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ABSTRACT 

 
 
 
Siegel, Amanda P. Ph.D., Purdue University, August 2011.  Regulating Lipid 
Organization and Investigating Membrane Protein Properties in Physisorbed Polymer-
tethered Membranes.  Major Professor: Christoph A. Naumann. 
 
 
 
 Cell membranes have remarkable properties both at the microscopic level and the 

molecular level.  The current research describes the use of physisorbed polymer-grafted 

lipids in model membranes to investigate some of these properties on both of these length 

scales.  On the microscopic scale, plasma membranes can be thought of as heterogenous 

thin films.  Cell membranes adhered to elastic substrates are capable of sensing 

substrate/film mismatches and modulating their membrane stiffness to more closely 

match the substrate.  Membrane/substrate mismatch can be modeled by constructing 

lipopolymer-enriched lipid monolayers with different bending stiffnesses and 

physisorbing them to rigid substrates which causes buckling.  This report describes the 

use of atomic force microscopy and epimicroscopy to characterize these buckled 

structures and to illustrate the use of the buckled structures as diffusion barriers in lipid 

bilayers.  In addition, a series of monolayers with varying bending stiffnesses and 

thicknesses are constructed on rigid substrates to analyze changes in buckling patterns 

and relate the experimental results to thin film buckling theory.   
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 On the molecular scale, plasma membranes can also be thought of as heterogeneous 

mixtures of lipids where the specific lipid environment is a crucial factor affecting 

membrane protein function.   Unfortunately, heterogeneities involving cholesterol, 

labeled lipid rafts, are small and transient in live cells.  To address this difficulty, the 

present work describes a model platform based on polymer-supported lipid bilayers 

containing stable raft-mimicking domains into which transmembrane proteins are 

incorporated (αvβ3, and α5β1integrins).  This flexible platform enables the use of confocal 

fluorescence fluctuation spectroscopy to quantitatively probe the effect of cholesterol 

concentrations and the binding of native ligands (vitronectin and fibronectin for αvβ3, and 

α5β1) on protein oligomerization state and on domain-specific protein sequestration.  In 

particular, the report shows significant ligand-induced integrin sequestration with a low 

level of dimerization.  Cholesterol concentration increases rate of dimerization, but only 

moderately.  Ligand addition does not affect rate of dimerization in either system.  The 

combined results strongly suggest that ligands induce changes to integrin conformation 

and/or dynamics without inducing changes in integrin oligomerization state, and in fact 

these ligand-induce conformational changes impact protein-lipid interactions. 
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CHAPTER 1 INTRODUCTION 

 

1.1 Rationale and Objectives 

Cell membranes have remarkable properties at both the microscopic and molecular 

scales.  Although bilayers comprised of lipids alone are fairly inelastic, the human lung is 

a compressible lipid monolayer which is capable of expanding by as much as 80% during 

one breathing cycle (1).  This is thought to occur due to monolayer collapse and 

restoration, but the specifics are still under investigation (2-4).  Phagocytosis, the process 

of neutrophils expanding their plasma membranes by as much as 200% to engulf foreign 

particles and destroy them, probably involves membrane unwrinkling, although the 

mechanisms by which this occurs are also far from clear (5, 6).  

 

Beyond this unexplained unwrinkling and extensibility, another interesting 

“microscale” mechanical property of cell membranes is bending stiffness and bending 

elasticity.  Cell membranes can vary in elasticity by as much as four orders of magnitude 

(7), from the very soft red blood cells (8) and fibroblasts (in some circumstances) (9) to 

chondrocytes (10), osteoblasts (11), and the very stiff slime mold Dictyostelium 

discoideum (12).  The mechanical properties of cells, including membrane bending 

stiffness and elasticity can be influenced by many different factors, including malignancy 

(7), osteoarthritis (10), and external stimuli (9). However, it is difficult to systematically 

study the effect of altering the mechanical properties of cell membranes.  First, cells 
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display very different elasticities in suspension or attached to substrates.  Second, cells 

will alter their bending elasticity depending on a number of factors including substrate 

stiffness and density and type of cell-substrate linker (11).  Another difficulty is that cell 

stiffness is often measured for whole cells, while different membranes within the cell 

have different stiffnesses; the nucleus being quite stiff (13) and different areas of a single 

cell having different elastic moduli (7).  Finally, there are difficulties getting comparable 

information on membrane stiffness from different methodologies (14).  One way to 

overcome the difficulties of studying the mechanical effect of changes in membrane 

stiffness on a rapidly changing plasma membrane is to construct a model system and 

study the mechanical responses of lipid bilayers to different stresses in a controlled 

setting. 

 

 On the molecular level, a fascinating property of cell membranes is that small-scale 

lipid heterogeneities may be extremely important for determining membrane 

characteristics (15, 16), and are important for regulating location and functionality of 

membrane-associated proteins (17-21).  One class of heterogeneous patches, lipid rafts, 

are defined as dynamic assemblies enriched in cholesterol (CHOL), sphingolipids and 

glycosylphosphatidylinositol (GPI)-anchored proteins (18, 22).  Rafts of membrane 

proteins, in concert with other proteins or possibly lipids induce cellular activity as varied 

as creation of signaling platforms (23-26), pathogenesis through endocytosis (27), signal 

transduction leading to cell growth, differentiation and survival (28), and changes to 

cellular adhesion, cell morphology and angiogenesis (29).  One possible explanation for 
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this incredible versatility is that energetically, it costs a cell very little to segregate or 

aggregate proteins through the use of lipid rafts (22).   

 

 The current best method to investigate transient effects of lipid rafts on protein 

functionality in the plasma membrane is to either deplete or load a plasma membrane of 

cholesterol content and watch for changes in protein functionality.  If functionality is 

altered upon cholesterol depletion, and restored upon returning cholesterol to normal 

levels, rafts are thought to be implicated (30-34).  Changes in protein functionality may 

be directly related to change in cholesterol levels in the plasma membrane, but may also 

be due to artifacts associated with cholesterol depletion such as cytoskeletal 

destabilization (35) or due to cholesterol’s effect on a different protein or cofactor not 

included in the current model such as PIP2 (36).  Another critical question is whether raft 

association induces a protein conformational change or change in oligomerization state 

(37-39).  Changes in cholesterol have been shown to critically affect the functionality of a 

class of protein known as the integrins, but the interplay between integrin-ligand 

association and the formation of microclusters of integrins in cell membranes are not well 

understood.  For this reason, integrins are a good candidate for separating out different 

lipid raft-related effects on protein functionality.  

 

Artificial lipid bilayers, while reasonable mimetics of cell membranes for some 

purposes (40-42), do a poor job of mimicking the elastic properties of cell membranes 

because pure lipid bilayers are much softer than cell membranes (43, 44).  The proteins 

embedded in cell membranes and the protein linkages between the membrane and 
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extracellular and intracellular matrices significantly affect the biophysical properties of 

the cell’s bilayers, including the bending modulus, the compressibility modulus, and the 

shear modulus (45).  To overcome this, self-assembling actin filaments were added to 

lipid vesicles and the mechanical features of that system were determined using optical 

tweezers (46).  One definite advantage that vesicles have over planar systems is that they 

have a built-in curvature due to their shape, and therefore can more closely mimic round 

cells. They still, unfortunately have similar difficulties for determining the elastic 

properties as cells themselves, again due to the shape constraint.  Another way to increase 

the compressibility and bending stiffness of model lipid bilayers is through the addition 

of lipopolymers.  Lipopolymers incorporated into model membranes, either into 

liposomes or planar solid-supported bilayers, can significantly alter biophysical 

properties including bending modulus and compressibility, depending on polymer type, 

weight, and concentration (47, 48).   

 

Planar supported lipid bilayers enriched in low concentrations of lipopolymers in the 

bottom layer are extremely useful model membranes because the polymer uplifts the 

bilayer from the underlying substrate with a cushion that enables the incorporation of 

transmembrane proteins (49) and aids in constructing lipid bilayers that separate into 

liquid ordered (lo ) CHOL-rich regions and liquid disordered (ld) CHOL-poor regions (42, 

50).  Membrane proteins, including lipid-anchored proteins and transmembrane proteins, 

have been successfully incorporated into phase-separating model lipid bilayers 

constructed of either planar supported lipid bilayers, giant unilamellar vesicles (GUVs) or 

giant plasma membrane vesicles (GPMVs) to study the intrinsic sequestration of 
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receptors and the role of crosslinking agents (22, 40, 51-55).  Early supported lipid 

bilayer studies showed promise (53).  Raft-associated proteins correctly sequestered to lo 

phases in model systems comprised of supported lipid bilayers or monolayers (53, 54, 

56), but raft-associated proteins sequestered preferentially to ld phases in model systems 

consisting of GUVs (52, 57) and transmembrane raft-associated proteins also displayed 

preferences for ld phases in GPMVs (55, 58).  Several groups did observe higher partition 

coefficients upon crosslinking of raft-associated proteins with antibodies or addition of 

gangioside GM1 (GM1) cross-linked to cholera toxin B (CTxB) (52, 56, 59).  The 

elegance of model systems, however, is that it is possible to study how the addition of 

ligands affects raft partitioning and oligomerization without the use of cross-linking 

agents. 

 

The research described within this dissertation contains two distinct sets of objectives 

in which lipopolymers are incorporated into lipid monolayers and bilayers to study 

membrane properties at the microscopic level and at the molecular level.  The first set of 

objectives relate to membrane stiffness and elasticity.  It will be shown below that high 

concentrations of lipopolymers in lipid monolayers are capable of inducing buckle-driven 

delamination of a lipid monolayer deposited onto a glass substrate, and that such buckles 

can act as diffusion barriers when the monolayers are used to construct fluid bilayers.  In 

addition, it is possible to systematically analyze the elastic properties of lipopolymer-

enriched lipid monolayers through the study of buckling parameters of varying 

lipopolymer concentrations.   
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The second set of objectives involves protein studies on polymer-tethered CHOL 

enriched model membranes.  These objectives will be to first confirm the fluid 

incorporation of correctly-oriented transmembrane proteins (αvβ3 and α5β1) into polymer-

tethered lipid bilayers.  The second objective is to use phase-separating lipid mixtures to 

determine integrin partitioning between lo and ld phases for αvβ3 and α5β1 integrins before 

and after ligand binding in the absence of crosslinking agents.  The third objective is to 

determine the protein oligomerization state in lo and ld phases for αvβ3 and α5β1 integrins 

before and after ligand binding and to systematically analyze the degree of 

oligomerization of αvβ3 and α5β1 integrins before and after ligand binding in model 

membranes with increasing concentrations of CHOL.   

 

1.2 Organization 

This dissertation is organized into five chapters.  The first chapter provides the 

rationale and key objectives of this study and describes the organizational structure of the 

dissertation.  The second chapter introduces various methods and instrumentation used in 

this research.  The second chapter also contains theoretical introductions to the theory of 

thin film wrinkling and delamination, biophysical properties of lipid-lipopolymer 

mixtures, and the role of CHOL in lipid bilayers.  The third chapter details the materials 

and technical procedures used to contruct the model monolayers and bilayers, analyze the 

properties of the monolayers and bilayers through epifluorescence (EPI) microscopy, 

atomic force microscopy (AFM), and confocal spectroscopy including fluorescence 

fluctuation spectroscopy (FFS).  It also outlines the key equations necessary for 

determining thickness and bending rigidity of lipid/lipopolymer mixtures, critical stress, 
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loading parameter and other buckling-related parameters, and the construction and testing 

of the photon counting histogram algorithm required for determination of oligomerization 

state. 
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CHAPTER 2 BACKGROUND 

 

2.1 Methodology 

 

2.1.1 Langmuir Films 

 Benjamin Franklin once poured a teaspoon of oil into the pond at Clapham Common 

in London and noted that the oil produced a calm area on the surface which spread, 

eventually, to cover perhaps half an acre.  If the oil were olive oil, say a triglyceride of 

oleic acid, and it actually did cover half an acre, or 2025 m2 of water, and it spread to 

make a layer of oil one molecule thick, that corresponds to an area per lipid molecule of 

66 Å2.  Surprisingly, this is very similar to the area per molecule for a monolayer of 

unsaturated phospholipids compressed to physiologically relevant pressures.  A Langmuir 

film is a monolayer of an organic substance that forms at the air-water interface.  

Langmuir monolayers can be thought of as two dimensional fluids.  A typical pressure 

area isotherm for a phospholipid is shown in Fig. 2.1.1 for the substance 1,2-dipalmitoyl-

sn-glycero-3-phosphocholine (DPPC).  At very large area per molecule, there is no 

change in surface tension and the material at the air-water interface is in a two-

dimensional gaseous phase (G).  (By convention, surface pressure is defined as the 

change from pure water at 72 mN/m so that as surface tension decreases, surface pressure  
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increases).  At decreased area per molecule, the surface pressure begins to increase  

slowly and the substance may enter a liquid expanded (LE) phase.  Compressed further, 

the substance shifts to a liquid condensed (LC) phase, or possibly a gel phase, unless the 

monolayer ruptures and starts to form a second layer on top of the first layer.  This is 

known as collapse.  When the system is undergoing a phase change, the pressure-area 

isotherm will exhibit a straight horizontal line, that is, the pressure will not change 

substantially for large changes in area per molecule.  For the DPPC pressure-area 

isotherm in Fig. 2.1.1, there is a phase change shown between the LE and LC phases. 
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Figure 2.1.1 Pressure-area isotherm of DPPC at 295 K 
showing different phases: gaseous (G), liquid-expanded 
(LE), liquid condensed (LC) and a mixed LC-LE phase 
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2.1.2 Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) Film Deposition 

Langmuir films are particularly useful for constructing bilayers of varying or 

asymmetric lipid composition.  Lipids align as monolayers with their hydrophilic head 

groups pointed toward the water and their hydrophobic tails away from the water.  Lipid 

bilayers can be assembled on Langmuir troughs, which are simply troughs equipped with 

a variable barrier arm for changing the total surface area, a motorized dipping arm, a 

surface pressure detector, and a feedback loop enabling the barrier arm to change the total 

area in response to changes in the surface pressure.  A schematic of a Langmuir trough 

showing the two stages of Langmuir-Blodgett (LB)/Langmuir-Schaefer(LS) film 

deposition is shown in Fig. 2.1.2, for a phospholipid bilayer with a physisorbed 

lipopolymer tether.   

 

 It is possible to transfer Langmuir films onto a solid substrate by combining two 

techniques referred to as LB  deposition and LS deposition (60, 61).  For the leaflet closer 

to the substrate, LB deposition involves immersing a substrate in the aqueous subphase, 

and slowly raising the substrate through the air-water interface while maintaining a 

constant surface pressure, as shown in  Fig. 2.1.2(A). This transfers a monolayer so that 

the hydrophilic headgroups are closer to the substrate and the hydrophobic tails are 

pointed away from the substrate.  To complete the bilayer, LS deposition involves 

pressing the substrate down onto the monolayer and capturing the substrate and bilayer 

within a depression slide.  The process is shown in Fig. 2.1.2(B).  This transfers a 

monolayer so that the lipid tails are adjacent to the lipid tails of LB layer, forming a fluid 

bilayer.  The bilayer, trapped with a water layer between the depression slide and the 
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glass substrate, is shown in Fig. 2.1.2(C).  It can be opened subsequently under water for 

addition of proteins or other lipids to the bilayer.  The method is quite useful for making 

asymmetric bilayers because the composition of each leaflet can be adjusted 

independently.  In particular, it is useful to add a variable fraction of a polymer-tethered 

phospholipid to the LB mixture, as depicted in Fig. 2.1.2.  

 

Air

Water

Feedback controlled
motorized
barrier arm

Pressure detector

Motorized 
dipper arm

Water

Bilayer for imaging

A

B

C

Depression Slide

Figure 2.1.2 (A) Langmuir-Blodgett dipping of physisorbed polymer tethered lipid 
monolayer onto solid substrate. Lipopolymers (acting as polymer tethers) are shown as 
red lipids covalently attached to black hydrophilic polymers.  (B) Langmuir-Schaefer 
transfer of upper leaflet of phospholipids onto substrate to complete the bilayer.  (C) 
Physisorbed polymer-tethered fluid lipid bilayer sandwiched between solid substrate 
and depression slide  
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2.1.3 Epifluorescence Microscopy (EPI) 

EPI microscopy is a widefield optical technique whereby a fluorescent sample is 

illuminated by a light source of one range of wavelengths, is excited, and emits photons 

at a different, longer wavelength. Through use of filters, only the emitted photons are 

collected.  The excitation source most commonly used is a mercury discharge arc lamp 

whose output is passed through a dichroic filter.  The output is again passed through an 

emission filter so that only the red-shifted emissions are collected by a charge coupled 

device (CCD) camera, the output of which is displayed on a workstation.  Research was 

conducted on a microscope with both EPI microscopy and fluorescent fluctuation 

spectroscopy (FFS) capabilities, and a schematic is shown in Fig. 2.1.3.    
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Figure 2.1.3 Microscope configuration for EPI microscopy and fluorescence 
fluctuation spectroscopy 
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2.1.3.1 Fluorescence Recovery After Photobleaching (FRAP) 

Fluorescence recovery after photobleaching, a common technique in EPI microscopy, 

is used to determine diffusion coefficients for a bulk sample in two or three dimensions, 

but works especially well on two dimensional fluid surfaces such as planar bilayers and 

cell membranes.  A small spot in a fluid sample is irrevocably photobleached, creating a 

dark spot.  For a fluid sample, the unbleached fluorophores in the sample will randomly 

diffuse until it is no longer possible to distinguish the original bleaching spot.  From the 

size of the bleach spot (wBS) and the time it takes for the fluorescence within the 

bleaching spot to return to half brightness (τ1/2) , it is possible to determine the diffusion 

coefficient (Ddiff) for the diffusing fluorophores from the following relation (62)
          

                                                   D

BS
diff

w
D

 2/1

2

4
  

(2.1.1)
 

The variable  D is a correction factor that depends on the laser line and the bleach time.   

Should any part of the bleaching spot (or volume) not recover there are said to be 

immobilized particles and the immobile fraction (IF) can be calculated as the ratio of the 

intensity within the bleach spot to the ratio of intensity of a spot that was not bleached.  

This is different than the immobile fraction calculated from wide field single molecule 

fluorescence microscopy, where the immobile fraction is the fraction of jumps that are 

smaller than the jump tracked for an immobilized particle (61).   

 

FRAP over a long time period is also excellent for determining diffusion barriers in 

an otherwise fluid sample.  While individual immobilized particles do not significantly 

affect the capacity for mobile particles to diffuse around them, if the immobilized 
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particles form a diffusion barrier, the fluorescence recovery will be seen to occur only 

along channels or within compartments and not through such barriers.   

 

2.1.3.2 Other Image Analysis Techniques 

 Beyond FRAP, EPI micrographs of lipid bilayers can provide a wide variety of 

qualitative and quantitative data.  Qualitatively, EPI micrographs of fluorescently labeled 

proteins can show whether the labeled species are distributed homogeneously. Phase 

separations can be visualized, including polymer buckles and lipid phase separations.  

Finally, it is possible to acquire quantitative data about the concentration of species 

illuminated and recorded in the micrograph (63).   

 

2.1.4 Atomic Force Microscopy (AFM) 

AFM is a scanning probe technique than has sub-nanometer three dimensional 

resolution.  Developed in the 1980’s, AFM provides accurate information on small height 

changes by scanning with a very small probe (typical tip width 40 nm) attached to a 

cantilever of known stiffness (64). A schematic is shown in Fig. 2.1.4.  
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In the tapping mode, most useful for soft samples such as lipid monolayers and 

bilayers, a probe (tip) oscillates at a known frequency and a laser beam is focused on the 

oscillating tip and through mirrors to photodiode detectors.  As the tip senses a surface, 

either through direct contact or short range forces near the surface, changes in the height 

and stiffness of the sample induce changes in the amplitude and phase of the tip’s 

oscillations which are detected by the photodiodes.  This information is relayed back as 

the piezoelectric response for that position.  The cantilever moves a short distance and a 

response is recorded at the new position.  By scanning a sample, a three dimensional 

surface of the sample can be obtained.  While analysis of the laser beam’s location can 

only detect position changes on the order of 10 nm, due to the length of the laser beam 

path from tip to detector, this translates to sensitivities greater than 1 nm on the surface.   
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Figure 2.1.4 Schematic of atomic force microscope showing cantilever suspended 
over a soft substrate 
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2.1.5 Fluorescence Fluctuation Spectroscopy (FFS) 

 A schematic of the equipment set-up for FFS, which encompasses both fluorescence 

correlation spectroscopy (FCS) and brightness analysis methods such as the photon 

counting histogram (PCH), was shown in Fig. 2.1.3.  A laser beam passes through a beam 

splitter and then is focused with a high numerical aperture objective to a focal volume 

within a larger sample of freely diffusing fluorescent particles.  Fluorescence emissions 

from within this volume pass back through the beam splitter and are focused onto a 

confocal volume.  A pinhole in the axial plane of the confocal volume is introduced to 

further limit stray fluorescence and detectors are placed to acquire, at submicrosecond 

intervals, the total fluorescence detected within the confocal volume.  The concept 

underlying FCS is that analysis of the fluctuations in intensity of fluorescent particles 

through a small volume in an unperturbed sample will give a complete kinetic description 

of the system containing the sample (65).  This is done by analyzing the rate of change of 

fluorescence over different time length scales and generating an autocorrelation curve.  

By contrast, the motivational basis for PCH is the probability distribution of the discrete 

amplitudes which comprise the fluorescent trace, collected over time, can give a full 

description of the number and the brightness of species within a volume by aggregating 

the statistics of the intensities (photon counts) collected over time into a photon counting 

histogram.  FCS, which analyzes intensity fluctuations, can sensitively determine the 

diffusion rate of fluorescent particles whereas PCH, which analyzes the frequency of 

different amplitudes of intensity more accurately determines average molecular number 

and brightness of fluorescent particles but does not determine rates of diffusion at all.  In 

either case, data acquisition remains the same.  Fig. 2.1.5 shows a photon counting 
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histogram (A), a fluctuation trace over time (B), and an autocorrelation fitting curve (C) 

of the fluctuation traces of rhodamine 6G (R6G) in solution for two different 10 s data 

acquisition sets.  

 

 

 

2.1.5.1 Photon Counting Histogram (PCH) 

It is expected that for random processes, the location of any one particle within the 

volume will be governed by a Poisson distribution.  The shape of a Poisson distribution 

for discrete values of k is as follows, where λ is the expected number of occurrences.   

                                                
!
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(2.1.2) 

The brightness of a particle registered by a photon counter will depend on its position in 

the sample space and can be described by a point spread function (PSF) so that a particle 

of brightness ε which is at the exact center of the volume will show an intensity Io but at a 
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Figure 2.1.5 (A) Histogram of photon counts of R6G collected during a 10 s trace for 
two channels.  (B) Fluctuation of intensity collected for a 10 s trace, time-binned.  
(C) Autocorrelation curves 
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distance (r,z) from the center, where r is radial distance and z the axial distance, the 

brightness will be less and intensity can be described as:  

                                                         I(r,z) = PSF(r,z) · Io.  (2.1.3) 

Finally, the number of particles within the confocal volume will also be governed by a 

Poisson probability distribution.  These three statements were elegantly translated into an 

analytical tool to evaluate photon counting histograms such as those shown in Fig. 

2.1.5(A) for use with modern microscopy by Enrico Gratton and colleagues in the late 

1990’s (66).  While Gratton’s set-up utilized a two-photon excitation microscope, others 

extended the system to one-photon excitation (67).  The mathematical details of the 

photon counting histogram, as well as some limitations, are described in Section 3.2.5.   

 

2.1.5.2 Fluorescence Correlation Spectroscopy (FCS) 

 As noted above, FCS, which was developed as an analytical tool before PCH, can 

determine diffusion times through an observation volume as well as number and 

brightness of particles in the volume (65).  FCS was originally conceived as a method to 

monitor chemical reactions non-invasively by measuring spontaneous fluctuations instead 

of perturbing a system and watching it return to equilibrium (68).  The mathematical 

treatment of the fluctuations that generate this information is as follows.  First, a PSF is 

again required and is taken to be a Gaussian.  Next, the average intensity t for the 

fluctuation trace (Fig. 2.1.5(B)) is found and the deviation from average intensity is 

defined as δI(t) = I(t) - I(t). For purely random processes, the temporal autocorrelation 

function is the correlation of a time series with itself, shifted by time τ, and normalized 

by the average intensity squared: 
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The data can then be fitted to determine the characteristic diffusion time of a particle 

moving through a volume, τD, the average number of particles, Navg, and a structure factor 

relating the ratio of the ellipticality of the Gaussian observation volume, Q, as follows 

(69) 
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 This is solved explicitly for the characteristic diffusion time (τD) and Navg.  The average 

brightness is determined by dividing I(t) by Navg.  The data are analyzed in real time by 

Zeiss ConfoCor2 software with no further analysis necessary, other than to note that, 

from experience, the system provides the greatest reliability for 1-20 particles in the focal 

volume and total intensities that average less than 500 photon counts (kHz).   

 

2.2 Thin Film Wrinkling and Delamination 

 Ultrathin elastic sheets subjected to lateral stress will wrinkle, and depending on the 

force of the lateral stress and the relative stiffness of the substrate next to the thin film, 

will delaminate and buckle.  This phenomenon is observed on all length scales, from 

geological features such as the Canadian Rockies (Fig. 2.2.1(left)) (70) to children’s kites 

and space satellites (71) to elastomer-metal hybrid bilayers 60 nm thick (72) to an LB 

monolayer of a lipid-lipopolymer (Fig. 2.2.1(right)).  In the case of polymeric thin films, 

wrinkling or buckling patterns can be exploited to fabricate patterned surfaces (72-74).  

Mixed lipid monolayers at the air-water interface normally squeeze out lipids when 
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subjected to high lateral pressures, and these lipids do not recover on relaxing the 

pressure.  However, if the lipid mixture is enriched with 3-10 mol% lung surfactant 

protein, the monolayer will exhibit reversible buckling in the water (75).  For thin films 

subject to compressive stresses, wrinkling occurs when the compressive strain is less than 

a critical wrinkling strain (76).  Delamination and buckling occur depending on the 

strength of the adhesive force between the substrate and the thin film as well as the ratio 

of the plane-strain moduli of the substrate and the film, so that the more similar the plane 

strain moduli, the more likely wrinkles will be produced rather than buckles, even at 

larger compressive forces (76). 

 

 

 

Figure 2.2.1 Left - Satellite photo of Banff National Park, Banff, Canada.  Visible 
Earth project c. NASA and provided for use without restriction.  Summit of Banff 
National Park is 2281 m ASL, 900 m above the town of Banff.   Right - Detail of 
buckling structure of 40 mol% DSPE-PEG5000 /SOPC monolayer.   Peaks of 
buckled structure on right are 8 nm above lowest point.  Scale bars: left = 25 km, 
right, 100 nm   
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2.3 Biophysical Properties of Lipid-Lipopolymer Mixtures 

 The grafting of a polymer onto the head group of a lipid and then mixing the 

polymer-grafted lipids in with phospholipids into monolayers and bilayers provides a thin 

film with properties distinct from its components.  Due to the usefulness of long-lasting 

liposomes comprised of mixtures of lipids and lipopolymers, a great deal of theoretical 

work has been undertaken on certain biophysical aspects of these mixed assemblies (47, 

48, 77).  For the current studies, the parameters of greatest interest are the height and 

bending stiffness of the monolayers.  These can be deduced from experimentally 

determined values of  a few physical parameters of the polymers, including the length of 

a unit monomer, the number of monomers in the polymer chain, the mole fraction of 

lipopolymers on a monolayer, and the height and bending stiffness of a monolayer of 

lipids in the absence of lipopolymers (47, 78).  The formulae connecting these data will 

be described in detail in Section 3.2.5. 

 

2.4 The Role of Cholesterol in Lipid Bilayers 

The plasma membrane is a fluid lipid bilayer primarily composed of phospholipids, 

ceramides, CHOL and membrane proteins (79).  The phospholipids and ceramides are 

amphipathic with charged or zwitterionic head groups and long carbon chains, generally 

around 16-20 carbons in length.  The membrane proteins may contain transmembrane 

domains or lipid anchors attached to protein head groups that extend into either 
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the cytosol or the exterior face.  CHOL, shown in Fig. 2.4.1, modulates the interactions 

between the lipids and proteins in many ways which are poorly understood and of intense 

interest (80).  CHOL affects other lipids in a bilayer in a number of ways.  With respect 

to size, CHOL is shorter than the phospholipids, and unlike the phospholipids, has no 

charged head group.  Cholesterol sits within a membrane with its hydroxyl group 

interacting with the charged lipid head group and shielded from water.  The sterol 

component next to the hydroxyl group is rigid and stiffens the bilayer, making the bilayer 

less permeable to small charged molecules.  The effect of CHOL intercalating between 

lipids in this fashion increases the width of a bilayer, and decreases phospholipid fluidity 

both translationally and rotationally (81, 82).  Interestingly, in model bilayers, CHOL is 

an “averager,” disrupting packed, gel phase bilayers of saturated lipids to induce a less 

ordered state and organizing fluid liquid phase bilayers of unsaturated lipids into a state 

of greater lipid order (82).  In fact, in model bilayers, as noted in Section 1.1, certain 

ternary mixtures of saturated lipids, unsaturated lipids and CHOL phase separate into two 

intermediate phases.  The phases are known as the liquid ordered (lo) phase composed 

primarily of CHOL and saturated lipids, and the liquid disordered phase (ld) composed 

primarily of CHOL and unsaturated lipids (83).  These two phases are thought to mimic 

Figure 2.4.1 Cholesterol 
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roughly the cholesterol content of lipid raft domains  (ld) and non-raft domains (ld) in 

plasma membranes. 

 

 It is possible to study the effects of CHOL on proteins without studying transient lipid 

rafts on the plasma membrane directly by using polymer-tether supported lipid bilayers, 

as described below in Chapters 3 and 4.  Here, a polymer tether enables the reconstitution 

of transmembrane proteins into these model systems, on which it is possible to vary 

levels of CHOL both in binary lipid mixtures as well as by using ternary mixtures with 

large, stable patches of lo regions and ld regions.  With a ternary system, it is also possible 

to identify the biophysical preference of a membrane protein for either lo or ld phases in 

the absence or presence of other biochemical signals.  Importantly, the planar nature of 

the system and its low background compared to live cells permits sophisticated FFS 

analysis of the lipids and proteins at the single molecule level. 

 

2.5 Overview of Integrins v3 and 51 

 Integrins are a class of membrane proteins that are involved in many cellular 

functions including cell adhesion, morphology, motility, angiogenesis and they act as 

bidirectional signaling platforms (84, 85). These processes are thought to be regulated by 

lipid rafts as well as cytosolic proteins that bind to integrins, such as talin, and 

extracellular matrix (ECM) ligands including FN and VN.  Integrins are comprised of 

two noncovalently bound subunits, an  subunit and a  subunit.  Both subunits have 

large extracellular domains that in a resting state form a bend back toward the membrane.  

The ligand binding area is roughly in the middle at the top of the unit, which means that it 
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is not very far from the membrane.  Both subunits have single membrane-spanning 

domains and short cytosolic domains.  Currently, there is no crystal structure for an entire 

integrin, but Figure 2.5.1 shows a ribbon representation of a structure for both 

extracellular domains with the first 5 transmembrane peptides (86).  The structure is 

oriented as if it were directly above the plane of the membrane.  As described below in 

Section 3.2.2, inegrins are incorporated into previously constructed bilayers with no 

assurance their orientation will include the extracellular domain above the bilayer and 

accessible to ligands.  However, by adding fluorescent tags to antibodies that bind to the 

EC domains after incorporation of the proteins into the bilayer, the current experimental 

set-up ensures that only correctly oriented integrins will be seen fluorescently.   

 

 Integrin functionality is regulated by ligand binding, cytosolic binding, and 

microclustering, as well as other protein-protein interactions.  The cation Mn2+ has also 

been shown to increase integrin activity.   Artificial crosslinking of integrins enhances 

their activity (87), as does Mn 2+ (88).  Moreover, cholesterol depletion in a plasma 

membrane decreases the clustering of wild type integrins, but not mutant integrins for 

which the mutation caused the integrin to be constitutively in a different conformation 

(33).  Given the relative ease of incorporating integrins into model membranes and the 

relative difficulty in isolating the many potential factors regulating integrin functionality 

in the plasma membrane, they are a promising candidate for model studies.  The specific 

integrins chosen, v3 and 51, are important because they are critically involved in 

angiogenesis, particularly cellular adhesion and cell motility (v3 and 51)(88), and 

tumorigenicity (v3) (89). 
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Figure 2.5.1 Ribbon representation of crystal structure of EC 
domains of v3, with  subunit in yellow and  sub-unit in blue.  
Protein is in a folded conformation and oriented as if just above a 
plasma membrane 

v3
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CHAPTER 3 MATERIALS AND EXPERIMENTAL PROCEDURES 

 

3.1 Materials 

 The lipopolymer dioctadecylamine poly(2-ethyl-2-oxazoline)85 (DODA-E85) was 

synthesized in the laboratory of Jürgen Rühe following a procedure described previously 

(90).  The lipopolymers 1,2-dioctadecyl-sn-glycero-3-N-poly(2-methyl-2-oxazoline)50 

(diC18M50), 1,2-dioctadecyl-sn-glycero-3-N-poly(2-ethyl-2-oxazoline)50 (diC18E50), and 

1,2-dioctadecyl-sn-glycero-3-N-poly(2-ethyl-2-oxazoline)50 with a terminal fluorescence 

label of 6-tetramethylrhodamine[-isothiocyanate] (diC18E50-TRITC) were synthesized in 

the laboratory of Rainer Jordan following procedures described previously (91-93). 

Lipids and lipopolymers including 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine 

(SOPC), ammonium salt of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N- 

[methoxy(polyethylene glycol)-5000] (DSPE-PEG5000), 1,2-dioleoyl-sn-glycero-3-

phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-choline (DPPC), 1,2-dipalmitoyl-

sn-glycero-3-phosphothioethanol (DPTE), CHOL, and ganglioside GM1 (bain, ovine-

ammonium salt) were purchased from Avanti Polar Lipids (Alabaster, AL) and used 

without further modification.  The lipopolymers DODA-E85, diC18E50, diC18M50 and 

DSPE-PEG5000 are shown in Fig. 3.1.1. 
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Ultrapure water (Milli-Q) used in the preparation of lipid bilayers was provided via a 

Millipore Water Purification System (Milford, MA).  Glass coverslips (24 x 40 mm, No. 

1) were purchased from VWR Scientific Products (West Chester, PA) for EPI 

microscopy and from Thermo Fisher Scientific (Fisher Finest) (Waltham, MA) for FFS 

or combined EPI/FFS.  Glass coverslips were prepared for use by baking in 515 °C oven 

for 1 h (VWR) or 3 h (Fisher Finest) and then sonicating in 1% SDS (30 min VWR, 45 

min Fisher), followed by a thorough rinsing and sonicating in NaOH saturated MeOH (30 

min VWR, 45 min Fisher), followed by thorough rinsing and sonicating in Milli-Q (5 

min), followed by sonicating in 0.1% HCl (30 min VWR, 45 min Fisher) and a last 

rinsing and sonication in Milli-Q.  All cleaning and buffer solutions were prepared using 

solvents and chemicals purchased through Thermo Fisher Scientific.   

 

Proteins and antibodies were purchased from Millipore, Inc. (Billerica, MA).  These 

included human integrin αRvRβR3R, and human integrin αR5RβR1R, both octyl-β-D-glucopyranoside 

Figure 3.1.1 Lipopolymers DODA-E85, DSPE-PEG5000, diC18E50, and diC18M50 
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human purified protein, (VN), and human plasma fibronectin (purified protein) (FN).  

The kits for fluorescently labeling antibodies with TRITC or Alexa-555, and the 

fluorescent lipid probes triethylammonium salt of N-(6-

tetramethylrhodaminethiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-

phosphoethanolamine (TRITC-DHPE) and triethylammonium salt of (N-(7-nitrobenz-2-

oxa-1,3-diazol- 4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine) (NBD-PE) 

and Alexa-555 fluorescently labeled CTx B (CTxB-555) were purchased from 

Invitrogen.  Rhodamine 6G (R6G) and octyl-β-D-glucopyranoside (OG) were purchased 

from Sigma-Aldrich (St. Louis, MO).  Antibodies were labeled following procedures 

described in antibody labeling kits.  Efficacy of labeling was checked by determining 

brightness through FCS.  Lipopolymer-coated maleimide-functionalized quantum dots 

were graciously provided by members of the Naumann lab following a slightly modified 

version of the procedure described previously (94). 

 

3.2 Experimental Procedures 

 

3.2.1 LB/LS Deposition Techniques 

 Polymer-tethered phospholipid bilayers were built using successive LB and LS film 

transfers following standard procedures described before with slight modifications (60).  

To form the first (LB) monolayer, a chloroform solution of lipids and lipopolymers was 

spread at the air-water interface of a film balance equipped with dipper (Fig. 2.1.2) 

(Labcon, Darlington, UK).  The composition was 5 mol% diC18M50 and 31.5 mol % 

DPPC and CHOL and 32% DOPC for TYPE I bilayers.  For TYPE II bilayers, the 
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composition consisted of 5 mol% diC18M50 and 0, 5, or 30 mol% CHOL with the balance 

consisting of SOPC.  Next the monolayer was compressed and, after stabilization (30 

minutes for TYPE I bilayers or mixtures with  > 10 mol% lipopolymer, 20 minutes for 

other mixtures), transferred to a prepared glass substrate at a film pressure of 32 mN•m-1 

for TYPE II bilayers or 30 mN m-1 for other mixtures.  Next, after surface-cleaning the 

trough, a fresh chloroform solution containing a lipid mixture was spread at the air-water 

interface and compressed to the same film pressure as the LB layer.  The lipid mixture for 

the LS slide was the same as the lipid mixture for the LB slide but without the 

lipopolymer.  For TYPE I bilayers, the three components were each increased 

proportionately in LS mixtures, for all other bilayers the lipopolymer was replaced with 

SOPC.  LS transfer was accomplished by stabilizing the LS monolayer with a depression 

slide positioned underneath the air-water interface and then gently pushing the glass 

substrate containing the LB layer onto the underlying depression slide.  For experiments 

incorporating proteins into bilayers, the depression slide was removed under water using 

a transfer dish and the bilayer placed into a Petri dish where Milli-Q was replaced by 

phosphate buffered solution (PBS) (Fisher Scientific, 10X concentration, diluted in Milli-

Q).   

 

3.2.2 Incorporation of Proteins into Bilayers 

 Proteins were reconstituted into model bilayers containing 5 mol% DiC18M50 in the 

LB layer using a modified Rigaud technique (95) as shown in Fig. 3.2.1.  Micelle-

stabilized membrane proteins (1.3 x 10-11 mol leading to bilayer concentrations of 10-3 

mol%) were diluted 100x in PBS and added to the solution above the bilayer for 1.5-2 h 
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followed by removal of surfactant using a single layer (approximately 50 mg) of SM-2 

biobeads (Bio-Rad, Hercules, CA) previously slurried in PBS and applied for 15 min. 1 g 

of biobeads suffice to soak up 117 mg of OG (96); thus a ten-fold excess was added 

(approximately).  Fluorescently labeled monoclonal antibodies (MAbs) were then added 

for 2-4 h and excess antibodies were removed by rinsing.  Antibodies routinely washed 

off and left no trace on TYPE II bilayers.  For TYPE I mixtures, low levels of antibody 

adsorption occurred, for α5β1 but not αvβ3 antibodies, if left on the bilayer over 12 h; 

therefore, antibodies were rinsed off within 4 h.  FN or VN were added in 1:1 ratio to 

proteins and permitted to equilibrate 3-4 h or 12 h.  Unbound FN or VN were removed by 

rinsing before imaging.  

  

 

 

Figure 3.2.1 Membrane protein insertion into a polymer-tethered 
phospholipid bilayer, with removal of surfactants (black) with biobeads 
(white) 
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3.2.3 Combined EPI/FFS Data Acquisition 

A commercial ConfoCor 2 (Zeiss, Jena, Germany) (schematic shown in Fig. 2.1.3) 

connected to an inverted optical microscope (Axiovert 200M, Zeiss, Oberkochen, 

Germany) was utilized for EPI microscopy and FFS.  EPI was conducted using the optical 

microscope in epi-illumination (Axiovert 200M) where the beam was focused to the 

sample by a microscopy objective (Zeiss C-Apochromat, water immersion, 40x NA = 1.2 

or Zeiss α plan-FLUAR TIRF, oil immersion, 100x NA = 1.45) with optovar 

magnification (1.6x).  Appropriate filter sets for NBD-PE or Alexa-555/TRITC-DHPE 

were utilized; NBD-PE concentrations were chosen so no bleed through to the red 

channel was seen in the micrographs (less than 0.5 mol%).  EPI was utilized for 

monolayer and bilayer analysis in the absence of proteins; in the presence of proteins a 

combined EPI/FFS data acquisition strategy was adopted.   

 

FFS was conducted utilizing the C-Apochromat 40x objective.  For FFS, the system 

was brought to thermal equilibrium to minimize drift, and data on protein distributions 

were acquired using a 1.8mW HeNe laser (wavelength 543nm, dichroic mirror and 

bandpass filter 550-605nm) excitation source and an appropriate dichroic mirror and 

bandpass filter (550-605nm).  Data on NBD-PE distributions were acquired using a 

30mW argon laser (wavelength 488nm) excitation source and an appropriate dichroic 

mirror and bandpass filter (505-530nm).  TYPE I lipid mixtures induced phase 

separations into lo and ld  domains, which were visualized by EPI either through low 

concentrations of NBD-PE or by protein distributions on the bilayer, and confirmed by 

subsequent addition of NBD-PE in fusogenic vesicles after completion of protein data 
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acquisition (94).  Confocal spectroscopy XY (CS-XY) scans on TYPE I systems were 

accomplished for 10 x10 μm2 areas using a 0.5μm step size and a low (7% for HeNe, 1% 

for Ar) laser power.  These low powers minimized XY drift but did not eliminate entirely 

photobleaching of the sample.  Control scans were performed in the absence of proteins 

to determine average background fluorescence, with and without low concentrations of 

NBD-PE, and then in the presence of proteins.  

 

FFS data for the PCH analysis of proteins on bilayers were acquired using the 543nm 

HeNe laser (70% laser power) with runs of at least 50 s.  Z directional focusing for 

proteins was done by a manual Z scan seeking to maximize fluorescence signal.  Protein 

fluidity was confirmed by appropriate characteristic diffusion times, as determined by the 

ConfoCor2-generated autocorrelation curve.  Data regarding protein brightness on the 

bilayer were also generated by the autocorrelation curve (using FCS), but were unreliable 

as overly influenced by background signal at the low protein concentrations utilized.  The 

photon counting histograms (h(k)) were found by acquiring data from the ConfoCor2 

graphs of frequency binned intensity data.  These did not provide bins with zero count 

rates.  To ensure the data were sufficiently robust above background for the low 

concentration of diffusing proteins on the bilayer, the intensity trace was also analyzed.  

It was found that when the average signal for the top 1% of the counts collected by the 

intensity trace were at least 20x above average background or more, sufficient data were 

available to fit the PCH data to a PCH algorithm-generated curve.  FFS data were 

acquired for labeled antibodies and different dyes in solution as well as for TRITC-DHPE 

incorporated into fluid bilayers.  
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3.2.3.1 Fluorophore Concentration Determinations from Image Analysis 

 EPI studies analyzing relative concentrations of lipids and lipopolymers on 

monolayers and bilayers through intensity analysis were undertaken on the Axiovert200 

utilizing a Zeiss AxioCam MRm monochrome digital camera and Axiovision 4.8 

software.  The exposure time for each micrograph was 50 ms.  This generated consistent 

micrographs with a range of gray values (ranging from 32 for background to 3600 for 

monolayers with 0.8 mol% TRITC-DHPE), which correspond to the relative quantities of 

TRITC-DHPE or diC18E50-TRITC in different regions of the micrographs.  The 

micrographs contained two distinct regions, “bright phase” and “dark phase” and 

associated gray values were found for a representative sample of regions and micrographs 

for three different dye concentrations.  A monolayer with no dye was also imaged (using 

FFS to focus the sample) in order to obtain appropriate background values.  To compare 

the relative gray values between the fluorescently labeled lipids and the fluorescently 

labeled lipopolymers, the mean gray value for the bright region of the 0.8 mol% TRITC-

DHPE monolayer and the 0.8 mol% diC18E50-TRITC monolayer were each assigned the 

value of 1,000 a.u. (arbitrary units) and the rest of the gray values for each series were 

calculated relative to that number, in a.u. 

 

3.2.3.2 Compartment Size, Buckle Width Determination, Fractal Dimension and FRAP 
  Information from Image Analysis 

 
 Determination of compartment sizes in the 30 mol% DODA-E85 bilayers using EPI 

microscopy were performed on images acquired with a CoolSNAPfx CCD camera (Roper 

Scientific, Princeton, NJ) and Roper Scientific imaging software.  FRAP was performed 

by closing the field stop on the microscope to its smallest diameter and permitting the Hg 
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light source (AttoArc HBO 100 Watt) to bleach the sample for 30 s.  Two minutes or 

more passed before a subsequent EPI image was taken to show recovery.  Size 

distribution of the compartments was determined using image analysis (Axiovision 

software).  Here we determined a statistically significant number of compartment areas 

from different sections of the membrane.  The average and standard deviation were then 

determined for the set of analyzed compartments.  This procedure was repeated on 

different samples to ensure reproducibility in average compartment size.  It was also 

possible to determine average compartment size in a completely independent fashion 

from single molecule fluorescence microscopy, utilizing 2r  vs. t plots from long-range 

single molecule diffusion studies (60).   

 

 For the monolayer studies involving DSPE-PEG5000, buckle width on monolayers 

and percent coverage of a monolayer by buckles was determined using Axiovision 

software (Zeiss) or Imagej, free software available at the NIH website.  Determination of 

the fractal dimension, Dcorral, of the corrals was performed using standard Box Count 

analysis available with the Imagej software (97).  First, the images of interest were 

converted to binary images and then the fractal box count tool was applied to give a 

value.  The procedure was repeated on different regions of the monolayer and on 2 

different slides.  The theory of fractal dimension through box counting is that boxes of 

progressively smaller sizes are used to tile a binary image.  The number of boxes required 

to tile the image (N(r)) are collected as a function of the box size (r) and the box counting 

dimension, D, is defined as    

)]/1log(/)([loglim
0

rrND
r

 . 
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3.2.3.3 Partition Coefficient and Migration Fraction from Confocal Spectroscopy-XY 
Scan Data 

 

  Partition coefficients (Kp (lo/ld)) (40) were determined from CS-XY scans.  Raw scans 

were corrected for NBD-PE and background contributions to determine protein signal 

average intensities in lo phases (Ilo ) and ld phases (Ild ).  Kp was found as Ilo/Ild.  Another 

useful parameter for analyzing changes in Kp is raftophilic excess, Eraft defined as the 

difference in signal intensities between lo and ld phases normalized by the sum of the 

signal intensities  

                                                  )/()( ldloldloraft IIIIE  . (3.1) 

For a system perturbed, for example by the addition of ligands, the change in raftophilic 

excess, divided by two, equals the fraction of proteins Xmigrate, which have migrated from 

ld to lo   

                                     
2/)( )( raftnewraftmigrate EEX  . (3.2) 

 

3.2.3.4 A Control Study: Combined EPI/FFS Data for Cholera Toxin B 

 In order to verify the efficacy of the combined EPI/FFS strategy of determining lipid 

phase orientation in particular locations on a bilayer and performing quantitative CS-XY 

scans to find the partition coefficient and Eraft on a working system, a bilayer was 

constructed with the TYPE I mixture of lipids, NBD-PE, and 1 x 10-3 mol% GM1.  

Subsequently, CTxB-555 was added.  EPI micrographs were taken and CS-XY scans 

were performed.  FCS runs were then performed in the lo and ld phases as identified by  
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the CS-XY scans.  Representative results of these studies are shown in Fig. 3.2.2.  (A) 

shows the EPI micrograph of the bilayer.  (B) shows the  CS-XY scan of the same area 

using the appropriate laser (543 HeNe, 7%) and filter settings for the Alexa-555 dye.  

From these data, it was first possible to determine Eraft from the intensities (C), with the 

minimal intensity from the NBD-PE first subtracted.  Then, it was possible to move the 

stage to well-defined raft and non-raft areas and acquire FCS data determining 

characteristic diffusion times which indicate the relative diffusion coefficients (D).  As 

expected, the CTxB diffusing in the non-raft ld phase (blue) has a notably different 

characteristic diffusion time than the CTxB diffusing in the raft-like lo phase (green).  
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Figure 3.2.2  Combined EPI/FFS analysis of CTxB partitioning on phase-separated 
bilayer.  (A) EPI micrograph of area of interest.  (B) CS-XY scan of area of interest, 10 
x 10 μm2 at 0.5 μm intervals. (C) Determination of Eraft from data depicted in (B).  (D) 
overlaid G(t) curves discovering different rates of diffusion of CTxB in lo and ld phases 
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While FCS is excellent at determining diffusion times, since it only analyzes fluctuations 

in intensity and not the full intensity profile, it is not as sensitive as PCH at determining 

brightness and number at low concentrations.   

 

3.2.4 AFM on Air Stable and Water Stable Substrates 

 AFM images were obtained using a Digital Instruments BioScope, and analyzed 

using Nanoscope IV and Nanscope 6.12r1 software (Digital Instruments/Veeco 

Metrology Group, Plainview, NY).  The samples were scanned using stiff (k = 0.32 or 

0.58 N m-1) non-conductive silicon nitride cantilevers (Veeco Instruments).  Regions 

ranging from 0.5 x 0.5 µm2 to 20 x 20 µm2 were imaged at resolutions of 512 x 512 or 

256 x 256 pixels using a scan rate of 0.1-1 Hz.  Monolayers were analyzed in air within 

48 hours of preparation using the tapping mode.  Bilayers were analyzed in water 

(tapping mode) within 24 hours of preparation by mounting the cantilever onto a water-

tight cantilever-mount.  Manual tuning was necessary for the underwater images and for 

fine-tuning the air images.  Both height and phase data were collected. 

 

3.2.5 Calculating Thickness and Bending Elasticity of Lipid-Lipopolymer Mixtures 

 The thickness and bending modulus of monolayers containing lipopolymer/lipid 

mixtures have been investigated analytically.  At concentrations of 3 mol% DSPE-

PEG5000 or greater, the PEG polymers in the aqueous subphase, underneath the lipid 

monolayer, are in the brush regime.  In other words, all the polymer headgroups interact 

and become stretched out as they overlap (78).  Mean field theory calculations can be 

used to find the approximate length of the polymer brush, Lp, as follows: 
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3/13/5 )/( lpmpp AXanL   

(3.3) 

 where np is the number of monomers, am is the length of each monomer, Xp is the mole 

fraction of lipopolymers, and Al is the area per lipid (47, 78).  This assumes that water 

acts as a good solvent at the appropriate concentrations, and that monomers are equally 

dispersed throughout the volume at a constant density (a mean field approximation).  

These assumptions may not be exact but are a good approximation.  For DSPE-PEG5000, 

np = 114, a reasonable value for am = 0.39 nm (78), and Xp can be set, but an explicit 

equation is needed for Al.  This is because when the concentration of lipopolymers 

exceeds a critical value, the area per lipid will start to expand to account for the polymer 

crowding.  Al as a function of Xp can be found by minimizing the interfacial free energy 

with respect to Al.  This corresponds to finding the minimum for the equation 
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using the virial coefficients B2 = 2.51 nm2 and B3= 0.779 nm4
 and Ao,l = 0.65 nm2 (78) 

(using mean field theory).  Once Al is found numerically, then it is possible to determine 

the height of the lipid monolayer and the polymer layer.  The height of the lipid 

monolayer is found by assuming constant lipid volume, so dl = dl,o (Al,o/Al) and dl,o is 1.5 

nm.  The height of the full monolayer is then h = Lp + dl. 

 

 The bending modulus is comprised of the mean curvature modulus, Kc and the 

Gaussian curvature modulus KcG, but we will be assuming a straight sided blister as 

described below, and therefore KcG = 0 and Kc can be written as follows   
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(78)  (again utilizing mean field theory) where T is taken to be 293 K and kB is the 

Boltzmann constant.  The first term in Eqn 3.5 is due to the lipid contribution and the 

second term is due to the polymer contribution.  Casual inspection shows the polymer 

contribution includes the square of Lp multiplied by a term for the area expansion (47).  

These values of h and Kc will be needed to describe the buckling of a monolayer. 

 

3.2.6. The Buckling of Thin Films on Rigid Substrates 

 Föppl and von Kárman investigated the elasticity of thin plates in the last century, and 

derived two coupled nonlinear partial differential equations (the FvK equations) to 

describe the vertical displacement of a film, w(x,y) and an Airy potential, v(x,y) such that 

the tangential components of the stress are the four second derivatives of the Airy 

potential in the (x,y) plane.  The FvK equations have few analytical solutions (98).  Based 

on the shape of the patterns formed by DSPE-PEG5000, the best analytically available 

solution is for a straight-sided blister, or “Euler column” (98, 99) and the boundary 

conditions are that the height of the blisters go to zero on the edges and Gaussian 

curvature is zero.  For an Euler column, the bending stiffness is defined by the film 

thickness and the Young’s modulus (E) or the plane strain modulus (E*) as follows (99): 

                                   12)1(12

3*
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3 hE

v

Eh
Kc 




                                                 
(3.6) 

where ν is the Poisson ratio of the film and h is the film thickness.  The Young’s modulus 

is the ratio of the stress over strain for small values of stress and strain where Hooke’s 
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law holds.  The Poisson ratio is the ratio of the amount a sample contracts perpendicular 

to the load and the amount it stretches axially with a load.  The solution of the FvK 

equations for the Euler column relates the critical stress (c), defined as the stress at the 

onset of buckling, with bending stiffness, width and height of the buckles (99) as follows 

                                                      
hb

Kc
c 2

2
  .       (3.7) 

Normalized critical stress, is (c/E
*) = (π2/12)(h/b)2 from Eqns 3.6 and 3.7.  The actual 

stress, o, is determined from the same parameters plus the height of the buckle, wmax, 

through a parameter, ξ, defined as the ratio of the height of the buckle to the thickness of 

the film, ξ = (wmax / h)   
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Another important parameter is the nondimensional loading parameter, which is the ratio 

of the actual film stress, o, to the critical stress, c.  This can be determined using only ξ 

(99) 
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Clearly h and Kc can be calculated as described above using Eqns 3.3-3.5 and the 

published values for np, am, Al,o, dl,o, B2 and B3.  Then, once the parameters wmax, b and θ 

are determined experimentally, it is possible to develop a metric-based understanding of 

the effect of the change in Xp on buckling in a mixed lipopolymer/lipid monolayer. 
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3.2.7 Generating the Algorithm for PCH 

 An algorithm for extracting brightness and number information from the PCH data 

was generated assuming a Gaussian point spread function (66, 67) and 50 particles or 

fewer in the observation volume.  The central thesis of PCH is that a histogram of photon 

counts found for a single particle of average brightness ε in Vo (p
(1)(k; Vo,ε)) is described 

by integrating the Poisson distribution of ε multiplied by the PSF and integrated over the 

entire volume as follows. 
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Assuming the particles are independent, the probability distribution for N particles in the 

volume is the probability of seeing 1 particle N times   

   p (N)(k; Vo, ε) = (p(1)  p(1 )  p(1) . . .   p(1))(k; Vo, ε) N times. (3.11) 

For an average concentration, the number of actual particles inside the volume will 

fluctuate.  This fluctuation must also be captured as a Poisson distribution around Navg.   
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where the average photon counts, k, will be the product of Navg and ε.  If a Gaussian 

PSF is chosen, and a factor, Q = Vo/V is determined, which sets a ratio of total volume to 

Gaussian volume, it has been shown  
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where  is the incomplete gamma function (67).  This can be numerically integrated for 

each value of k so that p(1)(k;Q,ε) can be used to determine PCH(k; Navg,ε).  For two 
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species, the photon counting histogram is the convolution of the probabilities for each 

species determined separately.   

    PCH(k;N1,ε1,N2,ε2) = PCH(k;N1,ε1)  PCH(k;N2,ε2) (3.14) 

The Gaussian model has been shown to have difficulties at low count rate regimes with 

species of high brightness (67).  In our model, this is corrected for by convoluting with a 

background species of low brightness and high count rate.  In addition, we fit the PCH 

curves for values of k >1.  Some experimentalists have noted difference brightness values 

determined by their PCH algorithm for proteins in solution and proteins located on a slab 

of finite thickness (100).  We find that setting Q = 1 enables good fits comparing 

brightnesses in solution and on a bilayer.  For fitting the data to the PCH curve, the 

normalized probability of getting k counts is h(k) and the probability of not getting k 

counts is 1-h(k).  Standard deviation , and χ2 are defined as described  below   
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 (3.15, 3.16) 

where d is the number of fitting parameters and h(k) is the experimentally determined 

probability of observing k photon counts.  We fit this using a least squares method.  

The residuals are as follows:  

                                                  /))()(()( kPCHkhkr  . (3.17) 

The quality of the fit can be estimated from the χ2
 value and the residuals. 

 

 As a practical matter, another way to calculate error for PCH algorithms is to run 

multiple sets of data and find the best fit answers to the fitting curves for Navg and ε for 

the different data sets.  The standard deviation in h(k) for each k will suffice for error bars 
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for h(k) and when graphing brightness and number, the standard deviation of the 

solutions to Navg and ε can provide error bars.  

  

3.2.7.1 Particle Number and Brightness Determinations by PCH and FCS 

 After the PCH algorithm has been constructed, it must be tested by determining its 

ability to detect differences in fluorophore number and brightness.  FFS data for low 

concentrations of a standard fluorophore, R6G, were tested by PCH and by FCS analysis 

to show the capability of PCH to determine number under relevant conditions.  The 

results are shown in Fig. 3.2.3.  Low dye concentrations were chosen for two reasons.  

First, with fewer photons hitting the detector, there is no need to correct for detector dead 

time (101).  More importantly, these low fluorophore concentrations will better mimic the 

conditions that will be studied with membrane proteins.  The results showed that PCH did 

as well as FCS in determining number, both finding a slight excess at the lowest 

concentration and working reasonably well for slightly higher concentrations.
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3.2.7.2 PCH Algorithm Calibration: Particles in Solution and on a Bilayer 

 In order to determine the oligomerization state of proteins on a bilayer, it is necessary 

to compare the brightness of fluorescent probes in solution, where they are monomers, 

and on a bilayer.  However, different PCH algorithms can generate different brightness 

values in these two circumstances due to the different shape of a PSF for particles in 

solution, which is essentially a three-dimensional ellipsoid, and particles confined 

essentially to a plane (100).  Therefore, it is necessary to test a PCH algorithm with a 

system that is known to be monomeric both on a bilayer and in solution to determine 

whether a correction factor is necessary.  Maleimide-functionalized quantum dots (QDs) 

were deemed an appropriate choice for this control since they are monomeric in solution 

and when linked to thiol-functionalized lipids (DPTE) on a bilayer (94).  A bilayer was 

constructed with SOPC with 2x10-3mol% DPTE.  QDs were added in excess (60 min) 
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Figure 3.2.3 (A) PCH of R6G at three different concentrations, showing residual 
errors for the fit beneath (A).  (B) Number extracted from PCH (filled bars) and from 
the autocorrelation curve description of the same data by FCS (open bars) 



45 

 

 

and unbound QDs were rinsed off before imaging.  Fig. 3.2.4 shows the PCH algorithms 

and the best fits, with residuals for QDs in solution and on the bilayer.  
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CHAPTER 4 RESULTS AND DISCUSSION 

 

4.1 Impact of Tether Concentration on Membrane Organization and Dynamics 

 A major difference between model lipid bilayers and a cell membrane is that model 

bilayers do not ordinarily contain membrane proteins.  This is a critical difference due to 

the high density of membrane proteins in a plasma membrane (102).  Membrane proteins 

not only have specific interactions with membrane lipids, such as those described in 

detail in Section 4.2, but also increase the lateral stress on a plasma membrane through 

connections to the cytoplasm, ECM, and steric crowding.  One way to mimic an increase 

in lateral stress is to incorporate actin filaments to a lipid bilayer (46).  Another method to 

systematically control changes in lateral stress is to incorporate lipopolymers into the 

lipid bilayer at increasing concentrations while maintaining the same surface tension on a 

Langmuir trough.  As has been previously reported, increasing the mole fraction of 

lipopolymers in one leaflet of a bilayer leads to decreasing rates of diffusion in a process 

generally described as obstructed diffusion (61).  Moreover, this effect is coupled across 

the bilayer so that a decreased rate of diffusion in one leaflet is mirrored by a decreased 

rate of diffusion on the other leaflet (103).  Beyond changing the rate of diffusion, 

increasing the lipopolymer content in a lipid bilayer should induce other long-range 

effects involving membrane tension, membrane stress, and even membrane buckling.  

Section 4.1.1 describes the investigation of observed diffusion barriers identified in 

membranes constructed with high mole fraction (Xp) DODA-E85.  Ultimately, it is shown 
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that the diffusion barriers occur due to buckling of the LB monolayer caused by the 

lateral stress imparted by the lipopolymers where the lipophilicity of the polymer moiety 

is instrumental in the creation of the diffusion barriers.  The diffusion barriers segregated 

the 30 mol% DODA-E85  into μm2-sized compartments.  Section 4.1.2 describes a 

systematic investigation of the buckling patterns of DSPE-PEG5000 (Xp = 0.03 – 0.40)  

by AFM and EPI to determine the effect of increasing lipopolymer concentration on film 

stress and response in model monolayers.   

 

4.1.1 Buckling-induced Diffusion Barriers in Lipopolymer-Enriched Bilayers 

 We first conducted a set of EPI and FRAP experiments to explore the impact of 

applied lateral stress on the large-scale membrane organization and dynamics of a 

physisorbed polymer-tethered phospholipid bilayer.  Fig. 4.1.1 illustrates representative 

EPI and FRAP micrographs of physisorbed polymer-tethered SOPC bilayers containing 5 

(A,D), 15 (B,E), and 30 mol% (C,F) of DODA-E85.  While the LS monolayer exclusively 

contains the phospholipid SOPC and 1 mol% dye-labeled lipid NBD-PE, the LB 

monolayer is comprised of mixtures of NBD-PE, SOPC and DODA-E85.  At the low 

lipopolymer molar concentration of 5 mol%, the fluorescence micrograph shows a 

homogeneous bilayer (Fig. 4.1.1(A)).  In this case, an isotropic fluorescence recovery can 

be observed (Fig.4.1.1 (D)), which resembles that of a one-component lipid bilayer in the 

fluid phase.  In contrast, at 15 mol% DODA-E85, the fluorescence micrograph suggests 

the existence of two distinct phases (Fig.4.1.1 (B)).  Remarkably, the corresponding 

FRAP experiment shows that the darker phase acts as a  lipid diffusion barrier, thus 

effectively compartmentalizing the bilayer system (Fig. 4.1.1(E)).  At 30 mol% DODA-
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E85, the dark phase becomes more pronounced and the bilayer compartmentalization 

becomes more complete  (Figs. 4.1.1(C,F)).  Comparable results were obtained when 

NBD-PE was replaced by TRITC-DHPE, thus excluding dye-specific artifacts as a 

possible explanation of the data in Fig 4.1.1.  Representative micrographs showing the 

effect of continued bleaching of a small spot using TRITC-DHPE instead of NBD-PE are 

provided in Fig. 4.1.2.  It is possible to watch fluid dyed-lipids moving from outside the 

bleaching area in toward the center, but they are clearly restricted by the same diffusion 

barriers seen using NBD-PE. 

A B C

D E F

Figure 4.1.1 EPI micrographs (taken using 40x objective) of bilayers with 5 (A,D), 15 
(B,E), and 30 (C,F) mol% DODA-E85 in the LB layer, and SOPC in the LS layer, 
illustrating qualitatively the impact of lipopolymer concentration on membrane 
organization. The size for the top row is 50 µm x 50 µm; the size for the bottom row 
which also show FRAP (2 min recovery after bleaching) is 100 µm x 100 µm. The 
dotted circle indicates the position and size of the bleaching spot 
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4.1.1.1 Studies on Fluorescently Labeled DiC18-P50 Monolayers 

 One possible explanation for the different phases in Figs. 4.1.1 and 4.1.2 is the 

formation of a large-scale phase separation into lipopolymer-poor and lipopolymer-rich 

phases in the bottom leaflet (LB monolayer).   In fact, recently it was reported that 

polymeric systems are able to corral lipids in a monolayer, thereby causing its 

compartmentalization (104).  In addition, lipopolymer-phospholipid phase separations 

have been reported on polymer-tethered lipid bilayer systems built using very slow LB 

transfer speeds (105).  To explore whether such phase separations would explain the 

micrographs shown in Figs. 4.1.1 and 4.1.2, LB monolayers of SOPC with 15 mol% were 

constructed with 0.4, 0.6, and 0.8 mol% dyed lipids (TRITC-DHPE) or 0.4, 0.6, and 0.8 

mol% dyed lipopolymers (diC18E50-TRITC).  Fig. 4.1.3 (A) illustrates representative EPI 

micrographs of LB monolayers showing the TRITC-DHPE (top) and diC18E50-TRITC 

distributions (bottom) (dye-molecule concentration: 0.6 mol%).  As expected due to the 

Figure 4.1.2 EPI micrographs of 15 mol% DODA-E85 in SOPC using TRITC-DHPE 
dye.  Micrographs taken during continuous bleaching over time (tlag = 30 s between each 
frame) show bleach-out is most complete for areas cut off from rest of bilayer by 
diffusion barriers.  Box = 60 μm 
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use of the same polymer moiety in both types of lipopolymers, the phase patterns in Fig. 

4.1.3 are quite similar to those of the DODA-E85-containing bilayer systems in Figs. 4.1.1 

and 4.1.2, thus confirming the similarity of DODA-E85 and diC18E50.  Interestingly, there 

is a phase inversion between the TRITC-DHPE-containing monolayer in Fig. 4.1.3(A) 

and the bilayers in Figs. 4.1.1.  In contrast, no phase inversion is observed if one 

compares the phase patterns of dye-labeled lipids and dye-labeled lipopolymers in Fig. 

4.1.3(A).  Since there is no phase inversion, the lipids and lipopolymers must be roughly 

equally distributed across the monolayers.  This important result indicates that the 

existence of both phases cannot simply be attributed to lipid-lipopolymer phase 

separations in the LB monolayer.  To confirm this qualitative finding, a quantitative 
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Figure 4.1.3 (A) EPI micrographs of LB monolayers with 15 mol% diC18E50, 84.6 mol% 
SOPC and 0.6 mol% either TRITC-DHPE (top) or diC18E50-TRITC (bottom).  Scale bar 
is 10 μm.  (B)  Graph of relative fluorescence intensity in bright and dark regions for 
diC18E50-TRITC and TRITC-DHPE in LB monolayers with 15 mol% diC18E50.  Data are 
taken from series of micrographs including those shown in (A), where fluorescence 
intensity is determined from relative gray values and normalized to arbitrary units (a.u.) 
where the bright region value for 0.8 mol% dye = 1000 a.u. Background values for the 
monolayer with no dye were also converted to a.u. 
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analysis of the normalized fluorescence intensities of the dark and bright phases of 

comparable LB monolayers was conducted in the presence of 0.4, 0.6, and 0.8 mol% 

TRITC-DHPE and diC18E50-TRITC, respectively (Fig. 4.1.3(B)).  This quantitative 

analysis showed that the fluorescence intensity in the dark phase is more than 16-fold 

higher than the background intensity (without dyes), thus excluding partial dewetting of 

the monolayer as a possible interpretation for the dark phase.  Another notable result of 

Fig. 4.1.3(B) represents the linear relationship between changes in normalized 

fluorescence intensities of dye lipids and dye lipopolymers in the bright and dark phases.  

The resulting slopes of the linear fitting curves in Fig. 4.1.3(B) suggest 1.6 and 1.8 fold 

enrichments of both TRITC-DHPE and diC18E50-TRITC in the bright phase.  These 

almost identical enrichment values of both types of probe molecules confirm that dark 

and bright phases in Fig. 4.1.3(A) are not caused by phospholipid-lipopolymer demixing.  

Obviously, an alternative explanation must be sought to explain the existence of these 

two distinct phases. 

 

4.1.1.2. AFM of DODA-E85 Enriched Monolayers and Bilayers 

 To further understand the surface morphologies of these interesting systems, AFM 

data were obtained on an LB monolayer containing 30 mol% DODA-E85 and an LB/LS 

bilayer with the same composition in the LB layer and SOPC in the LS layer.  Fig. 4.1.4 

illustrates representative height (A) and phase data (B) of the monolayer system, which 

are quite instructive.  Fig. 4.1.4(A) demonstrates that the LB monolayer contains a series 

of connected ridges, such that the highest point on the monolayer extends about 2.5 nm 

from the base.  The pattern similarity of ridge regions in Fig. 4.1.4(A) and bright phases 
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in Fig. 4.1.3(A) provides a plausible explanation for the existence of two phases in the 

mixed lipopolymer-lipid LB monolayer at elevated lipopolymer molar concentration 

observed by EPI.  In other words, non-planar regions (ridges) contain more lipid and 

lipopolymer material than planar (base) regions.  The corresponding AFM phase mode 

image (Fig. 4.1.4 (B)) does not show a significant contrast between base and ridge 

regions and provides further evidence that the monolayer does not undergo a partial 

dewetting from the glass substrate, thus confirming the corresponding findings from EPI 

on LB monolayers presented in Fig. 4.1.3.  

 

 These phase data also exclude partial lipopolymer crystallization as a possible reason 

for the formation of ridges in Fig. 4.1.4(A).  Such crystallization phenomena have been 

reported on crystallizable polymeric films (106, 107).  The lack of lipopolymer 

crystallization in Fig. 4.1.4(A) is supported by the observation that Langmuir monolayers 

of comparable poly(2-ethyl-2-oxazoline) lipopolymers maintain their fluidity at the LB 

transfer pressure of 30 mN m-1 (108).  Instead, the ridge and base regions in Fig. 4.1.4(A) 

can be interpreted in terms of a mechanism of buckle-driven delamination.  Here the 

buckling/delamination can be explained in terms of the competing nature of attractive 

physisorption of lipopolymers on the solid substrate and repulsive forces between 

stretched polymer chains of neighboring lipopolymers.  This competitive interaction 

behavior implies that lipopolymers in delaminated regions adopt entropically more 

favorable (less stretched) polymer conformations.  Such a buckle-driven delamination 
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process was also recently observed on polymer brushes, which were grown from an 

initiator and subsequently cross-linked to fabricate a film containing internal lateral 

compression stresses (109).  There, the partial delamination of the polymeric film was 

achieved by weakening thiol-gold polymer-substrate linkages using an electrical pulse.  If 

the adsorption strength of polymer chains to the underlying solid is strong enough, 

DC
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Figure 4.1.4 Height (A,C) and phase (B,D) images of LB monolayer (captured in air) 
(A,B)  and LB/LS bilayer (captured under water) (C,D) with 30 mol% DODA-E85 in 
LB monolayer.  Scales as shown. 
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polymers may also partially escape the lateral stress without desorption by stretching 

their chains.  

 

 Of even greater interest than the LB monolayer morphology is that of the bilayer 

constructed by subsequent LB and LS monolayer transfers.  Figs. 4.1.4(C,D) illustrate 

corresponding height (C) and phase (D) data of such a bilayer system.  Remarkably, a 

comparison of the LB data in Figs. 4.1.4(A) and the LB/LS data in Figs. 4.1.4(C,D) 

indicates that the ridge regions in the LB monolayer become valleys in the bilayer system 

with the average depth of the valleys being 2.0 ± 0.3 nm as found by inspection of a 

number of AFM micrographs of bilayers.  Because such valley regions appear to act as 

lipid lateral diffusion barriers, we hypothesize that, unlike in base regions, no lipid 

bilayer can form over ridges of the LB monolayer.  It might be expected that if the 

monolayer has ridges about 2 nm high that do not form bilayers, then after the upper 

leaflet, nominally 2.5 nm in height completes over the non-ridge areas of the bottom 

leaflet there would be only a small height difference between the fluid and non-fluid 

regions.  Instead, the bilayer is 2.5 nm taller than the incomplete monolayer system.  The 

reason for this height differential is not straightforward, however, since the monolayer 

and bilayer experience different hydration conditions and the height of the polymer-

tethered monolayer in water will be swelled relative to the height of a dry monolayer 

(41).   

 

 Interestingly, the existence of butte-like morphologies near the rim of bilayer regions 

in Fig. 4.1.4(C) also suggests a dewetting-like process, which is often characterized by an 
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accumulation of material into an advancing/retracting rim (110).  The corresponding 

phase image (Fig. 4.1.4(D)) shows that that these butte-like regions are characterized by 

distinct viscoelastic properties.  Previously, it has been reported that buckled, 

delaminated areas of a thin polymeric film may become nucleation sites for dewetting 

(111).  

 

4.1.1.3 Effect of Polymer Hydrophilicity on Lipid Bilayer Fluidity 

 To further explore the underlying molecular process of bilayer compartmentalization 

in Figs. 4.1.1-4.1.4, we next modified the degree of hydrophilicity in the polymer moiety 

of lipopolymers.  A possible explanation for the formation of the diffusion barriers is that 

the moderately lipophilic polyethyloxazoline polymer chain may escape the lateral stress 

imposed by polymeric crowding by penetrating through the hydrophobic lipid region of 

the LB monolayer.  Should that occur, the surfaces of delaminated ridge regions in such 

systems would become less hydrophobic, which could possibly affect the ability of an LS 

monolayer to spread over such regions.  To test this, we conducted a set of EPI and AFM 

experiments on polymer-tethered monolayers and bilayers using a more hydrophilic 

diC18M50.  The enhanced hydrophilicity of poly(2-methyl-2-oxazoline) lipopolymers is 

exemplified by their lacking the low-pressure transition in pressure-area isotherms 

conducted on Langmuir monolayers that has been associated with adsorption/desorption 

of amphiphilic polymers at the air-water interface (108, 112).  Significantly, DODA-E85 

and DSPE-PEG5000 display this low pressure transition in pressure-area isotherms for 

Xp> 0.05 (data not shown).  Fig. 4.1.6 shows FRAP/EPI data of model SOPC- diC18M50 

bilayers after LB and LS transfers with 5 (A), 15 (B), and 30 mol% (C) diC18M50 in the 
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bottom leaflet.  Unlike corresponding DODA-E85-containing polymer-tethered 

membranes (Figs. 4.1.1-4.1.2), no dark phases acting as lipid diffusion barriers are 

evident in any of the micrographs in Fig. 4.1.6, regardless of lipopolymer molar 

concentration.   

 

To explore further the obvious differences between poly(2-ethyl-2-oxazoline) and 

poly(2-methyl-2-oxazoline) lipopolymer-containing polymer-tethered membranes in 

Figs. 4.1.1 and 4.1.5, the surface morphology of the latter systems was also investigated 

using AFM.  Fig. 4.1.6 illustrates AFM height data of a polymer-tethered monolayer (A) 

and bilayer (B) containing 30 mol% diC18M50 in their LB monolayer.  Instead of long 

ridges observed on the presence of DODA-E85, the LB monolayer containing diC18M50 

shows buckling into a series of small blisters (Fig. 4.1.6(A)).  As indicated, the XY scale 

in Fig. 4.1.6 is magnified relative to the scale in Fig. 4.1.4 to better observe the more 

closely spaced blisters.  The height of the blisters is 4-5 nm above the lowest point.  The 

existence of different buckling patterns in DODA-E85- and diC18M50 -containing 

membrane systems is not surprising, as theoretical models of compressed thin films 

A B C

Figure 4.1.5 EPI micrographs (taken using 40x objective) showing FRAP of bilayers 
with 5 (A), 15 (B), and 30 (C) mol% diC18M50 in the LB layer, and SOPC in the LS 
layer.  The size is 100 µm x 100 µm.  The dotted circle indicates the position and size 
of the bleaching spot 
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elastically attached to rigid substrates predict a variety of buckling patterns found in 

much thicker systems such as sputter deposited metal coatings (113-115).  These patterns 

include circular blisters, straight-sided blisters, and single and mesh-like undulating 

stripes.  In all of these cases, their occurrence depends on multiple parameters, such as 

the applied lateral stress, the film elasticity, the film thickness, and the strength of 

adhesion between film and substrate.  Of particular interest here is that unlike the case of 

the DODA-E85 system in Fig. 4.1.4, the surface morphology of the diC18M50-based 

bilayer system Fig. 4.1.6(B) complements that of the corresponding monolayer Fig. 

 4.1.6(A).  This important finding indicates that the entire bilayer can be completed on top 

of a diC18M50-containing LB monolayer, regardless of the existence of blisters, thus 

explaining the good fluorescence recovery on diC18M50 containing membranes shown in 

Fig. 4.1.5.  The different EPI, FRAP, and AFM results obtained from DODA-E85- and 

diC18M50-based LB monolayers and LB/LS bilayers in Figs. 4.1.1-4.1.6 suggest different 

stress relaxation processes of lipopolymers associated with their distinct polymer 

hydrophilicity or lipophobicity.  

A B

10 nm

1 µm

10 nm

1 µm

Figure 4.1.6 Height AFM images of (A) LB monolayer (captured in air) and (B) 
LB/LS bilayer (captured under water) with 30 mol% diC18M50 in LB monolayer 
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Fig. 4.1.7 provides a proposed schematic of these distinct stress relaxation processes.  

In the case of the polyethyloxazoline-containing lipopolymers DODA-E85  and diC18E50, 

the amphiphilic nature of the ethyloxazoline moiety of the lipopolymers enables a stress  

relaxation process in which polymers detach from the solid substrate and partially 

penetrate into the hydrophobic lipid regions of the delaminated monolayer, thus making 

the surface of these regions more hydrophilic (Fig. 4.1.7(A)). As a result of such a 

polymer relaxation process, a lipid bilayer can only be formed outside of delaminated 

membrane regions (Fig. 4.1.4(C)).  In the case of diC18M50, the higher hydrophilicity of 

the methyloxazoline polymer moiety prevents the penetration of polymer chains into the 

hydrophobic part of the monolayer in response to applied lateral stress (Fig. 4.1.6(B)).  

Because the surfaces of buckled regions retain their hydrophobicity, a bilayer can be 

formed on top of buckled and unbuckled regions (Fig. 4.1.6(D)).  The above model 

highlights the importance of a subtle amphiphilic balance between lipid and polymer 

moieties of lipopolymers in the structure and dynamics of polymer-tethered lipid bilayer 

systems, as considered in this study.  Interestingly, Szleifer and coworkers previously 

reported that the bilayer stability in lipopolymer-containing vesicles also depends on a 

subtle balance between the polymer chains and lipid tails and that stable lamellar bilayer 

structures can only be formed at relatively low lipopolymer concentrations of less than 10 

mol% (48).  These findings support the notion that planar polymer-tethered phospholipid 

bilayers at elevated lipopolymer concentrations, as studied in the current work, trigger the 

frustration of the entire membrane system, which is only counterbalanced by 
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physisorption of polymer chains to the solid substrate.  The prevention of the bilayer 

formation on top of delaminated membrane regions observed in the case of the DODA-

E85 system is intriguing because it can be seen as a process of buckling-induced 

dewetting of the LS monolayer.  This dewetting effect is potentially interesting as it may 

be possible to correlate the relative amount of stress that a monolayer is experiencing by 

inspection of the pattern of buckles transferred on an LB monolayer.  
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Figure 4.1.7 Proposed schematic of stress relaxation processes in LB monolayers, as 
derived from EPI, FRAP and AFM data, suggest the poly(2-ethyl-2-oxazoline) (E85) 
moieties are more able to incorporate into the lipid monolayer than the poly(2-methyl-
2-oxazoline) (M50), disrupting the formation of a bilayer over the ridges for the 
DODA-E85 bilayer, but not the diC18M50 bilayer.  As described in the text, the extent 
of void formation under buckled regions partially depends on the strength of polymer 
adsorption to the glass substrate.  (A) DODA-E85 LB monolayer; (B) diC18M50 LB 
monolayer; (C) LB/LS bilayer of DODA-E85 and (D) LB/LS bilayer of diC18M50 
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4.1.2. Results from DSPE-PEG5000 Monolayers 

 Materials that buckle do so predictably in response to several controllable factors 

including film thickness, film stiffness, substrate stiffness, substrate adhesion forces, and 

compressive forces.  By varying a few of these parameters in a controlled manner it 

should be possible to construct a metric relating buckling parameters to monolayer 

stiffness and thickness.  The lipopolymer DSPE-PEG5000 was chosen for these studies 

because it exhibits diffusion barrier-buckles for 0.03< Xp <0.40.  Moreover, it is a well-

characterized lipopolymer (47, 78, 116-118).  In addition, the commercial availability of 

DSPE-PEG with different length of polymers (from molecular weight 500 to molecular 

weight 5000) makes this a promising lipopolymer on which to base a film buckling 

metric with which to study monolayers containing a variety of lipid mixtures.  

 

4.1.2.1 Buckling Characteristics of DSPE-PEG5000 Monolayers 

 Thin films constructed from DSPE-PEG5000/SOPC mixtures using the LB technique 

and completed to a bilayer with the LS technique contain intricate buckled structures.  

Fig. 4.1.8 shows an EPI micrograph immediately after a circular section (indicated by a 

yellow dashed circle) was bleached for 30 s (left), and the FRAP pattern found 3 minutes 

later (right) for a bilayer constructed using 10 mol% DSPE-PEG5000 on the LB layer, 

and SOPC with the fluorescent lipid probe TRITC-DHPE in the LS layer.  Noting the 

patterns in Fig. 4.1.8(right), it is clear that the structures act as diffusion barriers.  The 

concentration of DSPE-PEG5000 (Xp), influences the buckling structures dramatically.  

Fig. 4.1.9 shows bilayers containing 3 mol%-40 mol% DSPE-PEG5000 that have been 

bleached and permitted to recover.  At 3 mol%, the structures look like round blisters; by 
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5 mol% they have elongated to snakes.  At 10 and 20 mol% DSPE-PEG5000 buckling 

structures are more elaborate and branched, but by 30 mol% the structures are already 

becoming more compact and circular.  The last micrograph at 40 mol% shows smaller, 

more circular structures and a fuller network of diffusion barriers.  

3 mol%

40 mol%30 mol%20 mol%

10 mol%5 mol%

Figure 4.1.8 Bleach and recovery of a fluid lipid bilayer (10 mol% DSPE-PEG5000 in 
LB monolayer) is constricted by visible diffusion barriers.  Immediately post bleach 
(left) and after 3 min recovery (right), yellow dotted circles show the bleaching area.  
Scale bar = 25 μm. 
 

Figure 4.1.9 EPI micrographs of fluid bilayers with varying concentrations of DSPE-
PEG5000 in LB layer, shown after bleach and ~3 min recovery.  Scale bar = 25 μm 
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 Interesting as these diffusion patterns are, however, the actual data on the buckled 

delaminations are best acquired from the monolayers before completion to bilayers.  

Bilayer completion adds a layer of lipids on top of the critical structures and hydration 

causes swelling of the polymers (119).  Fig. 4.1.10 shows AFM data for 3, 5, 10, 20, 30 

and 40 mol% DSPE-PEG5000 monolayers.  The length scale is 20 x 20 μm2 for Fig. 

4.1.10(B-F) but is enlarged to show greater detail for the 3 mol% system to 5 x 5 μm2 

(Fig. 4.1.10(A)). From these and other AFM data, average values were found for b, the 

half-width of the buckle, wmax the average maximum height of the buckle, and θ, the 

angle at which the buckle delaminates.  These values are tabulated in Table 4.1.  For the b 

values, EPI micrographs of monolayers were also analyzed for the 10-40 mol% 

A CB

ED F

Figure 4.1.10 AFM data for 3 (A), 5 (B), 10 (C), 20 (D), 30 (E) and 40 (F) mol% 
DSPE-PEG in SOPC monolayer. Scales as indicated, (A) is 5 x 5 μm, (B-F) 20 x 20 
μm.  Height scale is the same for all monolayers (20 nm) 
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systems because they contain more information and show sufficient precision.  Also 

included in Table 1 are bearing area (BA), that is, the fraction of monolayer which is 

buckled; and for the 10-40 mol% systems, average number of corrals in a 20 x 20 μm2 

box (Ncor), and the fractal dimension of the corrals, Dcorral.   

 

 

Xp b wmax θ (°) BA NCorr Dcorral 

0.03 203 ± 59 8.95 16 ± 4 3.3 ± 0.2  ---  --- 

0.05 230 ± 75 8.2 12 ± 3 5.9 ± 0.3  ---  --- 

0.1 350 ± 104 9.4 21 ± 8 14.0 ± 0.7 1.75 ± 0.35 1.94 ± .01 

0.2 423 ± 167 8.8 19 ± 5 29.8 ± 0.5 4.6 ± 2.6 1.90 ± .01 

0.3 907 ± 384 7.9 17 ± 8 38 ± 2 10.3 ± 1.5 1.86 ± .01 

0.4 1149 ± 390 7.0 12 ± 6 39 ± 2 57.1 ± 4.0 1.81 ± .03 

 

 From inspection of the micrographs, there are clear correlations between Xp and BA, 

and Xp and NCorr which are graphed in Fig. 4.1.11(A,B).  From 3-20 mol% DSPE-

PEG5000, there is a direct correlation between Xp and BA, the best fit is a straight line 

with an R2 value > 0.99 and the error bars are smaller than the size of the markers.  Also,  

at these concentrations the principal shapes of the buckles are circular blisters (for 3 

mol%) or straight lines with increasing numbers of junctions.  By 30 and 40 mol% 

DSPE-PEG5000, BA has significantly leveled off and the shape of the lines has switched 

Table 4.1 Physical data obtained from AFM and EPI micrographs of DSPE-
PEG5000 monolayers (error for wmax  ± 0.5 nm).  Fractal coefficient is for 
enclosed compartments only (10 mol% DSPE-PEG5000 and up) 



64 

 

 

to more rounded areas.  Fig. 4.1.11(B) graphs Xp vs Ncor.  For 10-30 mol% DSPE-

PEG5000, Ncor ~ Xp
1/2. with an R2 > 0.99.  This relationship falters for Xp  = 40 mol%, as 

Ncor gets very large.  Interestingly, while b increases monotonically for increasing Xp, 

wmax, reaches a plateau at 10 mol% and then gradually decreases.  θ follows a similar 

progression, reaching its maximum value at 10 mol%.  While these data are interesting 

and enable the prediction of buckling patterns at different molar concentrations of DSPE-

PEG5000, without more information it is not possible to relate the data to changes in 

membrane stiffness and membrane stress.  To identify such relationships, it is necessary 

to look at theoretical models of lipopolymer mixtures which give calculations for the  

values of film thickness, bending stiffness and plain-strain modulus.  These values,  

together with the experimental information, can then be applied to buckling theory of thin 

films on rigid substrates to makes predictions about whether films will buckle, how the 

actual film stress relates to the critical buckling stress, and to compare these data with 

plasma membranes found in nature.   
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Figure 4.1.11 (A) Graph of % buckling (BA) vs. mol% DSPE-PEG5000 showing 
that increases in the mol% DSPE-PEG5000 increase BA linearly until 40 mol%.  (B) 
Graph of number of corrals in 400 μm2 box vs mol% DSPE-PEG5000 showing 
number of corrals increases linearly between 10-30 mol%, with large additional 
increase (decrease in size of corrals) at 40 mol% 
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4.1.2.2 Bending Modulus, Film Stress and Loading Parameter in DSPE-PEG5000 
Monolayers 

 

 The two key parameters to apply to the study of the buckling patterns are film 

thickness (h) and bending stiffness (Kc).  Using these values along with the information 

from EPI/AFM, it is possible to calculate a number of other parameters as described in 

Section 3.2.6, including ξ, the normalized height of the buckles (wmax/h); the loading 

parameter which relates the actual stress to the minimum stress that would induce 

buckling (o/c); the plane-strain modulus, E*
; and the normalized critical stress (c/E

*).  

These values are reported in Table 4.2.  The errors are propagated from the errors 

reported in Table 4.1.  

  

Xp  h (nm)  Kc/kBT  E* (Pa)  ξ  c  c/E
* 

0.03  9.88  32  1.59E+06  0.91  ± 0.5  1.61  ± 0.09  0.00195 

0.05  12.07  48  1.33E+06  0.68  ± 0.04  1.35  ± 0.08  0.00226 

0.10  14.65  137  2.12E+06  0.604 ± 0.03  1.30  ± 0.07  0.00144 

0.20  17.49  495  4.48E+06  0.50  ± 0.03  1.19  ± 0.07  0.00141 

0.30  19.04  970  6.82E+06  0.41  ± 0.03  1.13  ± 0.07  0.00036 

0.40  19.95  1436  8.77E+06  0.35  ± 0.02  1.09  ± 0.08  0.00025 

 

 These data show some interesting trends.  First, as expected, the calculated values for 

h and Kc increase monotonically with increasing lipopolymer concentration.  For h, the 

larger factor is Lp which scales as a bit less than Xp 
1/3 (Eqn 3.3), since Al also increases 

with increasing Xp.  For Kc, the term describing the polymer contribution scales as h2 and 

Table 4.2 Useful mechanical properties of DSPE-PEG5000/SOPC monolayers   
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Xp 
7/3 so this term, which increases rapidly with increasing Xp , dominates the value of Kc 

(Eqn 3.5).  Kc for Dictyostelium discoideum  (wild type) is about 400 kBT, or around the 

same as 20 mol% DSPE-PEG5000 (12) and Kc for red blood cells is around 50 kBT, about 

the value of 5 mol% DSPE-PEG5000 (8), although all determinations of bending moduli 

on live cells must be treated very cautiously.    

 

 The question of whether a compressed film on a substrate will wrinkle or deformably 

buckle has been analytically addressed (76).  The important factors in this determination 

are the plane-strain modulii of the substrate and film and the relative size of the 

delamination, which is simply b/h.  The plane-strain modulus of the glass substrate can be 

approximated as 71 GPa from average published values of Young’s modulus and Poisson 

ratio for glass and the E* values for the films are included in Table 4.2.  The ratio of 

Es
*/Ef

* is the critical stiffness ratio, Rc (76). In the current system Rc varies from 4 x 104 

to 8 x 103 and at the same time, b/h varies from 20 - 50 (approximately).  The model 

presented by Mei et al. is based on empirical data that relates Rc and b/h so that as Rc gets 

larger, the tendency to buckle increases and as b/h increases, the tendency to buckle 

decreases.  Applying the model to our data, the 3 mol% DSPE-PEG5000 system has the 

largest Rc and the smallest b/h which would both predict buckling at even very small 

compressive stresses.   

 

 Another identifiable trend relates to wmax.  These data do not appear to show much of 

a trend, but once the buckle height is normalized by correcting for the changing thickness 

of the monolayer, ξ monotonically decreases significantly from 3 - 40 mol% DSPE-
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PEG5000.  The stiffer monolayers with higher Kc  deform a smaller height than the softer 

monolayers with lower Kc.  From Table 4.1, increasing Xp also increases BA so the 

buckles, although smaller, become more prevalent (which is to be expected as b/h is also 

increasing in this regime).  The loading parameter is the ratio of normal stress to the 

critical stress at the onset of buckling, o/c, and it is related to ξ  by Eqn 3.9.  Fig. 

4.1.12(A) shows a graph of loading parameter vs concentration of DSPE-PEG5000.  This 

shows a decrease in loading parameter with increasing concentration.  This is the 

expected result since the relative stiffness of the film and the substrate also decrease with 

increasing Xp.  Inspection of the values for θ, the buckling angle found by AFM, show 

that  it also describes the same trend as o/c for 10-40 mol% DSPE-PEG5000 ( although 

due to the high error associated in getting these buckling angles as the wrinkles did not all 

look alike, it would be easy to overinterpret this result).  Not only the loading parameter, 

but also the normalized critical buckling stress (c/E
*) which does not depend on wmax or 

Kc (Eqns. 3.5 and 3.7) decreases with increasing tether concentration.  

 

 

 All of these trends describe a situation where the more stress on the bilayer, the closer 

it is to the critical stress so that smaller energetic fluctuations can induce buckles.  

1.5

1.4

1.3

1.2

1.1

1.0

 


c

40302010
mol% DSPE-PEG5000

A
1.92

1.88

1.84

1.80

fr
ac

ta
l d

im
e

n
si

on

40302010
mol % DSPE-PEG5000

B

Figure 4.1.12 Graphs of loading parameter (o/c) (A) and fractal dimension (B) 
with increasing DSPE-PEG5000 concentration in LB monolayers 
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Another way to understand the impact of the trend in the loading parameter is by looking 

at the energy change for a given ratio of o/c (99): the ratio of extra energy beyond the 

energy required to buckle the system, or ΔG/Go= (1- c/o)
2 (99), varies from 14% at 3 

mol% DSPE-PEG5000 to as low as 0.7 % for 40 mol% DSPE-PEG5000.  This may have 

implications for cells: plasma membranes that have smaller loading parameters, that is, 

membranes that approximate the stiffness of nearby substrates, require less extra energy 

to induce a buckling response.  Strictly by mechanical feedback, cells, if they contain 

sufficient surface stresses and adhesions to substrates, similarly sense substrate stiffness 

at a lower energy cost.   

 

 Another relationship to explore is one observed dramatically due to the intricate 

patterns seen on the films, particularly at 10 and 20 mol% DSPE-PEG5000.  This is the 

relationship between Xp and the circularity of the buckling corrals.  One way to quantify 

how circular the corrals are is by determining the fractal dimension for the corrals (97, 

120), as described in Section 3.2.3.2.  Briefly, the more labyrinthine the structure, the 

further its deviation from round, the higher the fractal dimension.  Fig. 4.1.12(B) shows 

fractal dimension, D, as a function of Xp for 10-40 mol% DSPE-PEG5000, showing that 

as Xp increases, D decreases.  Fractal analysis has been used to describe diffusion limited 

aggregation (97, 121), crystalline growth (120) and even the coalescence of gel-phase 

phospholipids on a Langmuir trough (122).  However, to our knowledge, it has not been 

applied to the patterning of buckled thin films.  One group studying wrinkling patterns on 

curved substrates, however, noted that the patterns changed from labyrinthine (more 

fractal) to triangular (less fractal) with decreasing loading parameter, o/c  (123).  That 
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trend is clearly matched in the current study, as shown by comparison of Fig. 4.1.12(A) 

and (B).  

 

 Finally, it is also possible to return to the AFM data and reconsider the trend whereby 

BA increased linearly with Xp until 30 mol%, then it tailed off some, and then at 40 mol% 

did not increase significantly.  Fig. 4.1.13 shows 3D projections of 3 x 3 μm scans of 20 

mol% and 40 mol% monolayers.  The 40 mol% data show a set of secondary ridges 

within the primary ridges (similar ridges were also shown in Fig. 2.2.1, right).  These 

ridges, approximately 30 nm in width and 0.95 nm in height, appear within the larger 

buckles that are approximately 1.1 μm in width and 7 nm in height.  Thin films 

containing buckles on top of buckles have been reported and analyzed energetically to 

determine under which conditions these results might occur (124).  There, the 

superimposed blisters formed when b/h was large and the elastic energy that went into 

increasing b was greater than the elastic energy of creating a secondary buckle within the 

first buckle.  An example with b/h ≈ 100 was identified.  In the 40 mol% system, b/h ≈ 57 

and buckles are seen on buckles.  In Colin, the first set of buckles were interpreted to be 

plastic, such that they could not re-form into smooth buckles upon addition of greater 

stress but instead formed buckles on buckles (124).  The plasticity of the current system 

is unknown.but the existence of these secondary buckles suggests that to utilize DSPE-

PEG5000 in monolayers as a metric for determining film stiffness, it is best to stay below 

40 mol% DSPE-PEG5000 and b/h values less than 50.  
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 It has been argued that a monolayer of DSPE-PEG5000 compressed to a sufficiently 

high density can collapse through vesicular structures formed on top of the monolayer for 

monolayers with area/lipopolymer < 5 nm2/molecule (118).  There, 100% DSPE-

PEG5000 lipids were transferred at π = 11, 13.6 and 18.9 mN m-1 and Brewster Angle 

Microscopy (BAM) showed some patches that looked like vesicles on top of the 

monolayer for PEG-DSPE5000 compressed to area/lipopolymer of 4 and 2.3 

nm2/molecule, but not for 5 nm2/molecule.  It is not inappropriate to compare data from 

pure DSPE-PEG5000 monolayers and mixtures of DSPE-PEG5000 and other lipids if the 

area per lipopolymer values are similar (125).  The BAM data suggest that vesicular 

collapse may occur in the current system at high (> 20) mol% DSPE-PEG5000, where 

area per lipopolymer are less than 5 nm (as determined by pressure-area isotherms, data 

not shown).  The AFM data do not show evidence of separate vesicles but it may be that 

some squeeze out or collapse contributes to the trends such as those seen in Fig. 4.1.11(A) 

at the higher mol% DSPE-PEG5000, where there is a falling off of BA at high Xp.  The 

AFM of the transferred monolayers do not appear to present a second layer of vesicles on 

A B
Figure 4.1.13 3-D projection of 3 x 3 μm2 AFM scans of 20 mol % DSPE-PEG5000 (A) 
and 40 mol% DSPE-PEG5000 (B) showing a formation of secondary ridges along the 
top of the buckles at 40 mol% but not at 20 mol% 
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top of the monolayer.  The potential for this to occur suggests it might be preferable to 

utilize lower mol% DSPE-PEG5000 for analyzing buckling patterns to asses lipid 

monolayer stiffness in future studies. 

 

 A few other factors may complicate the analysis of the buckling patterns.  First, the 

AFM of the monolayers are collected dry, whereas the transfer to the substrates took 

place at the air/water interface.  Undoubtedly the monolayers dried out subsequently and 

that might significantly impact the total height and buckle width.  It would be interesting 

to redo the experiments in 100% humidity conditions.  Second, it was suggested in 

Section 4.1.1 (see Fig. 4.1.7) that the polymer moieties are capable of escaping into the 

lipid monolayers.  However, there is no attempt to factor this effect into the current data 

set.   

 

 Even so, the buckling patterns show very regular trends.  By combining mean field 

theory to determine film thickness and stiffness for different mixtures of lipids and 

lipopolymers with thin-film buckling theory, we have created a metric capable of 

analyzing mechanical properties of lipid monolayers based on the patterns generated by 

the manner in which they delaminate when transferred onto a glass substrate.  The data fit 

well with existing theories on how buckling patterns should evolve for changing stiffness 

and film thickness, and the films are capable of producing bending stiffnesses in the same 

range as biological cells.  Moreover, the data set showed there is a complex interplay 

between critical stiffness ratio, relative delamination size, and the energy cost of 

buckling. Since the response of different lipid compositions in the plasma membrane to 



72 

 

 

mechanical force is not well understood, analyzing the response of lipids in a model 

system could provide translational insights.   

 

4.2 Integrin Sequestration and Oligomerization State Probed in 
Polymer-Tethered Model Membranes 

 
 

4.2.1 Functional Reconstitution of Integrin Proteins into Tethered Bilayers 

 Lipid bilayers were constructed with 5 mol% diC18M50 incorporated into the LB layer.  

As described in Section 4.1.1.3, diC18M50 does not generate diffusion barriers even at 

high (30 mol%) tether concentrations and therefore was chosen as the best lipopolymer to 

use to introduce a polymeric cushion between the glass substrate and the lipid bilayer.  

The integrins αvβ3 and α5β1 were successfully reconstituted into the bilayers using a 

modified Rigaud technique (95, 126) as described in Section 3.2.2. Membrane proteins’ 

strong preference for the lipophilic bilayer cause insertion to occur.  Integrins are 

transmembrane proteins with small cytosolic domains and large extracellular domains 

(127).  In order to assure that only correctly oriented proteins were tracked, the integrins 

were labeled with fluorescently tagged antibodies subsequent to incorporation into the 

bilayer.  The antibodies utilized are specific for the extracellular binding pocket of the 

integrins: any integrins incorporated upside down, that is with the cystolic domains above 

the top leaflet, would not bind to the antibodies and therefore would not be seen in the 

studies.  This did permit the possibility of non-specific adsorption of fluorescent 

antibodies directly to the membrane, which was checked by adding antibodies to bilayers 

empty of proteins.  Antibodies routinely washed off and left no trace on bilayers 

constructed of SOPC or SOPC with CHOL (TYPE II bilayers).  For TYPE I bilayers, low 
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levels of antibody adsorption occurred, for α5β1 but not αvβ3 antibodies, if left on the 

bilayer over 12 h; therefore, antibodies were rinsed off within 4 h (data not shown). 

 One complication with the Rigaud method is the detergent can incorporate into a 

bilayer.  Therefore, following protein incorporation, biobeads which soak up detergent 

were added to the solution above the bilayers as described in Section 3.2.2.  EPI 

micrographs of TYPE I bilayers verified detergent removal as shown in Figure 4.2.1.  

FCS of proteins also analyzed qualitatively for appropriate characteristic diffusion times 

to ensure detergent removal (FCS data not shown).  

  

 

4.2.2 Determining Fluidity of αvβ3 and α5β1 Incorporated into Tethered Bilayers 

 Proper incorporation of proteins was routinely verified by inspection using EPI 

micrographs and through data acquisition by FFS which gave characteristic diffusion 

times through the autocorrelation curve and through inspection of the intensity trace.  A 

typical intensity trace for αvβ3 and α5β1 (10 s) incorporated into polymer-tethered SOPC 

bilayers is shown as Fig. 4.2.2.  These data, collected for 50 s run aggregates, formed the 

basis for histograms (k(h)) used in the PCH analysis.  In addition, the diffusion profile 

was also quantified by analyzing the lateral diffusion of the proteins at single molecule 

A CB

Figure 4.2.1 EPI micrographs of distribution of NBD-PE dyed lipids on TYPE I 
bilayer before addition of proteins with detergents (A), after addition of proteins and 
detergents (B) and after rinsing off detergents with biobeads (C). Scale bar is 50 μm 
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(1 x 10 -8 mol%) concentrations in TYPE II SOPC bilayers before and after ECM ligand 

binding using wide field single molecule fluorescence microscopy (128).  The mean 

square displacement for tlag = 38 ms were as follows: for αvβ3, r2  = 0.060  0.006  

(-VN), 0.07  0.007 (+VN), for α5β1 r2  = 0.11  0.01(-FN), 0.14  0.01 (+FN), (all 

values μm2), immobile fractions < 10% by inspection of cumulative distribution 

functions).  These data are in good agreement with data for αIIbβ3 integrins reconstituted 

onto other planar model membranes (129, 130).  Purrucker et al. determined the 

thickness of a DiC18M60 polymer cushion physisorbed to a substrate to be 6.9 nm using 

neutron reflectometry for bilayers constructed with 6% diC18M60 (131).  Scaling theory 

would suggest that the polymer cushion of diC18M50, used in the current experiments, 

would be a bit less than 5/6 as thick (from Eqn. 3.3), or about 5.4 nm.  For integrins, the 

beta chain is slightly longer than the alpha chain in the cytosolic domain, approximately 

50 aa that corresponds to about 8 nm (127).  This protein length is adequately distanced 
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from the glass substrate by the polymer tether, and therefore the fluidity of the integrins 

in these systems is not surprising.   

 

4.2.3 Determining Raft Sequestration Before and After Ligand Binding 

 As described above in Section 3.2.3.4, bilayers composed of DOPC:DPPC:CHOL in 

a 1:1:1 mixture with 5 mol% DiC18M50 in the LB layer and with registered lo and ld 

domains (TYPE I bilayers) were constructed with an addition to the LS mixture of 2 x  

10-3 mol% GM1 and 0.5 mol% of the lipid raft marker NBD-PE.  CTxB-555 was 

subsequently added and CS-XY scans were performed.  As expected, the raftophilic 

CTxB colocalized with the NBD-PE:  Eraft for CTxB = 0.68  0.07.  This corresponds to 

a Kp of 5.2 1.2, verifying the sensitivity of the bilayers to induce sequestration in the 

GM1/CTxB system.  Next, TYPE I bilayers were constructed with 0.5 mol% NBD-PE 

added to the LS mixture and αvβ3 was incorporated as described above.  After EPI 

micrographs were taken in both the protein (red) and NBD-PE (green) channels, CS-XY 

scans were performed, representatives of which are shown in Fig. 4.2.3(left), where the 

same area is scanned by the red (protein) channel and the green (NBD) channel.  

Comparing the CS-XY scans show that before addition of VN, αvβ3 displays a marked 

preference for the non-raft ld phase.  As illustrated in Fig. 4.2.3(bottom row, left), adding 

VN to the same substrate induced a dramatic change in raft preference.  The αvβ3 proteins 

switched from ld preference to lo preference.  The NBD-PE distribution is not perturbed 
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by the addition of VN.  Motivated by the question of whether this large change in 

raftophilicity was specific to the αvβ3 integrins or was more generally applicable to other 

integrins, the experiment was carried out again using α5β1 integrins and FN as the ECM 

ligand, and the results are shown in Fig. 4.2.3(right).  Similar to the αvβ3 integrins, before 

addition of ligand the α5β1 partitioned preferentially to the ld phase.  Subsequent to FN 

addition, however, the α5β1 switched to displaying no strong preference for either the ld or 

the lo phase (Fig. 4.2.3(bottom row, right)). The results from the CS-XY scans are 

quantified and tabulated, along with the partitioning behavior of the GM1-CTxB system, 

in Fig. 4.2.4 which shows Eraft for αvβ3 and α5β1 before and after ligand binding (VN and 

FN respectively), and Eraft for CTxB-555 linked to GM1.  The fraction of receptors that 

translocated from the ld domains to lo domains can be quantified as Xmigrate, as discussed 

above (Eqn 3.2).  CS-XY scans showed Xmigrate = 53 ± 6 % for αvβ3 integrins, and Xmigrate 

= 27 ± 3% for α5β1 integrins.  

αvβ3 on 1:1:1 bilayer NBD‐PE on 1:1:1 bilayer

NBD‐PE 1:1:1 bilayer α5β1 + FN on 1:1:1 bilayerαvβ3 + VN on 1:1:1 bilayer

NBD-PE on 1:1:1 bilayer

NBD-PE on 1:1:1 bilayer

α5β1 on 1:1:1 bilayer
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Figure 4.2.3 EPI micrographs (gray scale) and CS-XY scans (color) for αvβ3/NBD-PE -
(left) and α5β1/NBD-PE (right) incorporated into phase-separating TYPE I bilayers.  
NBD-PE is a raft marker; αvβ3 and α5β1 are predominantly in the ld phase before ligand 
binding (VN or FN) (top row); after ligand binding αvβ3 is predominantly in the lo phase 
and αvβ3 and α5β1 shows no preference for lo or ld (bottom row). Scale box = 10 μm 
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 Cell studies have shown that inactive and unbound integrins, similar to the proteins 

reconstituted into the model bilayers in PBS buffer in the present experiment, are non-raft 

associated (132, 133).  Integrin signaling, integrin involvement in cell adhesion and cell 

motility, and integrin involvement in angiogenesis, by contrast, are all raft-related 

activities as demonstrated by studies involving alteration of plasma membrane CHOL 

levels or association with other raft-associated proteins (31, 134-136).  It appears that in 

the model system presented here, binding to ECM ligands alone suffices to increase a 

preference in αvβ3 and α5β1 for the CHOL rich (lo) phase, even in the absence of other 

protein co-factors, activating cations, or known cross-linking agents such as CTxB or 

crosslinking MAbs.  It is notable that αvβ3 is more sensitive to raft sequestration than 

α5β1.  This finding is intriguing in light of the observation that αvβ3 regulates the adhesive 

and phagocytic activity of α5β1 (137).  Several research groups have investigated the 

partitioning of raft-associated proteins using giant unilamellar vesicles (GUVs) and giant 

plasma membrane vesicles (GPMVs).  Results show that the relative preference for 
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Figure 4.2.4 Normalized difference in 
intensity between lo phase and ld phase (Eraft) 
shown for GM1-CTxB and αvβ3 and α5β1 
before and after ligand addition.  Negative 
values of Eraft correspond to Kp values less 
than 1 
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ordered phases is higher for these proteins than for non-raft-associated proteins, and this 

preference increases on addition of crosslinking agents (52, 55, 57, 58).  The current 

system differs from those by being planar and investigating oligomerization state along 

with sequestration in the absence of artificial crosslinking.   

  

4.2.4 Determining the Degree of Oligomerization 

 Our previous data show that ligand addition causes substantial changes in Eraft, which 

opens the possibility that these changes are accompanied by similar substantial changes 

in integrin oligomerization state.  Ligands are known to induce clustering in membrane 

proteins other than integrins (101, 138, 139).  Moreover, clustering (through agents such 

as GM1 or a crosslinking antibody) is known to induce raftophilicity in integrins (39, 84, 

140).  In order to investigate whether ligand addition by itself induces a change in 

oligomerization state separate from any change that might be induced by change in lipid 

phase, a series of TYPE II bilayers, which do not phase separate, were constructed with 

0, 5, and 30 mol% CHOL. Oligomerization state of αvβ3 and α5β1 was probed by 

analyzing the PCH data acquired in these six systems before and after ligand binding.  

The PCH data are included in Fig. 4.2.4.  The dotted lines describe the best fits found 

using the PCH algorithm, which gave information on brightness and dimerization, as 

described above in 3.2.7.  The results of these best fits showing average brightness and 

degree of dimerization are shown in Fig. 4.2.5.  The data show that the integrins were 

primarily monomers both before and after ligand binding, with the best fits for brightness 
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for these systems in each case within 15% of the best fit for the brightness of the MAbs in 

solution.  The results for oligomerization state as deduced from solutions to the PCH 

algorithm are also shown in Fig. 4.2.5  For the αvβ3 system, Xdimer is below 5% for the 

CHOL free bilayer, but increases to 5-10 % for 5 mol% CHOL and then about 12% for 

the 30 mol% CHOL bilayer.  The α5β1 system shows the same trend, with possibly higher 

Xdimer (2-7%) found for 0% CHOL.  This finding is interesting in light of the observation 

that reduction of CHOL levels leads to reduction in integrin functioning as observed by 
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Figure 4.2.5 PCH curves for αvβ3 (A,C, E) and α5β1 (B,D, F) before and after ligand 
binding in SOPC (A,B), SOPC + 5mol% CHOL (C,D), SOPC + 30 mol% CHOL (E,F) 
along with PCH curves for MAbs for integrins in solution.  Dotted lines are best fit 
curves from PCH algorithm. 
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reduction in cellular adhesion capabilities (33).  More importantly, there is no statistical 

difference in oligomerization state before ligand binding (red bars) and after ligand 

binding (blue bars), with the possible exception of a moderate increase in 

oligomerization after ligand binding in the 5 mol% CHOL αvβ3 system.   

 

 

 Following the characterization of integrin oligomerization in TYPE II bilayers, we 

conducted corresponding experiments on raft-mimicking TYPE I bilayers, utilizing the 

dual EPI/FFS set-up to acquire FFS data in lo and ld phases for both αvβ3 and α5β1 before 

and after ligand addition for the purposes of analyzing oligomerization state in this 

system.  The results of these studies are shown in Figure 4.2.6, which include the PCH 
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Figure 4.2.6 Fraction of dimers (A,B) and brightness relative to MAbs in solution 
(C,D) found through PCH analysis for αvβ3 (A, C) and α5β1(B, D) before and after 
ligand binding. These data show that increasing CHOL increases oligomerization for 
both αvβ3 and α5β1 but only to moderate levels 
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data sets as well as the findings for brightness relative to MAbs in solution and Xdimer.  

PCH analysis shows that the primary brightness of the integrins relative to the fluorescent 

MAbs in solution was found to be 77  9% before ligand binding and 81  9% after 

ligand binding, and thus essentially the same before and after ligand binding (Fig. 

4.2.6(E)).  The rate of dimerization was moderate, between 5 and 20 mol% for both αvβ3 

and α5β1 (Fig. 4.2.6(F)), thus mirroring the results found in the TYPE II bilayers.  The 

current system has identified oligomerization state sensitively through the use of the PCH 

algorithm and found that raft sequestration due to monomeric, non-clustered ligands does 

not induce oligomerization in either αvβ3 or α5β1 integrins.   

 

 Interestingly, our findings are in good agreement with an early study involving octyl-

glucoside that quantified the average molecular weight of the integrin αIIbβ3 through 

centrifugation before and after addition of an RGD peptide ligand-mimetic (141).  Their 

study showed only a 10% increase in molecular weight after ligand addition, and thus did 

not detect significant integrin oligomerization upon ligand addition, either.  Our PCH 

data are also supported by an elegant cell study that found that ligand addition to αvβ3 or 

other forms of αvβ3 activation was not capable of inducing clustering in the absence of 

cytosolic-integrin linkages (39).  This research, as well as our data, imply that αvβ3 

integrin-ligand binding alone is insufficient for integrin clustering or oligomerization.  

α5β1 clustering has been studied by monitoring the difference in strength of cellular 

adhesion (a proxy for integrin clustering) of magnetic beads coated with different 
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concentrations of FN (142) or polymers linked with either 1.7, 3.6 or 5.4 RGD peptides 

(84). In both cases, cellular adhesion was significantly stronger (per ligand attached) for 

clustered ligands than for monovalent ligands, indicating that single ligands were not 

spontaneously forming clusters.    
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Figure 4.2.7 PCH curves for αvβ3 (A,C) and α5β1 (B,D) before (red) and after (blue) 
ligand binding in both lo phase (A,B) and ld phase (C,D) along with PCH curves for 
MAbs for integrins in solution (green), MAbs data acquired twice, at the time of initial 
PCH acquisition (before ligand binding) and at the time of subsequent PCH addition 
(after ligand binding). Dotted lines are best fit curves from PCH algorithm. (E) 
Fraction of dimers and (F) Brightness compared to MAbs in solution found through 
PCH analysis of αvβ3 (left) and α5β1

 (right) integrin proteins before (red) and after 
(blue) ligand binding in ld and lo phases 
.  
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 The combined integrin sequestering and PCH data clearly indicate that ligand binding 

does not affect Xdimer for either αvβ3 or α5β1 in phase-separating TYPE I lipid mixtures.  In 

other words, the observed ligand-mediated changes of αvβ3 and α5β1 sequestering reported 

in Figs. 4.2.3-4.2.4 are not caused by changes in receptor oligomerization state.  

Moreover, the current study demonstrates the change in the fraction of proteins that 

dimerize before and after ligand binding (5% or less difference in Xdimer on ligand 

addition) is far less than the fraction of proteins that migrated from disordered to ordered 

lipid phases for both the α5β1 system, where 27% migrated to induce an even distribution, 

and the αvβ3 system, where 54% migrated to the lo phase to induce a clear preference for 

the lo phase.  This platform has therefore given us the ability to sensitively distinguish 

two separate aspects, namely raft-association and oligomerization state, and conclude that 

ligand binding, while sufficient to induce raft association, is not directly implicated in 

oligomerization.   

 

 Our data suggest that the observed protein sequestering is due to ligand-induced 

conformational changes of integrins impacting integrin-lipid interactions.  It is well 

known that ligand addition causes substantial structural changes to both the ectodomains 

and the transmembrane domains of integrins.  Electron microscopy studies have analyzed 

the head group conformation of the EC domains of both αvβ3 and α5β1 in solution before 

and after quantitative exposure to RGD peptides designed to mimic ECM ligands (143, 

144).  Both αvβ3 and α5β1 integrin fragments started in the resting, bent conformations 

before exposure to the ligands.  After ligand exposure, 98% of the αvβ3 head groups 

adopted an open conformation, even in the absence of the known activating factor, Mn2+ 
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(143) and 25% of the α5β1 protein extracellular domains switched to the open 

conformation (144).  The position of the head groups in relation to the membrane also 

changes: integrins in the bent, resting position have the RGD binding pocket near the 

plasma membrane but when activated, the RGD binding pocket is thought to straighten 

out and pull far from the membrane (88).  These changes in the ectodomain may 

influence the observed change in sequestration directly by altering the ectodomain-

membrane interface, or indirectly by inducing changes in the integrin transmembrane 

domains.  Furthermore, studies on mutations of integrins indicate that the transmembrane 

domains of the alpha and beta subunits are associated with substantial conformational 

changes in response to external stimuli during processes associated with integrin outside 

in and inside out signaling (145).  Such conformational changes likely expose different 

residues and increase the number of residues in the beta subunit that reside within the 

lipid membrane thus changing the tilt angle of the beta subunit (146).  This process may 

impact the mismatch between the integrin transmembrane domain and the hydrophobic 

region of the lipid bilayer (147).   
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CHAPTER 5 CONCLUSIONS 

 

 In this work polymer-tethered lipids were used to investigate aspects of “microscale” 

membrane organization through a study of the thin-film buckling behavior of 

lipopolymer-enriched lipid monolayers and “molecular-scale” organization of a lipid 

membrane through a study of the sequestration and oligomerization state of the 

membrane proteins αvβ3 and α5β1 on cholesterol-enriched model membranes, in the 

absence and presence of ECM ligands.  Both of these investigations hinged on the ability 

to construct polymer-enriched lipid monolayers and bilayers and use multiple forms of 

microscopy to extract information about the large scale mechanical response of 

membranes and the single molecule response of membrane proteins.  Both of these 

studies have important insight into lipid membranes and can be used as the basis for 

further investigations:  on one end, further studies of the mechanical properties of lipid 

membranes and at the other end, protein-protein interactions in well controlled lipid 

environments with single molecule sensitivity.    

 

 The first objective was construction and characterization of buckling patterns that act 

as diffusion barriers in lipopolymer-enriched lipid bilayers.  These were found to be 

caused by thin-film buckling, and not heterogeneous unmixing of lipids and lipopolymers 

or crystallization or dewetting of the substrate.  While buckling occurred for 

methyloxazoline and ethyloxazoline polymer moieties, it was found that methyloxazoline 
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buckles did not induce the formation of large scale diffusion barriers while 

ethyloxazoline buckles did.  This was attributed to the increased lipophilicity of the 

ethyloxazoline moiety enabling it to penetrate into the lipid monolayer in the region of 

the buckles, and thereby cause a lipid bilayer not to form over the buckled regions.   

 

 Motivated by the ability to obtain reproducible buckling patterns with ethyloxazoline 

lipopolymers, the second objective, a systematic investigation of the thin-film buckling 

response of polyethylene glycol lipopolymers (PEG5000) was undertaken.  This was 

aided in part by an early observation that it was possible to form diffusion barrier-

containing fluid lipid bilayers over monolayers constructed with DSPE-PEG5000 

concentrations as varied as 3-40 mol% DSPE-PEG5000 mixed with SOPC.  These 

lipopolymer concentrations enable the investigation of thin films with very different 

plane strain moduli (4x variation) and bending stiffnesses (20x variation) deposited on 

glass substrates.  In a mathematical sense, this is akin to investigating lipid membranes of 

a constant plane strain modulus and bending stiffness but varying the substrate’s plane 

strain modulus by a factor of 4 and its bending stiffness by a factor of 20.  The results 

showed that as the lipid monolayers were made stiffer, the loading parameter decreased 

and the percentage of buckled area increased.  The decrease in loading parameter meant 

that less energy was necessary to cause buckling.  In addition, the form of buckling 

altered from more labyrinthine to more network-like as the stiffness of the monolayer 

more closely approached the stiffness of the substrate.  Additional parameters from 

buckling theory including the loading parameter, the critical stiffness ratio, the relative 



87 

 

 

delamination size, and the energy penalty for a given loading parameter were also 

analyzed in light of the buckling data presented. 

 

 These results are important because they show the ability to induce 

compartmentalized bilayers with different bending stiffnesses in a systematic manner. 

These may prove useful for bilayer-cell studies or other systems where 

hydrophilic/hydrophobic thin film micropatterning can be utilized, including such fields 

as biosensor development (148).  In addition, the DSPE-PEG5000 study showed that as 

the plane strain modulus of the film and the substrate became more alike, less energy was 

necessary to induce buckling, the buckling that was caused was more widespread, and the 

buckling pattern was better networked (less fractal).  In short, the change in critical 

stiffness ratio induced a change in buckling response by the thin film.  A similar 

mechanical response to changes in substrate thickness would be expected to occur on live 

cells.  Future studies in this area could involve systematically changing the stiffness of 

the lipid monolayers without varying the thickness of the polymers, for example by the 

addition of cholesterol which increases film thickness of the lipid layer but only 

moderately.  In addition, it would be interesting to deposit lipopolymer/lipid monolayers 

on substrates less stiff than glass to further explore the effects of changes in the loading 

parameter on buckling patterns.  Utilizing shorter lipopolymers would probably not be 

very fruitful as the minimum Xp to observe buckling would increase significantly, as can 

be calculated from the known parameters. 
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 Investigations at the molecular level involved incorporation of αvβ3 and α5β1 into 

polymer-tethered cholesterol-enriched phospholipid bilayers in order to probe the effect 

of ligand addition on sequestration behavior and oligomerization state of these proteins.  

First, proper incorporation and fluidity of the membrane proteins was checked by single 

molecule fluorescence microscopy, FCS and EPI.  For the next objective, the 

sequestration of these proteins was investigated using ternary (DOPC:DPPC:CHOL) 

phase separating lipid mixtures through CS- XY scans.  These enabled quantification of 

Kp and Eraft for the proteins, and showed that both preferred the ld phase in their resting, 

native state.  After ligand addition, αvβ3 switched preferences and sequestered 

preferentially in the lo phase, while α5β1 switched to showing no preference for either the 

lo or ld phase.  Next, the oligomerization state of the αvβ3 and α5β1 proteins in both the lo 

and ld phases was probed using fluorescence fluctuation spectroscopy and PCH analysis.  

The rate of dimerization was found to be moderate for both αvβ3 and α5β1 in both lo and ld 

phases, and significantly, was not found to be substantially affected by ligand addition.  

In TYPE II bilayers, a trend for increasing oligomerization with increasing cholesterol 

levels was found.  In addition, in these systems as well as in the ternary lipid systems, 

ligand binding had little effect on the rate of oligomerization.  

 

 These results are important because they show, for the first time, the ability to 

combine studies of sequestration and oligomerization in well-defined model systems.  

Since integrin functionality related to cellular adhesion or angiogenesis involves 

microclustering of integrins, this further shows that the ligands and the cholesterol in the 

rafts alone are insufficient by themselves to induce the conditions involving the formation 
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of microclusters of αvβ3 or α5β1 proteins.  These results were found without the use of 

crosslinking agents prevalent in many systems studying integrins and lipid rafts.  The 

versatility of the platform enables the incorporation of other membrane proteins or 

extracellular proteins to the system to monitor their effect on the oligomerization state 

and sequestration of the integrins here studied, or the adoption of a new set of proteins.  It 

would also be very interesting to construct model systems with non-bilayer spanning 

domains to investigate the role of single-membrane phase separations in protein 

sequestration.  These could be used to analyze whether the cytosolic tail of the integrins 

or the extracellular head-group is more involved in cholesterol-protein interactions.  

Based on the ligands’ binding in the extracellular domain (top leaflet in the model 

studies), it would seem likely that these interactions are more important but the ligand 

binding is also thought to induce a large scale change in the protein conformation (127, 

149) which may affect the cytosolic domain (bottom leaflet in model studies) more 

closely.   

 

 

  



 

 

 

 

 

 

 

 

 

 

 

LIST OF REFERENCES 

 

 



90 

 
 

 

LIST OF REFERENCES 

 
1. Wirtz, H., and L. G. Dobbs. 1990. Calcium mobilization and exocytosis after one 

mechanical stretch of lung epithelial cells. Science. 250:1266. 

2. Longo, M., A. Bisagno, J. Zasadzinski, R. Bruni, and A. Waring. 1993. A 
function of lung surfactant protein SP-B. Science. 261:453. 

3. Takamoto, D., M. Lipp, A. Von Nahmen, K. Y. C. Lee, A. Waring, and J. 
Zasadzinski. 2001. Interaction of lung surfactant proteins with anionic 
phospholipids. Biophys. J. 81:153-169. 

4. de La Serna, J. B., G. Oradd, L. A. Bagatolli, A. C. Simonsen, D. Marsh, G. 
Lindblom, and J. Perez-Gil. 2009. Segregated phases in pulmonary surfactant 
membranes do not show coexistence of lipid populations with differentiated 
dynamic properties. Biophys. J. 97:1381-1389. 

5. Hallett, M. B., and S. Dewitt. 2007. Ironing out the wrinkles of neutrophil 
phagocytosis. Trends Cell Biol. 17:209-214. 

6. Dewitt, S., and M. Hallett. 2007. Leukocyte membrane" expansion": a central 
mechanism for leukocyte extravasation. J. Leukocyte Biol. 81:1160. 

7. Brunner, C., A. Niendorf, and J. A. Käs. 2009. Passive and active single-cell 
biomechanics: a new perspective in cancer diagnosis. Soft Matter. 5:2171-2178. 

8. Hwang, W. C., and R. E. Waugh. 1997. Energy of dissociation of lipid bilayer 
from the membrane skeleton of red blood cells. Biophys. J. 72:2669-2678. 

9. Solon, J., I. Levental, K. Sengupta, P. C. Georges, and P. A. Janmey. 2007. 
Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J. 
93:4453-4461. 

10. Trickey, W. R., T. P. Vail, and F. Guilak. 2004. The role of the cytoskeleton in 
the viscoelastic properties of human articular chondrocytes. J. Ortho. Res. 22:131-
139. 

11. Takai, E., K. D. Costa, A. Shaheen, C. T. Hung, and X. E. Guo. 2005. Osteoblast 
elastic modulus measured by atomic force microscopy is substrate dependent. 
Ann. Biomed. Eng. 33:963-971. 



91 

 
12. Simson, R., E. Wallraff, J. Faix, J. Niewöhner, G. Gerisch, and E. Sackmann. 

1998. Membrane Bending Modulus and Adhesion Energy of Wild-Type and 
Mutant Cells of Dictyostelium Lacking Talin or Cortexillins. Biophys. J. 74:514-
522. 

13. Tseng, Y., J. S. H. Lee, T. P. Kole, I. Jiang, and D. Wirtz. 2004. Micro-
organization and visco-elasticity of the interphase nucleus revealed by particle 
nanotracking. J. Cell Sci. 117:2159-2167. 

14. Kamgoué, A., J. Ohayon, and P. Tracqui. 2007. Estimation of Cell Young's 
Modulus of Adherent Cells Probed by Optical and Magnetic Tweezers: Influence 
of Cell Thickness and Bead Immersion. J. Biomech. Eng. 129:523-530. 

15. Janmey, P., and P. Kinnunen. 2006. Biophysical properties of lipids and dynamic 
membranes. Trends Cell Biol. 16:538-546. 

16. Zimmerberg, J., and M. M. Kozlov. 2005. How proteins produce cellular 
membrane curvature. Nat. Rev. Mol. Cell Biol. 7:9-19. 

17. Welti, R., and M. Glaser. 1994. Lipid domains in model and biological 
membranes. Chem. Phys. Lipids. 73:121-137. 

18. Simons, K., and E. Ikonen. 1997. Functional rafts in cell membranes. Nature. 
387:569-572. 

19. Edidin, M. 2001. Shrinking patches and slippery rafts: scales of domains in the 
plasma membrane. Trends Cell Biol. 11:492-496. 

20. Edidin, M. 2003. THE STATE OF LIPID RAFTS: From Model Membranes to 
Cells. Ann. Rev. Bioph. Biom. . 32:257-283. 

21. Simons, K., and M. J. Gerl. 2010. Revitalizing membrane rafts: new tools and 
insights. Nat. Rev. Mol. Cell Biol. 11:688-699. 

22. Lingwood, D., and K. Simons. 2010. Lipid Rafts As a Membrane-Organizing 
Principle. Science. 327:46-50. 

23. Larson, D. R., J. A. Gosse, D. A. Holowka, B. A. Baird, and W. W. Webb. 2005. 
Temporally resolved interactions between antigen-stimulated IgE receptors and 
Lyn kinase on living cells. J. Cell Biol. 171:527. 

24. Pyenta, P. S., D. Holowka, and B. Baird. 2001. Cross-Correlation Analysis of 
Inner-Leaflet-Anchored Green Fluorescent Protein Co-Redistributed with IgE 
Receptors and Outer Leaflet Lipid Raft Components. Biophys. J. 80:2120-2132. 



92 

 
25. Holowka, D., J. A. Gosse, A. T. Hammond, X. Han, P. Sengupta, N. L. Smith, A. 

Wagenknecht-Wiesner, M. Wu, R. M. Young, and B. Baird. 2005. Lipid 
segregation and IgE receptor signaling: a decade of progress. Biochim. Biophys. 
Acta, Mol. Cell Res. 1746:252-259. 

26. Gaus, K., E. Chklovskaia, B. Fazekas de St Groth, W. Jessup, and T. Harder. 
2005. Condensation of the plasma membrane at the site of T lymphocyte 
activation. J. Cell Biol. 171:121. 

27. Pelkmans, L. 2005. Secrets of caveolae-and lipid raft-mediated endocytosis 
revealed by mammalian viruses. Biochim. Biophys. Acta, Mol. Cell Res. 
1746:295-304. 

28. Plowman, S. J., C. Muncke, R. G. Parton, and J. F. Hancock. 2005. H-ras, K-ras, 
and inner plasma membrane raft proteins operate in nanoclusters with differential 
dependence on the actin cytoskeleton. Proc. Natl. Acad. Sci. U. S. A. 102:15500. 

29. Carman, C. V., and T. A. Springer. 2003. Integrin avidity regulation: are changes 
in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15:547-
556. 

30. Depry, C., M. D. Allen, and J. Zhang. 2010. Visualization of PKA activity in 
plasma membrane microdomains. Mol. BioSyst. 

31. Gopalakrishna, P., N. Rangaraj, and G. Pande. 2004. Cholesterol alters the 
interaction of glycosphingolipid GM3 with [alpha]5[beta]1 integrin and increases 
integrin-mediated cell adhesion to fibronectin. Exp. Cell Res. 300:43-53. 

32. Ehehalt, R., P. Keller, C. Haass, C. Thiele, and K. Simons. 2003. Amyloidogenic 
processing of the Alzheimer -amyloid precursor protein depends on lipid rafts. J. 
Cell Biol. 160:113. 

33. Dibya, D., N. Arora, and E. A. Smith. 2010. Noninvasive Measurements of 
Integrin Microclustering under Altered Membrane Cholesterol Levels. Biophys. J. 
99:853-861. 

34. Marwali, M. R., J. Rey-Ladino, L. Dreolini, D. Shaw, and F. Takei. 2003. 
Membrane cholesterol regulates LFA-1 function and lipid raft heterogeneity. 
Blood. 102:215. 

35. Ganguly, S., and A. Chattopadhyay. 2010. Cholesterol Depletion Mimics the 
Effect of Cytoskeletal Destabilization on Membrane Dynamics of the 
Serotonin1A Receptor: A zFCS Study. Biophys. J. 99:1397-1407. 



93 

 
36. Chichili, G. R., and W. Rodgers. 2009. Cytoskeleton–membrane interactions in 

membrane raft structure. Cell Mol. Life Sci. 66:2319-2328. 

37. van Zanten, T. S., A. Cambi, M. Koopman, B. Joosten, C. G. Figdor, and M. F. 
Garcia-Parajo. 2009. Hotspots of GPI-anchored proteins and integrin nanoclusters 
function as nucleation sites for cell adhesion. Proc. Natl. Acad. Sci. U. S. A. 
106:18557-18562. 

38. Bunch, T. A. 2010. Integrin αIIbβ3 Activation in Chinese Hamster Ovary Cells 
and Platelets Increases Clustering Rather than Affinity. J. Biol. Chem. 285:1841-
1849. 

39. Cluzel, C., F. Saltel, J. Lussi, F. Paulhe, B. A. Imhof, and B. Wehrle-Haller. 2005. 
The mechanisms and dynamics of v 3 integrin clustering in living cells. J. Cell 
Biol. 171:383. 

40. Silvius, J. R. 2005. Partitioning of membrane molecules between raft and non-raft 
domains: Insights from model-membrane studies. Biochim. Biophys. Acta, Mol. 
Cell Res. 1746:193-202. 

41. Purrucker, O., S. Gönnenwein, A. Förtig, R. Jordan, M. Rusp, M. Bärmann, L. 
Moroder, E. Sackmann, and M. Tanaka. 2007. Polymer-tethered membranes as 
quantitative models for the study of integrin-mediated cell adhesion. Soft Matter. 
3:333-336. 

42. Garg, S., J. Rühe, K. Lüdtke, R. Jordan, and C. A. Naumann. 2007. Domain 
registration in raft-mimicking lipid mixtures studied using polymer-tethered lipid 
bilayers. Biophys. J. 92:1263-1270. 

43. Rawicz, W., K. Olbrich, T. McIntosh, D. Needham, and E. Evans. 2000. Effect of 
chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79:328-
339. 

44. Marsh, D. 2006. Elastic curvature constants of lipid monolayers and bilayers. 
Chem. Phys. Lipids. 144:146-159. 

45. Sackmann, E. 1994. Membrane bending energy concept of vesicle-and cell-shapes 
and shape-transitions. FEBS Lett. 346:3-16. 

46. Helfer, E., S. Harlepp, L. Bourdieu, J. Robert, F. C. MacKintosh, and D. 
Chatenay. 2001. Buckling of Actin-Coated Membranes under Application of a 
Local Force. Phys. Rev. Lett. 87:088103. 



94 

 
47. Marsh, D., R. Bartucci, and L. Sportelli. 2003. Lipid membranes with grafted 

polymers: physicochemical aspects. Biochim. Biophys. Acta, Biomembr. 1615:33-
59. 

48. Rovira-Bru, M., D. Thompson, and I. Szleifer. 2002. Size and Structure of 
Spontaneously Forming Liposomes in Lipid/PEG-Lipid Mixtures. Biophys. J. 
83:2419-2439. 

49. Purrucker, O., A. Förtig, R. Jordan, and M. Tanaka. 2004. Supported Membranes 
with Well-Defined Polymer Tethers - Incorporation of Cell Receptors. 
ChemPhysChem. 5:327-335. 

50. Kiessling, V., C. Wan, and L. Tamm. 2009. Domain coupling in asymmetric lipid 
bilayers. Biochim. Biophys. Acta, Biomembr. 1788:64-71. 

51. Dietrich, C., L. Bagatolli, Z. Volovyk, N. Thompson, M. Levi, K. Jacobson, and 
E. Gratton. 2001. Lipid rafts reconstituted in model membranes. Biophys. J. 
80:1417-1428. 

52. Kahya, N., D. A. Brown, and P. Schwille. 2005. Raft Partitioning and Dynamic 
Behavior of Human Placental Alkaline Phosphatase in Giant Unilamellar 
Vesicles. Biochemistry. 44:7479-7489. 

53. Saslowsky, D. E., J. Lawrence, X. Ren, D. A. Brown, R. M. Henderson, and J. M. 
Edwardson. 2002. Placental alkaline phosphatase is efficiently targeted to rafts in 
supported lipid bilayers. J. Biol. Chem. 277:26966. 

54. Khan, T. K., B. Yang, N. L. Thompson, S. Maekawa, R. M. Epand, and K. 
Jacobson. 2003. Binding of NAP-22, a calmodulin-binding neuronal protein, to 
raft-like domains in model membranes. Biochemistry. 42:4780-4786. 

55. Sengupta, P., A. Hammond, D. Holowka, and B. Baird. 2008. Structural 
determinants for partitioning of lipids and proteins between coexisting fluid 
phases in giant plasma membrane vesicles. Biochim. Biophys. Acta, Biomembr. 
1778:20-32. 

56. Dietrich, C., Z. Volovyk, M. Levi, N. Thompson, and K. Jacobson. 2001. 
Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts 
reconstituted in supported model membrane monolayers. Proc. Natl. Acad. Sci. U. 
S. A. 98:10642-10647. 

57. Kalvodova, L., N. Kahya, P. Schwille, R. Ehehalt, P. Verkade, D. Drechsel, and 
K. Simons. 2005. Lipids as Modulators of Proteolytic Activity of BACE. J. Biol. 
Chem. 280:36815-36823. 



95 

 
58. Baumgart, T., A. T. Hammond, P. Sengupta, S. T. Hess, D. A. Holowka, B. A. 

Baird, and W. W. Webb. 2007. Large-scale fluid/fluid phase separation of 
proteins and lipids in giant plasma membrane vesicles. Proc. Natl. Acad. Sci. U. 
S. A. 104:3165-3170. 

59. Hammond, A. T., F. A. Heberle, T. Baumgart, D. Holowka, B. Baird, and G. W. 
Feigenson. 2005. Crosslinking a lipid raft component triggers liquid ordered-
liquid disordered phase separation in model plasma membranes. Proc. Natl. Acad. 
Sci. U. S. A. 102:6320-6325. 

60. Siegel, A. P., M. J. Murcia, M. Johnson, M. Reif, R. Jordan, J. Rühe, and C. A. 
Naumann. 2010. Compartmentalizing a lipid bilayer by tuning lateral stress in a 
physisorbed polymer-tethered membrane. Soft Matter. 6:2723-2732. 

61. Deverall, M. A., E. Gindl, E. K. Sinner, H. Besir, J. Rühe, M. J. Saxton, and C. A. 
Naumann. 2005. Membrane lateral mobility obstructed by polymer-tethered lipids 
studied at the single molecule level. Biophys. J. 88:1875-1886. 

62. Albertorio, F., A. Diaz, T. Yang, V. Chapa, S. Kataoka, E. Castellana, and P. 
Cremer. 2005. Fluid and Air-Stable Lipopolymer Membranes for Biosensor 
Applications. Langmuir. 21:7476-7482. 

63. Galush, W. J., J. A. Nye, and J. T. Groves. 2008. Quantitative Fluorescence 
Microscopy Using Supported Lipid Bilayer Standards. Biophys. J. 95:2512-2519. 

64. Binnig, G., C. F. Quate, and C. Gerber. 1986. Atomic Force Microscope. Phys. 
Rev. Lett. 56:930. 

65. Elson, E. L., and D. Magde. 1974. Fluorescence correlation spectroscopy. I. 
Conceptual basis and theory. Biopolymers. 13:1-27. 

66. Chen, Y., J. Müller, P. So, and E. Gratton. 1999. The Photon Counting Histogram 
in Fluorescence Fluctuation Spectroscopy. Biophys J. 77:553-567. 

67. Huang, B., T. D. Perroud, and R. N. Zare. 2004. Photon Counting Histogram: 
One-Photon Excitation. ChemPhysChem. 5:1523-1531. 

68. Magde, D., E. L. Elson, and W. W. Webb. 1974. Fluorescence correlation 
spectroscopy. II. An experimental realization. Biopolymers. 13:29-61. 

69. Schwille, P., U. Haupts, S. Maiti, and W. W. Webb. 1999. Molecular Dynamics in 
Living Cells Observed by Fluorescence Correlation Spectroscopy with One- and 
Two-Photon Excitation. Biophys. J. 77:2251-2265. 



96 

 
70. Hu, X., and D. Cruden. 1993. Buckling deformation in the Highwood Pass, 

Alberta, Canada. Can. Geotech. J. 30:276-276. 

71. Malla, R. B., and A. Ghoshal. 1995. Thermally induced vibrations of structures in 
space. Aerospace thermal structures and materials for a new era. 168:68. 

72. Pangule, R. C., I. Banerjee, and A. Sharma. 2008. Adhesion induced mesoscale 
instability patterns in thin PDMS-metal bilayers. J. Chem. Phys. 128:-. 

73. Jiang, C., S. Singamaneni, E. Merrick, and V. V. Tsukruk. 2006. Complex 
buckling instability patterns of nanomembranes with encapsulated gold 
nanoparticle arrays. Nano letters. 6:2254-2259. 

74. Yoo, P. J., K. Y. Suh, S. Y. Park, and H. H. Lee. 2002. Physical self-assembly of 
microstructures by anisotropic buckling. Adv. Mater. 14:1383-1387. 

75. Lee, K. Y. C. 2008. Collapse mechanisms of Langmuir monolayers. Ann. Rev. 
Phys. Chem. 59:771-791. 

76. Mei, H., R. Huang, J. Y. Chung, C. M. Stafford, and H. H. Yu. 2007. Buckling 
modes of elastic thin films on elastic substrates. Appl. Phys. Lett. 90:151902. 

77. Meier, W. P., and W. Knoll, editors. 2010. Polymer Membranes/Biomembranes 
(Advances in Polymer Science, vol. 224). Springer, New York. 

78. Marsh, D. 2001. Elastic Constants of Polymer-Grafted Lipid Membranes. 
Biophys. J. 81:2154-2162. 

79. Singer, S. J., and G. L. Nicolson. 1972. The fluid mosaic model of the structure of 
cell membranes. Science. 175:720-731. 

80. Lee, A. G. 2003. Lipid-protein interactions in biological membranes: a structural 
perspective. Biochim. Biophys. Acta, Biomembr. 1612:1-40. 

81. Crockett, E. L. 1998. Cholesterol Function in Plasma Membranes from 
Ectotherms: Membrane-Specific Roles in Adaptation to Temperature. Amer. Zool. 
38:14. 

82. Barenholz, Y. 2004. Sphingomyelin and cholesterol: from membrane biophysics 
and rafts to potential medical applications. Subcell. Biochem. 37:167-215. 

83. De Almeida, R. 2003. Sphingomyelin/Phosphatidylcholine/Cholesterol Phase 
Diagram: Boundaries and Composition of Lipid Rafts. Biophys. J. 85:2406-2416. 



97 

 
84. Koo, L. Y., D. J. Irvine, A. M. Mayes, D. A. Lauffenburger, and L. G. Griffith. 

2002. Co-regulation of cell adhesion by nanoscale RGD organization and 
mechanical stimulus. J. Cell Sci. 115:1423-1433. 

85. Pande, G. 2000. The role of membrane lipids in regulation of integrin functions. 
Curr. Opin. Cell Biol. 12:569-574. 

86. Xiong, J.-P., B. Mahalingham, J. L. Alonso, L. A. Borrelli, X. Rui, S. Anand, B. 
T. Hyman, T. Rysiok, D. Müller-Pompalla, S. L. Goodman, and M. A. Arnaout. 
2009. Crystal structure of the complete integrin αVβ3 ectodomain plus an α/β 
transmembrane fragment. J. Cell Biol. 186:589-600. 

87. Mitchell, J. S., W. S. Brown, D. G. Woodside, P. Vanderslice, and B. W. 
McIntyre. 2009. Clustering T-cell GM1 lipid rafts increases cellular resistance to 
shear on fibronectin through changes in integrin affinity and cytoskeletal 
dynamics. Immunol. Cell Biol. 87:324-336. 

88. Luo, B. H., C. V. Carman, and T. A. Springer. 2007. Structural basis of integrin 
regulation and signaling. Ann. Rev. Immun. 25:619. 

89. Albelda, S. M., S. A. Mette, D. E. Elder, R. M. Stewart, L. Damjanovich, M. 
Herlyn, and C. A. Buck. 1990. Integrin distribution in malignant melanoma: 
association of the 3 subunit with tumor progression. Cancer Res. 50:6757. 

90. Lehman, J. T. 1999. Synthese von kovalent an Oberfla¨chen fixierten 
Polyethyloxazolinfilmen zum Aufbau polymergestu¨ tzter Biomembran-Modelle. 
Gutenberg-Universitat Mainz, Mainz. 

91. Lüdtke, K., R. Jordan, P. Hommes, O. Nuyken, and C. A. Naumann. 2005. 
Lipopolymers from New 2-Substituted-2-Oxazolines for Artificial Cell 
Membrane Constructs. Macromol Biosci. 5:384-393. 

92. Jordan, R., K. Martin, H. J. Räder, and K. K. Unger. 2001. Lipopolymers for 
Surface Functionalizations. 1. Synthesis and Characterization of Terminal 
Functionalized Poly(N-propionylethylenimine)s. Macromolecules. 34:8858-8865. 

93. Jordan, R., K. Graf, H. Riegler, and K. K. Unger. 1996. Polymer-supported alkyl 
monolayers on silica: synthesis and self-assembly of terminal functionalized 
poly(N-propionylethylenimine)s. Chem.Commun.:1025-1026. 

94. Murcia, M., D. Minner, G.-M. Mustata, K. Ritchie, and C. Naumann. 2008. 
Design of Quantum Dot-Conjugated Lipids for Long-Term, High-Speed Tracking 
Experiments on Cell Surfaces. J. Am. Chem. Soc. 130:15054-15062. 



98 

 
95. Rigaud, J.-L., and D. Levy. 2003. Reconstitution of Membrane Proteins into 

Liposomes. In Methods Enzymol. D. Nejat, editor. Academic Press. 65-86. 

96. Rigaud, J. L., D. Levy, G. Mosser, and O. Lambert. 1998. Detergent removal by 
non-polar polystyrene beads. Euro. Biophys. J. 27:305-319. 

97. Wang, W., and Y. Chau. 2009. Self-assembled peptide nanorods as building 
blocks of fractal patterns. Soft Matter. 5:4893-4898. 

98. Audoly, B. 1999. Stability of straight delamination blisters. Phys. Rev. Lett. 
83:4124-4127. 

99. Hutchinson, J., and Z. Suo. 1992. Mixed mode cracking in layered materials. Adv. 
in Appl. Mech. 29:191. 

100. Macdonald, P., Y. Chen, X. Wang, Y. Chen, and J. Mueller. 2010. Brightness 
Analysis by Z-Scan Fluorescence Fluctuation Spectroscopy for the Study of 
Protein Interactions within Living Cells. Biophys. J. 99:979-988. 

101. Chen, Y., L. N. Wei, and J. D. Müller. 2003. Probing protein oligomerization in 
living cells with fluorescence fluctuation spectroscopy. Proc. Natl. Acad. Sci. U. 
S. A. 100:15492. 

102. Jacobson, K., O. G. Mouritsen, and R. G. W. Anderson. 2007. Lipid rafts: at a 
crossroad between cell biology and physics. Nat. Cell Biol. 9:7-14. 

103. Deverall, M. A., S. Garg, K. Lüdtke, R. Jordan, J. Rühe, and C. A. Naumann. 
2008. Transbilayer coupling of obstructed lipid diffusion in polymer-tethered 
phospholipid bilayers. Soft Matter. 4:1899-1908. 

104. Frey, S., D. Zhang, M. Carignano, I. Szleifer, and K. Y. Lee. 2007. Effects of 
block copolymer's architecture on its association with lipid membranes: 
experiments and simulations. J. Chem. Phys. 127. 

105. Purrucker, O., A. Förtig, K. Ludtke, R. Jordan, and M. Tanaka. 2005. 
Confinement of Transmembrane Cell Receptors in Tunable Stripe Micropatterns. 
J. Am. Chem. Soc. 127:1258-1264. 

106. Reiter, G., G. Castelein, and J. U. Sommer. 2002. Pattern formation and ordering 
in thin films of crystallisable block copolymers. Wiley Online Library. 173-178. 

107. Braun, H. G., and E. Meyer. 2008. Pattern formation in ultrathin polymer films 
prepared on microstructured surfaces. Journal of Physics: Conference Series. 
126:012027. 



99 

 
108. Naumann, C. A., C. F. Brooks, G. G. Fuller, T. Lehmann, J. Rühe, W. Knoll, P. 

Kuhn, O. Nuyken, and C. W. Frank. 2001. Two-Dimensional Physical Networks 
of Lipopolymers at the Air/Water Interface: Correlation of Molecular Structure 
and Surface Rheological Behavior. Langmuir. 17:2801-2806. 

109. Edmondson, S., K. Frieda, J. E. Comrie, P. R. Onck, and W. T. S. Huck. 2006. 
Buckling in Quasi 2D Polymers. Adv. Mater. 18:724-728. 

110. Karapanagiotis, I., W. W. Gerberich, and D. F. Evans. 2001. Early dewetting 
stages of thin polymer films initiated by nanoindentation. Langmuir. 17:2375-
2379. 

111. Stange, T., D. Evans, and W. Hendrickson. 1997. Nucleation and growth of 
defects leading to dewetting of thin polymer films. Langmuir. 13:4459-4465. 

112. Lüdtke, K., R. Jordan, N. Furr, S. Garg, K. Forsythe, and C. A. Naumann. 2008. 
Two-Dimensional Center-of-Mass Diffusion of Lipid-Tethered Poly (2-methyl-2-
oxazoline) at the Air–Water Interface Studied at the Single Molecule Level. 
Langmuir. 24:5580-5584. 

113. Parry, G., J. Colin, C. Coupeau, F. Foucher, A. Cimetière, and J. Grilhé. 2005. 
Snapthrough occurring in the postbuckling of thin films. Appl. Phys. Lett. 
86:081905. 

114. Jagla, E. 2007. Modeling the buckling and delamination of thin films. Phys. Rev. 
B. 75:085405. 

115. Volinsky, A. A. 2005. Sub-critical telephone cord delamination propagation and 
adhesion measurements. UNIVERSITY OF SOUTH FLORIDA TAMPA DEPT 
OF MECHANICAL ENGINEERING. 

116. Szleifer, I., O. V. Gerasimov, and D. H. Thompson. 1998. Spontaneous liposome 
formation induced by grafted poly (ethylene oxide) layers: Theoretical prediction 
and experimental verification. Proc. Natl. Acad. Sci. U. S. A. 95:1032. 

117. Rovira-Bru, M., D. H. Thompson, and I. Szleifer. 2002. Size and structure of 
spontaneously forming liposomes in lipid/PEG-lipid mixtures. Biophys. J. 
83:2419-2439. 

118. Tsukanova, V., and C. Salesse. 2003. High-Pressure Transition of a Poly(ethylene 
glycol)-Grafted Phospholipid Monolayer at the Air/Water Interface. 
Macromolecules. 36:7227-7235. 



100 

 
119. Purrucker, O. 2004. Establishment of a New Plasma Membrane Model with Well-

Defined Polymer Spacers. Technische Universität München, 
Universitätsbibliothek. 

120. Russell, S. W., J. Li, and J. W. Mayer. 1991. In situ observation of fractal growth 
during amorphous silicon crystallization in a copper silicide (Cu3Si) matrix. J. 
Appl. Phys. 70:5153-5155. 

121. Meakin, P. 1983. Formation of fractal clusters and networks by irreversible 
diffusion-limited aggregation. Phys. Rev. Lett. 51:1119-1122. 

122. Miller, A., W. Knoll, and H. Möhwald. 1986. Fractal growth of crystalline 
phospholipid domains in monomolecular layers. Phys. Rev. Lett. 56:2633-2636. 

123. Cao, G., X. Chen, C. Li, A. Ji, and Z. Cao. 2008. Self-assembled triangular and 
labyrinth buckling patterns of thin films on spherical substrates. Phys. Rev. Lett. 
100:36102. 

124. Colin, J., C. Coupeau, J. Durinck, and J. Grilhé. 2009. Buckling patterns of gold 
thin films on silicon substrates: Formation of superimposed blisters. EPL 
(Europhysics Letters). 86:54002. 

125. Siegel, A., and C. Naumann. 2010. Polymer Stabilized Lipid Membranes: 
Langmuir Monolayers. In Polymer Membranes/Biomembranes. W. P. Meier, and 
W. Knoll, editors. Springer Berlin / Heidelberg. 113-165. 

126. Verdoucq, L., A. Grondin, and C. Maurel. 2008. Structure-function analysis of 
plant aquaporin AtPIP2; 1 gating by divalent cations and protons. Biochem. J. 
415:409-416. 

127. Campbell, I., and M. Humphries. 2011. Integrin Structure, Activation, and 
Interactions. Cold Spring Harbor Perspectives in Biology. 3. 

128. Deverall, M., S. Garg, K. Lüdtke, R. Jordan, J. Rühe, and C. Naumann. 2008. 
Transbilayer coupling of obstructed lipid diffusion in polymer-tethered 
phospholipid bilayers. Soft Matter. 4:1899-1908. 

129. Erb, E. M., K. Tangemann, B. Bohrmann, B. Müller, and J. Engel. 1997. Integrin 
IIb 3 reconstituted into lipid bilayers is nonclustered in its activated state but 
clusters after fibrinogen binding. Biochemistry. 36:7395-7402. 

130. Gönnenwein, S., M. Tanaka, B. Hu, L. Moroder, and E. Sackmann. 2003. 
Functional incorporation of integrins into solid supported membranes on ultrathin 
films of cellulose: impact on adhesion. Biophys. J. 85:646-655. 



101 

 
131. Seitz, P. C., M. D. Reif, O. V. Konovalov, R. Jordan, and M. Tanaka. 2009. 

Modulation of Substrate–Membrane Interactions by Linear Poly(2-methyl-2-
oxazoline) Spacers Revealed by X-ray Reflectivity and Ellipsometry. 
ChemPhysChem. 10:2876-2883. 

132. Baron, W., L. Decker, and H. Colognato. 2003. Regulation of integrin growth 
factor interactions in oligodendrocytes by lipid raft microdomains. Curr. Biol. 
13:151-155. 

133. Leitinger, B., and N. Hogg. 2002. The involvement of lipid rafts in the regulation 
of integrin function. J. Cell Sci. 115:963-972. 

134. Hogg, N., M. Laschinger, K. Giles, and A. McDowall. 2003. T-cell integrins: 
more than just sticking points. J. Cell Sci. 116:4695. 

135. Gopalakrishna, P., S. K. Chaubey, P. S. Manogaran, and G. Pande. 2000. 
Modulation of α5β1 integrin functions by the phospholipid and cholesterol 
contents of cell membranes. J. Cell Biochem. 77:517-528. 

136. Ramprasad, O. G., G. Srinivas, K. S. Rao, P. Joshi, J. P. Thiery, S. Dufour, and G. 
Pande. 2007. Changes in cholesterol levels in the plasma membrane modulate cell 
signaling and regulate cell adhesion and migration on fibronectin. Cell Motil. 
Cytoskeleton. 64:199-216. 

137. Blystone, S. D., I. L. Graham, F. P. Lindberg, and E. J. Brown. 1994. Integrin 
alpha v beta 3 differentially regulates adhesive and phagocytic functions of the 
fibronectin receptor alpha 5 beta 1. J. Cell Biol. 127:1129. 

138. Cunningham, O., A. Andolfo, M. L. Santovito, L. Iuzzolino, F. Blasi, and N. 
Sidenius. 2003. Dimerization controls the lipid raft partitioning of uPAR/CD87 
and regulates its biological functions. EMBO J. 22:5994-6003. 

139. Wong, S. W., M. J. Kwon, A. M. K. Choi, H. P. Kim, K. Nakahira, and D. H. 
Hwang. 2009. Fatty acids modulate Toll-like receptor 4 activation through 
regulation of receptor dimerization and recruitment into lipid rafts in a reactive 
oxygen species-dependent manner. J. Biol. Chem. 284:27384. 

140. Wiseman, P. W., C. M. Brown, D. J. Webb, B. Hebert, N. L. Johnson, J. A. 
Squier, M. H. Ellisman, and A. F. Horwitz. 2004. Spatial mapping of integrin 
interactions and dynamics during cell migration by Image Correlation 
Microscopy. J. Cell Sci. 117:5521-5534. 

141. Hantgan, R. R., C. Paumi, M. Rocco, and J. W. Weisel. 1999. Effects of Ligand-
Mimetic Peptides Arg-Gly-Asp-X (X = Phe, Trp, Ser) on αIIbβ3 Integrin 
Conformation and Oligomerization†. Biochemistry. 38:14461-14474. 



102 

 
142. Roca-Cusachs, P., N. C. Gauthier, A. Del Rio, and M. P. Sheetz. 2009. Clustering 

of 5 1 integrins determines adhesion strength whereas v 3 and talin enable 
mechanotransduction. Proc. Natl. Acad. Sci. U. S. A. 106:16245. 

143. Takagi, J., B. M. Petre, T. Walz, and T. A. Springer. 2002. Global 
Conformational Rearrangements in Integrin Extracellular Domains in Outside-In 
and Inside-Out Signaling. Cell. 110:599-611. 

144. Takagi, J., K. Strokovich, T. A. Springer, and T. Walz. 2003. Structure of integrin 
[alpha]5[beta]1 in complex with fibronectin. EMBO J. 22:4607-4615. 

145. Kim, M., C. V. Carman, and T. A. Springer. 2003. Bidirectional transmembrane 
signaling by cytoplasmic domain separation in integrins. Science. 301:1720. 

146. Wang, W., and B.-H. Luo. 2010. Structural basis of integrin transmembrane 
activation. J. Cell. Biochem. 109:447-452. 

147. Lee, A. G. 2004. How lipids affect the activities of integral membrane proteins. 
Biochimica et Biophysica Acta (BBA) - Biomembranes. 1666:62-87. 

148. Lee, C. S., S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim. 2003. Protein 
patterning on silicon-based surface using background hydrophobic thin film. 
Biosensors and Bioelectronics. 18:437-444. 

149. Zhu, J., B. Boylan, B.-H. Luo, P. J. Newman, and T. A. Springer. 2007. Tests of 
the Extension and Deadbolt Models of Integrin Activation. J. Biol. Chem. 
282:11914-11920. 

 

 



 

 

 

 

 

 

 

 

 

 

 

VITA 

 



103 

 

 

 

 

VITA 
 
 
 

AMANDA P. SIEGEL 
 

 
EDUCATION 
 
Ph.D. in Chemistry    Purdue University Indianapolis, IN, 2011 
J.D., with honors   University of Chicago, Chicago, IL, 1991  
B.S. in Physics, cum laude  Yale University, New Haven, CT, 1986  
   
      
RESEARCH EXPERIENCE 
 
Graduate Student.  Thesis advisor: Christoph A. Naumann.   2006-2011 
Area of Research: physical properties of model bilayers including  
membrane receptor-protein, membrane receptor-lipid, and  
lipopolymer-lipid interactions within model bilayers.  Also investigated  
diffusion of receptor proteins on the plasma membrane. 
 
 
HONORS AND AWARDS   
 
Purdue Research Foundation (PRF) Research Grant, awarded to top 2010-11 
senior  graduate student at the Indiana University-Purdue University  
at Indianapolis School of Science.   
ACS National Meeting Student Poster Award, Division of Colloids and  2009 
Surface Chemistry 
Travel Fellowship, IUPUI Graduate Student Office  2009 
Educational Enhancement Grant, IUPUI Graduate Student Office  2009 
 
 
PUBLICATIONS 
 
Siegel, A. P., Murcia, M. J.; Johnson, M.; Reif, M.; Jordan, R., Ruehe, J.,  
Naumann, C. A. (2010) Compartmentalizing a lipid bilayer by tuning lateral 
stress in a physisorbed polymer-tethered membrane. Soft Matter 6, 2723-2732. 
Siegel, A. P., Naumann, C. A. (2010) Polymer stabilized lipid membranes: 
Langmuir monolayers. Adv. Polymer Sci. 224, 87-111. 



 

 

104

Siegel, A.P., Kimble-Hill, A., Garg, S., Jordan, R., Naumann, C.A. 
(Submitted) Native ligands change integrin sequestering but not 
oligomerization in raft-mimicking lipid mixtures. Submitted to Biophys. J. 
 
 
TEACHING/MENTORING  
 

Course Instructor (Department of Chemistry and Chemical Biology, IUPUI) 
Recitation Lecturer and Laboratory Instructor for     2006- 2009 

“The Chemistry of Life”  (CHEM 115) 
Laboratory Instructor for       2006  
 “Experimental Chemistry II” (CHEM 126) 
Guest lecturer (2-3 class meetings/term) for    2007-2011 
 “Physical Chemistry of Molecules” (CHEM361)   
 

High School Student Mentorship 
Guilherme Sprowl, subsequent 2010 Gates Millenium  Scholar    2008-2009 
David O’Brien, subsequent 2010 Intel Science Talent Search   2009-2010  
 Seminifinalist 
Kevin Song, subsequent  2010 Siemens Competition in Math : Science : 2010 summer 
 Technology Semifinalist 
  
  
TECHNICAL EXPERTISE 
  
Techniques utilized extensively include reconstitution of membrane proteins into lipid 
bilayers, wide field single molecule fluorescence microscopy, confocal fluorescence 
microscopy, fluorescence correlation spectroscopy, quantitative epifluorescence 
microscopy, sonochemical fluorescent nanoparticle (quantum dot) synthesis, Langmuir 
Blodgett film deposition.  Responsible for routine maintenance and training.  Also 
familiar with atomic force microscopy.   
 
 
CONTRIBUTED RESEARCH PRESENTATIONS 
(* indicates presenting author) 
 

Oral 
Siegel, A.P. *, Kimble-Hill, A., Jordan, R., Naumann, C.A. (2011). Effect of native 
ligands on integrin oligomerization and raft recruitment processes studied in cholesterol 
containing polymer-tethered lipid bilayer systems.  Presented at the 42nd Meeting of the 
ACS Central Region. 
 
Siegel, A.P., Feuza, N., Jordan, R., Juergen, R., Naumann, C.A.* (2011). Membrane 
organization and dynamics in physisorbed polymer-tethered phospholipid bilayers.  
Presented at the 241st ACS National Meeting, Anaheim, CA. 



 

 

105

Siegel, A.P.*, Minner, D.E., Murcia, M. Tackett, L., Elmendorf, J. S., Ritchie, K., 
Naumann, C.A. (2010). Monitoring compartmentalization of the plasma membrane and 
model membranes using quantum dots monovalently conjugated to tracer molecules.  
Presented at the 239th ACS National Meeting, San Francisco, CA. 

 
Naumann, C.A.*, Siegel, A.P., Kimble-Hill, A.C. (2010). Raft recruitment processes of 
membrane proteins studied in planar model membranes. Presented at the 239th ACS 
National Meeting, San Francisco, CA.  
 
Naumann, C.A.*, Kimble-Hill, A.C., Garg, S., Siegel, A.P., Luedtke, K., Jordan, R. 
(2009). Protein recruitment to and from raft-mimicking domains studied using polymer-
tethered membranes.  Presented at the 237th ACS National Meeting, Salt Lake City, UT.  

 
Siegel, A.P.*, Garg, S., Kimble-Hill, A.C., Murcia, M.J., Luedtke, K., Jordan, R., Ruehe, 
J., Naumann, C.A. (2008). Studying complex processes of membrane dynamics and 
organization using physisorbed polymer-tethered membranes.  Presented at the 236th 
ACS National Meeting, Philadelphia, PA. 

 
Siegel, A.P.*, Murcia, M.J., Ruehe, J., Naumann, C.A. (2007).  Formation of polymeric 
fences in planar model membranes: An experimental platform for the study of hop 
diffusion . Presented at the 233rd  ACS National Meeting, Chicago, IL.  
 
 

Poster 
Siegel, A.P.*, Kimble-Hill, A., Jordan, R., Naumann, C.A. (2011). Raft Recruitment 
Processes and Oligomerization State of Integrins Studied in Polymer-Tethered Single and 
Double Bilayer Systems.  Presented at the 56th Annual Meeting of the Biophysical 
Society. Baltimore, MD.  
 
Minner, D.E., Siegel, A.P., Rauch, P Käs, J.,  Naumann, C.A.* (2010) Tuning Cellular 
Mechano-Response Using Biomembrane-Mimicking Substrates of Adjustable Fluidity.  
Presented at the 4th Mechanobiology Workshop and Biophysical Joint Meeting.  
Singapore. 
 
Siegel, A.P., Minner, D.E., Murcia, M.J., Elmendorf, J.S., Ritchie, K., Naumann, C.A.* 
(2010). Monitoring Submicron and Micron-Size Membrane Compartments using 
Quantum Dots Monovalently Conjugated to Tracer Molecules.  Presented at the 55th 
Annual Meeting of the Biophysical Society. San Francisco, CA.  
 
 
Siegel, A.P.*, Murcia, M., Minner, D., Elmendorf, J.S., Tackett, L., and Naumann, C.A. 
Monitoring Membrane Compartmentalization in Adipocytes.  Collaborative Research 
from the Center for Membrane BioSciences (2010). Presented at the 2nd Annual IUPUI 
Research Day. 
 



 

 

106

Siegel, A.P.*, Murcia, M.J., Ruehe, J., Jordan, R., Naumann, C.A. (2009). Tuneable 
buckling in polymer-tethered lipid bilayers creates diffusion barriers and a platform for 
studying hop diffusion. Presented at the  237th ACS National Meeting, Salt Lake City, 
UT.  Received ACS National Meeting Poster Award from the division of Colloids and 
Surface Chemistry.   
 
Minner, D.E.*, Rauch, P., Siegel, A.P., Stelzer, J., Käs, J., Sprowl, G., Harvey, K., 
Siddiqi, R., Atkinson, S., Naumann, C.A. (2009). Tuning Cellular Mechano-Response 
Using Biomembrane-Mimicking Substrates of Adjustable Fluidity.  Presented at the 54th 
Annual Meeting of the Biophysical Society, Boston, MA.  
 
Siegel, A.P.*, Murcia, M.J., Ruehe, J., Jordan, R., Naumann, C.A. (2008). Membrane 
Compartmentalization Through Bilayer Buckling in Polymer-Tethered Phospholipid 
Bilayers.  Presented at the 1st Purdue University Biology and Applications of Membrane 
Science Symposium. 
 
 


