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ABSTRACT 

Liszewski, Elisa Anne. M.S., Purdue University, August, 2010.  Instrumental and 
Statistical Methods for the Comparison of Class Evidence.  Major Professor:  
John Goodpaster. 
 
 
 

Trace evidence is a major field within forensic science.  Association of 

trace evidence samples can be problematic due to sample heterogeneity and a 

lack of quantitative criteria for comparing spectra or chromatograms.  The aim of 

this study is to evaluate different types of instrumentation for their ability to 

discriminate among samples of various types of trace evidence.  Chemometric 

analysis, including techniques such as Agglomerative Hierarchical Clustering, 

Principal Components Analysis, and Discriminant Analysis, was employed to 

evaluate instrumental data.  First, automotive clear coats were analyzed by using 

microspectrophotometry to collect UV absorption data.  In total, 71 samples were 

analyzed with classification accuracy of 91.61%.  An external validation was 

performed, resulting in a prediction accuracy of 81.11%.  Next, fiber dyes were 

analyzed using UV-Visible microspectrophotometry.  While several physical 

characteristics of cotton fiber can be identified and compared, fiber color is 

considered to be an excellent source of variation, and thus was examined in this 

study.  Twelve dyes were employed, some being visually indistinguishable.  
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Several different analyses and comparisons were done, including an inter-

laboratory comparison and external validations.  Lastly, common plastic samples 

and other polymers were analyzed using pyrolysis-gas chromatography/mass 

spectrometry, and their pyrolysis products were then analyzed using multivariate 

statistics.  The classification accuracy varied dependent upon the number of 

classes chosen, but the plastics were grouped based on composition.  The 

polymers were used as an external validation and misclassifications occurred 

with chlorinated samples all being placed into the category containing PVC. 
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CHAPTER 1. INTRODUCTION 

The aim of this study is to evaluate different types of instrumentation for 

their ability to discriminate among samples of various types of trace evidence.  

Chemometric analysis, including techniques such as Agglomerative Hierarchical 

Clustering, Principal Components Analysis, and Discriminant Analysis, was 

employed to evaluate instrumental data.  Trace evidence is a major field within 

forensic science.  Association of trace evidence samples can be problematic due 

to sample heterogeneity and a lack of quantitative criteria for comparing spectra 

or chromatograms.  Therefore, in this project, automotive clear coats and red 

dyed cotton fibers were analyzed using microspectrophotometry (MSP) and their 

UV-visible spectra were evaluated using multivariate statistics.  While several 

physical characteristics of cotton fibers can be identified and compared, fiber 

color is considered to be an excellent source of variation, and thus was examined 

in this study.  Since automotive clear coats are colorless, their UV absorption 

characteristics were studied by microspectrophotometry.  In addition, common 

plastic samples and other polymers were analyzed using pyrolysis-gas 

chromatography/mass spectrometry (Py-GC/MS), and their pyrograms were then 

analyzed using multivariate statistics.  Overall, multivariate statistics can increase 

discrimination of samples as well as distinguishing between groups much more 

reliably than traditional visual examination of the data. 



 

 

2 

1.1. Chemometric Techniques and their Application to Forensic Science 

The use of multivariate statistics has accelerated in recent years in 

forensic analyses.  Forensic scientists are often tasked with identifying patterns 

in data as well as interpreting differences.  Chemometrics has enabled this task 

to become more accurate and manageable.  Its use in the trace evidence area is 

prominent and can be used with various types of evidence.  For example, 

multivariate statistics has been applied to accelerants, document examination, 

inks, fibers, ammunition, glass, gunpowder, paint, nail polish, paint surfaces, and 

condom lubricants.1  A complete review of chemometrics applied to trace 

evidence is beyond the scope of this thesis. 

When trying to determine if known and unknown samples could have a 

common source, forensic chemists often rely only upon visual comparisons of 

complex chromatograms and other spectra.  Because of this, examiners do not 

have any statistical basis for determining the value of the evidence in question.  

This is a concern for forensic laboratories regarding the reliability of comparisons 

such as dyed fibers, and the ability to compare samples in a quantitative way is 

desirable.  Searching through databases, such as the Paint Data Query (PDQ), 

can assist in comparisons by having a large, readily available dataset with all 

factors about it known.  Chemometrics could be readily applied to it.  In addition, 

multivariate statistics could support issues raised in Daubert v. Merrell Dow 

Pharmaceuticals such as reliability and relevance of scientific evidence.1  In 

addition, chemometrics can address some of the recommendations that were 

provided by the National Academy of Sciences (NAS) report on strengthening 
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forensic science.  Specifically, chemometrics would address issues of accuracy 

and reliability in forensic science disciplines (Recommendation 3) as well as 

assist in research on human observer bias and sources of human error in 

forensic examinations (for example, visual analysis of data versus chemometric 

analysis of data) (Recommendation 5).2 

The value of multivariate statistics has been recognized for many years.  

The fundamental idea of principal components analysis (PCA) was introduced by 

Pearson in 1901.  Algorithms for computing principal components (PCs) were 

described by Hotelling in 1933.  Mahalanobis established the multivariate 

distance that shares his name in 1936, and discriminant analysis (DA) first 

originated by Fisher in 1936.1   

 In general, chemometrics is used for data reduction or structural 

simplification, sorting and grouping, investigation of the dependence among 

variables, prediction, or hypothesis construction and testing.3  Chemometrics can 

extract information from a large data set and thus reduce its complexity, and it 

can also assist in making accurate predictions about unknown samples.  It uses 

all the information present in the data set but still maintains sensitivity to minor, 

significant features.1  Further, chemometrics can be used to interpret results of 

forensic analysis particularly in areas where pattern recognition is involved.  

When working with chemometrics, replicate measurements of variables should 

be made as often as possible to increase the significance of differences found 

between samples as well as allow for experimental uncertainty.1  Following pre-

processing of data, three specific chemometrics techniques were utilized in this 
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study: Agglomerative Hierarchical Clustering (AHC), Principal Components 

Analysis (PCA), and Discriminant Analysis (DA).   

1.1.1. Preprocessing Techniques 

Preprocessing the data prior to performing multivariate statistical tests is 

typically required.  Doing this can remove random noise and variation that might 

later affect interpretation.  However, improper preprocessing may negatively 

influence the data; therefore, the techniques must be chosen carefully.  

Smoothing the data can increase the signal-to-noise ratio if there is 

unnecessary noise.  However, it can also cause distortions in peak height and 

width, as well as decrease resolutions.  Therefore, smoothing must be done 

cautiously.  Various smoothing techniques are possible.  The running polynomial 

smooth fits a polynomial to points and replaces the center value with the 

predicted value of the model.1  The Savitzky-Golay algorithm is the most 

common digital filtering method.  Other smoothing filters include the mean 

smoother, running mean smoother, and a running median smoother.4 

Background correction involves the manual subtraction of baselines 

between points chosen by the operator.1  Another method of background 

correction could involve subtracting a fitted model for a trend present in the 

baseline.  Lastly, sample vectors could be replaced by their first derivatives in 

order to correct for background noise. Baseline correction is a type of 

background correction, and occurs when a signal may contain a source of 

variation besides noise that is not significant.  These baseline disturbances could 
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be detrimental to analysis if not removed, such as by causing chemometric 

classification of samples based on this baseline effect rather than main 

characteristic features.  Baseline correction is a type of artificial removal and/or 

linearization, and it can typically improve accuracy and appearance.4 

Normalization of the data can eliminate variability arising from sample 

amount, concentration, size, and instrument response.  It is typically performed 

after smoothing and background correction.  Normalization divides the values of 

the variables by a constant, and thus places them on the same scale.4  The 

values could be divided by the sum of absolute value of all intensities 

(normalizing to unit area) or it could be divided by the square root of the sum of 

squares of the values (normalizing to unit length).1, 4, 5   

Mean centering is carried out on one variable at a time.  It involves 

calculating the mean of each variable and subtracting that value from the related 

elements of each sample vector.1  It removes constant background without 

changing any differences in the variables.1, 5 

Autoscaling is a form of variable weighting that applies mean centering 

then followed by variance scaling.  Variable weighting multiplies values in the 

variable by a set number.  Variance scaling divides each value in the variable by 

the standard deviation of that variable.4, 5  This technique is recommended when 

variables have large differences in variance or are measured in different unit 

systems.1 
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1.1.2. Agglomerative Hierarchical Clustering 

Agglomerative Hierarchical Clustering (AHC) is a specific cluster analysis 

technique.  Cluster analysis is used to classify individual samples into defined 

subgroups when no prior knowledge of groupings is known, thus it is referred to 

as an unsupervised technique.  Clustering techniques can be utilized to perform 

several functions including data reduction, searching for natural groupings in 

data, generating hypotheses for future samples, evaluating dimensionality, and 

identifying outliers.3, 6  Determining the natural groupings of the variables is the 

basic objective and this is done on the foundation of similarities or dissimilarities 

(distances).  Different approaches can be taken to measure similarity and 

dissimilarity.  One such approach is using a Euclidean distance, which is a 

measure of dissimilarity.  Euclidean distance, or true ruler distance, is the 

distance between two objects as if measured with a ruler.  It is the simplest 

measure of proximity between patterns and is based on the Pythagorean 

theorem.1  It can be tabulated using Equation 1.1, in which x and y are two points 

and d(x,y) is the ruler distance.3, 7 

Equation 1.1 

d(x,y) = [(x – y)'(x – y)]½  

Another approach is to use the standardized ruler distance in which all the 

variables are first standardized and then the Euclidean distance is calculated 

using their standardized Z-scores.7  The Mahalanobis distance is another 

measurement for similarity and dissimilarity.  This method requires estimates of 

the within cluster variance-covariance matrices and then these matrices can be 
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pooled across the clusters.  It is calculated from the centroid of a group of 

samples.  It can be calculated following Equation 1.2.7 

 

Equation 1.2 

d(x,y) = [(x – y)'Σ-1(x – y)]½  

Similarity measures can also be determined by using sample correlation 

coefficients.3 

Various cluster analysis techniques can be used to separate the data into 

these groups, or clusters.  These can loosely consist of hierarchical techniques, 

optimization-partitioning techniques (clusters are formed by the optimization of a 

“clustering criterion”), density techniques (clusters are formed by searching for 

areas containing dense concentrations), and clumping techniques (classes can 

overlap).6  Focus will be place on hierarchical techniques since AHC was 

employed in this research.   

Hierarchical clustering groups data points into clusters either based on a 

series of successive fusions or successive partitions, as seen in the two main 

types of hierarchical clustering methods.3  Agglomerative hierarchical clustering 

(AHC) starts with every object being individual; therefore, there are as many 

clusters as there are objects.  Objects are then grouped into subsets (“clusters”), 

such that those within each group are more closely related than other objects in 

different subsets.  The most similar objects are grouped first and then these 

groups are merged according to their similarities.  Eventually, as few clusters as 

possible will exist.3  Divisive hierarchical clustering initially has a single group 
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containing all objects and this large group is then divided into subgroups until 

every object has become its own group.  The results of both of these methods, 

though, are a two-dimensional diagram called a dendrogram which illustrates the 

steps in the clustering process.  The branches represent clusters and branches 

merge at nodes, in which these node positions indicate where the level of union 

occurred.3, 6   

Within hierarchical clustering, various linkage methods are possible.  One 

such method is the nearest neighbor, or single linkage method.  Initially, every 

group consists of one observation and these groups are then combined based on 

the distance between the nearest groups, with the smallest distance being joined 

first.  The distance between groups is thus defined as the distance between their 

closest members (smallest distance, or largest similarity).3, 6  Observations will 

continue to be combined until only one large cluster of all observations remains.7 

Furthest neighbor, or complete linkage, is another method used in 

hierarchical clustering, and it is the exact opposite of the nearest neighbor (single 

linkage) method.  The distance between groups is defined as the distance 

between their furthest neighbors, or the most distant observations.6, 7   

The centroid method defines the distance between clusters as the 

distance between cluster means.  Groups are replaced by their centroids, and 

groups are then joined according to the distance between the centroids, with the 

groups having the smallest distance being combined first.6, 7  The median method 

involves new groups forming between the two groups.6 
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The group average method the distance between groups is the average of 

the distances between all pairs of observations in the two groups.6  It takes the 

average of all the possible couplings of points so that one member of each pair is 

in each cluster.3, 7   

Ward’s method requires the consideration of every possible pair of 

clusters being joined together at every step in the analysis.  The two clusters 

whose union would result in the minimum increase in information loss (error sum 

of squares) are used.6  The error sum of squares is determined by measuring the 

total sum of squared deviations of every point from the mean of the cluster, or by 

squaring the distance between the cluster means and dividing that by the sum of 

the reciprocals of the number of points within each cluster.6, 7  Ward’s method will 

minimize the heterogeneity within a group.   

Overall, when trying to determine the number of clusters present, the 

hierarchical techniques will provide no indicators as to the number of groups.  

Therefore, examination of the dendrogram by the observer is needed.6  Because 

of this, AHC is a “pseudo-supervised” technique.  The operator has the choice of 

linkage method and also the number of classes to select.  An important point to 

remember, though, is that cluster analysis will be sensitive to outliers and noise.3  

Clustering analysis has been applied to soil,8, 9 glass,10 and inks,11 and 

specifically AHC has been applied to electrical tapes,12, 13 multi-layered paint 

chips,14 polymers,15, 16 and photocopy and printer toners.17 
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1.1.3. Principal Components Analysis 

Principal Components Analysis (PCA) is a dimensionality reduction 

technique.  Its main objectives are to reduce and interpret data, identify new 

variables, screen data, check assumptions, and verify clusters.7  It is an 

orthogonal linear transformation that transforms the data into a new coordinate 

system illustrating maximum variance.1  A factor loadings plot illustrates the new 

coordinate system and data.  A positive correlation exists between two factors 

that lie close to each other in the same plane, a negative correlation exists 

between two factors that lie 180° apart from each other, and no correlation exists 

between data points that are 90° away from each other.   

The PCs are uncorrelated, and the greatest variance of the data lies on 

the first coordinate (line through the centroid of the data); the second greatest 

variance lies on the second coordinate (orthogonal to first PC).  Each successive 

PC will account for less of the remaining variability.  The possible number of PCs 

is the smaller number of samples or variables.1, 7  Only PCs that capture a 

majority of the variance are retained and all other PCs that are associated with a 

small portion of the variance are ignored.  Significant PCs will have eigenvalues 

that represent variation (signal) and not just noise.1  Eigenvalues are the 

variances that are accounted for by the PCs and they sum the total variance.1   

A certain number of components are needed to obtain the total variance of 

a population.  However, much of the variability can often be explained by a 

smaller number of the PCs.  A smaller amount of PCs will describe most of the 

variance.  Therefore, the original data set can be reduced to a smaller number of 
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PCs and still retain the same amount of measurement.3  The new PC axes 

compress the data by reducing the number of dimensions.  All of this is done 

without much loss of information. 

When determining the number of PCs to retain, a few options can be 

chosen.  A percentage of total variability can be selected for how much variability 

is wanted.  The more PCs that are required, the less useful each one becomes.7  

Another option is to look at the plot of percent variance, often called a scree plot.1  

The scree plot displays eigenvalues against factor number.  The location of a 

sudden break in the plot is an indicator of the number of significant principal 

components because the lower, leveled off eigenvalues are typically close to 

zero and thus not significant.7  For this research, in order to determine how many 

PCs were to be retained, the eigenvalues associated with each PC were 

observed.  Enough PCs were retained in order to account for at least 95% of the 

total variance in the data set.  PCA has been applied to glass,10, 18-20 paint,21, 22 

polymers,15, 16, 23 inks,11, 24, 25 fibers,26-28 diesel fuels,29 photocopy and printer 

toners,17, 30 lubricants,31 paper,32 nail polishes and paint surfaces,33 steels,20 

accelerants,34 gasoline,35, 36 electrical tapes,12, 13 and soil.8, 9 

1.1.4. Discriminant Analysis 

Linear discriminant analysis (DA) reduces the dimensionality of the data in 

a way that best discriminates between groups.  A new set of axes is created that 

divides the data into groups, and these are discriminant axes, or canonical 

variates (CVs), that are linear combinations of the original features.1 The 
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classifications from PCA are changed by using a learning sample of known 

observations from PCA data in order to develop canonical variates. DA is a 

supervised technique, meaning that knowledge of group relationships for each 

sample is required.  The number of samples must be larger than the number of 

variables, so PCA is commonly used to reduce the number of variables prior to 

DA.  Theoretically, the DA clustering should be in agreement with the AHC 

patterns. 

Data is classified into defined populations and in order to do this, a 

discriminant rule is created in which random samples are present in every 

classification group.  DA then provides methods that allow the researcher to 

create rules to classify future samples into one of the groups.7  Four different 

ways can be used to generate a discrimination rule.  These ways are the 

likelihood rule (multivariate normal probability density function), linear 

discriminant function rule, Mahalanobis distance rule, and the posterior 

probability rule.7 

Once the discriminant rule has been created and new samples have been 

classified, the classification accuracy can be estimated using different methods.  

The resubstitution method applies the discriminant rule to the data set (making it 

the training set) and determines how often the rule correctly classifies these 

observations.  Therefore, the classification procedure is based on the known 

class membership of each of the samples in the data set.  A drawback to this 

method is that it often overestimates correct classifications.1, 7 
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Another classification accuracy method is estimates from holdout data.  

The data is divided into two sections: a training set to create the classification 

model and a test set to predict future classifications.  The test set (or “holdout 

data”) is the one where it is known where the observations should be classified.  

The discriminant rule is created using the training set and then applied to the test 

set.  Though the estimate of error is unbiased, a drawback is that the paramount 

discriminant rule may not be created because all the data is not being used to 

create the rule.1, 7 

Lastly, the leave-one-out cross validation method could be applied.  With 

this method, the first observation is removed from the data set and a discriminant 

rule is created based on the remaining data.  The rule is then applied to the first 

observation and it is noted whether the classification was correct or incorrect.  

The first observation is then replaced in the data set and the second observation 

is removed.  A discriminant rule is formed from the remaining data and the 

second observation is classified using the rule.  This process continues through 

all the samples, treating each one as an unknown.  This is the preferred method 

and it provides practically unbiased estimates of the true odds of correct and 

incorrect classifications.1, 7  DA has been applied to nylon,37 fuel oils and 

asphalts,38 paints,21 glass,18, 39 diesel fuels,29 gasoline,35, 36 photocopy and printer 

toners,17, 30 lubricants,31 electrical tapes,12, 13 soil,8 and inks.11, 24  
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CHAPTER 2. AUTOMOTIVE CLEAR COATS 

Paint evidence is often found at the scenes of automobile crashes where 

one car hits another car, object, or pedestrian.  In some cases, paint can be 

transferred between cars or from a car onto the clothing or body of the person.  

In most situations, paint cannot be associated to a specific source.  As a result, 

forensic testing focuses on generating physical and chemical data on the paint in 

question and comparing it to a known sample of paint from the automobile.  One 

aspect of automotive paint that has not been fully exploited for forensic purposes 

is the clear coat layer.  By studying clear coats, more data can be generated 

about paint evidence and thus a better association can be drawn between the 

transferred and native paints. 

Application of automotive paint usually consists in stages.  The first stage 

is the application of the primer which is usually electrolyzed onto the body 

surface.  Typically, above this layer is the top coat which is consists of a color 

base coat followed by the clear coat.  The clear coat is the top coat of paint and 

contains no pigmentation or color and protects the base coat from degradation.40  

Clear coats were first developed in the late 1970s when the topcoat paint system 

was split into two parts, a pigmented base coat and a colorless clear coat.  By 

the 1980s, the clear coat system became popular, and in the 1990s, new types of 

paint binders were introduced as well as paint that contained lower amounts of 
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volatile organic compounds (VOCs) to meet new environmental standards.41  

Automotive clear coats currently used are applied either by a liquid application 

(i.e. acrylic melamine and acrylic carboxy epoxy) or a powder coating (i.e. acrylic 

carboxy epoxy and acrylic urethane).42 

Almost all clear coats contain light stabilizers such as hindered amine light 

stabilizers or HALS.  Clear coats also contain UV absorbers in order to protect 

the automobiles against UV light and weathering.  UV absorbers must absorb 

light in the wavelength range of 290 to 350 nm because these photons can cause 

the photodegeneration of the polymers that make up the binders in the paint. UV 

absorbers found in automotive clearcoats are often benzotriazoles and triazines, 

but benzophenones and oxalanilides can also be used.41, 43  Clear coat binder 

chemistries are relatively simple, consisting of acrylics and polyurethanes, and 

are based on hydroxyl-functional polymers that react with cross linkers.44  Both 

UV absorbers and the UV absorptions of the entire binder systems can contribute 

to the overall UV absorption of the clear coat layer.  

2.1. Review of Analysis of Automotive Clear Coats 

An established procedure exists for analyzing paint evidence in normal 

casework.  The Scientific Working Group on Materials Analysis (SWGMAT) 

created a guide for paint analysis and comparison of paints that involves a 

combination of several methods. An ASTM Standard E1610 (Standard Guide for 

Forensic Paint Analysis and Comparison) has since been established.45  The first 

step of a typical paint exam involves preparation of cross sections of the paint 
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chips and then visual and microscopic examinations which assist in observing 

the different layers and layer sequences of the paint.  Microscopic solvent tests 

can also be performed to determine solubility, texture change, and differences in 

resins.  After the microscopic examinations, the chemistry of each layer is 

investigated.  This is typically accomplished using Fourier transform infrared 

(FTIR) spectrophotometry and pyrolysis-gas chromatography/mass spectrometry 

(Py-GC/MS).  Elemental composition can assist in identifying inorganic pigments 

and fillers and it can facilitate the determination of the type of paint in a single 

layer when used together with FTIR.46, 47 Other techniques that could be used to 

analyze paint are microspectrophotometry (MSP) for color analysis and x-ray 

diffraction (XRD) for identification of pigments and fillers.   

FTIR spectrophotometry is the analytical tool that lies at the core of most 

paint examinations.  FTIR allows information to be obtained about the binders, 

pigments, and additives in coatings and it can provide molecular structure 

information about organic and inorganic components.48  This technique is useful 

for determining the general type of paint and identifying resins, pigments, and 

fillers.  Extensive research has been conducted on the forensic applications of IR 

to paint samples14, 49, 50 and research has also been done specifically on the 

forensic examination of clear coats using IR.  Both Edmonstone51 and Eyring52 

used attenuated total reflectance (ATR) FTIR of the clear coat as a part of an 

overall analytical scheme to differentiate large collections of paint samples.  

Py-GC/MS is a valuable, albeit destructive, technique in the forensic 

examination of paint, especially by providing discrimination of the polymeric 
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binders.53  It is also useful in differentiating paint samples of very similar 

composition.22, 54, 55  More specifically, Py-GC/MS has been frequently touted for 

its ability to differentiate and identify paint samples that were indistinguishable by 

IR.56-59  Several authors have also used chemometric methods to analyze Py-

GC/MS data.21, 22, 54  Finally, Py-GC/MS has been shown to discriminate different 

clear coats.  Burns60 and Plage61 demonstrated that this technique can classify 

clear coats through visual inspection and/or library searching of the 

chromatograms and mass spectra.  

Microspectrophotometry (MSP) is a well established technique to 

distinguish dyes and pigments in paint since it allows discrimination of samples 

based on their interaction with light.62  For example, research on achromatic 

paints has shown that black and grey/silver topcoats produce spectral 

information in the visible region but undercoat samples do not.63  Given that the 

UV-absorber concentrations in a clear coat can be measured at extremely low 

levels, automotive paint should be able to be differentiated based upon the clear 

coat, even if the same color coat is used.  In particular, the findings of Stoecklein 

and Fujiwara are the most relevant to this research.41  In their paper, it was 

demonstrated that clear coats can be distinguished based on their UV 

absorbance spectra.  While features in the UV spectra could arise from UV 

absorbers and/or binder systems, the spectral features of clear coats were 

largely attributed to the UV absorber itself.  These UV absorbers each contained 

one of three structural cores: hydroxyphenylbenzotriazole, benzophenone and 

oxanalide. 
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2.2. Materials and Methods 

2.2.1. Instrumental Analysis 

Initially, samples of paint were collected from automobiles from junkyards 

and automobile body shops.  A scalpel was used to scrape the paint chips down 

to the underlying metal to guarantee that all paint layers were present in the 

sample.  The make, model, and year of each vehicle were noted for each 

sample.  Samples were prepared by using a microtome to make a ten micron 

cross-section of each paint sample.  These cross-sections were then mounted on 

a quartz slide with a quartz cover slip with Lensbond being chosen as the 

mounting medium.  After analyzing this data, it was determined that the 

Lensbond was absorbing in the UV-range and thus obscuring the resulting 

spectra. The absorbance spectra had broad peaks and no clear definition, as 

seen in Figures 2.1 and 2.2. 
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Figure 2.1 Absorbance Spectra of Two Central Objects with Lensbond Used as 
the Mounting Medium. 
  

 

Figure 2.2 Absorbance Spectra of Same Two Central Objects Without Lensbond. 
 

Because of the distortion caused by the mounting medium, this sample 

preparation method was abandoned and clear coats were instead peeled off and 

analyzed directly.  Using a coverslip was determined to be unnecessary so the 
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peels were placed directly on a quartz slide without a coverslip.  It is important to 

note that this form of sample preparation is not typically used for comparison of a 

known (K) and questioned (Q) paint chip, where both would be simultaneously 

mounted and sectioned.  In contrast, this study is an attempt to use 

chemometrics to more quantitatively assess the diversity of clear coat samples, 

rather than conduct any so called “Q vs. K” comparisons.  Additional samples 

collected from Australia were also included in this study.  These were collected 

by taking a disc of metal from discarded panels at an automotive repair shop or 

by taking samples from car roofs removed at a car sun roof fitting business. 

A CRAIC QDI 2000 microspectrophotometer (CRAIC Technologies, San 

Dimas, CA) was utilized with UV analysis being performed in transmitted light 

mode.  Magnification was 35x.  Prior to running samples, the 

microspectrophotometer was calibrated using NIST traceable standards.  An 

autoset optimization, dark scan, and reference scan were run before each set of 

sample scans.  Samples were taken as absorbance values, and five scans were 

taken at different locations for each paint sample.  The five normalized scans 

taken from Sample 77 (1993 Chevy Lumina) are shown in Figure 2.3 to illustrate 

the reproducibility of this technique.  The scans for each sample were then 

averaged together (for AHC analysis) or used directly for PCA and DA. 
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Figure 2.3 Baseline corrected, normalized, and offset absorbance spectra of five 
scans for a clear coat from a 1993 Chevy Lumina. 

2.2.2. Data Analysis 

One feature of multi-variate analysis is that relatively large sample 

populations are needed in order to confidently describe the organization of the 

data.  In this paper, the sample collection consists of 355 spectra (71 total 

samples).  The collection included a wide variety of cars; 18 different years are 

represented, 22 different makes, and 48 different models.  Out of these spectra, 

nine samples with five scans each (total of 45 spectra) were replicates of other 

samples, so this data was set aside to be used as supplemental data in an 

external validation study.  The entire dataset (wavelength range of 200 – 900nm) 

was first truncated to a range of 200 – 400nm (UV range), and this truncated 

data was baseline corrected by finding the slope and intercept of the raw data 

using the outermost points, calculating a new y-value by using the equation for a 
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straight line (𝑦 = 𝑚𝑥 + 𝑏), and then subtracting the calculated y-value from the 

raw data.  Following this, the data set was normalized by dividing it by the square 

root of the sum of the squares of all absorbance values.4, 5  This pre-treatment 

step eliminated variability in the data due to sample thickness.  Statistical 

evaluation of the data was performed using Microsoft Excel and an add-in, 

XLSTAT2008 (Addinsoft, Paris, France).   

2.3. Results and Discussion 

2.3.1. Statistical Results 

The AHC dendrogram for automotive clear coats is shown in Figure 2.4.  

AHC indicates that three distinct clusters are present based on the position of the 

truncation line, which was determined by a histogram of node positions.  The 

histogram displays the number of nodes as a function of distance.  In the 

dendrogram, small nodes exist (the leaves of the plot, starting with each sample 

as its own class), and the node positions eventually become more spread out as 

the number classes becomes smaller.  Bifurcations that occur to the right of the 

truncation line are more significant in determining the number of classes.  

Averages for each automotive clear coat sample were used when performing 

AHC.  By examination of the graphs of the central objects of each cluster (Figure 

2.5), it can be seen that each group has a very distinct absorbance spectrum, 

and this is consistent with the node positions in the dendrogram showing that the 
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three classes separate at a relatively large distance as compared to other similar 

samples. 

 

 

 
Figure 2.4 Dendrogram from AHC of the averages of each clear coat sample.  
Three distinct classes are formed. 
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Figure 2.5 Central Objects of the Three Clusters from the Dendrogram. 
 

For the purposes of PCA and DA, every scan was used rather than 

utilizing only the averages.  Again, additional replicate samples were separated 

from the rest of the data set to be included as supplemental data.  These 

replicates were not included in the PCA analysis but given a factor score for 

future use.  The observations plot produced by PCA is illustrated in Figure 2.6.  

This plot displays the first two principal components, which captured 78.68% of 

the total variance of the data set.  Though overlap is evident between the three 

classes, they still are clustering into the three classes.  In this case, the total 

variance in two dimensions is still low; hence separation between samples could 

still exist in higher dimensions.  Overall, three clusters with some overlap are 

present in this figure with the replicate scans for each sample near one another. 
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Figure 2.6 The Observations Plot from PCA of Clear Coats. 

 

A factor loadings plot of the original variables can be used to illustrate the 

PCA coordinate system.  In a traditional form of this plot, the variables are 

projected into the same PC space as the observations.  A positive correlation 

exists between two variables that lie close to each other in the same plane, a 

negative correlation exists between two variables that lie 180° apart from each 

other, and no correlation exists between variables that are 90° away from each 

other.  A different type of factor loadings plot was created for this data set (Figure 

2.7) where the loadings in the form of the cosine of the angle between the 

principal component and each variable.  Areas where the cosine is positive are 

areas of positive correlation, areas where the cosine is negative are areas of 

negative correlation, and areas where the cosine is close to zero have no 
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correlation.  PC1 corresponds to the x-axis and PC2 corresponds to the y-axis of 

the observations plot (Figure 2.6). 

 

 
Figure 2.7 Factor Loadings Plot of the First Two PCs. 

 

Focusing on PC1, the main areas of positive and negative correlation can 

be found, and the wavelengths corresponding to these areas can be highlighted 

on the central objects plot of all the clusters together.  The purple bracketed 

areas in Figure 2.8 indicate these wavelength regions, and an inverse order is 

seen between the positive correlation wavelengths (right bracket) and negative 

correlation wavelengths (left bracket).  The positive correlation wavelengths for 

PC1 range from 300 – 370nm, and the negative correlation wavelengths for PC1 

range from 230 – 265nm.  This could be due to the light absorbers found in clear 

coats, which typically absorb between 290 – 350nm.41  In an attempt to put more 

physical meaning behind the spectra, the ordering of the clusters within these 

brackets correlates with the ordering of the clusters in the PCA observations plot.  
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Samples with high absorbance in regions where there are high factor loadings on 

PC1 should be on the right of the PCA observations plot because those are the 

large and most positive values.  Therefore, the observations plot should read 

(from right to left): Class 3, Class 1, and then Class 2.  Referring back to Figure 

2.6, this is the exact trend that is noticed in the observations plot.   

The same physical meaning can be applied to the second principal 

component.  One area of positive correlation is highlighted on the central objects 

plot (Figure 2.8) by an orange bracket.  This area of positive correlation 

wavelengths ranges from 275 – 285nm.  With PC2, samples with strong 

absorbance in the region of high factor loadings should be the highest on the 

PCA observations plot since PC2 is associated with the y-axis.  Relating this to 

the PCA observations plot, it would be expected that all three classes will be 

located similarly in the y-axis direction, but Class 1 would have the highest points 

in the plot.  Referring back again to Figure 2.6, this is the exact trend that is 

noticed. 
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Figure 2.8 Significant Factor Loadings Overlaid on the Central Objects Plot for 
Clear Coats. 
 

DA was then performed using the data from PCA.  Every PC has an 

associated eigenvalue with it that describes the variance, as well as the percent 

variance and a cumulative variance for all the principal components.  The specific 

values pertaining to this research are found in Table 2.1.  Several methods exist 

that assist in determining the correct number of principal components to use.  

One method involves setting a targeted cumulative percentage of variance and 

using the number of principal components associated with that number.  This 

method was used in this research, and 95% was the selected cumulative 

variance.  Using this variance, the first nine principal components would be 

selected, as shown in Table 2.1.  Another method involves using a scree plot, 

which displays eigenvalues against factor number.  The location of a sudden 
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break in the plot is an indicator of the number of significant principal components.  

Based on the scree plot for this data set, four principal components would be 

used.  Lastly, the Kaiser criterion can be used to determine the significant 

amount of principal components to utilize.  Using this criterion, all eigenvalues 

greater than one would be considered significant, and based on Table 2.1, this 

would apply to the first twelve principal components.    
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Table 2.1 Eigenvalues and variability associated with each principal component 
(PC). 

Principal 
Component (PC) Eigenvalue Variability (%) Cumulative % 

PC1 167.49 66.992 66.992 

PC2 29.211 11.685 78.676 

PC3 13.837 5.535 84.211 

PC4 12.003 4.801 89.012 

PC5 7.205 2.882 91.894 

PC6 2.917 1.167 93.061 

PC7 2.450 0.980 94.041 

PC8 2.134 0.854 94.895 

PC9 1.684 0.674 95.568 

PC10 1.503 0.601 96.170 

PC11 1.369 0.548 96.718 

PC12 1.185 0.474 97.192 

PC13 0.953 0.381 97.573 

 

The results of DA using the first nine principal components are shown in 

Figure 2.9, with 100% of the variance accounted for in two dimensions.  Three 

distinct groupings were used to be consistent with AHC.  Overlap can be seen 

between the three groups, which affects the cross-validation results as seen in 

the confusion matrix results in Table 2.2.  Samples located along the diagonal 

represent those that were correctly classified, while samples in bold outside of 
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this diagonal are incorrect classifications.  Overall, 91.61% of the samples were 

correctly classified, which is considered to be an excellent result.    

 

 
Figure 2.9 Observations plot from DA.  
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Table 2.2 Confusion Matrix for the Cross-Validation Results from DA. 

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 72 6 2 80 90.00 

Class 2 15 145 0 160 90.63 

Class 3 3 0 67 70 95.71 

Total 90 151 69 310 91.61 

 

2.3.2. External Validation 

The additional replicates were used as a form of external validation and 

the results are shown in Table 2.3.  DA predicted which class the supplemental 

samples should be placed in and the correct placement was determined by 

where the original (non-replicate) sample was placed.  The green, bolded 

diagonal numbers are samples that were placed correctly in the proper class.  

The red, bolded numbers outside of the diagonal indicate samples that were 

incorrectly classified.  Overall, the performance of the classification model was 

good, with 81.11% of samples correctly assigned.  In this external validation, the 

samples that were misclassified had absorbance spectra that more similarly 

resembled the absorbance spectra of the central object of a different class. 
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Table 2.3 Confusion Matrix for the External Validation Results of the 
Supplemental Data from DA. 

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 6 2 2 10 60.00 

Class 2 5 25 0 30 83.33 

Class 3 0 0 5 5 100.00 

Total 11 27 7 45 81.11 

 
 

Given that DA is a supervised technique, the number of classes and their 

composition can have a large effect on the results.  Furthermore, the use of 

internal versus external validation can also result in overly optimistic estimates of 

the accuracy of the DA model.  Therefore, an additional study where the number 

of classes was varied demonstrated the validity of external samples.  As is 

evident in Figure 2.10, the external validation had very high accuracy for three 

classes (81.11%), whereas the accuracy was significantly lower and never 

reached over 80% for all other number of classes.  The estimation and cross-

validation accuracy did not vary significantly when class number was changed 

and offered a clearly inflated view of the classification accuracy.  Based upon 

external validation, three classes can be claimed to reasonably exist whereas 

larger number of classes have too low of an accuracy to say for certain that they 

exist. 
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Figure 2.10 Percent accuracy for each DA testing technique versus varying 
number of classes.   

2.3.3. Formation of Classes 

Overall, chemometric analysis indicated three distinct groups that 

produced reliably discernible spectra.  Using these results, the question of 

whether make, model, and year could be affecting the formation of these groups 

was addressed.  Absorbance spectra of cars of the same make and model but 

different years were inspected to see if year could be affecting the cluster 

formation.   

Based on Figures 2.11 and 2.12, cars of the same make and model but 

different year exhibited varying trends.  Figure 2.11 shows cars of the same 

make and model but different year having visually dissimilar spectra and being 

placed in different classes (Year 2000 into Class 2 and Year 1998 into Class 3).  

However, Figure 2.12 shows cars of the same make and model but different year 

being placed in the same class (Class 2).  Though the spectra in Figure 2.12 are 
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more similar to each other than spectra in Figure 2.11, it is still apparent that the 

spectra in Figure 2.12 are not the same even though they are being clustered 

into the same class.  Therefore, year did not affect the groupings, and visual 

inspection can also assist in distinguishing clear coat spectra.  Next, cars of the 

same make, model, and year were examined to see if make and model were an 

issue.  Both 2008 Holden Captiva samples in Figure 2.13 had similar spectra and 

fell into Class 1.  However, no others cars of the same make, model, and year 

were present in this dataset to show if any trend truly existed.   

 

 
Figure 2.11 Samples of the Same Make and Model but Different Year Placed in 
Different Classes. 
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Figure 2.12 Samples of the Same Make and Model but Different Year Placed in 
the Same Class. 

 

 
Figure 2.13 Samples of the Same Make, Model, and Year.   
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the classes.  For example, automobiles of the same make and model are found 

in different classes such as a Chevrolet Lumina in Class 1 and Class 2.  Certain 

makes of automobiles are found in all the classes as well, such as Toyota.  

Overall, these results indicate that there is not a correlation between the make, 

model, and year of the automobiles.  

2.3.4. Limitations to the Study 

It is important to note some significant limitations in this type of study.  

First, the initial conditions of the clear coats are unknown and environmental 

factors are likely to affect the clear coat.  In this study, however, environmental 

exposure was not controlled as samples were gathered “as is” from various 

vehicles.  For example, suppose clear coat samples were collected from two cars 

of the same make and model that were manufactured in the same year.  If one 

was stored in a garage and the other was kept in the sun, the cleat coat UV 

absorbance spectra would most likely be affected differently.  In most cases, it is 

uncertain as to the history of the known and unknown during the interval prior to 

their becoming evidence.   

Another possible limitation is that there can be differences in the finishes 

that are used on different parts of the automobile body, such as plastic and metal 

parts.  Since a majority, if not all, of our samples were removed from the same 

part of a car, this limitation is avoided but it could affect casework.  Lastly, it is 

possible that more than one manufacturer could supply the finish for a given 

vehicle.  Therefore, a given make, model, and year could easily have two or 
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more types of finishes.  Overall, these limitations could explain why a correlation 

is not seen between year, make, or model in the collection of clear coats 

analyzed here. 

In addition, MSP does not provide a way for determining which UV 

absorbers were present in each clear coat.  Knowing the UV absorbers could 

assist in determining if a correlation exists between the type of UV absorber used 

in a clear coat and the class into which a given sample was placed.  Method 

development involving different instrumental techniques such as pyrolysis or 

extracting the components of the clear coat using LC/MS would elicit enough 

information to assign chemical meaning. 

2.4. Conclusions 

Based on the results discussed above, MSP is an appropriate and efficient 

step in the analysis of automotive clear coats, even though it is not as frequently 

used as other techniques.  Proper sample preparation has been shown to be vital 

in obtaining accurate spectral data related to these automotive clear coats. 

Overall, the comparison of automotive clear coats using AHC, PCA, and 

DA resulted in several findings.  Three distinct groups formed within the 

collection of automotive clear coats.  The central objects of the AHC dendrogram 

(Figure 2.5) illustrate that the three classes differ in their relative absorptions at 

approximately 250 nm, 300 nm and 350 nm.  The spectral regions that correlated 

most strongly with PC1, and hence represent areas of high variability between 

samples, were 230 – 265 nm and 300 – 370 nm.  Overall, the three classes were 
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differentiated with high accuracy using both cross-validation and external 

validation samples.  Clear coats also varied widely by model and year, but no 

clear relationships were seen between these qualitative variables and MSP data. 
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CHAPTER 3. FIBER DYE ANALYSIS 

Textile fibers are arguably one of the most important forms of trace 

evidence given that they have many classifications and subtypes, are physically 

and chemically differentiable, have various processing procedures, and are 

transferred easily.  Various characteristics are evident in fibers, and certain ones 

play significant roles in fiber analysis.  One of the most important characteristics 

for fiber comparisons is color, which reflects the dyes and pigments that were 

used on the fabric.  In fact, the only characteristic of many fibers, such as cotton, 

that can be reliably used for discrimination of samples is its color. 

Textile fibers are the basic unit of matter that form the components of 

fabrics and textiles.  Although a multitude of classifications and subtypes exist, 

fibers can be broadly classified as either natural or man-made.64  Natural fibers 

are further sub-divided according to their source (animal, vegetable or mineral).  

Man-made fibers are sub-divided according to their base material (synthetic 

polymer, natural polymer or other).  There are over 1,500 manufactured fiber 

plants worldwide, according to 2007 data.65  A majority of these plants are 

synthetic fiber producers, followed by cellulosic and glass fiber manufacturers.  

Regionally, Asia has the most manufactured fiber plants.  Within the United 

States, 145 total fiber manufacturing plants exist, the vast majority of which are 

synthetic manufacturing plants.   
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 Fibers can be transferred from one object to another either directly (a 

primary transfer) or through one or more intermediates (a secondary, tertiary, etc. 

transfer).66, 67  Forensic science laboratories can then examine these transferred 

fibers and compare them to a known fiber in order to discover possible common 

origins.  However, a significant factor in fiber examination is the passage of time.  

For example, studies of fiber persistence have demonstrated that up to 80% of 

transferred fibers are lost after the first four hours.66  Therefore, it is important for 

investigators to collect garments and any possible fibers quickly.  Factors that 

can influence how fibers adhere to materials include the type of fiber transferred, 

the type of receiving material, and the extent to which the receiving material is 

used after transfer.66 

 A dye is a colored substance that is able to absorb and reflect certain 

visible wavelengths of light.  Dyes must have affinity for the substrate on which 

they are being applied.  In contrast, a pigment has no affinity for the substrate 

and is instead incorporated into the fiber during production or bonded to the 

surface.  An important feature of fiber dyes is that very few textiles are colored 

with only one dye, and therefore many dye combinations exist.  Furthermore, 

thousands of dyes are produced worldwide.  Important reference works such as 

the Colour Index published by the American Association of Textile Chemists and 

Colorists allow forensic chemists to keep abreast of the chemical dyes that are 

available.  A three-color dye system is what is most frequently used to give a 

textile its color, and how color is applied and absorbed on the fiber is an 

important characteristic. 
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 Fiber dyes are classified in various ways, including their method of 

application, chemical class, or the type of fiber to which they are applied.  The 

main classification scheme typically used by forensic chemists is based on the 

method of dye application.  The major dye classes in this scheme are: acid dyes, 

basic dyes, azoic dyes, direct dyes, disperse dyes, metallized dyes, reactive 

dyes, sulfur dyes, and vat dyes.  While readers should consult Wiggins68 for a 

more detailed discussion of fiber dyes, the characteristics of the major dye 

classes are summarized in Table 1 and can be described as follows: 

• Acid dyes are applied under acidic conditions so that basic functional 

groups (e.g., amino) on the substrate are protonated and positively 

charged.  These groups form ionic bonds with deprotonated functional 

groups (e.g., sulfonate) on the dye molecule. 

• Basic dyes are also applied under acidic conditions, but in this case 

protonated/positively charged functional groups (e.g., ammonium) on the 

dye form ionic bonds with negatively charged functional groups on the 

substrate. 

• Azoic dyes form a colored product via coupling between a diazo salt and a 

coupling component such as a napthol. 

• Direct dyes are directly incorporated into cellulosic fibers in the presence 

of heat and an electrolyte. 

• Disperse dyes are also directly incorporated into synthetic fibers, 

associating with the substrate through weak Van der Waals forces and 

some hydrogen bonding. 
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• Metallized dyes form colored metal complexes within the fiber through the 

reaction of a mordant (binding agent) such as chrome with a separate dye 

molecule. 

• Reactive dyes form covalent bonds with functional groups on the fiber.  

These dyes are growing in popularity in part because they are less likely 

to be removed by washing. 

• Sulfur dyes require a reducing agent to make them soluble, where it is 

applied to the fiber, then oxidized within the fiber back to its original 

insoluble form. 

• Vat dyes also require a reducing agent to make them soluble and undergo 

oxidation within the fiber to create an insoluble dye. 
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Table 3.1 The Various Types of Dye Classes. 
Dye 

Class Description 
Fibers 

Typically 
Applied to 

Acid 

 
water-soluble anionic 

compounds; ionic bond between 
dye molecule and polymer 

 

Wool, silk, polyamide, 
polypropylene 

Basic 

 
water-soluble, applied in weakly 

acidic dyebaths; very bright 
dyes; negatively charged fiber 

draws the dye cation 
 

Polyacrylonitrile, 
acrylic, occasionally 

polyester and 
polypropylene 

Direct 

 
water-soluble, anionic 

compounds; 
applied directly to fiber from 

aqueous medium that has an 
electrolyte; positively charged 
ion is attracted to negatively 

charged fiber surface and the 
dye is able to enter the fiber 

 

 
 

Cotton, rayon, other 
cellulosics 

 
 

Disperse 

 
not water-soluble; aqueous 

dispersion; hydrogen bonds and 
weak van der Waals’ holds dye 

molecule in fiber 
 

 
Polyester, acetate 

 

Reactive 

 
water-soluble; form covalent 

bond with functional groups of 
fiber; similar in structure to acid 
dyes and application similar to 

direct dyes 
 

 
Cotton, wool, other 

celluolosics 
 

Sulphur 

 
organic compounds containing 

sulfur or sodium sulfide; reduced 
using sodium sulphide or sodium 

hydrosulphite; dye enters fiber 
and oxidized to original form 

 

cellulosics 

Vat 
oldest dyes; more chemically 

complex; water-insoluble; good 
color fastness 

cellulosics 
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3.1. Review of the Analysis of Dyed Textile Fibers 

The primary methods for the identification and comparison of textile fibers 

according to their type (e.g., synthetic polymer) and sub-type (e.g., nylon) rely 

upon the principles of microscopy, spectroscopy, chromatography and mass 

spectrometry. 

 Microscopy is the most important tool for fiber examination.69  For 

example, a stereomicroscope can record fiber characteristics such as size, 

crimp, color, and luster.  Polarized light microscopy (PLM) is especially helpful 

with manufactured and synthetic dyed fibers because it reveals the polymer class 

based on the rotation of incident polarized light by the fiber.  The use of infrared 

microspectroscopy is widely used in forensic laboratories to identify and compare 

single fibers.70  Specific spectral features are used to discriminate between 

classes and sub-classes of fiber.  Given the polymeric nature of synthetic and 

natural fibers, pyrolysis coupled to gas chromatography (as well as mass 

spectrometry) is an informative and minimally destructive technique given the 

small sample sizes required.71  Finally, scanning electron microscopy coupled 

with energy dispersive x-ray analysis (SEM-EDX) can be used primarily to 

examine the elemental content of fibers, with inorganic materials arising from the 

residues of the manufacturing process, additives, or environmental 

contaminants.72 

 Approaches for comparing fiber color and identifying fiber dyes have been 

developed alongside those for identifying fiber materials.  Figure 3.1 illustrates 

analytical techniques that have been applied to the analysis of dyed fibers.  Older 
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methods of comparing fiber color involved comparing unknown shades to known 

hues and finding the best color match.  Now, however, more reliable techniques 

are used to compare colors and dyes.   

 

 

Figure 3.1 Analytical techniques applied to the analysis of dyed fibers. 

 

Microscopic exams remain a key tool for color comparisons.69  For 

example, simple observation of fiber color under the microscope can immediately 

eliminated two fibers as having come from the same source based on clear 

visible differences in hue.  However, if fibers appear to be the same color that 

does not mean they have the same composition.  Fibers that show the same hue 

but are dyed with different dyes or mixtures are called metameric.  A way to 

detect metamerism is by using different light sources to illuminate the fibers.  
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usage and remain active areas of research.  In some cases, extracting the dye 

from the fiber is crucial to the success of these techniques.  The best known 

methods for dye identification are based on determining the application class, 

which is the type of dye that was used (acid, direct, etc.) and the generic 

structure.  The current status of these methods will be discussed below in the 

approximate order in which they would be applied to an unknown sample. 

UV-visible Microspectrophotometry uses a microscope to gather light from 

the sample and transmit it to a UV-visible spectrophotometer.  This technique is 

ideal for objective observations of the color of many forms of trace evidence,73 

and the application of MSP to fiber analysis has been discussed in detail.74  The 

use of an instrumental technique such as MSP is significant because it is 

repeatable, non-destructive, and requires little sample preparation, unlike other 

methods that require extraction of the dye.  MSP can distinguish between colored 

fibers that may appear visually similar because absorbance in the visible region 

is dependent on the molecular structure of the chromophore as well as the 

environment in which the chromophore is found.  It is important to note that MSP 

is not capable of identifying particular dyes or mixtures of dyes, but rather 

identifying the spectral characteristics of a sample for the purposes of 

comparison. 

Typical MSP protocols call for several fibers to be examined per item (e.g., 

five for man-made fibers and ten for natural fibers).  Upon examination using 

MSP, man-made fibers are usually found to have a homogenous chemical 

composition as the dye is bonded to a relatively constant chemical environment.  
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Cotton and other natural fibers are composed of many different chemical 

components which are not homogenously distributed throughout the fiber.74  

Hence, variation within a control fiber sample may occur due to uneven dye 

uptake.  MSP is currently the pivotal method in color comparisons of individual 

fibers.  Modern UV-visible-NIR MSP instruments can measure transmittance, 

absorbance, reflectance, and fluorescence, as well as the polarization and 

luminescence of microscopic samples. 

While the use of infrared microscopy is quite common for determining the 

composition of fibers,70, 75 its use for identifying fiber dyes is not.  This stems from 

the inherently low level of dye that is found in most textiles and the lack of 

sensitivity of infrared absorbance to components that represent less than ~ 5% of 

a sample.  Raman spectroscopy has steadily become established as a technique 

for fiber analysis70, 76 and it has been identified as a priority research area by the 

European Fibres Group.77  While techniques such as MSP provide 

nondestructive ways to measure color, little information is gained about the 

specific dye.  Raman is well suited for the analysis of colored fibers because this 

technique requires no sample preparation, is nondestructive, and requires only a 

small sample.  Therefore, multiple tests can be performed on the same fiber. 

Thin Layer Chromatography (TLC) is a long-standing tool for the 

separation of common classes of fiber dyes, with silica gel being the most 

typically used stationary phase.68  Selecting an appropriate extraction and 

developing solvent can be difficult, however, and numerous solvent mixtures 

have been tabulated for these purposes.68  Specific schemes for dye extraction 



 

 

49 

and TLC have been published for dyes on cotton,78, 79 wool,80-83 and various 

synthetics.78, 84, 85  TLC has the advantage of being able to identify small amounts 

of shading colors or intermediates that can often be found in extracted dye 

mixtures.  Most textile fibers contain multiple dyes to obtain the desired shade, so 

TLC of a few fibers may produce very complex dye patterns.  However, no single 

solvent system exists that can separate all classes of dyes, so some amount of 

pre-screening is necessary. 

As discussed by Griffin and Spears, HPLC has many advantages over 

TLC and MSP for the analysis of fiber dyes.86  For example, MSP is limited when 

attempting to analyze highly-absorbing (dark color) fibers.  Furthermore, TLC 

requires relatively large quantities of dye and different eluent systems for various 

dye classes.  HPLC, however, exhibits better chromatographic resolution, greater 

sensitivity and it can be used for quantitation. Capillary Electrophoresis (CE) and 

its related techniques offer even greater separation efficiency than traditional 

chromatographic techniques and hold great promise for analytes ranging from 

small ionizable compounds to large non-polar species.  Coupling the separation 

efficiency of HPLC and CE with the sensitivity and specificity of mass 

spectrometry (MS) is a natural combination of instrumental methods.   
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3.2. Materials and Methods 

3.2.1. Instrumental Analysis 

In this research, we focused solely on red dyed cotton fibers, and 

therefore sought to obtain as many possible red dyes on cotton.  Samples were 

provided from Testfabrics, Inc (West Pittston, PA), and consisted of six dyed 

cotton fabrics, all various shades of red, and three undyed substrates consistent 

with the substrates of the dyed exemplars.  The specific samples are listed in 

Table 3.2.  STC EMPA is a catalog designation.  STC stands for “soil test cloth,” 

and EMPA is a Swiss Federal Testing facility in St. Gall, Switzerland that 

produces some of the dyed fabrics that were used in this research.  Six additional 

samples were provided by Dr. Stephen Morgan at the University of South 

Carolina, and these specific fibers are listed in Table 3.3.  The fiber ID numbers 

for Dr. Morgan’s samples were kept the same as the numbering he had 

previously assigned them, and he obtained his samples from different textile 

companies. 
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Table 3.2 List of the Dyed Exemplars from Testfabrics, Inc. 
 

Fiber ID 
 

Dyed Exemplars Image of Fiber from 
MSP 

A 

Style 419, Bleached 
Mercerized Cotton 

Blend cloth dyed with 
Direct Red C-380  

 

B 

Style 460, Bleached 
Cotton Interlock dyed 
with Fiber Reactive 

Red 120 
 

C 

Style 460, Bleached 
Cotton Interlock dyed 
with Fiber Reactive 

Red 123 
 

D STC EMPA 475 dyed 
with Reactive Red 195 

 

E STC EMPA 495 dyed 
with Reactive Red 2 

 

F STC EMPA 498 dyed 
with Reactive Red 228 
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Table 3.3 Dyed Fiber Exemplars from Dr. Stephen Morgan of the University of 
South Carolina. 

Fiber ID CI Name 

713 Direct Red 84  

685 Reactive Red 180 

686 Reactive Red 198 

695 Reactive Red 239/241 

721 Vat Red 10 

722 Vat Red 15 

 

Following standard MSP protocols, ten fibers were removed from each 

exemplar.  These fibers were mounted on a glass slide with a glass coverslip 

with glycerin used as the mounting medium.  This preparation technique was 

modeled after the technique the Indiana State Police laboratory uses for fiber 

analysis.  In addition, glycerin is an appropriate mounting medium, as stated by 

the Scientific Working Group on Materials Analysis (SWGMAT).87  At IUPUI, a 

CRAIC QDI 2000 microspectrophotometer (CRAIC Technologies, San Dimas, 

CA) was utilized with Visible analysis being performed in transmitted light mode.  

At the Indiana State Police (ISP) laboratory, a CRAIC QDI 1000 

microspectrophotometer was used.  Magnification was 35x for both instruments.  

Prior to running samples, the microspectrophotometers were calibrated using 

NIST traceable standards.  An autoset optimization, dark scan, and reference 

scan were run before each set of sample scans.  Samples were taken as 

absorbance values, and ten scans were taken at different locations for each fiber 

sample.  The scans for each sample were then averaged together (to be used 
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only with Agglomerative Hierarchical Clustering) and the absorption data was 

used in data analysis. 

3.2.2. Data Analysis 

Three different data sets were utilized in this research.  First, the 

Testfabrics, Inc. fibers were analyzed by this researcher and another individual 

ran two fibers from these exemplars as well.  The additional two fibers per 

sample were used as an external validation.  When analyzing these fibers, an 

attempt was made to analyze the varying shades of the dye along the fiber (dark, 

medium, light).88-91  Next, new fibers were selected from all twelve exemplars and 

these were analyzed at the Indiana State Police (ISP) Laboratory.  Following this, 

new fibers were selected from the twelve exemplars and these were then 

analyzed at IUPUI in order to do an inter-laboratory comparison.  With the IUPUI-

run fibers, extra care was now given to analyze a similar dye shade on the fibers.  

In terms of the dye analyzed, the most prevalent shade was selected, which 

typically was a medium-dyed shade.  A similar attempt was made with the ISP 

fibers.  An external validation was also performed on the new twelve fibers at 

IUPUI. 

All data sets consisted of the truncated wavelength range of 350 – 800 nm 

to ensure that all the data consisted of the same wavelength ranges.  They were 

then background subtracted by subtracting the minimum of each sample.  

Following this, the data sets were normalized by dividing each absorbance value 

by the square root of the sum of the squares of all absorbance values.28, 29  This 
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eliminated variability in the data due to sample thickness and dye uptake. The 

ten normalized scans taken from Sample A1 (Direct Red C-380) at IUPUI are 

shown in Figure 3.2 to illustrate the reproducibility of this technique.  Statistical 

evaluation of the data was performed using Microsoft Excel XLSTAT2009.   

 

 
Figure 3.2 Background substracted, normalized, and offset absorbance spectra 
of ten scans for a fiber from an exemplar dyed with Direct Red C-380. 

3.3. Results and Discussion – Part I: Testfabrics Fibers Analyzed at IUPUI 

3.3.1. Statistical Results 

The AHC dendrogram for fibers A – F analyzed at IUPUI is shown in 

Figure 3.3, with three distinct classes being formed based on the truncation line.  

Bifurcations to the right of the truncation line are more significant in determining 
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the number of classes.  In addition, the averages for each of the fiber dyes were 

used for AHC.  Three classes were chosen to remain consistent with all other 

data sets because in the ISP data set, when more than three classes was tried, 

the replicates began to be split amongst the classes.  In this IUPUI data set, 

though, three classes results in the separation of replicates amongst different 

classes.  However, when a larger number of classes is chosen, some of the 

exemplars began to be increasingly split amongst the various classes.  Figure 

3.4 illustrates the central objects of each of the three classes, with each having 

distinct absorbance spectra.  These distinctions are consistent with the node 

position from the dendrogram, showing that Class 3 is the most distinct 

compared to the other two classes. 

When looking more closely at the AHC dendrogram, it is apparent that 

Fibers A, C, D, and F cluster well.  This is also obvious when viewing these 

fibers’ levels of dissimilarity.  All four have very low levels of dissimilarity (A = 

0.02; C = 0.01; D = 0.01; F = 0.03), thus proving they are very similar replicates.  

Fiber C is also so well-clustered that it is placed as its own class (Class 3).  

Fibers B and E, however, do not cluster well and have replicates that are placed 

in different classes.   

In addition, outliers can be noted when viewing the dendrogram.  The 

replicates that are more dissimilar than other replicates when viewing the 

dendrogram often have spectra that vary compared to the other replicates.  For 

example, even though Fiber A replicates all remained clustered near each other, 

A3 and A4 are clustered together.  When looking at the spectra for Fiber A, 
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replicates 3 and 4 are more intense compared to the other replicates.  With Fiber 

E, replicates 6 and 10 are clustered into an entirely different class and those 

spectra do look slightly different compared to the other replicates’ spectra.  Also, 

E3 has a higher intensity and is separated from other replicates on the 

dendrogram.  Lastly, replicate 8 on Fiber B is very intense in comparison to the 

other replicates of Fiber B and it is separated on the dendrogram.  Though the 

other spectra for Fiber B look similar, the split between them (replicates 6, 10, 9, 

4, and 5 versus 2, 1, 7, and 3) is clear. 

 

Figure 3.3 Dendrogram from AHC of Fibers A – F analyzed at IUPUI.  
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Figure 3.4 Central Objects of the Three Clusters from the Dendrogram. 

 

For the purposes of PCA and DA, every scan was used instead of utilizing 

only the averages.  The supplemental data, which was the additional two fibers 

analyzed per dye, was included in order for it to receive a factor score for future 

use, but it was not incorporated into the PCA analysis.  The observations plot 

from PCA is shown in Figure 3.5.  The plot displays the first two principal 

components, which captured 66.57% of the total variance of the data set.  The 

same three classes from AHC were color-coded to be distinguishable.  Through 

the three classes are distinct, some overlap is present.  Similar to AHC, Class 3 

is more distinct than the other two classes.  The total variance in two dimensions 

is low, meaning more separation could be occurring at higher dimensions.  All the 

replicates were placed into one class for this observation plot, as well as for 
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future DA analysis.  Whichever class had the majority of the replicates was the 

class chosen to contain all of the replicates.     

 

 
Figure 3.5 Observations Plot from PCA.  

 

A factor loadings plot of the original variables can be used to illustrate the 

PCA coordinate system.  A different type of factor loadings plot was created for 

this data set (Figure 3.6) where the loadings in the form of the cosine of the angle 

between the principal component and each variable.  Areas where the cosine is 

positive are areas of positive correlation, areas where the cosine is negative are 

areas of negative correlation, and areas where the cosine is close to zero have 

no correlation.  PC1 corresponds to the x-axis and PC2 corresponds to the y-axis 

of the observations plot (Figure 3.5).   
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Figure 3.6 Factor Loadings Plot of the First Two PCs. 
 

Focusing on PC1, the main areas of correlation can be found, and the 

wavelengths corresponding to this area can be highlighted on the central objects 

plot of all the clusters together.  The purple bracketed areas in Figure 3.7 indicate 

these wavelength regions, where there is a negative correlation at approximately 

460 – 520 nm and a positive correlation at 550 – 750 nm.  In an attempt to put 

more physical meaning behind the spectra, the ordering of the clusters within the 

bracket correlates with the ordering of the clusters in the PCA observations plot.  

Samples with high absorbance in regions where there are high factor loadings on 

PC1 should be on the right of the PCA observations plot because those are the 

large and most positive values.  The inverse is true as well; low factor loadings 

on PC1 should be on the left of the PCA observations plot because those are the 

smallest and least positive values.  Therefore, using both significant areas, the 
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observations plot should read (from left to right): Class 3, Class 1, and then Class 

2.  Referring back to Figure 3.5, this is the exact trend that is noticed in the 

observations plot.  In addition, both significant areas illustrate Class 3 as being 

the most distinct, and when looking at the observations plot, this distinction is 

also noticeable. 

The same physical meaning can be applied to the second principal 

component.  Two areas of significant correlation are highlighted on the central 

objects plot (Figure 3.7) by orange brackets.  The area of positive correlation 

wavelengths ranges from 525 – 555 nm, and the area of negative correlation is 

around 400 nm.  The negative correlation from PC1 and the positive correlation 

from PC2 could be attributed to the absorption of the red dye on the fibers.  With 

PC2, samples with strong absorbance in the region of high factor loadings should 

be the highest on the PCA observations plot since PC2 is associated with the y-

axis, and the inverse is true as well.  Relating this to the PCA observations plot, it 

would be expected that Class 2 would be the highest and Classes 1 and 3 would 

be more similarly located.  Referring back again to Figure 3.5, this is the exact 

trend that is noticed. 

 



 

 

61 

 

Figure 3.7 Significant Factor Loadings Overlaid on the Central Objects Plot. 
 

DA was then performed using the data from PCA.  Several methods exist 

that assist in determining the correct number of principal components to use.  

One method involves setting a targeted cumulative percentage of variance and 

using the number of principal components associated with that number.  This 

method was used in this research, and 95% was the selected cumulative 

variance.  Using this amount of cumulative variance as the criterion, the first five 

principal components would be selected.  Another method involves using a scree 

plot, which displays eigenvalues against factor number.  The location of a sudden 

break in the plot is an indicator of the number of significant principal components.  

Based on the scree plot for this data set, four principal components would be 
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used.  Lastly, the Kaiser criterion can be used to determine the significant 

amount of principal components to utilize.  Using this criterion, all eigenvalues 

greater than one would be considered significant, and this research this would 

apply to the first twelve principal components.    

The results of DA using the first five principal components are shown in 

the observations plot in Figure 3.8.  Three distinct groupings were used to be 

consistent with AHC.  Minimal overlap can be seen between the three groups, 

but this will affect the cross-validation results as seen in the confusion matrix 

results in Table 3.4.  Samples located along the diagonal in green represent 

those that were correctly classified, while samples in bolded red outside of this 

diagonal are incorrect classifications.  Overall, 99.17% of the samples were 

correctly classified, which is considered to be an excellent result.    
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Figure 3.8 Observations Plot from DA using Three Classes. 
 
 
Table 3.4 Confusion Matrix for the Cross-Validation Results from DA (Three 
Classes). 

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 98 2 0 100 98.00 

Class 2 2 398 0 400 99.50 

Class 3 1 0 99 100 99.00 

Total 108 392 100 600 99.17 
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DA was then performed using six classes, in which case each fiber dye 

was considered its own class.  The observations plot for this data is show in 

Figure 3.9.  Using these six classes resulted in overlap between several of the 

classes (namely Fibers B, E, and F), whereas some fibers were able to be 

distinguished from the others using this plot.  This overlap, though, affected the 

cross-validation results as seen in Table 3.5.  Overall, 85.17% of the samples 

were correctly classified. 

 

 

Figure 3.9 Observations Plot from DA using Six Classes. 
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Table 3.5 Confusion Matrix for the Cross-Validation Results from DA (Six 
Classes). 

From/To Fiber 
A 

Fiber 
B 

Fiber 
C 

Fiber 
D 

Fiber 
E 

Fiber 
F 

TOTAL % 
Correct 

Fiber A 98 1 0 0 1 0 100 98.00 

Fiber B 0 74 0 0 6 20 100 74.00 

Fiber C 0 0 100 0 0 0 100 100.00 

Fiber D 0 0 0 98 2 0 100 98.00 

Fiber E 0 23 0 6 56 15 100 56.00 

Fiber F 0 4 0 0 11 85 100 85.00 

TOTAL 98 102 100 104 76 120 600 85.17 

 

3.3.2. External Validation 

The supplemental data analyzed by another person was used as a form of 

external validation and the results are shown in Table 3.6, in which three classes 

were chosen.  DA predicted which class the supplemental samples should be 

placed in and the correct placement was determined by where the original (non-

replicate) sample was placed.  The green, bolded diagonal numbers are samples 

that were placed correctly in the proper class.  The red, bolded numbers outside 

of the diagonal indicate samples that were incorrectly classified.  Overall, the 

performance of the classification model was excellent, with 98.33% of samples 

correctly assigned.  When six classes was selected for an external validation, the 

classification accuracy was 87.50% (Table 3.7).  When viewing this table, it is 
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evident that most errors were made between Classes E, F, and B, and this 

coincides with the observations plot in Figure 3.9. 

 

Table 3.6 Confusion Matrix for the External Validation Results of the 
Supplemental Data from DA using Three Classes. 

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 19 1 0 20 95.00 

Class 2 0 80 0 80 100.00 

Class 3 0 0 20 20 100.00 

Total 20 80 20 120 98.33 

 

 

Table 3.7 Confusion Matrix for the External Validation Results of the 
Supplemental Data from DA using Six Classes.  

From/To 
Fiber 

A 

Fiber 

B 

Fiber 

C 

Fiber 

D 

Fiber 

E 

Fiber 

F 
TOTAL 

% 

Correct 

Fiber A 19 0 0 0 1 0 20 95.00 

Fiber B 0 18 0 0 2 0 20 90.00 

Fiber C 0 0 20 0 0 0 20 100.00 

Fiber D 0 0 0 20 0 0 20 100.00 

Fiber E 0 4 0 5 11 0 20 55.00 

Fiber F 0 2 0 0 1 17 20 85.00 

TOTAL 19 24 20 25 15 17 120 87.50 
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3.3.3. Limitations to the Study 

As mentioned before, when analyzing these fibers, an attempt was made 

to analyze the varying shades of the dye along the fiber (dark, medium, light).  

This method was decided upon after reading several articles that performed their 

research similarly.88-91  However, it was noticed that in some cases chemometric 

analysis does not classify the replicate scans from the same sample into the 

same class.  Even though the general shapes of the spectra are similar, the 

normalized intensities vary and thus can result in misclassification.  After 

referring to SWGMAT’s fiber analysis guidelines, it was determined for future 

research to analyze areas on the fiber that are similarly dyed.  Therefore, the 

chemometric analysis will be truly determining if fiber dyes can be classified and 

how this compares amongst various dyes. 

In addition, when these mounted fibers were revisited months after their 

initial sample preparation, many of the fibers had lost their dye (they were now 

clear).  However, the glycerin in which the fibers were placed in was not red, 

pink, or any other shade of color.  This issue will be explored further in Chapter 5 

(Future Directions).  Therefore, it was determined for future research to prepare 

the samples and analyze them as soon as possible to avoid a dye loss issue. 

3.3.4. Conclusions 

Based on the results discussed above, MSP is an appropriate and efficient 

step in the analysis of red fiber dyes.  Proper sample preparation has been 

shown to be vital in obtaining accurate spectral data, such as exposure to time in 
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glycerin, as well as which shades of the fiber dye to analyze and what ranges of 

the dye.  In addition, promising results were found when more than one person 

analyzed fibers, as evident from the external validation.  Even though it was 

determined that sampling various shades of the dye was not beneficial for 

chemometric analysis, when both people analyzing fibers did the same routine 

analysis, the results were similar.  Based on the external validation, almost 100% 

of the supplemental data was correctly classified with the original data set. 

Overall, the comparison of fiber dyes using AHC, PCA, and DA resulted in 

several findings.  Three distinct groups formed within the collection of fiber dyes.  

The central objects of the AHC dendrogram (Figure 3.4) illustrate that the three 

classes differ in their relative absorptions at approximately 500 nm, 525 nm and 

540 nm.  Overall, the three classes were differentiated with high accuracy using 

both cross-validation and external validation samples when three classes 

determined by AHC were used.  However, when using seven classes to 

represent each dye differently, the classes were not differentiated well for several 

of the dyes, specifically Fibers E and F (Reactive Red 2 and Reactive Red 228).  

Other dyes, such as Fibers C (Reactive Red 123), A (Direct Red C-380), and D 

(Reactive Red 195), were differentiated very well.   
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3.4. Results and Discussion – Part II: All Dyes Analyzed – IUPUI vs. ISP 

3.4.1. Statistical Results of IUPUI Fiber Analysis 

The AHC dendrogram for all twelve fibers analyzed at IUPUI is shown in 

Figure 3.10, with three distinct classes being formed based on the truncation line.  

Table 3.8 lists which fibers were placed into specific classes.  Bifurcations to the 

right to the immediate right of the truncation line are more significant in 

determining the number of classes.  In addition, the averages for each of the fiber 

dyes were used for AHC.  Three classes were selected to remain similar to the 

previous IUPUI fiber study, as well as the future ISP study.  When more than 

three classes were tried, the replicates remained clustered together through 

seven classes.  This allowed for five fibers to be completely distinguished from 

the others without any replicates being separated.  The AHC dendrogram for 

seven classes is shown in Figure 3.11, and Table 3.9 shows the specific class 

formation.  Since three classes will be used for the comparative study, Figure 

3.12 illustrates the central objects of each of the three classes, with each having 

distinct absorbance spectra.   
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Figure 3.10 AHC Dendrogram of new IUPUI fibers (12) using Three Classes. 
 

Table 3.8 Class Formation from the AHC Dendrogram of new IUPUI fibers using 
Three Classes. 

CLASS 1 CLASS 2 CLASS 3 
A C 721 

B 713 722 

D   

E   

F   

685   

686   

695   
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Class 3 

Class 1 
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721 
722 
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Figure 3.11 AHC Dendrogram of new IUPUI fibers (12) using Seven Classes. 
 

Table 3.9 Class Formation from the AHC Dendrogram of new IUPUI fibers using 
Seven Classes. 

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

A B C D 713 721 722 

 E  685    

 F  695    

 686      

 

 

Dissimilarity
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Class 7 
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Figure 3.12 Central Objects of the Three Clusters from the Dendrogram of IUPUI 
new fibers. 
 

When looking more closely at the dendrogram (Figure 3.10), Fibers A, B, 

C, 713, 721, and 722 are well-behaved and have replicates clustering together.  

Fiber 695 has Fiber D replicates mixed within its clustering.  Noticeable outliers 

can also be viewed.  For example, replicates 7, 8, and 9 of Fiber E are located 

below the other E replicates on the dendrogram.  Those three separated 

replicates have a slightly increased intensity compared to the other replicates.  In 

addition, replicate 1 of Fiber 686 looks different (lower intensity) and is separated 

on the dendrogram.  Fiber F replicates all look similar with the exception of 

replicates 10 and 8 having a slightly lower intensity.  However, the dendrogram 

split up several of the replicates.  Therefore, the AHC dendrogram can identify 

outliers that have slight differences that are not outwardly visible. 
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For the purposes of PCA and DA, every scan was used instead of utilizing 

only the averages.  The supplemental data to be used in an external validation 

was included in order for it to receive a factor score for future use, but it was not 

incorporated into the PCA analysis.  The observations plot from PCA is shown in 

Figure 3.13.  The plot displays the first two principal components, which captured 

68.93% of the total variance of the data set.  The same three classes from AHC 

were color-coded to be distinguishable.  Though the three classes are distinct, 

some overlap is present.  Class 2 can even be seen to separate within itself.  The 

total variance in two dimensions is low, meaning more separation could be 

occurring at higher dimensions.  In addition, the PCA observations plot for seven 

classes is displayed in Figure 3.14.  More overlap can be seen, but certain fibers 

are removed from the larger group of data points.  Again, since the total variance 

is low, several of these groups might be separated at higher dimensions.   
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Figure 3.13 PCA Observations plot of IUPUI new data using Three Classes from 
AHC. 

 

 

 
Figure 3.14 PCA Observations plot of IUPUI new data using Seven Classes from 
AHC. 
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A factor loadings plot of the original variables can be used to illustrate the 

PCA coordinate system.  Similar to before, a different type of factor loadings plot 

was created for this data set (Figure 3.15) where the loadings in the form of the 

cosine of the angle between the principal component and each variable.  Areas 

where the cosine is positive are areas of positive correlation, areas where the 

cosine is negative are areas of negative correlation, and areas where the cosine 

is close to zero have no correlation.  PC1 corresponds to the x-axis and PC2 

corresponds to the y-axis of the observations plot (Figure 3.13).  Only the factor 

loadings for the AHC three clusters will be explored.   

 

 

 

Figure 3.15 Factor Loadings Plot of the First Two PCs. 
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Focusing on PC1, the main areas of positive and negative correlation can 

be found, and the wavelengths corresponding to this area can be highlighted on 

the central objects plot of all the clusters together.  The purple bracketed areas in 

Figure 3.16 indicates this wavelength regions, which is approximately 460 – 505 

nm for the negative correlation and 550 – 750 nm for the positive correlation.  In 

an attempt to put more physical meaning behind the spectra, the ordering of the 

clusters within the bracket correlates with the ordering of the clusters in the PCA 

observations plot.  Samples with high absorbance in regions where there are 

high factor loadings on PC1 should be on the right of the PCA observations plot 

because those are the large and most positive values.  The inverse is true as 

well; low factor loadings on PC1 should be on the left of the PCA observations 

plot because those are the smallest and least positive values.  Therefore, the 

observations plot should have Class 2 furthest to the left, and Classes 1 and 3 

similarly located along the x-axis to the right of Class 2 when using the negative 

correlation wavelengths.  Using the positive correlation wavelengths, Class 1 

should be the furthest to the right, and Classes 2 and 3 should be similarly 

located to the left of Class 1.  Referring back to Figure 3.13, this is the exact 

trend that is noticed in the observations plot. 
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Figure 3.16 Significant Factor Loadings Overlaid on the Central Objects Plot. 
 

The same physical meaning can be applied to the second principal 

component.  Areas of negative and positive correlation are highlighted on the 

central objects plot (Figure 3.16) by orange brackets.  The area of negative 

correlation wavelengths ranges from 525 – 575nm, and the area of positive 

correlation wavelengths is around 400 – 415 nm.  This negative correlation area, 

as well as PC1’s significant negative correlation area, could be attributed to the 

absorption of the red dye on the fibers.  With PC2, samples with strong 

absorbance in the region of high factor loadings should be the highest on the 

PCA observations plot since PC2 is associated with the y-axis.  The inverse is 

also true, such that areas of low factor loadings should be the lowest on the PCA 

observations plot.  Relating this to the PCA observations plot, it would be 

expected that Class 1 would be the lowest and Classes 2 and 3 would be more 
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similarly located above Class 1.  Referring back again to Figure 3.13, this is the 

exact trend that is noticed. 

DA was then performed using the data from PCA.  Several methods exist 

that assist in determining the correct number of principal components to use.  

One method involves setting a targeted cumulative percentage of variance and 

using the number of principal components associated with that number.  This 

method was used in this research, and 95% was the selected cumulative 

variance.  Using this variance, the first eight principal components would be 

selected.  Another method involves using a scree plot, which displays 

eigenvalues against factor number.  The location of a sudden break in the plot is 

an indicator of the number of significant principal components.  Based on the 

scree plot for this data set, four principal components would be used.  Lastly, the 

Kaiser criterion can be used to determine the significant amount of principal 

components to utilize.  Using this criterion, all eigenvalues greater than one 

would be considered significant, and this research this would apply to the first 

fifteen principal components.    

The results of DA using the first eight principal components are shown in 

the observations plot in Figure 3.17.  Overall, DA accounted for 100% of the 

variance in two dimensions.  Three distinct groupings were used to be consistent 

with AHC.  No overlap can be seen between the three groups, and this is 

reflected in the cross-validation results as seen in the confusion matrix results in 

Table 3.10.  Samples located along the diagonal in green represent those that 
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were correctly classified.  Overall, 100.00% of the samples were correctly 

classified, which is considered to be an excellent result.    

 

 
Figure 3.17 Observations Plot from DA using the Three AHC Designated 
Classes. 
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Table 3.10 Confusion Matrix for the Cross-Validation Results from DA (Three 
Classes). 

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 800 0 0 800 100.00 

Class 2 0 200 0 200 100.00 

Class 3 0 0 200 200 100.00 

Total 800 200 200 1200 100.00 

 

DA was then performed using the seven classes designated from AHC.  

The observations plot for this data is show in Figure 3.18, in which 86.62% of the 

variance was accounted for in two dimensions.  Using these seven classes 

resulted in no overlap amongst the classes, and this is also evident in the 

confusion matrix in Table 3.11.  Overall, 100.00% of the samples were correctly 

classified.  Lastly, twelve classes were used in DA, in which each dye was its 

own class.  The observations plot showing this data is found in Figure 3.19, 

where overlap can be seen between a few classes and 87.14% of the total 

variance is accounted for in two dimensions.  Five fibers, however, can be 

completely distinguished from all others and these are fibers A, C, 713, 721, and 

722.  The other fibers are in classes that overlap, and this is shown in the 

confusion matrix found in Table 3.12.  Overall, though, 85.00% of the samples 

were correctly classified which is a good result. 
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Figure 3.18 Observations Plot from DA using the Seven AHC Designated 
Classes. 
 

Table 3.11 Confusion Matrix for the Cross-Validation Results from DA (Seven 
Classes). 

From/To A 
B, E, 

F, 
686 

C 
D, 

685, 
695 

713 721 722 TOTAL % 
Correct 

A 100 0 0 0 0 0 0 100 100.00 
B, E, F, 

686 0 400 0 0 0 0 0 400 100.00 

C 0 0 100 0 0 0 0 100 100.00 
D, 685, 

695 0 0 0 300 0 0 0 300 100.00 

713 0 0 0 0 100 0 0 100 100.00 
721 0 0 0 0 0 100 0 100 100.00 
722 0 0 0 0 0 0 100 100 100.00 

TOTAL 100 400 100 300 100 100 100 1200 100.00 
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Figure 3.19 Observations Plot from DA using 12 Classes (Each Dye is its Own 
Class).
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Table 3.12 Confusion Matrix for the Cross-Validation Results from DA (Twelve Classes). 

From/To A B C D E F 713 685 686 695 721 722 TOTAL % 
Correct 

A 100 0 0 0 0 0 0 0 0 0 0 0 100 100 

B 0 67 0 0 31 0 0 0 2 0 0 0 100 67.00 

C 0 0 100 0 0 0 0 0 0 0 0 0 100 100 

D 0 0 0 72 0 0 0 1 0 27 0 0 100 72.00 

E 0 39 0 0 50 1 0 0 10 0 0 0 100 50.00 

F 0 9 0 0 0 83 0 0 8 0 0 0 100 83.00 

713 0 0 0 0 0 0 100 0 0 0 0 0 100 100 

685 0 0 0 5 0 0 0 89 0 6 0 0 100 89.00 

686 0 1 0 0 2 5 0 0 92 0 0 0 100 92.00 

695 0 0 0 22 0 0 0 11 0 67 0 0 100 67.00 

721 0 0 0 0 0 0 0 0 0 0 100 0 100 100 

722 0 0 0 0 0 0 0 0 0 0 0 100 100 100 

TOTAL 100 116 100 99 83 89 100 101 112 100 100 100 1200 85.00 

83 
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3.4.2. External Validation 

An external validation was performed since this data set was separating 

well.  The supplemental data was collected several weeks after the initial data set 

was collected.  DA predicted which class the supplemental samples should be 

placed in and the correct placement was determined by where the original (non-

replicate) sample was placed.  Table 3.13 illustrates the results of this external 

validation using the three AHC designated classes.  The green, bolded diagonal 

numbers are samples that were placed correctly in the proper class.  Overall, the 

performance of the classification model was excellent, with 100% of samples 

correctly assigned.  Table 3.14 also illustrates the results of this external 

validation; however, seven AHC distinguished classes are used.  Using the 

seven classes, 100% of the samples were correctly classified. 

 

Table 3.13 Confusion Matrix for the External Validation Results of the 
Supplemental Data from DA using Three Classes.  

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 160 0 0 160 100.00 

Class 2 0 40 0 40 100.00 

Class 3 0 0 40 40 100.00 

Total 160 40 40 240 100.00 
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Table 3.14 Confusion Matrix for the External Validation Results of the 
Supplemental Data from DA using Seven Classes.  

From/To A 
B, E, 

F, 
686 

C 
D, 

685, 
695 

713 721 722 TOTAL % 
Correct 

A 20 0 0 0 0 0 0 20 100.00 
B, E, F, 

686 0 80 0 0 0 0 0 80 100.00 

C 0 0 20 0 0 0 0 20 100.00 
D, 685, 

695 0 0 0 60 0 0 0 60 100.00 

713 0 0 0 0 20 0 0 20 100.00 
721 0 0 0 0 0 20 0 20 100.00 
722 0 0 0 0 0 0 20 20 100.00 

TOTAL 20 80 20 60 20 20 20 240 100.00 

3.4.3. Statistical Results of ISP Fiber Analysis 

The AHC dendrogram for all twelve fibers analyzed at ISP is shown in 

Figure 3.20, with three distinct classes being formed based on the truncation line.  

Table 3.15 lists which fibers were placed into specific classes.  Bifurcations to the 

right to the immediate right of the truncation line are more significant in 

determining the number of classes.  In addition, the averages for each of the fiber 

dyes were used for AHC.  Three classes were selected to remain similar to both 

IUPUI fiber studies.  In addition, more than three classes results in the separating 

of replicates.  Figure 3.21 illustrates the central objects of each of the three 

classes, with each having distinct absorbance spectra.   
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Figure 3.20 AHC Dendrogram of all ISP fibers. 
 
 
Table 3.15 Class Formation from the AHC Dendrogram of ISP fibers using Three 
Classes. 
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Figure 3.21 Central Objects of the Three Clusters from the Dendrogram of ISP 
fibers. 

 

The dendrogram can reveal further information.  Fibers that are well-

behaved and cluster their replicates together include C, D, 713, 721, and 722.  

Fiber A has two replicates (6 and 10) that are separated from the rest of the 

replicates.  When looking at the spectra for those two replicates, they look 

different than the others and thus proving why they are divided.  Fiber B has 

many of its replicates split into smaller sections, and each of these sections have 

spectra that look different compared to other sections.  More specifically, 

replicates 2, 3, and 9 have the lowest intensity and they are clustered together, 

and replicate 4 is the most intense and separated from the other groupings.  

Replicate E1 on Fiber E has a lower intensity than most of the replicates and 

thus is separated in the dendrogram.  Overall, the separations in the dendrogram 

appear to be based on the intensity of the main absorbance peak.  However, 
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Fiber 695 is the main exception that was found.  Several of the replicates were 

indiviaully placed throughout the dendrogram.  Upon further investigation, these 

individual replicates had higher baselines compared to the other replicates that 

were clustered together.   

For the purposes of PCA and DA, every scan was used instead of utilizing 

only the averages.  The observations plot from PCA is shown in Figure 3.22.  

The plot displays the first two principal components, which captured 72.12% of 

the total variance of the data set.  The same three classes from AHC were color-

coded to be distinguishable.  Overlap between the classes is apparent.     

 

 
Figure 3.22 PCA Observations plot of ISP data using Three Classes from AHC. 

 

A factor loadings plot of the original variables can be used to illustrate the 
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was created for this data set (Figure 3.23) where the loadings in the form of the 

cosine of the angle between the principal component and each variable.  Areas 

where the cosine is positive are areas of positive correlation, areas where the 

cosine is negative are areas of negative correlation, and areas where the cosine 

is close to zero have no correlation.  PC1 corresponds to the x-axis and PC2 

corresponds to the y-axis of the observations plot (Figure 3.22).   

 

 
Figure 3.23 Factor Loadings Plot of the First Two PCs. 

 

Focusing on PC1, the main areas of correlation can be found, and the 

wavelengths corresponding to these areas can be highlighted on the central 

objects plot of all the clusters together.  The purple bracketed areas in Figure 

3.24 indicate these wavelength regions, which are approximately 415 – 510 nm 

for the negative correlation, and 650 – 750 nm for the positive correlation.  In an 

-1.000

-0.800

-0.600

-0.400

-0.200

0.000

0.200

0.400

0.600

0.800

1.000

1.200

350 400 450 500 550 600 650 700 750 800

FA
C

T
O

R
 L

O
A

D
IN

G
S

WAVELENGTH (nm)

PC2 PC1 



 

 

90  

attempt to put more physical meaning behind the spectra, the ordering of the 

clusters within the bracket correlates with the ordering of the clusters in the PCA 

observations plot.  Samples with high absorbance in regions where there are 

high factor loadings on PC1 should be on the right of the PCA observations plot 

because those are the large and most positive values.  The inverse is true as 

well; low factor loadings on PC1 should be on the left of the PCA observations 

plot because those are the smallest and least positive values.  Therefore, using 

the significant negative correlation, the observations plot should read (from left to 

right): Class 2, Class 3, and then Class 1.  The positive correlation reveals a 

slightly different result, but in both situations, Class 2 is the furthest to the left.  

Classes 1 and 3 are similarly located so variations between their significant 

regions are plausible.  Referring back to Figure 3.22, this is the exact trend that is 

noticed in the observations plot. 
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Figure 3.24 Significant Factor Loadings Overlaid on the Central Objects Plot for 
ISP data. 

 

The same physical meaning can be applied to the second principal 

component.  One area of positive correlation is highlighted on the central objects 

plot (Figure 3.24) by an orange bracket.  This area of positive correlation 

wavelengths ranges from 510 – 555nm.  This area, as well as PC1’s significant 

area, could be attributed to the absorption of the red dye on the fibers.  An area 

of negative correlation is also highlighted in orange in Figure 3.24, and these 

wavelengths range from 400 – 450 nm.  With PC2, samples with strong 

absorbance in the region of high factor loadings should be the highest on the 

PCA observations plot since PC2 is associated with the y-axis.  Relating this to 

the PCA observations plot, it would be expected that Class 1 would be the 

highest and Classes 2 and 3 would be more similarly located below Class 1.  

Referring back again to Figure 3.22, this is the exact trend that is noticed.  The 
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negative correlation area reveals that Class 3 should be slightly above Class 2, 

and the few outliers above the main cluster from Class 3 fit this trend as well.  

DA was then performed using the data from PCA.  Several methods exist 

that assist in determining the correct number of principal components to use.  

One method involves setting a targeted cumulative percentage of variance and 

using the number of principal components associated with that number.  This 

method was used in this research, and 95% was the selected cumulative 

variance.  Using this variance, the first five principal components would be 

selected.  Another method involves using a scree plot, which displays 

eigenvalues against factor number.  The location of a sudden break in the plot is 

an indicator of the number of significant principal components.  Based on the 

scree plot for this data set, the first eight principal components would be used.  

Lastly, the Kaiser criterion can be used to determine the significant amount of 

principal components to utilize.  Using this criterion, all eigenvalues greater than 

one would be considered significant, and this research this would apply to the 

first twelve principal components.    

The results of DA using the first five principal components are shown in 

the observations plot in Figure 3.25.  Overall, DA accounted for 100% of the 

variance in two dimensions.  Three distinct groupings were used to be consistent 

with AHC.  Slight overlap can be seen between Classes 1 and 3, and this is 

reflected in the cross-validation results as seen in the confusion matrix results in 

Table 3.16.  Samples located along the diagonal in green represent those that 

were correctly classified, and red bolded numbers outside of the diagonal 
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represent those that were incorrectly classified.  Overall, 96.50% of the samples 

were correctly classified, which is considered to be an excellent result.    

 

 
Figure 3.25 Observations Plot from DA using the Three AHC Designated 
Classes. 
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Table 3.16 Confusion Matrix of the Cross-Validation Results from DA (Three 
AHC-designated Classes). 

From/To Class 1 Class 2 Class 3 Total % Correct 

Class 1 778 0 22 800 97.25 

Class 2 0 200 0 200 100.00 

Class 3 19 1 180 200 90.00 

Total 797 201 202 1200 96.50 

 

DA was then performed using twelve classes, in which each dyes was its 

own class.  The observations plot showing this data is found in Figure 3.26, 

where overlap can be seen between several classes and 96.53% of the total 

variance is accounted for in two dimensions.  This overlap is seen in the 

confusion matrix found in Table 3.17.  Overall, though, 81.33% of the samples 

were correctly classified which is a good result. 
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Figure 3.26 Observations Plot from DA using twelve classes (each dye is its own 
class). 
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Table 3.17 Confusion Matrix for the Cross-Validation Results from DA (Twelve Classes). 

From/To A B C D E F 713 685 686 695 721 722 TOTAL % 
Correct 

A 92 0 0 0 0 0 0 0 0 0 0 8 100 92.00 

B 0 62 0 0 14 10 0 0 10 0 4 0 100 62.00 

C 0 0 99 0 0 0 0 0 0 0 0 1 100 99.00 

D 0 0 0 93 0 0 0 0 0 7 0 0 100 93.00 

E 0 22 0 0 39 0 0 3 35 1 0 0 100 39.00 

F 0 16 0 0 2 77 0 0 5 0 0 0 100 77.00 

713 0 0 1 0 0 0 99 0 0 0 0 0 100 99.00 

685 0 0 0 3 1 0 0 94 0 2 0 0 100 94.00 

686 0 7 0 0 15 8 0 0 70 0 0 0 100 70.00 

695 0 0 0 21 0 0 0 27 0 52 0 0 100 52.00 

721 0 1 0 0 0 0 0 0 0 0 99 0 100 99.00 

722 0 0 0 0 0 0 0 0 0 0 0 100 100 100 

TOTAL 92 108 100 117 71 95 99 124 120 62 103 109 1200 81.33 

96 
 



 

 

97  

3.4.4. Limitations to the Study 

Time played a major factor in this research.  Samples were prepped and 

taken to ISP a one to two weeks before they were actually analyzed.  Once the 

analysis began, a few of the fibers had already lost their dye content and 

therefore had to be remade and analyzed the following day.  After examining the 

results, however, these samples remained clustered with the other replicates 

despite being made at a different time and analyzed on a different day.  This 

could be attributed to analyzing the same shade along the fiber rather than 

recording a range of shades.  Based on these outcomes, though, a few changes 

were made to the procedure.  First, brand new samples were prepped for 

analysis at IUPUI even though several of the previously mounted samples still 

maintained their original color.  Next, samples were prepped and analyzed 

immediately to avoid the loss of dye issue. 

3.4.5. Conclusions 

Based on the results discussed above, MSP is further shown to be an 

appropriate and efficient step in the analysis of red fiber dyes.  Proper sample 

preparation has been shown to be vital in obtaining accurate spectral data, such 

as exposure to time in glycerin, as well as which shades of the fiber dye to 

analyze and what ranges of the dyes.  After various analyses, it was determined 

that in order to achieve the best chemometric results possible, a consistent 

shade of the dye should be analyzed throughout the fibers. 
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 The inter-laboratory comparison resulted in several findings.  First, when 

comparing the AHC results from both IUPUI and ISP, the outcomes were exact.  

Three classes resulted in the same fibers placement amongst the classes.  Both 

of the Class 1’s contained fibers A, B, D, E, F, 685, 686, and 695.  Class 2 

contained fibers C and 713, and Class 3 contained fibers 721 and 722 for both 

laboratories’ results.  In addition, the central objects of these classes were similar 

between both laboratories.  Different fibers were well-behaved when it came to 

the clustering of replicates.  Fibers C, 713, 721, and 722 clustered well in both 

sets.  However, A and B were clustered well in the IUPUI set whereas fiber D 

was clustered well in the ISP set.   However, beyond this point, variations 

occurred between the data sets.   

The IUPUI data can be divided into more classes without separating the 

replicates, whereas the ISP data cannot be separated past three classes before 

divisions among replicates occur.  Because of this, the PCA and DA results 

varied.  The PCA observations plot for the IUPUI data had more defined clusters 

but the ISP PCA observations plot did not.  The same trend was seen in the DA 

observations plot.  The IUPUI data resulted in 100% cross-validation accuracy 

but the ISP data had 96.50% cross-validation accuracy.  Though the ISP result 

was excellent, it still varied from the IUPUI result.   

 Overall, many similarities existed between the two data sets from the 

different laboratories.  However, discrepancies did occur.  These deviations 

between the laboratories could be attributed to several factors.  First, the fibers 

analyzed at ISP were not prepped and analyzed as quickly as the new fibers at 
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IUPUI.  Though the results did not show any divergences due to this, it may have 

played a role in the chemometric results.  For example, a slight variation may 

have been noticed by the statistical program that was not as noticeable to the 

observer.  Next, more variables are present in the ISP data.  The spacing 

between wavelength scans is shorter at ISP compared to IUPUI.  Specifically, the 

IUPUI data set had 582 variables whereas the ISP data set has 3972 variables.  

Though both data sets analyzed the same wavelength range (approximately 350 

– 800nm), more variables could mean more variations in the data and different 

features existing in the absorbance spectra.  Lastly, another variation between 

the data sets is the number of significant principal components used.  The IUPUI 

set utilized the first eight principal components and the ISP set used the first five 

principal components.  The more PCs that are required, the less useful each one 

becomes.  However, when determining the significant amount of principal 

components to use, the amount chosen had to account for at least 95% of the 

total variation.   

Overall, the comparison of fiber dyes using AHC, PCA, and DA resulted in 

several findings.  Three distinct groups formed within the collection of fiber dyes 

from both IUPUI and ISP.  The central objects of the AHC dendrograms (Figures 

3.12 and 3.21) illustrate that the three classes differ in their relative absorptions 

at approximately 500 nm, 520 nm and 540 nm.  Overall, the three classes were 

differentiated with high accuracy using both cross-validation and external 

validation samples with the three classes determined by AHC were used.  

Further, the fiber dyes at IUPUI could be distinguished to seven classes, 
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meaning five fiber dyes were unique compared to the entire set.  Looking at the 

structures of the dyes (Tables 3.18 – 3.20), it is evident that the classes 

containing several fibers (Class 2 containing fibers B, E, F, and 686; Class 4 

containing D, 685, and 695) all have dyes with similar structures.  The dyes that 

were unique (in a class of their own) had distinctive dye structures that thus set 

them apart.  However, two of the dye structures (Fiber A [Direct Red C-380] and 

Fiber F [Reactive Red 228]) have not been found so no concrete conclusions can 

be based from the structures at this time.  
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Table 3.18 Dye Structures  

 

Fiber B – Reactive Red 120 

 

 

Fiber E – Reactive Red 2 

 

Fiber 686 – Reactive Red 198 

 

 

 

 

 

 

 

 

 
101 



 

 

102  

 

 

Table 3.19 Dye Structures 
 

Fiber D – Reactive Red 195 

 

 

Fiber 685 – Reactive Red 180 

 

Fiber 695 – Reactive Red 239 
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Table 3.20 Dye Structures 
 

Fiber C – Reactive Red 123 

 

 

Fiber 713 – Direct Red 

84 

 

Fiber 721 – Vat Red 10 

 

Fiber 722 – Vat Red 15 
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CHAPTER 4. PLASTICS AND POLYMERS 

Trace evidence includes a variety of samples such as paint, plastics, 

fibers, adhesives, and waxes.  Because of this assortment, the analytical 

technique chosen must be sensitive and have discriminatory power for that 

specific material.92  Over the last 20-30 years, pyrolysis has been a primary 

technique for analyzing polymeric materials.  Utilization of plastic products has 

increased in the past decades due to their resourcefulness and low cost,93 and 

the technique of pyrolysis has proven to be beneficial with this type of sample. 

4.1. Pyrolysis Gas Chromatography/Mass Spectrometry and its Use in Forensic 

Science 

Pyrolysis was first used in 1860 to determine the structure of natural 

rubber,94 and has become well-established in the forensic community within the 

past few decades.  This technique involves chemical changes that take place in a 

substance as it is exposed to high temperatures in the absence of oxygen.  

These changes include molecular degradation as well as reactions between 

degradation products.94, 95  Pyrolysis is regularly used to characterize synthetic 

polymers, but in order to efficiently perform this task, pyrolysis must be coupled 



 

 

105  

with other analytical techniques, such as gas chromatography and mass 

spectrometry (GC/MS).  Much research has been conducted on pyrolysis-GC 

and pyrolysis GC/MS.93-99  Pyrolysis can allow for GC analysis to occur on 

samples that the GC cannot separate, such as polymers due to their high 

molecular masses and low volatility.93, 99  

Advantages of pyrolysis GC/MS are that it is a quick, convenient, and 

powerful tool for a wide application to polymers.  Polymers can be analyzed, 

characterized, and have their degradation studied.92-96  In addition, pyrolysis has 

a high heating speed, temperature reproducibility, and a wide temperatures 

range.98  Furthermore, sample preparation is simple because pre-treatment is not 

required, small samples are ideal, and qualitative and quantitative results are 

possible.  Disadvantages of pyrolysis, though, include destructiveness, lack of 

reproducibility, and sensitivity to sample morphology.96, 100 

Pyrolysis has been applied to forensic applications such as the analysis of 

paint,21, 55, 92, 101, 102 adhesives and tapes,92, 101, 103, 104 plastics and polymers,92, 93, 

95, 96, 98, 101, 105 textile fibers,92, 101, 102, 106 environmental samples such as soil and 

wood,92, 95, 106 condom lubricants,107 hair,92 and documents (photocopies and 

photocopy toners).17, 95, 101, 102  

Chemometrics has become increasingly important in scientific analyses, 

and specifically, research has been conducted on chemometrics applied to 

pyrolysis.  In order to analyze pyrograms by multivariate statistical techniques, 

various ways of preprocessing and treating the data exist.  An algorithm can be 

used to create a data matrix of peaks whose retention times and mass spectra 
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match throughout all samples, and thus pattern recognition is applied to relative 

peak areas.17, 105, 108  Data can also be preprocessed by using correlation 

optimized warping (COW) to align chromatograms and remove any baseline 

shift.109, 110  Other methods of data interpretation can include identifying 

compounds by their relative retention time and using the integrated areas of each 

peak for use in chemometric techniques.111  In this study, which was in 

collaboration with the Indiana State Police laboratory, the feasibility of analyzing 

common plastics using pyrolysis-GC/MS was demonstrated.  After a polymer 

library was established at their laboratory, a comparison was done using the 

plastic samples and certain polymer standards with chemometric analysis.  

Chemometric analysis of plastic samples using Py-GC/MS has not been 

documented and thus will assist in future research in this area.   

4.2. Materials and Methods 

4.2.1. Instrumental Analysis 

The plastic samples were chosen by the Indiana State Police 

Microanalysis Unit so as to encompass the different types of common plastics 

that are currently readily available.  The plastic recycling numbers (symbols) 

were used as a guideline to make sure a diverse sample collection was found.  

The numbers as well as the polymer they represent can be found in Table 4.1.  

The recycling numbers, also known as the Resin Identification Code, was 

created by the Society of the Plastics Industry in 1988.  The code was brought 
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about to assist in separating similar-appearing plastics when they are recycled.  

The numbering in the Resin Code has no meaning besides identifying specific 

plastic.  Using this code, at least one sample from each recycling number was 

chosen.  The plastic “Other” is either a combination of the other plastics in the 

table or a different plastic altogether.  In total, nine samples were collected in this 

research; one plastic from each category was used, and additional samples of 

HDPE and polystyrene were used with these additional samples being colored 

samples (a black HDPE sample and a red polystyrene sample).  Several 

polymers were also analyzed and used in an external validation.  These 

polymers can be found in Table 4.2. 

 

Table 4.1 The Plastic Recycling Numbers and Polymer They Represent. 

RECYCLING 
NUMBER POLYMER 

NUMBER OF 
PLASTIC SAMPLES 

USED 

1 Poly(ethylene 
terephthalate) (PETE) 1 

2 High-density 
Polyethylene (HDPE) 2 

3 Poly(vinyl chloride) (V) 1 

4 Low-density 
Polyethylene (LDPE) 1 

5 Polypropylene (PP) 1 
6 Polystyrene (PS) 2 
7 Other 1 

 

 

 

 

 



 

 

108  

Table 4.2 Specific Polymers Analyzed. 
Polyethylene (48% chlorinated) 

Polyethylene (25% chlorinated) 

Polyethylene (high density) 

Polypropylene (chlorinated) 

Polypropylene (isotactic) 

Polystyrene 

PVC (carboxylated 1.8%) 

PVC (viscosity 1.26) 

 

 An Agilent® 6890 Gas Chromatograph/5975 Mass Spectrometer (Agilent 

Technologies, Santa Clara, CA) located in the Microanalysis Unit of the Indiana 

State Police Laboratory in Indianapolis, Indiana, was utilized in this research.  

The parameters for plastic research that is done at their laboratory were 

employed in this research.  An injector temperature of 280°C and interface 

temperature of 280°C were used with a HP-5MS Agilent capillary column.  The 

column was bonded 5% phenyl, 30 meters long, 0.25mm ID, and 0.25µm df.  The 

initial temperature was 40°C and the initial time was 2.5 minutes.  A program rate 

of 10°C/min was used with the final temperature reaching 300°C and a final time 

of 23 minutes.  In the GC, a constant flow rate of 1mL/minute of helium was used 

with a split ratio of 20:1.  A CDS 5100 Pyroprobe attachment (CDS Analytical, 

Oxford, PA) was used to pyrolyze the samples prior to introduction into the 

GC/MS.  When the pyroprobe was triggered, the temperature progressed to 

800°C for 20 seconds.  The pyrolysis unit temperatures are 310°C for the valve 
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oven and the transfer line.  The MS was equipped with a scan range of 35 – 350 

amu and a scan speed of 4.45 scans/second.  The source temperature was 

230°C and the quad temperature was 150°C.  There was no solvent delay, the 

threshold was 150, and the sampling rate was 22.   

 Small segments of the plastic were cut and inserted into the probe 

(approximately 1mm x 1mm).  Polymer samples that were in powder form had to 

first be compacted into a solid disc using a press in the Indiana State Police 

laboratory.  A small segment of this disc was then inserted into the probe.  The 

sample was allowed to equilibrate for one minute before being pyrolyzed.  The 

probe remained in the unit for all 50 minutes of the analysis.  Three replicates 

were performed on each plastic sample to demonstrate reproducibility and be 

used for future chemometric analysis.  Two replicates of each polymer sample 

were obtained but only one pyrogram from each sample was used for the 

external validation.  In between each sample, a 30 minute blank was run in which 

the probe was first cleaned by pressing the “clean” button on the pyrolysis unit 

after each sample and then the empty probe was inserted into the unit and the 

blank was run. 

4.2.2. Data Analysis 

Overall, the sample collection consists of 27 pyrograms (9 total plastic 

samples).  The eight polymer samples remained separate from this data set.  

The entire plastic dataset ranged from 0 – 50 minutes.  Total Ion Chromatograms 

(TICs) of the raw data for each plastic can be seen in Figures 4.1 – 4.9, and 
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major peaks that were identified by searching a library of mass spectra (NIST 

Mass Spectral Database, Version 2.0) have been labeled.   

 

 

 
Figure 4.1 Pyrogram of HDPE; (1) 2-Butene, (2) 1-hexene, (3) 1-heptene, (4) a: 
1,7-octadiene; b: 1-octene; c: octane, (5) a: 1,8-nonaidene; b: 1-nonene; c: 
nonane, (6) a: 1,9-decadiene; b: 1-decene; c: decane, (7) a: 1,10-undecadiene; 
b: 1-undecene; c: undecane. 
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Figure 4.2 Pyrogram of LDPE; (1) 2-Butene, (2) 1-hexene, (3) 1-heptene, (4) a: 
1,7-octadiene; b: 1-octene; c: octane, (5) a: 1,8-nonaidene; b: 1-nonene; c: 
nonane, (6) a: 1,9-decadiene; b: 1-decene; c: decane, (7) a: 1,10-undecadiene; 
b: 1-undecene; c: undecane. 
 

 
Figure 4.3 Pyrogram of HDPEblack; (1) 2-Butene, (2) 1-hexene, (3) 1-heptene, 
(4) a: 1,7-octadiene; b: 1-octene; c: octane, (5) a: 1,8-nonaidene; b: 1-nonene; c: 
nonane, (6) a: 1,9-decadiene; b: 1-decene; c: decane, (7) a: 1,10-undecadiene; 
b: 1-undecene; c: undecane. 
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Figure 4.4 Pyrogram of Polypropylene; (1) cyclopropane, (2) 1-pentene,2-methyl, 
(3) 2,4-dimethyl-1-heptene, (4) 3-octene,2,2-dimethyl-, (5) nonane, 2-methyl-3-
methylene-, (6) cyclooctane,1,4-dimethyl-,trans-, (7) 2-isopropyl-5-methyl-1-
heptanol, (8) (2,4,6-trimethylcyclohexyl)methanol, (9) 9-Eicosene. 
 

 

 
Figure 4.5 Pyrogram of PVC; (1) cyclopropane, (2) 1-pentene,2-methyl, (3) 
toluene, (4) 2,4-dimethyl-1-heptene, (5) o-xylene, (6) 3-octene, 2,2-dimethyl, (7) 
1,6-octadiene,2,6-dimethyl-,(z)-, (8) nonane, (9) cyclooctane,1,4-dimethyl-,trans-, 
(10) 9-Eicosene. 
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Figure 4.6 Pyrogram of Other; (1) cyclopropane, (2) 1-pentene,2-methyl, (3) 
toluene, (4) 2,4-dimethyl-1-heptene, (5) o-xylene, (6) 3-octene, 2,2-dimethyl, (7) 
nonane, (8) 2-undecanethiol,2-methyl, (9) 9-Eicosene. 
 

 
Figure 4.7 Pyrogram of PETE; (1) carbon dioxide, (2) benzene, (3) toluene, (4) 
ethylbenzene, (5) styrene, (6) benzeneacetaldehyde, (7) acetophenone, (8) vinyl 
benzoate, (9) benzoic acid, (10) biphenyl, (11) benzene, p-diacetyl-, (12) 
quinoline, 6-methoxy,1-oxide. 
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Figure 4.8 Pyrogram of Polystyrene; (1) methylenecyclopropane, (2) benzene, 
(3) toluene, (4) ethylbenzene, (5) styrene, (6) benzene,cycloproply-, (7) α-
methylstyrene, (8) Indene, (9) naphthalene, (10) bibenzyl, (11) benzene,1,1’-(1-
methyl-1,2-ethanediyl)bis-, (12) naphthalene,1,2,3,4-tetrahydro-2-phenyl, (13) 2-
phenylnaphthalene. 
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Figure 4.9 Pyrogram of PolystyreneRed; (1) methylenecyclopropane, (2) 
benzene, (3) toluene, (4) ethylbenzene, (5) styrene, (6) benzene,cyclopropyl-, (7) 
α-methylstyrene, (8) Indene, (9) naphthalene, (10) bibenzyl, (11) benzene,1,1’-(1-
methyl-1,2-ethanediyl)bis-, (12) naphthalene,1,2,3,4-tetrahydro-2-phenyl, (13) 2-
phenylnaphthalene. 
 

A macro created by Infometrix, Inc. was used to convert the total ion 

chromatograms (TICs) into ASCII files and this involved using only the time 

frame of 1 – 30 minutes.  Following this, the ASCII files were converted into 

Excel files through the computer program Piroutte (Infometrix, Inc., Bothell, WA).  

The Excel files were then pre-treated in Microsoft Excel by background correcting 

(subtracting the minimum value of the data file from each data point) and 

normalizing each data point by dividing its intensity by the square root of the sum 

of the squares of all abundance values.4, 5  This eliminated variability in the data 

due to sample amount.  Next, the data was multiplied by 1,000,000 to guarantee 

that the y-axis values were large enough to interpret.  Target alignment followed, 

which is an important step because the pyrograms need to be aligned properly in 
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order for chemometric analysis to be accurate.  The target selection was 

performed by creating a new pyrogram which is the average of all pyrograms to 

be aligned.  The Euclidean distance was then measured using Microsoft Excel 

and XLSTAT2009.  The closest pyrogram to the averaged pyrogram was chosen 

as the target.   

 Following the alignment target selection, the pyrograms were converted to 

.cdf files using Piroutte, and these files were then used in the software program 

LineUp (Infometrix, Inc., Bothell, WA).  LineUp is a chromatographic line-up tool 

that is used to correct for differences due to minor changes and shifts in 

chromatograms.  The program uses the COW algorithm in which the 

chromatograms are aligned by piecewise linear stretching and compression of 

the time axis.110  Within the program, the slack parameter (warp) was set to 4 

and the segment size was set to 20.  Once the data was aligned, the files were 

converted back into .xls files and XLSTAT2009 was used to perform the 

chemometric analysis.  Figures 4.10 – 4.12 illustrate these processes, showing 

raw data, pre-treated data, and aligned data for one specific plastic example 

(LDPE).   
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Figure 4.10 Raw data of three replicates of LDPE. 
 

 
Figure 4.11 Background corrected and normalized data for three replicates of 
LDPE. 
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Figure 4.12 Aligned data for three replicates of LDPE. 
 

Before chemometrics was applied, the dataset had to be reduced in order 

for the programs to analyze them because the dataset exceeded the limits on the 

number of data points that XLSTAT can handle.  This was done by averaging 

every three time point scans together.  Since there originally was 0.225 seconds 

between every scan, the reduction in the number of time points did not reduce 

the chromatographic resolution.  This can be seen in Figures 4.13 and 4.14, 

which are zoomed in TICs of HDPE, with Figure 4.13 showing all time points and 

Figure 4.14 illustrating the averaged time points.   
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Figure 4.13 Portion of a TIC of HDPE showing all time points. 
 

 
Figure 4.14 Portion of a TIC of HDPE showing averaged time points. 
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4.3. Results and Discussion 

4.3.1. Statistical Results 

The AHC dendrogram for plastics is shown in Figure 4.15, where four 

distinct clusters are present based on the position of the truncation line, which 

was determined by a histogram of node positions.  Bifurcations to the right of the 

truncation line are considered to be meaningful in determining the number of 

classes.  By examination of the graphs of the central objects of each cluster 

(Figures 4.16 – 4.19), it can be seen that each group has a very distinct 

chromatogram, and this is consistent with the node positions in the dendrogram 

showing that the four classes bifurcate at a relatively large distance as compared 

to other similar samples.   
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Figure 4.15 Dendrogram Produced Using AHC. 
   

 
Figure 4.16 Central Object of Class 1 (LDPE). 
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Figure 4.17 Central object of Class 2 (PVC). 
 

 
Figure 4.18 Central object of Class 3 (PETE). 
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Figure 4.19 Central object of Class 4 (Polystyrene). 
 

The observations plot produced by PCA is illustrated in Figure 4.20.  The 

first two principal components captured 59.05% of the total variance of the 

population, with PC1 capturing 30.63% of the total variance and PC2 describing 

28.42% of the total variance.  Since this is a low amount of variance being 

described by the first two PCs, much of the information is present in higher PCs 

that these graphs are not illustrating.  PCA condensed the components, and only 

the first two were used which represented the most variance in the population, 

and hence is able to be viewed in two dimensions.  However, the total variance is 

still low.  Four clusters with some overlap are present in Figure 4.21, which is the 

same PCA observations plot as Figure 4.20 except it is color-coded to illustrate 

the class formation.  In addition, if the third PC was positive, a filled symbol was 

used; if the third PC was negative, an unfilled symbol was used.  This was done 
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in order to illustrate a three-dimensional effect.  Classes 1 and 2 appeared to be 

closely located, but using the third PC, they can be set apart.  

 

 
Figure 4.20 Observations Plot from PCA of Plastics Expressed in Terms of the 
First Two PCs.   
 

  
Figure 4.21 PCA observations plot color-coded to show the four classes from 
AHC clustering.   
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DA was then performed using the data from PCA; however, the Other 

plastic was removed.  Every PC has an associated eigenvalue with it that 

describes the variance, as well as the percent variance and a cumulative 

variance for all the principal components.  Several methods exist that assist in 

determining the significant number of principal components to use.  One method 

involves setting a targeted cumulative percentage of variance and using the 

number of principal components associated with that number.  This method was 

used in this research, and 95% was the selected cumulative variance.  Using this 

variance, the first nine principal components would be selected, accounting for 

95.83% of the total variance.  Another method involves using a scree plot, which 

displays eigenvalues against factor number.  A sudden drop or break in the plot 

is related to the number of significant principal components because after this 

drop, the plot remains consistent.  Based on the scree plot, four principal 

components would be used.  Lastly, the Kaiser criterion can be used to 

determine the significant amount of principal components to utilize.  Using this 

criterion, all eigenvalues greater than one would be considered significant, and 

this would apply to the first 24 principal components.    

The results of DA using the first nine principal components are shown in 

Figure 4.22, with 95.83% of the variance accounted for in two dimensions.  The 

plastic Other was removed from DA and external validation because there is no 

polymer to match this plastic and the training set should consist of knowns.  Four 

distinct groupings were used, and the assigned group membership was based 

upon the four AHC classes.  No overlap between the clusters exists, and the 
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cross-validation results reflect this, as seen in the confusion matrix results in 

Table 4.3, which shows the classification of each sample into the four groups.  

Samples located along the diagonal represent those that were correctly 

classified.  Overall, 100% of the samples were correctly classified. 

 

 
Figure 4.22 Observations Plot from DA.   
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Table 4.3 Confusion Matrix for the Cross-Validation Results from DA.   
 

From/To 
 

 
Class 1 

 

 
Class 2 

 
Class 3 

 
Class 4 

 
TOTAL 

 
% 

Correct 
 

Class 1 
 

 
9 

 
0 

 
0 

 
0 

 
9 

 
100.00 

 
Class 2 

 

 
0 

 
6 

 
0 

 
0 

 
9 

 
100.00 

 
Class 3 

 

 
0 

 
0 

 
3 

 
0 

 
3 

 
100.00 

 
Class 4 

 

 
0 

 
0 

 
0 

 
6 

 
6 

 
100.00 

 
TOTAL 

 

 
9 

 
6 

 
3 

 
6 

 
24 

 
100.00 

 

DA was also performed using nine classes (instead of four), in which each 

type of plastic was classified into its own class.  The first nine principal 

components were again used, and the DA observations plot can be seen in 

Figure 4.23, in which 90.24% of the total variance is accounted for in two 

dimensions.  Some overlap can be seen with these nine clusters, and this is 

evident when looking at the cross validation results in Table 4.4.  Samples 

located along the diagonal represent those that were correctly classified, while 

red samples outside of this diagonal are incorrect classifications.  Overall, 

91.67% of the samples were correctly classified, which is considered to be an 

excellent result.    
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Figure 4.23 Observations plot from DA using nine classes, in which each plastic 
is its own class.   
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Table 4.4 Confusion Matrix for the Cross-Validation Results from DA Using Nine Classes.   

From/To HDPE HDPEblack LDPE PETE PP PS PS 
Red PVC TOTAL % 

Correct 

HDPE 3 0 0 0 0 0 0 0 3 100 

HDPEblack 0 3 0 0 0 0 0 0 3 100 

LDPE 0 0 3 0 0 0 0 0 3 100 

PETE 0 0 0 3 0 0 0 0 3 100 

PP 0 0 0 0 3 0 0 0 3 100 

PS 0 0 0 0 0 2 1 0 3 66.67 

PS Red 0 0 0 0 0 1 2 0 3 66.67 

PVC 0 0 0 0 0 0 0 3 3 100 

TOTAL 3 3 3 3 3 3 3 3 24 91.67 
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The misclassifications occurred between Polystyrene and 

PolystyreneRed.  These misclassifications are reasonable because the only 

difference between these samples was the color; their chromatograms looked 

very similar and they were clustered originally into the same class.  Also, when 

looking at the DA observations plot (Figure 4.23), those two classes are 

overlapping.  

4.3.2. External Validation 

The polymer samples were used as supplemental data in a form of 

external validation.  The external validation results are shown in Table 4.5.  DA 

predicted which class the supplemental samples should be placed.  Correct 

placement was determined by seeing if the polymer was placed into the same 

class as the plastic containing that polymer (i.e if the PVC polymer was placed 

into the same class as the plastic PVC sample).  The four classes from AHC 

were used and overall, the performance of the classification model was good, 

with 77.78% of samples correctly assigned.  In this external validation, the 

samples that were misclassified were the two chlorinated polyethylene samples.  

Both of these were placed into the class that contained PVC.  However, a 

chlorinated polyethylene sample would have a very similar structure to PVC and 

therefore under a similar pyrolysis breakdown (side group scission), so this 

placement of the polymer in the external validation is correct.  PETE did not have 

a polymer standard to use in the external validation so Class 3 was not 

represented.   
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Table 4.5 Confusion Matrix for the External Validation Results of the 
Supplemental Data from DA. 

 
From/To 

 

 
Class 1 

 

 
Class 2 

 
Class 4 

 
TOTAL 

 
% 

Correct 
 

Class 1 
 

1 2 0 3 33.33 

 
Class 2 

 
0 4 0 4 100.00 

 
Class 4 

 
0 0 1 1 100.00 

 
TOTAL 

 
1 6 1 8 77.78 

 

4.4. Conclusions 

Based on the results discussed above, Py-GC/MS is an appropriate and 

efficient step in the analysis of plastics and polymers due to qualities such as its 

convenience and lack of physical pretreatment to the sample preparation.  

Pyrolysis allowed for the analysis of components that are otherwise unable to be 

analyzed by just GC/MS alone.  It degraded molecules into smaller, more volatile 

compounds that could be analyzed using the GC/MS.94, 99   

Chemometrics was used as a guide in interpreting these pyrolysis results, 

and overall, the comparison of plastic and polymer samples using AHC, PCA, 

and DA resulted in several findings.  It distinguished between a collection of 

plastics, as seen by the four distinct groups that formed in which also each 

plastic replicate remained clustered with its other replicates.  In addition, color 

samples were placed into the same overall grouping as their non-colored 
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samples when using four classes but they were in separate groups within this 

large cluster.  Therefore, even though the chromatograms of a colored versus 

non-colored sample of the same type of plastic appeared visually similar, the 

color must have some affect on the overall pyrolysis outcome. 
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CHAPTER 5. FUTURE DIRECTIONS 

The work in this research has been a basis for future research and 

determining whether these applications are worth pursuing for potential 

implementation in routine analysis.  Specifically, will chemometrics be able to 

assist forensic scientists in quantitatively analyzing various types of class 

evidence, and is MSP an appropriate technique for analyzing clear coats and 

fiber dyes.  In order to determine this, other instrumentation should be used on 

these samples to see if the results are similar to the conclusions drawn in this 

research.  Lastly, chemometrics is shown to cluster samples into groupings and if 

these groupings remain consistent using various instrumentation, then a plan to 

train scientists in chemometrics would be desirable. 

 When focusing on clear coats, several directions could be taken in the 

future.  First, different sampling techniques could be tried to ensure that the 

chosen method of paint peels is the optimum method.  Lensbond was shown to 

be a detriment to data analysis and it would be useful to determine if other 

mounting media would do the same.  In addition, a larger sample population 

should be collected to try to encompass a variety of cars of different makes, 

models, years, and foreign or domestic to further prove that make, model, and 

year are not affecting class formation, as evident in this research.  Specifically, 

the remaining samples in IUPUI’s clear coat collection should be analyzed, and 
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samples of the same make, model, and year would be beneficial for further 

comparisons.  Even if statistical results may not vary, it is ideal for comparison 

purposes to have a complete collection.  More instrumental techniques should 

also be employed, such as FTIR and Raman spectroscopy, to see if the clusters 

remain the same.   

Lastly, it is imperative to determine why the spectra are separating into the 

specific clusters and what factors are causing the formation of groups.  Potential 

factors could include the UV absorber and/or binder system41 or the 

migration/weathering of the UV-absorbers over time.112  When dealing with the 

UV absorber and binder system, a possible procedure could be to contact the 

manufacturer of the clear coat samples to determine information about the 

exemplars such as the UV absorbers or light stabilizers that were used.  Once 

this information is known, it would be important to obtain the standards of these 

absorbers and stabilizers and then analyze them using MSP.  This information 

may be difficult to come by; however, it is possible to obtain, as seen in 

Stoecklein’s research involving clear coats.41  More likely, the development of 

analytical methods to correlate the absorbers present and the class the samples 

were placed in should occur.  As previously mentioned, utilizing instrumentation 

such as pyrolysis GC/MS or extract the components of the clear coat using 

LC/MS would be imperative in assigning chemical meaning to the clear coats. 

 With fiber dyes, the first issue to consider is trying different preprocessing 

techniques, especially to correct the sloping baseline.  A possible option is to fit 

the sloping baseline to a straight line in order to do background subtraction 
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instead of subtracting the minimum.  By correcting the baseline, this will ensure 

that its features are not affecting the formation of clusters.  The first derivative 

could also be used to see if that would remove any excess noise in the data.  

Further, when performing chemometrics, it would be beneficial to view the 3-D 

representation of the PCA observations plot.  In these data sets, the two-

dimensional plots often had a low amount of the variance accounted for and 

therefore, a 3-D plot might be able to illustrate more variation and show 

distinctions between classes that appear to overlap in two-dimensions.   

 More information about the dyes would be beneficial, such as finding all 

structures for the dyes.  This could assist in determining the formation of clusters 

to see if they are based on structure or perhaps just visual color.  Further, 

extracting the dyes from the fiber would provide more details about the dyes.  

TLC can be used in addition to MSP because MSP is generally held to be a 

complementary technique to TLC and running both techniques is a long-standing 

practice.78-80, 113, 114  TLC and MSP have been used to compare dye batches and 

this would be a beneficial aspect to explore in this research.83, 91  HPLC is 

another possible technique that could be used to analyze the dye after it has 

been extracted.  Considerations to regard when using this technique are the 

chemical nature of the dye, possible extraction solvents, and possible 

degradation of the sample.  The results of the dye extraction could then be 

analyzed with chemometrics and a comparison of the clusters with the MSP 

clusters could be performed to assess the validity of the techniques.  Another 

technique that could be used for fiber analysis is Raman spectroscopy, which 
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has steadily been established as a technique in this area.70, 76  Analyzing the fiber 

dye by itself as well as on the fiber would be beneficial to note if any changes in 

the spectra are present.   

 Just as with clear coats, a larger sample collection of red dyes on cotton 

would be advantageous in ascertaining if the sample population is adequately 

represented.  Dyes such as Direct Red 1 would be beneficial in increasing the 

sample size and thus making more meaningful conclusions.  With this, the 

creation of a sufficient training set is necessary for classification to accurately 

occur.   Additional dyes should be added to the collection as well as the same 

dyes but from different companies.  This would determine if dyeing processes 

could affect class formation.  Class formation could also be affected by 

environmental factors such as light.  Over time, dye loss from the fiber was 

experienced so determining the cause of this would be beneficial for future 

research.  Possible causes of this could be light, air exposure, or the dye being in 

glycerin (the mounting medium).  An experiment can be designed to test these 

possible causes once more samples are collected.  First, samples can be 

prepared in glycerin and microscopically examined at various time intervals 

(days) to determine which fibers experience loss of the dye and how long it takes 

for this to happen.  Next, different mounting mediums can be tested in a similar 

fashion to see if they act similarly to the glycerin.  In addition, storage of the 

samples can be experimented with by preparing slides and leaving the slide 

holders in the open room or in a dark drawer to see if light quickens the dye 

leeching process.  If the glycerin is discovered to be the reason why the dye is 



 

 

137  

diffusing from the fiber, experiments can be designed to test if a dye can be 

extracted by soaking it in glycerin. 

 SWGMAT fiber guidelines state that occasionally, an aromatic solvent 

reduced mounting medium such as XAM can adversely affect some fiber dyes by 

dissolving them and allowing them to diffuse from the fiber.  However, this 

normally happens very quickly after mounting.  The guidelines also state that a 

mounting medium, particularly solvent-based media, can have a detrimental 

effect on the fiber if mounted for a long time.87  Based on these statements, 

testing glycerin’s effect on the red dyes on cotton fibers would be beneficial, even 

if glycerin is an approved mounting medium for fibers.  Specifically, fiber dyes 

Reactive Red 2 (Fiber E), Reactive Red 228 (Fiber F), Direct Red C-380 (Fiber 

A), Reactive Red 120 (Fiber B), and Direct Red 84 (Fiber 713) should be tested 

since those had noticeable dye loss during short and long-term storage of 

mounted samples.  In short-term storage, dyes Reactive Red 198 (Fiber 686) 

and Reactive Red 239/241 (Fiber 695) had one of ten fibers experience the 

dissolving of the dye so those should be monitored closely as well.  All other 

dyes did not experience dye loss. 

 Dye uptake clearly varied within certain fibers, as previously mentioned.  

When analyzing areas of different shades of the dye within a fiber, outliers 

occurred.  Therefore, a way to control for the intra-fiber variability should be 

established.  SWGMAT guidelines suggest analyzing areas of a similar color but 

this leads to subjectivity due to the observer’s eyesight and how they see the 

fiber colors.87  A proposed method would be to follow the SWGMAT guidelines of 
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analyzing areas of similar color, and the most prevalent color should be 

analyzed.  External validations using other observers/researchers would be 

valuable in order to determine if the similar prevalent color is being selected.  In 

addition, another intra-laboratory comparison should be performed but this time 

using the most frequent shade of the dye in the fiber (the medium shade). By 

doing this, the clusters may be more revealing. 

 The plastics research can be improved in several ways.  First, an effort 

must be made to ensure that sample thickness is kept consistent.  The solid 

polymers and plastics were shaved from the original sample and approximately 

the same size; however, variations most likely occurred.  The powder samples 

were compacted together using a press and then a small section was removed 

from the larger piece.  Again, the size was approximately the same for all 

samples, but variations occurred.  An appropriate amount of sample is necessary 

to avoid peak broadening, and consistent sample sizes will assist in obtaining 

reproducibility.  In real situations and cases, consistent sample size is needed for 

optimum comparative conclusions.   

 A much larger sample size will be necessary for future research and 

comparative studies.  Specifically, polymer standards should be used that will 

match with the plastics being analyzed and therefore, an external validation study 

could be appropriately achieved.  Further, a larger training set will be more useful 

in chemometric analyses to draw conclusions and make comparisons of groups.  

More replicates of the same sample would also assist in giving the model more 

data points since three or more is generally accepted.  Besides a larger data set, 
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more similar types of plastics would be advantageous, as well as more samples 

that would be found at a crime scene.  In addition, comparing methodologies of 

pyrolysis methods would be a valuable assessment.  For example, the Pyroprobe 

method used in this research could be compared to a Shimadzu pyrolysis unit to 

see if the chemometric results are similar. 

 When performing chemometrics, a 3-D PCA observations plot would be 

beneficial since the amount of variability described in two dimensions was very 

low.  Because of this, more variability could have been explained using more 

PCs, as was evident in Figure 4.21 when a color-coding scheme was used to 

distinguish clusters that appeared to overlap but were actually separated when 

using PC3. 

 Lastly, peak alignment was necessary to perform due to the shifts that 

occur in chromatograms.  However, the peak alignment method does have 

disadvantages; namely, different parameters can be set during the process.  No 

particular requirement or set standard is required to align the peaks and 

therefore, each operator is allowed to choose what they deem the best possible 

fit of the peaks.  A consistent parameter was set for the slack and segment size 

but each chromatogram is different so the set parameter affected the 

chromatograms differently.  Different parameters would have optimized the 

individual results for each chromatogram, and therefore, the percent match may 

have been higher.  Choosing the parameters is also a difficult task.  The segment 

size should be a small number to get better alignment, but too small of a number 

could result in over-fitting the data.  In addition, a larger slack size provides more 
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flexibility and freedom to move features of the chromatogram, but it also allows 

strong deformation and could match features that the chromatogram did not 

originally resemble.110  Based on this, more time to investigate the various 

combinations of these parameters would result in a better understanding of the 

optimum alignment values.  
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Appendix A. Clear Coats (Averaged Spectra) 
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Figure A.2  
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Figure A.3  

 

 

 

 

 

 

200 250 300 350 400

N
O

R
M

A
L

IZ
E

D
 A

B
SO

R
B

A
N

C
E

WAVELENGTH (nm)

sample21

sample22

autothaneHS

swl021



 

 

157 

 

Figure A.4  
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Figure A.5  
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Figure A.6  
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Figure A.7  
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Figure A.8 
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Figure A.9 
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Figure A.10 
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Figure A.11 
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Figure A.12 
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Figure A.13 
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Figure A.14 
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Figure A.15 
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Figure A.16 
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Figure A.17 
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Figure A.18 
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Figure A.19 
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Appendix B. Global Dye Averages 

 

Figure B.1 Fiber A (IUPUI – first set) 

 

 

350 400 450 500 550 600 650 700 750 800

N
O

R
M

A
L

IZ
E

D
 A

B
SO

R
B

A
N

C
E

WAVELENGTH (nm)



 

 

174 

 

Figure B.2 Fiber B (IUPUI – first set) 

 

 

 

 

 

 

 

 

350 400 450 500 550 600 650 700 750 800

N
O

R
M

A
L

IZ
E

D
 A

B
SO

R
B

A
N

C
E

WAVELENGTH (nm)



 

 

175 

 

Figure B.3 Fiber C (IUPUI – first set) 
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Figure B.4 Fiber D (IUPUI – first set) 
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Figure B.5 Fiber E (IUPUI – first set) 
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Figure B.6 Fiber F (IUPUI – first set) 
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Figure B.7 Fiber A (IUPUI – first set; supplemental data) 
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Figure B.8 Fiber B (IUPUI – first set; supplemental data) 
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Figure B.9 Fiber C (IUPUI – first set; supplemental data) 
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Figure B.10 Fiber D (IUPUI – first set; supplemental data) 
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Figure B.11 Fiber E (IUPUI – first set; supplemental data) 
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Figure B.12 Fiber F (IUPUI – first set; supplemental data) 
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Figure B.13 Fiber A (ISP) 
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Figure B.14 Fiber B (ISP) 
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Figure B.15 Fiber C (ISP) 

 

 

 

 

 

350 400 450 500 550 600 650 700 750 800

N
O

R
M

A
L

IZ
E

D
 A

B
SO

R
B

A
N

C
E

WAVELENGTH (nm)



 

 

188 

 

Figure B.16 Fiber D (ISP) 
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Figure B.17 Fiber E (ISP) 
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Figure B.18 Fiber F (ISP) 
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Figure B.19 Fiber 713 (ISP) 
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Figure B.20 Fiber 685 (ISP) 
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Figure B.21 Fiber 686 (ISP) 
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Figure B.22 Fiber 695 (ISP) 
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Figure B.23 Fiber 721 (ISP) 
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Figure B.24 Fiber 722 (ISP) 

 

 

 

 

 

 

350 450 550 650 750

N
O

R
M

A
L

IZ
E

D
 A

B
SO

R
B

A
N

C
E

WAVELENGTH (nm)



 

 

197 

 

Figure B.25 Fiber A (IUPUI – newest set) 
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Figure B.26 Fiber B (IUPUI – newest set) 
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Figure B.27 Fiber C (IUPUI – newest set) 
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Figure B.28 Fiber D (IUPUI – newest set) 
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Figure B.29 Fiber E (IUPUI – newest set) 
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Figure B.30 Fiber F (IUPUI – newest set) 
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Figure B.31 Fiber 713 (IUPUI – newest set) 
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Figure B.32 Fiber 685 (IUPUI – newest set) 
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Figure B.33 Fiber 686 (IUPUI – newest set) 
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Figure B.34 Fiber 695 (IUPUI – newest set) 
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Figure B.35 Fiber 721 (IUPUI – newest set) 
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Figure B.36 Fiber 722 (IUPUI – newest set) 
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Figure B.37 Fiber A (IUPUI – newest set; supplemental data) 
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Figure B.38 Fiber B (IUPUI – newest set; supplemental data) 
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Figure B.39 Fiber C (IUPUI – newest set; supplemental data) 
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Figure B.40 Fiber D (IUPUI – newest set; supplemental data) 
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Figure B.41 Fiber E (IUPUI – newest set; supplemental data) 
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Figure B.42 Fiber F (IUPUI – newest set; supplemental data) 
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Figure B.43 Fiber 713 (IUPUI – newest set; supplemental data) 
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Figure B.44 Fiber 685 (IUPUI – newest set; supplemental data) 
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Figure B.45 Fiber 686 (IUPUI – newest set; supplemental data) 
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Figure B.46 Fiber 695 (IUPUI – newest set; supplemental data) 
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Figure B.47 Fiber 721 (IUPUI – newest set; supplemental data) 
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Figure B.48 Fiber 722 (IUPUI – newest set; supplemental data) 
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Appendix C. Polymer Standards 

 

Figure C.1 Chromatogram of Polyethylene (25% chlorine); (1) 
methylenecyclopropane; (2) benzene; (3) toluene; (4) benzocyclobutene; (5) 

indene; (6) naphthalene; (7) 3-methyl-3-phenyl-cyclopropene; (8) 
naphthalene, 1-methyl-; (9) naphthalene, 1-methyl-; (10) anthracene 
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Figure C.2 Chromatogram of Polyethylene (48% chlorine); (1) hydrogen 
chloride; (2) benzene; (3) toluene; (4) ethylbenzene; (5) styrene; (6) indene; 
(7) naphthalene; (8) naphthalene, 1-methyl-; (9) naphthalene, 1-methyl-; (10) 

fluorene; (11) phenanthrene 
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Figure C.3 Chromatogram of Polyethylene, high density; (1) 2-Butene, (E)-; 
(2) 1-hexene; (3) 1-heptene; (4) 1-octene; (5) 1,8-nonadiene; (6) 1-nonene; 

(7) nonane; (8) 1,9-decadiene; (9) 1-decene; (10) decane; (11) 1,10-
undecadiene; (12) 1-undecene; (13) undecane; (14) 1,11-dodecadiene; (15) 

1-dodecene; (16) dodecane 
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Figure C.4 Chromatogram of Polypropylene, chlorinated; (1) hydrogen 
chloride; (2) toluene; (3) benzene, 1,3-dimethyl-; (4) benzene, 1,3,5-trimethyl-; 

(5) 1H-indene,1-methylene-; (6) naphthalene, 1-methyl- 
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Figure C.5 Chromatogram of Polypropylene, isotactic; (1) cyclopropane; (2) 1-
pentene, 2-methyl-; (3) 2,4-dimethyl-1-heptene; (4) cyclopentane, 1,2,3,4,5-

pentamethyl-; (5) 1-decene, 2,4-dimethyl-; (6) 2-isopropyl-5-methyl-1-
heptanol; (7) 3-Eicosene, (E)-; (8) 1,19-Eicosadiene 
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Figure C.6 Chromatogram of Polystyrene; (1) toluene; (2) styrene; (3) α-
methylstyrene; (4) Dibenzyl; (5) naphthalene, 1,2,3,4-tetrahydro-2-phenyl 
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Figure C.7 Chromatogram of PVC, carboxylated 1.8%; (1) hydrogen chloride; 
(2) benzene; (3) 2-propenoic acid, 2-methyl-,methylester; (4) toluene; (5) 

styrene; (6) Indene; (7) naphthalene; (8) naphthalene, 2-methyl-; (9) biphenyl; 
(10) fluorene; (11) anthracene 
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Figure C.8 Chromatogram of PVC, viscosity 1.26; (1) hydrogen chloride; (2) 
benzene; (3) toluene; (4) styrene; (5) Indene; (6) naphthalene; (7) naphthalene, 

2-methyl-; (8) biphenyl; (9) fluorene; (10) anthracene 
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