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Rikki S. Enzor 

THE FANCONI ANEMIA SIGNALING NETWORK REGULATES 

THE MITOTIC SPINDLE ASSEMBLY CHECKPOINT 

Fanconi anemia (FA) is a heterogenous genetic syndrome characterized 

by progressive bone marrow failure, aneuploidy, and cancer predisposition. It is 

incompletely understood why FA-deficient cells develop gross aneuploidy leading 

to cancer. Since the mitotic spindle assembly checkpoint (SAC) prevents 

aneuploidy by ensuring proper chromosome segregation during mitosis, we 

hypothesized that the FA signaling network regulates the mitotic SAC. 

A genome-wide RNAi screen and studies in primary cells were performed 

to systematically evaluate SAC activity in FA-deficient cells. In these   

experiments, taxol was used to activate the mitotic SAC. Following taxol 

challenge, negative control siRNA-transfected cells appropriately arrested at the 

SAC. However, knockdown of fourteen FA gene products resulted in a weakened 

SAC, evidenced by increased formation of multinucleated, aneuploid cells. The 

screen was independently validated utilizing primary fibroblasts from patients 

with characterized mutations in twelve different FA genes. When treated with 

taxol, fibroblasts from healthy controls arrested at the mitotic SAC, while all FA 

patient fibroblasts tested exhibited weakened SAC activity, evidenced by 

increased multinucleated cells. Rescue of the SAC was achieved in FANCA 

patient fibroblasts by genetic correction. Importantly, SAC activity of FANCA was 
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confirmed in primary CD34+ hematopoietic cells. Furthermore, analysis of 

untreated primary fibroblasts from FA patients revealed micronuclei and 

multinuclei, reflecting abnormal chromosome segregation. 

Next, microscopy-based studies revealed that many FA proteins localize 

to the mitotic spindle and centrosomes, and that disruption of the FA pathway 

results in supernumerary centrosomes, establishing a role for the FA signaling 

network in centrosome maintenance. A mass spectrometry-based screen 

quantifying the proteome and phospho-proteome was performed to identify 

candidates which may functionally interact with FANCA in the regulation of 

mitosis. Finally, video microscopy-based experiments were performed to further 

characterize the mitotic defects in FANCA-deficient cells, confirming weakened 

SAC activity in FANCA-deficient cells and revealing accelerated mitosis and 

abnormal spindle orientation in the absence of FANCA. 

These findings conclusively demonstrate that the FA signaling network 

regulates the mitotic SAC, providing a mechanistic explanation for the 

development of aneuploidy and cancer in FA patients. Thus, our study 

establishes a novel role for the FA signaling network as a guardian of genomic 

integrity. 

D. Wade Clapp, MD, Chair 
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CHAPTER ONE 

INTRODUCTION 

Fanconi anemia 

Fanconi anemia (FA) is a rare genetic disease that results from 

inactivating mutations in any one of sixteen FA genes, which are named FANCA, 

-B, -C, -D1, -D2, -E, -F, -G, -I, -J, -L, -M, -N, -O, -P, and -Q (Strathdee, Duncan et 

al. 1992, Strathdee, Gavish et al. 1992, Lo Ten Foe, Rooimans et al. 1996, de 

Winter, Waisfisz et al. 1998, de Winter, Leveille et al. 2000, de Winter, Rooimans 

et al. 2000, Timmers, Taniguchi et al. 2001, Howlett, Taniguchi et al. 2002, 

Meetei, de Winter et al. 2003, Meetei, Levitus et al. 2004, Levran, Attwooll et al. 

2005, Meetei, Medhurst et al. 2005, Rahman, Seal et al. 2007, Reid, Schindler et 

al. 2007, Sims, Spiteri et al. 2007, Smogorzewska, Matsuoka et al. 2007, Vaz, 

Hanenberg et al. 2010, Kim, Lach et al. 2011, Gille, Floor et al. 2012, Bogliolo, 

Schuster et al. 2013, Kupfer 2013). Additional FA genes may remain to be 

discovered. One FA gene, FANCB, demonstrates an X-linked recessive 

inheritance pattern, but the majority (fifteen of the sixteen known FA genes, 

representing ~98% of cases of FA) are inherited in an autosomal recessive 

fashion (Meetei, Levitus et al. 2004, Auerbach 2009, Oostra, Nieuwint et al. 

2012). FA affects approximately one in 360,000 live births (Lin and Kutler 2013), 

and approximately one in 300 people are carriers of an FA mutation (D'Andrea 

2010). Three of the FA genes account for ~85% of the disease. FANCA 

mutations are the most common and occur in ~60% of FA patients, while FANCC 
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mutations account for ~15% of cases and FANCG mutations account for ~10% of 

cases of FA (Taniguchi and D'Andrea 2006, Auerbach 2009). The other ~15% of 

FA patients have mutations in one of the other twelve genes, and the relative 

prevalence of mutations in each gene is 5% or less (Gille, Floor et al. 2012). 

While FA is widely heterogenous in its presentation, the defining 

characteristics of FA include developmental abnormalities, pancytopenia 

progressing to bone marrow failure (BMF), and a high predisposition to a variety 

of cancers, particularly acute myeloid leukemia (AML), myelodysplastic 

syndrome (MDS), and squamous cell carcinomas (SCC) (Kutler, Singh et al. 

2003, Bagby and Alter 2006, Masserot, Peffault de Latour et al. 2008, Auerbach 

2009). Approximately 70% of FA patients have notable physical abnormalities 

which can aid in the diagnosis of FA (Giampietro, Verlander et al. 1997). 

Characteristic features include unique facial features, an absent thumb, and a 

deep cleft between the thumb and forefinger. Features which are less specific to 

FA include skeletal abnormalities, skin hyperpigmentation and café-au-lait spots, 

malformation of the reproductive organs and kidneys, small head, small eyes, 

and short stature (Bagby and Alter 2006, Alter 2008, D'Andrea 2010). 

FA is typically diagnosed between five and ten years of age by the 

recognition of low blood cell counts in multiple lineages (Reuter, Medhurst et al. 

2003, Oostra, Nieuwint et al. 2012). Pancytopenia is the first sign of FA in ~90% 

of cases. However, the onset of AML or another cancer can proceed 

pancytopenia (Velez-Ruelas, Martinez-Jaramillo et al. 2006, Alter, Rosenberg et 

al. 2007). Patients of the FANCD1/BRCA2 (breast cancer susceptibility 2) and 
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FANCN/PALB2 (partner and localizer of BRCA2) subtypes are considered to 

have a more severe form of FA and often develop AML, medulloblastoma, or 

Wilms’ tumor during the first few years of life (Wagner, Tolar et al. 2004, Alter, 

Rosenberg et al. 2007, Reid, Schindler et al. 2007). FANCC patients with the 

Ashkenazi Jewish mutation (deletion of exon 4) also frequently develop AML at a 

young age (Auerbach 1997, Gillio, Verlander et al. 1997). 

When FA was first discovered by the Swiss pediatrician Guido Fanconi in 

1927, the underlying pancytopenia was untreatable, and FA was fatal as 

pancytopenia progressed to overt BMF (Fanconi 1927, Bagby and Alter 2006). 

The development of modern blood banking technology in the US in the early- to 

mid-twentieth century enabled the replacement of an FA patient’s red blood cells 

and platelets, improving survival rates. However, FA patients were still highly 

susceptible to bacterial and fungal infections due to low white blood cell counts, 

and neutropenic infections became the major cause of death. With only the 

supportive therapy of blood product administration, few FA patients live into their 

twenties (Scagni, Saracco et al. 1998, D'Andrea, Dahl et al. 2002, Green and 

Kupfer 2009). Fortunately, treatment options for FA have improved over time. 

Several treatment options currently exist for the hematopoietic defects in 

FA. Androgens and hematopoietic growth factors stimulate hematopoiesis and 

can be used to manage the symptoms of pancytopenia, but over time FA patients 

become refractory to these therapies (D'Andrea 2010). The most effective 

treatment for FA is hematopoietic stem cell transplantation (HSCT), which cures 

the hematopoietic manifestations of FA (MacMillan, Hughes et al. 2011). 
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The protocols for HSCT in FA were originally based on those for patients 

with acquired aplastic anemia. FA patients exhibited severe graft-versus-host 

disease (GVHD) and high toxicity, resulting in poor survival (Gluckman, Devergie 

et al. 1980, Gluckman, Devergie et al. 1983). It was discovered that FA patients 

are hypersensitive to irradiation and to cyclophosphamide, a DNA crosslinking 

agent (Berger, Bernheim et al. 1980a, Auerbach, Adler et al. 1983, Gluckman, 

Berger et al. 1984). The myeloablative regimen was modified by lowering the 

doses of irradiation and cyclophosphamide used with FA patients, resulting in 

improved survival (Gluckman, Berger et al. 1984). However, decreased 

myeloablation led to decreased engraftment. Fludarabine has been added to the 

standard regimen for myeloablative preparation for HSCT in FA patients. The 

result has been a dramatic improvement in patient outcomes, with the vast 

majority of patients exhibiting successful engraftment and low levels of toxicity 

from the myeloablative regimen (Aker, Varadi et al. 1999, Boulad, Gillio et al. 

2000, Tan, Wagner et al. 2006, Yabe, Inoue et al. 2006, Chaudhury, Auerbach et 

al. 2008, Hamidieh, Alimoghaddam et al. 2011, Shimada, Takahashi et al. 2012). 

Furthermore, the use of T-cell depleted hematopoietic stem cells for 

transplantation has improved the rates of GVHD (Boulad, Gillio et al. 2000, 

Chaudhury, Auerbach et al. 2008, Huck, Hanenberg et al. 2008). 

Using current regimens, HSCT is generally successful when an HLA-

identical sibling donor is available (Balci, Akdemir et al. 2008, Huck, Hanenberg 

et al. 2008, Ayas, Saber et al. 2013). Transplants utilizing hematopoietic stem 

cells from bone marrow (BM), mobilized peripheral blood, and umbilical cord 
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blood from closely-matched related and unrelated donors have been performed 

successfully in FA patients (Aker, Varadi et al. 1999, Boulad, Gillio et al. 2000, 

MacMillan, Auerbach et al. 2000, de la Fuente, Reiss et al. 2003, Yabe, Inoue et 

al. 2006, Chaudhury, Auerbach et al. 2008). With current myeloablative 

preparatory regimens, transplantation with UCB or T-cell depleted BM both result 

in high levels of engraftment and relatively low levels of GVHD, when the HLA 

types are identical or only differ at a single locus (Tan, Wagner et al. 2006, 

Gluckman, Rocha et al. 2007). 

Umbilical cord blood (UCB) transplantation and FA have a unique history. 

The first successful UCB transplants were performed in FA patients (Gluckman, 

Broxmeyer et al. 1989, Broxmeyer, Gluckman et al. 1990, Gluckman, Devergie et 

al. 1990). Furthermore, the first combined utilization of preimplantation genetic 

diagnosis and HLA matching was performed in the context of HSCT for FA 

(Verlinsky, Rechitsky et al. 2001). The best outcomes in FA patients result from 

HSCT with BM or UCB from an HLA-identical sibling donor (Huck, Hanenberg et 

al. 2008, MacMillan and Wagner 2010). However, most FA patients do not have 

an HLA-identical, non-FA sibling. Using in vitro fertilization with preimplantation 

genetic testing and HLA typing, parents of an FA patient can have an HLA-

identical child without FA. UCB can be collected at delivery and transplanted into 

the sibling with FA. Two independent cases successfully utilizing this approach 

were reported (Bielorai, Hughes et al. 2004, Grewal, Kahn et al. 2004). 

While HSCT cures the hematopoietic disease in FA patients, it does not 

decrease predisposition to solid tumors. Long-term follow-up studies indicate that 
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40% of transplanted FA patients will develop solid tumors within 15-20 years of 

transplant (Deeg, Socie et al. 1996). Prior to HSCT, AML is the most common 

cancer in FA patients. Afterward, SCC is the most common. 

Because predisposition to cancer is a major feature of FA, preventive 

measures, cancer screening, and cancer treatment are important aspects of an 

FA patient’s care (D'Andrea 2010). Cancer is difficult to treat in FA patients 

because they are hypersensitive to radiation and many chemotherapeutic agents 

including cyclophosphamide and cisplastin, the drugs commonly used to treat 

AML and SCC respectively (Green and Kupfer 2009, Scheckenbach, 

Wagenmann et al. 2012). A thorough understanding of the molecular 

pathogenesis of FA is needed and may enable the development of better 

treatment options for FA patients. 

Known biological functions of the FA signaling network 

The biomolecular study of FA is a relatively young field. The cloning of the 

first two FA genes, FANCC and FANCA, occurred in 1992 and 1996, respectively 

(Strathdee, Duncan et al. 1992, Strathdee, Gavish et al. 1992, Foe, Rooimans et 

al. 1996). FANCG became the third FA gene identified in 1998 (de Winter, 

Waisfisz et al. 1998). The discovery and cloning of novel FA genes has 

continued through the present time, and our molecular understanding of the 

pathogenesis of FA is continuing to evolve. Table 1-1 presents a complete list of 

the FA genes/proteins including years discovered and selected molecular 

features. 
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Gene Other names 
Year 

identi-
fied 

Chromo-
somal 

location 

Known 
functional 

motifs 

Canonical 
FA 

group 
FANCA 1996 16q24.3 NLS, NES Core complex 
FANCB 2004 Xp22.31 NLS Core complex 
FANCC 1992 9q22.3 None Core complex 
FANCE 2000 6p21.22 NLS Core complex 
FANCF  2000 11p15 none Core complex 
FANCG XRCC9 1998 9p13 TPRs Core complex 
FANCL PHF9 2003 2p16.1 E3 ligase Core complex 

FANCM 2005 14q21.3 ATPase, DNA 
translocase Core complex 

FANCD2  2001 3p25.3 none ID complex 
FANCI KIAA1794 2007 15q25-26 none ID complex 

FANCD1 BRCA2 2002 13q12.13 BRC repeats Downstream 
FANCJ BACH1/BRIP1 2005 17q22-24 ATPase, DNA helicase Downstream 
FANCN PALB2 2007 16p12 WD40 domain Downstream 
FANCO RAD51C 2010 17q23 RAD51 homolog Downstream 
FANCP SLX4 2011 16p13.3 endonuclease Downstream 
FANCQ ERCC4/XPF4 2013 16p13.12 endonuclease Downstream 

Table 1-1. Summary of known FA genes/proteins. This table summarizes 
basic information about the known FA genes and their protein products, including 
name, chromosomal location, and the year when each gene was identified as an 
FA gene. Additionally, known functional motifs of the FA proteins and their roles 
in the canonical DNA damage pathway are listed. This table was adapted from 
Table 1 in Yale J Biol Med. 86(4): 491–497 (Kupfer 2013). The year when each 
FA gene was identified was based on the earliest publication which could be 
found identifying the chromosomal location. In many cases, the FA gene's 
chromosomal location was unknown when the complementation group was 
named. In these cases, the publication year for positional cloning and 
identification of the chromosomal location is given. In cases where a previously 
known gene was subsequently identified as an FA protein, the year when the 
gene was published as a novel FA complementation group is used. The 
references used to determine the discovery year for each FA gene are given at 
the end of the first paragraph of the current chapter. 
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The FA proteins are known to cooperate with one another and with 

BRCA1 (breast cancer susceptibility protein 1) in a canonical pathway which 

participates in the repair of DNA interstrand crosslink (ICL) damage during the S-

phase checkpoint (Grompe and D'Andrea 2001). The FA/BRCA DNA repair 

pathway is diagramed in Figure 1-1 on the next page and summarized in this and 

subsequent paragraphs. As the initial step of the canonical FA/BRCA pathway, 

eight of the FA proteins (FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, 

FANCL, and FANCM) travel to the nucleus and assemble into a multiprotein core 

complex (CC) (Green and Kupfer 2009). The Fanconi anemia-associated 

proteins FAAP20, FAAP24, and FAAP100 are also part of the S-phase CC 

(Ciccia, Ling et al. 2007, Ling, Ishiai et al. 2007, Ali, Pradhan et al. 2012, Leung, 

Wang et al. 2012). FANCM has seven helicase domains which enable it to 

interact directly with chromatin (Meetei, Medhurst et al. 2005). It is believed that 

FANCM recognizes damaged DNA, recruits the other FA CC members to the 

nucleus, and acts as a scaffold for CC assembly (Kim, Kee et al. 2008, Deans 

and West 2011). FANCA, FANCB, and FANCE each have a nuclear localization 

sequence (NLS) (Lightfoot, Alon et al. 1999, de Winter, Leveille et al. 2000, 

Meetei, Levitus et al. 2004), and they are believed to help FANCG, FANCL, and 

FANCC respectively to translocate into the nucleus (Medhurst, Laghmani et al. 

2006). 
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Figure 1-1. The canonical FA/BRCA DNA repair pathway responds to DNA 
interstrand crosslink (ICL) damage during interphase. FA proteins which 
comprise the core complex (CC) are shown in blue, and Fanconi anemia-
associated proteins (FAAPs) which associate with the FA CC are depicted in 
gray. The FA CC, acting as a multisubunit ubiquitin ligase, activates FANCD2 
and FANCI by adding a single ubiquitin moiety to each. The FANCD2/FANCI 
heterodimer (ID complex) is green, and ubiquitin groups (Ub) are depicted as 
light green circles attached to FANCD2 and FANCI. The six downstream FA 
proteins are gold, while BRCA1—which physically interacts with FANCA, with 
FANCJ/BACH1/BRIP1 and with FANCN/PALB2—is shown in yellow. 
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Once assembled, the nuclear FA CC acts as a multisubunit ubiquitin 

ligase for FANCD2 and FANCI (ID complex) (Alpi and Patel 2009). While FANCL 

has the catalytic E3 ubiquitin ligase activity (Meetei, de Winter et al. 2003) and 

FANCE mediates the interaction of the FA CC with FANCD2 (Pace, Johnson et 

al. 2002), each of the eight FA CC members is essential for the effective 

monoubiquitination of FANCD2 and FANCI (Green and Kupfer 2009). 

Monoubiquitination of FANCD2 on lysine 561 and FANCI on lysine 523 activates 

the ID complex, resulting in its translocation to damaged DNA. The downstream 

effectors of the ID complex are the remaining FA proteins (FANCD1/BRCA2, 

FANCJ/BACH1 [BRCA1-associated C-terminal helicase]/BRIP1 [BRCA1-

interacting protein], FANCN/PALB2, FANCO/RAD51C [Rad51 homolog C], 

FANCP/SLX4 [structure-specific endonuclease subunit SLX4], and 

FANCQ/ERCC4 [excision repair cross-complementing 4] (Kottemann and 

Smogorzewska 2013). 

When FANCD2 and FANCI translocate to damaged chromatin, they form 

nuclear foci along with their downstream effectors (Kim and D'Andrea 2012). The 

downstream FA protein FANCJ, like FANCM, is a DNA helicase with the ability to 

directly interact with DNA (Wu, Sommers et al. 2012). FANCJ binds to the 

carboxy-terminal domain of BRCA1 (breast cancer susceptibility 1) and promotes 

BRCA1’s DNA repair activity (Cantor, Bell et al. 2001). The FA proteins interact 

with numerous other proteins known to play roles in sensing and responding to 

DNA damage, including BRCA1, ATM (Ataxia Telangiectasia-mutated), ATR 

(ATM-Rad3-related), CHK1 (checkpoint kinase 1), CHK2 (checkpoint kinase 2), 
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NBS1 (Nijmegen breakage syndrome 1), RAD50, and BLM (Bloom syndrome) 

(Chen, Silver et al. 1998, Garcia-Higuera, Taniguchi et al. 2001, Nakanishi, 

Taniguchi et al. 2002, Rosselli, Briot et al. 2003, Sridharan, Brown et al. 2003, 

Pichierri, Franchitto et al. 2004, Wang and D'Andrea 2004, Wang, Kennedy et al. 

2007, Kupfer 2013). 

The current model for ICL repair integrates roles for the FA proteins in 

nucleotide excision, translesion DNA synthesis, and homologous recombination. 

In this model, first, endonucleases unhook the ICL. Then, error-prone translesion 

synthesis polymerases replicate over the unhooked ICL. Finally, homologous 

recombination is performed (Kim and D'Andrea 2012). FANCP acts as a scaffold 

protein for a number of endonucleases which may function in the removal of DNA 

crosslinks (Kim, Spitz et al. 2013). The FA core complex recruits the translesion 

synthesis polymerase REV1 to nuclear foci existing at sites of DNA ICL damage 

through the interaction of FAAP20 with REV1 (Kim, Yang et al. 2012). Finally, the 

downstream effectors of the FA/BRCA pathway—BRCA1, FANCD1/BRCA2, 

FANCJ/BACH1/BRIP1, FANCN/PALB2, and FANCO/RAD51C—are all known to 

play important roles in the repair of DNA double strand breaks via homologous 

recombination (Moynahan, Pierce et al. 2001, French, Masson et al. 2002, 

Litman, Peng et al. 2005, Sy, Huen et al. 2009, Zhang, Ma et al. 2009). When 

performed in the context of DNA repair, homologous recombination generally 

produces non-crossover products which are identical to the original DNA 

sequences (Daley, Kwon et al. 2013). Thus, homologous recombination 
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represents a process which the FA pathway could use to restore damaged 

chromatin to its pre-damaged state (Kim and D'Andrea 2012). 

Because the FA proteins play a key role in the repair of DNA crosslink 

damage, FA-deficient cells are hypersensitive to DNA crosslinking agents 

(Centurion, Kuo et al. 2000, Su and Huang 2011). This hypersensitivity is the 

basis for the diagnosis of FA. In the chromosome breakage test, which is the 

gold standard diagnostic test for FA, stimulated peripheral T lymphocytes from a 

patient suspected to have FA are challenged with mitomycin C (MMC) or 

diepoxybutane (Oostra, Nieuwint et al. 2012). Then the cells are plated on glass 

slides as metaphase spreads and the number of chromosome breaks are 

quantified. A positive chromosome breakage test results in a diagnosis of FA 

(Auerbach 2009). In some cases of FA, somatic reversion (spontaneous gene-

correction) occurs in the patient’s hematopoietic cells and the chromosome 

breakage test is negative (Hirschhorn 2003). In these cases, a skin biopsy should 

be performed and the test repeated on cultured skin fibroblasts (Oostra, Nieuwint 

et al. 2012). Following a diagnosis of FA, the subtype can be determined by 

complementation analysis and mutation screening (Tamary and Alter 2007, de 

Winter and Joenje 2009, Ameziane, Sie et al. 2012). 

A role for the FA proteins in the S-phase repair of DNA ICL damage is well 

established, and many follow-up studies have provided insight into the specific 

mechanistic roles of the individual FA proteins in this process (Bridge, 

Vandenberg et al. 2005, de Winter and Joenje 2009, Sato, Ishiai et al. 2012, 

Shukla, Solanki et al. 2013). However, the FA proteins are believed to have 
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additional functions beyond their canonical roles in S-phase DNA damage repair 

(Kee and D'Andrea 2010). Physical interaction screens and functional studies 

have linked the FA proteins to many other cellular processes, including 

transcription, cell signaling, cellular transport, apoptosis, cytokine signaling, 

oxidative metabolism, aldehyde metabolism, and centrosome biology (Reuter, 

Medhurst et al. 2003, Langevin, Crossan et al. 2011, Meier and Schindler 2011, 

Garaycoechea, Crossan et al. 2012, Kaddar and Carreau 2012, Kim, Hwang et 

al. 2013, Zou, Tian et al. 2013). Ongoing studies continue to elucidate these 

additional roles of the FA pathway (unpublished data, 25th Annual Fanconi 

Anemia Research Fund Scientific Symposium 2013). 

The FA signaling network, aneuploidy, and cancer 

The sixteen members of the FA signaling pathway act as tumor 

suppressors by functioning in the maintenance of genomic integrity (Mosedale, 

Niedzwiedz et al. 2005, Schlacher, Wu et al. 2012, Pickering, Zhang et al. 2013). 

Genomic instability in FA-deficient cells is characterized by chromosome breaks 

and gross aneuploidy (Berger, Bernheim et al. 1980b, Berger, Le Coniat et al. 

1993, Tutt, Gabriel et al. 1999, D'Andrea 2003, van der Heijden, Yeo et al. 2003, 

Mehta, Harris et al. 2010). FA patients have a high predisposition to cancer, 

especially acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and 

squamous cell carcinomas (SCC) (Alter, Giri et al. 2010). Moreover, somatic 

alterations in the FA genes have been implicated in a significant proportion of 

cancers arising in the general population, particularly pancreatic, breast, and 
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ovarian cancers (Schutte, da Costa et al. 1995, van der Heijden, Yeo et al. 2003, 

Jones, Hruban et al. 2009). While the canonical role of the FA pathway in DNA 

interstrand crosslink damage is believed to contribute, the aneuploidy and 

oncogenesis resulting from inactivation of the FA pathway are incompletely 

understood (Kee and D'Andrea 2010). 

Aneuploidy and FA 

Clinical studies dating back to the 1970s have examined the cytogenetics 

profiles of bone marrow (BM) aspirates from pre-leukemic and leukemic FA 

patients (Rochowski, Olson et al. 2012). These studies have reported the 

observation of complex gross chromosomal aberrations in FA-deficient BM cells 

and have associated the presence of aneuploidy with progression to MDS and 

AML (Berger, Le Coniat et al. 1993, Alter, Caruso et al. 2000, Cioc, Wagner et al. 

2010, Mehta, Harris et al. 2010). In the non-FA population, AML commonly 

carries specific balanced translocations such as t(8; 21) and translocations 

involving inv(16). It is notable that these and other AML-specific nonrandom 

balanced chromosomal rearrangements have never been reported in FA patients 

(Auerbach and Allen 1991, Rochowski, Olson et al. 2012). Rather, the types of 

gross aneuploidy observed in BM cells taken from FA patients are often random 

and unbalanced. Gains and losses of partial and complete chromosomes are 

frequently seen in FA, as well as translocations, which can be either balanced or 

unbalanced (Mehta, Harris et al. 2010, Meyer, Neitzel et al. 2012). Certain gross 

chromosomal aberrations occur more frequently than others and have been 
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correlated with clonal evolution in FA (Tonnies, Huber et al. 2003, Cioc, Wagner 

et al. 2010, Mehta, Harris et al. 2010). Additionally, the aneuploidy in FA patients 

is frequently complex, with multiple aberrations existing in a single clone 

(Auerbach and Allen 1991). Interestingly, multiple clones carrying different forms 

of aneuploidy can exist simultaneously, with some clones only transiently 

detectable (Alter, Scalise et al. 1993, Alter, Caruso et al. 2000). Gains and 

losses, which are inherently unbalanced types of chromosomal rearrangements, 

are believed to occur throughout the process of clonal evolution in the FA patient 

(Alter, Caruso et al. 2000, Meyer, Neitzel et al. 2012). 

The most commonly reported chromosomal aberrations in FA are gains 

involving chromosome 1q and chromosome 3q, and deletions involving 

chromosome 7 (Berger and Jonveaux 1996, Cioc, Wagner et al. 2010). Gains of 

1q are believed to occur in the early stages of clonal evolution as they are often 

found in the absence of other chromosomal rearrangements in FA BM which 

remains morphologically normal (Meyer, Neitzel et al. 2012). Gains of 3q have 

been associated with the development of MDS and AML in the FA patient 

(Tonnies, Huber et al. 2003, Mehta, Harris et al. 2010, Quentin, Cuccuini et al. 

2011). Although balanced chromosomal rearrangements involving 3q are often 

found in AML in the non-FA population, gains of 3q are much more frequent in 

FA (Lugthart, van Drunen et al. 2008, Lugthart, Groschel et al. 2010, Rochowski, 

Olson et al. 2012). Monosomy 7 has also been associated with the development 

of MDS and AML in the FA patient and frequently occurs in more advanced 

clones carrying a complex karyotype (Kardos, Baumann et al. 2003, Mehta, 
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Harris et al. 2010). However, all three of the examples given—gains of 1q, gains 

of 3q, and deletions of part or all of chromosome 7—can be found accompanied 

by other forms of aneuploidy (Meyer, Neitzel et al. 2012). The presence of clones 

containing complex random and nonrandom aneuploidy in the BM of FA patients 

has been correlated with progression to MDS and AML (Alter, Caruso et al. 2000, 

Cioc, Wagner et al. 2010). 

Cancer predisposition in FA patients 

At least 20% of FA patients will develop cancer at some point during their 

lifetimes (Alter 2003, Kutler, Singh et al. 2003). The FA patient is predisposed to 

multiple types of hematopoietic malignancies and solid tumors, most commonly 

acute myeloid leukemia (AML) and squamous cell carcinoma (SCC) (Rosenberg, 

Alter et al. 2008). A patient with FA who survives to the age of 40 has an 

actuarial risk of 33% for developing a hematopoietic malignancy and an actuarial 

risk of 28% for developing a solid tumor of some kind (Kutler, Singh et al. 2003). 

While the most common hematopoietic malignancies in FA patients are myeloid 

(AML and MDS), FA patients can also develop acute lymphocytic leukemia (ALL) 

(Mushtaq, Wali et al. 2012, Shah, John et al. 2013). Solid tumors which have 

been found in FA patients include head and neck SCC, gynecologic SCC, 

esophageal carcinoma, liver tumors, brain tumors, kidney tumors, and breast 

cancer (Alter 2003, Rosenberg, Alter et al. 2008). Embryonal tumors such as 

medulloblastoma (a type of brain cancer) and Wilms’ tumor (a type of kidney 

cancer) are especially common in FA patients with mutations in the 
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FANCD1/BRCA2 and FANCN/PALB2 genes (Alter, Rosenberg et al. 2007, Reid, 

Schindler et al. 2007). Patients of these two FA subtypes often develop 

embryonal tumors and AML within the first few years of life (Wagner, Tolar et al. 

2004, Alter, Rosenberg et al. 2007, Reid, Schindler et al. 2007). 

AML is the single most common type of cancer in FA patients (Auerbach 

1992, Alter 1996), and it is usually of the M1, M2, M3, or M4 subtype (acute 

myeloblastic leukemia with maturation, acute myeloblastic leukemia without 

maturation, acute promyelocytic leukemia, or acute myelomonocytic leukemia 

respectively) (Velez-Ruelas, Martinez-Jaramillo et al. 2006). Random aneuploidy 

is almost universally present, including large numbers of translocations, 

insertions, and deletions (Auerbach and Allen 1991, Alter 1992). AML in FA 

patients is difficult to treat. Alkylating agents such as cytoxan are standard 

therapy for AML, but FA patients are hypersensitive to alkylating agents and 

exhibit marked toxicity. Furthermore, even though lower doses of 

chemotherapeutic agents are used, FA patients are highly susceptible to 

secondary malignancies (Green and Kupfer 2009). 

FA patients develop head and neck SCC and gynecologic SCC at an 

increasing rate as they grow older (Alter 2003, Alter, Greene et al. 2003, 

Rosenberg, Greene et al. 2003, Rosenberg, Alter et al. 2008). Additionally, FA 

patients may have an exacerbated risk for developing SCC after receiving 

irradiation and chemotherapeutic agents to prepare for a transplant or to treat a 

primary malignancy (Millen, Rainey et al. 1997, Rosenberg, Alter et al. 2005, 

Rosenberg, Socie et al. 2005, Masserot, Peffault de Latour et al. 2008). Random 
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aneuploidy is a major feature of head and neck SCC in FA patients and in the 

general population (Bockmuhl and Petersen 2002, van Zeeburg, Snijders et al. 

2005). FA patients are hypersensitive to cisplatin and radiation, which are 

commonly used to treat SCC in the general population. Even with lower doses 

and local administration, cisplatin and radiation result in high levels of toxicity in 

FA patients. Thus, early detection and early surgical removal are the most 

important aspects of treatment for head and neck SCC in patients with FA 

(Scheckenbach, Wagenmann et al. 2012). 

FA genes in sporadic and inherited cancer 

In addition to their role in cancer predisposition in the FA patient, a 

number of FA genes are cancer susceptibility genes which have been identified 

in families with a history of inherited cancer. A large subset of the FA genes 

double as breast, ovarian, and/or pancreatic cancer susceptibility genes 

(Lancaster, Wooster et al. 1996, White, Held et al. 2001, Hahn, Greenhalf et al. 

2003, Rogers, van der Heijden et al. 2004, Couch, Johnson et al. 2005, Seal, 

Thompson et al. 2006, Rahman, Seal et al. 2007, van der Groep, Hoelzel et al. 

2008, Jones, Hruban et al. 2009, Meindl, Hellebrand et al. 2010, Pelttari, 

Heikkinen et al. 2011, Rafnar, Gudbjartsson et al. 2011). Furthermore, epigenetic 

inactivation of FA genes has been detected in a number of malignancies. Table 

1-2 summarizes the role of FA genes in cancer predisposition in the non-FA, 

general population. 
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Gene Other 
names 

Cancer susceptibility in the 
non-FA, general population 

(heterozygous germline mutations, 
acquired mutations, or acquired 

epigenetic inactivation) 

Canonical 
FA group 

FANCA AML Core complex 
FANCB  Core complex 
FANCC Pancreatic cancer Core complex 
FANCE  Core complex 

FANCF Ovarian cancer (>30%), breast cancer, 
AML, SCC, multiple other cancers Core complex

FANCG XRCC9 Pancreatic cancer Core complex 
FANCL PHF9 Core complex 
FANCM  Core complex 
FANCD2  Breast cancer ID complex 
FANCI KIAA1794  ID complex 

FANCD1 BRCA2 Breast, ovarian, and pancreatic cancer Downstream 

FANCJ BACH1/ 
BRIP1 Breast and ovarian cancer Downstream 

FANCN PALB2 Breast, ovarian, pancreatic, and 
prostate cancer Downstream 

FANCO RAD51C Breast and ovarian cancer Downstream 
FANCP SLX4 Downstream 

FANCQ ERCC4/ 
XPF4 Downstream 

Table 1-2. Involvement of FA genes in cancer predisposition in the non-FA, 
general population. 
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A large subset of the FA proteins which function as downstream effectors 

in the FA DNA damage repair pathway—FANCD1/BRCA2, 

FANCJ/BACH1/BRIP1, FANCN/PALB2, and FANCO/RAD51C—are known 

susceptibility genes for breast and ovarian cancer (Lancaster, Wooster et al. 

1996, Wagner, Tolar et al. 2004, Seal, Thompson et al. 2006, Rahman, Seal et 

al. 2007, Tischkowitz, Xia et al. 2007, Akbari, Tonin et al. 2010, D'Andrea 2010, 

Levy-Lahad 2010, Meindl, Hellebrand et al. 2010, Zheng, Zhang et al. 2010, 

Clague, Wilhoite et al. 2011, Pelttari, Heikkinen et al. 2011, Rafnar, Gudbjartsson 

et al. 2011, Vuorela, Pylkas et al. 2011, Thompson, Boyle et al. 2012). Mutations 

in FANCD1/BRCA2 and FANCN/PALB2 are also responsible for a large 

percentage of inherited pancreatic cancer (White, Held et al. 2001, Hahn, 

Greenhalf et al. 2003, van der Heijden, Yeo et al. 2003, Jones, Hruban et al. 

2009), and FANCN/PALB2 has additionally been implicated in familial prostate 

cancer (Erkko, Xia et al. 2007, Tischkowitz, Sabbaghian et al. 2008, Pakkanen, 

Wahlfors et al. 2009). 

Several upstream FA proteins may also play roles in cancer predisposition 

in the non-FA, general population. Germline and sporadic mutations in FANCC 

and FANCG have been found to play a role in young-onset pancreatic cancer 

(van der Heijden, Yeo et al. 2003, Rogers, van der Heijden et al. 2004, Couch, 

Johnson et al. 2005). Furthermore, decreased expression or complete epigenetic 

silencing of FA genes has been observed in several types of cancer. FANCA 

may be deleted or expressed at a lower level in AML (Xie, de Winter et al. 2000, 

Tischkowitz, Morgan et al. 2004). FANCD2 has been found to be silenced in 
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some sporadic and hereditary breast cancers (van der Groep, Hoelzel et al. 

2008). Finally, FANCF is frequently silenced in multiple types of cancer 

(Taniguchi 2009). 

Epigenetic silencing of FANCF, resulting in failure to monoubiquitinate 

FANCD2, have been observed in a wide variety of cancers occurring in the 

general population. Epigenetic silencing of FANCF occurs by hypermethylation. 

When CpG islands in FANCF’s promoter region are hypermethylated, the 

FANCF gene is no longer transcribed. Because the FA core complex member 

FANCF is absent, monoubiquitination of FANCD2 fails to occur (Kalb, Neveling 

et al. 2006). Silencing of FANCF by hypermethylation has been observed in up to 

one third of ovarian cancers (Olopade and Wei 2003, Taniguchi, Tischkowitz et 

al. 2003, Wang, Li et al. 2006, Lim, Smith et al. 2008). FANCF silencing has also 

been observed in acute myeloid leukemia, breast cancer, cervical cancer, non-

small cell lung cancer, head and neck SCC, granulosa cell tumors of the ovary, 

testicular germ cell tumors (non-seminoma), and bladder cancer (Xie, de Winter 

et al. 2000, Tischkowitz, Ameziane et al. 2003, Dhillon, Shahid et al. 2004, Koul, 

McKiernan et al. 2004, Marsit, Liu et al. 2004, Narayan, Arias-Pulido et al. 2004, 

Neveling, Kalb et al. 2007, Wei, Xu et al. 2008). 

Cancer predisposition in FA knockout mice 

A number of single knockout FA murine models have been developed and 

used to study cancer predisposition in FA. While some single knockout FA mice 

(Fanca-/-, Fancc-/-, Fancd2-/-, and Fancd1/Brca2 conditional knockout mice) 
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develop tumors, they do not spontaneously develop the types of cancer observed 

in FA patients (Moynahan 2002, Taniguchi and D'Andrea 2006). The Fancd2-/- 

mouse develops a broad spectrum of epithelial tumors, including ovarian, gastric, 

and hepatic adenoma; ovarian, mammary, and lung adenocarcinoma; 

bronchoalveloar carcinoma; and hepatocellular carcinoma. One Fancd2-/- mouse 

with epithelial cancer also developed B-cell lymphoma (Houghtaling, Timmers et 

al. 2003). Similarly, lymphoma, sarcoma, and ovarian granulosa cell tumors were 

reported in the Fanca-/- mouse (Wong, Alon et al. 2003), and mammary 

adenocarcinoma and histiocytic sarcoma were reported in elderly Fancc-/- mice 

(Carreau 2004). 

Since Fancd1/Brca2-/- mice die in utero, a number of murine models have 

been generated utilizing partial deletion or conditional knockout strategies 

(Moynahan 2002). A Brca2 mutant mouse model homozygous for deletion of 

exon 27 develops carcinomas, adenomas, sarcomas, and lymphomas in a 

variety of locations including the stomach, lung, breast, and ovary. Exon 27 is 

essential for Brca2’s interaction with Rad50, a protein involved in the repair of 

DNA double-strand breaks (McAllister, Bennett et al. 2002). Conditional knockout 

of Fancd1/Brca2 in mammary epithelium also results in tumorigenesis. Breast 

cancer developed in 77% of Brca2 conditional knockout mice compared with 0% 

of wild-type (WT) mice. Furthermore, multiple tumors were present in 50% of the 

mice which developed breast cancer (Ludwig, Fisher et al. 2001). 

While existing single knockout FA mice do not spontaneously develop 

hematopoietic malignancies and BMF, one or more types of double knockout 
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mice may. The Fancc-/-; Fancg-/- mouse which our laboratory previously 

developed was the first murine model of FA to spontaneously develop the MDS, 

AML, and BMF which are major features of the human disease. This study 

assessed the predisposition to cancer in the absence of murine Fancc and Fancg 

and examined the morphologic architecture, cytogenetic status, and 

transcriptomal profile of FA-deficient BM (Pulliam-Leath, Ciccone et al. 2010). 

The findings of hypoplastic bone marrow, aneuploidy, and SAC dysregulation in 

the Fancc-/-; Fancg-/- murine model of FA are summarized in Figure 1-2. 
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Figure 1-2. Hypocellularity, aneuploidy, and SAC dysregulation are 
observed in the bone marrow of Fancc-/-; Fancg-/- mice. a) WT and Fancc-/-; 
Fancg-/- mice. b) Hypocellular bone marrow (BM) is observed in Fancc-/-; 
Fancg-/- mice, while wild-type (WT) mice have BM with normal cellularity. c) BM 
cells from Fancc-/-; Fancg-/- mice exhibit gross aneuploidy upon spectral 
karyotyping, while WT mice have a normal karyotype. d) When the 
transcriptomal profile of BM cells from WT and Fancc-/-; Fancg-/- mice was 
analyzed utilizing a gene-chip based assay, dysregulation of known regulators of 
the mitotic SAC was observed in BM from Fancc-/-; Fancg-/- mice compared with 
WT mice. Bone marrow from Fancc-/-; Fancg-/- mice with normal bone marrow 
architecture exhibited increased expression of the SAC regulators Mad2 and 
BubR1 compared with WT mice, and bone marrow from Fancc-/-; Fancg-/- mice 
with myelodysplastic bone marrow exhibited decreased expression of the SAC 
regulators Mad2 and BubR1 compared with WT mice. 
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Clinical studies examining the BM from pre-leukemic and leukemic FA 

patients have noted that gross aneuploidy and myelodysplasia precede the 

development of leukemia in the FA patient (Berger, Bernheim et al. 1980b, 

Tonnies, Huber et al. 2003, Mehta, Harris et al. 2010, Quentin, Cuccuini et al. 

2011, Meyer, Neitzel et al. 2012). In previous work utilizing the Fancc-/-; Fancg-/- 

murine model, my laboratory confirmed that there is a correlation between gross 

aneuploidy, myelodysplasia, and leukemia in FA (Pulliam-Leath, Ciccone et al. 

2010). Additionally, dysregulation of the known mitotic spindle assembly 

checkpoint (SAC) regulators Mad2 and BubR1 was observed in a gene chip-

based genome-wide transcriptomal assay performed in BM cells taken from this 

mouse model (A. Pulliam-Leath, S. Ciccone, G. Nalepa, G. Bagby, D. W. Clapp, 

unpublished data). Based on this result, we hypothesized that aneuploidy and 

oncogenesis may result from defective regulation of mitosis in FA-deficient cells. 

In particular, we hypothesized that the human FA proteins are essential for the 

proper functioning of the mitotic SAC and that this may be a major mechanism by 

which the FA pathway protects the integrity of the genome. 
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Maintaining the genome 

Proper execution of the cell cycle is essential for cells to maintain the 

integrity of the genome (Shackelford, Kaufmann et al. 1999). Cell cycle 

checkpoints exist throughout interphase so that the cell can monitor DNA and 

repair any damage prior to the onset of mitosis (Branzei and Foiani 2008). During 

mitosis, the replicated DNA divides equally into daughter cells through a process 

called chromosome segregation. Chromosome segregation is regulated in order 

to ensure stable transmission of genetic material to daughter cells. The M-phase 

checkpoint, or spindle assembly checkpoint (SAC), is the key mitotic cell cycle 

checkpoint which protects cells from the development of aneuploidy by regulating 

chromosome segregation. Importantly, genomic instability due to weakened 

activity of the mitotic SAC may contribute to the process of malignant 

transformation (Kops, Weaver et al. 2005). The subsections below summarize 

the basic mechanics of the cell cycle, explain in detail the mechanisms of the 

mitotic SAC, and articulate the importance of the mitotic SAC in the maintenance 

of genomic integrity. 

The cell cycle 

Multicellular organisms complete the cell cycle to grow and replace older 

or damaged cells. The cell cycle has multiple discrete phases—gap/growth 1 

(G1), synthesis (S), gap/growth 2 (G2), mitosis (M), and cytokinesis. The G1-, S-, 

and G2-phases are collectively referred to as interphase, while mitosis and 

cytokinesis are collectively referred to as cell division. In G1, cell growth occurs 
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through expansion of the cell’s cytoplasm and organelle pool. G1 is the longest 

phase and often varies in length. From G1, the cell can enter a quiescent, non-

cycling state called G0. The cell replicates its DNA and centrosomes during S 

and prepares for mitosis in G2. Then, the cell divides. Nuclear division occurs 

during mitosis, and cytoplasmic division occurs during cytokinesis. When a single 

cell has completed a full round of the cell cycle, two genetically identical daughter 

cells are the result. By definition, mitosis is the process by which a single parent 

cell divides its replicated genome equally in order to produce two genetically 

identical daughter cells (Nicolini 1975, Oshima and Campisi 1991, Norbury and 

Nurse 1992, O'Connor 2010). A schematic diagram of the cell cycle, mitosis, and 

cytokinesis appears in Figure 1-3. The subsequent paragraphs summarize the 

phases of mitosis and cytokinesis and discuss the role of cell cycle checkpoints 

in the maintenance of genomic integrity. 
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Figure 1-3. The cell cycle, mitosis, and cytokinesis. a) The phases of the cell 
cycle are G1/G0, S, G2, and M. Cell cycle phases are labeled on the outside of 
the circle, and cell cycle checkpoints are labelled on the inside. In the examples 
of G1 and G2 cells which are shown, DNA is blue, centrosomes are red, and cell 
borders are outlined in green. b) Phases of mitosis. c) Stages of cytokinesis. 
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Mitosis has five phases: prophase, prometaphase, metaphase, anaphase, 

and telophase. During prophase, the dividing cell’s nuclear envelope begins to 

break down and its chromatin begins to condense. Kinetochores form at the 

centromere region of each sister chromatid, centrosomes migrate to opposing 

poles of the cell, and spindle nucleation begins. Prometaphase onset is marked 

by the sudden dissolution of the nuclear envelope, which allows the spindle to 

access the sister chromatid pairs. Dynamic lengthening and shortening of spindle 

microtubules enables spindle microtubules to find and attach to kinetochores 

located at the centromere region of each sister chromatid. As sister chromatids 

begin attaching to the spindle via their kinetochores and as dynamic lengthening 

and shortening of spindle microtubules continues, sister chromatid pairs migrate 

to the center of the dividing cell. 

By the start of metaphase, bi-oriented kinetochore-spindle attachments 

have formed on each sister chromatid pair. The metaphase plate exists when 

sister chromatid pairs have trafficked to the center of the cell and are neatly 

aligned halfway between the opposing spindle poles. Next, anaphase is initiated. 

Sister chromatids become separated from their partners and are pulled toward 

opposing spindle poles as the mitotic spindle shortens. Telophase starts when 

the dividing chromosomes reach the opposing spindle poles. Now, chromatin de-

condenses, nuclear envelopes re-form, and a single dividing cell becomes two 

interphase cells (Thyberg and Moskalewski 1998, Mitchison and Salmon 2001, 

O'Connor 2008). The phases of mitosis are diagramed in Figure 1-3b. 
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Cytokinesis, like mitosis, has multiple stages. The stages of cytokinesis 

include central spindle formation, cleavage furrow initiation and ingression, 

midbody and cytoplasmic bridge formation, and cell abscission (D'Avino, Savoian 

et al. 2005, Montagnac, Echard et al. 2008, Fededa and Gerlich 2012). 

Cytokinesis is temporally coordinated with mitosis. Cleavage furrow initiation 

follows the initiation of chromosome segregation, and cell abscission is 

coordinated with mitotic exit (Seshan and Amon 2004, Kops, Weaver et al. 2005, 

Pines 2006, Sullivan and Morgan 2007, Fededa and Gerlich 2012). The stages of 

cytokinesis are diagramed in Figure 1-3c. 

Maintenance of the genome is a crucial aspect of the cell cycle which is 

ensured by the existence of cell cycle checkpoints. Interphase DNA damage 

checkpoints (G1/S checkpoint, S-phase checkpoint, and G2/M checkpoint) sense 

DNA damage and halt cell cycle progression until the DNA damage is repaired. 

In this way, the genome is protected during interphase. Mitosis is the part of the 

cell cycle concerned with the accurate segregation of genetic material, and the 

mitotic checkpoint plays a crucial role in preserving genomic integrity by ensuring 

that each daughter cell receives a full, identical complement of DNA at the 

conclusion of the cell cycle (Elledge 1996, Shackelford, Kaufmann et al. 1999). 

The major cell cycle checkpoints are indicated in the diagram of the cell cycle in 

Figure 1-3a. 
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The mitotic spindle assembly checkpoint 

The mitotic checkpoint, or spindle assembly checkpoint (SAC), monitors 

kinetochore-spindle attachment in order to guarantee accurate chromosome 

segregation (Meraldi, Draviam et al. 2004). The activating signal for the SAC is 

the presence of unattached kinetochores during the early phases of mitosis 

(Rieder, Schultz et al. 1994, Rieder, Cole et al. 1995). During prophase and 

prometaphase, several key SAC effectors are recruited to unattached 

kinetochores and form the mitotic checkpoint complex (MCC). The presence of 

the MCC at one or more unattached kinetochores delays the onset of anaphase 

by preventing activation of the anaphase promoting complex/cyclosome (APC/C) 

(Chen, Waters et al. 1996, Taylor, Ha et al. 1998, Waters, Chen et al. 1998, 

Sudakin, Chan et al. 2001). 

The kinetochore is a transient subcellular structure which plays a key role 

in mitosis by mediating the SAC. The kinetochore has two parts, the inner 

kinetochore and the outer kinetochore, and is comprised of at least 80 individual 

proteins. The inner kinetochore is the stable, structural part of the kinetochore, 

and the outer kinetochore is the site of microtubule binding and SAC activity 

(Cheeseman and Desai 2008, Santaguida and Musacchio 2009). When a 

kinetochore is unattached to the mitotic spindle, the MCC is present at the 

kinetochore and the SAC is active. A schematic representation of an early mitotic 

cell containing an unattached kinetochore appears in Figure 1-4a, and the 

structure of an unattached kinetochore is depicted in Figure 1-4b. The structural 

organization of the kinetochore is described in more detail in the next paragraph. 
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Figure 1-4. The presence of an unattached kinetochore in an early mitotic 
cell results in recruitment of SAC proteins and activation of the mitotic 
SAC. a) Schematic of an early mitotic cell with an unattached kinetochore. The 
centrosomes, mitotic spindle, sister chromatids, and kinetochores are labeled. b) 
Schematic depicting the structural organization of an unattached kinetochore. 
SAC proteins including the members of the mitotic checkpoint complex (MCC) 
are recruited to the outer kinetochore during the early phases of mitosis. 
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At the onset of mitosis, the kinetochore forms at the centromere region of 

each sister chromatid. As the first step, centromere protein A (CENPA), a 

modified histone H3 variant, is recruited to nucleosomes in centromeric 

chromatin (Palmer, O'Day et al. 1991, Sullivan, Hechenberger et al. 1994). 

CENPA recruits the sixteen members of the constitutive centromeric-associated 

network (CCAN) (CENPC, -H, -I, -K, -L, M, -N, -O, -P, -Q, -R, -S, -T, -U, -W, and 

-X) to form the inner kinetochore. Next, the CCAN recruits the KMN network—

including the KNL1 protein and the Mis12 and Ndc80 protein complexes—to the 

outer kinetochore (Perpelescu and Fukagawa 2011). Through its interaction with 

CENPC, the Mis 12 complex mediates binding of the KMN network to the CCAN 

(Screpanti, De Antoni et al. 2011). KNL1 and the Ndc80 complex interact with 

spindle microtubules (Cheeseman, Chappie et al. 2006, Wan, O'Quinn et al. 

2009, Alushin, Musinipally et al. 2012). Upon binding to the spindle, KNL1 plays 

a role in SAC silencing at the kinetochore (Espeut, Cheerambathur et al. 2012). 

Prior to that, KNL1 facilitates the SAC by recruiting SAC proteins, including 

members of the mitotic checkpoint complex (MCC), to the outer kinetochore 

(Krenn, Wehenkel et al. 2012, Shepperd, Meadows et al. 2012, Yamagishi, Yang 

et al. 2012, Varma, Wan et al. 2013, Krenn, Overlack et al. 2014). 

SAC proteins are sequentially recruited to the outer kinetochore during 

mitosis (Jablonski, Chan et al. 1998, Taylor, Ha et al. 1998, Sharp-Baker and 

Chen 2001, Johnson, Scott et al. 2004). BUB1 (budding uninhibited by 

benzimidazole 1), one of the earliest SAC proteins to target to the kinetochore, is 

recruited to the kinetochore during prophase (Jablonski, Chan et al. 1998). KNL1 
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is essential for the kinetochore localization of BUB1 and BUBR1 (budding 

uninhibited by benzimidazole-related 1) (Desai, Rybina et al. 2003, Shepperd, 

Meadows et al. 2012, Yamagishi, Yang et al. 2012), and BUB1 is essential for 

the recruitment of most downstream SAC proteins, including MAD1 (mitotic 

arrest deficient 1) and the members of the mitotic checkpoint complex (MCC) 

(Sharp-Baker and Chen 2001, Johnson, Scott et al. 2004). 

The MCC is highly conserved among species and is comprised of MAD2, 

BUBR1, BUB3, and CDC20 (cell division cycle 20) (Sudakin, Chan et al. 2001). 

Upon their recruitment to the kinetochore, the members of the MCC assemble in 

a stepwise fashion (Musacchio and Salmon 2007). First, MAD2 binds to CDC20 

via the MAD2 template reaction, which is described below (De Antoni, Pearson et 

al. 2005). Then, BUB3 and BUBR1, which can be found binding to each other 

throughout the cell cycle, are recruited by MAD2 to the MCC (Hardwick, 

Johnston et al. 2000, Chen 2002, Musacchio and Salmon 2007). The MCC acts 

as the key effector of SAC activity through its interactions with the anaphase 

promoting complex/cyclosome (APC/C). Schematic drawings of the MCC and its 

interactions with APC/C appear in Figure 1-5. 
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Figure 1-5. The mitotic checkpoint complex (MCC) and its role in 
maintaining APC/C in an inactive state. a) MCC: The mitotic checkpoint 
complex (MCC) includes MAD2, BUBR1, BUB3, and CDC20. Members of the 
MCC are recruited to unattached kinetochores during the early phases of mitosis 
and are the key downstream effectors of the mitotic SAC. b) Inactive (MCC-
bound) APC/C: When the SAC is active, the MCC binds to the anaphase 
promoting complex/cyclosome (APC/C) at the kinetochore, maintaining APC/C in 
an inactive state. c) Active (CDC20-bound) APC/C: When the SAC is satisfied 
by complete formation of kinetochore-spindle attachments, the MCC dissociates, 
allowing CDC20 to bind to a different subunit of APC/C and activate it. 
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The MAD2 template reaction is a MAD1-dependent process which is 

necessary for formation of the MCC (De Antoni, Pearson et al. 2005, Maldonado 

and Kapoor 2011). MAD2 exists in two conformations, open MAD2 (O-MAD2) 

and closed MAD2 (C-MAD2). O-MAD2 is the free, unbound form (Luo, Tang et 

al. 2004). MAD1 recruits O-MAD2 to unattached kinetochores and induces a 

conformational change in MAD2 to the closed form (De Antoni, Pearson et al. 

2005, Yu 2006). Together they form the MAD1-C-MAD2 core complex (Luo, 

Tang et al. 2002, Sironi, Mapelli et al. 2002). C-MAD2 which is bound to MAD1 

can bind O-MAD2 and catalyze its binding to CDC20. When O-MAD2 binds to 

CDC20, it is released from the MAD1-C-MAD2 core complex and changes to the 

closed conformation. C-MAD2-CDC20 is formed, and the MAD1-C-MAD2 core 

complex is free to catalyze the production of additional C-MAD2-CDC20 (Mapelli, 

Massimiliano et al. 2007, Lad, Lichtsteiner et al. 2009). Finally, when 

kinetochore-spindle attachment satisfies the SAC, the MAD1-C-MAD2 core 

complex is stripped from the kinetochore and the production of C-MAD2-CDC20 

is no longer catalyzed (Chen, Waters et al. 1996, Li and Benezra 1996, Lara-

Gonzalez, Westhorpe et al. 2012). A schematic depicting the MAD2 template 

reaction appears in Figure 1-6. 
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Figure 1-6. In the MAD2 template reaction, MAD1 recruits MAD2 and 
catalyzes the generation of MAD2-CDC20. a) MAD1 recruits O-MAD2 and 
catalyzes a change in conformation of O-MAD2 to C-MAD2. Together, MAD1 
and C-MAD2 form the MAD1-C-MAD2 core complex. b) The MAD1-C-MAD2 
core complex recruits additional O-MAD2, and catalyzes its binding to CDC20. c) 
C-MAD2-CDC20 is produced. d) The MAD1-C-MAD2 core complex is then free 
to catalyze the production of additional C-MAD2-CDC20. 
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The MCC prevents anaphase initiation by binding to the anaphase 

promoting complex/cyclosome (APC/C) and maintaining it in an inactive state (Li, 

Gorbea et al. 1997, Jablonski, Chan et al. 1998, Sudakin, Chan et al. 2001, 

Tang, Bharadwaj et al. 2001, Fang 2002). Satisfaction of the SAC occurs when 

the last unattached kinetochore becomes properly attached to the mitotic spindle 

(Rieder, Cole et al. 1995). At this point, the MCC dissociates, APC/C is activated, 

and anaphase is initiated (D'Angiolella, Mari et al. 2003, Jia, Li et al. 2011).  

The anaphase promoting complex/cyclosome (APC/C) is a multisubunit 

E3 ubiquitin ligase which governs the metaphase-anaphase transition (Sudakin, 

Ganoth et al. 1995, Peters, King et al. 1996, Zachariae, Shin et al. 1996, Li, 

Gorbea et al. 1997, Yamada, Kumada et al. 1997). APC/C co-localizes with 

members of the MCC at the kinetochore, and the activity of the SAC is required 

for the recruitment of APC/C to this location (Acquaviva, Herzog et al. 2004). 

APC/C which is bound to the MCC is inactive (Li, Gorbea et al. 1997, Fang, Yu et 

al. 1998, Sudakin, Chan et al. 2001, Tang, Bharadwaj et al. 2001, Fang 2002). 

The classical idea that APC/C is activated by binding to CDC20 has been refined 

by studies which show that CDC20 is actually bound to inactive APC/C as part of 

the MCC (Fang, Yu et al. 1998, Sudakin, Chan et al. 2001). However, when the 

SAC is silenced and the MCC dissociates, CDC20 binds to a different subunit of 

APC/C and activates it (Izawa and Pines 2011). As previously noted, a diagram 

of the MCC and its interactions with APC/C was shown in Figure 1-5. 
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The activated APC/C(CDC20) has E3 ubiquitin ligase activity toward cyclin 

B and securin (Sudakin, Ganoth et al. 1995, Yu, King et al. 1996, Yamano, 

Tsurumi et al. 1998, Hershko 1999, Hagting, Den Elzen et al. 2002). Proteosomal 

degradation of cyclin B and securin allows the dividing cell to enter anaphase 

(Hagting, Den Elzen et al. 2002). Cyclin B and securin are important targets of 

APC/C at the metaphase-to-anaphase transition because Cyclin B plays key 

roles in mitotic entry and progression (Lindqvist, van Zon et al. 2007), and 

securin is essential for the maintenance of sister chromatid cohesion prior to 

anaphase (Mehta, Rizvi et al. 2012a). 

Cyclin B is responsible for mitotic progression. During G2, Cyclin B is 

bound to CDK1 (cyclin-dependent kinase 1), but the CDK1(cyclin B) complex is 

inactive (Gavet and Pines 2010). Progressive activation of the CDK1(cyclin B) 

complex by the CDC25 phosphatase family leads to mitotic entry (Nilsson and 

Hoffmann 2000). Activated CDK1(cyclin B) initiates prophase by phosphorylating 

nuclear lamins and condensin, resulting in nuclear envelope breakdown and 

chromosome condensation, respectively (Peter, Nakagawa et al. 1990, Enoch, 

Peter et al. 1991, Luscher, Brizuela et al. 1991, Kimura and Hirano 2000, Abe, 

Nagasaka et al. 2011, Mall, Walter et al. 2012). When cyclin B is degraded 

following ubiquitination by APC/C, free CDK1 phosphorylates substrates involved 

in anaphase initiation and mitotic exit (Ubersax, Woodbury et al. 2003). 

Securin is part of a mechanism for ensuring genomic integrity (Mehta, 

Rizvi et al. 2012b). To guarantee that each daughter cell receives a full 

complement of chromosomes, each sister chromatid must be coupled to its 
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partner from the time of S-phase DNA replication through the onset of anaphase 

(Tanaka, Fuchs et al. 2000). This coupling is achieved by the cohesin complex, 

which includes the proteins SCC1 (sister chromatid cohesion 1), SCC3, SMC1 

(structural maintenance of chromosomes 1), and SMC3 (Michaelis, Ciosk et al. 

1997, Panizza, Tanaka et al. 2000). The cohesin complex is believed to be a 

ring-shaped structure which encircles the sister chromatid pair (Gruber, Haering 

et al. 2003). While cohesin complexes run the entire length of the sister 

chromatid pair, they are most concentrated at the highly condensed centromere 

region, resulting in the tightest binding between sister chromatids at the 

centromere (Tanaka, Cosma et al. 1999, Weber, Gerton et al. 2004). 

The protein separase has the ability to enzymatically cleave the SCC1 

protein subunit of the cohesin complex (Uhlmann, Lottspeich et al. 1999, 

Waizenegger, Hauf et al. 2000, Nakajima, Kumada et al. 2007). However, 

securin sequesters separase and prevents it from cleaving SCC1. When securin 

is degraded following ubiquitination by APC/C, separase is released. Then, 

separase cleaves the cohesin complexes which link the two members of each 

sister chromatid pair (Ciosk, Zachariae et al. 1998, Zou, McGarry et al. 1999). 

The cleavage of cohesin separates each sister chromatid from its partner and 

enables migration of sister chromatids to opposing spindle poles when the 

spindle microtubules shorten during anaphase (Tanaka, Fuchs et al. 2000). 

After APC/C triggers anaphase entry by ubiquitinating cyclin B and 

securin, the SAC is silenced and completion of cell division occurs. If the SAC is 

regulated properly, the result will be two euploid daughter cells. If the SAC is not 
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regulated properly, chromosome mis-segregation may occur, leading to the 

development of aneuploidy and cancer (Bharadwaj and Yu 2004). 

The mitotic SAC, aneuploidy, and cancer 

The mitotic SAC is a tumor suppressor signaling pathway that prevents 

aneuploidy by ensuring proper chromosome segregation. In the event that one or 

more unattached kinetochores are present in a dividing cell, the SAC will delay 

chromosome segregation until all kinetochore-spindle attachments have formed 

(Meraldi, Draviam et al. 2004). For the SAC to function properly, each SAC 

component must be expressed at the appropriate level. When the activity of a 

particular SAC effector is lost due to mutation, altered transcriptional regulation, 

or epigenetic modification, the signal responsible for maintaining the SAC may be 

weakened. A weakened SAC response may signal metaphase arrest in response 

to multiple unattached kinetochores, but fail to maintain the checkpoint when only 

a single unattached kinetochore (or just a few unattached kinetochores) remains 

(Rieder and Maiato 2004, Kops, Weaver et al. 2005). Thus, a weakened SAC 

may directly lead to aneuploidy through missegregation of chromosomes 

(Bharadwaj and Yu 2004). The mechanisms by which the mitotic SAC ensures 

genomic integrity and by which weakened SAC activity may lead to the 

development of aneuploidy are illustrated in Figure 1-7. 
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Figure 1-7. The mitotic SAC is the key cell cycle checkpoint that regulates 
the metaphase-to-anaphase transition in order to protect genomic integrity. 
a) The mitotic SAC monitors spindle fiber-kinetochore attachment and is
activated in the presence of one or more unattached kinetochores. b) The mitotic 
SAC delays the onset of anaphase until the mitotic spindle has properly attached 
to individual sister chromatids. At this point, the SAC is inactivated and the 
dividing cell is allowed to enter anaphase, resulting in two euploid daughter cells. 
c) Normally, the SAC is active when an unattached kinetochore-spindle fiber pair
is present (see a). However, a dividing cell with weakened mitotic SAC activity 
may complete mitosis in the presence of unattached kinetochores, resulting in 
aneuploidy. A single sister chromatid may travel to the wrong daughter cell as a 
lagging chromosome and become a micronucleus (shown above) or the cell may 
fail to complete cytokinesis subsequent to SAC failure and become 
multinucleated (shown below). The presence of micronucleation and 
multinucleation have been observed in FA-deficient primary cells. 

43 



Aneuploidy is considered a hallmark of cancer (Gordon, Resio et al. 

2012). The accumulation of multiple genetic alterations is required to promote the 

development of cancer, and the formation of aneuploidy in a cell with weakened 

SAC activity is likely to facilitate the development of cancer as losses and gains 

of whole and partial chromosomes result from defective chromosome 

segregation (Hanahan and Weinberg 2011). Chromosomal gains may result in 

the accumulation of additional copies of oncogenes, while chromosomal losses 

may lead to loss of heterozygosity for tumor suppressor genes (Lopes and 

Sunkel 2003). While weakened activity of the mitotic SAC is clearly linked to the 

development of aneuploidy, the link to tumorigenesis is not as definitively 

established (Silva, Barbosa et al. 2011). However, the evidence supports the 

idea that chromosomal instability due to a weakened SAC contributes to cancer 

predisposition (Bharadwaj and Yu 2004, Kops, Weaver et al. 2005, Qi and Yu 

2006). 

Mutations of known SAC components have been identified in a number of 

aneuploid cancers. In aneuploid colon cancers, mutations in SAC genes are 

frequently detected, including mutations in the genes encoding BUB1, BUBR1, 

ZW10 (Zeste White 10), Zwilch, and Rod (Cahill, Lengauer et al. 1998, Wang, 

Cummins et al. 2004). Mutations in the genes encoding BUBR1 and MAD1 have 

been detected in lymphoma (Ohshima, Haraoka et al. 2000, Tsukasaki, Miller et 

al. 2001). Additionally, mutations in MAD1 and MAD2 have been detected in 

breast cancers (Percy, Myrie et al. 2000, Tsukasaki, Miller et al. 2001). 

Importantly, MAD2 is under the transcriptional control of BRCA1 and mutations in 
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BRCA1 directly result in decreased expression of MAD2 resulting in SAC 

impairment (Wang, Yu et al. 2004). Mutations in BUB1 have also been found in 

lung cancer and pancreatic cancer, and mutations in the gene encoding MAD1 

have been found in lung cancer and prostate cancer (Nomoto, Haruki et al. 1999, 

Gemma, Seike et al. 2000, Tsukasaki, Miller et al. 2001, Hempen, Kurpad et al. 

2003). 

Somatic mutations of SAC genes may be either a causal event in the 

development of cancer or a secondary event (Qi and Yu 2006). The first direct 

evidence that aneuploidy resulting from a weakened SAC plays a causal role in 

the development of cancer came from studies of a rare autosomal recessive 

genetic disease (Hanks, Coleman et al. 2004, Qi and Yu 2006). Generally, 

patients with mosaic variegated aneuploidy syndrome have aneuploidy in at least 

one fourth of the cells in multiple tissue types. In a study which attempted to 

identify causal mutations for mosaic variegated aneuploidy syndrome, biallelic 

mutations in the gene encoding the SAC protein BUBR1 were found in five of 

eight patients studied. Two of the five patients in the study developed embryonic 

rhabdomyosarcomas in different tissues as children, indicating that aneuploidy 

due to a weakened SAC may indeed play a causal role in the development of 

cancer (Hanks, Coleman et al. 2004). 
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The FA signaling network and mitosis 

A number of studies provide hints that the FA signaling network may 

protect genomic integrity by playing novel roles in mitosis. Many proteins which 

participate in the FA/BRCA DNA repair pathway have known roles in mitosis 

(Wang, Yu et al. 2004, Chan, North et al. 2007, Lee, Hwang et al. 2010, Stolz, 

Ertych et al. 2010a, Stolz, Ertych et al. 2010b). Biochemistry studies have 

identified the presence of an FA core complex (CC) of unique size and 

subcellular location during mitosis (Thomashevski, High et al. 2004). A link 

between the FA pathway and the mitotic master regulator CDK1 has been 

established (Kruyt, Dijkmans et al. 1997, Kupfer, Yamashita et al. 1997, Mi, Qiao 

et al. 2004, Thomashevski, High et al. 2004). Physical interaction screens have 

identified biochemical interactions between FA proteins and mitotic regulators, 

and in some cases functional significance was ascribed to these interactions 

(Thomashevski, High et al. 2004, Du, Chen et al. 2009, Kim, Hwang et al. 2013). 

Notably, recent studies have begun to elucidate a connection between specific 

members of the FA signaling network and centrosome biology (Kim, Hwang et al. 

2013, Zou, Tian et al. 2013). Taken together, these findings suggest potential 

involvement of the FA pathway in mitotic regulation. 

Many proteins that participate with the FA pathway in the repair of DNA 

crosslink damage have also been implicated in mitosis. The E3 ubiquitin ligase 

BRCA1 (breast cancer susceptibility 1) is a known regulator of the mitotic SAC 

and is essential for proper chromosome segregation (Wang, Yu et al. 2004, Bae, 

Rih et al. 2005, Chabalier, Lamare et al. 2006). The essential role of BRCA1 at 
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the mitotic SAC may be due to its role as a transcriptional regulator of the MCC 

protein MAD2. BRCA1 upregulates expression of MAD2 by binding its promoter 

(Wang, Yu et al. 2004, Qi and Yu 2006). During mitosis, BRCA1 localizes to the 

mitotic spindle, spindle-kinetochore interface, midbody, and centrosome (Lotti, 

Ottini et al. 2002). BRCA1 additionally plays an essential role in centrosome 

maintenance. RNAi knockdown of BRCA1 results in centrosome amplification 

and fragmentation. At the centrosome, BRCA1 interacts with gamma-tubulin and 

ubiquitinates gamma-tubulin at lysines 48 and 344 (K48 and K344). Furthermore, 

through generation of a construct expressing the genetic mutant γ-tubulin K48R, 

it has been shown that BRCA1-mediated ubiquitination of gamma-tubulin at K48 

is essential for centrosome maintenance (Xu, Weaver et al. 1999, Starita, 

Machida et al. 2004, Sankaran, Starita et al. 2005, Ko, Murata et al. 2006, Parvin 

and Sankaran 2006, Sankaran and Parvin 2006, Sankaran, Starita et al. 2006). 

In addition to its roles in the regulation of the mitotic SAC and centrosome 

maintenance, BRCA1 regulates formation of the mitotic spindle in conjunction 

with CHK2 (checkpoint kinase 2). CHK2 and BRCA1 are tumor suppressors 

whose roles in DNA damage repair and genomic instability are well established. 

CHK2 phosphorylates BRCA1 at serine 988 following damage to microtubules 

during mitosis (Chabalier-Taste, Racca et al. 2008). Building on these findings, 

another research group discovered that BRCA1 and CHK2 functionally interact in 

the regulation of spindle assembly and genomic stability. This group found that 

“normal spindle assembly and mitotic progression require the Chk2-mediated 

phosphorylation of Ser 988 on Brca1” (Stolz, Ertych et al. 2010b) and later 
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summarized their findings as follows. 

“Recently, we have identified CHK2 and BRCA1 as genes required 
for the maintenance of chromosomal stability and have shown that 
a Chk2-mediated phosphorylation of Brca1 is required for the 
proper and timely assembly of mitotic spindles. Loss of CHK2, 
BRCA1 or inhibition of its Chk2-mediated phosphorylation [at serine 
988 during mitosis] inevitably results in the transient formation of 
abnormal spindles that facilitate the establishment of faulty 
microtubule-kinetochore attachments associated with the 
generation of lagging chromosomes” (Stolz, Ertych et al. 2010a). 

CHK2 is activated by FANCO/RAD51C in the DNA damage response (Somyajit, 

Subramanya et al. 2010). Thus, CHK2 and BRCA1 are functionally linked to the 

FA pathway in DNA damage repair and also have known roles in mitosis. 

Two additional proteins that functionally interact with the FA pathway in 

DNA damage repair and have known roles in mitosis are the serine/threonine 

kinases ATM and ATR. ATM and ATR act as DNA damage sensors and activate 

the appropriate DNA repair pathways. ATM and ATR phosphorylate several 

proteins in the FA/BRCA pathway including FANCA, FANCM, FANCD2, FANCI, 

FANCJ/BACH1/BRIP1, and BRCA1 (Kim, Lim et al. 1999, Chen 2000, Tibbetts, 

Cortez et al. 2000, Gatei, Zhou et al. 2001, Taniguchi, Garcia-Higuera et al. 

2002, Pichierri and Rosselli 2004, Ho, Margossian et al. 2006, Collins, Wilson et 

al. 2009, Sobeck, Stone et al. 2009, Castillo, Bogliolo et al. 2011, Sakasai, Sakai 

et al. 2012, Sareen, Chaudhury et al. 2012, Shigechi, Tomida et al. 2012, Singh, 

Ali et al. 2013, Tomida, Itaya et al. 2013). They also regulate mitotic entry. When 

ATM and ATR are activated in response to DNA double-strand breaks or 

uncapped telomeres, they phosphorylate p53, CHK1, and CHK2, leading to cell 

cycle arrest prior to mitosis and prevention of spindle assembly (Brown and 
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Costanzo 2009, Smith, Dejsuphong et al. 2009, David 2012, Thanasoula, 

Escandell et al. 2012). ATM has also been shown to play a role in cell cycle 

arrest in response to DNA damage which occurs during mitosis. In DNA-

damaged mitotic cells, ATM and CHK1 were found to be essential for PP2A 

(protein phosphatase 2A)-mediated dephosphorylation of PLK1 (polo-like kinase 

1) and subsequent cell cycle arrest (Lee, Hwang et al. 2010).

The DNA helicase BLM is the final FA pathway interactant with mitotic 

roles which will be discussed. BLM is known to participate in anaphase sister 

chromatid decatenation and subsequently localize to structures termed ultrafine 

bridges. Ultrafine bridges are BLM-coated structures which were described to link 

sister chromatids at sites of fragile and broken chromatin during anaphase and 

telophase (Chan, North et al. 2007). Recent studies have suggested that the FA 

pathway may collaborate with BLM in its mitotic roles. FANCD2 and FANCI were 

discovered to localize to the termini of BLM-coated ultrafine bridges, and 

FANCD2 was shown to be essential for the recruitment of BLM to these 

structures (Chan, Palmai-Pallag et al. 2009, Naim and Rosselli 2009). Another 

study provides a hint that the FA pathway may itself regulate cell division. This 

study showed that FA-deficient murine and human primary cells have increased 

rates of ultrafine bridges and binucleation. Utilizing spontaneous binucleation as 

an endpoint, the study concluded that loss of an individual FA protein results in 

cytokinesis failure in murine and human cells (Vinciguerra, Godinho et al. 2010). 

Biochemistry-based studies examining the localization and regulation of 

FA proteins provide further hints that the FA pathway may play a unique role 

49 



during mitosis. It has been established that the FA CC exists during interphase in 

both cytoplasmic and nuclear forms. However, the FA CC departs from the 

nucleus at the onset of mitosis and exists in the cytoplasm in a uniquely-sized 

750-kDa form (Qiao, Moss et al. 2001, Thomashevski, High et al. 2004). 

Phosphorylation of FANCG was observed at the onset of mitosis and was shown 

to temporally correlate with the departure of the FA CC from chromatin (Qiao, 

Moss et al. 2001). Nuclear export sequences have been identified on FANCA 

and may be responsible for the nuclear exit of the FA CC at the onset of mitosis 

(Ferrer, Rodriguez et al. 2005). Another study found that FANCM is hyper-

phosphorylated at the onset of mitosis, leading to its dissociation from the rest of 

the FA CC and its subsequent proteosomal degradation (Kee, Kim et al. 2009). 

A link between the FA pathway and the mitotic master regulator CDK1 has 

been established. FANCA, FANCC, and FANCG physically interact with CDK1 

(Kupfer, Yamashita et al. 1997, Thomashevski, High et al. 2004). FANCC 

functions in an upstream regulatory pathway controlling CDK1 activity (Kruyt, 

Dijkmans et al. 1997). Furthermore, CDK1 phosphorylates FANCG at serine 387 

at the onset of mitosis (Mi, Qiao et al. 2004). A model is presented in Figure 1-8 

which incorporates the biochemistry-based studies from the last two paragraphs. 
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Figure 1-8. Proposed model for the interaction of CDK1 with the FA core 
complex at the onset of mitosis. a) The FA core complex (CC) members 
FANCA, FANCC, and FANCG physically interact with the mitotic cyclin-
dependent kinase CDK1. b) FANCC functions in an upstream pathway which 
activates CDK1, and CDK1 phosphorylates FANCG at serine 287 at the onset of 
mitosis. c) Phosphorylation of FANCG at serine 287 temporally correlates with 
departure of the FA CC from chromatin. Nuclear export sequences in FANCA 
may mediate the redistribution of the FA CC from the nucleus to the cytoplasm at 
the onset of mitosis. 
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A number of physical interaction screens have identified binding partners 

of FANCA. Of specific interest to my project, it has been shown that FANCA 

physically interacts with a number of known mitotic regulators. BRCA1 and 

FANCA interact independently of the DNA damage response (Folias, Matkovic et 

al. 2002). (As previously noted, BRCA1 participates with the FA signaling 

network in the repair of interphase DNA damage and also regulates the mitotic 

SAC.) FANCA also interacts with the SAC regulator CENPE (centromere protein 

E) (Du, Chen et al. 2009). CENPE is a kinetochore-localized kinesin which

physically interacts with the MCC protein BUBR1 and induces auto-

phosphorylation of BUBR1 when the kinetochore is unattached to the mitotic 

spindle (Guo, Kim et al. 2012). Because BUBR1’s autophosphorylation is 

essential for BUBR1’s SAC activity, CENPE is an essential regulator of the 

mitotic SAC (Tanudji, Shoemaker et al. 2004). When kinetochore-spindle 

attachment satisfies the SAC, CENPE binds to microtubules and silences 

BUBR1’s kinase activity (Mao, Desai et al. 2005). 

Recently, it was shown that FANCA physically interacts with the 

centrosomal protein γtubulin and the kinetochore- and centrosome-associated 

protein NEK2 (NIMA [never-in-mitosis-gene A]-related kinase 2) (Kim, Hwang et 

al. 2013). Gamma-tubulin plays an important role in microtubule nucleation 

throughout the cell cycle and is essential for the assembly of the mitotic spindle 

(Stearns and Kirschner 1994, Moritz, Braunfeld et al. 1995, Shu and Joshi 1995, 

Zimmerman, Sillibourne et al. 2004). NEK2 is a serine/threonine kinase which is 

essential for centrosome maintenance (Fry, Meraldi et al. 1998, Uto and Sagata 
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2000), bipolar spindle assembly (Faragher and Fry 2003), proper chromosome 

congression (Fu, Ding et al. 2007), localization of MAD2 to the kinetochore (Lou, 

Yao et al. 2004), faithful kinetochore-spindle attachment (Du, Cai et al. 2008), 

SAC arrest (Lou, Yao et al. 2004), and accurate chromosome segregation (Lou, 

Yao et al. 2004, Sonn, Khang et al. 2004). NEK2 is one of the targets of activated 

APC/C(CDC20) at the metaphase-anaphase transition, when APC/C(CDC20) 

shuts down the SAC (Hames, Wattam et al. 2001). In summary, FANCA 

physically interacts with several known regulators of centrosome biology, spindle 

dynamics, and the mitotic SAC. 

A recent study found that FANCJ physically interacts with the mitotic 

regulator PLK1 (polo-like kinase 1) (Zou, Tian et al. 2013). PLK1 is a 

serine/threonine kinase that controls progression through mitosis and cytokinesis 

and has a diverse range of known functions. At the transition from interphase into 

mitosis, PLK1 plays important roles in checkpoint recovery (shutting down the 

DNA damage response in order to prepare the cell for the transition from G2 into 

mitosis), centrosome maturation, and mitotic entry. Furthermore, PLK1 controls 

the execution of cell division by regulating spindle assembly, sister chromatid 

separation, and cytokinesis (Bruinsma, Raaijmakers et al. 2012). The 

significance of FANCA’s physical interaction with NEK2 and FANCJ’s physical 

interaction with PLK1 will be discussed in the following paragraph. 

Recent studies have begun to elucidate a functional connection between 

the FA pathway and centrosome biology. One study established a role for 

FANCA in centrosome maintenance (Kim, Hwang et al. 2013). This study 
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established that FANCA localizes to the centrosome and physically interacts with 

the known centrosomal proteins NEK2 and γtubulin. In RNAi-knockdown cells 

and FA patient fibroblasts, loss of FANCA resulted in centrosome amplification. 

Furthermore, the study demonstrated that NEK2 phosphorylates FANCA at T351 

and that phosphorylation of FANCA at this site is essential for centrosome 

maintenance (Kim, Hwang et al. 2013). 

Another study examined the role of FANCJ in centrosome maintenance in 

U2-OS cells (Zou, Tian et al. 2013). FANCJ localizes to centrosomes and RNAi 

knockdown of FANCJ results in centrosome amplification (~two-fold increase in 

the fraction of cells with >2 centrosomes in FANCJ siRNA-transfected cells 

compared with negative control). These results indicate that FANCJ is essential 

for centrosome maintenance. Treatment of U2-OS cells with MMC results in a 

marked amplification of centrosomes (~10-fold increase in the fraction of cells 

with >2 centrosomes in 0.5-1 uM MMC-treated cells compared with untreated 

cells). Additionally, treatment with the DNA interstrand crosslinking agent MMC 

promotes FANCJ’s localization to centrosomes, and RNAi knockdown of FANCJ 

partially rescues cells from MMC-induced centrosome amplification. Thus, the 

authors of the study concluded that FANCJ mediates MMC-induced centrosome 

amplification. Furthermore, FANCJ physically interacts with PLK1, inhibition of 

PLK1 partially rescues MMC-induced centrosome amplification, and PLK1 and 

FANCJ have an epistatic functional relationship in MMC-induced centrosome 

amplification. Finally, RNAi knockdown of FANCJ no longer decreases the MMC-

induced centrosome amplification in cells expressing a PLK1 mutant that has 
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constitutive kinase activity. Thus, the authors of the study concluded that FANCJ 

mediates MMC-induced centrosome amplification through activation of PLK1. 

The same study found that FANCJ and five other FA proteins (FANCA, FANCB, 

FANCG, FANCI, and FANCM) localize to the centrosome (Zou, Tian et al. 2013). 

In summary, both FANCA and FANCJ localize to the centrosome, 

physically interact with known centrosomal proteins, and are essential for 

centrosome maintenance. Furthermore, NEK2-mediated phosphorylation of 

FANCA is required for FANCA’s essential role in centrosome maintenance, and 

FANCJ and PLK1 functionally interact to effect MMC-induced centrosome 

amplification (Kim, Hwang et al. 2013, Zou, Tian et al. 2013). 
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Summary and Significance 

The sixteen members of the FA signaling pathway act as tumor 

suppressors by functioning in the maintenance of genomic integrity. The 

heterogenous genetic disease FA results from biallelic germline mutations in any 

one of the known FA genes (Taniguchi 2009, D'Andrea 2010). FA patients have 

a high predisposition to cancer, especially AML, MDS, and SCC (Alter, Giri et al. 

2010). Moreover, somatic alterations in the FA genes have been implicated in a 

significant proportion of pancreatic, breast, and ovarian cancers arising in the 

general population (Schutte, da Costa et al. 1995, van der Heijden, Yeo et al. 

2003, Jones, Hruban et al. 2009). 

Genomic instability in FA-deficient cells is characterized by impaired DNA-

damage repair, chromosome breaks, and gross aneuploidy (Berger, Bernheim et 

al. 1980b, Berger, Le Coniat et al. 1993, Tutt, Gabriel et al. 1999, D'Andrea 2003, 

van der Heijden, Yeo et al. 2003, Mehta, Harris et al. 2010). It has been known 

for decades that FA-deficient cells have a high frequency of aneuploidy and 

micronucleation (Berger, Bernheim et al. 1980b, Willingale-Theune, Schweiger et 

al. 1989, Berger, Le Coniat et al. 1993, Maluf and Erdtmann 2001, Mehta, Harris 

et al. 2010), but it is not fully understood how disruption of the FA signaling 

pathway leads to these gross chromosomal abnormalities. The role of the FA 

signaling cascade in interphase DNA-damage repair is well-established (Grompe 

and D'Andrea 2001, Bagby and Alter 2006, Williams, Wilson et al. 2011), but the 

molecular basis for the development of aneuploidy in FA-deficient cells is 

incompletely understood. Our previous work confirmed the correlation between 
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gross aneuploidy, myelodysplasia, and leukemia in the Fancc-/-; Fancg-/- mouse, 

which is the first murine model to recapitulate the hematopoietic manifestations 

of the human disease (Pulliam-Leath, Ciccone et al. 2010). In BM cells from 

Fancc-/-; Fancg-/- mice, dysregulation of the known mitotic spindle checkpoint 

regulators Mad2 and BubR1 was observed in a gene chip-based genome-wide 

transcriptomal assay (A. Pulliam-Leath, S. Ciccone, G. Nalepa, G. Bagby, D. W. 

Clapp, unpublished data). 

These results led us to hypothesize that the aneuploidy and oncogenesis 

observed in FA may result from defective regulation of mitosis in FA-deficient 

cells. In particular, we hypothesized that the human FA proteins may be essential 

for the mitotic SAC. The mitotic SAC is a tumor suppressor pathway that 

prevents aneuploidy by ensuring accurate chromosome segregation during cell 

division (Kops, Weaver et al. 2005, Musacchio and Salmon 2007, Gordon, Resio 

et al. 2012). Thus, we reasoned that a weakened SAC could provide an 

explanation for aneuploidy and micronucleation in FA-deficient cells. 

Data presented here establish that the FA signaling network is essential 

for mitotic SAC activity and centrosome maintenance, demonstrate that FA 

proteins localize to the mitotic spindle and centrosomes in a cell cycle-dependent 

manner, and elucidate the role of the FANCA protein in the activity of the mitotic 

SAC. These findings implicate the FA pathway in mitosis and offer an 

explanation for the aneuploidy and oncogenesis that result from inactivation of 

the FA pathway. 
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CHAPTER TWO 

MATERIALS AND METHODS 

Cell culture 

HeLa cells were cultured in high glucose-containing Dulbecco’s modified eagle 

medium (DMEM) (Gibco) supplemented with 10% fetal bovine serum (FBS) and 

penicillin/streptomycin. Primary human skin fibroblasts from FA patients and 

healthy controls were cultured at 5% oxygen in high glucose-containing DMEM 

supplemented with 10% FBS, 1% glutamine, 1% sodium pyruvate, and 

penicillin/streptomycin. Uncorrected and gene-corrected primary human skin 

fibroblasts derived from FANCA patients were cultured at 5% oxygen in high 

glucose and glutamine-containing DMEM supplemented with 10% FBS, 1% 

sodium pyruvate, and penicillin/streptomycin. HeLa cells stably expressing GFP-

γtubulin/GFP-CENPA and GFP-H2B/mCherry-αtubulin were gifts from Claire 

Walczak (Indiana University, Bloomington, IN). FA patient-derived specimens 

used in this study were primary fibroblasts isolated from skin biopsies of FA 

patients and were obtained from a cryo-repository maintained by Helmut 

Hanenberg (Indiana University School of Medicine, Indianapolis, IN; Heinrich 

Heine University School of Medicine, Duesseldorf, Germany).  

Study approval 

Primary fibroblasts from FA patients were provided by Helmut Hanenberg 

(Indiana University School of Medicine, Indianapolis, IN; Heinrich Heine 
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University School of Medicine, Düsseldorf, Germany), who maintains a cryo-

repository of FA patient specimens for research purposes (Indiana University 

School of Medicine, Indianapolis, IN). Helmut Hanenberg obtained the FA 

patient-derived cell lines used in this study from Detlev Schindler (University 

of Würzburg, Würzburg, Germany), Hans Joenje (VU University, Amsterdam, 

The Netherlands), or Arleen Auerbach (The Rockefeller University, New York, 

NY). Specimens derived from FA patients were obtained following approval by 

the appropriate local ethics committees (Ethikkommission der Universität 

Würzburg, Würzburg, Germany; IRB at Rockefeller University, New York, NY). 

The FANCF cell line obtained from Hans Joenje (VU University, Amsterdam, The 

Netherlands) was previously published (de Winter, Rooimans et al. 2000). Use of 

patient-derived specimens was subject to approval by the ethics committees of 

participating centers (IRB at Indiana University School of Medicine, Indianapolis, 

IN; Ethikkommission der Heinrich-Heine-Universität, Düsseldorf, Germany). 

Written informed consent was obtained from the parents of all children. 

 

siRNA library 

A customized siRNA library against all known FA proteins was designed and 

ordered from Ambion (Life Technologies, Foster City, CA). A validated siRNA 

against MAD2 was used as a positive control, and the Negative Control siRNA 

#1 was employed as a negative control. The siRNA screen was performed twice. 

The first time the screen was performed, Silencer siRNAs were ordered and the 

coverage was three siRNAs per gene for the thirteen known FA genes: FANCA, 
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FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, FANCM, FANCD2, FANCI, 

FANCD1 (also known as BRCA2), FANCJ (also known as BRIP1), and FANCN 

(also known as PALB2). The second time the screen was performed, next 

generation Silencer Select siRNAs were ordered for the fifteen known FA genes, 

the thirteen listed above plus FANCO (also known as RAD51C) and FANCP 

(also known as SLX4). Only one siRNA was ordered for FA proteins which were 

identified as potential regulators of the mitotic SAC the first time the screen was 

performed, while at least three siRNAs were ordered for FANCO, FANCP, and 

the FA proteins whose potential role at the mitotic SAC was found to be 

inconclusive in the first screen. The siRNAs which were utilized in the second 

screen were as follows: FANCA (s162, s163, s164, 120953, 105965, 7827), 

FANCB (s5012, s5013, s5014, s225863, s225864, 39216), FANCC (s4985), 

FANCE (s4992), FANCF (s5015), FANCG (s5018), FANCL (s30218), FANCM 

(s33619, s33620, s33621), FANCD2 (s4988), FANCI (s30461), FANCD1/BRCA2 

(s2085), FANCJ/BRIP1 (s38384), FANCN/PALB2 (s36198), FANCO/RAD51C 

(s11737, s11738, s11739), FANCP/SLX4 (s39052, s39053, s39054), MAD2 

(143483), and negative control (4390843). 

siRNA screen 

Reverse transfection of HeLa cells with 10 nM siRNA was performed on 96-well 

imaging microplates (BD Falcon) using siPORT NeoFX transfection reagent 

(Applied Biosystems, Carlsbad, CA). After siRNA and transfection reagent were 

added to each well, HeLa cells stably expressing GFP-histone H2B and 
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mCherry-αtubulin were plated at 2500 cells/well in BD imaging microplates. After 

48 hours, the cells were exposed to 100 nM taxol for 24 hours and then fixed with 

4% paraformaldehyde. Next, individual wells were imaged using a BD Pathway 

855 high-throughput automated screening microscope (BD Biosystems). Using 

ImageJ software, manual quantification of mitotic nuclei, interphase nuclei, and 

multinuclei was performed in the taxol-challenged HeLa cells based on the 

morphology of their nuclei and microtubules. 

 

Isolation of CD34+ human stem cells, FANCA shRNA knockdown, and 

phenotype characterization in ex vivo-cultured CD34+ cells 

Human umbilical cord blood was obtained from the In Vivo Therapeutics Core of 

the Indiana University Simon Cancer Center, and CD34+ human stem and 

progenitor cells were isolated by magnetic-activated cell sorting (MACS). Briefly, 

the low density cells were separated from red blood cells by density 

centrifugation and by lysing the remaining red blood cells. The CD34+ cells were 

labeled with human CD34 antibody conjugated with magnetic microbeads 

(Miltenyi Biotec) and isolated at approximately 95% purity by subsequent 

passage through two MACS separation columns (Miltenyi Biotec). Then, human 

CD34+ primary cells were transduced with a GFP-tagged lentiviral construct 

containing either scrambled negative control shRNA or a combination of two 

shRNA sequences against FANCA (Z. Sun and H. Hanenberg, Indiana 

University, Indianapolis, Indiana, USA; unpublished observations) and cultured 

for 4 days at 5% oxygen in Iscove’s modified Dulbecco’s medium supplemented 

61 
 



with 20% FBS, penicillin/streptomycin, 100 ng/ml stem cell factor, 100 ng/ml 

thrombopoietin, and 100 ng/ml FLT3 (fms-related tyrosine kinase 3). The GFP-

positive cells were sorted using a FACSCalibur flow cytometer and cultured 

overnight as described above. The cells were pulsed with 10 μM BrdU 

(bromodeoxyuridine) for 4 hours and then treated with 100 nM taxol for 24 hours. 

Next, the cells were fixed, permeabilized, and stained with Hoechst 33342 DNA 

stain (Invitrogen), PE-conjugated antibody detecting phosphorylated histone H3 

(Cell Signaling Technology), and APC-conjugated anti-BrdU according to the 

manufacturer’s protocol for the BD Pharmingen APC-BrdU Kit. Finally, 

concurrent flow cytometry and imaging data was collected using an Amnis 

ImageStreamX Mark II imaging flow cytometer and was analyzed using Amnis 

IDEAS Application v5.0 software. Live BrdU+ G2/M cells were gated, and then 

phospho-histone H3+ cells and multinucleated cells were analyzed in the 

appropriate gated populations. To quantitate multinucleated cells, guided 

analysis in the IDEAS software package was used to identify cells with non-round 

nuclei, and then interphase cells with a single nucleus were manually subtracted. 

Quantification of mitotic failure in primary cells from patients with FA 

To assess mitotic SAC function in primary patient cells, human skin fibroblasts 

from FA patients of twelve different FA complementation groups and from healthy 

controls were plated at 2*105 cells/well on ultrafine coverslips in 6-well plates. 

After approximately 16 hours, 200 nM taxol was added for 24 hours. Then, the 

cells were fixed in 4% paraformaldehyde. Hoechst 33342 (1 ug/mL) and Alexa 
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Fluor 594-labeled phalloidin (Invitrogen, Carlsbad, CA) were used to stain 

chromosomes and actin respectively, and then the coverslips were mounted on 

glass slides. A DeltaVision deconvolution microscope (Applied Precision, 

Issaquah, WA) equipped with a 20x objective was used for image acquisition, 

and ImageJ was used for quantification of cells. For flow cytometry analysis, 

fibroblasts from FA patients and healthy controls were plated on 6-well plates 

(2*105 cells/well) for approximately 16 hrs, treated with 200nM taxol for 24 hrs, 

and fixed in 4% paraformaldehyde. Next, cells were permeabilized in 90% 

methanol for 30 minutes and stained with DRAQ5 DNA stain and an Alexa Fluor 

488-conjugated antibody against phospho-histone H3 (Cell Signaling) to identify 

the mitotic fraction. A BD FACSCalibur flow cytometer and CellQuest Pro 

software were used for data collection and analysis. At least three independent 

experiments were performed for each cell line. The specific mutations detected in 

the FA patient fibroblasts are listed in Table 2-1 below. 
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FA gene Mutation 1 Mutation 2 Reference 

FANCA c.856 C>T
(p.Q286X) 

c.3976 C>T
(p.Q1326X) 

(Gross, Hanenberg et 
al. 2002) 

FANCA c.3163 C>T
(p.1055W) 

c.4124-4125 delCA
(p.T1375fsX1423) 

(Nalepa, Enzor et al. 
2013) 

FANCB Dup chrX: c.14788000-14797000 (ex2+3) (Chandrasekharappa, 
Lach et al. 2013) 

FANCC c.377_378 delGA,
p.R126fsX127

c.377_378 delGA,
p.R126fsX127

(Nalepa, Enzor et al. 
2013) 

FANCE c.1111 C>T
(p.R371W) 

c.1111 C>T
(p.R371W) (Neveling 2007) 

FANCF c.349-395 del47 c.16C>T (p.Q6X)
(de Winter, Rooimans 

et al. 2000) 

FANCG c.313 G>T
(p.E105X) IVS 9+1 G>A 

(Demuth, Wlodarski et 
al. 2000) 

FANCL c.920 G>A
(p.C307Y) c.217-20 T>G

(Nalepa, Enzor et al. 
2013) 

FANCD2 c.1948-16 TrG
(ex22 skipping) 

c. 2775_2776 CC>TT
(p.R926X) 

(Kalb, Neveling et al. 
2007) 

FANCI c.3853 C>G
(p.R1285G) 

c.3853 C>G
(p.R1285G) 

(Scheckenbach, 
Wagenmann et al. 

2012) 
FANCD1/ 
BRCA2 c.706-15 del10 c.706-15 del10

(Rischewski, 
Hoffmann et al. 2002.) 

FANCJ/ 
BRIP1 

c.2533 C>T
(p.R798X) 80037 A>T 

(Levran, Attwooll et al. 
2005) 

FANCN/ 
PALB2 c.2393_2394

insCT, p.T799fs 

c.3350+4 A>G,
r.3350 insGCAG/

p.F1118fs
(Reid, Schindler et al. 

2007) 

Table 2-1. Summary of specific mutations detected in primary FA patient 
fibroblasts used in this project. 
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Genetic rescue of mitotic SAC activity in FA patient cells 

Primary FANCA-deficient and FANCC-deficient patient fibroblasts from two 

FANCA patients and one FANCC patient were transduced with lentiviral 

expression constructs containing an IRES-NEO or IRES-PURO cassette (empty 

control vector) or a construct expressing a full-length codon-optimized FANCA or 

FANCC cDNA in addition to the IRES-NEO or IRES-PURO cassette. Geneticin 

or puromycin respectively was used to select for cells that stably expressed the 

vector. The result was the generation of six pairs of complementary uncorrected 

and gene-corrected primary FANCA and FANCC patient cells, three cell line 

pairs containing IRES-NEO vectors and three cell line pairs containing IRES-

PURO vectors. To confirm successful genetic correction, cell cycle profiles were 

analyzed after treatment with MMC. The transduced cells as well as healthy 

control and untransduced FA patient cells were cultured in the presence of 0 nM, 

33 nM, or 45 nM MMC for 4 days, permeabilized in 90% methanol, and stained 

with propidium iodide. A BD FACSCalibur flow cytometer and CellQuest Pro 

software were used for data collection and analysis. Successful genetic 

correction was confirmed by the ablation of G2/M block in cells transduced with 

the FA cDNA-containing vector. To assess the SAC in genetically corrected 

FANCA patient-derived cells, cells were plated on ultrafine coverslips in 6-well 

plates, grown to >50% confluency, and then cultured in the presence of 200 nM 

taxol or 100 ng/ml nocodazole for 24 hours. Hoechst 33342 (1 μg/ml) and Alexa 

Fluor 594-labeled phalloidin (Invitrogen) were used to stain chromosomes and 

actin respectively, and then the coverslips were mounted on glass slides. A 
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DeltaVision deconvolution microscope (Applied Precision) equipped with a ×20 

objective was used for image acquisition, and ImageJ was used for manual 

quantification of cells. 

Immunoblotting to validate siRNAs 

Whole-cell extracts of HeLa cells were prepared using ProteoJET Mammalian 

Cell Lysis Reagent (Fermentas), followed by denaturation in SDS sample buffer. 

Proteins were resolved by SDS-PAGE, transferred to nitrocellulose or methanol-

activated PVDF membranes, and probed with the indicated antibodies. 

Membranes were developed via ECL reaction. The antibodies used include 

rabbit anti-FANCA (Abcam), rabbit anti-FANCB (Abcam), rabbit anti-FANCC 

(Abcam), rabbit anti-FANCE (Abcam), goat anti-FANCF (Abcam), mouse anti-

FANCG (Abcam), rabbit anti-FANCL (Abcam), mouse anti-FANCD2 (Novus, St. 

Louis, MO), rabbit anti-FANCI (Abcam), rabbit anti-BRCA2/FANCD1 (Cell 

Signaling), mouse anti-Bach1/BRIP1/FANCJ (Invitrogen), rabbit anti-

PALB2/FANCN (Abcam), mouse anti-RAD51/FANCO (Abcam), rabbit anti-

SLX4/FANCP (Abcam), rabbit anti-MAD2 (Santa Cruz, Santa Cruz, CA), and 

mouse anti-actin (Sigma, St. Louis, MO). 

Immunoblotting to rule out siRNA off-target effect on MAD2 

For immunoblotting of MAD2 in siRNA-knockdown HeLa cells, HeLa cells were 

transfected with 10 nM siRNA for 48 hours and then whole-cell extracts were 

prepared by cell lysis using M-PER Mammalian Protein Extraction Reagent 
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(Thermo Scientific) followed by denaturation in SDS sample buffer. Proteins were 

resolved by SDS-PAGE, transferred to nitrocellulose membranes, and then 

probed with rabbit anti-MAD2 (Abcam) and mouse anti-CoxIV (Cell Signaling) or 

rabbit anti-GAPDH (Cell Signaling). Membranes were developed by quantitative 

infrared Western blot detection using a LI-COR Odyssey CLx imager. 

 

Visualization of endogenous FA proteins during mitosis 

To visualize the localization of endogenous FA proteins during mitosis, 

immunofluorescence microscopy was performed. HeLa cells or HeLa cells stably 

expressing GFP-CENPA/GFP-γtubulin were grown on ultrathin glass coverslips. 

Then, cells were fixed for 15 minutes in 4% paraformaldehyde and subsequently 

permeabilized in 0.1% Triton X-100 for 15 minutes (Sigma-Aldrich, St. Louis, 

MO), or they were extracted in 0.1% Triton X-100 for 2 minutes prior to 10 minute 

fixation in 4% paraformaldehyde. Cells which were extracted prior to fixation 

were further permeabilized in 0.1% Triton X-100 in PBS for 10 minutes after 

paraformaldehyde fixation. Cells were blocked in 1% BSA for 1-2 hours or in 

Image-iT FX signal enhancer for 30 minutes (Invitrogen). Then immunostaining 

was performed using the following antibodies: rabbit anti-BUBR1 (Cell Signaling), 

rabbit anti-FANCA (Abcam), rabbit anti-FANCB (Abcam), rabbit anti-FANCC 

(Abcam), rabbit anti-FANCD2 (Abcam), rabbit anti-FANCE (Abcam), mouse anti-

FANCG (Abcam), rabbit anti-BRCA2/FANCD1 (Cell Signaling), rabbit anti-

PALB2/FANCN (Abcam), mouse anti-PLK1 (Abcam), and mouse anti-αtubulin 

(Invitrogen). Cells were stained with primary antibodies overnight at 1:100 
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concentration in 1% BSA or PBS and with Alexa Fluor-conjugated fluorescent 

secondary antibodies (Life Technologies) for 2 hours at 1:10,000 concentration in 

PBS. Hoechst 33342 was used to stain DNA and Alexa Fluor-conjugated 

phalloidin was used to stain actin. Coverslips were mounted to ultrathin glass 

slides (Fisherbrand), and image acquisition was performed using a DeltaVision 

deconvolution microscope (Applied Precision) equipped with a 60x or 100x 

objective followed by 10 deconvolution cycles. All images were obtained and 

processed identically using softWoRx software (Applied Precision). 

Generation and expression of GFP-fused FA proteins 

To further visualize the localization of FA proteins during mitosis, fusion 

constructs between enhanced green fluorescent protein (GFP) and FANCC, 

FANCG, or FANCL cDNAs were generated and verified by direct sequencing 

(Christophe Marchal and Helmut Hanenberg, unpublished data). HeLa cells were 

reverse-transfected with each of the constructs using ExGene transfection 

reagent (Fermentas) at 1*105 cells per well on coverslips in 6-well plates. Forty-

eight hours post transfection, cells were fixed in 4% paraformaldehyde. Hoechst 

33342 and Alexa Fluor 594-labelled phalloidin (Invitrogen) were used to stain 

DNA and actin respectively. Coverslips were mounted to ultrathin glass slides 

(Fisherbrand), and image acquisition was performed using a DeltaVision 

personalDV microscope (Applied Precision) equipped with a 100x objective 

followed by 10 deconvolution cycles. All images were obtained and processed 

identically using softWoRx software (Applied Precision). 
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Subcellular localization during mitosis 

HeLa cells were treated with 9 nM RO3306 (Enzo, Farmingdale, NY). RO3306, a 

selective inhibitor of CDK1, was used to synchronize the cells in G2. After 24 

hours, the cells were washed three times with fresh media to release the cells 

into mitosis. When the majority of released cells were in metaphase or anaphase 

by visual inspection utilizing light microscopy (approximately 2 hours later), the 

cells were harvested. Untreated HeLa cells were cultured under similar 

conditions and harvested simultaneously. Cell counting using a hemacytometer 

was performed for each treatment condition on a plate identical to the one used 

for cell lysis. Based on these cell counts, equal numbers of RO3306-treated and 

untreated HeLa cells were used. Whole cell extracts were prepared by cell lysis 

using ProteoJET Mammalian Cell Lysis Reagent (Fermentas) and then 

fractionated with ProteoExtract Subcellular Proteome Extraction Kit (Calbiochem) 

according to the manufacturer’s protocol. Proteins were resolved by SDS-PAGE, 

transferred to nitrocellulose membranes, and then probed with rabbit anti-FANCC 

(Abcam). Mouse anti-histone H1 (Santa Cruz) and mouse anti-vimentin (BD, 

Franklin Lakes, NJ) were used as fractionation controls for the nuclear and 

cytoskeletal fractions respectively. 

Centrosome visualization and quantification 

HeLa cells transfected with siRNAs as described above or human fibroblast cells 

from FA patients and healthy controls were fixed in 4% paraformaldehyde, 

permeabilized in Triton X-100 (Sigma-Aldrich), and blocked in 1% BSA. 
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Immunostaining was performed using a rabbit anti-pericentrin antibody (Abcam) 

and Alexa Fluor-conjugated fluorescent secondary antibody (Life Technologies). 

Hoechst 33342 was used to stain DNA and Alexa Fluor-conjugated phalloidin 

was used to stain actin. Coverslips were mounted to ultrathin glass slides 

(Fisherbrand), and image acquisition was performed using a DeltaVision 

deconvolution microscope (Applied Precision) equipped with a 20x objective 

followed by 10 deconvolution cycles. All images were obtained and processed 

identically using softWoRx software (Applied Precision). At least three 

experiments were performed for each siRNA or FA patient-derived cell line. 

Hypersensitivity of FANCA-deficient cells to spindle drugs 

To assess the response of FANCA-deficient cells to spindle drugs, a clonogenic 

assay was performed on uncorrected and gene-corrected primary FANCA patient 

fibroblasts. Cells were plated in 10-cm dishes at a density of 500 cells/dish and 

cultured overnight. Then, the media in each plate was replaced with fresh media 

containing 0 nM, 0.1 nM, 0.3 nM, 1 nM, or 3 nM taxol. The cells were cultured for 

11 days, then stained with methylene blue. Colonies (>25 cells) were quantified 

by manual counting. 

Preparation of cells for proteomics and phospho-proteomics screen 

Uncorrected and gene-corrected primary FANCA patient fibroblasts were 

generated via transduction of primary FANCA patient-derived human skin 

fibroblasts with either empty control vector or FANCA cDNA-containing vector as 
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described above. Primary FANCA patient cells stably transduced with empty 

control vector (MNHN S91 IN) and the isogenic gene-corrected complement 

(MNHN S91 FAco IN) were cultured in 15-cm dishes for 9 days in cell culture 

media with or without 1 nM taxol. Ten 15-cm dishes were considered a single 

replicate, and the experiment was performed in triplicate. On day 9, the cells 

were trypsinized for 10 minutes, transferred into 50-mL conical tubes, and 

pelleted by centrifugation at 1550 rpm. Cells were resuspended in ice-cold PBS, 

and plates from the same replicate were pooled in a single tube. Each replicate 

was thoroughly mixed by inversion and a hemacytometer was used to quantify 

the number of cells. Cells were pelleted by centrifugation at 1550 rpm. Next, the 

cells in each tube were resuspended in 1.2 mL ice-cold PBS and transferred to 

an Eppendorf tube. Using a bench-top centrifuge, the cells were centrifuged at 

500g for 3 min, and the PBS was aspirated. Two additional times, the cells in 

each tube were washed with ice-cold PBS as follows: 1 mL of ice-cold PBS was 

added, the tube was vortexed gently then centrifuged at 500g for 3 min, and the 

PBS was aspirated. Finally, 1 mL of ITSI Lysis Buffer (containing inhibitors) was 

added to each sample. Each tube was vortexed for 10 seconds, incubated on ice 

for 5 min, vortexed for 5 seconds, incubated on ice for 5 min, vortexed for 5 

seconds, and then immediately placed on dry ice. Samples were stored at -80 

degrees Celsius, packed in dry ice, and shipped overnight to ITSI Biosciences. 
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Kinase enrichment for proteomics and phospho-proteomics screen 

Ammonium bicarbonate was purchased from Fisher Scientific, Pittsburgh, PA, 

and ammonium acetate was purchased from Sigma, St. Louis, MO. Cells were 

lysed using ITSI kinase lysis buffer and kinases were enriched according to the 

manufacturer’s protocol (ITSI Kinase Enrichment Kit, ITSI Biosciences, 

Johnstown, PA). Briefly, cells were vortexed to lyse the cells and centrifuged at 

12,000 x g at 4°C for 10 min to clarify the solution. Supernatant was transferred 

to a new tube and buffer exchanged into labeling buffer using a centrifugal 

desalting column. After the buffer exchange, phosphatase inhibitor cocktail was 

added. Protein assay was performed using the ITSI ToPA protein assay reagent 

(ITSI Biosciences, Johnstown, PA). The samples were diluted in labeling buffer 

to 2mg/ml. Then, 1mg was transferred to a new tube for labeling, and 

magnesium chloride was added at a concentration of 20mM. To enrich for 

kinases, desthiobiotin-ATP or -ADP were added to each sample and then each 

sample was incubated at room temperature for 10 minutes. After labeling, the 

samples were diluted 50:50 with 10M urea in lysis buffer. The samples were 

reduced with TCEP (Fisher Scientific, Pittsburgh, PA) and alkylated with 

iodoacetamide (GE Healthcare Biosciences, Piscataway, NJ). A buffer exchange 

was performed using a desalting column equilibrated with digestion buffer (1M 

urea in 20mM Tris buffer, pH 8.0). To each tube, 50ul of high capacity 

streptavidin resin was added. Then, the tubes were mixed for 2 hours at room 

temperature to capture the labeled proteins. The beads were washed 3 times 

with 500 µl of lysis buffer, 4 times with 500 µl of TBS, and 4 times with HPLC 
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grade water. After the last wash, the beads were suspended in 50ul of iTRAQ 

dissolution buffer with 5ug of sequencing grade trypsin. The tubes were 

incubated overnight at 37°C. After digestion, the peptides were transferred to a 

new tube and additional extraction was performed with 75ul of extraction buffer. 

The solution was dried. Then iTRAQ labeling was immediately commenced. 

iTRAQ labeling and mass spectrometry analysis for proteomics and 

phospho-proteomics screen 

Equal µg of control and treated samples were labeled with six iTRAQ™ labels 

(113 - 118) for 2 hours at room temperature. Labeled peptides were mixed and 

fractionated using SCX column to reduce the sample complexity and desalt the 

iTRAQ reagents. SCX separated peptides were dried in a speedvac and 

reconstituted in 5% Acetonitrile (Fisher Scientific, Pittsburgh, PA) / 0.1% Formic 

acid (Sigma, St. Louis, MO) and loaded onto a PicoFrit C18 nanospray column 

(New Objective, Woburn, MA) using a Thermo Scientific Surveyor Autosampler 

operated in no waste injection mode. Peptides were eluted from the column 

using a linear Acetonitrile gradient from 2% to 40% over 260 minutes into a LTQ 

XL mass spectrometer (Thermo Scientific) via a nanospray source with the spray 

voltage set to 1.8kV and the ion transfer capillary set at 180oC. A data-dependent 

Top 3 method was used where a full MS scan from m/z 400-1500 was followed 

by MS/MS scans on the three most abundant ions. Each ion was subjected to 

CID for peptide identification followed by PQD for iTRAQ quantitation.  
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Database search and Kinase Enrichment Analysis (KEA) for proteomics 

and phospho-proteomics screen 

Protein identification and phosphopeptide localization were determined with the 

Proteome Discoverer 1.3 software as previously described (El-Bayoumy, Das et 

al. 2012). Briefly, the raw data files were searched utilizing SEQUEST algorithm 

in Proteome Discoverer 1.3 (Thermo Scientific) against the most recent species-

specific FASTA database for human downloaded from NCBI. Trypsin was the 

selected enzyme allowing for up to two missed cleavages per peptide; Methylthio 

Cysteine, N-terminal iTRAQ 8-plex, and Lysine iTRAQ 8-plex were used as static 

modifications and oxidation of Methionine, phosphorylation on S, Y, and T as a 

variable modification. Proteins were identified when two or more unique peptides 

had X-correlation scores greater than 1.5, 2.0, and 2.5 for respective charge 

states of +1, +2, and +3. Kinase Enrichment Analysis (KEA) was computationally 

performed using previously described software and protocol (Lachmann and 

Ma'ayan 2009). Only proteins that were identified with a minimum of five peptides 

were included in KEA. 

Analysis of results from mass spectrometry-based proteomics and 

phospho-proteomics screen 

Candidates were identified as proteins and phospho-peptides with greater than 

two-fold change between uncorrected and gene-corrected primary FANCA 

patient fibroblasts. Each candidate was thoroughly researched using UniProt and 

Gene (NCBI) databases, followed by PubMed search. Previously discovered 
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roles in cellular processes were thoroughly annotated for each candidate, with a 

particular focus on mitosis, DNA repair, apoptosis, and cancer. 

Immunoblotting to validate candidates of mass spectrometry-based screen 

Whole-cell extracts of uncorrected and gene-corrected primary FANCA patient 

fibroblasts were prepared using M-PER Mammalian Protein Extraction Reagent 

(Thermo Scientific), followed by denaturation in SDS sample buffer. Proteins 

were resolved by SDS-PAGE, transferred to methanol-activated PVDF 

membranes, and immunoblotting was performed with the indicated antibodies. 

Membranes were developed via ECL reaction. The antibodies used include anti-

BRCA1 (Abcam), anti-SKI (Santa Cruz), and anti-CoxIV (Cell Signaling).  

Live imaging of taxol-challenged primary FANCA patient fibroblasts 

Uncorrected and gene-corrected primary FANCA patient fibroblasts generated as 

previously described were plated at approximately 20,000 cells per well in a Hi-

Q4 imaging dish (Ibidi, Munich, Germany). After two days, time-lapse phase-

contrast imaging of cells was performed using a BioStation IM-Q time-lapse 

imaging system (Nikon, Melville, NY) equipped with a 20x 0.8 NA Plan Fluor 

objective lens. To visualize the outcome of SAC arrest in FANCA-deficient cells, 

the cell culture media was aspirated and replaced with media containing 200 nM 

taxol immediately prior to placing the imaging dish on the microscope. Time-

lapse live-cell microscopy was performed for 48 hours with images captured 

every two minutes, and a total of 5 z-sections were captured at 2 um spacing. 
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Data acquisition was performed using BioStation IM software (Version:2.10 

Build:131 or Version:2.21 Build:144), and manual quantification of dividing cells 

was performed utilizing NIS-Elements AR Analysis 4.10.02 or NIS-Elements 

Viewer 4.20 microscope imaging software (Nikon). The outcome of SAC arrest in 

response to prolonged exposure to taxol was recorded. The outcome was either 

apoptosis (which was observed as the formation of numerous round bodies 

coating the cell, followed by immediate progression to cell death) or SAC failure 

(which was observed as the initiation of cytokinesis, followed by the generation of 

one or two interphase multinucleated cells). Additionally, timepoints were 

recorded for the onset of mitosis (defined by the initiation of nuclear envelope 

breakdown and nuclear remodeling) and the end of the SAC (defined by the 

initiation of either apoptosis or cytokinesis). Based on these timepoints, the 

duration of SAC arrest was quantified. 

Live imaging of untreated primary FANCA patient fibroblasts 

Uncorrected and gene-corrected primary FANCA patient fibroblasts generated as 

previously described were plated at approximately 20,000 cells per well in a Hi-

Q4 imaging dish (Ibidi, Munich, Germany). After two days, time-lapse phase-

contrast imaging of cells was performed using a BioStation IM-Q time-lapse 

imaging system (Nikon, Melville, NY) equipped with a 20x 0.8 NA Plan Fluor 

objective lens. Prior to experiments visualizing unperturbed mitosis, the media 

was replaced with fresh media prior to placing the imaging dish on the 

microscope. Time-lapse live-cell microscopy was performed for 24 hours with 
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images captured every two minutes, and a total of 5 z-sections were captured at 

2 um spacing. Data acquisition was performed using BioStation IM software 

(Version:2.10 Build:131 or Version:2.21 Build:144), and manual quantification of 

dividing cells was performed utilizing NIS-Elements AR Analysis 4.10.02 or NIS-

Elements Viewer 4.20 microscope imaging software (Nikon). For the untreated 

cells, timepoints were recorded for numerous stages of mitosis and cytokinesis 

including the onsets of prophase, prometaphase, metaphase, anaphase, and 

cleavage furrow formation, as well as the completion of telophase. Additionally, 

the presence or absence of numerous phenotypic defects in unperturbed mitosis 

and cytokinesis were noted. Prophase onset was defined by the initiation of 

nuclear envelope (NE) breakdown in conjunction with remodeling of nucleoli. The 

onset of prometaphase was recorded as the timepoint at which the NE had 

completely dissolved and chromatin had completely condensed. Metaphase was 

defined by the formation of the metaphase plate. The initiation of anaphase was 

defined by the onset of chromosome segregation. The onset of cytokinesis was 

defined by the first appearance of the cleavage furrow. The completion of 

telophase was defined as the timepoint in each daughter cell at which NE re-

assembly had concluded. Phenotypic defects recorded for each cell included 

absence of a clear metaphase plate, rotation of the metaphase spindle 

(visualized based on the morphology and positioning of the metaphase plate), 

rotation of the anaphase spindle (visualized as a vertical offset between newly 

forming daughter cells as the dividing cell entered anaphase), asynchronous 

telophase NE re-assembly, and abnormal vesicle formation during cytokinesis. 
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Statistics 

Statistical analysis was performed using GraphPad Prism and Microsoft Excel 

software, and results with P values less than 0.05 were considered significant. 

For siRNA experiments, results for each siRNA were compared with negative 

control siRNA by one-way ANOVA followed by post-hoc Fisher’s LSD test or 

Bonferroni’s multiple comparison test. For taxol challenge of primary FA patient 

fibroblasts (imaging and flow cytometry) and pericentrin immunostaining in 

siRNA-transfected HeLa cells and FA patient fibroblasts, one-way ANOVA was 

followed by post-hoc Bonferroni’s multiple comparison test to compare each 

sample with the appropriate negative control. In these experiments utilizing 

primary FA patient fibroblasts, FA fibroblast lines were compared with the 

average of equal numbers of replicates of two healthy control primary fibroblast 

lines. Two-tailed t-tests were used for all experiments comparing a single 

experimental sample with a negative control. For live-cell video microscopy 

experiments, a two-tailed t-test was applied to each comparison. Additionally, for 

the phenotypic defects observed in untreated FANCA patient fibroblasts, 

correlation statistics were performed to calculate Pearson r values and 

corresponding P values. Finally, in hypersensitivity assays, the effects of FANCA 

gene status and taxol concentration were analyzed using two-way ANOVA 

followed by post-hoc Tukey’s multiple comparison test. 
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CHAPTER THREE 

THE FA SIGNALING NETWORK IS ESSENTIAL FOR THE MITOTIC SAC 

Introduction 

The FA signaling network is essential for the maintenance of genomic 

integrity, with aneuploidy frequently developing in the absence of an intact FA 

pathway. FA patients are predisposed to the hematologic neoplasms MDS and 

AML, and studies examining the cytogenetic profiles of bone marrow (BM) 

aspirates from pre-leukemic and leukemic FA patients have noted that the 

development of complex, random aneuploidy generally precedes malignant 

transformation (Berger, Le Coniat et al. 1993, Alter, Caruso et al. 2000, Cioc, 

Wagner et al. 2010, Mehta, Harris et al. 2010, Rochowski, Olson et al. 2012). 

Our laboratory previously generated a Fancc-/-; Fancg-/- murine model in 

order to study the functional interaction of the Fancc and Fancg genes in the 

pathogenesis of FA. This was the first FA murine model to spontaneously 

develop bone marrow failure and the hematopoietic malignancies which are 

characteristic of FA. As in patients with FA, complex chromosomal abnormalities 

were observed when spectral karyotyping was performed on BM aspirates from 

Fancc-/-; Fancg-/- mice, and myelodysplasia was observed upon histopathologic 

examination post-mortem. Thus, our laboratory’s observations in the Fancc-/-; 

Fancg-/- murine model confirm that the presence of complex random aneuploidy 

is correlated with the development of myeloid malignancies in FA (Pulliam-Leath, 

Ciccone et al. 2010). 
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An additional study performed in the Fancc-/-; Fancg-/- murine model 

suggests a connection with the mitotic SAC. In a gene chip-based screen, the 

entire transcriptome was quantified in bone marrow cells taken from WT, 

Fancc-/-, Fancg-/-, and Fancc-/-; Fancg-/- mice. The dysregulated transcripts 

encoded a number of known mitotic SAC regulators, notably the MCC proteins 

Mad2 and BubR1 (A. Pulliam-Leath, S. Ciccone, G. Nalepa, G. Bagby, D. W. 

Clapp, unpublished data). 

This study led us to hypothesize that the human FA proteins are essential 

for the activity of the mitotic SAC and that the aneuploidy and oncogenesis 

observed in FA patients are at least partially caused by defective regulation of 

the mitotic SAC in FA-deficient cells. Since the mitotic SAC is an important tumor 

suppressor pathway that protects genomic integrity by ensuring accurate 

chromosome segregation during mitosis, we reasoned that a weakened SAC 

could provide a mechanistic explanation for the development of aneuploidy in 

FA-deficient cells. To investigate the role of the FA signaling network in the 

regulation of the mitotic SAC and the prevention of aneuploidy, we performed 

genome-wide RNAi-based experiments and numerous studies utilizing primary 

cells from patients with FA. 
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Results 

Genome-wide RNAi screen of known FA proteins for essential role in the 

activity of the mitotic SAC 

To assess the potential role of the FA signaling network in the activity of 

the mitotic SAC, we performed a functional RNAi screen which examined the 

status of the SAC upon knockdown of individual FA gene products (Figure 3-1). 

An siRNA library was generated which included siRNAs targeting all known 

human FA gene products. HeLa cells were reverse transfected with library 

siRNAs arrayed in a 96-well plate, challenged with taxol, fixed, and imaged using 

a BD Pathway automated microscope (Figure 3-1a). Then, the captured 

microscopy images were manually quantified using ImageJ. 

The chemotherapeutic agent taxol was used because it activates the 

mitotic SAC. As a microtubule stabilizer, taxol prevents remodeling of the mitotic 

spindle and results in incomplete formation of kinetochore-spindle fiber 

attachments. Due to the presence of unattached kinetochores, the SAC is 

activated in the presence of taxol and other drugs targeting the mitotic spindle. 

Negative control cells with a functional mitotic SAC were generated by 

transfection with a scrambled negative control siRNA, and positive control cells 

with an inactivated mitotic SAC were generated by transfection with an siRNA 

against the MCC protein MAD2. In response to taxol challenge, negative control 

cells arrested in prometaphase due to appropriate SAC activation (Figure 3-1b). 

In contrast, positive control cells generated by RNAi knockdown of MAD2 failed 
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to maintain SAC arrest in taxol and became interphase multinucleated cells 

(Figure 3-1b). 

The screen was performed twice with two independent siRNA libraries. In 

the initial screen, a custom Silencer siRNA library was designed and three 

unvalidated siRNA sequences per genotype were tested against each of the 

thirteen known FA gene products. (The results of the initial screen are shown in 

Figure 3-1d, e.) In 2010 and 2011 respectively, FANCO and FANCP were 

identified as novel FA complementation groups (Vaz, Hanenberg et al. 2010, 

Kim, Lach et al. 2011). Since two new FA genes had been discovered and since 

Silencer siRNAs produced inconsistent results in our screen most likely due to 

inconsistent knockdown of targeted gene products, a second siRNA library was 

designed utilizing next-generation Silencer Select siRNAs. In the second screen, 

one validated or three unvalidated Silencer Select siRNA sequences were tested 

against each of the fifteen known FA gene products. (The results of the second 

screen are shown in Figure 3-1f, g.) Remarkably, we found that RNAi silencing of 

fourteen of the fifteen known FA genes inactivated the SAC, as evidenced by the 

generation of interphase multinucleated cells in response to taxol, similar to RNAi 

silencing of MAD2 (Figure 3-1c, d, and e). 
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Figure 3-1. Genome-wide RNAi screen demonstrates that the FA signaling 
network is essential for the mitotic SAC. a) Schematic of the RNAi screen. 
The HeLaGFP-H2B/mCherry-αtubulin cell line stably expresses GFP-tagged Histone H2B 
and mCherry-tagged α-tubulin, which label DNA and microtubules respectively. 
The three types of cell which were observed following challenge with 100 nM 
taxol were interphase, mitotic, and multinucleated cells. Interphase cells 
represent cells which have not entered mitosis, mitotic cells represent cells 
arrested at the mitotic SAC, and multinucleated cells represent cells which have 
failed to maintain arrest at the mitotic SAC. b) Examples of microscopy-based 
phenotypes. Negative control siRNA-transfected HeLaGFP-H2B/mCherry-αtubulin cells 
arrest in prometaphase upon taxol exposure, indicating an active mitotic SAC. 
Positive control MAD2 siRNA-transfected cells become multinucleated 
interphase cells in response to taxol challenge, indicating SAC failure in each 
multinucleated cell and weakened mitotic SAC activity in the total population of 
cells. Each dotted circle encloses a single cell. Larger yellow arrows indicate 
multinucleated cells and smaller blue arrows indicate individual multinuclei. 
Original magnification is ×200 (BD Pathway 855). c) Representative images of 
cells transfected with indicated siRNAs targeting individual FA gene products and 
subsequently challenged with taxol. Weakened SAC activity evidenced by an 
increased rate of multinucleation following taxol challenge was observed for 
HeLa cells transfected with siRNAs against MAD2 and FA gene products. 
Original magnification is ×200 (BD Pathway 855). d and e) Quantification of 
microscopy-based results from the initial siRNA screen. For ten of thirteen FA 
gene products tested, FA-knockdown HeLa cells exhibit weakened SAC activity 
as evidenced by an increase in the % multinuclei and % non-mitotic nuclei in 
response to taxol, compared with negative control. An asterisk denotes P < 0.05 
(1-way ANOVA with post-hoc Fisher’s LSD test), all bars represent mean values 
± SEM, and n = 5 independent transfections per siRNA. f and g) Quantification of 
microscopy-based results. For fourteen of fifteen FA gene products tested, FA-
knockdown HeLa cells exhibit weakened SAC activity as evidenced by an 
increase in the % multinuclei and % non-mitotic nuclei in response to taxol, 
compared with negative control. For each FA gene product, only the single 
siRNA producing the strongest positive result is graphed in panels f and g. An 
asterisk denotes P < 0.0001 (1-way ANOVA with post-hoc Bonferroni’s 
correction), all bars represent mean values ± SEM, 3 independent transfections 
were performed, and n = 9 microscopic fields per siRNA. 
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Verification of protein target knockdown by siRNAs 

To verify that the siRNAs used in the RNAi-based screen successfully 

achieved knockdown of their respective FA protein targets, HeLa cells were 

transfected with the indicated siRNA or negative control siRNA for 48 hours. 

Then, the level of the indicated protein target was assessed by immunoblotting 

followed by densitometry. Effective knockdown was detected for the siRNA 

against MAD2 and for siRNAs against thirteen of the fourteen FA gene products 

which were positive hits in the RNAi-based screen, validating these siRNAs. The 

siRNAs against FANCF and FANCM could not be validated, as commercial 

antibodies which were tested failed to detect a band of the appropriate size. 
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Figure 3-2. Immunoblotting experiments validate the siRNAs used in the 
mitotic SAC RNAi screen. a) Six unique siRNA sequences result in knockdown 
of the FANCA protein in FANCA-transfected HeLa cells compared with negative 
control-transfected HeLa cells. b, c, and d) Six unique siRNA sequences against 
FANCB,  three unique siRNA sequences against FANCO, and two unique siRNA 
sequences against FANCP result in knockdown of the respective protein target. 
e) Individual siRNAs against MAD2 and nine additional FA proteins result in
knockdown of the indicated respective protein target. For each immunoblot, 
numbers represent densitometry-based quantification of the target band 
intensities normalized to loading control. Band intensities are reported in arbitrary 
units with negative control siRNA assigned to a value of 1. 
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Demonstration that multiple siRNAs against the same FA protein target 

result in mitotic SAC failure 

For four FA gene products, multiple unique siRNA sequences were tested, 

and more than one siRNA against the same FA gene product resulted in the 

phenotype of mitotic SAC failure. Additionally, when multiple siRNAs were tested, 

the percentage of cells exhibiting SAC failure correlated with the degree of 

protein target knockdown detected by immunoblotting (compare Figure 3-3 below 

with Figure 3-2 above). These data are important for two reasons. First, the use 

of multiple unique siRNA sequences targeting the same FA gene product at 

different locations affirms that the weakened SAC phenotype results from 

knockdown of the specific FA gene product targeted by the siRNA rather than 

from an off-target effect. Second, the use of siRNAs producing variable levels of 

FA protein target knockdown enables the following observations: a) the degree of 

SAC phenotype appears to correlate with the degree of FA protein target 

knockdown and b) a certain threshold of knockdown may be required before a 

SAC phenotype is observed. 
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Figure 3-3. Microscopy-based quantification of SAC failure resulting from 
knockdown of the same FA protein target by multiple siRNAs. a) Six of six 
unique siRNA sequences against FANCA, b) six of six against FANCB, c) two of 
three against FANCO, and d) two of three against FANCP cause SAC failure in 
taxol-challenged HeLaGFP-H2B/mCherry-αtubulin cells. An asterisk denotes P < 0.0001 
(1-way ANOVA with post-hoc Bonferroni’s correction), n ≥ 3 microscopic fields 
per siRNA, and all bars represent mean values ± SEM. 
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Verification that siRNAs do not have an off-target effect on MAD2 

Off-target siRNA effects are a risk in RNAi-based screens. In previous 

RNAi-based screens of mitotic SAC activity, MAD2 has been shown to be 

particularly susceptible to nonspecific knockdown by siRNAs designed to target 

other gene products (Sigoillot, Lyman et al. 2012). Thus, we wanted to verify that 

the siRNAs used in our RNAi-based screen did not exert a nonspecific effect on 

the level of MAD2. For several FA gene products, multiple unique siRNA 

sequences targeting the same FA gene product resulted in the phenotype of 

mitotic SAC failure (see Figure 3-3 above), making it unlikely that an off-target 

effect is responsible for this phenotype. For the other ten FA gene products 

which were identified as SAC regulators in the screen, quantitative 

immunoblotting was performed to show that MAD2 is not nonspecifically knocked 

down by siRNAs targeting FA gene products. HeLa cells were transfected with 

either negative control siRNA or the indicated FA siRNA for 48 hours, cell lysates 

were prepared, and infrared-based quantitative immunoblotting was performed 

using a LI-COR Odyssey CLx imager. 
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Figure 3-4. Quantitative immunoblotting verifies that FA siRNAs do not 
have an off-target effect on MAD2. The level of MAD2 is not significantly 
different between negative control siRNA-transfected and FA siRNA-transfected 
HeLa cells for the ten indicated siRNAs targeting different FA proteins (P > 0.05 
by two-tailed t-test). P values are noted on each graph, n = 3 independent 
transfections and immunoblots per siRNA, and all bars represent mean values ± 
SEM. MAD2 target band intensities were quantified using LI-COR Image Studio 
software and normalized to loading control. Band intensities are reported in 
arbitrary units with the average MAD2 intensity in negative control siRNA-
transfected samples assigned to a value of 100%. 
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Quantification of mitotic SAC failure in primary cells from FA patients 

To confirm the results of the RNAi screen, we obtained primary fibroblasts 

from FA patients of twelve different FA complementation groups from our 

collaborator Helmut Hanenberg. These cells were challenged with taxol, fixed, 

stained in order to visualize DNA and actin, and imaged (Figure 3-5a). 

Microscopy images were manually quantified. Additionally, taxol-challenged 

primary fibroblasts from FA patients were stained with phospho-histone H3 (S10) 

and analyzed via flow cytometry. Phosphorylation of serine 10 of the nucleosome 

component histone H3 temporally corresponds with the initiation of chromosome 

condensation at the onset of mitosis, the concentration of phospho-histone H3 

(S10) is highest in metaphase, and a global de-phosphorylation of histone H3 

occurs at the completion of mitosis (Hans and Dimitrov 2001). Thus, phospho-

histone H3 (S10) is an excellent marker for flow cytometry-based quantification of 

mitotic arrest. Consistent with the mitotic SAC RNAi screen results, SAC failure 

evidenced by increased multinucleation and increased non-mitotic cells was 

observed for taxol-challenged primary fibroblasts of all tested FA 

complementation groups, while fibroblasts from healthy individuals exhibited 

normal mitotic SAC arrest (Figure 3-5). 
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Figure 3-5. Quantification of SAC failure in primary fibroblasts from FA 
patients confirms that the human FA signaling network is essential for the 
mitotic SAC. a) Schematic of microscopy-based mitotic SAC assessment in 
primary fibroblasts from FA patients. Hoechst 33342 and Alexa Fluor-conjugated 
phalloidin were used to label DNA and actin respectively. b) Representative 
images of taxol-challenged FA-deficient primary fibroblasts. FA fibroblasts fail to 
arrest in mitosis following taxol challenge and generate multinucleated cells 
(arrows), while WT (wild type) fibroblasts from healthy control patients 
demonstrate appropriate prometaphase arrest following taxol exposure. The two 
FANCD1 cell lines imaged in this panel (FANCD1-1 and FANCD1-2) are derived 
from two siblings carrying the same mutations in the FANCD1/BRCA2 gene. A 
summary of the specific mutations detected in all of the primary FA patient 
fibroblasts used in this study appears in Table 2 in the Methods section. Original 
magnification of images is ×200 (Applied Precision personalDV). c and d) 
Quantification of microscopy-based results. In c, an asterisk denotes P < 0.01 (1-
way ANOVA with post-hoc Bonferroni’s correction); in d, an asterisk denotes P < 
0.0001 (1-way ANOVA with post-hoc Bonferroni’s correction); n = 10–15 
microscopic fields per FA genotype, and all bars represent mean values ± SEM. 
e) Quantification of flow cytometry-based results. Taxol-challenged FA patient
fibroblasts show decreased phospho-histone H3-positive mitotic cells and 
correspondingly increased phospho-histone H3-negative non-mitotic cells when 
analyzed by flow cytometry, confirming results obtained by microscopy-based 
quantification of SAC failure. An asterisk denotes P < 0.001 (1-way ANOVA with 
post-hoc Bonferroni’s correction), n = 3 flow assays per FA genotype, and all 
bars represent mean values ± SEM. 
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Genetic correction of primary cells from FA patients 

To generate isogenic FA patient cells and gene-corrected complementary 

cells, primary fibroblasts from an FA patient of the FANCA or FANCC subtype 

were transduced with either an empty lentiviral vector or a lentiviral vector 

containing the full-length, codon-optimized version of the FANCA or FANCC 

gene (Figure 3-6a). Two different FANCA patient fibroblast lines and one FANCC 

patient fibroblast line were successfully gene-corrected using two different vector 

systems, one containing a neomycin resistance cassette and the other containing 

a puromycin resistance cassette (Figure 3-6b). Neomycin or puromycin 

respectively was used to select for transduced cells (Figure 3-6a). Finally, to 

verify functional correction, the stably transduced cells were challenged with 

MMC and cell cycle analysis was performed via flow cytometry. Stable 

expression of the missing FANCA protein in primary FANCA-deficient fibroblasts 

rescued cell cycle block in response to mitomycin, which is known to result from 

loss of FA signaling (Figure 3-6c and d). 
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Figure 3-6. Generation of functionally gene-corrected FANCA and FANCC 
patient fibroblasts. a) Schematic illustrating generation of gene-corrected FA 
patient fibroblasts. Stable ectopic expression of FANCA or FANCC in primary 
fibroblasts from FA patients of the FANCA and FANCC subtypes respectively 
was achieved via lentiviral transduction, followed by selection with neomycin or 
puromycin. b) Summary of vectors utilized in gene-correction of primary FANCA 
and FANCC patient fibroblasts. c) Demonstration of functional correction in 
response to MMC challenge for cells stably transduced with IRES-NEO cassette-
containing vectors. d) Demonstration of functional correction in response to MMC 
challenge for cells stably transduced with IRES-PURO cassette-containing 
vectors. For c and d, cells were treated with 0 or 33 nM mitomycin C (MMC) for 
72 hours. DNA was stained with propidium iodide, and cell cycle profiles were 
obtained via flow cytometry. MMC induces DNA interstrand crosslink damage 
which cannot be repaired in FA pathway-deficient cells, resulting in cell cycle 
arrest in late S phase. The resulting cell cycle block appears as a G2/M peak on 
cell cycle flow. In c and d, cell cycle block is observed for FANCA-deficient and 
FANCC-deficient fibroblasts treated with 33 nM MMC, while gene-correction via 
stable transduction with FANCA-expressing or FANCC-expressing vector results 
in ablation of the cell cycle block in response to MMC. 

106 



Genetic rescue of mitotic SAC activity in primary cells from FA patients

Previous experiments in siRNA-transfected HeLa cells and primary FA 

patient fibroblasts demonstrated that mitotic SAC failure occurs in the absence of 

an intact FA pathway. Since we observed weakened activity of the mitotic SAC in 

primary fibroblasts from FA patients, we wanted to know if genetic correction via 

stable expression of the mutated FA protein would correct the SAC defect in 

these cells. Importantly, stable ectopic expression of the mutated FANCA protein 

in primary fibroblasts from an FA patient of the FANCA subtype rescued the 

mitotic SAC (Figure 3-7). The SAC was tested in response to taxol challenge in 

an additional uncorrected and gene-corrected pair (FANCA-3 in Figure 3-6 

above), and the same result was observed (data not shown). 
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Figure 3-7. Ectopic expression of FANCA rescues the SAC defect in 
primary FANCA patient fibroblasts exposed to taxol. Uncorrected and gene-
corrected primary FANCA patient fibroblasts were challenged with taxol for 24 
hours, stained to label DNA and actin, and analyzed via microscopy. a) 
Representative images of taxol-challenged uncorrected and gene-corrected 
FANCA-deficient primary fibroblasts. Uncorrected FANCA fibroblasts fail to arrest 
in mitosis following taxol challenge and generate multinucleated cells (arrows), 
while isogenic gene-corrected control fibroblasts demonstrate appropriate 
prometaphase arrest following taxol exposure. Original magnification is ×200 
(Applied Precision PersonalDV). b) Quantification of the microscopy-based 
results. In the graph of % multinucleated cells, the asterisk denotes P = 0.0038 
(2-tailed t test), n = 15 microscopic fields, and bars represent mean values ± 
SEM. In the graph of % non-mitotic cells, the asterisk denotes P < 0.0001 (2-
tailed t test), n = 15 microscopic fields, and bars represent mean values ± SEM. 
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Mitotic SAC failure in primary FANCA patient fibroblasts in response to 

nocodazole 

As summarized in the introduction, taxol and nocodazole are 

mechanistically different chemotherapeutic agents targeting the mitotic spindle. 

Nocodazole, a microtubule destabilizing agent, promotes destruction of the 

mitotic spindle, resulting in virtually a complete absence of kinetochore-spindle 

fiber attachments. In contrast, taxol, a microtubule stabilizing agent, prevents 

remodeling of the mitotic spindle. The result is that some kinetochore-spindle 

fiber attachments may be possible in the presence of taxol. Unattached 

kinetochores generate the ‘on’ signal for the mitotic SAC, with the level of MAD2 

reflecting the number of unattached kinetochores. As the percentage of attached 

kinetochores increases, the concentration of MAD2 at the kinetochore decreases 

and the strength of the SAC ‘on’ signal correspondingly decreases. Since 

nocodazole results in a greater number of unattached kinetochores than taxol, 

the SAC signal should be stronger in response to nocodazole than taxol. Thus, it 

follows that if the FA signaling network is essential for the mitotic SAC in 

response to taxol, the FA signaling network is also likely to be essential for the 

mitotic SAC in response to nocodazole. To assess the role of the FA pathway in 

the activity of the mitotic SAC in response to a microtubule destabilizing agent, 

primary FANCA-deficient cells were challenged with nocodazole and mitotic SAC 

failure was quantified. 
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Figure 3-8. Primary FANCA-deficient patient fibroblasts exhibit weakened 
activity of the mitotic SAC in response to nocodazole. Similar to taxol-
challenged cells, uncorrected and gene-corrected primary FANCA patient 
fibroblasts were challenged with nocodazole for 24 hours, stained to label DNA 
and actin, and analyzed via microscopy. The graphs shown represent the 
quantification of microscopy-based results. In the graph of % multinucleated 
cells, the asterisk denotes P = 0.021 (2-tailed t-test), n = 15 microscopic fields, 
and bars represent mean values ± SEM. In the graph of % non-mitotic cells, the 
asterisk denotes P = 0.0096 (2-tailed t-test), n = 15 microscopic fields, and bars 
represent mean values ± SEM. 
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FANCA shRNA knockdown and characterization of mitotic SAC phenotype 

in ex vivo-cultured CD34+ cells 

Bone marrow failure, AML, and MDS are the major causes of morbidity 

and mortality in FA. Since FA patients frequently develop aneuploidy-associated 

hematologic malignancies, we wanted to determine whether the mitotic SAC 

contributes to genomic instability in phenotypic hematopoietic stem and 

progenitor cells. Thus, we tested whether FANCA controls the SAC in primary 

hematopoietic cells. 

To generate FANCA-knockdown primary hematopoietic stem and 

progenitor cells, CD34+ cells were isolated from umbilical cord blood, transduced 

with FANCA shRNA or scrambled control shRNA, and sorted for GFP+ 

transduced cells. The FANCA shRNA used in this experiment has previously 

been validated by demonstrating increased MMC hypersensitivity and ablation of 

FANCD2 monoubiquitination in transduced cells (Z. Sun, D. W. Clapp, H. 

Hanenberg, unpublished data). Since many CD34+ cells are quiescent, BrdU 

was used to label the cycling cells. Then, the SAC was challenged using taxol, 

and cells were immunostained for BrdU and phospho-histone H3 to label cycling 

and mitotic cells respectively and stained with Hoechst 33342 to label DNA. 

Finally, data was collected using an Amnis ImageStreamX Mark II imaging flow 

cytometer, which performs multicolor confocal imaging at the single cell level 

(Figure 3-9a), and data was analyzed using Amnis IDEAS software. 

In this experiment, G2, M, and SAC failure cells could be distinguished 

from G0, G1, and S phase cells based on their DNA content and BrdU status. 
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Cells which have completed S phase DNA replication have 4N DNA content and 

are BrdU+. Phospho-H3 staining enabled the identification of mitotically arrested 

cells. However, imaging was necessary to identify multinucleated, SAC failure 

cells, which have the same BrdU status and DNA content as pre-mitotic G2 cells 

(Figure 3-9b). When multinucleated cells were quantified, FANCA-knockdown 

primary CD34+ cells exhibited weakened SAC activity compared with negative 

control cells, as evidenced by a significant increase in the percentage of 

multinucleated cells following exposure to taxol (Figure 3-9c and d). 
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Figure 3-9. Analysis of mitotic SAC activity in FANCA-deficient primary 
CD34+ cells demonstrates that FANCA is essential for the mitotic SAC in 
human hematopoietic cells. a) Schematic of microscopy-coupled flow 
cytometry-based assessment of mitotic SAC activity in primary CD34+ cells. 
CD34+ cells were transduced with shRNA, sorted for GFP+ transduced cells, 
labeled with BrdU, and treated with taxol prior to analysis using a flow cytometer 
which performs confocal imaging of each cell. Hoechst 33342 was used to label 
DNA, and immunostaining for BrdU and phospho-histone H3 were used to label 
cycling and mitotic cells respectively. b) Microscopy-coupled flow cytometry 
allows quantification of SAC failure in cycling CD34+ cells. Mitotic cells are 
phospho-histone H3-positive, and SAC failure cells are multinucleated. c) 
Representative images of taxol-challenged FANCA-knockdown primary CD34+ 
cells. When BrdU-positive cells with 4N DNA content were gated, the observed 
phenotypes included interphase cells (G2), prometaphase cells (mitotic SAC 
arrest), and multinucleated interphase cells (SAC failure). Original magnification 
is ×400 (Amnis ImageStreamX Mark II). d) Quantification of SAC failure in 
cycling FANCA shRNA-transduced CD34+ cells. The asterisk indicates P = 0.029 
(2-tailed t-test), n = 6 assays, and both bars represent mean values ± SEM. 
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Hypersensitivity to drugs targeting spindle assembly in primary FANCA 

patient fibroblasts 

We wanted to know if the weakened SAC we found in previous 

experiments results in a hypersensitivity to spindle poisons such as taxol in FA 

pathway-deficient primary cells. Thus, a clonogenic assay was performed on 

primary uncorrected and gene-corrected FANCA-deficient fibroblasts (FANCA-2 

in Figure 3-6 above) to assess the effect of taxol on survival and proliferation in 

the presence and absence of FANCA. Uncorrected FANCA-deficient fibroblasts 

demonstrated decreased clonogenic growth in the presence of low doses of taxol 

compared with isogenic gene-corrected control fibroblasts, indicating that loss of 

FANCA results in hypersensitivity to taxol. This assay was repeated on an 

additional uncorrected and gene-corrected pair (FANCA-3 in Figure 3-6 above), 

and the same result was observed (data not shown). 
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Figure 3-10. Clonogenic assay demonstrates that primary FANCA patient 
fibroblasts are hypersensitive to taxol. To assess the effect of taxol on 
survival and proliferation in the presence and absence of FANCA, uncorrected 
and isogenic gene-corrected FANCA patient cells were plated at 500 cells per 
10-cm dish and cultured in the presence of 0, 0.1, 0.3, 1, or 3 nM taxol for 11 
days. After staining with methylene blue, colonies were manually quantified. a) 
Representative examples of stained clonogenic assay plates. b) Quantification of 
results. Taxol concentration and FANCA status were considered 2 independent 
factors. Taxol concentration, FANCA status, and the interaction between the two 
factors resulted in significant differences by 2-way ANOVA (P < 0.0001). 
Asterisks indicate P < 0.0001 for comparisons between uncorrected and gene-
corrected cells at 0.1, 0.3, and 1 nM taxol concentrations respectively by 2-way 
ANOVA with post-hoc Tukey’s multiple comparison test. At 0 and 3 nM taxol, 
uncorrected and gene-corrected FANCA patient fibroblasts were not significantly 
different. n = 6 assays, and bars represent mean values ± SEM. 
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Systematic assessment of mitotic SAC failure in primary FANCA patient 

fibroblasts by video microscopy 

In order to quantify the duration of SAC arrest and directly visualize the 

outcome of SAC arrest in FA pathway-deficient cells, time-lapse microscopy of 

taxol-challenged primary FANCA-deficient fibroblasts was performed. The 

outcome of prolonged SAC arrest may be either apoptosis or SAC failure. When 

the SAC is functioning properly, cells will initiate apoptosis in response to 

prolonged SAC arrest. The coupling of apoptosis to SAC arrest is an essential 

mechanism for the prevention of aneuploidy in daughter cells because the 

elimination of dividing cells which are unable to complete the formation of 

kinetochore-spindle fiber attachments prevents the development of lagging 

chromosomes which may segregate to the wrong daughter cell. As previously 

described, when the activity of the SAC is weakened, a cell may initiate 

anaphase in the presence of lingering unattached kinetochores. In other words, 

the cell may have a lower threshold for satisfaction of the SAC. When the SAC 

fails and anaphase initiation occurs prematurely, the result may be mis-

segregation of chromosomes, contributing to genomic instability. 
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Figure 3-11. Video microscopy of taxol-challenged primary FANCA patient 
fibroblasts elucidates the role of FANCA in the activity of the mitotic SAC. 
Primary FANCA-deficient fibroblasts and isogenic gene-corrected control 
fibroblasts were challenged with 200 nM taxol and video microscopy was 
performed for 48 hours in order to quantify the duration of SAC arrest and record 
the outcome of prolonged SAC arrest. In response to prolonged SAC arrest, 
taxol-challenged fibroblasts either exhibited the normal apoptotic response or 
exhibited SAC failure. SAC failure was visualized by initiation of cytokinesis 
followed by progression to interphase. Cells exhibiting SAC failure became one 
or two interphase multinucleated cells reflecting cytokinesis failure or completion 
respectively. a) Schematic of experimental design and representative images. 
Original magnification is ×200 (Nikon BioStation IM-Q). White arrows indicate 
SAC arrest, red arrows indicate SAC failure, and the yellow arrow indicates 
apoptosis. Total n=144-171 cells per genotype. At the end of quantified videos, 
each cell exhibited one of three outcomes—apoptosis, SAC failure, or SAC arrest 
through the end of the video. Cells remaining arrested at the end of the videos 
were omitted from analysis. b) Compared with isogenic gene-corrected control 
fibroblasts, a decreased percentage of primary FANCA-deficient fibroblasts 
initiate apoptosis and an increased percentage of primary FANCA-deficient 
fibroblasts exhibit SAC failure as the outcome of prolonged mitotic SAC arrest 
induced by challenge with 200 nM taxol (P=0.0215). n=115-129 cells per 
genotype. c) Taxol-challenged primary FANCA-deficient fibroblasts and gene-
corrected control fibroblasts remain arrested at the mitotic SAC for similar lengths 
of time prior to initiation of apoptosis (P=0.2377). n=48-72 cells per genotype. d) 
For cells exhibiting SAC failure in response to taxol challenge, primary FANCA-
deficient fibroblasts maintain SAC arrest for a shorter duration prior to the 
initiation of cytokinesis than do gene-corrected control fibroblasts (P=0.0396). 
n=37-46 cells per genotype. e) For cells exhibiting SAC failure following taxol 
challenge, primary FANCA-deficient fibroblasts fail to maintain SAC arrest for as 
long as control fibroblasts. An approximately two-fold decrease in the percentage 
of cells maintaining the SAC for >22 hours was observed for FANCA-deficient 
fibroblasts compared with gene-corrected control fibroblasts (P=0.0052). While 
fewer FANCA-deficient fibroblasts maintained SAC arrest for >20 hours and >24 
hours compared with control fibroblasts, the observed differences were not 
statistically significant (P=0.1098 and P=0.1028 respectively). n=37-46 cells per 
genotype. Differences in the duration of SAC arrest between uncorrected and 
gene-corrected primary FANCA patient fibroblasts were analyzed at thresholds of 
20, 22, and 24 hours because the average durations of SAC arrest were 19.64 
hours (uncorrected) and 23.41 hours (corrected). f) Cells which exhibit SAC 
failure and initiate cytokinesis may subsequently fail to complete cytokinesis, 
resulting in a single multinucleated daughter cell, or may successfully complete 
cytokinesis, resulting in two daughter cells. Following taxol challenge, similar 
numbers of SAC-arrested FANCA-deficient fibroblasts and isogenic gene-
corrected control fibroblasts progressed to each endpoint (P=>0.9999). n=37-46 
cells per genotype. The majority of cells which failed to maintain SAC arrest 
subsequently failed to complete cytokinesis. 
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Disruption of FANCA results in altered expression and post-translational 

modification of mitotic SAC regulators at the proteome level 

Finally, to identify mitotic signaling pathways affected by the loss of 

FANCA, we performed a mass spectrometry-based screen of the proteome and 

phospho-proteome in primary FANCA patient-derived fibroblasts. Primary 

FANCA-deficient fibroblasts and their gene-corrected complement were 

challenged with 1 nM taxol for 9 days. The concentration and duration of taxol 

challenge were determined based on the results of the clonogenic assay (Figure 

3-10). The total protein levels and phospho-peptide levels were quantified by 

mass spectrometry. Candidates were identified based on a two-fold or greater 

change in the quantified level of total or phospho-protein in the primary FANCA-

deficient fibroblasts compared with their gene-corrected complement. 

In taxol-challenged primary FANCA-deficient fibroblasts, a number of 

candidates were identified which are known to regulate mitosis, apoptosis, and 

DNA damage repair, including a number of candidates not previously linked to 

FA. In untreated and MMC-challenged controls, several proteins which are 

known to interact with the FA pathway in DNA interstrand crosslink repair were 

identified as candidates, validating the experimental approach. Two candidates 

which are known oncoproteins, mitotic regulators, and targets of the mitotic 

kinase Aurora A at the centrosome (BRCA1 and SKI) have been validated by 

immunoblotting, and we are working to validate additional candidates which are 

known regulators of the mitotic SAC. 
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Figure 3-12. Altered expression and post-translational modification of 
mitotic regulators in primary FANCA patient fibroblasts. a) Schematic of the 
mass spectrometry-based screen. b) Schematic depicting how candidates were 
defined. c) Graph indicating the total number of candidates related to mitosis, 
apoptosis, and DNA repair which were identified in the analysis of taxol-
challenged cells. d) Immunoblots validating the two mitosis-related candidates 
BRCA1 and SKI. For both untreated and taxol-challenged cells, increased 
expression of BRCA1 and SKI was observed in primary FANCA-deficient patient 
fibroblasts, compared with gene-corrected control fibroblasts. COX4 was used as 
a loading control. Three independent experiments were performed, and all 
results showed similarly increased BRCA1 and SKI in FANCA-deficient 
fibroblasts, compared with gene-corrected control fibroblasts, in both untreated 
and 1 nM taxol-challenged cells cultured for nine days. Representative 
immunoblots are shown, and the numbers beneath the immunoblots represent 
the relative expression level quantified by densitometry, normalized to COX4 
loading control. Untreated, uncorrected FANCA patient fibroblasts were arbitrarily 
assigned to a value of 1. 
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CHAPTER FOUR 

THE FA SIGNALING NETWORK IS ESSENTIAL FOR CENTROSOME 

MAINTENANCE AND PROPER EXECUTION OF UNPERTURBED MITOSIS 

Introduction 

Chapter three presented our discovery that the human FA signaling 

network is essential for the activity of the mitotic SAC, which protects genomic 

integrity by regulating chromosome segregation. Chapter four builds on this 

discovery by systematically examining the effects of unperturbed mitosis in FA 

pathway-deficient cells. As summarized in the previous chapter, video 

microscopy of taxol-challenged fibroblasts confirmed that loss of function 

mutations in FANCA result in a weakened SAC, evidenced by decreased 

duration of SAC arrest and more frequent SAC failure. Earlier initiation of 

chromosome segregation in SAC-arrested FA pathway-deficient cells may 

directly lead to aneuploidy either through the generation of anaphase lagging 

chromosomes or through the failure of cytokinesis. 

Since the strength of the SAC activity ‘on’ signal generally correlates to 

the number of unattached kinetochores, weakening of the mitotic SAC may result 

in the initiation of anaphase chromosome segregation in the presence of one or 

more lingering unattached kinetochores. When anaphase is initiated prematurely, 

sister chromatids with unattached kinetochores or abnormally attached 

kinetochores can become anaphase lagging chromosomes which segregate to 

the incorrect daughter cell and form a micronucleus. 
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Video microscopy of taxol-challenged fibroblasts further confirmed that 

SAC failure is frequently followed by cytokinesis failure in taxol-challenged 

fibroblasts, regardless of FANCA status. Cytokinesis failure results in a 4N cell 

which may be binucleated or multinucleated. Additionally, cytokinesis failure 

generates a G1 cell with two centrosomes. In the next round of the cell cycle, the 

completion of centrosome replication during S phase will inherently result in 

supernumerary centrosomes in a cell which has previously experienced 

cytokinesis failure. 

The experiments in chapter three utilized challenge with spindle drugs to 

assess the activity of the mitotic SAC. The experiments in the current chapter 

examine the results of mitosis which is allowed to occur in the absence of 

chemical perturbation. We hypothesized that a weakened mitotic SAC would 

result in accelerated progression through the early phases of mitosis and that 

aneuploidy and supernumerary centrosomes would occur as a result of 

unperturbed mitosis in FA pathway-deficient cells. To determine whether 

aneuploidy and supernumerary centrosomes develop as a result of unperturbed 

mitosis in FA pathway-deficient cells, we performed RNAi-based experiments 

and studies utilizing primary cells from FA patients. To determine whether the 

timing of unperturbed mitosis is accelerated or notable phenotypic defects exist 

in mitosis or cytokinesis in the absence of FANCA function, phase contrast video 

microscopy of unperturbed mitosis was performed in primary fibroblasts from an 

FA patient of the FANCA subtype. 
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Results 

RNAi screen of FA proteins for essential role in centrosome maintenance 

To determine whether the FA proteins are essential for the maintenance of 

normal numbers of centrosomes (one or two centrosomes per cell based on cell 

cycle status), HeLa cells were transfected with validated siRNAs against 

individual FA gene products as indicated (see Figure 3-2 for validation of siRNAs 

by immunoblotting). Cells were grown in the absence of spindle poisons for 72 

hours and then fixed. Next, immunofluorescence staining of endogenous 

pericentrin (a known centrosomal protein) was performed, followed by 

deconvolution microscopy and manual quantification of the acquired images. 

HeLa cells transfected with siRNAs against thirteen individual FA genes 

spontaneously accumulated extra centrosomes and became multinucleated. 
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Figure 4-1. Quantification of centrosomes in siRNA-transfected HeLa cells 
reveals a role for the FA signaling network in centrosome maintenance. 
RNAi knockdown of FA pathway gene products leads to spontaneous 
accumulation of supernumerary centrosomes and spontaneous multinucleation in 
HeLa cells. a) Representative images are shown for cells transfected with 
negative control siRNA or siRNA against an individual FA protein as indicated. 
Cells transfected with negative control siRNA have normal numbers of 
centrosomes and normal nuclear architecture. Cells transfected with siRNA 
against an FA gene product accumulate supernumerary centrosomes and 
undergo multinucleation. Red arrows indicate clusters of supernumerary 
centrosomes. b) Quantification of microscopy-based results. An increased 
percentage of cells with abnormal centrosome counts results from RNAi 
knockdown of thirteen FA pathway gene products. Asterisks indicate P < 0.05 
compared with negative control (1-way ANOVA with post-hoc Bonferroni’s 
correction), n = 10 microscopic fields, and all bars represent mean values ± SEM. 
Original magnification is ×200 (Applied Precision personalDV). 
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Assessment of gross aneuploidy and supernumerary centrosomes 

resulting from unperturbed mitosis in primary cells from patients with FA 

We wanted to determine whether cells lacking a functioning FA pathway 

would develop gross aneuploidy or acquire supernumerary centrosomes when 

mitosis was allowed to occur in the absence of chemical perturbation. Thus, 

fibroblasts from twelve FA patients—each with mutations in a different FA gene—

were cultured in the absence of spindle poisons, fixed, and stained. DNA was 

labeled with Hoechst 33342, and endogenous pericentrin (a known centrosomal 

protein) was labeled via immunostaining. Images were acquired by deconvolution 

microscopy, and cells were manually quantified. Compared with control 

fibroblasts, primary fibroblasts from FA patients contained structural nuclear 

abnormalities (multinuclei and micronuclei) and abnormally high numbers of 

centrosomes. 
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Figure 4-2. Analysis of FA patient fibroblasts reveals supernumerary 
centrosomes and gross aneuploidy as a result of unperturbed mitosis. 
Abnormal centrosome counts and spontaneous micronucleation and 
multinucleation were detected in fibroblasts from patients with FA. a) Schematic 
of experimental design. b) As demonstrated by immunostaining of endogenous 
pericentrin (red), fibroblasts obtained from healthy controls (WT-1 and WT-2) 
contain one to two centrosomes per cell. Original magnification is ×200 (Applied 
Precision personalDV). c) Fibroblasts isolated from patients with FA contain 
supernumerary centrosomes (white arrows). Original magnification is ×200 
(Applied Precision personalDV). d) Compared with healthy control fibroblasts, FA 
patient fibroblasts contain an increased percentage of cells with supernumerary 
centrosomes. Asterisks indicate P < 0.05 compared with the average of two 
healthy control fibroblast lines (1-way ANOVA with post-hoc Bonferroni’s 
correction), n = 30 microscopic fields per fibroblast cell line, and all bars 
represent mean values ± SEM. e) Fibroblasts from patients with FA have 
abnormal nuclear structures and undergo spontaneous micronucleation and 
multinucleation (yellow arrows). Original magnification is ×200 (Applied Precision 
personalDV). f) Compared with healthy control fibroblasts, FA patient fibroblasts 
contain an increased percentage of cells with abnormal nuclei. Asterisks indicate 
P < 0.05 compared with the average of two healthy control fibroblast lines (1-way 
ANOVA with post-hoc Bonferroni’s correction), n = 30 microscopic fields per 
fibroblast cell line, and all bars represent mean values ± SEM. 
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Detection of centromeres in micronuclei and multinuclei in primary cells 

from an FA patient of the FANCA subtype 

Our study has established that the FA signaling network is essential for 

the mitotic SAC and that micronuclei form as a result of unperturbed mitosis in 

primary FA pathway-deficient cells, and previous studies have established an 

essential role for the FA signaling network in DNA damage repair. The presence 

of centromeres in micronuclei would strongly suggest the generation of 

micronuclei through defective chromosome segregation rather than DNA 

breakage. Thus, we wanted to determine whether some or all of the micronuclei 

and multinuclei in primary FA patient fibroblasts contain centromeres. Primary 

fibroblasts from a FANCA patient were cultured in the absence of spindle 

poisons, fixed, and stained. Endogenous CENPA (a known centromere protein) 

and endogenous pericentrin (a known centrosomal protein) were labeled via 

immunostaining, and DNA and actin respectively were labeled with Hoechst 

33342 and AlexaFluor594-conjugated phalloidin. Images of primary FANCA 

patient-derived fibroblasts with structural nuclear abnormalities were acquired by 

deconvolution microscopy, and cells were manually quantified. Kinetochores 

were detected in most, but not all, of the micronuclei and multinuclei resulting 

from unperturbed mitosis in primary fibroblasts from an FA patient of the FANCA 

subtype. This finding indicates that both chromosome mis-segregation and DNA 

breaks can result in aneuploidy in primary FANCA-deficient cells. We conclude 

that chromosome mis-segregation due to weakened SAC activity is a major 

mechanism leading to the development of aneuploidy in FANCA-deficient cells. 
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a 

 
b 
Type of nuclear abnormality # of cells % of cells 
Bi/multinucleated cells 6/25 24% 
Cells with micronuclei 22/25 88% 

 
c 

  
# of abnormal 

nuclei 
% of abnormal 

nuclei 
Abnormal nuclei with centromeres 29/42 69% 

 
Figure 4-3. Immunostaining of CENPA in FANCA patient-derived fibroblasts 
reveals the presence of centromeres within micronuclei and multinuclei. 
Centromeres were labeled via immunostaining of endogenous CENPA in primary 
fibroblasts derived from an FA patient of the FANCA subtype. Twenty-five 
primary FANCA-deficient fibroblasts with structural nuclear abnormalities were 
imaged and manually quantified, and a total of forty-two abnormal nuclei were 
observed. a) In the image on the left, a micronucleus within a primary FANCA 
patient fibroblast contains a single centromere, suggesting that this micronucleus 
contains a single sister chromatid which mis-segregated during anaphase. The 
yellow arrow indicates the centromere-positive micronucleus. Centromeres are 
green, DNA is blue, and actin is red. In the image on the right, three nuclei in a 
multinucleated primary FANCA patient fibroblast contain centromeres. 
Centromeres are green, DNA is blue, and the centrosome is red. Representative 
images are shown, scale bars represent 5 um, and the original magnification is 
×1,000 (Applied Precision personalDV). b) Table indicating the proportion of the 
quantified cells with each type of structural nuclear abnormality. c) Table 
indicating the proportion of abnormal nuclei which contain centromeres. 
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Systematic assessment of unperturbed mitosis in primary FANCA patient 

fibroblasts utilizing video microscopy 

To quantify the duration of individual phases of mitosis and determine 

whether notable phenotypic defects occur in mitosis and/or cytokinesis in FA 

pathway-deficient cells, time-lapse microscopy of unperturbed mitosis was 

performed in uncorrected primary FANCA patient fibroblasts and isogenic gene-

corrected control fibroblasts. Since weakened SAC activity leads to premature 

initiation of anaphase in the presence of lingering unattached kinetochores, we 

anticipated that dividing cells would progress through the early mitotic phases 

and enter anaphase more quickly in FANCA-deficient fibroblasts, compared with 

gene-corrected control fibroblasts. Live-cell video microscopy of FANCA patient-

derived fibroblasts revealed accelerated progression through the early mitotic 

phases in uncorrected FANCA-deficient fibroblasts compared with gene-

corrected control fibroblasts. Specifically, prophase and metaphase were each 

significantly shorter in duration in uncorrected FANCA-deficient fibroblasts than in 

gene-corrected control fibroblasts. The finding of accelerated early mitosis in 

FANCA-deficient fibroblasts is consistent with a role for FANCA in the activity of 

the mitotic SAC. 

Additionally, analysis of cell division in FANCA-deficient fibroblasts via 

live-cell video microscopy revealed multiple novel phenotypes indicating defects 

in mitosis and cytokinesis. The observed phenotypes in primary FANCA-deficient 

fibroblasts include the following: 1) the absence of a clear metaphase plate, 

suggesting a defect in chromosome congression; 2) rotation of the dividing cell 
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such that one newly forming daughter cell is vertically offset from the other during 

anaphase, indicating a defect in spindle orientation; 3) delayed nuclear envelope 

(NE) breakdown during prophase and asynchronous NE re-assembly during 

telophase, suggesting a defect in the regulation of the NE protein lamin; and 4) 

massive formation of vesicles at the cell surface during cytokinesis, suggesting a 

defect in the endocytic pathways which are essential for the addition of new 

membrane to the cleavage furrow during cytokinesis. The observation of spindle 

mis-orientation in FANCA-deficient fibroblasts has been validated in an 

experiment utilizing deconvolution microscopy to quantify the angle of abnormal 

spindle rotation in metaphase cells. This validation experiment is summarized in 

the next section and shown in Figure 4-5. Validation experiments for each of the 

other phenotypes are proposed in the Future Directions. 
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Figure 4-4. Video microscopy of unperturbed mitosis in primary FANCA 
patient fibroblasts reveals accelerated mitosis and novel phenotypic 
defects in mitosis and cytokinesis. Live-cell video microscopy of primary 
FANCA patient-derived fibroblasts was performed in the absence of spindle 
poisons to quantify the duration of mitotic phases and visualize defects in mitosis 
and cytokinesis. In all panels, n = 100 cells per genotype, original magnification is 
×200 (Nikon BioStation IM-Q), and all bars represent mean values ± SEM. a) 
Schematic of experimental design. b) Representative images of a fibroblast 
progressing through each phase of mitosis. c) Compared with gene-corrected 
control fibroblasts, uncorrected FANCA-deficient fibroblasts exhibit decreased 
duration of mitosis (P = 0.0091) and decreased duration of early mitosis 
(prophase, prometaphase, and metaphase) (P = 0.0019). No difference was 
observed in the duration of late mitosis (anaphase and telophase) (P = 0.2642). 
d) Compared with control fibroblasts, FANCA-deficient fibroblasts exhibit 
accelerated prophase (P = 0.0002) and metaphase (P = 0.0050), but not 
prometaphase (P = 0.3256). e) FANCA-deficient fibroblasts exhibit no 
discernable difference in the timing of cytokinesis when compared with control 
fibroblasts. The timing of the onset of cytokinesis (duration of anaphase prior to 
cleavage furrow initiation) is not significantly altered in FANCA-deficient 
fibroblasts (P = 0.0751), nor is the duration of cytokinesis from cleavage furrow 
initiation to the completion of NE re-assembly (P = 0.4240). f) Representative 
images of a FANCA-deficient fibroblast progressing through mitosis which 
exhibits an absent metaphase plate and rotated mitotic spindle. g) Compared 
with control fibroblasts, a greater percentage of FANCA-deficient fibroblasts lack 
a clearly defined metaphase plate (P = 0.0285). h) FANCA-deficient fibroblasts 
exhibit mis-oriented mitotic spindles, evidenced by rotation of the dividing cell out 
of the normal horizontal plane, so that one newly forming daughter cell is 
vertically offset from the other during anaphase. Compared with control 
fibroblasts, a greater percentage of FANCA-deficient fibroblasts exhibit spindle 
mis-orientation (graph on left; P = 0.0384), and the offset between the two 
daughter cells is greater in FANCA-deficient fibroblasts (P = 0.0395). i) 
Representative images of a FANCA-deficient fibroblast progressing through 
mitosis which exhibits asynchronous NE re-assembly during telophase. j) 
Compared with control fibroblasts, FANCA-deficient fibroblasts exhibit earlier 
nuclear envelope (NE) re-assembly in the first daughter cell (graph on left; P < 
0.0001), but no difference in the duration of late mitotic phases prior to NE re-
assembly in the second daughter cell (graph on right; P = 0.2642). This means 
that NE re-assembly occurs at different times for each daughter cell in 
uncorrected FANCA patient fibroblasts. k) FANCA-deficient fibroblasts exhibit 
asynchronous NE re-assembly between the two newly forming daughter cells 
during telophase. Compared with control fibroblasts, a greater percentage of 
FANCA-deficient fibroblasts exhibit asynchronous telophase NE re-assembly 
(graph on left; P < 0.0001) and a greater duration of asynchrony occurs in 
FANCA-deficient fibroblasts (graph on right; P = 0.0001). l) Representative 
images of a FANCA-deficient fibroblast progressing through cytokinesis which 
exhibits abnormal vesicle formation. m) A greater percentage of primary FANCA-
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deficient fibroblasts exhibit apparent defects in endocytic vesicle formation during 
cytokinesis, compared with control fibroblasts (P = 0.0001). n and o) In both 
uncorrected and gene-corrected primary FANCA patient fibroblasts, the observed 
phenotypic defects are significantly correlated with one another (P < 0.05), 
except for abnormal vesicle formation during cytokinesis. In n and o, bars in the 
same color represent phenotypes which are correlated. Pearson r values range 
from 0 to 1 (0 = no correlation, 1 = complete correlation). 
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Quantification of spindle mis-orientation in primary fibroblasts from an FA 

patient of the FANCA subtype 

In the previous experiment, live-cell video microscopy revealed abnormal 

orientation of the mitotic spindle in primary FANCA-deficient fibroblasts. During 

anaphase, chromosome segregation was rotated out of the normal horizontal 

plane and one newly forming daughter cell was vertically offset from the other in 

uncorrected FANCA patient fibroblasts, compared with gene-corrected control 

fibroblasts. Quantification of the vertical offset between the two newly forming 

daughter cells gave a crude estimation of spindle orientation. 

To validate the phenotype of spindle mis-orientation, we wanted to 

precisely quantify the angle of spindle orientation with respect to the horizontal 

plane in uncorrected and gene-corrected FANCA-deficient fibroblasts during 

metaphase. Thus, uncorrected and gene-corrected primary FANCA patient-

derived fibroblasts were treated with the proteasome inhibitor MG132 for 4 hours. 

Since the initiation of anaphase is dependent on proteasomal degradation of the 

targets of APC/C, treatment with MG132 increases the number of metaphase 

cells by preventing anaphase entry. Immunostaining of pericentrin and CENPA 

(to label centrosomes and kinetochores respectively) and staining with Hoechst 

33342 and fluorophore-conjugated phalloidin (to label DNA and actin 

respectively) were performed. Using basic trigonometry calculations, the angle of 

spindle orientation with respect to the horizontal plane was quantified based on 

the relative positioning of centrosomes. This experiment confirmed that the 

mitotic spindle is oriented abnormally in dividing FANCA-deficient fibroblasts. 
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Figure 4-5. Quantification of spindle angle confirms that primary FANCA-
deficient fibroblasts exhibit mis-orientation of the mitotic spindle. 
Uncorrected and gene-corrected primary FANCA patient-derived fibroblasts were 
treated with the proteasome inhibitor MG132 for 4 hours to prevent anaphase 
entry. Immunofluorescence staining of endogenous pericentrin and CENPA was 
performed to label centrosomes and kinetochores respectively, and relative 
positioning of the centrosomes was used to quantify the angle of spindle 
orientation with respect to the horizontal plane. Total n = 91 to 111 cells per 
genotype pooled from three independent experiments, original magnification is 
×600 (Applied Precision personalDV), and all bars represent mean values ± 
SEM. a) Schematic diagram of cells with normal and abnormal orientation of the 
mitotic spindle, relative to the horizontal plane. DNA is blue, and the centrosomes 
and spindle are red. b) Schematic diagram illustrating how trigonometry can be 
used to calculate the angle of spindle mis-orientation, relative to the horizontal 
plane. The sine of the angle x equals the height of the indicated right triangle, 
divided by the inter-centrosomal distance. The height of the triangle and the inter-
centrosomal distance were determined using softWoRx Explorer software to 
analyze 3-d microscopic images comprised of multiple 2-d z-sections captured in 
parallel horizontal planes. c) Representative images of metaphase cells. d) 
Compared with gene-corrected control fibroblasts, uncorrected FANCA-deficient 
fibroblasts exhibit abnormal orientation of the mitotic spindle during metaphase 
(P < 0.0001). n = 50 to 68 metaphase cells per genotype. e) Compared with 
gene-corrected control fibroblasts, uncorrected FANCA-deficient fibroblasts are 
oriented abnormally during prometaphase (P < 0.0001) and during prophase (P < 
0.0001). n = 21 prometaphase cells and 20 to 22 prophase cells per genotype. 
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CHAPTER FIVE 

FA PROTEINS LOCALIZE TO THE MITOTIC APPARATUS 

Introduction 

Chapter three summarized our discovery that the FA signaling network 

plays an essential role in the regulation of the human mitotic SAC. Then, in 

chapter four, unperturbed mitosis was systemically examined in FA pathway-

deficient cells. As described in the introduction, the kinetochore and the 

kinetochore-spindle fiber interface are the major sites of mitotic SAC regulation. 

Since we discovered that the FA signaling network is essential for the mitotic 

SAC and centrosome maintenance, we hypothesized that FA proteins localize to 

the mitotic apparatus, including the centrosomes, mitotic spindle, and 

kinetochores. We decided to systematically analyze the localization of the FA 

proteins in mitotic cells via immunofluorescence imaging studies, imaging studies 

utilizing ectopically expressed GFP-fused FA proteins, and studies utilizing 

biochemical fractionation followed by immunoblotting. Our key findings are 

summarized in the current chapter. 
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Results 

FANCA localizes to the centrosome and spindle during mitosis 

To determine whether FANCA localizes to centrosomes, kinetochores, 

and/or the mitotic spindle, immunofluorescence staining of endogenous FA 

proteins was performed in a HeLa cell line stably expressing GFP-fused γtubulin 

and GFP-fused CENPA. γtubulin is a centrosomal protein, and CENPA is a 

structural component of the inner kinetochore. Kinetochores are located on 

chromosomes at the centromere region. Centrosomes are larger, oval-shaped 

structures which are located at the spindle poles during mitosis. The mitotic 

spindle can be identified emanating from the centrosomes and, during 

metaphase, projecting from centrosomes to kinetochores. DNA staining was 

accomplished using Hoechst 33342. Localization was analyzed in 

immunostained cells by deconvolution microscopy. Mitotic cells of each phase 

were identified based on their nuclear morphology and centrosomal positioning. 

Localization of FANCA to centrosomes occurred in a cell cycle-dependent 

fashion throughout the mitotic phases, and localization of FANCA to the mitotic 

spindle was identified during the early phases of mitosis. Representative 

microscopy images are shown. 
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Endogenous FANCA localizes to the centrosomes and mitotic spindle 

a 

b 
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Figure 5-1. Deconvolution microscopy reveals that endogenous FANCA 
localizes to the centrosome and spindle during mitosis. a) Endogenous 
FANCA (red) co-localizes with GFP-γtubulin (green) at the centrosomes in a 
metaphase cell. Yellow arrows and boxes indicate centrosomes. The enlarged 
centrosomes below the main panel are the ones enclosed by yellow boxes in the 
main panel. Original magnification is ×1,000 (Applied Precision personalDV). b) 
Endogenous FANCA (red) localizes to the mitotic spindle during prophase and 
metaphase. Additionally, similar to a, endogenous FANCA co-localizes with GFP-
γtubulin (green) at the centrosomes during prometaphase and metaphase. 
Yellow arrows and box indicate the mitotic spindle and centrosomes, as 
indicated. Original magnification is ×1,000 (Applied Precision personalDV). 
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Numerous FA proteins localize to the centrosome during mitosis 

We wanted to determine whether FA proteins localize to centrosomes, 

kinetochores, and/or the mitotic spindle. Three approaches were utilized in 

experiments showing localization of FA proteins to the centrosome. 

Immunofluorescence staining of endogenous FA proteins was performed in a 

HeLa cell line stably expressing GFP-fused γtubulin and GFP-fused CENPA 

(γtubulin is a centrosomal protein, and CENPA is a structural component of the 

inner kinetochore), co-immunofluorescence staining of endogenous FA protein 

with αtubulin was performed in a HeLa cell line, and/or HeLa cells were 

transfected with constructs expressing GFP-fused FA protein. Centrosomes were 

identified in HeLaGFP-γtubulin/GFP-CENPA cells based on their large, oval-shaped 

morphology and their location at mitotic spindle poles. DNA staining was 

accomplished using Hoechst 33342. Localization was analyzed in 

immunostained cells by deconvolution microscopy. Mitotic cells of each phase 

were identified based on their nuclear morphology and centrosomal positioning. 

Localization of each FA protein to centrosomes occurred in a cell cycle-

dependent fashion throughout the mitotic phases. Representative microscopy 

images are shown. 
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Endogenous FANCB localizes to the centrosome 
 

 
 

 
 

Figure 5-2. Deconvolution microscopy reveals that endogenous FANCB 
localizes to the centrosome during mitosis. Endogenous FANCB (red) co-
localizes with GFP-γtubulin (green) at the centrosome in a prophase cell. The 
yellow arrow and box indicate a centrosome. The enlarged centrosome below the 
main panel is the one enclosed by a yellow box in the main panel. Original 
magnification is ×1,000 (Applied Precision personalDV). 
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Endogenous FANCE localizes to the centrosome 

Figure 5-3. Deconvolution microscopy reveals that endogenous FANCE 
localizes to the centrosome during mitosis. Endogenous FANCE (red) co-
localizes with GFP-γtubulin (green) at the centrosome in prometaphase and 
metaphase cells. Yellow arrows and boxes indicate centrosomes. The enlarged 
centrosomes below the main panel are the ones enclosed by yellow boxes in the 
main panel. Original magnification is ×1,000 (Applied Precision personalDV). 
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GFP-fused and endogenous FANCG localize to the centrosome 
 

  
 

 
 

a 

b 
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Figure 5-4. Deconvolution microscopy reveals that GFP-fused and 
endogenous FANCG localizes to the centrosome during mitosis. a) 
Ectopically expressed GFP-fused FANCG (green) localizes to the centrosomes 
in prometaphase and metaphase cells. Yellow arrows indicate centrosomes, 
which are identified based on their morphology and location. Actin staining with 
AlexaFluor594-conjugated phalloidin (red) outlines cell borders. Original 
magnification is ×1,000 (Applied Precision personalDV). b) Endogenous FANCG 
(red) co-localizes with GFP-γtubulin (green) at the centrosomes in a metaphase 
cell. Yellow arrows indicate centrosomes. The enlarged centrosomes below the 
main panel are the ones enclosed by yellow boxes in the main panel. Original 
magnification is ×1,000 (Applied Precision personalDV). 
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GFP-fused FANCL localizes to the centrosome 
 

 
 

Figure 5-5. Deconvolution microscopy reveals that GFP-fused FANCL 
localizes to the centrosome during mitosis. Ectopically expressed GFP-fused 
FANCL (green) localizes to the centrosomes in prometaphase and metaphase 
cells. Yellow arrows indicate centrosomes. Actin staining with AlexaFluor594-
conjugated phalloidin (red) outlines cell borders. Original magnification is ×1,000 
(Applied Precision personalDV). 
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Endogenous FANCD2 localizes to the centrosome 

Figure 5-6. Deconvolution microscopy reveals that endogenous FANCD2 
localizes to the centrosome during mitosis. Endogenous FANCD2 (red) 
localizes to the centrosomes in prometaphase and metaphase cells. Co-
immunofluorescence staining with αtubulin (green) labels the mitotic spindle. 
Yellow arrows indicate centrosomes. The enlarged centrosomes below the main 
panel are the ones enclosed by yellow boxes in the main panel. Original 
magnification is ×1,000 (Applied Precision personalDV). 

167 



Endogenous FANCN/PALB2 localizes to the centrosome 
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Figure 5-7. Deconvolution microscopy reveals that endogenous FANCN 
localizes to the centrosome during mitosis. Endogenous FANCN (red) co-
localizes with GFP-γtubulin (green) at the centrosomes in prophase, metaphase, 
anaphase, and telophase cells. Yellow arrows indicate centrosomes. The 
enlarged centrosomes below the main panel are the ones enclosed by yellow 
boxes in the main panel. Original magnification is ×1,000 (Applied Precision 
personalDV). 
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FANCC localizes to the mitotic spindle, midzone spindle, and to either side 

of the midbody 

We wanted to determine whether FANCC localizes to centrosomes, 

kinetochores, and/or the mitotic spindle. When immunofluorescence staining of 

endogenous FANCC was performed in a HeLa cell line stably expressing GFP-

fused γtubulin and GFP-fused CENPA, we found that FANCC does not directly 

co-localize with γtubulin at centrosomes or with CENPA at kinetochores, but 

rather localizes to the mitotic spindle emanating from the centrosomes during 

prophase, prometaphase, and metaphase; to the midzone spindle during 

anaphase; and to either side of the midbody during cytokinesis. To confirm this 

pattern of localization, co-immunofluorescence staining of FANCC with αtubulin 

was performed in a HeLa cell line (αtubulin is a microtubule subunit which 

localizes to the mitotic spindle, midzone spindle, and midbody.) DNA staining 

was achieved using Hoechst 33342. Localization was analyzed in 

immunostained cells by deconvolution microscopy. Mitotic cells of each phase 

were identified based on their nuclear morphology and centrosomal positioning. 

Mitotic localization of FANCC was further investigated in HeLa cells transfected 

with ectopically expressed GFP-fused FANCC and studies utilizing biochemical 

fractionation followed by immunoblotting. Representative microscopy images are 

shown. 
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Endogenous FANCC localizes to the mitotic spindle and midzone spindle 
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Figure 5-8. Deconvolution microscopy reveals that endogenous FANCC 
localizes to the spindle in a cell cycle-dependent fashion. Endogenous 
FANCC (red) localizes to the mitotic spindle in prophase and metaphase, to the 
midzone spindle during anaphase, and to either side of the midbody during 
telophase. Original magnification is ×1,000 (Applied Precision personalDV). 
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Endogenous FANCC co-localizes with α-tubulin during mitosis 

Figure 5-9. Deconvolution microscopy reveals that endogenous FANCC co-
localizes with αtubulin on the spindle during mitosis. Endogenous FANCC 
(red) co-localizes with αtubulin (green) at the mitotic spindle in prophase and 
metaphase and at the midzone spindle during anaphase. During telophase, 
αtubulin localizes to the midbody and FANCC localizes to either side of the 
midbody. Images in the panels on the right are magnified images from the panel 
on the left. Original magnification is ×1,000 (Applied Precision personalDV). 
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GFP-fused FANCC localizes to the nucleus during interphase and to the mitotic 
spindle during mitosis 

Figure 5-10. Deconvolution microscopy reveals that GFP-fused FANCC 
localizes to the spindle during mitosis. Ectopically expressed GFP-fused 
FANCC (green) localizes to the nucleus during interphase and to the spindle 
during prometaphase. Original magnification is ×1,000 (Applied Precision 
personalDV). 
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FANCC localizes to the cytoskeletal subcellular fraction during mitosis 

Figure 5-11. Immunoblotting of biochemically fractionated HeLa cells 
reveals redistribution of FANCC from the nucleus to the cytoskeleton 
during mitosis. Consistent with microscopy data showing the localization of 
FANCC to the nucleus in interphase cells, endogenous FANCC is detected in the 
nuclear fraction of biochemically fractionated unsynchronized HeLa cells. 
Consistent with microscopy data showing the localization of FANCC to the mitotic 
spindle, endogenous FANCC is additionally detected in the cytoskeletal fraction 
of biochemically fractionated HeLa cells following mitotic enrichment. Enrichment 
of the mitotic cells was achieved by releasing cells from G2 synchronization 
achieved via treatment with the CDK1 inhibitor RO3306. Histone H1 and vimentin 
are fractionation controls for the nuclear and cytoskeletal fractions, respectively. 
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FANCE localizes to kinetochores 

To determine whether FANCE localizes to centrosomes, kinetochores, 

and/or the mitotic spindle, immunofluorescence staining of endogenous FANCE 

was performed in a HeLa cell line stably expressing GFP-fused CENPA and 

GFP-fused γtubulin (CENPA is a structural component of the inner kinetochore, 

and γtubulin is a centrosomal protein). Kinetochores are located on 

chromosomes at the centromere region, while centrosomes are larger, oval-

shaped structures which are located at the mitotic spindle poles. DNA staining 

was accomplished using Hoechst 33342. Localization was analyzed in 

immunostained cells by deconvolution microscopy. Mitotic cells of each phase 

were identified based on their nuclear morphology and centrosomal positioning. 

FANCE was detected at kinetochores during the early phases of mitosis 

(prophase, prometaphase, and metaphase) and was absent from kinetochores 

after the metaphase-to-anaphase transition. This pattern of kinetochore 

localization is identical to that observed for many key SAC proteins, including the 

MCC proteins MAD2 and BUBR1. Representative microscopy images are 

shown. 
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Endogenous BUBR1 and endogenous FANCE localize to kinetochores 

Figure 5-12. Deconvolution microscopy reveals that endogenous FANCE, 
like endogenous BUBR1, localizes to kinetochores during mitosis. 
Endogenous BUBR1 (red; top panel) and endogenous FANCE (red; bottom 
panel) co-localize with GFP-CENPA (green) at the kinetochores in prophase 
cells. Light blue brackets indicate kinetochores. Original magnification is ×1,000 
(Applied Precision personalDV). 
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Endogenous FANCE localizes to kinetochores during early mitosis 
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Figure 5-13. Deconvolution microscopy reveals that endogenous FANCE 
localizes to kinetochores during early mitosis and to centrosomes 
throughout mitosis. Endogenous FANCE (red) co-localizes with GFP-CENPA 
(green) at kinetochores during prophase, prometaphase, and metaphase, but not 
during interphase or anaphase. Endogenous FANCE (red) co-localizes with 
GFP-γtubulin (green) at the centrosomes throughout mitosis. Light blue brackets 
indicate kinetochores, and yellow arrows indicate centrosomes. Original 
magnification is ×1,000 (Applied Precision personalDV). 
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Summary of the cell-cycle dependent localization of FA proteins to the 

mitotic apparatus 

In summary, the majority of FA proteins localize to the mitotic apparatus in 

a cell-cycle dependent manner during mitosis. FANCA, FANCB, FANCE, 

FANCG, FANCL, FANCD2, and FANCN/PALB2 were detected at the 

centrosomes during mitosis for the first time. Additionally, FANCA and FANCC 

were found to localize to the mitotic spindle. Finally, FANCE was detected at 

kinetochores during prophase, prometaphase, and metaphase, but was notably 

absent from kinetochores during anaphase, telophase, and interphase. These 

novel sites of localization for the FA proteins are consistent with the newly 

discovered role of the FA signaling network in the regulation of the mitotic SAC 

and centrosome maintenance. 
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Figure 5-14. Schematic illustrating novel sites of FA protein localization 
during mitosis identified in this study. We discovered that seven FA proteins 
localize to mitotic centrosomes, two FA proteins localize to the mitotic spindle, 
and one FA protein localizes to kinetochores. A diagram of a metaphase cell is 
shown on the left, with arrows labeling the centrosomes, mitotic spindle, sister 
chromatids, and kinetochores. A list of the FA proteins which we identified on 
each part of the mitotic apparatus is shown on the right. 
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CHAPTER SIX 

DISCUSSION 

 

Germline mutations in any one of the known FA genes result in the 

heterogenous, recessive genetic disease Fanconi anemia. Patients with FA 

develop congenital malformations, bone marrow failure, and malignancies, 

especially myeloid malignancies and squamous cell carcinomas. Additionally, 

mutations in the FA network are etiologically implicated in a significant proportion 

of inherited pancreatic, breast, and ovarian cancers. The high risk of malignant 

transformation in FA-deficient cells is due to genomic instability characterized by 

chromosome breakage and gross aneuploidy. Although it is well established that 

the FA signaling network plays a central role in the interphase pathway 

responsible for the repair of DNA interstrand cross-links, the origins of gross 

aneuploidy in FA-deficient cells are incompletely understood. 

The mitotic spindle assembly checkpoint (SAC) is a key tumor suppressor 

signaling network which protects cells from the development of aneuploidy by 

ensuring accurate chromosome segregation during mitosis. It is established that 

FA pathway-deficient cells have a high frequency of aneuploidy and 

micronucleation, which frequently arise as a result of chromosome mis-

segregation. However, the potential role of the FA pathway in the regulation of 

the mitotic SAC has not previously been analyzed. Recently, our lab generated 

the first genetically engineered murine model of FA to spontaneously develop 

bone marrow failure, myelodysplasia, and leukemia, like FA patients do. In this 
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murine model, as in FA patients, the presence of aneuploidy correlated with the 

development of MDS and AML. Quantification of the transcriptome in bone 

marrow from this FA murine model revealed dysregulation of several SAC 

proteins, including the key MCC proteins Mad2 and BubR1 (A. Pulliam-Leath, S. 

Ciccone, G. Nalepa, G. Bagby, D.W. Clapp, unpublished data). Therefore, we 

hypothesized that the FA signaling network plays an essential role in the 

regulation of the mitotic SAC. My thesis summarizes the results of 

comprehensive studies addressing this hypothesis. 

Establishing an essential role for the FA signaling network in the activity of 

the mitotic SAC 

Initially, we performed a functional RNAi screen to determine whether one 

or more of the human FA proteins is essential for the activity of the mitotic 

SAC. Remarkably, SAC failure was observed following taxol challenge for HeLa 

cells transfected with siRNAs against MAD2 and all FA gene products with the 

exception of FANCM. The siRNAs used in the screen were successfully validated 

via immunoblotting for thirteen of the fourteen FA proteins which produced a 

positive result. We were unable to validate the siRNAs against FANCF and 

FANCM as commercial antibodies which were tested failed to detect their 

respective FA protein target. While multiple siRNAs against FANCM produced a 

negative result in our mitotic SAC screen, these siRNAs remain unvalidated. 

Furthermore, FANCM is an exceptionally rare FA complementation group for 

which patient cells are unavailable to researchers. Thus, we were unable to 
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complete further experiments. However, this study detected an essential role in 

the activity of the mitotic SAC for all fourteen of the other FA proteins tested. 

Off-target effects can produce false-positive results in RNAi screens, and 

MAD2 has been shown to be particularly susceptible in mitotic RNAi screens. 

Thus, we tested multiple unique siRNA sequences targeting each FA gene 

product or we performed quantitative immunoblotting to show that MAD2 is not 

nonspecifically knocked down by FA siRNAs. These data successfully rule out 

the possibility that an off-target effect on the level of MAD2 caused the mitotic 

SAC phenotype for any of the FA siRNAs utilized in our screen. 

To confirm the results of the RNAi screen, we assessed the mitotic SAC 

activity in primary cells from thirteen patients with FA, representing twelve unique 

FA genotypes. Consistent with the RNAi screen results, primary fibroblasts of all 

tested FA complementation groups exhibited SAC failure when challenged with 

taxol. Importantly, genetic correction of primary FANCA patient fibroblasts by 

stable ectopic expression of FANCA completely rescued the SAC failure 

following exposure to taxol, confirming that the missing FANCA protein is 

responsible for the SAC defect in these cells. Next, it was demonstrated that 

FANCA is required for mitotic SAC arrest in response to nocodazole, a different 

spindle poison, confirming a general role for the FANCA protein as an essential 

regulator of the mitotic SAC. Our findings in primary cells from FA patients 

confirm the results of the siRNA screen and conclusively establish that the FA 

signaling network plays an essential role in the activity of the human mitotic SAC. 
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Since FA patients frequently develop aneuploidy-associated hematologic 

malignancies, we assessed the activity of the mitotic SAC in FANCA-knockdown 

primary hematopoietic stem and progenitor cells. Weakened activity of the mitotic 

SAC was observed in taxol-challenged FANCA-knockdown CD34+ cells, 

indicating that FANCA is essential for the mitotic SAC in human hematopoietic 

cells. Human CD34+ cells represent early hematopoietic cells, with multipotential 

capacity for differentiation. When FA patients develop myeloid malignancies, the 

bone marrow frequently displays clonal hematopoiesis. Thus, myeloid 

malignancies likely occur in FA patients when a single multipotential 

hematopoietic cell undergoes malignant transformation and escapes the normal 

surveillance mechanisms of the hematopoietic cell and its microenvironment. The 

development of AML in FA patients is generally preceded by the development of 

complex, random aneuploidy in the bone marrow. Because the mitotic SAC is a 

major mechanism for the protection of genomic integrity and the prevention of 

aneuploidy, we propose that weakened activity of the mitotic SAC is a major 

mechanism contributing to the genesis of aneuploidy and the predisposition to 

malignant transformation in FA bone marrow. 

In summary, an extensive series of functional studies were performed in 

RNAi-knockdown cells and primary cells from FA patients to examine the activity 

of the mitotic SAC in the absence of individual FA proteins, definitively 

establishing an essential role for the FA signaling network in the activity of the 

mitotic SAC. Of the fifteen FA proteins tested in the RNAi screen, fourteen were 

found to be essential for the activity of the mitotic SAC. Only FANCM was not 
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found to be essential for the SAC. Since immunoblotting did not confirm 

knockdown of FANCM by the three siRNA sequences utilized in our study and 

since FANCM patient fibroblasts were not available, our study is inconclusive 

regarding the potential role of FANCM in the activity of the mitotic SAC. However, 

the literature offers some insight into the potential role of FANCM during mitosis. 

It is well-established that FANCM plays a key role in FA core complex formation 

during interphase. FANCM localizes to damaged DNA, promotes the recruitment 

of the other members of the FA core complex to the nucleus, and acts as a 

scaffold for the assembly of the FA core complex. However, it was previously 

shown that FANCM uniquely undergoes proteosomal degradation during the 

early phases of mitosis (Kee, Kim et al. 2009). Thus, it is possible that FANCM is 

dispensable in the activity of the mitotic SAC or that degradation of FANCM is 

essential for mitotic progression. We propose that appropriate regulation of the 

entire FA signaling network is essential for progression through mitosis and that 

regulation of the mitotic SAC by the FA signaling network plays a central role in 

the prevention of chromosome mis-segregation and aneuploidy in dividing cells. 

Elucidating the role of FANCA in the activity of the mitotic SAC 

We wanted to further understand the role of the FA pathway in the 

regulation of the mitotic SAC. Thus, a series of studies were designed to 

systemically examine the role of the FANCA protein in the regulation of the 

mitotic SAC. Time-lapse microscopy experiments, hypersensitivity assays, and a 
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mass spectrometry-based screen further illuminated our understanding of the 

role of the FANCA protein in the regulation of the mitotic SAC. 

Time-lapse microscopy of uncorrected and gene-corrected primary 

FANCA patient fibroblasts was performed in the presence of taxol in order to 

quantify the duration of SAC arrest and directly visualize the outcome of SAC 

arrest in FA pathway-deficient cells. FANCA-deficient fibroblasts maintained SAC 

arrest for a shorter duration and exhibited SAC failure more frequently than 

complementary gene-corrected fibroblasts. Additionally, time-lapse microscopy of 

uncorrected and gene-corrected primary FANCA patient-derived fibroblasts was 

performed in the absence of spindle poisons in order to quantify the duration of 

mitosis. FANCA-deficient fibroblasts exhibited accelerated progression through 

prophase and metaphase. Due to weakened SAC, FANCA-deficient cells may 

initiate anaphase prematurely, without allowing adequate time for the final 

kinetochore-spindle attachments to form. Thus, accelerated progression through 

the early mitotic phases is consistent with weakened SAC activity. Collectively, 

the results of video microscopy experiments in primary FANCA patient fibroblasts 

confirm that the activity of the mitotic SAC is weakened in FANCA-deficient cells 

challenged with taxol and that FANCA-deficient cells also exhibit abnormal 

progression through unperturbed mitosis. 

Next, we wanted to know whether FANCA-deficient cells are 

hypersensitive to drugs targeting the assembly of the mitotic spindle. Thus, 

uncorrected and gene-corrected primary FANCA patient fibroblasts were 

challenged with various concentrations of low-dose taxol in a clonogenic assay in 
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order to determine whether spindle poisons result in decreased survival and 

proliferation of FA pathway-deficient cells. In this assay, primary FANCA-deficient 

fibroblasts were hypersensitive to taxol compared with isogenic gene-corrected 

control fibroblasts. In a previously published assay, it was demonstrated that 

FANCA-deficient cells are hypersensitive to the spindle poison nocodazole (Kim, 

Hwang et al. 2013). We additionally performed a survival assay utilizing trypan 

blue staining and flow cytometry-based cell cycle analysis to characterize the 

response to low-dose taxol challenge in uncorrected and gene-corrected primary 

FANCA patient-derived fibroblasts (R. Enzor, G. Hendrickson, G. Nalepa, D. W. 

Clapp, unpublished data). The doses of taxol utilized in the clonogenic assay 

produced little to no SAC arrest via flow cytometry-based cell cycle analysis. 

Thus, the apoptotic response to prolonged SAC arrest is not expected to play a 

major role in the decreased survival and proliferation of FANCA-deficient cells. 

Furthermore, the results of hemacytometer-based counts of trypan blue-stained 

cells indicated that low doses of taxol do not result in increased cell death for 

FANCA-deficient fibroblasts, compared with isogenic gene-corrected control 

fibroblasts. Collectively, our results indicated that low doses of taxol result in 

decreased proliferation, increased cell size, and >4N DNA content in FANCA-

deficient fibroblasts. Thus, we propose that the decreased survival and 

proliferative capacity observed in FANCA-deficient fibroblasts results from the 

formation of cell-cycle arrested, multinucleated cells. 

One of several chemotherapeutic agents targeting the mitotic spindle, 

taxol is commonly used to treat breast cancer. The role of the FA pathway in the 
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regulation of the mitotic SAC and the hypersensitivity of FANCA-deficient cells to 

taxol may partially explain why patients with FA are sensitive to numerous types 

of chemotherapeutic agents and frequently develop secondary malignancies. We 

propose that spindle drugs may be useful in non-FA patients who sporadically 

develop FA-deficient cancers, but that using spindle drugs in FA patients may 

promote the development of secondary malignancies. 

To identify mitotic signaling pathways affected by the loss of FANCA, we 

designed a proteomics screen to detect altered expression and post-translational 

modification of mitotic regulators in primary FANCA patient fibroblasts. Following 

taxol challenge of uncorrected and gene-corrected FANCA patient fibroblasts, 

total protein levels and phospho-peptide levels were quantified via mass 

spectrometry. Candidates were defined by a two-fold or greater change in total 

protein level or phospho-peptide level between the two cell lines. The identified 

candidates included multiple known regulators of the mitotic SAC. BRCA1 and 

SKI, two mitotic regulators which are targets of the mitotic kinase Aurora A 

(AURKA) at the centrosome, have been validated by immunoblotting. The onco-

protein SKI is additionally phosphorylated by CDK1, and BRCA1 is known to 

promote the transcription of MAD2 and BUBR1. Several FA proteins physically 

interact with CDK1, and it is well-established that the FA pathway interacts with 

BRCA1 in the repair of DNA damage. Thus, it is likely that BRCA1 and SKI are 

functionally related to FANCA in the regulation of mitosis. We suggest that 

BRCA1 and SKI may be up-regulated in FANCA-deficient cells in an attempt to 

compensate for loss of FANCA. 
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The FA pathway functionally interacts with two of the key mitotic kinases 

controlling early mitotic events—CDK1 and PLK1 (Kruyt, Dijkmans et al. 1997, 

Zou, Tian et al. 2013). Specifically, FANCC plays a role in the regulation of 

mitotic entry by functioning as an upstream regulator of CDK1 (Kruyt, Dijkmans 

et al. 1997). A kinase activity assay performed in FANCC siRNA-transfected 

HeLa cells confirms that FANCC is an upstream regulator of CDK1 (Y. Yang, R. 

Enzor, G. Nalepa, D. W. Clapp, unpublished data). Additionally, FANCJ activates 

PLK1 (Zou, Tian et al. 2013). AURKA is a third key mitotic kinase controlling 

early mitotic events, and the CDK1, PLK1, and AURKA pathways functionally 

interact and overlap in the control of mitotic entry, spindle assembly, and mitotic 

progression (Neef, Gruneberg et al. 2007, Lindqvist, Rodriguez-Bravo et al. 

2009, Lens, Voest et al. 2010, Van Horn, Chu et al. 2010, Ikeda, Chiba et al. 

2012). In our mass spectrometry-based quantification of the proteome and 

phospho-proteome in primary FANCA patient fibroblasts, multiple candidates 

were identified which are known targets of the kinases AURKA, CDK1, and PLK1 

(see Figure 3-12). Thus, the FA signaling network may regulate mitotic entry and 

spindle assembly, as well as the mitotic SAC. 

Assessing aneuploidy and centrosome amplification as a result of 

unperturbed mitosis in FA pathway-deficient cells 

We have proposed that the essential role of the FA signaling network in 

the regulation of the mitotic SAC is a key mechanism by which the FA proteins 

function in the maintenance of genomic stability. Specifically, we hypothesized 
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that weakened activity of the mitotic SAC in FA-deficient cells promotes abnormal 

execution of unperturbed mitosis leading to the development of aneuploidy and 

centrosome amplification. Chromosome mis-segregation due to weakened SAC 

activity may result in aneuploidy in the form of micronuclei. Furthermore, 

cytokinesis failure may occur secondary to SAC failure, directly leading to 

multinucleation and centrosome amplification in FA-deficient cells. A previous 

study implicating the FA protein FANCD1/BRCA2 in centrosome maintenance 

and accurate chromosome segregation detected centrosome amplification 

accompanied by aneuploidy in Brca2-deficient cells (Tutt, Gabriel et al. 1999). 

Thus, we hypothesized that aneuploidy and centrosome amplification would be 

present in FA-deficient cells. To assess whether aneuploidy and/or centrosome 

amplification develop as a result of unperturbed mitosis in FA-deficient cells, 

fluorescence imaging of RNAi-knockdown cells and primary cells from FA 

patients was performed. 

To determine whether aneuploidy develops as a result of unperturbed 

mitosis in FA-deficient cells, primary fibroblasts from FA patients of twelve unique 

FA genotypes were cultured in the absence of spindle poisons. Structural nuclear 

abnormalities (multinuclei and micronuclei) were observed in primary FA patient 

fibroblasts of all twelve FA genotypes analyzed. This finding is consistent with 

previously reported observations of aneuploidy in cells from FA patients. 

Additionally, centromeres were detected in micronuclei and multinuclei in primary 

fibroblasts derived from an FA patient of the FANCA subtype. FA-deficient cells 

exhibit defective DNA damage repair and SAC dysfunction, both of which can 
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lead to the generation of micronuclei. The presence of centromeres in 

micronuclei from FANCA patient-derived fibroblasts suggests that these 

micronuclei developed as a consequence of chromosome mis-segregation, 

rather than as a result of DNA breakage. Most, but not all, micronuclei observed 

in the analyzed primary FANCA patient-derived fibroblasts contained 

centromeres. This finding suggests that chromosome mis-segregation is a major 

mechanism leading to aneuploidy in FANCA-deficient cells. 

Next, we wanted to know if the FA pathway is essential for the 

maintenance of normal numbers of centrosomes (one or two centrosomes per 

cell). Since supernumerary centrosomes can promote merotelic kinetochore 

attachments leading to chromosome mis-segregation, centrosome amplification 

could additionally contribute to the development of aneuploidy in FA pathway-

deficient cells. A description of the relationship between kinetochore attachment 

and the mitotic SAC and a summary of the role of merotelic kinetochore 

attachments in the development of aneuploidy are presented below. 

To determine whether supernumerary centrosomes develop as a result of 

unperturbed mitosis in FA-deficient cells, we performed immunostaining of the 

centrosomal protein pericentrin in FA siRNA-transfected HeLa cells and in 

primary fibroblasts from FA patients. Centrosome amplification accompanied by 

multinucleation occured as a result of unperturbed mitosis in HeLa cells 

transfected with siRNAs against thirteen different FA gene products (all except 

FANCM and FANCO). Furthermore, an increased percentage of cells with 

supernumerary centrosomes was observed for all twelve of the FA patient 

192 



genotypes tested, and a significant degree of centrosome amplification was 

observed in primary fibroblasts from nine of the twelve genotypes. Primary 

fibroblasts from patients with mutations in FANCD2, FANCJ, and FANCN were 

not significantly different from healthy controls following statistical analysis. 

However, it is notable that siRNAs against FANCD2, FANCJ, and FANCN 

resulted in a significant degree of centrosome amplification and that another 

research group has reported a role for FANCJ in centrosome amplification (Zou, 

Tian et al. 2013). Thus, we do not rule out a role for FANCD2, FANCJ, and 

FANCN in centrosome maintenance. In summary, we conclude that FA-deficient 

cells accumulate supernumerary centrosomes as a result of unperturbed mitosis. 

Our study clearly establishes that the absence of a functional FA pathway 

leads to aneuploidy and centrosome amplification. Our study has identified roles 

for the FA signaling network in SAC activity and centrosome maintenance and 

confirms the results of a previous study which observed cytokinesis failure, 

evidenced by the generation of binucleated cells, in primary FA-deficient murine 

and human cells (Vinciguerra, Godinho et al. 2010). Weakened SAC and 

supernumerary centrosomes may result in chromosome mis-segregation leading 

to the generation of micronuclei, and cytokinesis failure may result in 

multinucleation. Thus, these represent three novel mechanisms for the 

development of aneuploidy in FA-deficient cells. This is illustrated in Figure 6-1. 
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Figure 6-1. Multiple cell cycle defects may lead to aneuploidy in FA-
deficient cells. Loss of FA pathway activity results in the development of 
aneuploidy due to a) weakened SAC, b) presence of supernumerary 
centrosomes, and c) cytokinesis failure. Centrosomes and kinetochores are 
shown in red, and DNA is shown in blue. 
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It is unclear whether cytokinesis failure secondary to abnormal SAC 

regulation is the main source of centrosome amplification in FA-deficient cells or 

whether primary defects in centrosome replication and/or cytokinesis also 

contribute to this phenotype. When centrosomes were quantified in FA-deficient 

cells, we noted that the presence of centrosome amplification is frequently 

accompanied by the presence of aneuploidy in FA-deficient cells. This finding 

suggests that the presence of supernumerary centrosomes may be occurring as 

a result of cytokinesis failure secondary to SAC dysfunction. This possibility is 

discussed in greater detail toward the end of the current chapter. Additionally, 

experiments are proposed in the Future Directions to investigate the potential 

role of the FA signaling network in centrosome replication and to determine 

whether centrosome amplification in FA-deficient cells is due to a primary defect 

in centrosome replication or is occurring secondarily to SAC dysfunction. 

Proper kinetochore attachment to the mitotic spindle is the key event 

which satisfies the SAC. Types of kinetochore-spindle fiber attachment are 

summarized in Figure 6-2. Normally, monotelic attachment of one kinetochore to 

spindle fibers from a single spindle pole occurs during early prometaphase 

(Figure 6-2a), and amphitelic (bipolar) attachment follows as the second sister 

chromatid’s kinetochore attaches to spindle fibers from the opposite spindle pole 

(Figure 6-2b). The presence of a syntelic kinetochore attachment activates the 

mitotic SAC since the other kinetochore remains unattached (Figure 6-2c). 

However, the presence of a merotelic kinetochore attachment escapes detection 

by the mitotic SAC since both kinetochores are attached (Figure 6-2d). 
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Figure 6-2. Schematic summarizing the types of kinetochore attachment. 
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As previously mentioned, supernumerary centrosomes can result in the 

formation of a multipolar mitotic spindle leading to merotelic kinetochore 

attachments. Due to the stochastic (random) nature of kinetochore-spindle fiber 

attachments, merotelic kinetochore attachments may form during early 

prometaphase, but the cell has mechanisms for correcting them (Cimini, Moree 

et al. 2003, Pinsky, Kung et al. 2006, Cimini 2007, Maure, Kitamura et al. 2007, 

Silkworth and Cimini 2012). The mitotic kinase Aurora B and other mitotic 

regulators respond to the presence of merotelic attachments by destabilizing 

them. Turning kinetochores with merotelic attachments into unattached 

kinetochores activates the mitotic SAC and allows the dividing cell to form 

amphitelic attachments prior to the initiation of anaphase (Pinsky, Kung et al. 

2006, Cimini 2007, Maure, Kitamura et al. 2007). 

Since the SAC may be satisfied in the presence of merotelic kinetochore 

attachments, states promoting the development of merotelic attachments may 

result in chromosome mis-segregation leading to aneuploidy. Merotelic 

kinetochore attachments may develop as a result of supernumerary centrosomes 

through a model summarized in Figure 6-3 which was originally proposed by 

another research group (Ganem, Godinho et al. 2009). Since merotelic 

kinetochore attachments may result in chromosome mis-segregation, 

supernumerary centrosomes promote the development of aneuploidy. 
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Figure 6-3. Schematic illustrating the development of merotelic kinetochore 
attachment in a cell with a multipolar spindle. a) Supernumerary centrosomes 
lead to the formation of a multipolar spindle. b) Kinetochore-spindle attachments 
form in the context of a multipolar spindle. c) Supernumerary centrosomes 
migrate to two spindle poles, resulting in merotelic attachment. 
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It is unclear whether primary defects in the regulation of cytokinesis exist 

in FA pathway-deficient cells. When the outcome of prolonged SAC arrest was 

analyzed by live-cell video microscopy of taxol-challenged primary FANCA 

patient fibroblasts, cytokinesis failure followed SAC failure in the majority of cells, 

and the rate of cytokinesis failure was identical in FANCA-deficient fibroblasts 

and gene-corrected control fibroblasts. Thus, our data suggests that abnormal 

SAC regulation may be responsible for the cytokinesis failure occurring in FA-

deficient cells. However, phenotypic characterization via live-cell video 

microscopy of untreated primary FANCA patient fibroblasts revealed defects in 

endocytic regulation during cytokinesis. Additionally, FANCC localizes to the 

midzone spindle during anaphase and to either side of the midbody during 

telophase, a pattern resembling that of known regulators of cytokinesis. 

Additional experiments will be necessary to examine the potential roles of 

FANCA, FANCC, and other FA proteins in the regulation of cytokinesis. These 

are presented in the Future Directions (Chapter Seven). 

Novel mitotic abnormalities in primary FANCA patient fibroblasts 

Time-lapse microscopy of uncorrected and gene-corrected primary 

FANCA patient fibroblasts was performed in the absence of spindle poisons in 

order to phenotypically characterize unperturbed mitosis in the absence of 

FANCA. FANCA-deficient fibroblasts exhibited a variety of phenotypic defects 

suggesting defective chromosome congression (inability to form metaphase 

plates), mis-orientation of the mitotic spindle, abnormal nuclear envelope 
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regulation, and abnormal endocytosis. These results indicate novel mitotic 

abnormalities in FANCA-deficient cells. Experiments to validate the potential role 

of FANCA in each of these processes are described in the Future Directions. 

The FA signaling network has previously been shown to interact with 

pathways regulating each of these processes. It was recently discovered that the 

FA signaling network regulates the WNT/β-catenin pathway, a pathway that plays 

a key role in specification of stem cell fate by controlling the orientation of the 

mitotic spindle. The phenotype of spindle orientation and the connection between 

the FA signaling network and the WNT/β-catenin pathway are discussed in the 

next subsection. Additionally, FANCA physically interacts with HTT (Huntingtin), 

a protein known to regulate endocytosis and spindle orientation. Furthermore, 

HTT is a known effector of Rab5, a GTPase which regulates mitotic nuclear 

envelope remodeling and congression of chromosomes to the metaphase plate. 

The potential link between FANCA and HTT is discussed in a later subsection. 

Spindle mis-orientation 

When unperturbed mitosis was examined in primary FANCA-deficient 

patient fibroblasts via time-lapse microscopy, spindle mis-orientation was 

observed. Proper orientation of the mitotic spindle is necessary for events in 

embryogenesis and organogenesis, and defects in cell polarity and orientation of 

the dividing cell have been linked to numerous developmental problems (Zigman, 

Cayouette et al. 2005, Wilcock, Swedlow et al. 2007, Segalen and Bellaiche 

2009, Godin, Colombo et al. 2010, Pulvers, Bryk et al. 2010, El-Hashash, 
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Turcatel et al. 2011, Morin and Bellaiche 2011, Bellis, Duluc et al. 2012, 

Bubenshchikova, Ichimura et al. 2012, Noatynska, Gotta et al. 2012, Fujimori, 

Itoh et al. 2013, Williams and Fuchs 2013, Elias, Thion et al. 2014, Hell, Duda et 

al. 2014). Since FA patients develop microcephaly and malformations of the 

kidneys and digestive system (Alter 2008), it is notable that mis-orientation of the 

mitotic spindle has been linked to genes implicated in congenital microcephaly 

and in kidney and intestinal abnormalities (Shen, Eyaid et al. 2005, Higgins, 

Midgley et al. 2010, Quyn, Appleton et al. 2010, Bellis, Duluc et al. 2012, 

Bubenshchikova, Ichimura et al. 2012, Hell, Duda et al. 2014).  

FA results in a broad array of congenital malformations, most commonly 

“skin hyperpigmentation and café au lait spots; short stature; abnormal thumbs 

and radii; abnormal head, eyes, kidneys, and ears” (Alter 2008). The gonads, 

digestive organs, and heart may also be affected. Approximately 75% of FA 

patients have notable congenital defects, which can aid clinicians by increasing 

the diagnostic suspicion of FA (Alter 2008). The congenital malformations which 

are known to occur in patients with FA are summarized in Table 6-1 below. We 

propose that mis-orientation of the mitotic spindle may be responsible for the 

development of congenital abnormalities in FA patients.  
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Organ 
systems Organs 

Most common 
defect Other defects 

Integumentary Skin hyperpigmen-
tation 

café au lait spots 
hypopigmentation 

Skeletal Body short stature 
Thumbs 

absent or 
hypoplastic 

thumbs 

bifid or triphalangeal 
thumbs 
rudimentary thumbs 
thumbs attached by a 
thread 

Arms & legs 
absent or 

hypoplastic radii 

dysplastic ulnae 
congenital hip dislocation 
congenital high scapula 

Hands & feet hypoplastic 
thenar 

eminence 

absent first metacarpal 
toe syndactyly 
abnormal toes 

Head & face 
microcephaly micrognathia

triangular face 
Neck & spine fused cervical 

vertebrae 
spina bifida 
scoliosis 
abnormal ribs 

Reproductive Male hypogenitalia undescended testes 
micropenis 

Female hypogenitalia bicornuate uterus 
abnormal menses 

Sensory Eyes 
small or close-

set eyes 

strabismus 
epicanthal folds 
cataracts 
astigmatism 

Ears deafness 
(conductive 

deficit) 

abnormal shape 
atresia 
abnormal middle ear 

Urinary Kidneys 
ectopic or pelvic 

kidneys 

mis-shapen or horseshoe 
hypoplastic or dysplastic 
absent kidneys 
hydronephrosis 

Ureters hypospadias (male) or megaureter 
Digestive Esophagus atresia tracheoesophageal fistula 

Intestines atresia imperforate anus 
Circulatory Heart various congenital structural defects 

Vasculature weak or absent radial pulse 
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Table 6-1. Summary of congenital defects in FA patients. FA patients 
develop a wide variety of congenital malformations in organ systems throughout 
the human body. Skeletal abnormalities and defects in skin pigmentation are the 
most common, but FA patients may also have defects in the reproductive, 
sensory, urinary, digestive, and circulatory organs. This table was adapted from 
the list of “Examples of Anomalies in Fanconi Anemia” in the Fanconi Anemia 
Guidelines for Diagnosis and Management, Third Edition, 2008, pp. 34-35 (Alter 
2008). 
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WNT/β-catenin signaling is essential for spindle orientation and cell fate 

specification and plays roles in embryogenesis, development of multiple organ 

systems, and maintenance of the hematopoietic stem cell pool (Walston, Tuskey 

et al. 2004, Nemeth and Bodine 2007, Kim, Kang et al. 2009, Oh 2010, 

Buchman, Durak et al. 2011, Perry, He et al. 2011, Ruiz-Herguido, Guiu et al. 

2012). Abnormalities in WNT signaling have been linked to developmental 

abnormalities and the induction of cancer (Moon, Kohn et al. 2004, Klaus and 

Birchmeier 2008, Paul and Dey 2008, MacDonald, Tamai et al. 2009). In the 

mass spectrometry-based quantification of the proteome and phospho-proteome 

in uncorrected and gene-corrected primary FANCA patient fibroblasts, we 

identified numerous candidates related to WNT/β-catenin signaling. Furthermore, 

it was recently discovered that the FA signaling network regulates the WNT/β-

catenin signaling pathway. FANCL ubiquitinates β-catenin and thereby 

“increases the activity and expression of β-catenin, a key pluripotency factor in 

hematopoietic stem cells” (Dao, Rotelli et al. 2012). Additionally, FANCC and 

CtBP1 form a complex with β-catenin, and they negatively regulate expression of 

DKK1, an inhibitor of WNT signaling. In the absence of FANCC, DKK1 is 

overproduced, a state known to promote the development of hematopoietic 

malignancies (Niida, Hiroko et al. 2004, Huard, Tremblay et al. 2013, Huard, 

Tremblay et al. 2014). Thus, regulation of the WNT/β-catenin signaling pathway 

by the FA signaling network may provide an explanation for spindle mis-

orientation, developmental abnormalities, and bone marrow failure in FA-deficient 

cells. 
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Additional experiments will be necessary to characterize the phenotype of 

spindle mis-orientation in FA-deficient cells and to establish a connection 

between spindle orientation and developmental abnormalities in FA. 

Furthermore, additional studies characterizing WNT/β-catenin signaling in FA-

deficient cells should be performed, and a murine model should be developed to 

investigate the potential connection between WNT/β-catenin signaling and the 

phenotypes of developmental abnormalities, hematopoietic stem cell exhaustion, 

and cancer predisposition in the context of FA. A more thorough discussion of 

potential experiments is presented in the Future Directions. 

Other abnormal phenotypes 

When unperturbed mitosis was examined in uncorrected and gene-

corrected primary FANCA patient-derived fibroblasts via time-lapse microscopy, 

severe abnormalities in vesicle trafficking were observed in FANCA-deficient 

cells. This finding suggests that FANCA may play a role in the endocytic 

pathways which are essential for cleavage furrow formation during cytokinesis. 

Notably, FANCA has previously been found to physically interact with HTT 

(huntingtin), the protein responsible for Huntington’s Disease. HTT has 

previously been shown to regulate spindle orientation, endocytosis, and 

neurodevelopment (Pal, Severin et al. 2006, Pal, Severin et al. 2008, Feng 2010, 

Godin, Colombo et al. 2010, Godin and Humbert 2011b). HTT has additionally 

been implicated in the division and differentiation of mammary stem cells (Elias, 

Thion et al. 2014). HTT is an essential regulator of Rab11, a GTPase which 
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regulates endocytosis and is essential for cleavage furrow formation and 

abscission during cytokinesis (Tarbutton, Peden et al. 2005, Wilson, Fielding et 

al. 2005, Power, Srinivasan et al. 2012). Additionally, HTT is an effector of Rab5, 

a GTPase which regulates lamin disassembly and chromosome congression 

during early mitosis and also regulates endocytosis (Pal, Severin et al. 2006, Pal, 

Severin et al. 2008, Capalbo, D'Avino et al. 2011, Serio, Margaria et al. 2011, 

Lanzetti 2012). HTT was identified as a candidate in the mass spectrometry-

based quantification of the proteome and phospho-proteome in uncorrected and 

gene-corrected primary FANCA patient fibroblasts. Furthermore, live-cell video 

microscopy of primary FANCA patient fibroblasts revealed potential defects in 

spindle orientation, chromosome congression, nuclear envelope regulation, and 

vesicle trafficking during cell division. Since HTT, Rab5, and Rab11 have been 

implicated in all of these processes, we suggest that FANCA and HTT may 

functionally interact in the regulation of mitosis and cytokinesis. Further studies 

will be necessary to validate our previous results and to systematically 

investigate this hypothesis. These are described in the Future Directions. 

Localization of FA proteins to the mitotic apparatus 

Our study identified novel roles for the FA signaling network in the 

regulation of the mitotic SAC and centrosome maintenance. Thus, we 

hypothesized that FA proteins would localize to the centrosomes, kinetochores, 

and mitotic spindle. We discovered that seven FA proteins—FANCA, FANCB, 

FANCE, FANCG, FANCL, FANCD2, and FANCN/PALB2—localize to the 
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centrosome in a cell-cycle dependent fashion. It has previously been 

demonstrated that FANCD1/BRCA2 localizes to the centrosome during mitosis. 

When another group examined the centrosomal localization of FA proteins, their 

findings confirmed that FANCA, FANCB, and FANCG localize to the centrosome 

and additionally demonstrated that FANCM, FANCI, and FANCJ localize to the 

centrosome (Zou, Tian et al. 2013). (See Figure 6-3 below for a schematic 

summarizing the FA proteins which have been discovered to localize to the 

mitotic apparatus, including the centrosomes, kinetochores, and mitotic spindle.) 

We discovered that FANCA additionally localizes to the mitotic spindle and 

FANCE additionally localizes to kinetochores. It has previously been 

demonstrated that FANCD1/BRCA2 localizes to kinetochores during mitosis 

(Choi, Park et al. 2012), and our experiments confirm this observation (data not 

shown). Notably, FANCE and FANCD1/BRCA2 localize to kinetochores only 

from prophase to metaphase and are absent from the centromere region of DNA 

during interphase and after the metaphase-to-anaphase transition. This pattern 

of kinetochore localization is consistent with a role in the mitotic SAC. Finally, 

FANCC was detected on the mitotic spindle and midzone spindle in a unique 

pattern resembling that of several regulators of anaphase spindle dynamics and 

cytokinesis. Unlike other FA proteins, FANCC did not co-localize with γtubulin at 

the centrosome, but rather localized to spindle fibers surrounding the 

centrosome. Our localization studies revealed that the majority of the FA proteins 

are found on the mitotic apparatus during cell division, consistent with a role for 

the FA pathway in the activity of the mitotic SAC. 
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We hypothesized that FA proteins would localize to the mitotic apparatus 

in a cell cycle-dependent manner, reflecting the newly established role of the FA 

signaling network in the regulation of the mitotic SAC. As expected, twelve FA 

proteins were detected on the mitotic apparatus in studies by our research group 

and others. Interestingly, eleven FA proteins have been detected at the 

centrosome, two FA proteins have been detected at the kinetochore, and two FA 

proteins have been detected at the mitotic spindle. The known sites of FA protein 

localization during mitosis are summarized in Figure 6-4. Future studies may 

identify additional FA proteins at each of these sites. 
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Figure 6-4. FA proteins localize to the mitotic spindle, centrosomes, and 
kinetochores during cell division. In studies by our research group and others, 
a total of twelve FA proteins have been detected on the mitotic apparatus. Eleven 
FA proteins have been detected at centrosomes, two FA proteins at 
kinetochores, and two on the mitotic spindle. 
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The groups of FA proteins localizing to each part of the mitotic apparatus 

do not correspond to known complexes and subcomplexes of FA proteins which 

exist during interphase. In response to DNA damage during interphase, eight of 

the FA proteins—FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL, 

and FANCM—form a structure termed the FA core complex, which functions as a 

multisubunit ubiquitin ligase. It has been shown that FANCA/FANCG, 

FANCC/FANCE, and FANCB/FANCL form subcomplexes during core complex 

assembly (Hodson and Walden 2012). Once assembled in the nucleus, at the 

site of DNA damage, the core complex monoubiquitinates FANCD2 and FANCI. 

The FANCD2/FANCI heterodimer signals to a breast-cancer associated set of 

downstream effectors, including the FA proteins FANCD1/BRCA2, 

FANCJ/BRIP1, FANCN/PALB2, and FANCO/RAD51C (Kottemann and 

Smogorzewska 2013). 

Our findings suggest that the FA proteins do not maintain the same 

interactions during mitosis as during interphase. While most of the FA core 

complex members co-localize with γtubulin at the centrosome during mitosis, 

FANCC was notably absent from this site, localizing instead to the mitotic spindle 

emanating from the centrosome. In addition, several downstream FA proteins 

also localize to the centrosome. The observed mitotic localization pattern of the 

FA proteins does not reflect the established interactions that occur between FA 

proteins during interphase. We propose that some FA proteins detach from their 

interphase binding partners and localize to different sites during mitosis, where 

they may play unique roles in the execution of mitosis. Notably, FANCC was 
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uniquely detected at the midzone spindle and to either side of the midbody, 

suggesting a potential role for FANCC in regulating late mitotic events and 

cytokinesis. We propose that the unique mitotic localization patterns which we 

have observed for certain FA proteins may indicate unique roles in the regulation 

of mitosis. Furthermore, these unique roles may have relevance to understanding 

the heterogeneous clinical manifestations which may occur in FA patients of 

different genotypes. 

The FA pathway, genomic instability, and cancer. 

The detection of aneuploidy in FA-deficient bone marrow samples and the 

observation of micronuclei and multinuclei in primary FA-deficient fibroblasts are 

suggestive of abnormal cell division. While previous studies have not 

systematically examined whether the FA pathway plays a functional role in the 

execution of mitosis, several studies have hinted that the FA pathway may play a 

role in mitosis. FANCD1/BRCA2 is a known tumor suppressor and susceptibility 

gene for inherited breast, ovarian, and pancreatic cancer (Lancaster, Wooster et 

al. 1996, White, Held et al. 2001, Hahn, Greenhalf et al. 2003). After 

BRCA2/FANCD1 was identified as a major susceptibility gene for inherited breast 

cancer, it was discovered that biallelic mutations in the FANCD1/BRCA2 gene 

cause Fanconi anemia (Howlett, Taniguchi et al. 2002). Previous studies have 

established a role for FANCD1/BRCA2 in the activity of the mitotic SAC, accurate 

chromosome segregation, and centrosome maintenance (Lee, Trainer et al. 

1999, Tutt, Gabriel et al. 1999, Futamura, Arakawa et al. 2000, Lee 2003, Choi, 
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Park et al. 2012). Several publications have demonstrated that FA core complex 

members physically interact with the key mitotic cyclin-dependent kinase CDK1, 

and FANCC has been shown to function as an upstream regulator of CDK1 

(Kruyt, Dijkmans et al. 1997, Kupfer, Yamashita et al. 1997, Mi, Qiao et al. 2004, 

Thomashevski, High et al. 2004). FANCA has additionally been shown to interact 

with the mitotic regulators CENPE, γtubulin, and NEK2 (Du, Chen et al. 2009, 

Kim, Hwang et al. 2013). More recently, it was proposed that some FA proteins 

resolve replication stress-induced chromatin bridges during anaphase (Chan, 

North et al. 2007, Chan, Palmai-Pallag et al. 2009, Naim and Rosselli 2009, Ying 

and Hickson 2011) and that the FA pathway may be involved in cytokinesis 

(Vinciguerra, Godinho et al. 2010). 

Our studies implicate the FA signaling network in the activity of the mitotic 

SAC and demonstrate that aneuploidy and supernumerary centrosomes develop 

as a result of unperturbed mitosis in FA-deficient cells. Along with previous 

investigations, our studies clearly demonstrate that abnormal cell division occurs 

in the absence of FA signaling. The SAC is a key tumor suppressor signaling 

network that protects cells from the development of aneuploidy by ensuring 

accurate chromosome segregation, and SAC regulators have been implicated in 

a number of cancers (Kops, Weaver et al. 2005). Since we discovered that the 

vast majority of FA proteins are essential regulators of the mitotic SAC, we 

propose that the FA signaling network protects cells from aneuploidy and 

malignant transformation by regulating the mitotic SAC. 
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We additionally propose that defective mitosis and defective DNA damage 

repair may potentiate one another in FA-deficient cells. Recently, an elegant 

study demonstrated that high levels of mutagenesis and DNA breakage occur in 

micronuclei forming as a result of chromosome mis-segregation (Crasta, Ganem 

et al. 2012). Ultimately, the high level of chromosomal instability in micronuclei 

may lead to chromosome pulverization or promote the development of cancer 

(Crasta, Ganem et al. 2012, Gordon, Resio et al. 2012). Since FA-deficient cells 

cannot efficiently recognize and repair DNA damage, the ongoing mutagenesis 

occurring in micronuclei may result in the accumulation of mutations which 

cannot be repaired, ultimately leading to either cell death or malignant 

transformation. 

The work of our research group and others has established that FA-

deficient cells are prone to spontaneous micronucleation and multinucleation. We 

propose that the micronucleation and multinucleation which occur in FA-deficient 

cells may result from chromosome mis-segregation and failed cytokinesis. 

Weakened SAC activity and supernumerary centrosomes may result in 

chromosome mis-segregation leading to the development of micronuclei, and 

failed cytokinesis may result in the generation of a binucleated or multinucleated 

cell. Our proposed model is summarized in Figure 6-5. 
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Figure 6-5. Weakened SAC may promote cytokinesis failure and 
centrosome amplification, subsequently leading to aneuploidy in FA-
deficient cells. This model proposes that weakened SAC may directly lead to 
cytokinesis failure and centrosome amplification in the process of generating 
progressively worsening aneuploidy. Weakened SAC activity may lead to 
cytokinesis failure or to chromosome mis-segregation in the form of anaphase 
lagging chromosomes which become micronuclei. Initially, cytokinesis failure 
generates a binucleated G1 cell with two centrosomes. Following cytokinesis 
failiure, centrosome amplification inherently occurs as a cell with two 
centrosomes passes through S-phase centrosome replication. In a mitotic cell, 
the presence of supernumerary centrosomes leads to the formation of a 
multipolar spindle which can form abnormal kinetochore attachments. Either 
cytokinesis failure or chromosome mis-segregation may follow, resulting in  
multinucleation or micronucleation respectively. The curved arrows at the right 
and left of the diagram indicate that the aneuploid cells resulting from abnormal 
cell division may continue to progress through the cell cycle, gradually becoming 
more aneuploid. Centrosomes and kinetochores are shown in red, and DNA is 
shown in blue. 
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CHAPTER SEVEN 

FUTURE DIRECTIONS 

Establishing an essential role for the FA signaling network in the activity of 

the mitotic SAC 

Our study establishes an essential role for fourteen of the sixteen known 

FA proteins in the activity of the mitotic SAC through a combination of RNAi 

studies and primary cell studies. Similarly designed future studies should attempt 

to answer the question of whether FANCM, FANCQ/ERCC4, and any newly 

discovered FA complementation groups are essential for the mitotic SAC. 

Additionally, the SAC should be tested in primary fibroblasts from FA patients of 

the FANCO and FANCP complementation groups, as FANCO and FANCP 

primary fibroblasts are available but were not tested in this study. Our study 

examined the effects of RNAi knockdown and inactivating mutations disrupting 

individual FA proteins on the activity of the mitotic SAC. For many SAC 

regulators, overexpression also results in SAC dysfunction. Thus, SAC activity 

should be assessed in the presence of overexpression of individual FA proteins. 

Further, we suggest that the SAC should be tested in multiple primary 

fibroblast lines with mutations in the same FA gene to compare the degree of 

weakened SAC activity resulting from different mutations. We predict that 

different types of mutations may result in different degrees of SAC activity, as 

some mutations result in the production of an FA protein with partial activity while 

other mutations result in complete absence of functional FA protein. It would be 
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interesting to correlate the degree of SAC phenotype with the clinical 

manifestations observed in particular FA patients. Does a greater SAC 

phenotype occur in FA patients who develop cancer at a younger age? Does a 

greater SAC phenotype generally accompany mutations which are known to 

have an increased predisposition to cancer? Furthermore, it would be interesting 

to know whether point mutations affecting different regions of the same FA gene 

result in different degrees of SAC phenotype. It is possible that certain regions of 

each FA protein are essential for the mitotic SAC activity of that FA protein, while 

other regions are dispensable, and that mutations in different regions of the same 

FA gene would result in a variable effect on the activity of the mitotic SAC. 

The FA core complex (CC) departs from the nucleus at the onset of 

mitosis (Qiao, Moss et al. 2001, Thomashevski, High et al. 2004). FANCA 

contains several nuclear export sequences (NES’s), which are likely to be 

responsible (Ferrer, Rodriguez et al. 2005). Additionally, phosphorylation of 

FANCG on serines 383 and 387 occurs at the onset of mitosis and correlates 

with the departure of the FA CC from the nucleus (Mi, Qiao et al. 2004). When 

biochemical fractionation of HeLa cells followed by immunoblotting for 

centrosome markers was performed, centrosome markers localized to the 

soluble fraction (R. Enzor, S. Park, D. W. Clapp, unpublished data). Eleven FA 

proteins, including six of eight FA CC members, have been detected at the 

centrosome (see Figure 6-3). Additionally, two FA CC members, FANCA and 

FANCC, have been detected at the spindle, and one, FANCE, at the kinetochore 

(see Figure 6-3). We hypothesize that the NES’s of FANCA and phosphorylation 
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of FANCG at serines 383 and 387 are essential for the relocation of FA CC 

members from the nucleus to the mitotic apparatus at the onset of mitosis and, 

subsequently, for the roles of individual FA proteins at these sites. 

If the FA CC members are unable to depart from chromatin at the onset of 

mitosis, perhaps they will be unable to re-localize to the mitotic apparatus and 

play their respective roles in the mitotic SAC. To investigate this possibility, we 

propose the use of site-directed mutagenesis to individually replace serine 383 

and serine 387 of FANCG with alanine residues, in order to generate phospho-

dead mutants at these sites, in a FANCG-containing lentiviral construct. We also 

propose the use of site-directed mutagenesis to generate a FANCA construct 

with inactive NES’s. Then, primary FA patient fibroblasts lacking FANCA and 

FANCG should be stably transduced with the constructs containing mutant forms 

of FANCA and FANCG respectively. Finally, mitotic SAC activity and localization 

of other FA proteins to the mitotic apparatus should be analyzed in these cells. 

Establishing a connection between the essential role of the FA signaling 

network at the mitotic SAC and the development of aneuploidy 

FA-deficient cells exhibit SAC dysfunction and defective DNA damage 

repair. Premature initiation of anaphase due to SAC dysfunction may lead to 

chromosome mis-segregation in the form of lagging chromosomes, and lagging 

chromosomes can become micronuclei (Payne, Crowley-Skillicorn et al. 2010, 

Yasui, Koyama et al. 2010). Additionally, defective DNA repair may result in DNA 

breakage leading to the formation of micronuclei (Crasta, Ganem et al. 2012). In 
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this study, micronuclei were observed in FA patient fibroblasts of twelve 

complementation groups, and centromeres were detected in many of the 

micronuclei observed in primary FANCA-deficient fibroblasts. The presence of 

centromeres in micronuclei from FANCA patient fibroblasts suggests that these 

micronuclei developed as a consequence of chromosome mis-segregation, 

rather than as a result of DNA breakage. Future studies should systemically 

examine the generation of micronuclei in FA-deficient primary cells to determine 

the relative contributions of defective DNA damage repair and SAC dysregulation 

to the development of aneuploidy in the absence of a functioning FA pathway.  

First, a series of experiments should be performed to evaluate 

chromosome mis-segregation in FA-deficient cells. Anaphase lagging 

chromosomes should be quantified in primary fibroblasts from FA patients of 

each complementation group via deconvolution microscopy, and live-cell video 

microscopy should be performed to visualize lagging chromosomes and quantify 

the percentage of lagging chromosomes which generate micronuclei. The 

presence of centromeres in micronuclei in FANCA-deficient primary cells was 

detected by immunostaining of CENPA, followed by deconvolution microscopy. A 

similar experiment should be performed in FA-deficient cells of all known 

complementation groups, in order to systematically evaluate whether 

centromeres are generally present in micronuclei in FA-deficient cells. 

Next, the generation of aneuploidy should be evaluated in FA-deficient 

cells via micronucleus assays. A previous study utilized challenge with the DNA 

crosslinking agent MMC and the spindle drug vincristine to observe the formation 
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of micronuclei by video microscopy and noted that micronuclei form by different 

mechanisms following treatment with each drug (Yasui, Koyama et al. 2010). FA-

deficient cells should be challenged with low doses of MMC and taxol and 

imaged via deconvolution microscopy. Then, the percentage of cells with 

micronuclei and the percentage of micronuclei containing centromeres should be 

quantified. Micronuclei containing centromeres reflect abnormal chromosome 

segregation, and micronuclei lacking centromeres suggest that DNA breakage is 

responsible. We expect that challenge with MMC will result in a higher proportion 

of micronuclei lacking centromeres and that challenge with taxol will result in a 

higher proportion of micronuclei containing centromeres, and we predict that FA-

deficient cells will exhibit increased formation of micronuclei in response to both 

MMC and taxol compared with control cells. 

Recently, an elegant study demonstrated that high levels of mutagenesis 

and DNA breakage occur in micronuclei forming as a result of chromosome mis-

segregation (Crasta, Ganem et al. 2012). Thus, we propose that defective 

mitosis and defective DNA damage repair may potentiate one another in the 

generation of micronuclei in FA-deficient cells. A micronucleus assay similar to 

that described in the previous paragraph should be performed in which FA-

deficient cells are challenged sequentially with MMC and then taxol or with taxol 

and then MMC. We predict that a greater degree of micronucleation will be 

observed for sequentially challenged FA-deficient cells than for control cells, 

suggesting that DNA breakage and chromosome mis-segregation potentiate one 

another in the development of aneuploidy in FA-deficient cells. 
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Establishing a connection between the essential role of the FA signaling 

network in the mitotic SAC and predisposition to cancer 

We hypothesize that compromised SAC function in FA-deficient cells 

promotes genomic instability and predisposes to malignant transformation. In 

vivo studies will be necessary to demonstrate the connection between SAC 

dysregulation and cancer predisposition in the absence of a functional FA 

pathway. We propose the development of novel murine models to characterize 

the role of the FA pathway in the mitotic SAC and to examine the connection 

between regulation of the SAC by the FA signaling network and the development 

of aneuploidy and cancer. 

Our lab has generated a Fancc-/-; Mad2+/- murine model to establish a 

role for Fancc in the regulation of the mitotic SAC and to demonstrate the 

connection between SAC dysregulation and the development of aneuploidy and 

cancer in the absence of Fancc. We predict that cells from Fancc-/-; Mad2+/- 

mice will exhibit SAC failure upon taxol challenge, and we anticipate the 

presence of aneuploidy in Fancc-/-; Mad2+/- bone marrow analyzed by spectral 

karyotyping, metaphase spreads, and red blood cell micronucleation assays. 

Additionally, we predict that Fancc-/-; Mad2+/- mice will exhibit decreased 

survival and spontaneous formation of tumors. Specifically, we hypothesize that 

Fancc-/-; Mad2+/- mice will develop AML and SCC, the types of cancer 

developed by FA patients. Complete blood counts should be performed on 

peripheral blood collected monthly to monitor mice for the development of BMF, 

MDS, and AML. Additionally, histologic analysis should be performed on the 
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bone marrow and organs of dying mice to determine whether the mice had 

developed malignancies. 

Future studies in novel murine models may provide additional insights into 

the role of the FA pathway in cancer predisposition. The mitotic SAC is regulated 

by a complex network of signaling pathways, which converge at the key MCC 

proteins MAD2 and BUBR1. FANCA physically interacts with CENPE (Du, Chen 

et al. 2009), a SAC regulator required for the activation of BUBR1 (Mao, Abrieu 

et al. 2003, Guo, Kim et al. 2012). FANCA also physically interacts with BRCA1 

(Folias, Matkovic et al. 2002), which promotes transcription of MAD2 (Wang, Yu 

et al. 2004). Thus, FANCA and other members of the FA signaling network may 

act on the mitotic SAC through both MAD2 and BUBR1. We propose the 

development of Fanca-/-; Mad2+/- and Fanca-/-; BubR1+/- murine models to 

investigate the role of Fanca in the activity of the mitotic SAC. Most likely, the 

SAC is only partially dependent on the FA signaling network. Thus, MAD2 and 

BUBR1 are unlikely to have completely epistatic roles with FANCA or another FA 

protein. We suggest that experiments characterizing SAC activity, aneuploidy, 

and predisposition to hematopoietic and solid cancers be performed in Fanca-/-; 

Mad2+/- and Fanca-/-; BubR1+/- murine models, similar to those described for 

the Fancc-/-; Mad2+/- murine model above. Finally, similar to our predictions for 

Fancc-/-; Mad2+/- mice, we predict that Fanca-/-; Mad2+/- and Fanca-/-; 

BubR1+/- mice will exhibit SAC dysregulation and spontaneous development of 

aneuploidy and cancer. 
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Investigating whether a primary defect exists in centrosome replication and 

whether centrosome amplification occurs secondarily to SAC dysfunction 

Our study clearly establishes that the FA signaling network is essential for 

the mitotic SAC and that aneuploidy and centrosome amplification develop in the 

absence of a functional FA pathway. We hypothesize that weakened activity of 

the mitotic SAC in FA-deficient cells promotes failed cytokinesis leading to 

centrosome amplification and aneuploidy in FA-deficient cells. A recent study 

indicates that FANCJ “regulates the normal centrosome cycle as well as ICL 

induced centrosome amplification by activating the polo-like kinase 1 (PLK1)” 

(Zou, Tian et al. 2013). PLK1 plays an essential role in centrosome separation by 

phosphorylating NEK2 (Zhang, Fletcher et al. 2005), and phosphorylation of 

FANCA by NEK2 was recently shown to be essential for centrosome 

maintenance (Kim, Hwang et al. 2013). Thus, we also hypothesize that the FA 

signaling network plays a primary role in the regulation of centrosome biology. 

As part of this study, we designed an experiment using arrest in G1 via 

serum starvation to determine whether passage through mitosis is necessary for 

centrosome amplification in FA-deficient cells. Preliminary results were 

inconclusive, and we decided that this may not be the best approach. 

Centrosome replication occurs during S-phase. Centrosome maturation and 

separation occur during the early phases of mitosis, as SAC regulators are being 

recruited to the kinetochore. FA proteins have been shown to play roles in the 

centrosome cycle by interacting with PLK1 and NEK2, mitotic kinases with roles 

in centrosome separation (Kim, Hwang et al. 2013, Zou, Tian et al. 2013). Thus, 
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studies utilizing cell synchronization may be of limited helpfulness as we attempt 

to dissect the outcomes of the FA signaling network’s role in mitotic SAC 

regulation and potential role in centrosome biology. 

We propose experiments utilizing live-cell video microscopy of siRNA-

transfected HeLa cells stably expressing the centrosomal marker GFP-γtubulin to 

investigate the potential role of the FA signaling network in the regulation of 

centrosome biology. Video microscopy experiments utilizing cells with labeled 

centrosomes would enable the direct visualization of abnormal centrosome 

replication prior to mitosis, abnormal centrosome separation during early mitosis, 

and centrosome amplification due to failed cell division. Additionally, an 

experiment utilizing the cytokinesis inhibitor cytochalasin B could be helpful in 

determining whether FA-deficient cells have a primary defect in centrosome 

regulation. The prevention of cytokinesis in dividing cells would enable the 

quantification of centrosomes in FA-deficient and control cells while eliminating 

the possibility of cytokinesis failure secondary to abnormal SAC regulation as a 

source of centrosome amplification. We predict that FA-deficient cells will exhibit 

centrosome amplification due to primary defects in centrosome regulation, as 

well as due to failed cell division. 

Investigating whether a primary defect exists in cytokinesis and whether 

cytokinesis failure occurs secondarily to SAC dysfunction 

When the proteome and phospho-proteome were quantified via mass 

spectrometry, the expression and phosphorylation of numerous regulators of 
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cytokinesis and endocytosis were differentially regulated between uncorrected 

and gene-corrected primary FANCA patient fibroblasts challenged with low-dose 

taxol. These candidates should be validated, the related pathways examined, 

and the functional significance determined. 

A previous study observed failed cytokinesis in FA-deficient cells, 

evidenced by the generation of binucleated cells (Vinciguerra, Godinho et al. 

2010). In our study, when the outcome of prolonged SAC arrest was analyzed by 

live-cell video microscopy of taxol-challenged primary FANCA patient fibroblasts, 

cytokinesis failure followed SAC failure in the majority of cells, and the rate of 

cytokinesis failure was identical in FANCA-deficient fibroblasts and gene-

corrected control fibroblasts. Thus, our data suggests that abnormal SAC 

regulation may be entirely responsible for the cytokinesis failure occurring in FA-

deficient cells. However, phenotypic characterization of unperturbed cell division 

in primary FANCA patient fibroblasts via live-cell video microscopy revealed 

defects in vesicle trafficking during cytokinesis. Additionally, FANCC localizes to 

the midzone spindle during anaphase and to either side of the midbody during 

telophase, a pattern resembling that of known regulators of cytokinesis. 

Additional experiments will be necessary to examine the potential roles of 

FANCA, FANCC, and other FA proteins in the regulation of cytokinesis. 

Earlier in this chapter, we proposed a micronucleus assay utilizing 

challenge with MMC and taxol to investigate the role of FA proteins in the 

development of micronuclei through DNA breakage and chromosome mis-

segregation respectively. Similarly, we now propose a cytokinesis failure assay 
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utilizing challenge with low-dose cytochalasin B, a cell-permeable mycotoxin 

which inhibits actin polymerization. Since actin polymerization is essential for the 

formation of the contractile ring during cytokinesis, cytochalasin B inhibits 

cytokinesis. We propose the use of low doses of cytochalasin B which challenge 

cytokinesis, but do not completely prevent it. We hypothesize that FA-deficient 

cells will exhibit an increased rate of cytokinesis failure in response to low doses 

of cytochalasin B compared with control cells, reflecting a primary role for the FA 

signaling network in the regulation of cytokinesis. 

Elucidating the role of FANCA in the activity of the mitotic SAC 

When live-cell time-lapse microscopy of primary FANCA patient fibroblasts 

was performed in the presence of taxol, we observed a decreased duration of 

SAC arrest and an increased rate of SAC failure. This finding should be validated 

in primary fibroblasts from an additional FANCA patient. 

Based on the results of hypersensitivity assays and flow cytometry-based 

cell cycle analysis, we concluded that primary FANCA-deficient fibroblasts exhibit 

decreased proliferation and survival compared with isogenic gene-corrected 

control fibroblasts. We hypothesize that the decreased survival and proliferative 

capacity observed in FANCA-deficient fibroblasts in response to low-dose taxol 

(0.1 nM to 1 nM) results from the formation of cell-cycle arrested, multinucleated 

cells. To investigate this hypothesis, we propose the utilization of time-lapse live-

cell microscopy of primary FANCA patient fibroblasts and gene-corrected control 

fibroblasts in the presence of low-dose taxol. 
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When the proteome and phospho-proteome were quantified in primary 

FANCA patient fibroblasts via mass spectrometry, many candidates were 

identified which are known regulators of the mitotic SAC. These candidates 

should be validated by immunoblotting. For candidates validated by 

immunoblotting, further studies should investigate the relationship between 

FANCA and each candidate in the activity of the mitotic SAC. 

In this study, the candidates BRCA1 and SKI were validated by 

immunoblotting. BRCA1 participates with the FA signaling network in DNA 

damage repair and physically interacts with FANCA (Folias, Matkovic et al. 

2002). Addtionally, BRCA1 is a transcriptional regulator of MAD2 (Wang, Yu et 

al. 2004) and up-regulates the expression of BUBR1 (Chabalier, Lamare et al. 

2006). We hypothesize that FANCA and BRCA1 play overlapping roles in the 

regulation of the mitotic SAC, and we propose a series of studies to investigate 

the relationship between FANCA and BRCA1 during mitosis. 

Immunofluorescence microscopy-based studies should determine whether 

FANCA and BRCA1 co-localize during mitosis, followed by co-IP studies in 

mitotically synchronized cells to determine whether FANCA and BRCA1 

physically interact during mitosis. 

To determine whether FANCA and BRCA1 play epistatic or non-epistatic 

roles in the regulation of the mitotic SAC, we propose the quantification of the 

mitotic SAC in taxol-challenged uncorrected and gene-corrected FANCA patient 

fibroblasts transfected with either BRCA1 or negative control siRNA. 

Furthermore, we propose the development of a Fanca-/-; Brca1+/- murine model. 
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In this model, we propose the characterization of SAC activity, SAC regulation, 

aneuploidy, and cancer predisposition through taxol-challenge, unbiased 

transcriptomal analysis, spectral karyotyping, and histopathologic analysis 

respectively, similar to our published study of the Fancc-/-; Fancg-/- mouse. 

Finally, we hypothesize that the expression of MAD2 and BUBR1 will be altered 

in absence of FANCA and BRCA1, and we propose immunoblotting studies of 

the levels of MAD2 and BUBR1 in uncorrected and gene-corrected FANCA 

patient fibroblasts transfected with either BRCA1 or negative control siRNA and 

in bone marrow taken from the suggested Fanca-/-; Brca1+/- murine model. 

Our mass spectrometry-based quantification of the proteome and 

phospho-proteome in primary FANCA patient fibroblasts identified many 

candidates which are known protein targets of the mitotic kinases AURKA, 

CDK1, and PLK1, including BRCA1 and SKI. It is known that FANCC is an 

upstream regulator of CDK1 (Kruyt, Dijkmans et al. 1997) and that FANCJ 

activates PLK1 (Zou, Tian et al. 2013). Thus, we propose that the FA signaling 

network may regulate AURKA, CDK1, and PLK1. Kinase activity assays 

quantifying the enzymatic phosphotransferase activity of AURKA, CDK1, and 

PLK1 should be performed in FA-deficient cells. Furthermore, the expression 

level of each kinase should be assayed in mitotically synchronized cells via 

immunoblotting and the mitotic localization examined via immunofluorescence 

microscopy to determine if the activity, expression, and/or localization of these 

mitotic kinases is regulated by one or more members of the FA signaling 

network. 
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Confirming novel mitotic abnormalities in FANCA-deficient cells 

Live-cell video microscopy of unperturbed mitosis in uncorrected and 

gene-corrected primary FANCA patient fibroblasts revealed a number of 

abnormal phenotypes. These phenotypes included accelerated prophase and 

metaphase, spindle mis-orientation, difficulty in forming metaphase plates, and 

asynchronous nuclear envelope regulation in FANCA-deficient cells. (Abnormal 

vesicle trafficking during cytokinesis was also observed, but is addressed in 

another section.) These phenotypes should be validated via live-cell video 

microscopy of unperturbed mitosis in a second pair of uncorrected and gene-

corrected primary FANCA patient fibroblasts. Furthermore, we propose a series 

of experiments to characterize and explain these phenotypes in the remainder of 

this section. 

The duration of prophase was shorter in FANCA-deficient fibroblasts than 

isogenic gene-corrected control fibroblasts, potentially reflecting delayed initiation 

of nuclear envelope breakdown in FANCA-deficient cells. Furthermore, one 

daughter cell frequently initiated nuclear envelope re-assembly prematurely, and 

the two daughter cells did not re-form their respective nuclear envelopes in a 

synchronized fashion in FANCA-deficient cells. Thus, we hypothesize that 

FANCA is essential for proper regulation of the nuclear envelope during mitosis, 

and we propose immunofluorescence staining of the nuclear envelope protein 

lamin in order to systematically examine the timing of nuclear envelope 

breakdown and re-assembly in FANCA-deficient cells. Nuclei and centrosomes 

should be concurrently labeled to enable discernment of the mitotic phases. 
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In addition to difficulty with regulating nuclear envelope breakdown and re-

assembly, FANCA-deficient cells exhibited difficulties in the formation of 

metaphase plates. In some cases, the formation of a metaphase plate was 

delayed, resulting in a longer prometaphase and shorter metaphase in FANCA-

deficient fibroblasts compared with control fibroblasts. In other cases, the 

metaphase plate never clearly formed or was visibly rotated so that it appeared 

spread across multiple z-sections. We hypothesize that the FA signaling network 

plays a role in chromosome congression, and we propose the measurement of 

metaphase plate widths in deconvolution microscopy images of untreated and/or 

MG132-arrested FA-deficient cells. 

The phenotype of spindle mis-orientation has been validated in primary 

FANCA patient fibroblasts by quantifying the angle at which the mitotic spindle is 

offset from the horizontal, based on centrosome positioning (R. Enzor, Z. Abdul-

Sater, G. Nalepa, D. W. Clapp, unpublished data). Spindle mis-orientation is a 

particularly interesting phenotype in FANCA-deficient cells, as it was recently 

discovered that the FA signaling network regulates the WNT/β-catenin signaling 

pathway (Dao, Rotelli et al. 2012, Huard, Tremblay et al. 2013, Huard, Tremblay 

et al. 2014). The WNT/β-catenin pathway is essential for proper spindle 

orientation and cell fate specification, and defects in this pathway result in 

developmental abnormalities and abnormal hematopoietic stem cell regulation 

(Moon, Kohn et al. 2004, Nemeth and Bodine 2007, Klaus and Birchmeier 2008). 

Thus, regulation of the WNT/β-catenin signaling pathway by the FA signaling 
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network may provide an explanation for spindle mis-orientation, developmental 

abnormalities, and bone marrow failure in FA-deficient cells. 

We hypothesize that the FA signaling network plays an essential role in 

the proper orientation of the mitotic spindle through regulation of the WNT/β-

catenin signaling pathway. Recent studies indicate that FANCC and FANCL 

physically interact with β-catenin and regulate WNT signaling (Dao, Rotelli et al. 

2012, Huard, Tremblay et al. 2013, Huard, Tremblay et al. 2014). We 

hypothesize that additional FA proteins physically interact with β-catenin. Since 

FANCC and FANCL are both members of the FA core complex (CC), it is 

possible that the entire FA CC interacts with β-catenin. A tagged β-catenin 

construct should be generated, and immunoprecipitation of tagged β-catenin 

should be performed, followed by immunoblotting for all known FA proteins. Co-

IP experiments should be performed to confirm all detected physical interactions 

between β-catenin and FA proteins. Additionally, we propose the development of 

a Fanca-/-; β-catenin+/- murine model to assess the potential connection 

between the FA signaling network’s role in the regulation of spindle orientation 

and cell fate specification, and the phenotypes of congenital defects, 

hematopoietic stem cell exhaustion, and cancer predisposition. We hypothesize 

that abnormal spindle orientation will be observed in murine embryonic 

fibroblasts taken from Fanca-/-; β-catenin+/- mice. We propose the assessment 

of spindle orientation via immunostaining of centrosome and spindle markers, 

followed by the quantification of spindle angles based on centrosome positioning 

in deconvolution microscopy images. Furthermore, we anticipate that Fanca-/-; β-
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catenin+/- mice will develop congenital abnormalities, BMF, and hematopoietic 

malignancies, similar to the phenotypes observed in FA patients. 

Numerous candidates linked to WNT/β-catenin signaling were identified 

when we performed a mass spectrometry-based quantification of the proteome 

and phospho-proteome in primary FANCA patient fibroblasts. Our study 

implicates the FA signaling network in the regulation of the mitotic SAC, and 

other recent studies have linked the mitotic kinase PLK1 with the FA signaling 

network in the regulation of centrosome biology (Kim, Hwang et al. 2013, Zou, 

Tian et al. 2013). The WNT pathway-related candidate DVL2 identified in our 

mass spectrometry-based screen is particularly interesting because DVL2 

physically interacts with PLK1 and its phosphorylation by PLK1 is essential for 

proper spindle orientation. Furthermore, DVL2 activates the SAC kinase MPS1 

and recruits the MCC protein BUBR1 to kinetochores (Kikuchi, Niikura et al. 

2010). We hypothesize that FANCA functionally interacts with DVL2 in the 

regulation of the mitotic SAC and spindle orientation. DVL2 and other WNT-

related candidates should be validated, and functional studies utilizing co-

knockdown of FANCA and each candidate should be performed, similar to 

experiments described for BRCA1 above. 
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Localization of FA proteins to the mitotic apparatus and investigation of 

subcomplexes involving FA proteins during mitosis 

In this study, the localization of FA proteins to the mitotic apparatus was 

systematically studied in deconvolution microscopy experiments utilizing 

immunofluorescence staining of endogenous FA proteins. Mitotic localization of 

ectopically expressed GFP-fused FA proteins was also analyzed for several FA 

proteins. Thus far, eleven FA proteins have been detected at the centrosome, 

two on the mitotic spindle, and two at kinetochores. For some FA proteins, we 

were unable to visualize their mitotic localization because the tested commercial 

antibodies did not result in effective immunostaining. In these cases, additional 

antibodies should be tested and/or the localization of GFP-fused FA proteins 

should be analyzed. We did not attempt to analyze the mitotic localization of 

FANCO, FANCP, and FANCQ in this study, as they were discovered after this 

study was initiated. Thus, deconvolution microscopy studies utilizing 

immunofluorescence staining of endogenous FA proteins and ectopic expression 

of GFP-fused FA proteins should be utilized to systematically study the mitotic 

localization of all known FA proteins, including FANCO, FANCP, FANCQ, and 

novel FA complementation groups which remain to be discovered. 

We detected FANCA and FANCC on the mitotic spindle and FANCE on 

kinetochores. For other FA proteins, spindle or kinetochore localization was not 

consistently present or was not detected at all. Kinetochores and spindle fibers 

are small subcellular structures, and the localization of FA proteins to the 

kinetochore has not been systemically studied due to the limited resolution of the 
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microscopes which we had available during the duration of this study. Proteins 

localizing to the kinetochore or spindle may be present at such small 

concentrations that they cannot be easily visualized utilizing confocal or 

deconvolution fluorescence microscopes, which are limited to the visualization of 

structures larger than the wavelength of light. Our research group has recently 

acquired a super-resolution microscope which enables visualization of structures 

smaller than the wavelength of light via algorithm-based reconstruction of 

acquired images. Thus, we plan to systemically investigate the potential 

localization of FA proteins to the kinetochore and spindle utilizing super-

resolution fluorescence microscopy. 

Future studies should examine whether unique subcomplexes involving 

the FA proteins exist during mitosis. Microscopy-based localization studies in 

RNAi-knockdown cells or primary fibroblasts from FA patients should determine 

whether the localization of each FA protein to the mitotic apparatus is dependent 

on the presence of other FA proteins. Additionally, immunoprecipitation studies 

should be performed in mitotically synchronized cells to identify which FA 

proteins physically interact with one another during mitosis and mitotic binding 

partners of the FA proteins should be investigated. Previous studies found that 

several FA core complex members interact with CDK1 (Kupfer, Yamashita et al. 

1997, Thomashevski, High et al. 2004) and that FANCA interacts with CENPE, 

γtubulin, and NEK2 (Du, Chen et al. 2009, Kim, Hwang et al. 2013). Future 

studies should determine whether other FA proteins also interact with CDK1, 

CENPE, NEK2, and γtubulin. Furthermore, immunoprecipitation studies should 
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investigate whether FA proteins physically interact with other mitotic regulators 

which are known binding partners of CDK1, CENPE, NEK2, and γtubulin. 

Dissection of mitotic signaling pathways which interact with FA proteins 

It will be important to determine the physical and functional interactants of 

FA proteins during mitosis. We propose the utilization of proteomics and 

genomics-based approaches to dissect the signaling pathways which physically 

and functionally interact with each FA protein in the regulation of cell division. 

Namely, we propose physical interaction screens utilizing the yeast two-hybrid 

approach or immunoprecipation followed by mass spectrometry for each FA 

protein. Additionally, we propose the quantification of the transcriptome and/or 

proteome in isogenic murine and/or human primary cells. Finally, we propose 

synthetic lethality screens designed to evaluate which kinases and/or 

phosphatases may functionally interact with the FA proteins in the regulation of 

mitosis. Genomics and proteomics screens may identify candidate pathways 

which are likely to interact with the FA signaling network in the regulation of the 

mitotic SAC. Following appropriate validation, we propose the use of FA murine 

models to investigate candidate mitotic regulators which may functionally interact 

with the FA pathway in the regulation of mitosis. 

Since FANCA has been implicated in approximately two-thirds of cases of 

FA, our current studies focus on understanding the role of FANCA in mitotic 

signaling pathways. Our mass spectrometry-based quantification of the proteome 

and phospho-proteome in isogenic uncorrected and gene-corrected primary 
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FANCA patient fibroblasts is one experiment which may provide insight into the 

mitotic signaling pathways which functionally interact with FANCA. Additionally, 

our research group plans to perform a synthetic lethality screen in primary 

FANCA patient fibroblasts utilizing a pooled library of lentiviral shRNA constructs 

directed against the entire kinome. In this study, knockdown of individual kinases 

may result in a survival advantage or disadvantage of primary FANCA-deficient 

fibroblasts compared with gene-corrected control fibroblasts. Similar studies may 

be performed to dissect the role of other FA proteins in the regulation of the 

mitotic SAC. 

Additionally, we propose a physical interaction screen for mitotic binding 

partners of FANCA utilizing immuno-precipitation of TAP-tagged FANCA followed 

by a mass spectrometry-based analysis of interacting proteins. In the past, this 

approach identified that FANCA physically interacts with the protein HTT 

(huntingtin) (Conner and Wang 2008). Yeast two-hybrid screening is an 

alternative approach to the investigation of potential FANCA binding partners. 

This approach previously identified that FANCA physically interacts with CENPE 

and with NEK2, both of which are essential regulators of the mitotic SAC (Du, 

Chen et al. 2009, Kim, Hwang et al. 2013). For identified binding partners of 

FANCA, co-immunoprecipitation studies should be performed to validate the 

results. 

A previous screen identified that FANCA physically interacts with HTT 

(huntingtin), but functional significance was not ascribed to this physical 

interaction. Expansion of CAG repeats in HTT causes Huntington’s Disease, and 
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loss of HTT function has been linked to problems with spindle orientation, 

endocytic vesicle trafficking, neurogenesis, and stem cell regulation (Pal, Severin 

et al. 2006, Pal, Severin et al. 2008, Feng 2010, Godin, Colombo et al. 2010, 

Godin, Poizat et al. 2010, Godin and Humbert 2011a, Godin and Humbert 

2011b). Homozygous mutations in HTT result in enhanced apoptosis and 

embryonic lethality (Nasir, Floresco et al. 1995, Zeitlin, Liu et al. 1995). Similarly, 

inactivation of the FA pathway is known to lead to enhanced apoptosis and bone 

marrow failure (Bijangi-Vishehsaraei, Saadatzadeh et al. 2005, Kamimae-

Lanning, Goloviznina et al. 2013, Wang, Romero et al. 2013). Our study reveals 

potential roles for FANCA in spindle orientation and endocytic vescicle trafficking, 

in addition to previously established roles in development and tumorigenesis. 

Furthermore, when we quantified the proteome and phospho-proteome in 

primary FANCA patient fibroblasts via mass spectrometry, expression and 

phosphorylation of HTT were dysregulated in FANCA-deficient fibroblasts 

compared with isogenic control fibroblasts. We hypothesize that FANCA and 

HTT operate in overlapping pathways controlling spindle orientation and cell 

division, in order to ensure proper embryonic and fetal development and prevent 

the development of aneuploidy and cancer. We suggest a series of RNAi-based 

studies to examine the effect of co-knockdown of FANCA and HTT, followed by 

the development of a murine model.  

Yeast two-hybrid screening is another approach to identify potential 

binding partners. In the past, this approach has identified that FANCA physically 

interacts with CENPE and with NEK2, both essential regulators of the mitotic 
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SAC. Our study establishes an essential role for FANCA in the regulation of the 

mitotic SAC, ascribing potential functional significance to these known physical 

interactions. However, further studies will be necessary to elucidate the 

connection between FANCA and CENPE and between FANCA and NEK2 in the 

regulation of the mitotic SAC. We suggest RNAi-based studies to examine the 

effect of co-knockdown of FANCA and CENPE and of FANCA and NEK2 on the 

activity of the mitotic SAC, followed by the development of double knockout 

murine models. 

Double knockout murine models are powerful tools which can be utilized 

to study the functional interactions between two genes which participate in the 

same pathway. Since FA single knockout mice do not spontaneously develop 

bone marrow failure, congenital abnormalities, and hematopoietic malignancies, 

double knockout murine models will be a useful tool for studying the pathways 

which contribute to each of these pathologies in FA. We propose the 

development of novel FA murine models combining knockout of FA proteins with 

knockdown of mitotic SAC regulators which are likely to functionally interact with 

the FA signaling network. 

As previously described, we have developed a Fancc-/-; Mad2+/- murine 

model to analyze the role of Fancc at the mitotic SAC and to determine whether 

Fancc’s role at the mitotic SAC is important in cancer predisposition. We predict 

that the Fancc-/-; Mad2+/- murine model will spontaneously develop 

hematopoietic malignancies and squamous cell carcinomas, while the Fancc-/- 

mice and Mad2+/- mice will not. This finding would indicate that the Fancc protein 
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plays an important role in the regulation of the mitotic SAC, that the roles of 

Fancc and Mad2 are not purely epistatic, and that Fancc acts as a tumor 

suppressor through its role at the mitotic SAC. Thus, we anticipate that the 

Fancc-/-; Mad2+/- murine model will enable us to establish a direct link between 

SAC dysfunction and predisposition to cancer in the absence of Fancc. We 

predict that similar studies in other novel murine models will provide insight into 

the roles of FA proteins in the mitotic SAC and enable researchers to establish 

which pathways contribute to each of the major clinical phenotypes observed in 

patients with Fanconi anemia. 
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CHAPTER EIGHT 

SUMMARY AND SIGNIFICANCE 

 

Our study identifies for the first time that the FA signaling network is 

required for the proper execution of mitosis. In this study, we systematically 

evaluated the role of the FA proteins in the activity of the mitotic SAC and in the 

development of aneuploidy and centrosome amplification through functional 

RNAi screens and analyses of primary fibroblasts from patients with FA. We 

discovered that the FA signaling network is essential for the activity of the mitotic 

SAC and for the prevention of aneuploidy and centrosome amplification. 

Furthermore, we systematically analyzed the mitotic localization of the FA 

proteins, and we discovered that the majority of FA proteins differentially localize 

to key structures of the mitotic apparatus in a cell cycle-dependent manner. 

Our study clearly demonstrates that the FA signaling network is essential 

for the activity of the mitotic SAC and that aneuploidy and centrosome 

amplification develop as a result of unperturbed mitosis in FA-deficient cells. 

Based on these findings, we have proposed that compromised SAC function in 

FA-deficient cells promotes genomic instability and predisposes to malignant 

transformation. Patients with the recessive genetic disorder Fanconi anemia are 

predisposed to develop hematopoietic malignancies and squamous cell 

carcinomas. Several FA genes are also susceptibility genes for breast, ovarian, 

and pancreatic cancer. Furthermore, somatic inactivation of the FA pathway 
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occurs in malignancies in the non-FA, general population. Thus, our studies may 

be relevant to understanding the pathogenesis of FA-deficient cancers broadly. 

Since in vivo data will be necessary to establish the link between SAC 

dysfunction and cancer predisposition in the absence of a functional FA pathway, 

we have developed a murine model to examine the functional interaction 

between Fancc and Mad2 in the activity of the mitotic SAC and in the process of 

malignant transformation. Systematic characterization of the predisposition to 

hematopoietic and solid tumors in this murine model is underway, and the mitotic 

SAC is being characterized in murine embryonic fibroblasts. Future studies in 

novel murine models may provide additional insights into the role of the FA 

pathway in SAC regulation and cancer predisposition. The potential use of novel 

murine models to investigate the role of the FA pathway in SAC regulation and 

cancer predisposition was discussed in multiple sections of the Future Directions. 

We demonstrated that the majority of FA proteins localize to the mitotic 

apparatus in a cell cycle-dependent fashion. We and others have detected the 

majority of FA proteins at centrosomes. However, FANCC was not detected at 

centrosomes, and instead exhibited a unique pattern of localization to the mitotic 

spindle. FANCA was uniquely detected at both spindle and centrosomes, and 

FANCE at centrosomes and kinetochores. It is possible that FA proteins localize 

to dissimilar sites during mitosis, where they play unique roles in the regulation of 

mitosis. Thus, our findings may begin to explain why patients of different FA 

complementation groups display diverse clinical phenotypes, including a variable 

predisposition to develop cancer. Additionally, the detection of FA proteins at 
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specific parts of the mitotic apparatus may lead to the identification of mitotic 

binding partners for the FA proteins and subsequently to the development of 

targeted chemotherapeutics for patients with mutations in FA genes. 

Our results in primary FANCA-deficient fibroblasts indicate hypersensitivity 

to taxol. Another research group found that FANCA-deficient cells are 

hypersensitive to nocodazole. Chemotherapeutic drugs targeting the mitotic 

spindle are widely used for the treatment of breast cancer, leukemia, and other 

malignancies (Long 1994, Araque Arroyo, Ubago Perez et al. 2011, Gupta, 

Hatoum et al. 2014). Furthermore, our results in primary FANCA-deficient 

fibroblasts suggest links to signaling pathways involving mitotic kinases. 

Additional research groups have discovered that FANCA and other FA proteins 

physically and functionally interact with mitotic kinases. Selective pharmacologic 

inhibitors exist for many mitotic kinases, and a number of clinical trials testing 

these agents in cancer chemotherapy regimens are in progress (Marzo and 

Naval 2013). Since we found and others found that FANCA-deficient cells are 

hypersensitive to spindle drugs and that FANCA interacts with signaling 

pathways involving mitotic kinases, our results may lead to personalized clinical 

trials for patients with FA-deficient cancers based on their FA gene status. 

Collectively, our findings provide insight into the genetically unstable cancers 

resulting from inactivation of the FA/BRCA pathway and introduce the idea of 

novel possibilities for treating these cancers. 

In short, this study identifies a novel role for the FA signaling network in 

the regulation of the mitotic SAC. This finding advances our understanding of 
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genomic instability in FA by providing a mechanistic explanation for the increased 

risk of aneuploidy and malignant transformation which are known to exist in FA-

deficient cells. Ongoing studies investigate the signaling pathways which interact 

with the FA pathway in the regulation of the mitotic SAC and elucidate the 

connection between defective SAC function, aneuploidy, and cancer 

predisposition in the context of FA. Our findings, combined with the work of other 

research groups, suggest roles for the FA signaling network in the regulation of 

cell division which go beyond the newly established role at the mitotic SAC. The 

FA signaling network may also play important roles in centrosome maintenance, 

spindle orientation, cytokinesis, and other mitotic processes. Thus, our study 

opens the door to many new avenues in the investigation of the origins of 

genomic instability and cancer predisposition in the absence of a functional FA 

pathway. 
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