changes in a single 

direction can be monitored. 

 

The limitations of these techniques have led to the development of traction force 

microscopy (TFM).  Here, substrate designs including micropatterned elastomers 

[18] and microneedle-like posts [34] have been created to measure CTFs on 

individual cells.  In these techniques, displacements of micropatterned designs 

are visualized through brightfield microscopy and used to deduce CTFs.  Yet, 

while designs such as this are elegant and capable of providing CTF information 

for individual cells in all directions, these methods have their disadvantages.  

Aside from fabrication aspects, these substrates are only applicable for certain 

cell types because the elasticity of the stiffer elastomers used can only be varied 

over a small range and cannot be adjusted low enough to capture small 

deformations [29].  Thus, these techniques are ill-suited for the study of cells 

which generate low CTFs (e.g. neurons).  Moreover, the use of brightfield 

techniques, which lack the resolution of fluorescence imaging, further fail to 

provide information on smaller CTFs. 

 

The use of PAA gels as TFM substrates has addressed many of the limitations 

described above.  These gels can be tuned over a physiologically relevant range 

of 100Pa to 100kPa [35].  Furthermore, micron-sized fluorescent beads are 

easily embedded in these substrates and allow substrate displacements to be 

visualized, at high resolution, through fluorescence microscopy [36-40].  As in the 
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previous methods, cells are plated and allowed to adhere and spread.  A high 

resolution fluorescent image is then taken underneath an adherent cell to acquire 

a “force-loaded” image.  Cells are then detached from the substrate and a 

second fluorescent snapshot is taken as a “null-force” image [30].  The “null 

force” images represent the positions of the fluorophores prior to the adhesion of 

cells and because PAA gels are also linearly elastic in response to forces, the 

deformations resulting from CTFs are completely recovered upon removal of the 

force [8, 41]. 

 

After obtaining “null-force” and “force-loaded” images, three main methods have 

been used to determine the displacement of the fluorescent beads.  The methods 

include the Butler, et al. method [38], the Dembo Wang method [39, 42], and the 

Yang, et al. method [30].  Using these methods, bead placement is identified 

based on pixel intensity values in the “null force” and “force-loaded” fluorescent 

images.  The above methods represent different tracking algorithms used to 

identify the displacement of individual beads.  With bead displacements known, 

the force required to induce such displacement can be calculated based on the 

elastic modulus of the PAA gel.  Computer software such as Matlab provides an 

important tool capable of efficiently determining bead displacement and 

calculating CTFs.     
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2.2. Solid-Supported Phospholipid Bilayer Systems 

 

 

2.2.1. Solid-Supported Phospholipid Bilayer 

In biological systems, membranes not only function to compartmentalize cellular 

components, but also host much of the machinery for cellular communication and 

transport across the membrane [43].  Despite being only nanometers thick, 

cellular membranes are dynamic, complex, and take the form of a two 

dimensional fluid (created by the hydrophobic interactions of lipid molecules) with 

embedded and transiently associated membrane proteins that are free to diffuse 

about [44].  Although fluid, biological membranes are highly ordered in the 

membrane plane as first described by the fluid mosaic [45, 46], which is largely a 

result of the diffusion properties of these systems.  For example, the lateral 

diffusion of constituent lipids across the membrane is rapid while flip-flop (or 

transverse) diffusion occurs on a much slower time scale [47]; this property 

imparts the ability to establish asymmetry across the two leaflets of a membrane 

[45].  Moreover, phase separation between various lipid components can create 

protein rich environments (i.e. lipid rafts) which organize proteins laterally across 

the membrane.       

 

For these reasons, the lipid bilayer represents one of the most important self-

assembled structures in nature and was accepted as the basic principle of design 

for biological membranes more than 40 years ago [43, 45].  Since this time, 
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interest in the lateral structure of membranes and the way they regulate the 

activity of constituent membrane proteins has prompted the design of cell 

mimetic surfaces [48].  The application of solid support phospholipid bilayers as 

artificial cell membrane systems in the study of biomembrane structure and 

function was a logical progression.  While free lipid bilayers mimic the dynamic 

processes of biological membranes, the planar geometry of solid supported 

bilayers allowed for the study of biological membranes with analytical 

instrumentation [43].  Since their development in the early 1980s, solid supported 

bilayers have been used as artificial membranes to study lipid phase behavior 

and domain formation; membrane protein structure, localization and function; 

membrane receptors, pores, and channels; and more [44, 45].  In fact, some of 

the earliest implementations of solid supported membranes were for purposes of 

live cell studies, and this continues to be a promising area of growth [48, 49]. 

 

The amphipathic properties of phospholipids, resulting from their hydrophilic 

headgroup and hydrophobic tails, cause their spontaneous self-assembly into a 

variety of supramolecular assemblies when hydrated [50].  In an effort to 

minimize energetically unfavorable interactions with water molecules, 

hydrophobic tails aggregate (towards the interior of the membrane) and orient 

hydrophilic headgroups towards the aqueous surroundings [50].  Taking 

advantage of this self assembly process, supported lipid bilayers are fabricated 

by one of the following three methods: the Langmuir-Blodgett(LB)/Langmuir-

Schaefer(LS) technique, vesicle fusion (VF) techniques, or a combination LB/VF 
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technique.  Each method has advantages and disadvantages depending on the 

application.   

 

The fusion of lipid vesicles is routinely used in the formation of solid supported 

bilayers [49, 51, 52] primarily due to the ease of this approach.  Small unilamellar 

vesicles (SUVs) or giant unilamellar vesicles (GUVs) can be used in this 

technique.  SUVs can be prepared using a variety of methods from multilamellar 

vesicle extrusion [43, 53] to sonication and ultracentrifugation techniques [43, 54] 

and GUVS can be prepared by sucrose hydration [55, 56], electroformation [55, 

57], and even the fusion of large unilamellar vesicles.  However they are 

prepared, vesicles are added to a solid support where they adsorb and rupture 

into a lipid bilayer.  Despite the simplicity of this approach, the straightforward 

addition of membrane proteins into lipid vesicles adds much versatility to this 

method [43].  However, the underlying mechanisms of vesicle fusion are not 

completely understood and the process is affected by many factors including 

vesicle composition, size, surface charge and roughness, pH, and ionic strength 

[58].  For these reasons, solid supported bilayers prepared using this method 

often contain more defects.   

 

Historically, the LB/LS technique was the first method used to prepare supported 

bilayers [25, 45] and is still routinely used to create well defined bilayers with 

minimal defects.  In this method, which was described in detail in Chapter 2.2.1, 

a lipid monolayer is first deposited onto a solid substrate using the LB technique 
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with the use of a Langmuir trough.  This is done by a submerging the solid 

support, spreading (and compressing) a lipid monolayer at the air-water 

interface, and slowly withdrawing the substrate through the air-water interface 

while maintaining constant surface pressure (see Chapter 2.2.1).  This constructs 

the first inner monolayer.  The lipid bilayer is completed with the addition of a 

second monolayer (the outer leaflet of the bilayer), which is prepared in a similar 

fashion. In this LS method, following spreading and compression, the outer 

leaflet is added by pushing the solid-supported monolayer horizontally through 

the air-water interface.  The compression process of this fabrication method 

produces high quality bilayers and is advantageous in that the inner and outer 

leaflets of the bilayer are prepared in different steps.  This allows for the 

preparation of more complex, asymmetric, solid-supported bilayers.  The 

disadvantage of this method is that is that the reconstitution of membrane 

proteins can be difficult. 

 

The combination of these techniques, LB/VF [24] proves useful for applications 

involving reconstituted membrane proteins.  Here, the fusion of SUVs atop a 

predeposited monolayer (formed by LB techniques) is used to create a solid 

supported bilayer.  Like LB/LS techniques, this method is highly efficient for the 

formation of asymmetric membranes and, like VF techniques, membrane 

proteins are easily incorporated.  While VF techniques suffer from increased 

bilayer defects, LB formation of the inner leaflet provides a quality base that is 

likely to reduce the probability of defects.     
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Regardless of fabrication method, the goal of solid supported bilayers is to 

capture the rich biological functionality that emerges when lipids and membrane 

proteins are permitted to move freely, and in all of the fabrication methods 

described above, bilayer fluidity is preserved [48].  This is a result of electrostatic, 

van der Waals, and hydration forces trapping the bilayer in a plane separated 

from the support by a 1-2nm thick layer of water [43].  This thin lubrication layer 

prevents the solid from interfering with the lateral fluidity of phospholipids.  

Moreover, the planar geometry of solid supported bilayers makes the fluidity easy 

to characterize using techniques such as fluorescence recovery after 

photobleaching and single particle tracking.         

 

 

2.2.2. Polymer-Supported Phospholipid Bilayer 

The fabrication of a biomembrane mimicking model system requires the 

preservation of both lipid and protein fluidity as many biological processes are 

regulated by peripheral and integral protein interactions [59].  While the solid-

supported bilayers discussed in Chapter 2.2.1. maintain the diffusivity of lipids 

and peripherally attached protein components [25, 45, 60], these systems 

typically display limited to immobile integral membrane mobility [43].  This is a 

result of the trapped water layer between the bilayer and solid support, which 

was described in Chapter 2.2.1.  This thin 1-2nm layer of water provides a 

sufficient lubrication layer capable of supporting lipid fluidity.  However, this gap 

is not large enough to accommodate the extracellular domains of many integral 
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membrane proteins.  The close proximity of these membranes to their underlying 

solid-support represents a fundamental drawback in these membrane systems 

as the frictional coupling experienced by membrane proteins can dramatically 

hinder lateral mobility and non-specific van der Waals interactions (effective over 

distances up to approximately 3nm) can immobilize and potentially denature 

these proteins [59].      

 

Efforts to decouple supported membranes from their underlying solids and 

minimize unwanted and non-physiological protein-solid support interactions have 

led to the design of polymer-supported phospholipid bilayers [45].  Here, polymer 

supports have included such techniques as the formation of polymer cushions 

composed of polyacrylamide [61], polyethylenimine [62],  or other hydrophilic 

polymers; the use of lipid-based spacer and tethers including silanized 

polyethyleleglycol-lipids [27], or lipopolymers [26, 63, 64].  However, regardless 

of the approach, the basic principle remains the same: reduction of frictional 

coupling by increasing membrane-substrate gap distance.  Moreover, polymer-

supported lipid bilayers maintain their 2D, planar structure.  In addition, aside 

from decoupling the artificial membrane, such polymer supports add to 

membrane complexity and in some applications make them more biologically 

relevant as a well designed polymer cushion may behave much like the 

cytoskeleton [43]. 
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The polymer-supported phospholipid bilayers utilized within this thesis were 

fabricated with the use of lipopolymers.  In these systems, lipopolymers, or lipids 

with macromolecule headgroups, act as physiosorbed substrate-membrane 

spacers that decouple the artificial membrane from its solid support.  These 

lipopolymer-containing bilayers can be prepared using the fabrication techniques 

discussed in Chapter 2.2.1 and have the advantage of added tunability over 

other forms of polymer cushions.  In these systems, the membrane-substrate 

distance and the viscosity of the polymer layer, properties that impact the lateral 

diffusivity of membrane proteins and lipid assemblies, can be regulated through 

spacer length and lateral spacer density [59].  Moreover, the concentration of 

polymer tethers has been used to induce obstructed diffusion and further 

regulate the mobility of membrane components [63, 64]; this application is 

discussed in Chapter 4.1.1.   

 

 

2.2.3. Multibilayer Systems 

An alternative strategy to increase membrane-substrate gap distance is the 

formation of multibilayer stacks.  Like their polymer-supported counterparts, the 

assembly of a double bilayer system can be used to increase membrane-

substrate distance and in theory reduce the frictional coupling experienced by 

membrane constituents in close proximity to their solid-support.  Multibilayer 

systems can be prepared through the successive transfer of monolayers [65] 

using the dipping methods described in Chapter 2.2.1, but are more often 
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fabricated by adding a second bilayer onto a solid-supported bilayer through the 

fusion of giant unilamellar vesicles (GUVs) [56, 66].  Here, GUVs are brought in 

contact with the underlying solid-supported bilayer via gravity.  The addition of  

electrostatic lipids [56] or specific biotin/streptavidin functionalized lipid tethers 

[66] into the GUVs promotes adsorption and rupture into a fluid bilayer.  While 

these double bilayer substrates were primarily developed for the study of 

membrane-membrane junctions and biological processes occurring in areas of 

close membrane proximity (e.g. replication of membranous organelles), the 

outermost membrane in multibilayer substrates have shown unique diffusion 

properties relative to the size of diffussants (e.g. individual lipids compared to 

lipid domains) [48].  Like the polymer-supported bilayers in Chapter 2.2.2, 

diffusion theory (discussed in Chapter 2.3) predicts that it should be possible to 

decouple and reduce frictional coupling through the formation of multibilayer 

systems used to increase membrane-substrate distance.      

 

 

2.3. Diffusion Theory in 2D Model Membranes 

 

 

2.3.1. Diffusion in Free Lipid Bilayers: Saffman-Delbrϋck Theory 

Brownian diffusion within a lipid membrane is characterized by a translational 

(and rotational) diffusion coefficient.  In the case of planar diffusion, as 

experienced by the lateral movement of lipids and proteins in a phospholipid 
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bilayer, the translational diffusion coefficient is related to the mean squared 

displacement (MSD) of a particle, Eq. 2.2, where D and t represent the diffusion   

                                                                                                          Eq 2.2. 

coefficient and time respectively and the factor of 4 relates to the dimensionality 

of movement (in the case of 1D movement, or rotational diffusion, this factor is 

replaced with a 2). 

 

The diffusion of larger macromolecules (e.g. lipid clusters or proteins) in a sea of 

smaller molecules can be analyzed as cylinders, with an axis perpendicular to 

the planar membrane, moving under Brownian motion [67].  Under this 

assumption, and by accounting for a finite membrane size, the finite viscosity of 

the surrounding fluid, and irreversible thermodynamics, Saffman and Delbrück 

developed Eq. 2.3 to describe macromolecule diffusion in free lipid bilayers.  

Here, DT and DR represent translational and rotational diffusion respectively.   

                    
   

    
    

  

   
                        

   

      
               Eq 2.3.  

In both equations, k is Boltzmann’s constant, T is temperature, μ is the viscosity 

of the lipid membrane, μ’ is the viscosity of the surrounding fluid (i.e. water),   is 

the thickness of the membrane,   is Euler’s constant, and a is the radius of the 

cylinder modeling the macromolecule.   
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2.3.2. Diffusion in Solid-Supported Membranes: Sackmann-Evans Theory 

The Saffman-Delbrück model predicts the translation diffusion coefficient to have 

a logarithmic dependence on particle size.  This is a biologically important 

consequence in that proteins (decoupled from the actin-cytoskeleton) can diffuse 

at rates comparable to that of lipids [68, 69].  However, while this unique property 

occurs in free lipid bilayers, the diffusion of larger molecules is hindered in solid-

supported membranes; lipids within solid-supported membranes experience 

slowed diffusion rates and larger molecules show diffusion rates orders of 

magnitude lower than lipids [69].  This is a result of the viscous drag experienced 

by membranes in close contact to their rigid underlying solid support.  Here, drag 

(also referred to as frictional coupling) results from the addition of two frictional 

forces, frictional shear stress resulting from the velocity field created by the 

diffusing molecule and the direct frictional force between a diffusion molecule and 

the solid [69, 70].  The viscous drag coefficient, λ, experienced by a bilayer near 

a rigid solid is described in Eq. 2.4 where ε is defined by Eq 2.5 [70, 71]. 

                                             
  

 
  

      

     
                          Eq. 2.4.       

                                         
  

    
 
 
  
     

   

     
 
 
  
                      Eq. 2.5.         

In the equations above,   and    represent membrane viscosity and the 

viscosity of surrounding water respectively,    refers to the thickness of the 

membrane,    and    are modified Bessel functions of the second kind,   is the 

radius of a diffussant (considered as a lateral diffusion disk for larger molecules 
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and lipid clusters), bs is the friction coefficient,   is a constant, and   is the 

distance between the lipid bilayer and underlying solid.  

 

The Einstein relation, Eq. 2.6, states the lateral diffusion of a disk in a 2D fluid 

(i.e. lipid bilayer) is dependent on the viscous drag coefficient, λ, where k is the 

                                                  
  

 
                                                 Eq. 2.6. 

Boltzmann constant and T is temperature.  Principles of the Sackmann-Evans 

theory, represented in the above equations, were used to develop the polymer-

tethered and multi-bilayer systems discussed in Sections 2.2.2 and 2.2.3.  These 

systems are used to alter bilayer/solid distance in an effort to decrease frictional 

coupling based on Eq 2.4 and 2.5.   As seen in Eq 2.6, decreased frictional 

coupling enhances lateral diffusion of proteins.  In the case of polymer-tethered 

and multi-bilayer solid-supported systems, bilayer/substrate distance is regulated 

in order to achieve diffusion rates characteristic of a more biologically relevant 

state, comparable to that in free lipid bilayers. 
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2.4. Cellular Mechanotransduction 

 

 

2.4.1. Cellular Mechanosensitivity 

Cells within tissue are continuously exposed to mechanical forces such as 

compression on bone, stretching of skin and muscle, and shear stress on blood 

vessel-forming cells.  This has led to increasing recognition of such forces as 

stimuli responsible for reprogramming cells and triggering biochemical responses 

within cells capable of profoundly impacting cellular and tissue functions through 

a process known as mechanosensing [1, 72-75].  While many elements of the 

mechanotransduction system have been identified, it remains largely unknown 

how cellular components coordinate to produce an appropriate response to 

mechanical stimuli.  Yet, mechanical properties such as cell matrix viscoelasticity 

and dimensionality have been shown to be critical factors affecting cellular 

mechano-response, an observation that has lead to a proposed correlation 

between matrix rigidity and those cellular processes associated with injury and 

disease [1-4, 6-10].  With the changes in tissue stiffness that occur in such 

pathogenic states as fibrosis and cancer, this is a valid assumption [5].  In fact, 

numerous studies suggest that the mechanical properties of a material to which 

cells adhere cannot only act in concert with, but even override soluble 

biochemical signals [5]. 
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By anchoring and pulling on their surroundings, cells can probe the viscoelasticity 

of their environment, and have been shown to adapt to the stiffness of elastic 

substrates.  Cells plated on traditional plastic or glass substrates often show 

features, such as cytoskeletal stress fibers, large clusters of adhesion receptors, 

and flattened cell morphologies, which are less predominant in the native tissue 

environment.  Moreover, organs are composed of tissues with well-defined 

mechanical properties which have elastic moduli orders of magnitude softer than 

commonly used culturing substrates [5].  These shortcomings have led to the 

development of 2D polymeric films, of adjustable viscoelasticity [8, 9], and 3D 

collagen matrices [3, 11, 12], which better replicate the ECM environment of 

tissue cells and have been shown to form morphologies similar to host tissue 

conditions [3, 4, 9, 11, 12, 76-78].  Quantitative studies suggest that cells display 

their most physiologically relevant state when cultured on substrates of 

comparable stiffness to their native tissue environment [79].    

 

Polyacrylamide (PAA) gels not only represent better ECM mimics than glass or 

plastic, but have provided a 2D surface that has afforded further insight into 

cellular response invoked by mechanical cues imparted by a substrate.  These 

gels have tunable mechanical properties in that the viscoelasticity of the gel can 

be regulated by crosslinking density.  Regulating the degree of crosslinking with 

PAA has been shown to induce changes in cell morphology and cytoskeletal 

organization [2, 8, 9, 14-17, 19].  The mechanical properties of 3D collagen 

matrices are tuned much the same way, where the degree of crosslinking 
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impacts substrate viscoelasticity (and pore size in the case of 3D gels).  Cells 

placed in 3D matrices of varying stiffness have been shown to respond with 

dramatic changes in phenotype (e.g. the formation of dendritic fibroblasts) [3, 11, 

12].    

 

Aside from morphological changes, substrate viscoelasticity has been shown to 

influence cell proliferation [80-82], motility speed and directionality (e.g. 

durotaxis) [8, 83, 84], apoptosis [81], differentiation [14], and other dynamic 

properties as well, which are all interconnected by key cellular elements of 

mechanotransduction.  Furthermore, it is important to note that a cell’s response 

to mechanosensing can be strikingly different for varying cell types.  For 

example, while fibroblast proliferation is suppressed by soft surfaces [80, 82], 

other cell lines have shown a complete insensitivity to stiffness [7, 85], and while 

fibroblast motility is accelerated on more rigid substrates, the opposite holds true 

for neuronal cells [2, 86-88].  Thus, while all cells probe their surroundings by 

applying force, this force must trigger a specific signaling pathway that 

orchestrates a particular cellular response.  This process of converting a 

mechanical signal into a biological signal is known as mechanotransduction. 

 

            

2.4.2. Elements of Mechanotransduction 

It is now well established that the mechanical properties of a substrate greatly 

influence cell behavior.  Yet, the exact molecular mechanisms that translate 
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mechanical stimuli into biological signals, through a process known as 

mechanotransduction, are still poorly understood.  However, key elements of the 

mechanotransduction system have been identified and proposed signaling 

hypotheses are continually validated through ongoing research.  The elements of 

the mechanotransduction system can be roughly divided amongst four groups: 

the cytoskeleton (e.g. actin), molecular motors (e.g. myosin), cellular membrane 

components (e.g. integrins), and macromolecules composing the ECM (e.g. 

adhesion proteins such as laminin) [5].  

 

Much research suggests that signal transduction occurs in the peripheral regions 

of the cell, the location of focal adhesions [73].  Here, transmembrane integrins 

play a key role and act as tri-functional molecules capable of: binding ligands on 

other cells or on the ECM, connecting to the cytoskeleton, and regulating 

intracellular signaling pathways [89].  With these properties, integrins form a 

direct link from the ECM to the cytoskeleton as integrins are essentially glued to 

the actin cytoskeleton through a collection of intermediary proteins (e.g. vinculin, 

talin, paxillin, etc.).  With an anchoring point, cells can gauge the mechanical 

properties of their environment through a process known as mechanosensing.  

This process primarily involves the interaction of actin and myosin, where 

myosin-mediated contraction is used to generate a pulling force, by the cell, and 

directed onto the substrate.  The information acquired from this act is then 

transduced into a signal that elicits a specific cellular response. 
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It is thought that integrins and the collection of proteins responsible for linking 

them to the cytoskeleton function as the cell’s mechanotransducers.  The central 

idea is that integrins and proteins undergo various conformational changes and 

unfolding in response to force.  These changes create phosphorylation sites and 

exposed cryptic binding sites for signaling molecules [73, 90]; this signal 

transduction method is depicted in Figure 2.4.  Many ECM proteins (e.g. 

fibronectin) as well as proteins that link integrins to the cytoskeleton (e.g. talin) 

consist of tandem-repeat sequences [73].  Differences in stability between repeat 

units can dictate the unraveling sequence, thus displaying different peptide 

sequences depending on the amount of applied force [73, 91-93].  Moreover, the 

stability of a protein’s tertiary structure results from hydrophobic forces, disulfide 

bridges, electrostatic forces, pH, and more.  Such structural diversity adds 

variability to cells.  Additionally, some protein complexes are known to exist as 

“catch bonds,” and are stabilized through applied force.  Such complexes can be 

used to regulate the amount of force applied.  The plausibility of this type of 

signaling is evidenced through atomic force microscopy (AFM) studies showing 

that proteins such as talin and filamin can be stretched by physiologically 

relevant forces [94-96].  Moreover, different cell types transmit different amounts 

of force, neuronal cells at 1-60 pN compared to fibroblast cells which generate 

7,000-100,000 pN [90].  This large difference should ultimately determine which 

signaling sites are exposed through protein unfolding.  This also explains  
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differences in cellular response when comparing cell types.  It should be noted 

that force activated ion channels may also play a role as mechanosensors [97, 

98]. 

 

 

Figure 2.4. Signal transduction through protein unfolding and the exposure of 
phosphorylation and cryptic binding sites.  
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Mechanotransduction orchestrates more than localized responses such as 

protein recruitment at focal adhesion (FA) sites.  As mentioned in Chapter 2.4.1, 

mechanotransduction can also result in processes like cellular differentiation, 

which is initialized in the nucleus of a cell, not peripheral regions.  Could this 

simply be the result of soluble signals generated in these regions that then travel 

to the nucleus?  This would not explain the speed of some long range cellular 

responses as physical models predict mechanical responses are 40 times faster 

than soluble signals [99].  Questions have led to the “hard-wired” cellular 

tensegrity model, where it has been proposed that mechanical linkages proceed 

farther into the cell than once thought and may actually directly link the nucleus 

to integrins residing in peripheral regions of the cell [5, 99].  This is depicted in 

Figure 2.5, which illustrates the recently identified LINC (linker of nucleoskeleton 

and cytoskeleton) complex, consisting of nesprins, sun, and lamin proteins [100].  
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Figure 2.5. Force transmission between the ECM and the nucleus.  Nesprins, 
sun, and lamin proteins form the LINC complex. 

 

 

2.4.3. Cell Migration 

Broadly speaking, the process of cell migration can be broken down into four key 

steps: (1) extension, (2) adhesion, (3) contraction, and (4) detachment, as 

illustrated in Figure 2.6.  In step 1, an adhered cell creates protrusions, which 

extend in the direction of travel.  These protrusions, collectively known as the 

“leading edge,” are created by the cytoskeleton.  In this case, the cytoskeletal 

component actin, found in highest concentration near the peripheral regions of 

the cell, is the primary contributor to this process; cellular extensions are formed 
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through actin polymerization.  With the help of various actin binding proteins (e.g. 

thymosin, profilin, cofilin, and the Arp2/3 complex), and in the presence of ATP, 

the process of actin depolymerization/polymerization can be very rapid and is 

seen as a flow of actin in a process known as “treadmilling.”  While actin is 

crucial to the extension process, other components of the cytoskeleton, primarily 

microtubules, are believed to play a role in adding directionality to movement.  It 

is thought that microtubules may direct protrusions through the delivery of 

membrane vesicles to the leading edge, directly acting on the cell cortex, or 

through biochemical regulation [101]. 

  

 

Figure 2.6. The four primary steps of cellular migration. 
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The protruding edge must adhere to the substrate in order to pull the cell forward.  

Attachment primarily consists of the integrin-mediated sites, as described in 

Chapter 2.4.2, where integrins couple ECM proteins to the cytoskeleton with the 

help of proteins such as paxillin, vinculin, and more.  Proteins forming these FAs 

interact via weak, non-covalent bonds [73].  However, FAs do not exist as 

individual integrins, but rather integrin clusters that allow attachment sites to 

withstand pulling forces of high tensile strength.  The size of an FA is dependent 

on the mechanical tension applied [101].  As discussed in chapter 2.4.2, force 

sensing and mechanotransduction can stimulate protein recruitment to 

strengthen FA sites. 

 

Myosin II-based contraction of the actin cytoskeleton is used to generate the 

force necessary to pull the cell body forward while aiding in the disassembling of 

FA sites at the posterior of the cell [102].  However, the FA disassembly process 

is poorly understood.  FAs are thought to exhibit a “clutch-like” mechanism that 

can be engaged and disengaged in response to force; observed FAs are mobile 

in stationary cells and immobile in migrating cells [101].  Proteolytic enzymes that 

hydrolyze ECM components may also play a role [101].  Often, as observed in 

time-lapse imaging, FA sites fail to disassemble in time and are simply ripped 

from the cell during contraction.  Thus, the detachment process is a critical factor 

determining the migration velocities of cells.  While somewhat counterintuitive, 

migration rates are slower on more rigid surfaces capable of higher traction 
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forces.  This is a result of the larger, mature FAs formed on these substrates (a 

result of mechanosensing, mentioned above) slowing the detachment process.         
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CHAPTER 3: MATERIALS AND EXPERIMENTAL PROCEDURES 

 

 

3.1 Materials 

 

 

3.1.1. Phospholipid Membrane Materials 

Lipids and lipopolymers including 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(SOPC), 1,2-Dipalmitoyl-sn-Glycero-3-Phosphothioethanol (Sodium Salt) 

(DPTE), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-

[methoxy(polyethylene glycol)-2000] (ammonium salt) (PEG2000), 1,2-distearoyl-

sn-glycero-3-phosphoethanolamine-N-[maleimide(polyethylene glycol)-2000] 

(ammonium salt) (PEG2000-Mal), and 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-

carboxypentyl)iminodiacetic acid)succinyl] (nickel salt) (DGS-NTA(Ni)) were 

purchased from Avanti Polar Lipids (Alabaster, AL) and used without further 

modification.  The lipopolymer 1,2-Distearoyl-sn-Gycero-3-

Phosphoethanolamine-N-polymethyloxazoline(50) (PMOX50) was synthesized in 

the lab of Professor Ranier Jordan (Technical University of Dresden).  All  

fluorescent dye-labeled lipids used for tracking and Epi microscopy were 
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purchased from Invitrogen (Carlsbad, CA) and include: N-(6-

tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine, triethylammonium salt (TRITC-DHPE), N-(7-nitrobenz-2-

oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine, 

triethylammonium salt (NBD-PE), and Texas Red® 1,2-dihexadecanoyl-sn-

glycero-3-phosphoethanolamine, triethylammonium salt (TR- DHPE).  Glass 

coverslips (24x40mm, No.1) used to support bilayer substrates were obtained 

from VWR Scientific Products (West Chester, PA).  All cleaning and buffer 

solutions were prepared using solvents and chemicals purchased through 

Sigma-Aldrich (Milwaukee, WI).  Ultrapure water (Milli-Q) used in the preparation 

of lipid bilayers was provided via a Millipore Water Purification System (Milford, 

MA). 

 

 

3.1.2. Quantum Dot Materials 

Cadmium acetate, selenium pellets, zinc nitrate hexahydrate, potassium 

ethylxanthate, Trioctylphosphine (TOP), Hexadecylamine (HDA), and HPLC 

grade solvents were purchased from Sigma-Aldrich.  The phosphorus 

compounds Trioctylphosphine Oxide (TOPO), and Tributylphosphine (TBP) were 

purchased from Strem Chemicals (Newburyport, MA).  All lipids and lipopolymers 

used for quantum dot encapsulation and functionalization were obtained from 

Avanti Polar Lipids and include: PEG2000, PEG2000-Mal, and 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine (DPPC).  The primary amine linking- lipopolymer 

http://products.invitrogen.com/ivgn/product/T1391?ICID=search-product
http://products.invitrogen.com/ivgn/product/T1391?ICID=search-product
http://products.invitrogen.com/ivgn/product/T1391?ICID=search-product
http://products.invitrogen.com/ivgn/product/N360?ICID=search-product
http://products.invitrogen.com/ivgn/product/N360?ICID=search-product
http://products.invitrogen.com/ivgn/product/N360?ICID=search-product
http://products.invitrogen.com/ivgn/product/T1395MP?ICID=search-product
http://products.invitrogen.com/ivgn/product/T1395MP?ICID=search-product
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1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[NHS-Active 

Ester(polyethylene glycol)-2000] (ammonium salt) (PEG2000-NHS) was 

synthesized directly from PEG2000-Mal via hydrogenation catalyzed  by 

palladium activated charcoal [103].  Laser quality Rhodamine 6G, used as an 

FCS control, was purchased through Exciton (Dayton, OH).   All basic laboratory 

glassware and supplies were obtained from Fisher Scientific (Pittsburgh, PA). 

 

 

3.1.3. Cell Culture Materials 

All basic cell culturing chemicals were ordered from Invitrogen and include: low 

glucose Dulbecco's Modified Eagle Medium (DMEM) (phenol red and phenol red-

free), RPMI-1649 medium, qualified fetal bovine serum (FBS), qualified horse 

serum (HS), penicillin-streptomycin antibiotic/antimycotic solution, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 0.25% trypsin, mouse 

laminin, cytochalasin D, trypan blue, and nerve growth factor (NGF).  All culturing 

supplies (e.g. pipets, flasks, test tubes, etc.) were obtained from Fisher Scientific.  

Green fluorescent protein (GFP)-actin transfection vector were graciously 

provided by Simon Atkinson (IU School of Medicine).  Focal adhesion 

transfection vectors (GFP-FAK) and stably transfected (GFP-actin) 3T3 cells 

were prepared by collaborators at the University of Erlangen, from the lab of 

Professor Ben Fabry.  All neuron culturing and imaging were performed at the 

University of Leipzig in lab of Professor Josef Kӓs. 
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3.1.4. Polyacrylamide Gel Materials 

All chemicals used in the preparation of PAA gels were purchased from Sigma-

Aldrich and include: sodium hydroxide powder: (3-Aminopropyl)trimethoxy silane, 

97%; ammonium persulfate (APS); glutaraldehyde, 25%; acrylamide/bis-

acrlamide, 40% (PAA); electrophoresis-grade N,N,N,N’-

tetramethylethylenediamine, >99.0% (TEMED); electrophoresis-grade 

ammonium persulfate, >98%; and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic 

acid (HEPES).  Dulbecco’s PBS without Ca2+ and Mg2+, Fibronectin, and 

yellow-green 0.5µm carboxylate fluorospheres were obtained from Invitrogen.  

The crosslinkers used in these experiments, N-Sulfosuccinimidyl-6-(4'-azido-2'-

nitrophenylamino) hexanoate(Sulfo-Sanpah) and N-[g-

Maleimidobutyryloxy]succinimide ester (GMBS) were purchased through Pierce 

Biotechnology.  Basic glassware and supplies including: 1x3in glass slides, 

1x1cm gene frames, and 24x67 four-well multidishes were purchased from 

Fisher Scientific. 

 

 

3.2 Experimental Procedures 

 

 

3.2.1. Preparation of Single and Multibilayer Substrates 

Polymer-tethered single bilayers (TYPE1), and the first layer of multi-bilayer 

(TYPE2) substrates, were assembled using a procedure based on previously 
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reported techniques [63, 64].  In this procedure, tethered-phospholipid bilayers 

are supported on glass microscopy coverslips prepared by baking at 515°C for 

1h followed by sequential washing with 1% sodium dodecyl sulfate (SDS) in Milli-

Q, NaOH-saturated methanol, and 0.1% HCl in Milli-Q cleaning solutions.  

Cleaning consisted of 30min bath sonication in each solution with Milli-Q washing 

between solutions.  Slides were then stored in Milli-Q and used within one week.  

Initial monolayers were formed through the Langmuir-Blodgett technique, where 

a mixture of lipids (POPC) and polymer-tethered lipids (PMOX50 in TYPE1 

substrates and PEG2000 in TYPE2 substrates) was transferred onto a glass 

coverslip using a Teflon-coated Langmuir trough equipped with a dipper arm and 

film balance linker electronically to a compression arm.  Here, the lipid mixture 

was spread at the air-water interface on the Langmuir trough and compressed to 

a film pressure of 30mN to form a lipid monolayer.  After 20min equilibration, the 

dipper arm with attached glass coverslips was raised slowly.  Feedback from the 

change in surface pressure sensed at the film balance induces the compression 

arm to move in response, thereby maintaining a constant surface pressure and 

thus coating the coverslip with a uniform monolayer mixture.  Unused lipids were 

removed from the trough.  The lipid mixture for the outer leaflet was then spread 

and compressed to 30mN and bilayers were completed using a Schaefer transfer 

technique, in which a depression slide is placed on the bottom of the Langmuir 

trough before the addition of lipids to the trough.  After the addition of lipids and 

equilibration, the coverslip is firmly compressed onto the depression slide, at an 

angle, to prevent the formation of air bubbles in the resulting bilayer.  This 
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method allowed for the preparation of asymmetric films necessary for TYPE1 

single bilayers (and first layer of TYPE2 triple bilayer substrates).  The completed 

substrates contained a polymer cushion, created by the physiosorbed 

lipopolymers in the inner leaflet, which uplift the bilayer and are thought to aid in 

minimizing cellular interactions with the underlying glass.   

 

Multibilayer substrates were prepared atop these polymer-tethered bilayers.  

Here, additional planar lipid bilayers were added through the fusion of GUVs 

using a modified technique based on previously established procedures [56].  To 

enhance GUV fusion and multi-bilayer stack stability, adjacent bilayers were 

stabilized through flexible inter-bilayer linkages based on sulfhydral-maleimide 

coupling chemistry.  With this iterative procedure, the lipid composition of stacked 

bilayers was alternated from POPC with 5mol% DPTE (sulfhydral-functionalized 

lipid) to POPC with 5mol% PEG2000-Mal (maleimide-functionalized lipopolymer).   

GUVs were formed by resuspending dried lipid stocks in a 0.1mM sucrose/1mM 

CaCl2 solution, to a final concentration of 5-10mg/mL, and heating at 80°C for 2h.  

The GUV solution was then allowed to cool to room temperature and added to 

the bilayer system in a 0.1mM glucose /1mM CaCl2 solution.  The GUVs were 

brought into contact with underlying layers via a gravity gradient and were 

allowed to bind and unfold over a 2.5h period.  Excess, unbound GUVs were 

then removed by rinsing with Milli-Q water. 
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For all single and multibilayer substrates utilized in cellular studies, the outermost 

layer was composed of a mixture of POPC with 5mol% DPTE and 0.3mol% TR-

DHPE.  The dye-labeled lipid, TR-DHPE, was used to ensure a homogenous 

film, through Epi microscopy, prior to plating cells on these substrates.  The 

sulfhydral-functionalized lipid, DPTE, was used to facilitate a cell-substrate 

linkage.  Bilayer substrates were affixed to the bottom of a petri dish drilled with a 

1.5cm hole to allow for cell culturing on the incorporated bilayer substrate.  This 

was done by coating the perimeter of the 1.5cm hole with a fine layer of vacuum 

grease (Dow Corning High Vacuum Grease, Fisher Scientific) and then 

compressing the coverslip onto the Petri dish under water.  A large excess of a 

heterobifunctional linker (containing maleimide and active ester functionalities) 

was added to the exposed bilayer (within the 1.5cm hole in the Petri dish) and 

allowed to bind for 1h.  Unbound linker was removed through rinsing with 

phosphate buffered saline (PBS) and an excess of the adhesion protein Laminin 

was then added.  Primary amines on the surface of the protein bind the linker 

over a period of 1h and excess Laminin was then removed with PBS rinsing.  At 

this point, substrates are ready for cell plating.   

 

 

3.2.2. Single Molecule Fluorescence Microscopy 

Wide-field, single molecule fluorescence microscopy (SMFM) was used to 

characterize lipid dynamics in multibilayer substrates and provide evidence that 

substrate fluidity can be tuned through bilayer stacking.  The SMFM setup, 
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shown in Figure 3.1, consisted of an inverted microscopy (Zeiss Axiovert 

S100TV) equipped with a 100mW frequency doubled Nd:YAG laser (532nm) for 

fluorophore excitation.  Laser light is passed through a computer-controlled 

shutter, a variable neutral density filter, expanding and collimating lenses, a 

diaphragm, and a quarter wave plate to provide a high-magnification objective 

(Zeiss, oil immersion, 100x NA=1.3) with circular polarized light to increase 

tracking accuracy.  Fluorescence emission from the sample the passes through a 

dichroic mirror (chosen to collect TRITC emission (566nm)) and a Raman filter 

before hitting an intensified CCD camera (iPentaMAX 512EFT).  For all tracking 

experiments, an exposure time of 10ms and a time lag of 40ms were used.  

Shutter control and image acquisition were performed using ISee Imaging 

software.  To increase tracking accuracy, imaging was performed on an air table 

to minimize room vibrations.  SMFM on single, double, triple, and quadruple 

bilayer systems was performed as previously described [63, 64].  All substrates 

used for SMFM studies were prepared with small, 10-8mol%, quantities of TRITC-

DHPE in their outermost bilayer.  
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Figure 3.1. Wide-Field single molecule fluorescence microscope setup. 

 

 

TIRF-based SMFM (SMFM-TF) was used in live cell experiments in collaboration 

with Ken Ritchie (Purdue University, West Lafayette) and consisted of a similar 

setup with a HeNe excitation laser (543nm), high magnification objective 

(Olympus, oil immersion, 100x, NA 1.4), and a cooled CCD camera (XR/Turbo-

120z, Standford Photonics, Inc.).  Here, the excitation beam was adjusted 

immediately outside ideal conditions for TIRF.  This allowed for the deeper 

imaging needed to track fluorophores atop cells, but still resulted in the 

decreased background characteristic of TIRF-based techniques.  The live cell 

experiments in which SMFM-TF was utilized are described in Chapter 3.2.7.   
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3.2.3. Single Molecule Tracking and Data Analysis 

The analysis of SMFM data follows that previously reported [63, 64].  The 

imaging method described above was used to obtain a sequence of fluorescent 

images corresponding to the movement of individual dye-labeled lipids.  The x 

and y coordinates of the fluorescent probes (identified through finding the 

adapted center of intensity of the Airy disks of the fluorophores) are determined 

for each snapshot in a collection of sequential images using ISee tracking 

software.  Using these (x,y,t) coordinates, 2D trajectories can be generated and 

the squared displacement of the fluorescent probes with respect to time can be 

calculated using the equation below.  

                                    
                

           
                             Eq. 3.1   

The squared displacements collected between successive frames can then be 

averaged to obtain a mean squared displacement, <r2>, for the given time lag, t, 

of 40ms.  This displacement data can be used to compare the fluidity of different 

substrates as an increase in substrate fluidity is marked by larger displacements 

(i.e. faster diffusion).  Moreover, lateral diffusion coefficients can be calculated 

from <r2> using equation 3.2. 

                                                                                                             Eq. 3.2 

In addition, the information given from fluorophore displacements can also be 

used to plot cumulative distribution functions, or CDFs.  A CDF represents a 

probability function displaying the likelihood of the observed displacements.  

These plots take into account each step a molecule makes, not just the average 

displacement, thus providing a more accurate account of a molecule’s travel.  
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Moreover, fitting the CDF curve to a single exponential or double exponential 

function provides information on the type of movement present (e.g. Brownian, 

anomalous, or directed).  For example, a CDF displaying Brownian diffusion is 

fitted with the single exponential function below. 

                                                          
        

          
                         Eq. 3.3 

Each sample was analyzed using a minimum of 150 tracks (or molecule 

displacements).  Previous work in the lab indicates that a number greater than 

this ensures statistical accuracy, as previously verified on solid-supported fluid 

lipid bilayers (yielding one component fit). 

 

 

3.2.4. Sonochemical Synthesis of Quantum Dots 

Quantum dots served as the basis of the heterobifunctional linker used to bind 

cellular adhesion proteins, such as laminin, to the lipid bilayer-based substrates.  

QDs were a good candidate based on the existing nanoparticle functionalization 

expertise in our lab.  Moreover, while the linker QDs used in cellular 

mechanoresponse experiments were not exploited for their photoluminscent 

properties, the ability remains.  In future work, these linkers have the potential to 

be utilized as probes in dynamic studies as well.  CdSe/ZnS quantum dots were 

synthesized using previously reported methods [104, 105].  Sonochemical 

synthesis procedures were developed in our lab as a safe, efficient, low 

temperature alternative to traditional thermal methods.  CdSe core nanocrystals 
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were synthesized using Cd(OAc)2 and crushed selenium (dissolved in TOP) with 

HDA and TOPO as coordinating solvents; the reaction scheme is depicted in 

Figure 3.2.  Reagents were melted and placed in a sidearm test tube that could 

be supplied with argon during sonication.  Ultrasonic power was applied through 

a rod sonifier (Branson Ultrasonics, Danbury, CT) to promote crystal growth.  

Core CdSe crystals were then shelled with zinc ethylxanthate for increased 

stability, longer storage, and decreased cytotoxicity. 

      

 

Figure 3.2. Reaction scheme for the sonochemical synthesis of CdSe/ZnS QDs. 

 

 

3.2.5. Quantum Dot Functionalization 

A biologically compatible linker should be water-soluble, non-toxic, resistant to 

aggregation, and display no non-specific adsorption.  The linker should also be 

able to be linked to a protein and/or lipid of interest.  Directly following their 

synthesis, QDs display none of these properties and, therefore, must be coated 

and functionalized.  In all experiments, hydrophobic QDs were coated using a 

lipopolymer encapsulation technique previously reported [106, 107].  Lipid 

encapsulated QDs are an excellent candidate for linkers in biological systems 

due to their inertness and increased stability over more traditional coating 
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methods (e.g. hydrophilic thiol acids), a result of strong hydrophobic and 

electrostatic interactions.  Here, QDs are encapsulated with a mixture of lipids 

(DPPC), lipopolymers (PEG2000), and functionalized lipopolymers (PEG2000-

Mal and PEG2000-NHS) in a ratio of (38:60:1:1).  This method allows QDs to 

maintain their hydrophobic coordinating solvent, and it is believed the acyl chains 

of the lipids organize around this solvent.  With the hydrophilic ends of the lipid 

components facing outwards, the end result, shown in Figure 3.3, is a water 

soluble QD.  However, this lipid composition was chosen to fulfill more 

obligations than simply altering solubility properties.  The long polyethylene glycol 

(PEG) chains of the lipopolymers function as entropic springs to minimize 

aggregation, while the lipids pack into any exposed hydrophobic regions 

(resulting from the steric hindrance of bulky lipopolymers) to form a complete 

coating.  Linker functionality was provided with a small 1mol% amount of both 

PEG2000-Mal and PEG2000-NHS lipopolymers that readily bind sulfhydrals and 

primary amines respectfully.  Proper linker function was validated through SMFM 

imaging on QD-labeled sulfhydral lipids and reconstituted membrane proteins 

(Millipore, Billercia, MA) in phospholipid bilayers.  Aggregation resistance and 

biological inertness were tested using FCS and live cell SMFM as discussed 

below. 
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Figure 3.3. Lipopolymer encapsulation of QDs to form water soluble, 
heterobifunctional linkers. 
 
 
 
 

3.2.6. Fluorescence Correlation Spectroscopy 

Using a Zeiss Confocor2 Fluorescence Correlation Spectrometer attached to a 

Zeiss Axiovert 200m inverted microscope, FCS studies on functionalized QDs 

were used to determine stock concentrations as well as ensure aggregate-free, 

stable cell-substrate linkers.  This technique is capable of monitoring changes in 

fluorescent intensities within a small confocal volume.  A fluorescent probe, in 

bulk solution, diffusing through this confocal volume is excited, resulting in a 

change in fluorescence intensity.  Fluorescent fluctuations are then used to 

generate an autocorrelation curve, Eq. 3.4, of the Gaussian intensity distribution, 

G(t), which reveals the number of particles in the confocal volume, N, as well as 

a characteristic diffusion time,  D (where τ represents correlation time and s is the   



57 
 

                                       
 

 
 

 

    
 

  
 
  

 

   
 

  
 
 

  
  
                        Eq. 3.4 

structure parameter).  If the radius of the confocal spot is known (this can be 

experimentally determined using a fluorophore with an established diffusion 

coefficient [108]), the confocal excitation volume can be calculated under the 

approximation that the confocal spot is a sphere.  With this information, solution 

concentrations are determined based on the number of particles residing in the 

confocal volume of the bulk solution.  Moreover, the diffusion time calculated by 

the autocorrelation function provides insight concerning the degree of 

aggregation present in a sample.  Larger particles (i.e. aggregates) will interact 

more with their surrounding fluid, resulting in slower diffusion times.  In fact, a 

hydrodynamic radius of the particles can be calculated from the Stokes-Einstein 

relationship, Eq. 3.5, where r is the hydrodynamic radius,  D is the diffusion time,  

                                                    
        

            
                                          Eq. 3.5 

k is the Boltzmann constant, T in temperature, η in the solution viscosity, and ω 

is the radius of the confocal excitation volume.     
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3.2.7. Single Molecule Fluorescence Microscopy of QD-Labeled 

Lipids in Live Cell Membranes 

Live cell imaging was employed to test the biological inertness of the QD-based 

cell-substrate linkers.  Here, small unilamellar vesicles (SUVs) composed of a 3:1 

SOPC:DOPE lipid mixture, previously shown to be fusogenic with the plasma 

membrane of cells [109, 110], were prepared using a published sonication 

procedure [111].  In addition, a small quantity, 10-3%, of thiolated lipids (DPTE) 

were added as a docking point for maleimide functionalized, lipopolymer-coated 

QDs.  QDs were added to an excess of SUVs to eliminate the possibility of free 

QDs interacting with any sulfhydral-containing biomolecules present in the cell 

membrane.  The QD-labeled SUVs were allowed to fuse with cells for 15-20min 

before unbound SUVs were rinsed away with PBS.  The fusion scheme is 

depicted in Figure 3.4. 

 

 

Figure 3.4. Fusion of QD-labeled SUVs with a cellular plasma membrane [107]. 
 

++
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Live cell imaging and tracking were performed in the lab of collaborator Kenneth 

Ritchie (Purdue University) using an SMFM-TF setup similar to that depicted in 

Figure 3.1, but equipped with an incubation unit, a high-speed camera, and total 

internal reflection fluorescence (TIRF) to aid in cell imaging on the outermost 

plasma membrane of confluent cells by reducing background autofluorescene.  

Comparison of QD tracks with that of traditional dyes was used to reveal the 

amount of interaction with surrounding biological components.  Additionally, 

cellular studies confirm that QDs show no notable cytotoxicity. 

 

 

3.2.8. Cell Culture 

Mouse NIH 3T3 fibroblasts, used on TYPE 2 substrates, were cultured in 

Dulbecco's Modified Eagle Medium (DMEM) supplemented with 10% fetal bovine 

serum and 1% penicillin-streptomycin antibiotic-antimycotic solution.  Cells were 

stored at 37°C and 5% CO2 and were passaged on a 2-3 day basis; cells were 

passaged no more than 12 times.  Fibroblasts are strongly adherent so trypsin 

was used to cleave cells from culturing flasks.   Before plating, cells were rinsed 

with PBS and trypsinized with 0.25% trypsin in DMEM.  Cells were then supplied 

with fresh, warm media to deactivate trypsin and were subsequently centrifuged.  

The trypsin-containing media was removed and cells were resuspended in fresh 

media.  Cells were counted using a hemocytometer and 1500 cells were plated 

on all substrates.  This low number of cells allowed for single cell imaging over a 

period of 48h. 
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PC12 Neurons, used on TYPE 1 substrates, were cultured in the same fashion 

with a few notable exceptions.  Neurons were supplied with medium prepared 

with RPMI-1640 supplemented with 10% horse serum, 5% fetal bovine serum, 

1% penicillin-streptomycin antibiotic/antimycotic, and 1% 1M hepes (yielding a 

10mM concentration).  Like fibroblasts, neurons were stored at 37°C and 5% 

CO2 and were passaged on a 2-3 day basis, and no more than 12 times.  

Neurons, however, are weakly adherent cells, thus eliminating the need for 

trypsin in cell passaging and plating.  Instead, cells were dislodged from culture 

flasks by simply rinsing with fresh medium.  Following cell plating onto, cells were 

supplied with the growth factor NGF (25ng/mL) to induce neurite outgrowth. 

 

 

3.2.9. Cellular Transfection 

Cellular transfection with GFP-Actin was used to observe the cytoskeletal 

reorganization of cells in response to changes in substrate viscosity.  While 

traditional cell staining methods (e.g. phalloidin staining) are efficient, easy, and 

fast, the lipid bilayer-based substrate design prohibited their use as these stains 

are typically introduced into a cell with a detergent solution (e.g. triton x-100), 

which perforates the cell membrane; the use of such a detergent causes similar 

disruption to the lipid bilayer substrates.  Instead, fibroblasts were transfected 

with GFP-Actin vectors one day prior to plating using Effectene (Qiagen), 

following the transfection protocol provided by the supplier. In short, a DNA-

containing transfection solution (0.6µg of DNA, 4.8µL enhancer, 9µL effectene 
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reagent, and 286µL EC buffer) was added to a cell suspension of 15,000 cells in 

250µL of growth media.  The cell solution was added to an individual well of a 

24well plate and incubated over night.  Cells were plating the following day after 

rinsing with PBS and fresh media; plating density onto experimental substrates 

was approx. 850 cells/cm2.  The use of transient transfection techniques also 

enabled live cell imaging.  

 

 

3.2.10. Live Cell Imaging 

In order to perform live cell imaging, a stage setup capable of mimicking an 

incubator was obtained from collaborators at the University of Leipzig, and is 

described below.  Cell imaging was performed in polystyrene Petri dishes 

containing 1.5cm holes at their bottom.  Multibilayer substrates were affixed to 

Petri dishes underwater using vacuum grease; experiments on laminin-coated 

glass were performed in the same manner. During imaging, cells were kept at 

37°C using a custom built Petri dish holder with a heat output controlled by a 

voltage regulator.  Samples were provided with 5% CO2 (balanced with air) using 

Teflon-machined Petri dish lids containing two gas ports (an inlet and outlet) and 

a glass top to allow for DIC and phase contrast imaging.  Humidity was 

maintained by bubbling 5% CO2 supply through a water trap prior to sample inlet.  

In addition, a water trap placed after the outlet reduced the evaporative loss of 

cell medium during long term studies.  All live-cell DIC imaging was performed 

with a Zeiss Axiovert 200m equipped with a Zeiss AxioCam mRn.  Live-cell 
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phase contrast and Epi microscopy were completed on a Leica DMI4000B 

inverted microscope. 

 

 

3.2.11. Analysis of Neurite Outgrowth 

Neurite outgrowth velocities were calculated from phase-contrast snapshots 

taken at different time intervals following cell plating.  A custom-written Matlab 

program was used to trace and measure the length of neurites.  Branched 

neurites were segmented into straight lines, which were then summed together 

for a total length.  A screen shot from this tracing procedure is shown below, 

Figure 3.5.  Neurite length was then divided by the time lag (from plating to 

snapshot acquisition) to determine outgrowth velocities.   

 

Figure 3.5. Matlab-based analysis of neurite outgrowth. 
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3.2.12. Analysis of Cellular Migration Speeds and Area Fluctuations 

Fibroblast mobility was captured with time lapse imaging via a Zeiss Axiovert 

200M equipped with Axiocam mRm camera and Axiovision software to control 

image acquisition.  For cellular migration studies, several spots within a sample 

were identified and set to acquire DIC images with a 5min time lag.  The end 

result was a multi-file tiff in the form of a movie.  Using the Axiovision Tracking 

Package, cell nucleus movements were traced from frame to frame.  Similar to 

the SMFM data analysis method described above, x and y coordinates of a cell 

nucleus were recorded for each sequential snap shot to provide 2D trajectories.  

Based on the constant time lag of 5min, an average migration speed was 

calculated for each cell.  Based on the cell trajectories, torosity, or the 

directionality of movement, was also determined.  Area fluctuations during 

cellular migration were also analyzed to provide insight into the type of migration 

observed (e.g. mesenchymal, amoeboid, etc.), but to capture more dynamic 

movements, the time lag was shortened to 2min.  Changes in cell area were 

determined from a set of sequential snapshots.  Here, cell area measurements 

were performed by hand using Adobe Photoshop and a tablet PC to outline cells.  

This imaging program provided the number of pixels residing in an outlined-

shape, and with the pixel size (based on the object used for imaging) cell areas 

in µm2 can be calculated.  Relative area fluctuations were then determined by 

comparing the percent change in area of a cell from frame to frame. 
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3.2.13. Preparation of Polyacrylamide Gels 

Polyacrylamide gels were prepared based on a published procedure [37].  

Similar fluorophore embedded gels have previously been applied to studies on 

adherent fibroblasts [36, 38-40].  Here, 1x3in glass slides cleaned and silanized 

by submerging in 0.1M NaOH and 2% (3-Aminopropyl)trimethoxysilane stock 

solutions.  The slides were then washed with deionized water and treated with 

2.5% glutaraldehyde for 30min at room temperature before rinsing again with 

deionized water.  Clean, dry, slides were then equipped with gene frames that 

served as reservoirs for the addition of the unpolymerized gel.  PAA gels with 

embedded fluorescent beads were added by creating a mixture of 422μL of Milli-

Q water, 76μL of PAA, and 2μL of green-yellow fluorospheres (Invitrogen).  This 

mixture was vortexed, briefly sonicated, and cooled over ice before the addition 

of 2.5μL of APS (100mg/mL stock in Milli-Q) and 1µL TEMED.  The mixture was 

again vortexed and 28μL was pipette inside each gene frame.  Slides containing 

the unpolymerized gels were capped (using supplied gene frame tops) and 

placed upside down in a cooled centrifuge (4°C) where they were spun at 

1500rpm for 20min.  This temperature slowed the polymerization process while 

centrifugation brought the fluorescent beads to the surface of the gel.  Gene 

frame covers were then removed and PAA gels were stored in PBS.  

 

Prior to the addition of cells, the gel surface was activated with Sulfo-Sanpah 

(0.5mg/mL in 50mM HEPES), a photoreactive linker  (Pierce Biotechnology), 

under UV radiation.  Gels were rinsed with PBS and coated with fibronectin 
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(incubating the gel at 37°C overnight).  Gels were then rinsed and 1500 3T3 

fibroblasts were plated on each sample. 

 

Force traction measurements on lipid bilayer-based cell substrates were 

performed adding the heterobifunctional linker GMBS (Pierce Biotechnology) to 

the fibronectin functionalized gels above.  This was used to create a linkage 

between the protein and the sulfhydral functionalized lipid DPTE.  GMBS was 

added in excess and allowed to bind over 1h.  Unbound linker was removed with 

PBS rinsing.  Lipid bilayer substrates were then built atop PAA gels as described 

in Chapter 3.2.1.  Here, GUVs containing 5mol% PEG2000-Mal were used for 

the first lipid bilayer.  Following completion of a single or multibilayer stack, 

substrates were prepped for cells as described in Chapter 3.2.1. 

 

 

3.2.14. Traction Force Microscopy 

Force traction microscopy was used to confirm the anticipated decrease in 

cellular traction forces resulting from the mobile linkers on phospholipid bilayer 

substrates.  Here the fluorescent beads embedded in PAA gels described above 

were imaged, using wide-field Epi microscopy, 20h and 40h following cell plating.  

DIC images, and corresponding Epi images, were acquired for representative 

cells in a sample.  Cells were then treated with a small amount of cytochalasin D 

(20µL in 200µL or trypsin) to halt cytoskeletal movements and release cells from 

the substrate.  With cells released, fluorescent beads are displaced back to their 
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native location and Epi images are acquired a second time.  Using custom 

Matlab software, the 2D displacements of the beads were tracked based on a 

published computational approach [30].  With the displacements and known 

elasticity of the underlying PAA, this program calculated the forces generated by 

the cell.  Note, the elasticity of the PAA has been previously determined through 

AFM (by collaborators at the University of Erlangen), for the ratio of crosslinker 

used in the gel preparation. 
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CHAPTER 4. RESULTS AND DISCUSSION 

 

 

4.1. Design and Fabrication of Biomembrane-Mimicking Cell Substrates 

 

 

4.1.1. TYPE 1: Single, Polymer-Tethered Bilayers of Tunable Viscosity 

Previous work from Deverall, et al. [63, 64] has revealed that lipid lateral mobility 

within a physiosorbed polymer-tethered phospholipid bilayer can be regulated 

through lipopolymer tethering concentration in the inner leaflet.  Importantly, 

regulating the tethering concentration for 5-40mol% lipopolymer was shown to 

decrease lateral diffusivity in both leaflets of the lipid bilayer [63].  It has been 

suggested that the reduced diffusion in the outer leaflet is a result of lipopolymers 

acting as diffusion obstacles (pinning sites) and inducing roughening of the 

membrane, as illustrated in Figure 4.1 [63].  It has been hypothesized that the 

energy increase around such pinning sites affects diffusion in both leaflets due to 

the significant morphological coupling between them [63].  In essence, 

lipopolymers are thought to cause deviations from planar geometry and create 

regions of high membrane tension where diffusion is hindered [63].  
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Figure 4.1. Polymer-tethering induced obstructed diffusion in TYPE 1 substrates 
[63]. 
 

 

Published SMFM-WF data of dye-labeled lipids in both the inner and outer 

leaflets of these polymer-tethered lipid bilayers confirm the idea of transbilayer 

coupling of obstructed lipid diffusion, as shown in Figure 4.1.  In Figure 4.2 

changes in lateral diffusion are represented by changes in <r2>, mean squared 

displacement (MSD), where smaller displacements over a given, constant time 

lag indicate slowed diffusion.  Moreover, these results indicated that bilayer 

fluidity in the outer leaflet can be tuned from fluid (5mol% tethering concentration) 

to nearly immobile (30% tethering concentration).  It should be noted that these 

data were obtained using the lipopolymer N-dioctadecylamine polyethloxazoline.  

The TYPE 1 bilayers fabricated within this thesis contained the lipopolymer 1,2-

O-dioctadecyl-sn-glycero-3-[poly(2-methyl-2-oxazoline)50] (PMOX50), but similar 

behavior is expected and has been shown with other lipopolymers within our 

research lab.  
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Figure 4.2. Mean squared displacement, <r2>, data of TRITC-DHPE lipids 
illustrates the impact of tethering concentration on the lateral mobility of lipids 
within TYPE 1 substrates (time lag: 40ms, T=21°C) [63]. 
 

 

In terms of cell substrate design these single, polymer-tethered bilayers (denoted 

as TYPE1 substrates) provide a means of regulating cell-substrate linker mobility 

(thus, mimicking changes in substrate viscosity) through tethering concentration. 

Figure 4.3, illustrates the basic schematic of how lipid bilayer systems were used 

as biomembrane-mimicking cell substrates. 
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Figure 4.3. Schematic of TYPE 1 cell substrates.   
 

 

Here lipid bilayers were fabricated from POPC with adjustable amounts of the 

lipopolymer PMOX50 in the inner leaflet and 5mol% DPTE in the outer leaflet.  

DPTE, a sulfhydral functionalized lipid provided the basis of the mobile cell 

substrate linkers.  Figure 4.3 indicates the use of two linkers L1 and L2.  These 

linkers will be discussed in detail in Chapter 4.2.1, and include a commercially 

available linker (L1) and one consisting of a functionalized quantum dot (L2).  

These are heterobifunctional linkers capable of crosslinking the sulfhydral of 

DPTE to any primary amine expressed by a protein.  In this case, protein P, in 
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Figure 4.3, is Laminin, an ECM adhesion protein commonly used in fibroblast 

and neuron cell studies.  Thus, TYPE1 substrates consist of mobilized, laminin-

functionalized cell linkers whose diffusion properties are easily tuned through 

polymer concentration. 

 

 

4.1.2. TYPE 2: Multibilayer Stacks of Tunable Viscosity 

Multi-bilayer stacks (denoted as TYPE2 substrates) were designed as an 

alternative, more robust approach for regulating cell linker mobility through 

bilayer viscosity.  Unlike single solid-supported lipid bilayers previously employed 

as cell substrates [52, 112], TYPE 2 substrate viscosity is adjusted by altering the 

number of bilayers in the multi-bilayer stack.  This parameter affects the distance 

between a bilayer and the rigid underlying surface, in turn, impacting the degree 

of frictional coupling (or viscous drag).   

 

It is well recognized that the viscous force, F, experienced by a moving object 

(e.g., a cell) in the vicinity of a solid substrate, can be expressed as 

                          
d

Av
F


                                            Eq 4.1.                                      

where A is the area of the object, v is its velocity, η is the viscosity of the liquid, 

and d represents the distance between moving object and solid substrate [101]. 

Similarly, theoretical and experimental studies have shown that lipid/protein 

lateral diffusion in a solid-supported lipid bilayer depends on the degree of 
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frictional coupling between bilayer and underlying solid, a parameter regulated by 

the distance between bilayer and solid [70, 71, 113], as was described in Chapter 

2.3.2. 

 

Based on these established principles, TYPE 2 systems were designed as 

biomembrane-mimicking cell substrates comprised of a stack of multiple, 

polymer-tethered lipid bilayers that combine the important features of tunable 

substrate viscosity and laterally mobile linker molecules.  In these systems, the 

number of bilayers in the multi-bilayer stack regulates the distance between 

adsorbed cells and solid substrate.  Substrate viscosity, and consequently the 

lateral diffusion of cell linkers (affecting viscous drag force and cellular traction), 

is tuned through the formation of bilayer stacks, where additional bilayers result 

in a decrease in frictional coupling between the top, outermost bilayer and the 

solid substrate, as shown in Figure 4.4.  

 

Figure 4.4. Regulating TYPE 2 substrate fluidity by controlling the distance 
between bilayer and underlying solid support. 
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Stacks of polymer-interconnected bilayers were fabricated from individual 

bilayers formed from giant unilamellar vesicles (GUVs) using a procedure 

adapted from literature [56].  The formation of planar bilayers was induced by 

gravity.  GUVs formed by hydrating lipids in a sucrose buffer were placed in an 

equimolar solution of glucose buffer.  As the GUVs sink to the substrate below, 

their intrinsic instability causes them to rupture and roll out to form a bilayer.  This 

process is illustrated in Figure 4.5 (A).

 

Figure 4.5. Schematic of TYPE 2 cell substrates.  TYPE 2 bilayer stacking 
through GUV fusion (A) and cell/substrate linker design (B). 
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An important design aspect of these stacked bilayers is the addition of 

interbilayer connections that covalently link neighboring layers.  This linkage was 

accomplished by routine sulfhydral-maleimide coupling chemistry using the 

thiolated lipid DPTE and maleimide-functionalized lipopolymer PEG2000-Mal.  

Using this inter-bilayer linker concept, subsequent planar bilayers were formed 

by adding GUVs containing complementary linker molecules.  This is depicted in 

Figure 4.5, where a second bilayer, containing 5mol% PEG2000-Mal, is added to 

an initial bilayer containing 5mol% DPTE.  The covalent, polymeric tethering 

between adjacent bilayers was developed to provide a more robust multi-bilayer 

system capable of withstanding cellular pulling forces. 

 

Using this iterative procedure, TYPE 2 systems containing up to six stacked 

bilayers have been fabricated.  In each case, the linker composition of the layers 

was adjusted to insure DPTE was present on the outermost bilayer.  As indicated 

in Figure 4.5 (B), the same cell-substrate linker chemistry used in TYPE 1 

substrates was also used in TYPE 2 systems.  For the purposes of comparing 

cell behavior on substrates of different thicknesses, a single bilayer with 

PEG2000 lipopolymer on the inner leaflet and DPTE on the outer leaflet prepared 

by LB/LS were often utilized, labeled “TYPE 2, single”.  This substrate showed 

intermediate characteristics relative to substrates plated on multibilayer TYPE 2 

systems and laminin coated glass as discussed below.  
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4.2. Characteristics of TYPE 2 Multibilayer Substrates 

 

 

4.2.1. Substrate Homogeneity 

The homogeneity of TYPE 2 substrates was confirmed through Epi fluorescence 

microscopy.  Here, the outermost layer of single, double, and quadruple bilayers 

were prepared with 0.5mol% NBD-PE to allow for fluorescence imaging.  Bilayer 

systems appeared defect free (e.g. void of large holes, etc.) and contained only 

small amounts of excess, unfused, bound GUVs on the surface, as shown in 

Figure 4.6.  Moreover, fluorescence recovery after photobleaching (FRAP) 

studies indicated increased lateral diffusion in the top bilayer with respect to 

increased bilayer stacking.  Initial bleach spots formed after exposing samples to 

a 100watt mercury lamp with an appropriate filter set for 1min are shown in 

Figure 4.6.  The progressively less defined bleach spots shown with increased 

stacking provide qualitative evidence of increased fluidity, as samples with higher 

lateral diffusion rates are capable of exchanging unbleached dye labeled lipids at 

a faster rate.  The increased diffusion also supports a relatively defect free 

system, as defects will hinder lateral diffusion.  Additionally, it should be noted 

that NBD-PE was chosen for FRAP experiments due to its photolability, which 

makes photobleaching easy; less toxic TR-DHPE, was used in cell experiments 

as a means of verifying homogeneity prior to cell plating.  Furthermore, daily 

imaging verified that the bilayer stacks are stable for several days, even in the 

presence of cells.     
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Figure 4.6. FRAP images of single (a), double (b), and quadruple (c) bilayers.  
Images represent initial bleach spots following a lamp exposure of 1min and 
show an increase in fluidity with number of stacked films, as indicated with 
bleached regions of progressively smaller diameters. 

 

 

4.2.2. Lateral Diffusion Properties 

To provide quantitative characterization of bilayer fluidity, SMFM experiments 

were conducted on dye-labeled TRITC-DHPE lipids in a single bilayer (for this 

experiment only, the single was constructed not through LB/LS but by GUV 

fusion onto a fresh glass substrate) and in the top bilayer of double, triple, and 

quadruple bilayer systems.  The outermost layers of TYPE 2 systems were 

prepared with GUVs containing 10-8mol% of these fluorophore-tagged lipids.  As 

discussed in Chapter 4.1.2, TYPE 2 systems were comprised of polymer-

interconnected bilayers where each bilayer contained 5mol% thiolated-lipids or 

lipopolymers designed to form a covalent linkage with neighboring layers.  This 

percentage was chosen based on previous diffusion studies on polymer-tether 

bilayers.  This percentage created stable linkages (Figure 4.4) and a suitable cell 

linker density, while providing accurate SMFM tracking analysis.  Too low 

polymer concentrations can result in out-of-plane bilayer undulations that can 
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compromise the 2D tracking analysis [56].  Moreover, as discussed in Chapter 

2.2.1, the concentration of polymer tethers within a bilayer has been shown to 

impact lateral diffusion by inducing obstacles, where increasing concentration 

results in lower diffusion coefficients [63, 64].  However, it has been shown that a 

tethering concentration of 5mol% has no notable impact on lateral diffusion [64, 

114].   

 

SMFM was performed as previously described on polymer-tethered bilayers [63, 

64, 107], and lipid lateral mobility was measured in terms of the mean-square-

displacement (MSD) at a constant time lag of 40ms.  MSD was calculated as a 

function of time lag, tlag [63, 64, 115, 116], as described in Chapter 3.2.3.  Each 

sample was analyzed using 150 time steps of the same tlag to ensure statistical 

accuracy.  The results show that lateral diffusion is indeed regulated by the 

number of bilayers in a stack, Figure 4.7.  MSD valves for single, double, triple, 

and quadruple bilayer systems were found to be 0.138, 0.196, 0.265, and 

0.324µm2 respectively.  With MSD representing the average displacement of a 

fluorophore within a given time interval, larger displacements directly correlate to 

increased diffusion coefficients.   
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Figure 4.7. Mean squared displacement, <r2>, data of TRITC-DHPE lipids in 
single (I), double (II), triple (III), and quadruple (IV) bilayer systems confirm 

increasing bilayer fluidity with increased bilayer stacking (time lag: 50ms, 
T=21°C).  Each data point represents the average of a minimum of 150 tracks. 
 

 

Analysis of the lipid lateral diffusion in multi-bilayer systems has been performed 

previously on double layer stacks composed of biotin/strepavidin-based 

interbilayer connections [66].  While the MSD reported here is comparable to that 

published, it differs in terms of the overall diffusion change from single to double 

bilayer (which is more in the TYPE 2 systems fabricated herein).  As suggested 

within this published work, this effect is likely due to molecular crowding induced 

by the more bulky interbilayer connections [66].   
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The corresponding thickness values for each bilayer system in Figure 4.7 were 

calculated based on a lipid bilayer thickness of 41Å [117] and a polymer layer 

thickness of 34Å.  Polymer layer thickness can be approximated by the Flory 

radius of the polymer chains using scaling arguments of polymer physics [118, 

119].  The validity of this approach has been experimentally tested on similar 

polymer systems previously using fluorescence interference contrast microscopy 

[120].   

 

The data shown in Figure 4.7 confirm that TYPE 2 substrate fluidity, and thus cell 

linker mobility, can be regulated through bilayer-substrate thickness (affecting the 

degree of frictional coupling).  Additionally, multi-bilayer systems are capable of 

creating markedly higher bilayer fluidities than can be achieved in single, solid-

supported bilayers.  It should also be noted that bilayer stacking resulted in a 

near linear increase in fluidity from 2-4 bilayers and that the trend line passes 

through zero, which would represent a completely immobile surface.  As shown 

in Figure 4.7, the linear trend line displays an excellent fit when single bilayer 

systems are omitted.  While data from a single bilayer is shown for comparison, it 

represents a different system, free of interbilayer connections and any induced 

polymer effects, and as expected, has differing diffusion properties.  Moreover, 

preliminary AFM studies indicate that multibilayer substrates show increased 

bilayer undulations.  This factor, which results in deviations from planarity, will 

likely affect diffusion.        
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While the translational diffusion of dye-labeled lipid constituents in TYPE 2 

substrates provides an efficient means of characterizing a change in substrate 

fluidity, it is unlikely that cells will grab and displace only individual lipids.  

Instead, it is expected that cells may regulate viscous drag force through the 

formation of FAs.  In the case of lipid bilayer-based substrates, FAs would 

consist of clusters of cell-substrate linkers.  Linker clustering would result in the 

diffusion of large assemblies of lipids.  In theory the formation of FAs (i.e. lipid 

clusters) should lead to increased viscous drag and allow the cell to develop 

more traction on these fluid substrates.  The diffusion of macromolecular 

structures was described in Chapter 2.3.2.  As shown in equations 2.4 and 2.5, 

the viscous drag coefficient is directly affected by the radius of the diffussant, 

where increased size results in increased viscous drag.   

 

In order to experimentally determine the impact of FA formation on viscous drag, 

diffusion tracking was performed with 1µm fluorescent beads on different TYPE 2 

systems.  A 1µm bead provides an excellent FA mimic as its size is comparable 

to a small FA (classical FAs are on the order of 2-5µm in diameter [121].  Here, a 

heterobifunctional linker containing maleimide and biotin functionalities 

(Maleimide-PEO2-Biotin, Pierce Biotechnology) was added to TYPE 2 substrates 

containing 5mol% DPTE in their outermost layer.  NeutrAvidin-coated 

fluorospheres (Invitrogen) were then added and allowed to bind; excess beads 

were removed with rinsing.  Due to the size of the fluorospheres, bead tracking 

was performed on an Epi microscope using a 2min time lag.  Diffusion 
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coefficients were calculated for the fluorescent beads and are plotted along with 

those obtained from lipid tracking in Figure 4.8. 

   

 

Figure 4.8. Impact of diffussant size on the diffusion coefficient in TYPE 2 
substrates.  Bead tracking was performed on an Epi microscope (time lag: 2min, 
T = 21°C).  Each point represents the average of no less than 150 tracks (error 
bars of 5% are not displayed in figure, as they were masked by markers in some 
cases).  Trendlines are simply used to guide the eye.  
 

 

As shown in Figure 4.8, diffussant size greatly affects lateral mobility.  The 

translational diffusion coefficients of lipids on TYPE 2 double and quadruple 

bilayers were 1.33 and 1.62µm2/min respectively.  In comparison, beads on 

TYPE 2 double and quadruple bilayers showed notably slower diffusion 

coefficients of 0.37 and 0.47µm2/min.  This reveals that cells may be able to 

modulate viscous drag through the regulation of FA size.  Note, as mentioned 
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above, and as shown in Figure 4.8 the diffusion data for the single layer systems 

do not completely correlate with that for the multilayer systems.  This is likely 

explained by potential presence of bilayer undulations in multibilayer substrates, 

which may affect the detected lateral mobility of diffusing fluorophores.  The 

undulations are thought to be the result of water trapped between lipid bilayers 

[56] and have been observed through AFM on TYPE 2 substrates (data not 

shown).  In the case of bead tracking, diffusion coefficients on single and double 

bilayers were identical.  Groves, et al. studied the diffusion of lipid domains 

(another form of lipid clusters) in multibilayer systems and found the same result 

[56].  However, like lipid diffusion, bead diffusion on TYPE 2 substrates was 

shown to increase with stacking.   

 

 Additionally, the diffusion of lipid clusters (i.e. bead diffusion) can be modeled 

using the Sackmann-Evans theory for protein diffusion.  From the obtained 

diffusion coefficients, the degree of frictional coupling can be calculated using the 

Stoke’s-Einstein relation, Eq 2.6.  Here, the frictional coupling, also referred to as 

the viscous drag coefficient, is affected by several factors including the frictional 

shear stress created by diffusion particles, polymer-induced effects, and the 

direct frictional coupling experienced by the bilayer in close proximity to its solid 

support, see Chapter 2.2.3.  The viscous drag coefficients (calculated from the 

diffusion coefficients of beads) of TYPE 2 double and quadruple bilayers were 

calculated as 1.1x10-8 and 8.6x10-9kg/s respectively based on Eq 2.6.  With 

these drag coefficients the contribution of frictional coupling can be extracted and 
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approximated as a frictional coefficient using Eq 2.4 and Eq 2.5.  Note, the 

calculated value represents an approximation because while the diffusion 

coefficients were acquired for 1µm beads, the actual radius of the diffusing lipid 

cluster is unknown.  This is a factor of NeutrAvidin packing on the bead (i.e. 

linker density), and the actual available area for binding (a factor of the bead 

curvature).  Estimates of the frictional coefficient on TYPE 2 double and 

quadruple bilayers were calculated assuming a diffussant radius between 0.5µm 

(the size of the whole bead) and 0.25µm (assuming that bead curvature only 

makes half the bead’s surface area available for binding).  This means the 

frictional coefficient is between 3.3x103 and 1.3x104kg/s on a double bilayer, and 

between 2.18x103 and 8.17x103kg/s for the quadruple system.           

 

 

4.2.3. Substrate Integrity 

In order for TYPE 1 and TYPE 2 systems to be useful for cell studies involving 

substrate viscosity, and its role in the mechanotransduction process, these 

bilayer systems must be able to withstand pulling forces administered by 

adherent cells.  Moreover, direct interactions with the underlying substrate must 

be eliminated to confirm that observed cellular mechanoresponse is truly a result 

of substrate viscosity. 

 

The morphology of fibroblasts cultured on glass is well documented.  When 

grown on these rigid substrates, fibroblasts take on large, stretched, polygonic 
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shapes with prominent stress fibers; phenotypes atypical of cells in tissue.  This 

characteristic phenotype can be used to confirm any potential interaction with the 

underlying solid substrate in TYPE 1 and TYPE 2 systems.  Previously reported 

studies of cells plated atop lipid bilayers have concluded unwanted interaction 

with the underlying glass substrate based on the observation of similar polygonic 

cell shapes [122].  A fluid substrate designed to limit traction forces should, in 

theory, result in the inability maintain these stretched shapes containing large, 

mature stress fibers.   

 

Plating GFP-actin transfected fibroblasts atop TYPE 1 substrates, in the absence 

of cell-substrate linkers, confirms the surpression of cellular interaction with the 

underlying glass, Figure 4.9.  These confocal images show cells failing to spread 

on these bilayer substrates.  While the edges of the cells contained extensions 

that actively probed the environment for areas to grip and develop traction, the 

spherical shape and lack of actin stress fibers confirms that these extensions 

were not reaching the underlying glass and indicates little, if any, interaction with 

the underlying glass. 
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Figure 4.9. In the absence of cell-substrate linkers, plated fibroblasts on TYPE 1 
substrates maintain a spherical morphology. 
 

 

The addition of a polymer cushion beneath TYPE 1 (and TYPE 2) systems 

functions to uplift and disconnect the lipid bilayers from the underlying glass.  

Even in TYPE 1 single bilayers systems, this addition appears to eliminate 

interaction with underlying glass and shows a marked improvement over 

previous studies with lipid-bilayer based cell substrates.  However, aside from the 

simple addition of lipopolymers, previous studies relied on vesicle fusion 

techniques to form bilayers.  Using the LB/LS procedure described in Chapter 

2.1.1, for fabricating TYPE 1 systems and the initial bilayer of TYPE 2 systems 

resulted in more homogeneous films with fewer defects.   

 

In a similar experiment on TYPE 2 bilayers, cells were plated on a control 

substrate and a double bilayer containing cell-substrate linkers to ensure cell 

adhesion and spreading was a result of cells interacting with the fluid cell 

substrate linkers of the lipid bilayer and not with the underlying glass.  The 



86 
 

control substrate consisted of essentially the “underside” of a double bilayer 

system, as shown in Figure 4.10.  Here, cells were plated on a typical TYPE 2 

substrate and a substrate displaying 5mol% PEG2000Mal on the surface.  PEG-

modified surfaces are well known for their ability to inhibit cell growth.  Cells were 

allowed to grow for 24h before being analyzed in terms of adhesion (i.e. cell 

density and shape: spherical vs. nonspherical), spreading (i.e. cell area), and 

cytoskeletal organization (i.e. visible stress fibers vs. no visible stress fibers). 

 

 

Figure 4.10. Schematic of control substrate designed to mimic the underside of a 
double bilayer system. 



87 
 

Cellular adhesion and cytoskeletal organization are shown in Table 4.1.  

Essentially all cells plated on the double bilayer system adhered and spread with 

only 0.9% maintaining a spherical (weakly adsorbed) shape.  However, on the 

control system, 55% of cells failed to spread.  Moreover, cell densities of 

0.88cells/mm2 on the TYPE 2 substrate and 0.46cell/mm2 on the control 

suggested that only around 50% of the total plated cells even adhered to the 

control substrate.  These data confirm that cell adhesion and spreading on TYPE 

2 substrates are not a result of cell locating bilayer defects and interacting with 

the underlying glass. 

 
 
Table 4.1. Evaluation of fibroblasts shape and cytoskeletal stress fiber formation 
20h after plating on TYPE 2 double bilayer and control substrate (110 cells 
analyzed for each substrate).   

 

 

 

 

Cellular spreading, 24h after plating on these substrates was also analyzed in 

terms of cell area, see Figure 4.11; data further validate that cell growth is not a 

result of bilayer defects.   

 

Substrate Spherical Cells Stress Fiber Containing Cells Cell Density

Control    55.0% 0% 0.46 cells/mm2

Double Bilayer   0.9% 36% 0.88 cells/mm2
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Figure 4.11. Cell area histogram of cells plated on control bilayer systems (see 
Figure 4.9) illustrates the lack of spreading on the control system compared to 
the TYPE 2 double bilayer (analysis performed 24h after plating).   
 

 

 Additionally, the stress fiber data contained within Table 4.1 suggested that even 

on fluid substrates with mobile cell linkers, cells can develop the necessary 

traction force to create stress fibers, even if the stress fibers are much smaller 

and more dynamic than those observed on rigid surfaces.  This ability is likely 

due to the fact that, in a fluid system, cells can adhere and simply wait for 

additional cell linkers to diffuse by.  Over time it is assumed that cells can gather 

clusters of cell linkers to form small FAs.  The viscous drag experienced by a cell 

pulling on a cluster of linkers should be substantially larger than pulling a single 

cell linker and this may provide the cell with the ability to create thin, dynamic 
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stress fibers.  Fluorescent bead tracking confirmed these results as shown in 

Chapter 4.2.2, where it was shown the diffusion coefficients of lipid clusters are 

notably reduced compared to individual lipids.  The delayed spreading time 

observed on TYPE 1 and 2 substrates (typically on the order of 4h) suggests that 

this process may in fact be happening.   

 

The control experiments above successfully addressed the possibility of defects 

present in TYPE 1 and 2 substrates on the basis of cell shape and cytoskeletal 

organization.  However, what if cell adhesion and spreading induces defects that 

promote these processes?  All cell work on TYPE 2 bilayers consisted of work 

with 3T3 fibroblasts.  These cells were chosen for their robustness and the fact 

that they have been previously shown to display elasticity-dependent properties.  

However, the pulling force of fibroblasts is relatively strong, on the order of 

7,000pN (leading edge) to 100,000pN (trailing edge).   

 

Substrate integrity under adherent fibroblasts was validated through fluorescence 

microscopy.  As stated previously, the outermost layers of all lipid bilayers, TYPE 

2, were labeled with small quantities dye-labeled lipids (TR-DHPE).  This enabled 

imaging prior to cell plating to confirm substrate homogeneity and imaging after 

plating to confirm substrate integrity.  Fluorescence microscopy under plated 

cells was used to verify that adherent, migrating cells were not pulling the lipid 

bilayers apart and imparting defects.  Intensity analysis of dye-labeled bilayers 
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under adherent cells shows no evidence of large scale cell-induced defects, 

Figure 4.12. 

   

 

Figure 4.12. Fluorescence intensity analysis of TYPE 2 lipid bilayers under 
adherent cells.  Average intensity values for DHPE-TR labeled bilayers were 
obtained outside, inside, and on the edge of adherent cells (analysis performed 
20h after plating). 
 

 

The presence of defects (e.g. holes) should result in a decrease in fluorescence 

intensity.  Using imaging software, the average fluorescence intensity in areas 

inside the cell, outside the cells, and on the edge (shown by boxes in Figure 

4.12.) were determined and are tabulated bellow.  As shown in Table 4.2, little 
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variation in fluorescence intensity is shown.  If cells were indeed penetrating the 

bilayer, this would be expected to occur near the edge regions.  The fact that the 

intensity of the edges is in line with that inside the cell, and within the standard 

deviation of that outside the cell, shows that this is unlikely.   

 
 
Table 4.2. Fluorescence intensities (Au) of TYPE 2 substrates in areas inside, 
outside, and on the edge of adherent cells.  Fluorescent signal results from the 
addition of 5mol% TR-DHPE in substrates.      

 

 

The above controls were used to show the absence of visible defects.  However, 

they do not account for the presence of smaller, sub-diffraction, inhomogeneities.  

While too small to capture through microscopy, the occurrence of any such areas 

would manifest themselves through changes in the lipid diffusion, and result in 

slower diffusion rates and/or larger immobile fractions.  Small scale FRAP was 
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performed using a confocal microscope to address the possibility of increasingly 

small defects. 

 

If cell penetration through the bilayer occurs, it is expected to be at the sites of 

FAs, areas where the cell is physically gripping the surface and developing 

traction force.  Thus, cells were transiently transfected with GFP-FAK (focal 

adhesion kinase), plated on a TYPE 2 double layer containing 5mol% TR-DHPE 

(dye-labeled lipids), and allowed to adhere and spread overnight.  The cells were 

imaged 20h after plating.  The green fluorescence in Figure 4.13 (a) represents 

the labeled FAs.  The image to the right, Figure 4.13 (b) shows an overlay of a 

DIC image and images collected through GFP and Texas Red filter sets.  

Confocal FRAP was performed on an area directly under an FA, marked as “c,” 

and an area outside the cell, marked as “d.”  Figure 4.13 (c) and (d) show the 

initial bleach spot (left) and final recovery spot (right) after FRAP.  Both areas of 

the bilayers displayed excellent recovery whether under and outside FAs.  

Quantitative FRAP data are plotted below, Figure 4.13 (e).  The fluorescence 

recovery curves of both areas overlay nicely, corresponding to very similar rates 

of diffusion, and show roughly the same fluorescence plateau value, 

corresponding to very similar immobile fractions.   
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Figure 4.13. Confocal FRAP performed on dye-labeled (DHPE-TR) TYPE 2 
bilayers underneath the FAs of adherent fibroblasts confirms substrate integrity.  
Confocal image of GFP-FAK transfected 3T3 fibroblasts is used to visualize FA 
distribution (A).  Overlaid DIC, and fluorescent images (GFP and DHPE-TR) 
were used to chose an area underneath (C) and outside (D) FAs sites for 
confocal FRAP analysis.  Obtain FRAP curves for spots (C) and (D) are 
comparable and show not net loss in fluidity (E).   
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This confirms that the presence of adherent cells does not affect the 

homogeneity of the bilayer and that the plated cells are truly resting on top of the 

substrate.  Thus, any mechanoresponse shown on TYPE2 systems, must be a 

result of changes in substrate fluidity affecting cellular traction forces.         

 

     

4.3. Design of Quantum-Dot Based Heterobifunctional Linkers 

 

 

4.3.1. Linker Design 

Heterobifunctional linkers were designed to efficiently link adhesion proteins to 

lipids present in TYPE 1 and TYPE 2 substrates.  As illustrated in Figure 4.4., 

TYPE 2 bilayers were fabricated using an iterative approach that utilized the 

sulfhydral lipid DPTE in the outermost layer of these bilayer systems.  Thus, 

maleimide/sulfhydral coupling chemistry was again utilized as part of the 

bifunctional linker.  For the protein linking side, an NHS active ester was used to 

bind primary amines, which are widely present in proteins.  Both 

maleimide/sulfhydral and ester/amine coupling chemistry is efficient, does not 

require a catalyst and can be performed in an aqueous environment at room 

temperature.   

 

With prior knowledge of quantum dot (QD) synthesis and functionalization, QDs 

provided an excellent starting block for linkers.  Moreover, utilizing QDs in the 
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linker design holds promise for dynamic imaging studies in the future.  QDs were 

synthesized using a previously published sonochemical approach [105].  As 

discussed in Chapter 3.2.5, directly following their synthesis, CdSe/ZnS QDs are 

ill-suited for biological applications; they are not water soluble, prone to 

aggregation and non-specific adsorption, and display some cytotoxicity.  

However, QDs are efficiently coated through published lipopolymer 

encapsulation techniques [106, 107], see Chapter 3.2.5.  Here, the amphiphilic 

nature of the lipopolymers is used to create a self-assembled lipid monolayer 

“shell” over hydrophobic QDs.  Additionally, the PEG moieties of the lipopolymers 

function as entropic springs to hinder aggregation.  Doping the lipopolymer 

mixture with small quantities of functionalized lipopolymers, in this case 

PEG2000-Mal and PEG2000-NHS, allowed the formation of QD-based linkers as 

illustrated in Figure 4.14. 

 

Figure 4.14. Design of cell-substrate linkers based on QDs encapsulated with 
functionalized lipopolymers. 
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The quality of the synthesized QD-based linkers was confirmed through FCS 

prior to use.  FCS data reveal the size (hydrodynamic radius), aggregation state, 

and concentration of the linkers based on diffusion coefficients; see Chapter 

3.2.6.  Diffusion coefficients were compared to published data for lipopolymer 

encapsulated QDs [104] to ensure QD stocks were free of large aggregates, 

which would indicate impartial/failed encapsulation and hinder proper functioning.  

In practice, the characteristic diffusion time of monodisperse, lipopolymer 

encapsulated QDs is approximately 1400-1800µs (diffusion range is based on 

fluctuations in laser power from day-to-day). 

 

Additionally, this encapsulation approach produced stable QD coatings owing to 

hydrophobic and electrostatic interactions of the lipopolymers with the 

coordinating solvent present on the surface of quantum dots.  Shelf lives in the 

order of months have been observed, compared to weeks when using more 

traditional surface exchange coating procedures.    

 

 

4.3.2. Linker Functionality in Live Cell Applications 

Live-cell SMFM-TF on QD-labeled lipids in the plasma membrane provided 

further validation of proper linker functioning while simultaneously ensuring 

biocompatibility and overall bioinertness.  Here, fusogenic SUVs were prepared, 

as described in Chapter 3.2.7, and labeled with maleimide functionalized 

lipopolymer encapsulated QDs.  This linkage was facilitated by the thiol-
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maleimide coupling chemistry described above; small quantities, 10-3mol%, of 

DPTE were used in the preparation of SUVs.  Labeling was verified through FCS, 

where differences in QD diffusion coefficients were observed upon binding as 

QD-labeled SUVs displayed an average diffusion time of 3257µs compared to 

1533µs for unbound QDs.  This change is a result of the increased size of the 

QD-labeled SUV, which slows diffusion.   

 

Excess QDs, present in the fusogenic SUV solution, containing maleimide 

functional groups have the potential to nonspecifically interact with various cell 

membrane proteins (e.g. proteins with exposed cysteine residues).  FCS was 

used to confirm the absence of unbound QDs prior to fusion.  In a titration 

experiment, functionalized QDs were slowly added to the SUV stock.  By 

monitoring changes in diffusion time the appropriate amount of QDs needed for 

labeling could be determined.  When labeling is complete and further addition 

results in an excess of unbound QDs, the autocorrelation curve generated by 

FCS can no longer be described with a single component fit.  Instead, the 

autocorrelation curve of labeled-SUVs in the presence of excess QDs is best 

described with a two component fit.  In this case, the two component fit resulted 

in components with diffusion times of 3428.5µs and 1743.4µs, corresponding to 

QD-labeled SUVs and unbound QDs respectively. 

 

A small amount of the QD-labeled SUV stock, free of excess QDs, was added to 

the culture media of adherent COS 7, HEK293, and 3T3 cells.  Following fusion, 
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SMFM-TF was performed in collaboration with Ken Ritchie (Purdue University).  

Data were acquired at 30 frames per second (FPS).  Histograms of the observed 

diffusion coefficients are presented in Figure 4.15.  When compared to published 

diffusion coefficients for dye-labeled lipids, Table 4.3, the results obtained with 

QD-labeled lipids are very similar.  The only divergence from published data was 

seen in the HEK293 cells.  However, previous studies on HEK293 have indicated 

a rather large variation in diffusion coefficients for this cell line [123].  Figure 4.15, 

shows that, in fact, that HEK293 cells displayed the broadest diffusion coefficient 

distribution with QD-labeled lipids as well.  The variation seen in this particular 

cell line likely results from their less flattened morphology; deviations from 2D 

impact the effectiveness of single molecule tracking.       

 

Any unwanted interaction with membrane components, nonspecific adsorption, 

or toxicity effects would manifest themselves in the observed diffusion 

coefficients.  The excellent agreement of QD diffusion data shown in Table 4.3 

not only confirms proper linking, but also demonstrates the biocompatibility and 

inertness of lipopolymer encapsulated QDs.     
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Figure 4.15. Diffusion coefficient histograms obtained from QD-labeled lipid 
tracking on live COS 7, HEK293, and 3T3 cells.  
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Table 4.3. QD-labeled lipid diffusion in cell plasma membranes compared to that 
previously obtained with dye-labeled lipids.  

 

Probe Cell Line <D> m2 s-1 Reference 

Cy3-CtxB-GM1 COS-7 1.01 
Kenworthy, et al. 

(2004) [124] 

QD-DPPE COS-7 1.07 This work 

Cy3-DOPE HEK293 0.41 
Murase, et al.  

(2004) [123] 

QD-DPPE HEK293 0.70 This work [107] 

diIC18Icc 3T3 0.68 
Metcalf et al.  

(1986) [125] 

QD-DPPE 3T3 0.63 This work 

 

 

The above SMFM-TF experiments demonstrate proper functioning of the 

maleimide component of lipopolymer QDs.  Similar testing was performed to 

ensure proper active ester/amine binding.  Here, QDs were coated with an 

identical lipopolymer composition except the PEG2000-Mal was replaced with 

PEG2000-NHS.  This particular lipopolymer is not commercially available and 

was synthesized by removing the double bond on the maleimide functionality of 

PEG2000-Mal.  This was performed in a straightforward hydrogenation reaction 

catalyzed by palladium activated charcoal.  The formation of PEG2000-NHS was 

confirmed through NMR; indicated through the appearance of a peak at 2.7ppm. 

 



101 
 

Biocompatibility and functionality testing of PEG2000-NHS QDs were performed 

by a fellow lab member, Amanda Siegel.  Newly prepared NHS functionalized 

QDs were bound to transferrin antibodies and applied to cells (adipocytes) 

expressing transferrin receptor in their plasma membrane.  Live cell SMFM 

confirmed successful linking and allow for protein tracking within the plasma 

membrane.  An example histogram of MSD values for the diffusion of QD-tagged 

transferring receptors diffusing in the plasma membrane of adipoctyes is shown 

in Figure 4.16. 

 

 

Figure 4.16. SMFM protein tracking using PEG2000-NHS-functionalized QDs 
confirms proper binding.  Histogram displays <r2> values for QD-tagged 
transferrin receptors diffusing in the plasma membrane of adipocytes (time lag: 
40ms, T = 21°C). 

 
 

0

20

40

60

80

100

120

140

160

180

200

Fr
e

q
u

en
cy

Mean squared displacement, <r2> (μm2)

QD-tagged protein tracking



102 
 

With both functional units of the cell linker tested for biocompatibility and proper 

linking, the QD-linkers depicted in Figure 4.14, containing quantities of PEG2000-

Mal and PEG2000-NHS were used as cell/substrate linkers.  Linker L1 (sulfo-

KMUS), shown in Figure 4.13 was used as a control linker to ensure proper 

binding.  This commercially available heterobifunctional linker contains sulfhydral 

and amine binding groups and was used as a comparison to lipopolymer coated 

QDs.  The synthesized QD-based linkers were found to perform identically 

compared to the commercial linker.  

 

 

4.4. Cellular Mechanoresponse on TYPE 1 Substrates of Tunable Viscosity 

 

 

4.4.1. Neuron Outgrowth and Network Formation 

In collaboration with Josef Kӓs, University of Leipzig, PC12 neurons were plated 

on TYPE 1 substrates.  As described previously, substrate viscosity was tuned 

through tethering concentration, which impacted cell linker mobility.  In this case, 

the mechanoresponse of neurons was characterized on TYPE 1 systems of 5% 

and 30% tethering concentrations.  These percentages reflect the limits of fluidity 

regulation for these substrates, where 5% tethering concentration displays similar 

diffusion coefficients to a tether-free solid supported bilayer system and 30% 

represents a near immobilized diffusion; these results were reported previously 

and were shown in Figure 4.2. 
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Phase contrast microscopy was used to image the P12 neurons 20h after plating.  

The images acquired revealed that substrate viscosity had a profound impact on 

neurite outgrowth and network formation.  Less viscous substrates showed 

accelerated growth; representative snapshots are shown in Figure 4.17. 

 

Using Matlab, the length of individual neurite extensions were measured.  

Branching was accounted for by including the length of the branches in the total 

outgrowth for the neurite.  Knowing the precise time of image acquisition allowed 

for the determination of neurite outgrowth velocities.  As shown in Figure 4.18, 

increased outgrowth was observed on the more fluid system, 5mol% lipopolymer 

tethering concentration.         

 

The increased growth and network formation seen on TYPE 1 substrates of 

higher fluidity correlates nicely with existing data of neuronal mechanoresponse 

to substrate elasticity.  It has been shown previously [86, 87], that neurons prefer 

growth on softer substrates.  This is largely explained by findings that reveal 

cells’ preference for growth on substrates comparable to their native tissue 

environment [79].  In this case, for example, brain tissue is notably softer than 

connective tissue with an elastic modulus of 0.1-10 compared to 600-

1,000nN/µm2 [90].  Moreover, neuronal cells direct very small forces onto their 

substrates, orders of magnitude smaller compared with other cell lines [90].  This 

fact reveals that neuronal cells are not required to generate high traction forces 

for movements and growth.  In fact, many believe neurite outgrowth is more a 
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Figure 4.17. Neurite outgrowth and network formation is accelerated on more 
fluid, 5% tethering concentration (Bottom), compared to more viscous, 30% 
tethering concentration (Top) TYPE 1 substrates. 
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Figure 4.18. Neurite outgrowth velocity histograms on TYPE 1 substrates 
composed of 5% and 30% polymer-tether concentrations indicate increased 
growth on the more fluid substrate. 
 

 

result of pushing than pulling [based on personal communications with Professor 

Josef Kӓs].  This explains the accelerated growth seen on more fluid TYPE 1 

substrates.   

 

Moreover, neuronal mechanosensing of substrates stiffness has been modeled 

using the “motor-clutch” force transmission system [126].  This model, which has 

been experimentally confirmed, predicts fast actin retrograde flow on stiff 

substrates and slow actin retrograde flow on soft substrates [126].  Additional 

research has shown that actin retrograde flow inversely impacts neuron growth 
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cone advancement [127, 128], explaining the previously observed increase in 

neurite outgrowth velocities on soft substrates [86, 87].  Similar mechanosensing 

may be utilized in the assessment of substrate viscosity as the 

mechanoresponse on TYPE 1 systems is similar to that on soft PAA gels.  

 

The fact that neurons prefer more diffuse surfaces makes TYPE 1 substrates an 

excellent candidate for the study of mechanotransduction in neurons.  While the 

addition of the polymer tether under TYPE 1 substrates appears to suppress 

cellular interaction with underlying glass (as suggested in Figure 4.9.), neurons’ 

preferences for softer substrates eliminate the need for the more robust TYPE 2 

multi-bilayer stacks.  The inability of TYPE 1 substrates to illicit a response in 

fibroblasts led to the design and fabrication of TYPE 2, which are capable of 

more dramatic changes in substrate viscosity.   

 

 

4.5. Cellular Mechanoresponse on TYPE 2 Substrates of Tunable Viscosity 

 

 

4.5.1. Fibroblast Phenotypes 

As discussed in Chapter 2.4, adherent cells continually probe their surroundings 

through actomyosin-mediated pulling forces.  Mechanical cues are then 

transformed into biological signals that can lead to a variety of cellular responses, 

including changes in cellular phenotype.  To explore the impact of linker mobility 
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(i.e. substrate viscosity) on cellular mechanotransduction and response, 3T3 

fibroblasts were plated on TYPE 2 substrates containing 5mol% mobile Laminin-

based cell linkers as illustrated in Figure 4.14.  Cell adhesion and spreading on 

laminin-functionalized substrates is comparable to that on the more widely used 

fibronectin-based substrates [129].  While these robust cells, capable of 

generating large pulling forces, were ill-suited for experiments on TYPE 1 

substrates, TYPE 2 systems presented stable (capable of withstanding cellular 

pulling forces) platforms where more dramatic changes in substrate viscosity 

could be achieved.      

 

Cellular mechanoresponse in terms of phenotypical changes were observed 

through DIC and phase contrast images taken at 20h and 40h marks after 

plating.  Immediately following plating, cells displayed delayed spreading and 

maintained their spherical shape for upwards of 4h.  This is strikingly different 

compared to cells plated on laminin coated glass and culture dishes where 

spreading is typically observed within 30-60min.   This behavior, described 

Chapter 4.1.3, is likely the result of adherent cells slowly collecting mobile cell 

linkers as they diffuse by in order to cluster cell-substrate linkers into FAs. In this 

case of mobile linkers, increasing the size of cell-substrate linker clusters should 

increase the viscous drag experienced during cellular contraction, giving cells the 

ability to modulate traction forces.  This aspect was shown in Chapter 4.2.2 

where 1µm beads were shown to diffuse at a much slower rate than individual 

lipids.  FAs, while thought to be small and dynamic in these fluid substrates, are 



108 
 

potentially still needed to induce cell spreading.  After 4h, fibroblasts showed 

pronounced spreading on TYPE 2 substrates.   

 

Brightfield imaging of 3T3 fibroblasts on TYPE 2 substrates 20h and 40h after 

plating revealed drastic phenotype changes compared to that observed on 

traditional rigid culture dishes, and even that on softer PAA gels.  Figure 4.19 

depicts six representative cell shapes seen on TYPE 2 substrates.   

 

 

Figure 4.19. Characteristic fibroblast phenotypes on TYPE 2 substrates. 
 

 

The relative abundance of the different shapes was correlated to substrate 

viscosity.  The overlaid morphology histograms in Figure 4.20 show varying 

populations of these shapes with respect to glass (control), single, double, and 

quadruple TYPE 2 substrate (shape analysis preformed 40h following plating).  

These observed cell phenotypes are significant in that they show intriguing 
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parallels and remarkable differences compared to mechanoresponse previously 

observed traditional culturing surfaces (e.g. rigid plastic) and on 2D PAA gels of 

adjustable viscoelasticity.  While larger polygonic and crescent shapes are typical 

on rigid surfaces and the smaller (i.e. triangle) shapes are representative for 

softer PAA substrates, the emergence of shapes with a tendency to form long 

cellular extensions is a deviation from that previously observed on PAA gels [8, 

22].  Here, the presence of spindle and dendritic fibroblasts is fascinating as 

these phenotypes are characteristic for fibroblasts embedded in 3D collagen 

matrices [3, 77].  As shown in Figure 4.20, cells display increased populations of 

spindle and dendritic cells when plated on increasing fluid substrates where 

traction forces are further suppressed.  In a general trend, fibroblasts take on 

progressively smaller, more spherical shapes displaying cellular extensions in 

response to decreased substrate viscosity.  The predominant morphology of 

fibroblasts plated on glass is polygonic, on single bilayers it is crescent, and on 

TYPE 2 double and quadruple bilayers it is triangle and spindle respectively.   
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Figure 4.20. Overlaid cellular phenotype histograms for fibroblast plated on 
laminin-coated glass (control) and TYPE 2 single, double, and quadruple reveal 
the dependence of cell shape on substrate viscosity (150 cell were analyzed for 
each system 40h after plating).  
 

 

Dendritic and spindle morphologies in fibroblasts show similar morphologies to 

neurons and are thought to represent the quiescent/resting state of these cells 

within a tissue [3].  As mentioned in Chapter 4.3.1, accelerated dendrite 

outgrowth has been previously reported for neurons plated on increasingly soft 

PAA gels.  Comparable results have also been observed on neurons plated in 3D 

polymeric substances [130].  Similarly, using TYPE 2 substrates, fibroblasts have 

shown viscosity-dependent extension properties.  The fraction of cells showing 

these processes increased with bilayer fluidity. While on single layer substrates 

only about 22% of the cells showed extensions of more than 5μm after 20h, this 

rate increased to approximately 39% on double and 57% on quadruple bilayer 

systems.  On quadruple bilayers the extensions are more pronounced and can 
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span distances of up to 50µm.  Moreover, the emergence of these shapes under 

conditions of high fluidity indicates that TYPE 2 systems may be capable of 

creating a 3D mimic using a 2D platform; this is a major advantage as 

characterization in 2D is far less complicated and problematic.     

 

Additionally, analysis of cellular phenotype at both 20h and 40h after plating 

provided further evidence that the mechanoresponse observed was a direct 

effect of substrate viscosity and not any unwanted interaction with the underlying 

glass due to potential bilayer defects.  Cell shape histograms at 20h and 40h, for 

cells plated on a quadruple TYPE 2 substrate, are shown in Figure 4.21.  In the 

case of bilayer defects, it is expected that cells would take on larger, more 

polygonic shapes over time as a result of finding additional defects; interaction 

with the rigid underlying surface would provide immobile anchoring sites capable 

of creating larger traction forces.  Instead, as indicated in Figure 4.21, cells 

actually progress to smaller, more spindle-like shapes over time; cell shape 

equilibrium was reached at approximately 40h.  Not only does this indicate the 

absence of interaction with the underlying glass, it also suggests a potentially 

different form of movement and spreading that are discussed further in below.  

Moreover, with this data it can be confirmed that changes in fibroblast phenotype 

are a result of changes in substrate viscosity affecting cell-linker mobility.  Less 

stretched shapes are expected under circumstances of lower traction.  All 

traction forces present, be they small, are a result of the viscous drag force 

experienced as cells pull the mobile cell linkers. 
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Figure 4.21. Cell shape classification 20h and 40h after plating shows the 
morphological progression of fibroblasts and supports the position that these 
systems show largely defect-free substrates (130 cells analyzed at each time 
point).    

 

4.5.2. Fibroblast Actin Cytoskeleton 

Cellular phenotypes correlate closely to the internal organization of the actin 

cytoskeleton.  The stretched, polygonic shapes introduced in Chapter 4.4.1 are 

typical of fibroblasts cultured on tradition surfaces such as glass and plastic.  

These shapes result from the ability of the adherent cell to generate large traction 

forces and are characterized by cytoskeletal organizations containing large 

quantities of stress fibers.  These actin bundles are required for cells to maintain 

these stretched shapes.  
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Cytoskeletal organization of 3T3 fibroblasts was visualized through transient 

transfection with GFP-actin.  Here, transfected cells were plated on TYPE 2 

substrates.  Epi microscopy was performed 20 and 40h hours after plating and 

representative fluorescent and corresponding phase contrast images are 

displayed in Figure 4.22. 

 

 

Figure 4.22. Micrographs of 3T3 fibroblasts cultured for 20 h on laminin-coated 
glass and TYPE 2 substrates.  On laminin-coated glass (a), cells show numerous 
stress fibers spanning the whole cell. On single bilayers (b), stress fibers are 
reduced and replaced by cortical actin structures. On double (c) and quadruple 
(d) bilayers, cells polarize and begin forming long stretched processes. 
 

 

Stress fiber structures of the actin cytoskeleton represent bundles of actin 

filaments.  These structures can be divided into three groups based on 

subcellular location and interaction with FAs [131-133];  these divisions include 

ventral stress fibers (VSFs), transverse arcs (TAs), and dorsal stress fibers 

(DSFs).  In brief, VSFs represent the traditionally observed stress fibers 

consisting of actin bundles, bound at both ends to FAs, and located in central 
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regions of the cell in a direction parallel to migration.  Conversely, TAs represent 

curved actin bundles positioned closer to peripheral regions of the cells and 

oriented in a direction perpendicular to locomotion; these stress fibers are not 

directly attached to FAs.  Lastly, DSFs are found in the peripheral regions of the 

cell where one end is attached to a FA and the other is directed toward the 

center of the cell.  

 

These three types of stress fibers differ not only in location, but also in function.  

VSFs are bound to FAs at both ends, display a periodic α-actinin-myosin 

distribution, and are responsible for the majority of contractile force that a 

fibroblast applies to its substrate [132].  TAs, which also display α-actinin-myosin 

distributions, have the ability to contract as well [131].  However, with these 

structures not bound to FAs (in most cases), they cannot directly apply force to 

the substrate.  Instead, force is directed through their interaction with DSFs, 

which are linked to FAs [131].  By definition, DSFs are not even stress fibers 

because myosin is rarely incorporated into these structures, therefore making 

them non-contractile; instead, these structures provide anchoring sites for TAs 

and are precursors of VSFs [131, 134].            

 

As shown in the acquired images of GFP-actin transfected fibroblasts (Figure 

4.22), GFP-actin 3T3 fibroblasts on laminin coated glass revealed numerous 

VSFs, as typically observed in fibroblasts on rigid substrates.  On a single 

bilayer, a reduction in the amount of VSFs was observed while the overall shape 
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appeared similar to that on glass substrates.  Cells cultured on TYPE 2 double 

bilayers began to show drastic changes in morphology and internal actin 

structures.  Most importantly, the VSFs typically seen when plated on rigid 

substrates are not seen in TYPE 2 double and quadruple bilayers.  Instead, a 

meshwork of cortical actin is observed, suggesting the presence of mechanically 

unloaded fibroblasts.  This response is understandable on substrates were 

cellular traction is inhibited due to increased linker mobility.  Here, the contractile 

force of VSFs cannot be generated.   

 

While in many cases fibroblasts plated on TYPE 2 substrates show almost 

exclusively cortical actin, at times TAs and DSFs are still observed.  This result is 

not unexpected in a fluid substrate as the formation of these structures is less 

tied to contractility.  Instead, it is suggested that dorsal stress fibers are simply 

generated by the bundling of lamellipodium filaments and TAs primarily result 

from α-actinin-decorated actin filaments originating from the lamellipodial actin 

meshwork [131].  In fact, the presence of DSFs and not VSFs is quite telling 

because it indicates that while the precursors for VSF contractile assemblies are 

present, reduced cellular traction negates their need. 

 

Moreover, the disappearance of VSFs is likely to impact aspects of cellular 

migration as all three types of stress fibers are typically observed in the 

mesenchymal migration of fibroblasts [127].  Cellular locomotion is traditionally 

described by alternating actin protrusion and contraction phases (as discussed in 
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Chapter 2.4.3) and the contractile nature of ventral stress fibers led to early 

speculation that these assemblies were responsible for cellular contraction [132, 

135].  Yet, much research indicates that stress fibers may, at times, hinder 

migration as the formation of larger, more mature stress fibers are often 

observed within stationary cells [132, 136].  Therefore, the formation of VSFs is 

not required for locomotion.  It is likely that these contractile fibers aid tail 

retraction and the disassembly of FAs at the posterior of the cell during migration, 

but stress fiber contractility in non-motile cells also strengthens FAs [132, 137] 

through the protein recruitment mechanisms discussed in Chapter 2.4.2.  Other 

studies have confirmed that actomyosin can contribute to tail retraction without 

the involvement of VSFs [132, 138].    

 

Actin dynamics of contractile structures provide insight into the roles of cell 

motility as VSFs fail to exhibit large-scale remodeling in a time frame applicable 

to cell locomotion [127].  As a result, VSFs are typically observed in less motile 

cells [127].  In contrast, TAs and DSFs are highly dynamic and function is unison 

to create a treadmilling contractile lamella [127].  In fact, in these structures, F-

actin retrograde flow is slower, a feature which has been shown to inversely 

impact neuron growth cone advancement [127, 128].  This may aid in explaining 

the elevated appearance of neuronal-like cell extensions on TYPE 2 substrates 

of decreased viscosity in increased linker mobility. 
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Fluorescence images of the actin cytoskeleton indicate the ability of TYPE 2 

substrates to reprogram cells into stress-free morphologies and reveal the 

importance of substrate viscosity in the mechanotransduction process.  

Representative images of the GFP-labeled actin cytoskeleton in the newly 

observed shapes in Figure 4.19: crescent, triangle, spindle, and dendritic and 

displayed in Figure 4.23. 
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Figure 4.23. Representative images of the GFP-labeled actin cytoskeleton in 
crescent (A), triangle (B), spindle (C), and dendritic (D) shaped fibroblasts.  
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4.5.3. Fibroblast Movement: Migration and Area Fluctuations 

Previous studies on PAA gels of varying viscoelasticity have shown increased 

migration speeds on substrates of decreased rigidity; this was discussed in 

Chapter 2.4.3.  The observation is explained by the relatively inefficient and 

poorly understood process of FA disassembly during cell migration.  In essence, 

on more rigid substrates cells are capable of generating larger pulling forces.  As 

described in Chapter 2.4.2, these larger forces induce a cellular response 

through the process of mechanotransduction.  In this case, stronger pulling 

forces lead to protein recruitment at FA sites in an effort to counter balance these 

forces and maintain homeostasis.  Larger FAs take longer to disassemble, thus 

slowing cellular migration.  Previous studies on substrates of varying elasticity 

have shown decreased focal adhesion size and density on softer substrates 

where cell develop less traction [139].     

 

It was expected that migration speeds would increase with increased bilayer 

stacking in TYPE 2 substrates.  Here, decreasing substrate viscosity, in turn 

increasing cell linker mobility, should lead to reduced cell traction forces.  These 

lower forces should not require large FAs.  Instead the presence of smaller, more 

dynamic FAs should result in increased migration speed.  This trend was shown 

on TYPE 2 substrates.  3T3 fibroblasts were plated on glass (control), single, 

double, and quadruple TYPE 2 substrates.  Cellular migration speeds were 

measure 20h after plating and consisted of average nucleus displacements over 
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a 5min time lag.  The results are shown in Figure 4.24, where every data point 

represents a nuclear displacement over time.  Quadruple displacement data are 

 

Figure 4.24. Nucleus tracking shows increased migration speeds of fibroblasts on 
TYPE 2 substrates.  Each data point represents a nucleus displacement over a 
5min time lag. 
 

 

not shown due to the tendency of cells plated on quadruple bilayers to migrate 

out of the picture frame when performing long term studies using a 5min time lag.  

The above figure shows migrations speeds are dependent on substrate viscosity.  

As expected, increased stacking (i.e. increased linker mobility) resulted in 

heightened migration speeds.  The red bars in Figure 4.24 indicate average 

nuclear displacements over the 5min time lag.  
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Additionally, by determining the migration speeds of the different phenotypes on 

TYPE 2 systems, using shorter time frames (2min) to be able to include data on 

quadruple bilayer systems, Figure 4.25 shows that migration speeds are not a 

consequence of cell shape.  This important fact further confirms that the 

observed mechanoresponse is truly a result of substrate viscosity. 

 

 

Figure 4.25. Fibroblast shape does not show a notable impact on migration 
speed indicating that changes in motility are the result of changes in substrate 
viscosity on TYPE 2 substrates (time lag: 2min, n=10 separate cells for each 
shape and substrate other than “dendritic,” where n=3.  Average standard 
deviations: Single=0.3µm/min, Double=0.2µm/min, Quad=0.4µm/min).  
 

 

As mentioned in Chapter 4.4.1, fibroblasts on TYPE 2 substrates of high fluidity 

displayed interesting parallels to cells embedded in 3D matrices.  Intriguingly, 
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these parallels do not stop at shape and it appears that cells may move in a 

similar way as well.  Using the obtained migration data it was possible to 

determine the torosity, or directionality, of movement.  From the coordinates of 

the nucleus displacements over three time points one can calculate a value for 

how “straight” a cell is moving, Figure 4.26.  The formation of spindle-like cells in 

3D matrices has been shown to increase directionally persistent migration [140].  

Figure 4.26, shows that on TYPE 2 substrates, the spindle-shaped cells do show 

the highest degree of torosity, as indicated by a value closest to 1, which 

represents a straight line.   

 

 

Figure 4.26. Migration directionality, characterized by tortuosity values, is shown 
to be shape dependent (n=50 tracks per shape). 
 

 

In Chapter 4.4.1 it was suggested that fibroblasts on TYPE 2 substrate may 

exhibit a different type of locomotion than traditional mesenchymal migration.  In 
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the previous section this observation was made based on cell spreading and 

morphological changes over a 20h period.  Studying fibroblast movement on 

these substrates has provided additional evidence that this may in fact be 

occurring.  The size of FAs would not simply affect migration speed, as 

mentioned above, but would also affect a cell’s ability to rapidly undergo shape 

changes; a process also requiring the rapid assembly and disassembly of FAs.  It 

was observed that 3T3 fibroblasts moving on TYPE 2 substrates displayed 

dramatic shape changes within a short time scale.  This observation was 

quantified by monitoring the percent change in cellular area, % ΔA, over a time 

lag of 2min.  The results are shown in Figure 4.27 and indicate area fluctuations 

following plating on a TYPE 2 double bilayer system.  The red bars in Figure 4.27 

indicate the average % ΔA.  Dramatic shape and area fluctuations are typically 

seen in amoeboid movement [141, 142].  Amoeboid migration is characterized 

not only by rapid shape changes, but also a lack of mature FAs and stress fibers 

[142-144].  Therefore, based on the observed cytoskeletal organization of 

fibroblasts on TYPE 2 substrates, this mode of migration is plausible.  In contrast 

to mesenchymal migration, cell undergoing amoeboid migration interact weakly 

with their substrate (e.g. develop low traction forces) [144].  Two common 

subtypes of amoeboid migration consist of: (1) the rounded, blebby migration of 

cells (amoeboid-blebby) [144, 145], and (2) that occurring in slightly elongated 

cells generating actin-rich filopodia at the leading edge but displaying weak 

adhesive interaction with their substrate (amoeboid-pseudopodal) [144, 146].  In 

a third, less common mode, blebs are replaced with dendrites [144].     
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Figure 4.27. Histograms of the change in percent area with a 2min time lag.  
Increased area fluctuations observed in fibroblasts plated on TYPE 2 double 
bilayer substrates suggests the presence of a more amoeboid form of migration 
(time lag: 2min). 
 

 

Interestingly, all of these phenotypes were found in TYPE 2 systems.  Moreover, 

mesenchymal locomotion results in migrations speeds on the order of 0.1-

1µm/min [147, 148] compared to amoeboid-blebby at 0.1µm/min [146] and 

amoeboid-pseudopodal at 10µm/min [141, 146].  Observed migrations speeds on 

the order of 2.7µm/min for fibroblasts on quadruple TYPE 2 substrates support a 

potential transition to more amoeboid movement.  The collection of motility data 

presented here shows that regulating cellular traction forces through substrate 

viscosity affects not only migration speeds, but also may influence the type of 

migration present.     
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4.5.4. Fibroblast Force Transduction 

Traction force microscopy (TFM) was used to verify that the fluid nature of TYPE 

2 substrates does impact cellular traction forces (CTF).  It was hypothesized that 

the mobile linkers in this system essentially create a “slippery” surface for cells.  

In other words, a surface where a cell can grip, but under increased pulling, 

linkages slip.  The CTFs generated by 3T3 fibroblasts plated on TYPE 2 systems 

were measured through FTM.  A cell’s inability to generate large traction forces 

would provide further explanation for the unique cellular morphology and motility 

observed on TYPE 2 substrates.  As discussed in previous chapters, fibroblasts 

on TYPE 2 substrates display uncharacteristic neuronal-like phenotypes.  

Neurons have previous been shown to generate traction forces orders of 

magnitude less than that of fibroblasts (this is likely due to the diffuse nature of 

brain tissue compared to connective tissue) [90].  Moreover, cellular mobility is 

strongly influenced by the formation of large, mature focal adhesions, a process 

that is dependent on the mechanical properties of a substrate (as discussed in 

previous chapters).  

 

Here, PAA gels with embedded fluorescent beads were used to determine the 

CTF of fibroblasts.  TYPE 2 substrates were added atop PAA gels as shown in 

Figure 4.28, which provides a schematic for the three systems used in TFM 

experiments.  Cells were plated on traditional “control” PAA gels (Figure 4.28. A) 

and gels containing TYPE 2 single and triple bilayers (Figure 4.28. B and C 

respectively).  Fibroblasts were plated on these three substrates and allowed to 



126 
 

adhere and spread over 24h.  At this point, Epi microscopy was used to image 

the fluorescent beads under adherent cells.   

 
Figure 4.28. Schematic of PAA-based substrates used in TFM experiments.  
Fibroblasts were plated on standard (control) PAA gels (A) alongside single(B) 
and triple (C) bilayer-modified PAA gels.   
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These cells were then detached and the fluorescent beads were imaged again.  

The fluorescent snapshots provided “loaded” and “unloaded” images 

respectively.  The “loaded” image was used to determine the placement of the 

fluorescent bead under the pulling forces of adherent cells while the “unloaded” 

image provided the placement of beads in the absence of cells.  The elastic 

nature of PAA gels causes the beads to snap back to their original location 

following detachment. 

 

Using custom written Matlab software, bead displacements between “loaded” 

and “unloaded” images were determined.  With a known elastic modulus of the 

PAA gel (12825Pa) this software calculated the pulling force necessary to 

displace a bead a given distance.  Using this information, for each bead present 

in the fluorescent snapshots, Matlab generates force traction maps (FTMs).  

Figure 4.29 shows representative FTMs for cells plated on a control PAA gel (A) 

and a triple bilayer (B).  The fibroblast plated on the control gel, Figure 4.28 (A), 

displays a polygonic phenotype characteristic of fibroblasts plated on traditional 

cell substrates (e.g. plastic, glass, more rigid PAA gels).   In contrast, the 

fibroblast on the TYPE 2 triple layer, Figure 4.28 (B), displayed the spindle-shape 

described in Chapter 4.4.1.  As expected, and as indicated from the FTMs below, 

it is clear that cells plated on the TYPE 2 systems do exert less force onto their 

substrates.   
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Figure 4.29. FTMs reveal the size and placement of CTFs generated by 
fibroblasts plated on control PAA gels (A) and triple bilayer-modified PAA gels 
(B).  
 

 

The information contained in Figure 4.29, along with data sets from several other 

cells, was used to generate the graph in Figure 4.30, which illustrates a change 

in average CTF with decreased substrate viscosity (and increased cell linker 
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mobility).  The CTF generated on the TYPE 2 triple bilayers are nearly half of that 

on the control, 2717Pa compared to 4733Pa. 

 

 

Figure 4.30. Comparison of the average CTF generated by fibroblasts plated on 
control and single and triple bilayer-modified PAA gels.  Average CTFs are based 
on data sets containing 15 cells for each substrate.     
 

 

The data obtained through TFM confirms that TYPE 2 substrates do act as 

lubrication layers and suggests that TYPE 2 bilayers do act as “slippery” 

substrates which hinder the formation of large traction forces.  These results are 

expected based on the fact that these systems are comprised of mobile cell-

substrate linkers and further confirms that the observed morphological and 

motility changes are truly a result of changes in substrate viscosity.  Furthermore, 
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the emergence of more neuronal-like cell shapes, as described in Chapter 4.4.1, 

are explained by the inability of fibroblasts to develop traction.  The 

mechanotransduction process has been discussed throughout this work and a 

decrease in the force generated by a cell (in response to substrate properties) 

should result in decreased protein recruitment to adhesion sites and formation of 

smaller, more dynamic FAs.  This response, in turn, should lead to the less 

stretched, more spherical (less flattened) cell shapes present in TYPE 2 

substrates because less force is needed to maintain these phenotypes.  

Moreover, the formation of smaller FAs simultaneously impacts both cellular 

migration velocities and area fluctuations, as discussed in Chapter 4.4.3.  Thus, 

the determination of smaller CTFs on TYPE 2 substrates helps to further our 

understanding of the possible mechanotransduction pathways utilized in cellular 

viscosity sensing and provides supporting data to the proposed mechanisms 

used to explain the results seen, and discussed, in previous chapters.  
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CHAPTER 5. CONCLUSIONS 

 

 

5.1. Conclusions 

Phospholipid bilayer-based substrates were successfully designed and fabricated 

as biomembrane-mimicking cell substrates of adjustable viscosity where the 

synthesis of specific cell-substrate linkers were utilized to tune cell-linker mobility 

over a large range of viscosities.  The use of these dynamic, yet robust 

substrates, capable of withstanding the pulling forces of adherent cells, has 

confirmed that cells do hold the machinery necessary for viscosity-sensing and 

have provided information on the mechanoresponse induced by changes in 

substrate viscosity.  With this, the four objectives outlined in the introduction have 

been accomplished. 

 

With lipid bilayers recognized as the principle mimetic for biological membranes 

their use as potential biomembrane-mimicking cell substrates was recognized 

years ago.  However, various shortcomings in previous designs (arising from 

bilayer defects and unwanted cellular interaction with underlying supports) have 

limited their use as suitable substrates.  Here, the use new design aspects and 

alternative fabrication techniques capable of creating high quality, stable, 
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homogeneous phospholipid bilayers has made their use as cell substrates a 

reality.  With the design of two complementary systems, TYPE 1 and TYPE 2, 

substrate viscosity can be tuned over a large range.  Regulating the polymer-

tethering concentration in TYPE 1 substrates has been shown to induce more 

subtle changes while bilayer stacking in TYPE 2 substrates was capable of 

creating dramatic changes in substrate viscosity.  The newly conceived TYPE 2 

substrates feature an iterative design of polymer-interconnected bilayer stacking 

where substrate viscosity is regulated by bilayer-solid distance impacting the 

degree of frictional coupling.  Importantly, the use of covalent linkages between 

successive bilayers has resulted in a stable, robust substrate.          

 

The characterization of TYPE 2 substrates was performed through Epi 

microscopy and SMFM.  Epi micrographs confirmed the fabrication of 

homogeneous multibilayer stacks while providing qualitative evidence of 

increased bilayer fluidity with stacking.  This feature was quantitatively confirmed 

through single molecule tracking where the lateral diffusivity of both lipid and lipid 

clusters was shown to increase with respect to bilayer stacking.  These results 

validated that lateral mobility in the outermost lipid bilayer can be tuned through 

bilayer-solid spacing using multibilayer systems. 

 

 A major obstacle in the use of solid-supported lipid bilayers as cell substrates 

has been ensuring that adherent cells do not interact with the underlying solid-

support.  In the past this unwanted interact has been observed and it appears 
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that this was largely the result of bilayer fabrication methods prone to defects and 

the design of supported bilayers with insufficient bilayer-solid spacing; as bilayer-

solid proximity coupled with potential defects is likely to encourage this unwanted 

interaction.  Cellular and substrate imaging on a variety of control experiments 

has confirmed bilayer integrity and that observed cellular mechanoresponse is 

truly induced by substrate viscosity and is not an artifact of bilayer defects.  The 

analysis of shape and cytoskeletal organization on control substrates and in the 

absence of cell-substrate linkers has shown suppressed cellular interaction with 

the underlying bilayer support, even in single layer substrates.  Moreover, Epi 

microscopy and confocal FRAP has verified that these substrates are capable of 

withstanding the pulling forces of adherent cells. 

. 

Heterobifunctional cell-substrate linkers were designed to conjugate cellular 

adhesion proteins (i.e. Laminin) to lipids within TYPE 1 and TYPE 2 substrates.  

These linkers were synthesized through the biofunctionalization of QDs.  SMFM 

experiments on QD-tagged constituents of live cell plasma membranes indicate 

the proper functioning and biocompatibility of these linkers.  Moreover, while not 

utilized within this research, the fluorescent properties of these linkers allow for 

dynamic studies in the future, which may provide further insight into the nature of 

cellular motility on these substrates. 

 

With substrates and linkers in place, cellular mechanoresponse was observed on 

these low traction substrates of adjustable viscosity.  Here, linker mobility was 
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shown to profoundly impact cellular phenotype, growth, and mobility.  Neurons 

plated on TYPE 1 substrates showed accelerated dendrite growth and network 

formation on less viscous substrates; results that coincide with previous work on 

substrates of tunable viscosity where pronounced growth has been observed on 

softer substrates.  On TYPE 2 substrates, fibroblasts underwent dramatic 

phenotype changes where the appearance of spindle and dendritic-like 

morphologies in response to reduced viscosity showed parallels to fibroblasts 

cultured in 3D matrices.  In addition, fibroblasts displayed increased migration 

speeds and directionally persistent migration on substrates of decreasing 

viscosity.  In fact, analysis of cell area fluctuations during motility indicates that 

fibroblasts may be exhibiting an amoeboid movement in response to these 

changes.  These results have shown that neurons and fibroblasts have the ability 

to sense changes in substrate viscosity. 

 

In conclusion, this research has provided new biomembrane-mimicking cell 

substrates capable of tuning cellular mechanoresponse through the regulation of 

substrate viscosity.  These novel substrates have the potential to significantly 

increase our understanding of the mechanotransduction process by 

complementing existing elastic substrates and enabling researchers to truly 

address the cellular impact of substrate viscoelasticity.  The value of such 

information is increasing recognized as research continues to show a correlation 

between disease and mechanical stimuli. 
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5.2. Outlook 

The research contained within this thesis focused on cellular mechanoresponse 

induced by changes in substrates viscosity affecting cell-substrate linker mobility.  

Here, cell-substrate linkers contained laminin, an adhesion protein presented by 

the ECM.  As described within this work, adherent cells attach to adhesion 

proteins and form FAs, which are considered to play a large role in the 

mechanotransduction process.  However, FAs are not the only 

mechanotransducers used by cells.   

 

Mechanically loaded tissues show extensive networks of adherent junctions, 

which provide a direct physical coupling between adjacent cells [76].  The role of 

adherent junctions in force sensing is increasingly recognized as an important 

process in mechanotransduction [89, 149-153].  Moreover, the diffusion mediated 

assembly and disassembly processes are not only important in the formation of 

FAs, but also in the formation of adherent junctions [7, 18-20, 22].  Thus, these 

cell-cell contacts should also be impacted by substrate viscosity (i.e. linker 

mobility).  While a lack of appropriate cell substrates has hindered research 

involving the formation of AJs in response to mechanical stimuli such as viscosity 

[76], cadherin-mediated adherent junctions have been shown to play roles in 

mechanosensing and the regulation of cell attachment and migration, wound 

contraction, intracellular mechanotransduction, cellular differentiation, and more 

[76, 149, 154-162].  Much research supports a crosstalk between cadherins and 

the actin cytoskeleton [163-165].  Additionally, evidence suggests that FAs and 
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cadherin-mediated adherent junctions may cooperatively or antagonistically 

impact cellular mechanics [76]. 

 

The lipid-bilayer based cell substrates presented within this work provide an 

excellent plasma membrane mimic, and incorporating cadherin-based cell-

substrate linkages could enable the study of artificial cell-cell adherent junctions 

and their formation in response to changes in substrate viscosity.  Moreover, 

such substrates could be applied to the study of disease processes such as 

cancer progression.  This process has been tied to mechano-response: cadherin-

based adherent junctions are thought to play a primary role in this pathway as 

adhesion and progression of tumor cells is largely regulated by E-cadherin [166, 

167], while metastatic cells develop most adhesion through N-cadherin [168-

170].  In addition, substrate stiffness affecting matrix resistance to cell tension 

forces has been shown to impact cancer development [171].  Studies on N-

cadherin and E-cadherin functionalized cell substrates of varying viscosity 

represent a means of controlling mechanoresponse both mechanically and 

biochemically, and may provide a better understanding of the critical 

mechanotransduction elements in cancer cell development. 

   

N-cadherin-functionalized TYPE 1 and 2 substrates have been fabricated in our 

lab.  A schematic of these substrates is illustrated in Figure 5.1.  The outermost 

bilayer of these substrates contains a variable amount of the Ni-NTA 

functionalized lipid 1,2-di-(9Z-octadecenoyl)-sn-glycero-3-[(N-(5-amino-1-
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carboxypentyl)iminodiacetic acid)succinyl] (nickel salt).This lipid will provide a 

suitable link for commercially available 6x histidine-tagged N-cadherin (the 

extracellular domain, residues 1-724).  Currently, these substrates have been 

tested using NG108 neurons and myoblasts, both of which are known to express 

N-cadherin.     

 

Figure 5.1. Schematic of TYPE 2 substrates featuring N-cadherin cell linkers. 
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