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Abstract 

Jonathan G. Hoggatt 

 

EICOSANOID REGULATION OF HEMATOPOIETIC STEM AND  

PROGENITOR CELL FUNCTION 

 

Adult hematopoietic stem cells (HSC) are routinely used to reconstitute 

hematopoiesis after myeloablation; however, transplantation efficacy and 

multilineage reconstitution can be limited by inadequate HSC number, or poor 

homing, engraftment or self-renewal.  We have demonstrated that mouse and 

human HSC express prostaglandin E2 (PGE2) receptors, and that short-term ex 

vivo exposure of HSC to PGE2 enhances their homing, survival and proliferation, 

resulting in increased long-term repopulating cell and competitive repopulating 

unit (CRU) frequency.  HSC pulsed with PGE2 are more competitive, as 

determined by head-to-head comparison in a competitive transplantation model.  

Enhanced HSC frequency and competitive advantage is stable and maintained 

upon multiple serial transplantations, with full multi-lineage reconstitution.  PGE2 

increases HSC CXCR4 mRNA and surface expression and enhances their 

migration to SDF-1α in vitro and homing to bone marrow in vivo and stimulates 

HSC entry into and progression through cell cycle.  In addition, PGE2 enhances 

HSC survival, associated with an increase in Survivin mRNA and protein 

expression and reduction in intracellular active caspase-3.  While PGE2 pulse of 

HSC promotes HSC self-renewal, blockade of PGE2 biosynthesis with non-
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steroidal anti-inflammatory drugs (NSAIDs) results in expansion of bone marrow 

hematopoietic progenitor cells (HPC).  We co-administered NSAIDs along with 

the mobilizing agent granulocyte-colony stimulating factor (G-CSF) and 

evaluations of limiting dilution transplants, assays monitoring neutrophil and 

platelet recoveries, and secondary transplantations, clearly indicate that NSAIDs 

facilitate mobilization of a hematopoietic graft with superior functional activity 

compared to the graft mobilized by G-CSF alone.  Enhanced mobilization has 

also been confirmed in baboons mobilized with G-CSF and a NSAID.  Increases 

in mobilization are the result of a reduction of signaling through the PGE2 

receptor EP4, which results in marrow expansion and reduction in the 

osteoblastic HSC niche.  We also identify a new role for cannabinoids, an 

eicosanoid with opposing functions to PGE2, in hematopoietic mobilization.  

Additionally, we demonstrate increased survival in lethally irradiated mice treated 

with PGE2, NSAIDs, or the hypoxia mimetic cobalt chloride.  Our results define 

novel mechanisms of action whereby eicosanoids regulate HSC and HPC 

function, and characterize novel translational strategies for hematopoietic 

therapies. 
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Chapter 1.  Introduction 

 

 Higher organisms have the remarkable capacity to produce and maintain 

adequate numbers of blood cells throughout their entire lifespan to meet the 

normal physiological requirements of blood cell turnover, as well as respond to 

needs for increased demand such as injury or infection.  In an average sized 

human adult it is estimated that approximately 1 trillion blood cells are produced 

every day, including 200 billion erythrocytes (red blood cells (RBCs)) and 70 

billion neutrophils (Ogawa, 1993).  This life long process of continuous formation 

and turnover of blood cells is termed hematopoiesis.  How hematopoiesis is 

regulated remains a subject of debate.  However, it is generally accepted that 

both stochastic and instructive mechanisms play active roles in maintaining 

hematopoiesis.  This chapter will provide a brief overview of the key findings that 

have contributed to the understanding of the capacity for lifelong blood 

production, with a focus on regulation of this physiological process by 

eicosanoids. 

Hematopoiesis – Stem and progenitor cells and colony assays: 

At the center of lifelong blood cell production is the hematopoietic stem 

cell (HSC), which has the capacity to give rise to all mature circulating blood 

cells, i.e., erythrocytes, platelets, lymphocytes, monocytes/macrophages, and 

neutrophilic, eosinophilic, and basophilic granulocytes.  HSCs are defined by two 

fundamental characteristics: the ability to self-renew, a divisional event which 
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results in two HSCs, and the ability to differentiate into all mature blood lineages, 

known as multipotency.  Key experiments dating back to the early 1950s 

(Jacobson et al., 1950; Jacobson et al., 1951; Lorenz et al., 1951) demonstrated 

that hematopoiesis in irradiated animals could be restored with spleen and/or 

bone marrow (BM) derived cells.  Shortly thereafter, it was demonstrated that 

allogeneic skin grafts were tolerated in mice who had received lethal irradiation 

followed by a hematopoietic transplant (Main and Prehn, 1955), leading to the 

concept of chimerism, in which the donor cells were reconstituting the irradiated 

host, which was confirmed in later studies (Ford et al., 1956; Nowell et al., 1956; 

Trentin, 1956).  In the 1960’s, Till and McCulloch and colleagues published 

breakthrough studies showing that single clonogenic cells existed within the bone 

marrow that could self-renew and restore hematopoiesis (Becker et al., 1963; 

Leung et al., 2007; Siminovitch et al., 1963; Till and McCulloch, 1961; Wu et al., 

1967; Wu et al., 1968), thus postulating the in vivo existence of a hematopoietic 

stem cell.  These assays utilized lethally irradiated mice that were injected with 

hematopoietic cells and analyzed macroscopic nodules that formed on the 

spleens in proportion to the number of bone marrow cells injected (Till and 

McCulloch, 1961).  They hypothesized that the spleen colonies (colony-forming 

units-spleen (CFU-S)) were derived from a single cell, which they later 

demonstrated by analysis of chromosomal markers (Becker et al., 1963).  These 

studies also laid the groundwork for clinical hematopoietic transplantation.   
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Once the existence of cells capable of reconstituting lethally irradiated 

hosts was identified, it became important to develop methods of isolating and 

characterizing these cells for further analysis.  The pivotal development of in vitro 

assay systems for culturing hematopoietic cells by Bradley and Metcalf (Bradley 

and Metcalf, 1966), Ichikawa et al. (Ichikawa et al., 1966) and Pluznik and Sachs 

(Pluznik and Sachs, 1966), with refinements for long-term cultures by Dexter et 

al. (Dexter et al., 1977) and Whitlock et al. (Whitlock et al., 1984), allowed many 

of the developmental pathways involved in hematopoietic homeostasis to be 

identified and the regulatory molecules directing this process to be identified and 

ultimately cloned.  The colony-forming cell assays identify populations of cells 

with distinct lineage-restricted differentiation patterns.  These lineage-restricted 

cells, or hematopoietic progenitor cells (HPCs), were characterized by the type of 

colonies they could form in semi-solid agar, methylcellulose or plasma clot.  The 

earliest colonies described were from normal humans and leukemic patients, 

primarily myeloid derived, and were generally termed colony forming cells 

(CFCs) (Greenberg et al., 1971; Harris and Freireich, 1970; Haskill et al., 1970; 

Iscove et al., 1971; Metcalf et al., 1969; Metcalf and Moore, 1970; Senn et al., 

1967) and were stimulated to proliferate by various forms of conditioned media.  

Later, more specific assays identified colony-forming units-granulocytes (CFU-

G), colony-forming units-monocytes/macrophages (CFU-M), and colony forming 

units-granulocytes/macrophages (CFU-GM).  Erythroid colony cultures were first 

identified in 1971 (Stephenson et al., 1971) with subsequent refinements which 
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identified the more immature burst-forming unit-erythroid (BFU-E) and the 

immediate precursor of erythroblasts, the colony-forming unit-erythroid (CFU-E) 

(Gregory, 1976; Heath et al., 1976; Iscove and Sieber, 1975; McLeod et al., 

1974).  These colonies were determined to be clonally derived (Prchal et al., 

1976) and functionally distinct, establishing the beginnings of a hierarchal model 

in which BFU-E were an earlier, more immature progenitor, while CFU-E were 

more committed erythroid progenitors, or erythroblasts (Chui et al., 1978; Heath 

et al., 1976).  Related to the erythroid colony assays, identification of a 

megakaryocyte-restricted colony forming unit was described (Metcalf et al., 

1975a; Nakeff and Daniels-McQueen, 1976) (now termed CFU-Mk or CFU-Meg), 

and the identification of progenitors with multipotential were described (Fauser 

and Messner, 1978; Fauser and Messner, 1979; Hara and Ogawa, 1978; 

Johnson and Metcalf, 1977; McLeod et al., 1976), the most common one 

assayed today referred to as a colony-forming unit 

granulocyte/erythrocyte/macrophage/megakaryocyte (CFU-GEMM).  Culture 

systems to define the B-lymphoid and T-lymphoid lineages are significantly more 

difficult to perform, though in vitro assays have been developed and used by 

some investigators to quantitate lymphopoietic potential (Metcalf et al., 1975b; 

Metcalf et al., 1975c; Schmitt and Zuniga-Pflucker, 2002; Whitlock and Witte, 

1982).  However, while these various in vitro culture assays have been the gold 

standard in defining HPC function, they do not measure HSCs. 
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Hematopoiesis – Competitive transplantation assays: 

Initially, the CFU-S assay (Till and McCulloch, 1961) was believed to 

measure HSCs, and is still used by many investigators today as a surrogate HSC 

assay.  Other surrogate assays commonly used to imply HSC function include 

the cobblestone area-forming cells (CAFC) assay (Ploemacher et al., 1989; 

Ploemacher et al., 1991; Ploemacher et al., 1993) and the long-term culture-

initiating cell (LTC-IC) assay (Lemieux et al., 1995; Sutherland et al., 1989; 

Sutherland et al., 1990).  While these assays may certainly be indicative of a 

more immature population of cells than the aforementioned CFC and CFU 

assays, they are not definitive assays for HSC function (Harrison, 1972; 

Kretchmar and Conover, 1970).  The only true measure of HSC function is the 

ability to fully repopulate a lethally irradiated host.  By this definition, the 

“presence” of HSCs could be determined just by monitoring survival of lethally 

irradiated transplant recipients.  If the mice lived (longer than 16 weeks), with 

reconstitution of all blood lineages, then by definition, the graft must have 

contained HSCs.  However, this strict “survival” method does not allow for the 

ability to quantify HSC number or function, and limits the ability to compare HSC 

grafts.  To address this problem, various types of long-term repopulation assays, 

which assess long-term repopulating cells (LTRC), an HSC synonym, with 

comparison against a “competitor” graft were developed.  The standard 

competitive HSC repopulation assay was first described by Harrison (Harrison, 

1980) followed by description of a calculation for competing repopulating units 
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(RU) (Harrison et al., 1993) that are one measure used to enumerate HSC.  In 

this assay, a donor HSC graft is admixed with a competing bone marrow graft 

from a congenic, wild-type mouse, and the mixture is transplanted into a lethally 

irradiated recipient.  Markers distinct for the donor graft and the competitor graft 

are then used to distinguish blood production from each source of cells, allowing 

for a comparison of the repopulating ability of each.  The standard method of 

employing this technique today uses the C57Bl/6 (CD45.2) mouse and the 

B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1) mouse.  These strains of mice only 

differ at the CD45 antigen, and can be distinguished with specific monoclonal 

antibodies, allowing for assessment of chimerism in recipient animals (Shen et 

al., 1986).  A variation of this assay is the limiting-dilution competitive 

repopulation assay, in which a series of dilutions of the donor, or “test” graft, is 

compared to a standard number of competing cells (normally 2x105 whole bone 

marrow cells).  A minimum threshold of reconstitution is set (~2-5%) and the 

number of mice that do not reconstitute with the test graft is determined and the 

frequency of competitive repopulating units (CRU), or HSC, contained within the 

test graft determined by Poisson statistics (Szilvassy et al., 1989; Szilvassy et al., 

1990; Taswell, 1981).  It has recently been suggested by Drs. Purton and 

Scadden that a nomenclature distinction between RU and CRU should be made 

to describe the above transplantation assays (Purton and Scadden, 2007); 

however, to date, CRU is still commonly used in both instances. 
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Typically, competitive transplantation assays are analyzed 12-16 weeks 

post-transplant, and if multi-lineage reconstitution is seen at this time point, it is 

assumed that HSC were transplanted.  However, it is becoming increasingly 

clear that HSCs are a heterogeneous population with varying capacities for self-

renewal, and as a consequence, varying capacities for extended repopulation.  

Early studies analyzing CFU-S after serial transplantation hinted at a reduction in 

self-renewal ability following multiple transplants (Vos and Dolmans, 1972), and 

serial transplantation was used by others to assess the potential of “younger” 

HSC (Lemischka et al., 1986; Ogden and Mickliem, 1976; Rosendaal et al., 

1979).  It was found that in normal mice, the ability of HSC to self-renew is lost 

after four or five serial transplantations (Ogden and Mickliem, 1976).  Recently, 

experimental evidence indicates the presence of three classes of HSC that differ 

in the ability to self-renew and the capacity for multi-potent differentiation into all 

blood lineages: short-term HSC (ST-HSC) capable of full reconstitution for up to 

16 weeks, intermediate-term HSC (IT-HSC) capable of full reconstitution for up to 

32 weeks, and long-term HSC (LT-HSC) capable of reconstitution for longer than 

32 weeks and/or through serial transplantation (Benveniste et al., 2010).  In light 

of these various potentials for self-renewal, the most stringent test of HSC 

potential, specifically the LT-HSC, is serial transplantation from primary recipients 

into secondary recipients, or beyond. 

While the congenic mouse competitive repopulation assays are suitable 

for analysis of murine HSC, they do not allow for analysis of human HSC.  
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Instead, human hematopoietic cells have been analyzed in immunocompromised 

mice (McCune et al., 1988) and HSC analyzed in an analogous model to the 

competitive repopulation assay by transplantation into sublethally irradiated non-

obese diabetic severe combined immunodeficient (NOD/SCID) mice (Conneally 

et al., 1997; Lapidot et al., 1992).  Similar to the mouse congenic assay, 

assessment of chimerism and multi-lineage reconstitution is performed to 

evaluate human HSC function.  Recently, a variation of this strain introducing a 

knockout of the interleukin-2 (IL-2) receptor gamma chain (referred to in this 

dissertation as an NSG mouse) was developed that shows significantly 

enhanced engraftment of human HSC, allowing for a better model of human 

hematopoiesis (Ito et al., 2002).  Engraftment of human HSC in utero in fetal 

sheep has also been used successfully as a highly predictive experimental model 

of human hematopoiesis (Flake et al., 1986; Srour et al., 1993; Zanjani et al., 

1992); however, due to the considerable expense and technical considerations of 

this model compared to SCID mice, it is less widely utilized. 

Hematopoiesis – Immunophenotypic characterization of HSC and HPC: 

So far, this discussion on stem and progenitor identity has focused on 

experimental assays to determine HSC and HPC that are all direct or indirect 

measures of the functional ability of these cells; whether it is the ability to form 

macroscopic colonies on the spleen, lineage specific colonies in media, or 

repopulation of lethally irradiated recipients.  In addition to these functional 

assays, immunophenotypic analysis is commonly used to determine the number 
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or frequency of HSC and HPC, and used as a means to “sort” specific 

populations for further experimentation.  Immunophenotypic analysis utilizes 

antigen specific antibodies coupled with fluorescent labels and fluorescence-

activated cell sorting (FACS) that is able to rapidly enumerate and/or collect 

specific cell populations.  Early work on immunophenotyping hematopoietic 

populations began in the Weissman lab where they demonstrated that mature B 

cells and their immediate precursors could be defined by a specific antibody 

(Coffman and Weissman, 1981), which has lead to a set of lineage markers (Lin) 

to define mature blood cells including erythrocytes, granulocytes, macrophages, 

T-cells, B-cells, natural killer (NK) cells and megakaryocytes, and lineage 

negative cells that are enriched for earlier stem and progenitor populations 

(Muller-Sieburg et al., 1986).  Later, it was demonstrated that repopulating cells 

could be further defined by the absence of lineage markers (Linneg) with 

expression of stem cell antigen-1 (Sca-1) and low expression of Thy1.1 

(Spangrude et al., 1988).  Later, an additional marker for the stem cell factor 

(SCF) receptor (c-kit) (Ikuta and Weissman, 1992; Ogawa et al., 1991; Okada et 

al., 1992) was added to further define the murine HSC population.  Throughout 

this dissertation, these cells will be referred to as Sca-1+ c-kit+ Linneg (SKL) cells.  

While enriched for HSC function, SKL cells are still heterogeneous.  Additional 

markers have recently been identified to further enrich for HSCs, including CD34 

(Osawa et al., 1996), and fms-related tyrosine kinase-3 (Flt3) (Adolfsson et al., 

2001; Yang et al., 2005), that allow for the characterization of LT-HSC (CD34- 
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Flt3- SKL), ST-HSC (CD34+ Flt3- SKL) and multi-potent progenitors (MPPs) 

(CD34+ Flt3+ SKL) (Yang et al., 2005).  Several additional markers have now 

been identified that further refine HSC identity, including Endoglin (CD105) (Chen 

et al., 2002; Chen et al., 2003), Tie2 (CD202) (Arai et al., 2004), Endothelial 

protein C receptor (CD201) (Balazs et al., 2006), CD49b (Benveniste et al., 

2010) and notably the signaling lymphocyte activation molecule (SLAM) family of 

receptors CD150, CD48 and CD244 (Kiel et al., 2005; Yilmaz et al., 2006).  

Throughout this dissertation, CD150+ CD48- SKL, which are highly enriched for 

LT-HSC (Chen et al., 2008), will be referred to as SLAM SKL cells. 

While there exists a comprehensive list of markers to define murine HSC, 

there are relatively few immunophenotypic markers for human HSC.  The first 

marker identified for human HSC and HPC was the CD34 antigen (Andrews et 

al., 1986; Batinic et al., 1989; Civin et al., 1984; Watt et al., 1987), and cells 

enriched for CD34 were found to be able to repopulate lethally irradiated 

baboons (Berenson et al., 1988).  Although the CD34 cell population is very 

heterogeneous, it is used clinically as an assessment of hematopoietic graft 

quality/quantity (Gratama et al., 1998; Krause et al., 1996).  However, it should 

be noted that not all HSC are CD34+ (Bhatia et al., 1998; Donnelly and Krause, 

2001; Zanjani et al., 1998) and the ability of CD34- cells to give rise to CD34+ 

cells has been demonstrated (Nakamura et al., 1999; Zanjani et al., 1998).  The 

ability of transplanted CD34+ cells to give rise to CD34- cells capable of 

regenerating CD34+ cells (Dao et al., 2003) further indicates that CD34 is not an 



 

11 
 

exclusive marker of human HSC.  Analogous to the murine SKL population, 

additional markers have been identified in coordination with CD34 to further 

define human HSC.  Human bone marrow cells that were CD34+, and negative 

for histocompatibility lymphocyte antigen-DR (HLA-DR)neg were found to contain 

primitive cells capable of self-renewal and multipotential differentiation in in vitro 

systems (Brandt et al., 1988; Srour et al., 1991), although this marker may differ 

depending on which hematopoietic tissue cells are extracted from (Huang and 

Terstappen, 1994; Traycoff et al., 1994).  The most widely used purification 

marker in addition to CD34 for human HSC is the CD38 antigen, where CD34+ 

CD38- cells were shown to be more primitive than their CD38+ counterparts 

(Terstappen et al., 1991), and were later shown to have enhanced SCID 

repopulating ability (Bhatia et al., 1997) and sustained re-transplantable, human 

hematopoiesis in human/sheep chimeras (Civin et al., 1996).  Additionally, CD90 

(Thy-1) has been shown to enrich for HSC activity within the CD34+ population in 

animal models and in clinical trials (Baum et al., 1992; Murray et al., 1995; Negrin 

et al., 2000; Sutherland et al., 1996; Vose et al., 2001).  AC133 has been 

suggested as a potential HSC marker (Yin et al., 1997), and recently it was 

shown that AC133 may be a more reliable HSC marker for ex vivo expanded 

human umbilical cord blood (UCB) (Ito et al., 2010). 

Hematopoiesis – The “hematopoietic tree”: 

 While it is clear that the hematopoietic system contains single 

hematopoietic stem cells that can give rise to all lineages contained within blood, 
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the pathway of lineage restricted differentiation patterns that ultimately give rise 

to these mature cells is less clear.  Early on, differentiation patterns were based 

on microscopic observation of the morphological features of blood cells, where 

precursors for red cells, platelets, monocytes and granulocytes could be 

distinguished in terms of shape or staining properties (Kawamoto and Katsura, 

2009).  With the advent of clonogenic colony assays and immunophenotypic 

marking, considerable research has been spent isolating cells and determining 

their capacity to self-renew and/or differentiate into specific lineages.  This 

research has lead to the descriptions of lineage restricted progenitors, which 

have been placed along a differentiation hierarchy, or “hematopoietic tree” 

(Figure 1).  Some of these progenitors include the common lymphoid progenitor 

(CLP), common myeloid progenitor (CMP), granulocyte-monocyte progenitor 

(GMP), and the megakaryocyte-erythrocyte progenitor (MEP) (Akashi et al., 

2000; Kondo et al., 1997), which were shown to lack self-renewal capabilities (Na 

et al., 2002) and have been placed in “branches” of the hematopoietic tree 

(Shizuru et al., 2005).  In addition, common myelolymphoid (CMLP) and common 

myeloerythroid (CMEP) progenitors have been described, which blur the once 

commonly held line between strict myeloid and lymphoid branches in the 

hematopoietic tree.  MPPs upstream of these progenitors have also been 

identified with limited self-renewal capacity (Adolfsson et al., 2005; Christensen 

and Weissman, 2001; Morrison and Weissman, 1994), which in many cases may 

be functionally indistinguishable from ST-HSCs.  Phenotypic markers which can 
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enrich for each of these progenitor populations have been identified, and are 

thoroughly reviewed (Weissman and Shizuru, 2008).  These and other findings 

have lead to numerous models of hematopoietic trees including models that 

suggest random differentiation to various lineages (Ogawa et al., 1983); a 

sequential determination model in which MPPs progressively differentiate into 

progenitors with erythroid, myeloid, B and T cell lineage potentials (Brown et al., 

1985; Brown et al., 2007); a model based on transcription factor expression that 

indicates an early split to progenitors with erythroid potential, with development of 

myeloid and lymphoid progenitors further down the tree (Singh, 1996); a model 

which incorporates the findings of a CMLP (Adolfsson et al., 2005); and 

numerous other variations.  Studies evaluating the potential of ST-HSCs or LT-

HSCs have also found variations in lineage commitment, where a fraction of SKL 

cells was shown to preferentially differentiate into lymphoid lineages (Igarashi et 

al., 2002), and elegant single-cell transplant studies have identified balanced 

(Bala), Lymphoid-biased (Ly-bi) and Myeloid-biased (My-bi) HSCs.  While each 

of the three subsets of HSCs give rise to all blood lineages, the proportions of 

lineages produced is skewed in pre-determined patterns (Muller-Sieburg et al., 

2002; Muller-Sieburg et al., 2004; Muller-Sieburg and Sieburg, 2006a; Muller-

Sieburg and Sieburg, 2006b).  Additionally, recent work has shown heterogeneity 

within the LT-HSC pool, in which some LT-HSC are extremely dormant, but 

during times of stress can switch out of dormancy to give rise to HSC with 

increased proliferative potential (Wilson et al., 2008).   
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Figure 1
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Figure 1.  The hematopoietic tree.  

Blood cell development is a hierarchical process with self-renewal and 

maturational divisions occurring as a continuum under the direction of single or 

multiple growth factors.  Shown is a simplistic representation incorporating 

current understandings of the hematopoietic process, although clear 

discrepancies in any model with the body of literature exist.  The points of action 

of cytokines and growth factors that currently have Food and Drug Administration 

(FDA) approved pharmaceutics which mimic or antagonize the endogenous 

pathways are shown, suggesting possible clinical interventions. 
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Hematopoiesis – The hematopoietic “niche”: 

As discussed earlier, control of HSC and HPC proliferation and 

differentiation is highly complex, and homeostatic balance is likely maintained by 

both intrinsic and genetic cues within individual cells and extrinsic cues from the 

supportive microenvironment in which HSCs reside.  It was first postulated in 

1978 that HSCs reside in very defined and limited microenvironments, or “niches” 

(Schofield, 1978), and signals within these niches direct HSC maintenance.  In 

mammals, the primary HSC niche is contained within the bone marrow, which is 

compromised of stromal cells and an extracellular matrix of collagens, 

fibronectin, and proteoglycans (Yoder and Williams, 1995).  Recent studies have 

shown that osteoblasts within the endosteal bone marrow niche are a significant 

regulatory component of hematopoiesis (Arai et al., 2004; Calvi et al., 2003; 

Visnjic et al., 2004; Zhang et al., 2003).  Activation of the parathyroid hormone 

(PTH) receptor in osteoblasts expands HSC by ~4-fold (Taichman et al., 2000; 

Taichman and Emerson, 1994), and co-transplantation of osteoblasts with HSC 

increases engraftment (El Badri et al., 1998).  The effect of osteoblasts on HSC 

expansion may be mediated by the Notch ligand Jagged1.  Notch signaling 

regulates cell fate decisions including HSC self-renewal (Karanu et al., 2000; 

Stier et al., 2002; Varnum-Finney et al., 2003), thus by changing self-renewal 

versus differentiation decisions, Notch can increase HSC number without 

differentiation or increase in HPC or mature cells (Karanu et al., 2000; Stier et al., 

2002).  Studies monitoring trafficking of labeled HSCs transplanted into recipients 
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have also indicated that HSCs reside within the endosteal niche (Lo et al., 2009; 

Nilsson et al., 2001; Xie et al., 2009), further validating earlier findings (Gong, 

1978; Lord et al., 1975). 

Within the niche, HSCs are thought to be “tethered” to osteoblasts, other 

stromal cells, and the extracellular matrix through a variety of adhesion molecule 

interactions, many of which are likely redundant systems.  Early studies exploring 

the role of osteoblasts in maintaining HSCs suggested that N-cadherin 

interactions mediated the positive effects on HSCs (Zhang et al., 2003), however 

more recent studies have contradicted these findings (Kiel et al., 2007; Kiel et al., 

2009).  Numerous other adhesion molecules have been implicated as 

contributing to HSC and HPC tethering, including, but not limited to, the integrins 

α4β1 – very late antigen-4 (VLA-4) (Levesque et al., 1995; Levesque et al., 2001; 

Papayannopoulou et al., 2001; Peled et al., 2000; Vermeulen et al., 1998; 

Zanjani et al., 1999), α5β1 – very late antigen-5 (VLA-5) (Levesque et al., 1995; 

Peled et al., 2000; van der Loo et al., 1998; Vermeulen et al., 1998), α4β7 – 

lymphocyte Peyer’s patch adhesion molecule-1 (LPAM-1) (Katayama et al., 

2004), the alpha 6 integrins (Laminins) (Qian et al., 2006; Qian et al., 2007), 

CD44 (Schmits et al., 1997; Vermeulen et al., 1998), E-selectins (Frenette et al., 

1998; Katayama et al., 2003; Sackstein, 2004), the angiopoietin receptor tyrosine 

kinase with immunoglobulin-like and EGF-like domains-2 (Tie-2) (Arai et al., 

2004), osteopontin (OPN) (Grassinger et al., 2009; Nilsson et al., 2005), endolyn 
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(CD164) (Forde et al., 2007), and the calcium-sensing receptor (CaR) (Adams et 

al., 2006). 

The most explored niche interaction, and perhaps the most important in 

regulating HSC and HPC trafficking to and from the marrow niche, is the 

interaction between the CXC chemokine receptor 4 (CXCR4) and its ligand 

stromal cell-derived factor-1α (SDF-1α).  SDF-1α is produced by osteoblasts 

(Ponomaryov et al., 2000), a specialized set of reticular cells found in endosteal 

and vascular niches (Sugiyama et al., 2006), and SDF-1α has also been found 

on endothelial cells and within bone itself (Katayama et al., 2006; Sipkins et al., 

2005).  HSC and HPC express CXCR4 and are chemo-attracted to and retained 

within the bone marrow by SDF-1α (Aiuti et al., 1997; Jo et al., 2000; Kim and 

Broxmeyer, 1998).  In addition to its chemoattraction and retention effects, 

CXCR4 signaling has been shown to have positive effects on HSC and HPC 

survival and proliferation (Broxmeyer et al., 2003; Broxmeyer et al., 2005a; 

Broxmeyer et al., 2007a; Lataillade et al., 2000; Lee et al., 2002).  Mice with a 

functional knock-out of either SDF-1α or CXCR4 die before birth due to bone 

marrow failure (Nagasawa et al., 1996; Zou et al., 1998). 

While it is clear that HSCs reside and thrive within the endosteal bone 

marrow niche, evidence suggests that this niche is not the exclusive niche for 

hematopoiesis.  Studies assessing the localization of SLAM cells within the bone 

marrow have shown a greater proportion of SLAM cells adjacent to the 

endothelium of bone marrow sinusoidal blood vessels, suggesting a “vascular 
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niche” for HSC (Kiel et al., 2005; Kiel et al., 2007).  This is supported by the fact 

that endothelial cells, similar to osteoblasts, can support hematopoiesis both in 

vitro and in vivo (Li et al., 2004; Ohneda et al., 1998; Yao et al., 2005).  While it is 

not completely clear what factors influence the particular niche location of HSCs, 

the fact that reticular cells with high production of SDF-1α are present in both the 

endosteal and vascular niches, may provide a common mechanism of HSC 

support in both niches (Kiel and Morrison, 2008; Sugiyama et al., 2006).     

Hematopoietic Trafficking – Homing and mobilization: 

 Hematopoietic stem cell transplantation is routinely used to treat 

leukemias, cancer, hematologic diseases and metabolic disorders (Kondo et al., 

2003).  Sources of HSC for transplant include bone marrow (Goldman and 

Horowitz, 2002), mobilized peripheral blood (Fruehauf and Seggewiss, 2003; 

Papayannopoulou, 2004; Ringden et al., 2000) and umbilical cord blood (Benito 

et al., 2004; Broxmeyer et al., 1991; Broxmeyer, 2005; Broxmeyer et al., 2006; 

Broxmeyer and Cooper, 1997; Gluckman et al., 1989).  Hematopoietic 

reconstitution is a multi-step process, but with some sources of HSCs, efficacy is 

limited by inadequate HSC number, inability to migrate/home to marrow niches, 

and poor engrafting efficiency and self-renewal (Broxmeyer, 2006; Hall et al., 

2006; Porecha et al., 2006).  As discussed earlier, an appropriate bone marrow 

niche is required for HSC to self-renew and differentiate and only HSC homing to 

this bone marrow niche are able to repopulate a lethally irradiated recipient long-

term (Lanzkron et al., 1999; Nibley and Spangrude, 1998).  Homing, in the 
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context of this dissertation, is a description of the ability of HSC and HPC to 

traffic from the peripheral blood, where they were injected intravenously, to the 

bone marrow niche, where they can then successfully repopulate the host.  

Homing is a rapid process, which is measured in hours (or at most 1-2 days) 

(Lapidot et al., 2005), and should be separated from the concept of 

“engraftment”, which is more a description of the culmination of events pre- and 

post-homing of HSC.  While it is necessary for HSC to home to the bone marrow 

in order to repopulate a lethally irradiated recipient, there is considerable debate 

as to whether HSC specifically home to the marrow (Benveniste et al., 2003; 

Kollet et al., 2001; Matsuzaki et al., 2004), or whether HSC simply randomly seed 

organs in the body (Cui et al., 1999; van Hennik et al., 1999).  Our data, 

presented in Chapter 2 and recently published (Hoggatt et al., 2009), clearly 

indicate the ability to specifically enhance the homing of SKL cells, without 

alterations in total bone marrow cell homing, which suggests HSCs have some 

ability to selectively home to the bone marrow compared to their non-HSC 

counterparts.  Homing of HSC to bone marrow is regulated by many of the same 

processes previously described that regulate HSC tethering in the bone marrow 

niche.  Adhesion molecules aid in trafficking, leukocyte rolling, transendothelial 

migration, and ultimate tethering in the marrow, and many of them are essential 

for proper homing of HSC (Katayama et al., 2004; Kollet et al., 2001; Matsuzaki 

et al., 2004; Peled et al., 2000; Qian et al., 2006; Qian et al., 2007; van der Loo 

et al., 1998).  Similarly, the CXCR4 and SDF-1α axis is a critical component of 



 

21 
 

HSC homing to the bone marrow (Peled et al., 1999), and increases in CXCR4 

receptor expression on HSC either with growth factors (Kollet et al., 2001), or by 

gene overexpression (Brenner et al., 2004; Kahn et al., 2004) significantly 

increases homing and engraftment.  Further discussion on hematopoietic homing 

will follow in Chapter 2. 

 Under steady state conditions, HSC and HPC normally reside within the 

bone marrow niches, while the mature cells produced by these populations 

ultimately exit the marrow and enter the peripheral blood.  However, considerable 

evidence over the last several decades clearly demonstrates that HSC and HPC 

also exit the bone marrow niche and traffic to the peripheral blood (Abkowitz et 

al., 2003; Chervenick and Boggs, 1971; Goodman and Hodgson, 1962; 

Massberg et al., 2007; McKinney-Freeman and Goodell, 2004; Wright et al., 

2001), and this steady state trafficking leaves open niche spaces that can be 

repopulated by transplanted HSC (Bhattacharya et al., 2009).  Based on 

observations that increased HPC were found in patients after chemotherapy 

(Kurnick and Robison, 1971; McCredie et al., 1971), we now know that this 

natural egress of HSC and HPC into the periphery can be enhanced, allowing for 

“mobilization” of these cells from the bone marrow to the peripheral blood 

(Abkowitz et al., 2003; Wright et al., 2001).  Mobilized adult HSC and HPC are 

widely used for autologous and allogeneic transplantation and have improved 

patient outcomes when compared to bone marrow.  Mobilization can be achieved 

through administration of chemotherapy (Kessinger and Armitage, 1991; Kurnick 
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and Robison, 1971; McCredie et al., 1971), or hematopoietic growth factors, 

chemokines, or small molecule inhibitors or antibodies against the 

aforementioned niche chemokine receptors and integrins (Fruehauf and 

Seggewiss, 2003; Papayannopoulou, 2004; To et al., 1997).   

The hematopoietic growth factor, granulocyte-colony stimulating factor (G-

CSF) is widely used clinically to mobilize HSC and HPC for transplantation.  G-

CSF is a glycoprotein that binds to a type 1 cytokine receptor (G-CSFR) to 

stimulate proliferation (Duhrsen et al., 1988; Welte et al., 1987) and 

differentiation (Souza et al., 1986).  G-CSF can also support proliferation of other 

types of progenitor cells in combination with other growth factors (Ikebuchi et al., 

1988a; Ikebuchi et al., 1988b; Metcalf and Nicola, 1983).  G-CSF-mobilized HSC 

and HPC are associated with more rapid engraftment, shorter hospital stay 

(Jansen et al., 1999; Kennedy et al., 1993; McQuaker et al., 1997; Nemunaitis et 

al., 1995), and in some circumstances, superior overall survival compared to 

bone marrow (Stem Cell Trialists’ Group, 2005).  Normal administration of G-CSF 

for mobilization of HSC and HPC is 5-7 days to patients and normal donors; 

however, this administration is often associated with morbidity in the form of bone 

pain, nausea, headache and fatigue (Anderlini et al., 1998; Anderlini et al., 2001; 

Fortanier et al., 2002; Rowley et al., 2001), which can be lifestyle disruptive in 

normal volunteers.  G-CSF has also been associated with serious toxicity, 

including enlargement of the spleen (Platzbecker et al., 2001; Stroncek et al., 

2003) and splenic rupture (Balaguer et al., 2004; Becker et al., 1997; Falzetti et 
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al., 1999; Kroger et al., 2002) in normal donors, and the pro-coagulant effects of 

G-CSF can increase the risk of myocardial infarction and cerebral ischemia in 

high-risk individuals (Hill et al., 2005; Lindemann and Rumberger, 1993).  

Despite its dramatic effect on the field of hematopoietic transplantation, poor 

mobilization in response to G-CSF occurs in 25% of patients, particularly those 

with lymphoma and multiple myeloma (Stiff et al., 2000) and 15% of normal 

donors (Anderlini et al., 1997), requiring extended aphereses (Schmitz et al., 

1995).  In addition, the incidence of chronic graft-versus-host disease (GVHD) is 

higher (Couban et al., 2002; Cutler et al., 2001; Mohty et al., 2002) for G-CSF-

mobilized HSC and HPC when compared to grafts obtained from bone marrow.   

Although G-CSF is the predominate mobilizer used clinically, other 

mobilizers with apparent different mechanisms of action have been described, 

including chemokine agonists of the CXCR2 receptor (Fukuda et al., 2007; King 

et al., 2001; Pelus et al., 2004; Pelus et al., 2006a; Pelus and Singh, 2008), small 

molecule or antibody inhibitors of the VLA-4 and vascular cell adhesion 

molecule-1 (VCAM-1) interaction (Ramirez et al., 2009; Zohren et al., 2008), 

sulfated glycans (fucoidan) which inhibit adhesion through selectins and increase 

plasma SDF-1α (Frenette and Weiss, 2000; Sweeney et al., 2002), and 

antagonism of the CXCR4 receptor (Broxmeyer et al., 2005b; Broxmeyer et al., 

2007b; Devine et al., 2008; Liles et al., 2003; Liles et al., 2005; Pelus et al., 

2005), to name a few.  Many of these compounds work in synergy with G-CSF to 

increase mobilization of HSC and HPC (Kikuta et al., 2000; Liles et al., 2005; 
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Pelus et al., 2006a; Pelus et al., 2006b; Velders et al., 2002).  In fact, the CXCR4 

antagonist AMD3100 (Mozobil™) received FDA approval in December 2008 and 

is indicated for mobilization of HSC and HPC in combination with G-CSF for 

patients with non-Hodgkin’s lymphoma and multiple myeloma.  Despite the 

success of G-CSF and AMD3100, there is considerable room for improvement in 

mobilization of HSC and HPC, not only to increase hematopoietic yield, but also 

to reduce/avoid the known toxicities of G-CSF.  Novel mobilization strategies are 

of clinical interest and highly significant, and are a focus of Chapter 3. 

Eicosanoid Biosynthesis:   

 The focus of this dissertation is on the ability of eicosanoids to regulate 

hematopoiesis, and to alter eicosanoid signaling for therapeutic utility.  

Eicosanoids include the prostaglandins (PGs) along with prostacyclins, 

thromboxanes, leukotrienes and endocannabinoids, which are formed by 

oxidation of 20-carbon essential fatty acids released from phospholipids. 

Eicosanoids affect every organ, tissue, and cell in the body (Funk, 2001). These 

signaling molecules are all derived from the oxidation of 20-carbon essential fatty 

acids; hence their name, from the Greek Eikosi meaning 20.  The notion that fatty 

acids could act as physiological regulators originates with the work of Burr, G. 

and Burr, M. in which they described a wide array of physiological effects in rats 

whose diet was completely devoid of fats (Burr and Burr, 1930).  Their 

observations lead to the concept of “essential fatty acids” and paved the way for 

lipid research.  At around the same time, work by Kurzrock and Lieb reported that 
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human semen caused contraction of myometrium in vitro (Kurzrock and Lieb, 

1930).  These findings were later supported by independent observations from 

Goldblatt (Goldblatt, 1935) and Von Euler (Von Euler, 1936) and Von Euler called 

the active substance “prostaglandin” with the belief that it was formed by the 

prostate gland.  Over the course of the next 30 years, pioneering work by 

Bergstrom, Samuelsson, Moncada and Vane led to further understanding of 

prostaglandin biosynthesis and tissue origins  (Flower, 2006; Miller, 2006), and 

the structure of prostaglandin E and its derivation from the previously described 

essential fatty acids was determined (Bergstrom, 1967). 

Prostaglandin E2 (PGE2) is the most abundant eicosanoid (Murakami and 

Kudo, 2006; Serhan and Levy, 2003) and a known mediator of cancer (Hull et al., 

2004; Murakami and Kudo, 2006), fever (Ivanov and Romanovsky, 2004; 

Lazarus, 2006), inflammation (Murakami and Kudo, 2006; Samuelsson et al., 

2007), atherosclerosis, blood pressure and strokes (Samuelsson et al., 2007), 

ovulation (Davis et al., 1999) and numerous other physiological systems (Miller, 

2006).  Prostaglandins are synthesized in 3 steps (Figure 2): cleavage of 

arachidonic acid from phospholipids by phospholipase A2; oxidation by 

cycloxygenase enzymes (COX1 and COX2) forming the unstable intermediate 

PGG2, followed by reduction to form PGH2; and isomerization to mature PGs by 

specific synthases (Ivanov and Romanovsky, 2004; Miller, 2006; Murakami and 

Kudo, 2004; Park et al., 2006; Smith et al., 1991).  All nucleated cells synthesize 

PGs (Miller, 2006).  There are three main classes of phospholipase A2 (PLA2): 
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secreted PLA2, intracellular group VI calcium-independent PLA2, and group IV 

cytosolic PLA2 (cPLA2) (Park et al., 2006).  Although each of these PLA2 

enzymes are able to release arachidonic acid from membrane phospholipids, 

cPLA2 is the predominate phospholipase responsible for induced eicosanoid 

production (Funk, 2006; Leslie, 2004; Murakami and Kudo, 2004).  Mice deficient 

in cPLA2 demonstrate marked reduction in PGE2 (Uozumi and Shimizu, 2002) 

and subsequent reduction in airway reactivity (Uozumi et al., 1997), decreased 

platelet aggregation (Wong et al., 2002), and notably a reduction in collagen-

induced arthritis (Hegen et al., 2003).  Inactive cPLA2 is present in the cytosol of 

resting cells (Ivanov and Romanovsky, 2004) and upon stimulation by 

inflammatory agents, growth receptors, increased intracellular calcium and other 

stimulatory signals, cPLA2 is translocated to the Golgi complex, endoplasmic 

reticulum, and nuclear envelope where it is activated (Clark et al., 1995; Evans et 

al., 2001; Ivanov and Romanovsky, 2004).  In addition, cPLA2 has also been 

shown to be up-regulated by mitogen-activated protein kinases (MAPK) (Clark et 

al., 1995; Park et al., 2006) and transcriptional upregulation of cPLA2 in 

macrophages stimulated by lipopolysaccharides (LPS) was reported (Dieter et 

al., 2002).  Since activation of cPLA2 determines the amount of free arachidonic 

acid available, cPLA2 is the principle regulator of eicosanoid production (Leslie, 

2004).  Corticosteroids, which are known anti-inflammatory drugs, were once 

thought to act by physically incorporating into cellular membranes making 

arachidonic acid less available to cPLA2, however, corticosteroids may also act to 
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directly inhibit cPLA2 via induction of an inhibitory protein, lipocortin (Flower, 

1990). 

Once arachidonic acid is freed by cPLA2 it is then available to 

cyclooxygenase, lipoxygenase (LOX), or other enzymes for metabolism.  

Cyclooxygenase is a heme-containing enzyme that is responsible for two 

enzymatic steps in arachidonic acid metabolism: (1) a dioxygenase step which 

causes the cyclization of arachidonic acid by adding a 15-hydroperoxy group to 

form the PGG2 intermediate, and (2) a hydroperoxidase step which reduces the 

15-hydroperoxy group of PGG2 to form the intermediate PGH2 (Ivanov and 

Romanovsky, 2004; Miller, 2006; Murakami and Kudo, 2004; Park et al., 2006; 

Sigal, 1991).  COX1 is constitutively expressed and responsible for basal 

function, while COX2 is induced by inflammatory mediators and cytokines (Funk, 

2006; Miller, 2006; Murakami and Kudo, 2004; Park et al., 2006).  Differences in 

the function of the 2 COX enzymes result in differences in kinetics, intracellular 

localization, (Goetzl et al., 1995; Ivanov and Romanovsky, 2004) and coupling to 

PG synthases (Ivanov and Romanovsky, 2004).  Highly selective COX1 (SC-

560), COX2 (celecoxib (Celebrex ®), SC-236) and dual (indomethacin 

(Indocin®)) targeted drugs have been developed (Coruzzi et al., 2007; Mitchell 

and Warner, 2006; Strand, 2007).  The parent compounds are readily available 

and an extensive literature validates their in vitro and in vivo utility.  Specific PG 

synthases convert PGH2 into thromboxanes, prostacyclins (PGI2), or D, E, or F 

series PGs (Dupuis et al., 1997; Folco and Murphy, 2006; Funk, 2001; Goetzl et 
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al., 1995; Park et al., 2006; Urade et al., 1995).  The mechanisms that control 

specific PG formation are not entirely clear (Park et al., 2006); however, 

regulation is cell type specific (Funk, 2001; Helliwell et al., 2004).  In the case of 

PGE2, PGH2 is isomerized by inducible membrane PGE synthase-1 (mPGES-1) 

regulated downstream of MAPK, although other signaling pathways can be 

involved (Murakami and Kudo, 2006; Park et al., 2006; Samuelsson et al., 2007).  

Based on chemical/metabolic instability, PGE2 is thought to act locally in 

autocrine or paracrine fashion (Tsuboi et al., 2002).  Osteoblasts are a major 

source of PGE2 (Chen et al., 1997; Miyaura et al., 2003; Raisz et al., 1979) and 

due to their physical proximity to HSC in the niche, could likely be a source of 

PGE2 involved in paracrine signaling. 

The leukotrienes are biosynthesized in two steps by oxygenation of 

arachidonic acid via the 5’-LOX pathway and conversion to the unstable 

intermediate leukotriene (LT) A4 (LTA4), that is enzymatically hydrolyzed to 

LTB4 or conjugated to glutathione forming the cysteinyl leukotriene LTC4; that is 

subsequently converted to LTD4 and LTE4 (Figure 2).  Leukotriene formation 

occurs predominantly in inflammatory cells, including granulocytes, mast cells 

and macrophages (Dupuis et al., 1997; Folco and Murphy, 2006; Funk, 2001; 

Goetzl et al., 1995), however 12’-LOX in platelets can convert LTA4 produced by 

granulocytes to LTB4 and lipoxins (Serhan and Sheppard, 1990).  LTB4 is 

produced at sites of inflammation and stimulates inflammatory leukocyte function 
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(Kim and Luster, 2007; Kondo et al., 2003).  Like PGs, the leukotrienes have a 

short half-life and therefore are primarily involved in localized signaling. 

The two main endocannabinoids, anandamide and 2-arachidonoyl glycerol 

(2-AG), are derivatives of arachidonic acid and are synthesized on demand 

(Ligresti et al., 2005; Malcher-Lopes et al., 2008; Okamoto et al., 2007).  

However, since they are structurally similar to arachidonic acid, they are also 

substrates for COX enzymes (Kozak et al., 2002; Weber et al., 2004; Yu et al., 

1997), resulting in alternative PGs, with similar and novel effects (Kozak et al., 

2001; Kozak et al., 2002), which can be metabolized into traditional forms via 

esterases or by dehydration (Kozak et al., 2001).  Endocannabinoids can also be 

metabolized back to arachidonic acid via fatty acid amide hydrolase (FAAH) 

(Burstein et al., 2000; Ueda and Yamamoto, 2000) (Figure 2).  Recycling of 

endogenous endocannabinoids for new endocannabinoid biosynthesis can also 

occur (Placzek et al., 2008).  Cannabinoids can stimulate the production of PGs 

(Mitchell et al., 2008), and likewise, PGE2 can stimulate synthesis of 2-AG 

intermediates (Konger et al., 2005).  In summary, it is clear that eicosanoid 

biosynthesis is interactive and changes in synthesis or signaling can alter overall 

eicosanoid balance and produce eicosanoids with similar or opposing functions. 
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Figure 2 
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Figure 2.  Schematic of eicosanoid biosynthesis.   

A stimulus via a G-protein coupled receptor (GPCR) activates c-phospholipase 

A2 to release arachidonic acid (AA).  Cyclooxygenase (COX) enzymes, which 

can be inhibited by non-steroidal anti-inflammatory drugs (NSAIDs), convert AA 

into prostaglandins.  Similarly, 5’-lipoxygenase (5’-LOX) converts AA into the 

intermediate 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and then into the 

various leukotrienes.  Endocannabinoid (2-arachidonoyl glycercol) is synthesized 

from FAAH, monoacylglycerol lipase (MAGL) or possibly indirectly by 

diacylglycerol lipase (DAGL), and its metabolism is intricately linked to overall 

eicosanoid synthesis, and can be converted into alternate prostaglandin forms. 
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Eicosanoid Receptors and Signaling: 

Once synthesized, PGE2 is able to passively leave the cell or can be 

actively transported.  However, due to its chemical and metabolic instability, 

PGE2 is thought to act locally in an autocrine or paracrine fashion (Tsuboi et al., 

2002).  PGE2 interacts with 4 conserved G-protein coupled receptors (GPCR); 

EP1, EP2, EP3, and EP4 (Breyer et al., 2001; Hull et al., 2004; Sugimoto and 

Narumiya, 2007; Tsuboi et al., 2002) that account for the multiple, sometimes 

opposing effects attributed to PGE2 (Breyer et al., 2001) (Figure 3).  EP receptor 

levels vary among tissues, with EP3 and EP4 mRNA being most abundant 

(Sugimoto and Narumiya, 2007) and EP2 mRNA expressed at lower levels than 

EP4 in most tissues (Katsuyama et al., 1995).  EP1 activates phospholipase C 

(PLC) via an unidentified G protein (Tsuboi et al., 2002), increasing intracellular 

Ca2+ coupled to inositol phosphates resulting in activation of protein kinase C 

(PKC) (Breyer et al., 2001; Tsuboi et al., 2002).  EP3 activation results in Gαi-

linked inhibition of adenylate cyclase and decreased cyclic adenosine 

monophosphate (cAMP) (Lazarus, 2006; Sugimoto and Narumiya, 2007).  

Multiple EP3 splice variants have been identified that can couple to multiple G 

proteins (Namba et al., 1993).  EP2 and EP4 both activate adenylate cyclase and 

increase cAMP through GαS, activating protein kinase A (PKA) (Breyer et al., 

2001; Hull et al., 2004; Sugimoto and Narumiya, 2007; Tsuboi et al., 2002), as 

well as Rap1, Rac1, and PKCζ (PKC zeta), a unique isoform implicated in HSC 

function (Goichberg et al., 2006).  EP2 and EP4 have partially redundant roles in 
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some systems, but distinct roles in others (Sugimoto and Narumiya, 2007).  EP4, 

but not EP2, can activate the phosphoinositide 3-kinase (PI3K) Akt pathway 

(Fujino et al., 2003; Regan, 2003).  EP4 has a longer cytosolic domain allowing 

for more ligand dependent phosphorylation and more rapid desensitization 

(Nishigaki et al., 1996), enabling a selective negative feedback loop (Sugimoto 

and Narumiya, 2007).  Lastly, EP4 is internalized when activated, while EP2 is 

not (Desai et al., 2000).  As a consequence, EP2 and EP4 can have different 

roles based upon continuation or attenuation of signals generated by receptor 

activation (Breyer et al., 2001).  PGE2 often exhibits a “bell-shaped” dose-

response curve suggesting a different repertoire of EP receptors is activated 

dependent upon PGE2 concentration (Hull et al., 2004).  EP2 and EP4 activation 

is also associated with phosphorylation of glycogen synthase kinase-3 (GSK-3).  

EP2 inhibits GSK-3 via PKA, whereas EP4 can also inhibit GSK-3 through PI3K 

(Hull et al., 2004; Regan, 2003).  Inhibition of GSK-3 decreases β-catenin 

phosphorylation, allowing nuclear entry and effects on gene transcription 

(Cadigan and Nusse, 1997; Khan and Bendall, 2006).  Interestingly, β-catenin is 

downstream of the wingless and INT (Wnt) pathway implicated in HSC survival 

and self-renewal (Khan and Bendall, 2006).  PGE2 through EP4 can increase β-

catenin and studies suggest that COX2 and Wnt pathways exhibit synergistic 

cross-talk (Wang et al., 2004).  Inhibition of GSK-3 and activation of extracellular 

signal-regulated kinase 1/2 (ERK1/2) by the EP4/PI3K pathway can also 

upregulate COX2 and mPGES-1 that enforce PGE2 synthesis (Regan, 2003),   
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Figure 3 
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Figure 3.  Schematic representation of EP receptor signaling.   

PGE2 signals through four different G-protein coupled receptors, EP1, EP2, EP3, 

and EP4.  Signaling through the EP1 receptor is associated with activation of 

PLC and an intracellular calcium release.  Signaling through the EP3 receptor is 

coupled with Gαi and inhibits production of cAMP.  Signaling through the EP2 

receptor is coupled with Gαs and increases cAMP production.  Signaling through 

the EP4 receptor can also increase cAMP, but is additionally associated with 

PI3K signaling.  Shown are a few representative downstream signaling pathways 

and activated transcription factors associated with PGE2 signaling.   
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suggesting that EP4 may increase autocrine production of PGE2.  It is clear that 

PGE2 mediated effects on gene regulation and cellular responses result from the 

summation of signals and transcription factors generated downstream of the EP 

receptors, which depends on cell receptor repertoire, G-protein linkage, length of 

exposure to PGE2 and signaling pathways selectively utilized by the cell.  

The two main classes of leukotrienes, LTB4, and the cysteinyl 

leukotrienes LTC4, LTD4 and LTE4, interact with specific and independent 

GPCRs.  LTB4 interacts with its receptors BLT1 and BLT2, while the cysteinyl 

leukotrienes interact with the CysLT1 and CysLT2 receptors (Izumi et al., 2002). 

Two cannabinoid receptors, CB1 expressed primarily in the central nervous 

system (CNS) and the peripheral CB2 receptor have been identified (Croxford 

and Yamamura, 2005; Klein et al., 2003; Pertwee, 2006).  The CB receptors, like 

the EP and leukotriene receptors, are highly conserved GPCRs.  The signaling 

pathways downstream of the BLT, CysLT (Izumi et al., 2002; Massoumi and 

Sjolander, 2007; Thompson et al., 2008; Yokomizo et al., 2001) and CB (Hillard, 

2000; Howlett, 2002; McAllister and Glass, 2002) receptors have been 

extensively explored in the context of inflammation, and specific downstream 

signaling is inherently dependent on cell type and G-protein linkage (Figure 4). 

Common features of signaling through the leukotriene receptors are activation of 

downstream pathways through Ca2+ mobilization and activation of PLC, and 

reduction in cAMP, which is opposite to that of PGE2 signaling through EP2 and 
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EP4 receptors.  In some ectopic expression systems, signaling through PKC, 

PI3K and/or MAPK have also been demonstrated. 
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Figure 4 
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Figure 4.  Schematic representation of leukotriene and endocannibinoid 

signaling.   

The cysteinyl leukotrienes, LTC4, LTD4, and LTE4 activate signaling through the 

CysLT1 and CysLT2 receptors.  The leukotriene LTB4 activates signaling through 

the BLT1 and BLT2 receptors.  Cannabinoid signaling occurs through the CB1 and 

CB2 receptors.  A simplified conglomerate representation of the downstream 

signaling events and activated transcription factors from these eicosanoid 

receptors is shown. 
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Prostaglandins and Hematopoiesis – Stimulatory and inhibitory functions:  

 Studies in the 1970s to 1990s documented regulatory roles for PGE2 in 

hematopoiesis.  Extensive work from the Pelus laboratory and others 

demonstrated a dose-dependent inhibition of the growth of human and mouse 

CFU-GM by PGE in vitro (Aglietta et al., 1980; Pelus et al., 1979; Pelus et al., 

1980; Pelus et al., 1981; Taetle et al., 1980; Taetle and Koessler, 1980).  Studies 

by Kurland, Pelus and colleagues also showed that PGE acted as a negative 

regulator of myeloid expansion to counterbalance positive signaling from the 

colony-stimulating factors (CSFs) in order to maintain appropriate HPC 

proliferation (Kurland et al., 1978; Kurland et al., 1979).  PGE2 was most 

selective for CFU-M and CFU-GM and was produced by macrophages in 

response to macrophage colony-stimulating factor (M-CSF) and GM-CSF, 

forming a selective feedback inhibition loop (Pelus et al., 1979).  The role of 

PGE2 in hematopoiesis and negative feedback regulation on myelopoiesis was 

documented by studies in mice differing in PGE synthetic capacity (Kincade et 

al., 1979; Kurland et al., 1979); demonstration of abnormal PGE2 responses in 

leukemia patients (Aglietta et al., 1980; Moore et al., 1981; Pelus et al., 1980; 

Pelus et al., 1983; Taetle and Koessler, 1980); prognostic association of 

disordered PGE2 response in MDS patients (Gold et al., 1983); abnormal HPC 

response in patients cured of germ cell tumors but progressing to acute leukemia 

(Leitner et al., 1987); and association of HPC response to PGE2 with clinical 

response to Interferon-γ in chronic myelogenous leukemia (CML), chronic 
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lymphocytic leukemia (CLL), and Hodgkin's disease patients (Pelus and Vadhan-

Raj, 1988; Vadhan-Raj et al., 1986).  The effects of PGE2 on myeloid HPC were 

considered to be direct, mimicked by dibutyryl-cAMP (db-cAMP) and blocked by 

agents preventing cAMP formation (Pelus, 1982).  However, the Pelus lab later 

showed that PGE2 could induce myeloid suppressor cells, particularly when 

administered in vivo (Gentile and Pelus, 1988; Pelus, 1989a; Pelus and Gentile, 

1988), that had the phenotype F4/80+, Gr-1+, Mac-1+, consistent with myeloid-

derived suppressor cells identified more recently (Luczynski et al., 2008; 

Parmiani et al., 2007).   

 Not all early studies demonstrated an inhibitory effect of PGE2.  Studies by 

Fehrer and Gidali in 1974 showed that short-term PGE2 treatment of murine 

marrow cells in vitro increased day 9 CFU-S in cell cycle that was cAMP 

independent (Feher and Gidali, 1974).  An increase in CFU-GM in S-phase was 

also seen after PGE2 pulse exposure of human marrow (Verma et al., 1981).  

However, early studies evaluating in vivo dosing of PGE2 in mice led to little or no 

increase in hematopoiesis (Gidali and Feher, 1977).  In 1982, the Pelus lab 

showed that short-term exposure of human or mouse bone marrow to PGE2 

stimulated the production of cycling CFU-GM from a population of quiescent, 

non-cycling cells, probably stem cells that were dependent on time course and 

concentration of PGE2 (Pelus, 1982) and were cAMP independent (Pelus, 1984).  

The Pelus lab also showed that the kinetics of PGE2 exposure were critical for 

stimulatory versus inhibitory effects on HPC frequency and cell cycle (Pelus, 
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1984).  In additional studies, it was shown that PGE2 increased BFU-E and CFU-

GEMM, which could be direct (Nocka et al., 1989) or mediated through factors 

released by T cells (Lu et al., 1986; Lu et al., 1987; Nocka et al., 1989).  

Recently, in vitro pulse exposure to PGE2 was shown to increase the 

repopulating capacity of murine bone marrow cells and increase zebrafish kidney 

marrow recovery; however, mechanisms for increased engraftment and recovery 

were not determined (North et al., 2007).  

The Pelus lab and others demonstrated that repetitive in vivo PGE2 

administration inhibits CFU-GM frequency and cell cycle rate, and decreases 

marrow and spleen cellularity (Gentile et al., 1983; Gentile and Pelus, 1987; 

Gentile and Pelus, 1988; Pelus and Gentile, 1988).  These effects are both direct 

and mediated through accessory cells (Gentile and Pelus, 1988).  Overall, 

previous work by our lab and others clearly demonstrate the importance of PGE2 

concentration, time course, and culture conditions in order to produce 

physiological effects.  However, clonogenic HPC do not measure HSC function 

and we cannot rule out that effects observed on inhibition of HPC are in fact the 

result of PGE2 signaling blocking differentiation and/or driving HSC towards self-

renewal.  In the transplant setting, particularly with cells manipulated in vitro, it is 

critical to define the roles of PGE2 and other eicosanoids within the host bone 

marrow in order to determine whether modulation of PGE2 or eicosanoid 

synthesis or action could further facilitate or potentially damage HSC 

engraftment.  In Chapter 2, we present data that indicate treatment with PGE2 
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results in a self-renewal division of HSC, and in Chapter 3, that blockade of PGE2 

synthesis with an NSAID or PGE2 signaling with specific receptor antagonists can 

increase marrow and peripheral blood HPC. 

The Plot Thickens – Leukotrienes and endocannabinoids: 

Blockade of LTB4 signaling pathways induces apoptosis and suppresses 

proliferation in neutrophils (Murray et al., 2003) and cancer cells (Ihara et al., 

2007).  The cysteinyl leukotrienes are important mediators in the pathophysiology 

of allergic conditions, particularly asthma (Braccioni et al., 2002; Kim and Luster, 

2007).  Three cysteinyl leukotriene receptor antagonists (pranlukast (Ultair™), 

montelukast (Singulair™), zafirlukasr (Accolate™)) are FDA approved for use in 

asthma patients.  Likewise, BLT1 signaling can be blocked by a number of 

selective antagonists including U75302 and CP105696, and BLT2 signaling is 

selectively antagonized by LY255283 (Kim and Luster, 2007).  LTB4 and 

cysteinyl leukotrienes are produced in the marrow microenvironment (Lindgren et 

al., 1993), stromal cell cultures and freshly isolated marrow mononuclear cells 

(Dupuis et al., 1997) and 5’-LOX is found in HPC (Bautz et al., 2001).  LTB4 is a 

potent granulocyte chemoattractant (Claesson et al., 1985; Mohle et al., 2001), 

while LTD4 increases CD34+ and CD34+ CD38- cell chemotaxis and 

transendothelial migration, which is blocked by a selective leukotriene receptor 

antagonist (Bautz et al., 2001).  Accumulating evidence also suggests that 

leukotrienes play a role in regulation of hematopoiesis.  While PGE2 inhibits and 

COX inhibitors enhance HPC in vitro, LTB4, LTC4 and LTD4 increase mouse 
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and human HPC (Braccioni et al., 2002; Elsas et al., 2008; Vore et al., 1989), 

which is inhibited by 5’-LOX inhibitors (Braccioni et al., 2002; Kozubik et al., 

1994; Vore et al., 1989).  Moreover, PGE2 stimulates (Lu et al., 1987; Rossi et 

al., 1980), while LTB4 and LTC4, inhibit and LOX inhibitors enhance (Estrov et 

al., 1988) early and late erythroid progenitor cells.  In mice, dual COX inhibition 

enhances HPC recovery (Kozubik et al., 1994), while selective 5’-LOX inhibitors 

decrease CFU-GM and blast colony-forming cells (CFU-BL) (Vore et al., 1989), 

suggesting an effect on a cell earlier than the CMP and CLP.  The addition of 

LTB4 to UCB cells cultured with growth factors enhances HPC proliferation with 

concomitant reduction in total CD34+ cells.  The selective LTB4 receptor 

antagonist CP105696 enhances production of CD34+ cells and blocks HPC 

proliferation (Chung et al., 2005).  Overall, the available data suggest that LTB4 

signaling decreases HSC self-renewal and increases differentiation, while 

blocking LTB4 receptors increases self-renewal and blocks differentiation.  Thus, 

the use of a leukotriene receptor antagonist or LOX inhibitor in the post-

transplant setting may favor self-renewal.  In addition, since blockade of COX 

makes more arachidonic acid available to the LOX pathway (Bertolini et al., 

2002; Elsas et al., 2008), the use of a COX inhibitor post-transplant could 

promote HSC differentiation via leukotrienes, which is discussed further in 

Chapter 5. 

The cannabinoids have been implicated in positive and negative effects on 

mature cells of the immune system (Croxford and Yamamura, 2005; Klein et al., 
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2000); however, little is known about their effects on earlier hematopoietic cells.  

Anandamide can act as a synergistic growth factor for HPC (Valk et al., 1997) 

and has an apoptotic effect on erythrocytes (Bentzen and Lang, 2007).  The 

endocannabinoid 2-AG also stimulates proliferation of HPC (Valk and Delwel, 

1998) and hematopoietic cells expressing the CB2 receptor migrate in response 

to ligation by 2-AG (Jorda et al., 2002).  Recently, 2-AG has been shown to 

increase CFU-GEMM colony formation and cell migration (Patinkin et al., 2008), 

and activation of CB receptors on murine ESC by cannabinoids promotes 

hematopoietic differentiation (Jiang et al., 2007).  Additionally, Non-Hodgkin’s 

lymphoma cells have abnormally high levels of CB2 receptor expression 

(Rayman et al., 2007), suggesting a potential proliferative role for cannabinoids. 

It is clear that prostaglandins, leukotrienes and endocannabinoids may have vital 

roles in hematopoietic homeostasis, and evaluating their responses is critical to 

understanding eicosanoid function and development of eicosanoid-based 

therapeutic strategies, which is the focus of this thesis dissertation.   

The Yin and Yang of Eicosanoid Regulation: 

In many physiological systems, prostaglandins, leukotrienes and 

endocannabinoids exhibit compensatory or opposing roles (reviewed in Table 1).  

The action of many NSAIDs, which block the production of PGE2, may also act 

by increasing signaling via endocannabinoids (Fowler, 2004).  PGE2-glycerol has 

been shown to mobilize calcium, activate signal transduction pathways (Nirodi et 

al., 2004) and have neurological effects opposite of those induced by 2-AG 
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(Sang et al., 2007).  Furthermore, prostaglandins and leukotrienes have been 

shown to have numerous opposing roles in pulmonary fibrosis (Huang and 

Peters-Golden, 2008) and in other systems they may act in a coordinate fashion 

(Guerrero et al., 2008).  It is particularly noteworthy that cannabinoid ligands 

block CXCR4 signaling (Coopman et al., 2007; Ghosh et al., 2006) and 

neutrophil migration (Kurihara et al., 2006; Nilsson et al., 2006), which one would 

expect to negatively affect homing, but enhance spontaneous release from 

marrow that may facilitate mobilization.  In contrast, PGE2 enhances CXCR4 

expression and signaling (Goichberg et al., 2006; Salcedo et al., 2003) that might 

facilitate homing, but inhibit migration, which could dampen mobilization.  In 

Chapter 3, we highlight studies where we have shown that inhibition of PGE2 

biosynthesis in vivo in mice and baboons, with NSAIDs, enhances spontaneous 

as well as G-CSF-induced mobilization, and agonism of cannabinoid receptors 

results in similar levels of enhanced HPC mobilization.  
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Table 1 

 

 

 

 

  

System Affected Cannabinoids Leukotrienes Prostaglandins

CXCR4/CXCL12 (Ghosh et al., 2006; 
Coopman et al., 2007) 

--
(Goichberg et al., 2006; 

Salcedo et al., 2003) 

cAMP (Klein et al., 2003; 
Pertwee, 2006)  

(Izumi et al., 2002) (George et al., 2007) 

MMP-9 (Rosch et al., 2006) (Ichiyama et al., 2007) (Reno et al., 2004) 

Neutrophil migration (Kurihara et al., 2006; 
Nilsson et al., 2006) 

(Guerrero et al., 2008) (Desouza et al., 2005)

Inflammation (Croxford and Yamamura, 
2005; Klein et al.,2003) 

(Kim and Luster, 2007; 
Braccioni et al.,2002)

(Lazarus, 2006; 
Narumiya, 2003) 

Apoptosis (Lombard et al., 2007; 
Powles et al., 2005)

(Ihara et al., 2007) (George et al., 2007)

Hematologic Cell 
Migration

(Jorda et al., 2002; 
Kishimoto et al., 2005) 

(Bautz et al., 2001)
(Legler et al., 2006; 

Panzer and 
Uguccioni, 2004) 

Myelopoiesis (Valk and Delwel, 1998; 
Valk et al., 1997)

(Claesson et al., 1985; 
Stenke et al., 1991;
Stenke et al., 1993)

(Pelus et al., 1979; 
Pelus et al., 1980; 
Pelus et al., 1981; 
Pelus, 1982)

Erythropoiesis (Bentzen and Lang, 2007) (Estrov et al., 1988)
(Rossi et al., 1980; 

Lu et al.,1984; Lu et al.,
1986; Lu et al., 1987)
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Table 1.  Opposing roles of cannabinoids, leukotrienes and prostaglandins.  

Shown is a summary of a few highlighted physiological processes that are 

regulated by the eicosanoid system.  In most cases, cannabinoids act in an 

opposing role to prostaglandin, while leukotrienes regulate similarly or opposing 

functions to prostaglandin.  The dual prostaglandin effects shown for some 

physiological processes are the result of EP receptor subtype differences. 

(Coopman et al., 2007; Ghosh et al., 2006; Klein et al., 2003; Pertwee, 2006)   
(Rosch et al., 2006)  
(Kurihara et al., 2006; Nilsson et al., 2006) 
(Croxford and Yamamura, 2005; Klein et al., 2003)  
(Lombard et al., 2007; Powles et al., 2005) 
(Jorda et al., 2002; Kishimoto et al., 2005)  
(Valk et al., 1997; Valk and Delwel, 1998) 
(Bentzen and Lang, 2007) 
(Izumi et al., 2002) 
(Ichiyama et al., 2007) 
 (Guerrero et al., 2008) 
(Braccioni et al., 2002; Kim and Luster, 2007) 
(Ihara et al., 2007) 
(Bautz et al., 2001) 
(Claesson et al., 1985; Stenke et al., 1991; Stenke et al., 1993) 
(Estrov et al., 1988) 
 (Goichberg et al., 2006; Salcedo et al., 2003) 
(George et al., 2007) 
(Reno et al., 2004) 
(Desouza et al., 2005) 
(Lazarus, 2006; Narumiya, 2003)  
(George et al., 2007) 
(Legler et al., 2006; Panzer and Uguccioni, 2004)  
(Pelus et al., 1979; Pelus et al., 1980; Pelus et al., 1981; Pelus, 1982) 
(Lu et al., 1984; Lu et al., 1986; Lu et al., 1987; Rossi et al., 1980) 
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Chapter 2.  Prostaglandin E2 Enhances Hematopoietic Stem Cell  
Homing, Survival and Proliferation 

 

Introduction:  

Hematopoietic stem cell transplantation with bone marrow, mobilized 

peripheral blood, or UCB, is a proven therapy for malignant and nonmalignant 

hematologic diseases and metabolic disorders.  Repopulation of hematopoiesis 

is a multi-step process that can be adversely affected by the inability of HSC to 

migrate/home to appropriate marrow niches or poor engrafting efficiency and 

self-renewal.  Insight into the intrinsic and extrinsic mechanisms regulating these 

critical functions can lead to new strategies to improve HSC transplantation 

efficacy.     

As previously mentioned, PGE2 is the most abundant eicosanoid and a 

mediator of numerous physiological systems (Miller, 2006).  There is 

considerable evidence that demonstrates regulatory roles for PGE2 in 

hematopoiesis.  PGE2 dose-dependently inhibits growth of human and mouse 

CFU-GM in vitro (Pelus et al., 1979; Pelus et al., 1981) and myelopoiesis in vivo 

(Gentile et al., 1983) but stimulates erythroid and multilineage progenitor cells 

(Lu et al., 1984; Lu et al., 1987).  Short-term ex vivo treatment of marrow cells 

with PGE2 increases the proportion of mouse CFU-S (Feher and Gidali, 1974) 

and human CFU-GM (Verma et al., 1981) in cell cycle.  In addition, PGE2 can 

stimulate production of cycling human CFU-GM from a population of quiescent 
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cells, possibly stem cells, which is critically dependent on timing, duration of 

exposure and concentration (Pelus, 1982).  Recently, it was shown that pulse 

exposure to PGE2 ex vivo increased HSC frequency of murine bone marrow cells 

and enhanced kidney marrow recovery in zebrafish (North et al., 2007).  

However, while it is clear that PGE2 can affect HSC and HPC, the mechanisms of 

action of PGE2 on hematopoietic function have yet to be determined.  

 In this Chapter, we show that PGE2 acts directly on murine HSC to 

enhance their frequency and facilitates engraftment.  PGE2 also provides a 

competitive advantage that is maintained during multiple serial transplantations, 

with full multi-lineage reconstitution.  The enhanced chimerism observed 

throughout long-term serial transplantation, however, is not due to sustained 

competitive advantage, but rather is the result of increased HSC numbers 

produced by initial exposure to PGE2 preceding/during the primary transplant.  

Enhanced HSC engraftment induced by PGE2 results from increased homing of 

HSC, mediated through up-regulation of the chemokine receptor CXCR4, 

implicated in HSC homing (Lapidot et al., 2005), and selective stimulation of 

primitive HSC survival and self-renewal associated with up-regulation of the 

inhibitor of apoptosis protein Survivin that is required for HSC maintenance and 

entry into cell cycle (Fukuda et al., 2002; Fukuda and Pelus, 2001).  Our studies 

describe novel mechanisms for enhancement of HSC function by PGE2 and 

support a translational strategy to facilitate HSC transplantation.  
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Materials and Methods: 

Mice and human cord blood 

C57Bl/6 (CD45.2) mice were purchased from Jackson Laboratories (Bar 

Harbor, ME).  B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1), C57Bl/6 X BOYJ-F1 

(CD45.1/CD45.2) and NOD.Cg-Prkdcscid IL2rgtm1Wjl/Sz (NSG) mice were bred 

in-house.  Mice used in transplant studies received Doxycycline feed for 30 days 

post-transplant.  The Institutional Animal Care and Use Committee (IACUC) of 

Indiana University School of Medicine (IUSM) approved all protocols.  Human 

UCB was obtained from Wishard Hospital, Indianapolis, IN with Institutional 

Review Board (IRB) approval. 

Flow cytometry 

All antibodies were purchased from BD Biosciences unless otherwise 

noted.  For detection and sorting of KL and SKL cells, streptavidin conjugated 

with PE-Cy7 (to develop biotinylated MACS® lineage antibodies (Miltenyi Biotech, 

Auburn, CA)), c-kit-APC, Sca-1-PE or APC-Cy7, CD45.1-PE, CD45.2-FITC, and 

CD34-PE were used.  For SLAM SKL, we utilized Sca-1-PE-Cy7, c-kit-FITC, 

CD150-APC (eBiosciences, San Diego, CA), CD48-biotin (eBiosciences) and 

streptavidin-PE.  UCB CD34+ cells were detected using anti-human-CD34-APC.  

For multi-lineage analysis, APC-Cy7-Mac-1, PE-Cy7-B-220 and APC-CD3 were 

used.  EP receptors were detected with rabbit anti-EP(1-4) antibodies (Cayman 

Chemicals, Ann Arbor, MI) and FITC-goat-anti-rabbit IgG (Southern Biotech, 
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Birmingham, AL).  Expression of CXCR4 was analyzed using streptavidin-

PECy7, c-kit-APC, Sca-1-APC-Cy7, and CXCR4-PE.  Apoptosis was measured 

with FITC-Annexin-V or FITC-anti-active caspase-3.  For Survivin and active 

caspase-3 detection, cells were permeabilized and fixed using the 

CytoFix/CytoPerm kit (BD) and stained with anti-active-caspase-3-FITC Flow Kit 

(BD) or Survivin-PE (R&D Systems, Minneapolis, MN).  For cell cycle analysis, 

cells were stained with Hoechst-33342 (Molecular Probes, Eugene, OR) and 

Pyronin-Y (Sigma Aldrich, St. Louis, MO) or FITC bromodeoxyuridine (BrdU) 

Flow Kit (BD).  Analyses were performed on an LSRII and sorting on either a 

FACSAria or FACSVantage sorter (BD).  

dmPGE2 pulse-exposure  

16,16-dimethyl Prostaglandin E2 (dmPGE2) in methyl acetate (Cayman 

Chemicals) was evaporated on ice under nitrogen gas, reconstituted in 100% 

ethanol (ETOH) at a final concentration of 0.1 M and stored at -20 ºC.  For pulse 

exposure, cells were incubated with dmPGE2 diluted in media, on ice, for 2 

hours, with gentle vortexing every 30 minutes.  After incubation, cells were 

washed twice in media at 4 ºC before use.  Vehicle-treated cells were processed 

in an identical manner, using the equivalent ETOH concentration.  

Limiting dilution competitive and non-competitive transplantation 

Whole bone marrow (WBM) cells (CD45.2) were treated on ice for 2 hours 

with 1 µM dmPGE2 (Cayman) or 1x10-3 % ETOH per 1x106 cells in phosphate 
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buffered saline (PBS).  After incubation, cells were washed twice and mixed with 

2x105 congenic CD45.1 competitor marrow cells at various ratios and 

transplanted intravenously into lethally-irradiated (1100-cGy split dose) CD45.1 

mice.  Peripheral blood (PB) CD45.1 and CD45.2 cells were determined monthly 

by flow cytometry.  For head-to-head competitive analysis, WBM from CD45.1 

and CD45.2 mice were treated with vehicle or dmPGE2 and mixed with 2x105 

competitor marrow cells from CD45.1/CD45.2 mice at various ratios and 

transplanted into lethally-irradiated CD45.1/CD45.2 mice.  The proportion of 

CD45.1, CD45.2, and CD45.1/CD45.2 cells in PB was determined monthly.  HSC 

frequency was quantitated by Poisson statistics using L-CALC software (Stem 

Cell Technologies, Vancouver BC, Canada) with <5% contribution to chimerism 

considered negative.  Competitive repopulating units (CRU) were calculated as 

described (Harrison, 1980).  For secondary transplants, 2x106 WBM from 

previously transplanted CD45.1/CD45.2 mice at a 1:1 ratio at 20 weeks post-

transplant were injected into lethally-irradiated CD45.1/CD45.2 mice in non-

competitive fashion.  Tertiary, quaternary, and quinary transplants were 

performed in a similar manner. 

Long-term competitiveness assay 

Whole BM cells from CD45.1 and CD45.2 donors were acquired, and 

treated with either vehicle or dmPGE2 as described.  One cohort of lethally 

irradiated CD45.1/CD45.2 mice were transplanted with 5x105 vehicle treated 

CD45.1 cells, and 5x105 dmPGE2 treated CD45.2 cells.  A separate cohort was 
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transplanted in a similar fashion with strain and treatment groups switched.  After 

12 weeks, PB chimerism was evaluated and bone marrow was acquired and 

antibody stained for CD45.1/CD45.2 and SLAM SKL markers.  CD45.1 and 

CD45.2 SLAM SKL cells were sorted, and a second group of lethally irradiated 

CD45.1/CD45.2 mice were transplanted with 2.5x102 CD45.1 SLAM SKL, 

2.5x102 CD45.2 SLAM SKL, and 2.0x105 CD45.1/CD45.2 WBM competitors.  

Contribution to PB chimerism was evaluated 12 weeks later.   

Analysis of HSC homing 

Whole BM from CD45.2 mice was labeled with 5-(and -6)-

carboxyfluorescein diacetate succinimidyl ester (CFSE) (Molecular Probes) 

washed and treated with either 1 µM dmPGE2 or vehicle and 2x107 cells 

transplanted into lethally-irradiated CD45.2 mice.  After 16 hours, femurs and 

tibias were flushed, lineage postive cells depleted using MACS® microbeads and 

Linneg cells stained for SKL and the total number of CFSE+ WBM, KL and SKL 

cells determined.  For congenic homing studies, Linneg CD45.1 cells were treated 

with 1 µM dmPGE2, vehicle, or PBS and 2x106 cells transplanted into lethally-

irradiated CD45.2 mice.  After 16 hours, CD45.1 SKL cells in recipient BM were 

quantitated.  For competitive homing studies, Linneg cells from CD45.2 and 

CD45.1 mice were FACS sorted, treated with dmPGE2 or vehicle and 3x104 

CD45.1 (vehicle or dmPGE2 treated) plus 3x104 CD45.2 (dmPGE2 or vehicle 

treated) SKL cells transplanted into lethally-irradiated CD45.1/CD45.2 mice.  To 

evaluate the role of CXCR4 in homing, Linneg CD45.2 cells were treated with 
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vehicle or 1 µM dmPGE2 plus 10 µM AMD3100 (AnorMed Inc., Vancouver, BC, 

Canada), 2x106 treated cells injected into lethally-irradiated CD45.1 mice and 

homed SKL cells analyzed 16 hours post-transplant.  Homing of human UCB 

cells was evaluated in NSG mice.  UCB mononuclear cells were isolated on 

Ficoll-PaqueTM Plus (Amersham Biosciences, Piscataway, NJ), treated with 

either dmPGE2 or vehicle, and 4x107 cells transplanted into each of 5 sublethally-

irradiated (250 cGy) mice.  Homed CD34+ cells were analyzed 16 hours post-

transplant. 

Expression of EP receptors, CXCR4 and Survivin 

Linneg marrow cells were stained for SKL, SLAM or CD34, each of the 4 

EP receptors and surface receptor expression on KL, SKL and SLAM SKL and 

CD34neg SKL cells determined by FACS.  For human EP receptors, UCB CD34+ 

cells were positively selected with MACS® microbeads (Fukuda and Pelus, 

2001), stained for CD34 and CD38 and each of the EP receptors and surface 

receptor expression determined by FACS.  To evaluate CXCR4, Survivin and 

active caspase-3, Linneg cells or CD34+ UCB were treated on ice with either 1 µM 

dmPGE2 or vehicle control for 2 hours, washed, and then cultured in RPMI-

1640/10% heat inactivated-fetal bovine serum (HI-FBS) at 37 ºC for 24 hours, 

stained for SKL (murine cells) and CXCR4, Survivin, and/or active caspase-3 as 

described earlier, and analyzed by FACS. 
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Migration assays 

Chemotaxis to SDF-1α was determined using a two-chamber Costar 

Transwell ((Cambridge, MA), 6.5 mm diameter, 5 µm pore) as previously 

described (Fukuda and Pelus, 2006).  Briefly, dmPGE2 and vehicle-treated Linneg 

bone marrow cells were cultured in RPMI/10% HI-FBS overnight to allow for up-

regulation of CXCR4, washed, resuspended at 2x106 cells per ml in RPMI/0.5% 

BSA and 0.1 ml added to the top chamber of the transwells, with or without 

rmSDF-1α (R&D Systems) in the bottom and/or top chamber, and incubated for 4 

hours at 37 ºC.  Cells completely migrating to the bottom chamber were 

enumerated by flow cytometry.  Percent migration was calculated by dividing 

total cells migrated to the lower well by the cell input multiplied by 100.  Migration 

of SKL cells was determined by comparison of the proportion of SKL cells in 

input and migrated populations.  For UCB migration, CD34+ cells were MACS®  

selected as described and migration assays performed as described for mouse, 

using rhSDF-1α (R&D Systems). 

Cell cycle analysis 

For in vitro cell cycle analysis, Linneg cells were treated with either 1 µM 

dmPGE2 or vehicle and cultured in StemSpan® - Serum Free Media (Stem Cell 

Technologies) with rmSCF (50 ng/ml) (R&D Systems), rhFlt-3 and rh-

thrombopoietin (TPO) (100 ng/ml each) (Immunex, Seattle, WA).  After 20 hours, 

cells were stained for SLAM SKL, fixed, permeabilized and stained with Hoechst-
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33342 followed by Pyronin-Y.  The proportion of SLAM SKL cells in G0, G1, S and 

G2/M phase was determined by FACS quantitation of deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA).  For in vivo cell cycle analysis, CD45.2 mice 

were lethally-irradiated and transplanted with 5x106 dmPGE2 or vehicle-treated 

Linneg CD45.1 cells.  Recipient mice received 1 mg/ml BrdU (Sigma) in drinking 

water and 1 mg/mouse BrdU by intraperitoneal (IP) injection.  After 16 hours, 

recipient marrow was isolated, lineage depleted, stained for CD45.1, SKL and 

BrdU and the proportion of homed CD45.1+ SKL cells that were BrdU+ 

determined by FACS. 

Apoptosis assays 

Linneg cells were treated with 1 µM dmPGE2 or vehicle, and incubated in 

RPMI/2% HI-FBS at 37 ºC without growth factors.  After 24 hours, the cells were 

stained for SLAM SKL and Annexin-V or active caspase-3 and the proportion of 

apoptotic cells determined by FACS.  For dose ranging studies, cells were 

cultured as described using a dose range of 0.1 nM to 1 µM dmPGE2 or vehicle 

control. 

Quantitative-RT-PCR 

Total RNA was obtained using the absolute RNA purification kit 

(Stratagene, La Jolla, CA).  A constant amount of RNA was reverse transcribed 

with random primers (Promega, Madison, WI) and MMLV-reverse transcriptase 

(Promega) as described (Fukuda and Pelus, 2001).  DNase and RNase free 
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water (Ambion, Austin, TX) was added to obtain a final concentration equivalent 

of 10 ng RNA/µl and 5 µl used for QRT-PCR.  Primers for SYBR Green QRT-

PCR were designed to produce an amplicon size of 75-150 base pairs.  

Sequences of primers are listed in Table 2.  QRT-PCR was performed using 

Platinum SYBR Green qPCR supermix UDG with ROX (Invitrogen, Carlsbad, 

CA) in an ABI-7000 (Applied Biosystems, Carlsbad, CA) or MxPro-3000 (Agilent, 

LaJolla, CA).  Dissociation curves were determined on each analysis to confirm 

that only one product was obtained.  

Statistical analysis  

All pooled values are expressed as Mean ± Standard Error of the Mean 

(SEM).  Statistical differences were determined using the paired or unpaired two-

tailed t-test function in Microsoft Excel as appropriate. 
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Table 2 

  Gene Location F/R Primer Sequence 
    

EP1 

Human (946) F 5' - TTGGCGGCTCTCGGA - 3' 
Human (1071)   R 5' - GCCACCAACACCAGCATT- 3' 
Mouse (942) F 5' - GCTCCTTGCGGCATTAGTGTG- 3' 
Mouse (1038) R 5' - TGCGGTCTTTCGGAATCGT- 3' 

    

EP2 

Human (899) F 5' - AGGAGAGGGGAAAGGGTGTC - 3' 
Human (1000)   R 5' - AATCGTGAAAGGCAAGGAGC - 3' 
Mouse (1028) F 5' - CGTTATCCTCAACCTCATTCGC - 3' 
Mouse (1156) R 5' - TCCGTCTCCTCTGCCATCG - 3' 

    

EP3 

Human (1053)   F 5' - CCGCATCACGACCGAGAC - 3' 
Human (1146)   R 5' - AATCGTGAAAGGCAAGGAGC - 3' 
Mouse (772) F 5' - TTGCTGGCTCTGGTGGTGAC - 3' 
Mouse (868)   R 5' - GCTGGACTGCGAGACGGC - 3' 

    

EP4 

Human (612) F 5' - ATTCGTCCGCCTCCTTGA - 3' 
Human (705) R 5' - GCCACCAGGTGGCCCA - 3' 
Mouse (1476) F 5' - TGACCCAAGCAGACACCACCT - 3' 
Mouse (1586) R 5' - TCCCACTAACCTCATCCACCAA - 3' 

    

CXCR4 

Human (58) F 5' - TACACCGAGGAAATGGGGT - 3' 
Human (172)   R 5' - CAGTTAGAAGATGATGGAGTAGATGG 3' 
Mouse (502)   F 5' - CTCGCTATTGTCCACGCCAC - 3' 
Mouse (651) R 5' - CCCTGACTGATGTCCCCCTG - 3' 

    

SURVIVIN 

Human (212) F 5' - GACGACCCCATAGAGGAAC - 3' 
Human (347) R 5' - CCTTTGCAATTTTGTTCTTG - 3' 
Mouse (321) F 5' - GAGAGCCAAGAACAAAATTGC - 3' 
Mouse (435) R 5' - CTCAGCATTAGGCAGCCAG - 3' 

    

HPRT 

Human (429) F 5' - GCAGACTTTGCTTTCCTTGG - 3' 
Human (484) R 5' - TTGCGACCTTGACCATCTTT - 3' 
Mouse (224) F 5' - TTGCTGACCTGCTGGATTAC - 3' 
Mouse (342) R 5' - TATGTCCCCCGTTGACTGA - 3' 

    
 

The numbers in parentheses indicate the location of the first base of the primer 
for the gene of interest.  Forward (F) and reverse (R) primers used are indicated 
as shown. 
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Results: 

PGE2 increases LTR-HSC frequency and engraftment 

It was previously shown that PGE2 stimulates proliferation, cycling and 

differentiation of quiescent bone marrow cells into colony forming cells, 

suggesting that PGE2 enhances HSC function (Pelus, 1982).  However, 

hematopoietic repopulation in myeloablated hosts is the only true measure of 

HSC function (Harrison, 1980).  A recent report showed that pulse exposure to 

dmPGE2 enhanced HSC frequency when transplanted into irradiated mice (North 

et al., 2007).  We have confirmed enhancement of HSC frequency by PGE2.  In 

addition, using a limiting-dilution, competitive head-to-head transplant model of 

CD45.2 and CD45.1 congenic grafts in CD45.1/CD45.2 hybrid mice that permits 

quantitative comparison of engraftment and competitiveness of HSC from control 

and dmPGE2 treatment groups, as well as endogenous repopulation of host cells 

within the same animal, we now show that short-term dmPGE2 exposure 

produces stable long-term enhancement of HSC frequency and engraftment 

upon serial transplantation and that short-term exposure to dmPGE2 increases 

the number of CRU and stably enhances HSC competitiveness (Figure 5A).  At 

12 weeks post-transplant, analysis of PB showed significantly increased 

chimerism of dmPGE2 treated cells compared to vehicle treated cells, with ~4-fold 

increase in HSC frequency and CRU, quantitative measures of long-term-

repopulating capacity (Figure 5B).  
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Figure 5 
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Figure 5.  PGE2 enhances hematopoietic stem cell engraftment. 

(A)  Test bone marrow from CD45.1 or CD45.2 mice were treated with vehicle or 

dmPGE2 respectively.  CD45.1/CD45.2 hybrid marrow cells were used as 

competitors.  Limiting dilutions were transplanted into lethally irradiated 

(1100cGys, split dose) CD45.1/CD45.2 hybrid mice and chimerism in PB 

analyzed for 20 weeks.  A representative flow plot detecting each cell population 

is shown. 

(B)  Frequency analysis (top) for vehicle (red) or dmPGE2 (blue) pulsed cells, 

determined by Poisson statistics, at 12 weeks; P0 = 85,560 (vehicle) and P0 = 

23,911 (dmPGE2 treated).  Chimerism in PB and CRU analysis is shown at 12 

weeks (Mean ± SEM).  Data represent 2 pooled experiments, N=5 mice per 

group, per experiment, each assayed individually.  

* P<0.05 compared to vehicle control. 
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Throughout 20 weeks post-transplant, an ~4-fold increase in HSC frequency was 

maintained, indicating that the effect of dmPGE2 pulse-exposure was stable 

(Table 3).  At 32 weeks post-transplant, reconstitution was seen for peripheral B- 

and T-lymphoid and myeloid lineages, with no discernible differences in lineage 

contribution between untreated competitor cells, dmPGE2 or vehicle treated cells 

(Figure 6). 

 Marrow was harvested from primary transplanted animals at 20 weeks 

post-transplant and transplanted into secondary recipients (Figure 7) to validate 

expansion and self-renewal of LTRC previously exposed to dmPGE2 and vehicle.  

Analysis of PB 12 and 24 weeks after secondary transplant showed multi-lineage 

reconstitution by cells from all transplanted mice, clearly demonstrating the self-

renewal of primary transplanted LTRC.  Unlike the primary transplant, multi-

lineage reconstitution by dmPGE2 treated cells showed an elevated myeloid 

lineage reconstitution, though this was not seen in subsequent transplants.  The 

increase in chimerism resulting from dmPGE2 exposure seen in primary donors 

was also observed in secondary transplants without any additional treatments.  

Upon further serial transplant, vehicle treated HSC could only be detected at low 

level after tertiary transplant, suggesting a loss of HSC self-renewal, likely an 

effect of low HSC number.  In contrast, HSC were maintained at a higher level for 

PGE2 treated HSC through quaternary transplant, suggesting higher HSC 

numbers and/or self-renewal. 
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Table 3 

 

  

Weeks 
Post-

transplant 

Repopulating Cell Frequency 

Vehicle dmPGE2 
Fold 

Increase 

4 1:69,466 1:16,619 4.18 

8 1:85,560 1:24,613 3.48 

12 1:85,560 1:23,911 3.58 

16 1:85,560 1:23,911 3.58 

20 1:89,586 1:21,753 4.12 
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Table 3.  PGE2 pulsed grafts have increased LTRC. 

HSC frequency analysis in recipients of vehicle or dmPGE2 treated bone marrow 

over 20 weeks.  Fold change indicates increase in frequency of engraftment of 

dmPGE2 pulsed cells compared to vehicle. 

  



 

66 
 

B-220

M
ac

-1

C
ou

nt
s

CD3

Secondary (12 weeks)

Control Vehicle dmPGE2

0

20

40

60

80

100
T-Lymphoid

B-Lymphoid

Myeloid

%
 o

f T
ot

al
 W

B
C

Control Vehicle dmPGE2

Primary (32 weeks)

Figure 6 

 

A 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 

 

 



 

67 
 

Figure 6.  Full multi-lineage reconstitution after transplantation with PGE2 

pulsed grafts. 

(A)  Representative FACS plots of multi-lineage reconstitution showing Mac-1+ 

cells (myeloid), B220+ cells (B-Lymphoid), or CD3+ cells (T-Lymphoid) from 

peripheral blood of a hybrid CD45.1/CD45.2 mouse transplanted with vehicle or 

dmPGE2 pulsed CD45.1 or CD45.2 bone marrow cells, respectively. 

(B)  Relative contribution to lineages of myeloid (M), B (B) and T-lymphoid (T).  

Multi-lineage analysis for primary transplant (32 weeks) and a cohort of 5 mice 

that received transplants from primary transplanted mice at 20 weeks, with 

analysis 12 weeks later.  For primary transplanted mice at 32 weeks, vehicle 

treated cells were (Mean ± SEM) 14.1±3.5% M, 70.8±1.1% B, and 17.8±1.4% T, 

versus dmPGE2 treated cells which were 15.7±2.5% M, 76.9±3.4% B, and 

7.5±1.2% T.  For secondary transplanted mice at 12 weeks, vehicle treated cells 

were 15.7±5.3% M, 60.3±4.8% B, and 22.1±3.6% T, versus dmPGE2 treated 

cells which were 37.0±6.5% M, 52.3±5.4% B, and 9.0±1.4% T.   

* P<0.05 versus vehicle control.   
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Figure 7 
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Figure 7.  PGE2 pulsed grafts maintain repopulating ability through serial 

transplantations. 

Increased chimerism of dmPGE2 treated cells versus vehicle is shown for primary 

transplant at 20 weeks (time of secondary transplant) and in a sub-cohort at 32 

weeks (time of 12 week analysis of secondary transplant), for secondary 

transplant at 12 weeks and 24 weeks, and for tertiary, quaternary, and quinary at 

12 weeks.  Data for 20 week primary transplant were from 2 pooled experiments, 

N=5 mice per group, per experiment, each assayed individually.  Data for 

secondary, tertiary, quaternary and quinary transplants were from N=5 mice per 

group, each assayed individually.  Data are expressed as Mean ± SEM.  

*P<0.05.  

  



 

70 
 

Lack of inherent enhanced competitiveness of dmPGE2 pulsed grafts in 

secondary transplants 

 Increased chimerism of dmPGE2 pulsed grafts through multiple serial 

transplants in head-to-head competition with vehicle pulsed grafts could simply 

be the result of a higher number of HSCs homing and engrafting in the primary 

graft, taking available niche space and self-renewing; or could be the result of 

epigenetic changes in HSC elicited by the dmPGE2 treatment (Araki et al., 2009; 

Chung et al., 2009); dmPGE2 preferentially enhancing a subset of HSC with 

enhanced inherent competitiveness; or an unknown mechanism eliciting a long-

term competitive advantage.  If serial transplant results are simply due to an 

increase in HSC homing and engraftment of the primary graft, then “equalizing” 

the HSC content from dmPGE2 pulsed grafts and vehicle pulsed grafts should 

result in equal repopulation in secondary recipients.  To test this hypothesis, 

dmPGE2 pulsed and vehicle pulsed WBM were transplanted head-to-head into 

lethally irradiated hybrid mice, and chimerism was evaluated 12 weeks later 

(Figure 8A).  As was seen in earlier transplants, dmPGE2 resulted in significantly 

increased chimerism compared to vehicle treated control cells (Figure 8B).  Bone 

marrow from these primary recipient mice was harvested and FACS sorted for 

SLAM SKL cells, and equal numbers of the sorted SLAM SKL cells were 

transplanted head-to-head into secondary recipients along with radioprotecting 

WBM competitors, with no additional treatment.  Equalizing the HSC content in 

the secondary grafts resulted in no differential increase in repopulating ability in 
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secondary recipients.  This suggests that the enhanced engraftment of dmPGE2 

treated HSC in primary recipients is a function of increased numbers of homed 

HSC and their subsequent self-renewal. 
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Figure 8.  dmPGE2 pulsed HSC do not have an inherent competitive 

advantage in secondary transplants. 

(A)  Schematic representation of experimental design.  Whole bone marrow from 

CD45.1 mice and CD45.2 mice was treated with both vehicle and dmPGE2 and 

then transplanted head-to-head into lethally irradiated (1100cGys, split dose) 

CD45.1/CD45.2 hybrid mice as shown (2.5x105 cells per group).  Chimerism was 

analyzed at 12 weeks, and bone marrow from recipients was collected, stained 

with fluorescent antibodies for phenotypic markers, and cells sorted for SLAM 

SKL.  SLAM SKL cells were transplanted head-to-head into a second cohort of 

lethally irradiated CD45.1/CD45.2 mice along with 2.0x105 WBM CD45.1/CD45.2 

competitors, and chimerism analyzed 12 weeks later.   

(B)  Chimerism in PB is shown for 12 weeks after the primary transplant, and 12 

weeks after the secondary transplant (Mean ± SEM).  N=10 mice per group (total 

of 20 mice for primary and 20 mice for secondary); * P<0.001. 
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 Murine and human HSC and HPC express PGE2 receptors  

PGE2 interacts with 4 specific, highly conserved G-protein coupled 

receptors; EP1-EP4 (Sugimoto and Narumiya, 2007), with EP receptor repertoire 

accounting for multiple, sometimes opposing responses attributed to PGE2 

(Breyer et al., 2001).  While EP receptor expression has been observed in 

dendritic cells (Harizi et al., 2003), monocytes (Panzer and Uguccioni, 2004), and 

early zebrafish hematopoietic tissue (Villablanca et al., 2007), EP receptor 

expression on hematopoietic stem and progenitor cell populations is not known.  

Analysis of EP receptors on KL cells, enriched for hematopoietic progenitor cells, 

SKL cells enriched for multipotent progenitor cells as well as HSC, and SLAM 

SKL and CD34- SKL cells, highly enriched for primitive repopulating HSC (Chen 

et al., 2008; Kiel et al., 2005), showed that all four EP receptors are expressed 

on these hematopoietic cell populations (Figure 9A).  Analogous to murine cells, 

all four receptors are expressed on human CD34+ UCB cells enriched for HSC 

and CD34+ CD38- cells that contain the most primitive human HSC (Figure 9B).  

Quantitative RT-PCR showed that mRNA for all four EP receptors is detected in 

the whole bone marrow cell population and in FACS sorted KL, SKL and primitive 

CD34- SKL cells (Figure 10A) and on CLP (Linneg c-kitlow Sca-1low IL7R+) and 

CMP (Linneg c-kit+ Sca-1- CD34+) progenitor cells (not shown).  Similarly, QRT-

PCR analysis detected mRNA for all four EP receptors in purified CD34+ and 

CD34+ CD38- UCB cells (Figure 10B).   
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Figure 9.  EP receptors are expressed on murine and human HSC and HPC. 

(A)  Representative FACS gating of Linneg murine bone marrow showing c-kit+ 

and Sca-1+ gates and SLAM (CD150+ CD48-) and CD34 gating of SKL cells.  

EP1-EP4 surface receptor expression on murine KL, SKL, SLAM SKL and CD34- 

SKL cells is shown.    

(B)  Representative FACS gating of human CD34+ and CD34+ CD38- UCB cells.  

EP surface receptor expression on CD34+ and CD34+ CD38- cells is shown. 
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Figure 10.  Amplification plots of mRNA for PGE2 receptors. 

(A) Primers designed to specifically detect murine EP1, EP2, EP3 or EP4 were 

used for QRT-PCR (with SYBR green) and plots with an activation step of 50 oC 

for 2 minutes, denaturation at 95 oC for 2 minutes and amplification for 45 cycles 

at 95 oC-15 seconds, 50 oC-30 seconds, 72 oC-30 seconds are shown.  Plots 

corresponding to specific EP receptors are indicated in each amplification plot, 

where the legend key on the right shows the relative order of transcripts top to 

bottom.  * Denotes the presence of at least 2 dissociation peaks indicating the 

presence of splice variants.  

(B)  EP receptor amplification on human UCB CD34+ and CD34+ CD38- cells with 

the same QRT-PCR procedure as above. 
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PGE2 increases HSC homing efficiency  

Enhanced HSC engraftment by PGE2 could result from increased HSC 

number and/or cell cycle status (Ramshaw et al., 1995), effects on facilitating 

cells (Gandy et al., 1999) or effects on HSC homing or proliferation in the host 

marrow (Lapidot et al., 2005).  In order to evaluate the mechanism of action of 

PGE2 on HSC engraftment, we first utilized CFSE labeled dmPGE2 or vehicle 

treated WBM cells transplanted into lethally-irradiated hosts to assess HSC 

homing.  Total CFSE+ cells homing to bone marrow as well as the number of 

homed events within the KL and SKL cell populations were quantitated (Figure 

11A).  No difference in the percentage of CFSE+ cells homing to marrow was 

observed between dmPGE2 and vehicle treated cells when total WBM cells were 

evaluated; however, significantly more SKL cells homed to the marrow compared 

to control.  In a congenic model, where homed cells are detected based upon 

CD45 cell surface variants, a significantly greater percentage of dmPGE2 treated 

SKL cells homed to marrow (Figure 11B) compared to vehicle treated or to non-

manipulated control cells.  No difference in homing efficiency was seen between 

untreated and vehicle treated cells. 

 To determine whether the enhancing effect of dmPGE2 on HSC homing 

was direct or indirect, we compared homing of highly purified SKL cells from both 

CD45.2 and CD45.1 mice in a head-to-head model.  FACS sorted SKL cells were 

treated with dmPGE2 or vehicle and transplanted into lethally irradiated  
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Figure 11.  PGE2 increases homing efficiency of HSC.  

(A)  Test murine bone marrow cells were labeled with CFSE and treated with 

vehicle (red) or dmPGE2 (blue) and 2x107 labeled and treated WBM cells were 

transplanted into lethally irradiated mice.  Sixteen hours later, bone marrow was 

analyzed by FACS for homed events.  Data are expressed as Mean ± SEM, N=6 

mice per group, each assayed individually. 

(B)  Test bone marrow cells from CD45.1 mice were treated with PBS, vehicle or 

dmPGE2, and 2x107 treated WBM cells were transplanted into lethally irradiated 

CD45.2 mice.  Sixteen hours later bone marrow was analyzed for homed SKL 

cells.  The left panel shows representative data from 1 experiment, N=3 mice per 

group, each assayed individually.  The right panel shows the combined increase 

in homing efficiency of SKL cells after dmPGE2 treatment for 3 experiments (N=6 

mice per group, per experiment, each assayed individually).  
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CD45.1/CD45.2 mice.  An additional cohort was transplanted with congenic 

strain and treatment groups switched to test for strain bias.  Similar to studies 

using WBM, dmPGE2 pulse-exposure of purified SKL cells increased their 

homing efficiency by 2-fold (Figure 12), strongly suggesting a direct effect on 

HSC.  Although SKL cells are not a homogenous HSC population, they are highly 

enriched for LTRC (Okada et al., 1992).  Immunodeficient mice offer the ability to 

evaluate human HSC function in an in vivo setting (Dick et al., 1992) and are a 

validated model for human HSC homing (Jetmore et al., 2002).  To verify that the 

enhancing effect of dmPGE2 on mouse HSC homing is also seen on human 

HSC, UCB mononuclear cells were pulsed with dmPGE2 or vehicle and HSC 

homing evaluated in sublethally-irradiated NSG mice (Figure 13).  Similar to 

mouse HSC, dmPGE2 pulse-exposure significantly enhanced the homing 

efficiency of UCB CD34+ cells.   

PGE2 increases HSC CXCR4 and chemotaxis to SDF-1α  

The SDF-1α/CXCR4 axis is believed to play a major role in HSC and HPC 

trafficking and chemoattraction/homing to the bone marrow microenvironment 

(Lapidot et al., 2005).  In addition, up-regulation of CXCR4 on human CD34+ 

cells (Goichberg et al., 2006) and endothelial cells (Salcedo et al., 2003) by 

PGE2 has been reported, and PGE2 can increase monocyte chemotaxis to SDF-

1α (Panzer and Uguccioni, 2004).  We therefore evaluated whether the 

mechanism of improved homing of dmPGE2 treated HSC and HPC resulted from 

up-regulation of SDF-1α/CXCR4 signaling.  Pulse-exposure to dmPGE2  
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Figure 12 
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Figure 12.  Competitive head-to-head increase in HSC homing. 

SKL cells from CD45.1 and CD45.2 mice were isolated by FACS sorting and 

treated with either dmPGE2 or vehicle.  Five lethally irradiated CD45.1/CD45.2 

hybrid mice received 3x104 vehicle treated CD45.1 sorted SKL plus 3x104 

dmPGE2 treated CD45.2 SKL cells (top panel).  Five mice received a similar 

transplant with treatment groups switched between strains (bottom panel).  

Representative flow gating of marrow 16 hours post-transplant and combined 

data for the homing efficiency of dmPGE2 or vehicle treated, sorted SKL cells 

(Mean ± SEM, N=10 mice, each assayed individually) are shown. 
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Figure 13.  PGE2 increases homing efficiency of UCB CD34+ cells in NSG 

mice. 

Low density mononuclear cells (LDMC) from UCB were isolated and treated with 

either dmPGE2 or vehicle.  Five sublethally irradiated NSG mice received 

dmPGE2 treated LDMC and 5 received vehicle treated LDMC.  Bone marrow was 

analyzed 16 hours later and the number of CD34+ cells determined and homing 

efficiency calculated.  Data are Mean ± SEM for N=5 mice, each assayed 

individually. 
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Figure 14 
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Figure 14.  CXCR4 receptor expression is increased on murine and human 

HSC and HPC after dmPGE2 treatment. 

CXCR4 expression (Mean ± SEM; N=3) on murine KL and SKL cells, and human 

UCB CD34+ cells 24 hours after treatment with dmPGE2.  Data are expressed as 

percent change in mean fluorescence intensity (MFI) of CXCR4 due to treatment 

with dmPGE2 or vehicle. 
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increased CXCR4 expression on KL and SKL cells (Figure 14).  Similarly, 

dmPGE2 increased CXCR4 expression on CD34+ UCB cells.  QRT-PCR 

demonstrated 2.65-fold elevated CXCR4 mRNA levels in dmPGE2 treated SKL 

cells compared to vehicle. 

 In vitro, HSC and HPC selectively migrate to a gradient of SDF-1α (Kim 

and Broxmeyer, 1998), a process that is believed to reflect their marrow homing 

capacity.  We evaluated the effect of dmPGE2 treatment on HSC chemotaxis to a 

gradient of SDF-1α in in vitro transwell migration assays to determine if PGE2-

mediated CXCR4 up-regulation enhanced chemotaxis.  Both vehicle and 

dmPGE2 treated SKL cells demonstrated significant migration to 1-1000 ng/ml 

SDF-1α, however, chemotaxis was significantly higher in cells treated with 

dmPGE2 (Figure 15).  Analysis of positive and negative gradients indicated that 

the dmPGE2-enhancing effect on SKL cell chemotaxis did not result from a 

nonspecific increase in chemokinesis (Figure 15-top inset).  Enhanced migration 

to SDF-1α by dmPGE2 was also observed using FACS-sorted SKL cells, 

suggesting a direct effect on HSC (Figure 15-bottom inset).  Chemotaxis of UCB 

CD34+ cells to SDF-1α was also significantly enhanced by pulse-exposure to 

dmPGE2 and migration was blocked by the selective CXCR4 antagonist 

AMD3100 (Hatse et al., 2002), indicating a specific effect mediated through the 

CXCR4 receptor (Figure 16A). 

To specifically determine if up-regulated CXCR4 played a role in the 

enhanced homing observed after dmPGE2 treatment, cells were treated with  
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Figure 15 
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Figure 15.  Increase in HSC and HPC migration to SDF-1α after dmPGE2 

treatment. 

Freshly isolated Linneg cells were pulsed with dmPGE2 or vehicle for 2 hours, 

washed and resuspended in media with 10% HI-FBS and cultured at 37 oC for 16 

hours.  After incubation, cells were washed, resuspended in RPMI/0.5% BSA and 

allowed to migrate to rmSDF-1α for 4 hours.  Total cell migration was quantitated 

by flow cytometry.  Data are the Mean ± SEM percent migration for 3 

experiments.  † P<0.05 for dmPGE2 treated cells compared to cells treated with 

vehicle.  

(Top Inset) Percent migration of gated SKL cells to positive (100 ng/ml SDF-1α in 

bottom chamber), negative (100 ng/ml SDF-1α in upper chamber) or neutral (100 

ng/ml SDF-1α in both upper and bottom chambers) gradients.  Data are the 

Mean ± SEM percentage migration for 3 experiments.  † P<0.05 for dmPGE2 

treated cells compared to cells treated with vehicle.  

(Bottom Inset) Percent migration of sorted SKL cells to 100 ng/ml SDF-1α.  Data 

are the Mean ± SEM percentage migration for 3 experiments.  † P<0.05 for 

dmPGE2 treated cells compared to cells treated with vehicle. 
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Figure 16.  PGE2 enhancement of migration and homing of HSC and HPC is 

inhibited by AMD3100. 

(A)  Freshly isolated UCB CD34+ cells were pulsed with dmPGE2 or vehicle for 2 

hours on ice, washed and resuspended in media with 10% HI-FBS and cultured 

at 37 oC for 16 hours.   After incubation, cells were washed, resuspended in 

RPMI/0.5% BSA and migration to rhSDF-1α quantitated by flow cytometry.  To 

block the CXCR4 receptor, replicate cells were incubated with 5 µg/ml AMD3100 

for 30 minutes prior to the migration assay.  Data are the Mean ± SEM 

percentage migration for 3 experiments.  † P<0.05 for dmPGE2 treated cells 

compared to cells treated with vehicle. 

(B)  Homing efficiency of vehicle and dmPGE2 treated cells to bone marrow in the 

absence and presence of 10 µM AMD3100.  Cells were incubated with AMD3100 

for 30 minutes prior to the homing assay.  Data are expressed as Mean ± SEM; 

N=3 mice per group, each assayed individually. 
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AMD3100 prior to evaluation of in vivo homing.  PGE2 pulse-exposure increased 

homing of SKL cells as described earlier, and incubation of vehicle or dmPGE2 

pulsed cells with AMD3100 significantly reduced SKL cell homing (Figure 16B) 

and abrogated the improved homing efficiency of dmPGE2 pulsed cells.  Pulse-

exposure to dmPGE2 enhanced SKL cell homing efficiency by 2.6±0.3 fold 

(P<0.05), which was reduced to 1.3±0.2 fold (P=NS) in the presence of 

AMD3100.   AMD3100 reduced overall homing by 42±5% (range 31-64), 

consistent with previous reports (Christopherson et al., 2004; Fukuda et al., 

2007). 

PGE2 decreases HSC apoptosis and increases Survivin  

PGE2 treatment produces a ~4-fold increase in HSC and CRU frequency 

(Figure 5), but only a ~2-fold enhancement in homing (Figure 11), which 

suggests that other mechanisms are involved in enhanced engraftment.  

Apoptosis is an important regulatory process in normal and malignant 

hematopoiesis (Koury, 1992) and PGE2 has been implicated in anti-apoptotic 

signaling (Fernandez-Martinez et al., 2006; George et al., 2007).  Moreover, 

activation of cAMP, a downstream signaling molecule of EP receptors, inhibits 

apoptosis in CD34+ cells (Negrotto et al., 2006).  We hypothesized that dmPGE2 

treatment affects survival and/or proliferation of HSC, contributing to enhanced 

engraftment.  Under conditions of reduced serum concentration, dmPGE2 pulse-

exposure significantly reduced intracellular active caspase-3 in SLAM SKL cells 

(Figure 17A).  Dose ranging studies using Annexin-V as an additional marker of  
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Figure 17.  PGE2 decreases apoptosis, increases Survivin expression and 

decreases active caspase-3 in HSC. 

(A)  Linneg bone marrow cells were treated with dmPGE2 or vehicle and cultured 

in media supplemented with 2% HI-FBS without growth factors for 24 hours to 

induce apoptosis.  Cultured cells were stained for SKL and SLAM and PE-anti-

active caspase-3 and/or FITC-Annexin-V and the proportion of SKL or SLAM 

SKL cells undergoing apoptosis determined by FACS.  (Inset) dose response 

analysis of the effects of dmPGE2 on SKL cell apoptosis. 

(B)  Fold increase in MFI for intracellular Survivin levels in control and dmPGE2 

pulsed murine SKL and human CD34+ cells 24 hours after treatment.  Data are 

Mean ± SEM from 3 experiments, N=3 mice per group, each assayed 

individually, or are representative of 3 separate UCB samples.  

(C)  Intracellular Survivin and active caspase-3 levels in SKL cells 24, 48, and 72 

hours post-treatment with dmPGE2.  Data expressed as Mean ± SEM for 3 

experiments; N=3-6 mice per group, each assayed individually.  *P<0.05. 
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apoptosis indicated that dmPGE2 inhibited apoptosis in a dose-dependent 

fashion, reaching ~65% inhibition at 1 µM (Figure 17A-Inset).  

Our laboratory previously showed that the inhibitor of apoptosis protein 

Survivin regulates apoptosis and proliferation of HSC (Fukuda and Pelus, 2001; 

Fukuda and Pelus, 2002) and PGE2 has been reported to alter Survivin levels in 

cancer cells (Baratelli et al., 2005; Krysan et al., 2004).  We therefore evaluated if 

PGE2 affected Survivin expression in HSC and HPC.  At 24 hours post dmPGE2 

treatment, intracellular Survivin levels were significantly higher in murine SKL 

cells and human CD34+ UCB cells (1.7 and 2.4 fold, respectively) compared to 

control (Figure 17B).  QRT-PCR analysis of treated SKL cells similarly indicated 

elevated Survivin mRNA compared to control (2.94 fold).  In a kinetic analysis, 

decreased active caspase-3 coincident with an increase in Survivin was seen at 

24, 48, and 72 hours post-exposure of SKL cells to dmPGE2 compared to control 

(Figure 17C), consistent with the caspase-3 inhibiting activity of Survivin (Tamm 

et al., 1998). 

PGE2 increases HSC proliferation  

Survivin regulates HSC entry into and progression through cell cycle 

(Fukuda et al., 2002; Fukuda and Pelus, 2001).  Furthermore, β-catenin, 

implicated in HSC proliferation and self-renewal (Fleming et al., 2008), lies 

downstream of EP receptor pathways (Regan, 2003).  The ability of PGE2 to 

modulate these cell cycle regulators suggests that an increase in HSC self-
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renewal and proliferation might contribute to the enhanced engraftment of 

dmPGE2 pulsed cells.  To test this hypothesis, we analyzed the cell cycle status 

of dmPGE2 or vehicle pulsed SKL cells in vitro.  Pulse-exposure to dmPGE2 

increased SKL cell cycling (Figure 18A), with 60% more SKL cells in G1 + S/G2M 

phase of the cell cycle after dmPGE2 treatment compared to controls.  To 

evaluate the effect of dmPGE2 exposure on primitive, quiescent HSC, we 

performed additional in vitro studies using SLAM SKL cells.  Similar to SKL cells, 

in vitro dmPGE2 pulse-exposure significantly increased the proportion of SLAM 

SKL cells in cell cycle (G1 + S/G2M) by 24% (Table 4).  No significant effect on 

cell cycle rate of KL or Linneg cells was seen (not shown); suggesting that 

dmPGE2 selectively increases HSC cycling state.   

To confirm the effect of dmPGE2 on enhancement of HSC cell cycle 

observed in vitro, bone marrow cells were pulsed with dmPGE2 and injected into 

congenic mice treated with BrdU post-transplant, and the proportion of donor 

BrdU+ SKL cells determined 16 hours later (Figure 18B).  A ~2-fold increase in 

the proportion of homed SKL cells in S + G2/M phase was observed for cells 

pulsed with dmPGE2 prior to transplant, confirming that short-term exposure of 

HSC to dmPGE2 stimulates HSC to enter and progress through cell cycle in vivo.  
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Figure 18.  PGE2 increases the proliferation of SKL cells. 

(A)  Linneg cells were treated with either vehicle or 1 µM dmPGE2 for 2 hours, 

washed and cultured in media with rmSCF, rhFlt3 and rhTPO.  After 20 hours, 

cells were stained for SKL and Hoechst-33342 and Pyronin-Y.  The proportion of 

SKL cells in cell cycle was quantitated by FACS.  Representative flow plot 

showing cell cycle distribution of gated SKL cells and combined data for fold 

increase in cell cycle for dmPGE2 treated cells compared to vehicle control from 

3 experiments, Mean ± SEM, N=9 mice, each assayed individually. 

(B)  CD45.1 Linneg bone marrow cells were treated with dmPGE2 or vehicle and 

transplanted into lethally irradiated CD45.2 mice.  Immediately after 

transplantation, BrdU was provided in drinking water and administered by IP 

injection.  Bone marrow was analyzed 16 hours later and the proportion of 

CD45.1+ SKL cells that were BrdU+ was analyzed by FACS analysis.  Data are 

Mean ± SEM, N=5 mice per group, each assayed individually. 
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Table 4 

Effects of short term in vitro exposure of SLAM SKL cells to  

dmPGE2 on cell cycle 

 

 

  

  

 SLAM SKL Cells a 

     

In vitro     

treatment G0 G1 S+G2M % cells in cycle b 

     

     

Vehicle  63.4±2.5  2.6±0.7   33.8±2.1   36.4±2.4 

     

1 µM dmPGE2     54.8±2.2 *     6.8±1.9 *     38.4±1.6 *     45.2±2.2 * 
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Table 4.  Effects of short term in vitro exposure of SLAM SKL cells to  

dmPGE2 on cell cycle. 

 
a. Linneg cells treated with either 1 µM dmPGE2 or vehicle for 2 hours and 

cultured in the presence of growth factors (50 ng/ml rmSCF, 100 ng/ml each of 

rhFlt-3 and rhTPO) for 20 hours, were stained for SLAM SKL, Hoechst-33342 

and Pyronin-Y and the proportion of SLAM SKL cells in G0, G1, S and G2/M 

phase of the cell cycle determined by quantitation of DNA and RNA content by 

FACS.  Data are Mean ± SEM for N=9 mice, each assayed individually. 

b. Percentage of cells in G1+S+G2M; combined data for N=9 mice. 

*   P<0.05 compared to vehicle control.  
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Discussion: 

It is well documented that PGE2 participates in regulation of 

hematopoiesis, both inhibiting myelopoiesis in vitro (Pelus et al., 1979) and in 

vivo (Gentile et al., 1983) and promoting erythroid and multi-lineage colony 

formation (Lu et al., 1984; Lu et al., 1987) and enhancing proliferation of CFU-S 

(Feher and Gidali, 1974) and CFU-GM (Verma et al., 1981).  In addition, PGE2 

stimulates production of cycling HPC from the quiescent bone marrow 

compartment (Pelus, 1982), suggesting that PGE2 has biphasic effects on 

hematopoiesis.  These studies implicated PGE2 in stem cell function, but did not 

directly evaluate HSC.  Moreover, one cannot rule out that inhibition of colony 

formation by PGE2 resulted from modulation of HSC commitment to self-renewal 

versus differentiation, thus reducing colony formation.  Recently, ex vivo 

exposure of bone marrow cells to PGE2 was shown to facilitate murine 

hematopoietic cell engraftment (North et al., 2007), validating previous studies 

that PGE2 enhances HPC production and extending the role of PGE2 to 

stimulation of HSC function.  However, the mechanism by which PGE2 produced 

this effect was not defined.  We now demonstrate, for the first time, that PGE2 

has direct and stable effects on long-term repopulating HSC, as determined by 

serial transplantation, and facilitates HSC engraftment by increasing CXCR4, 

enhancing migration to SDF-1α and homing to bone marrow, up-regulating 

Survivin expression that blocks HSC apoptosis, and increasing the proportion of 

LTR-HSC entering into and progressing through cell cycle. 
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 Direct comparison in competitive transplant models showed that short-

term exposure of HSC to PGE2 produces a ~4-fold competitive advantage, 

consistent with published results (North et al., 2007).  However, previous studies 

showed a maximal effect on HSC frequency at 12 weeks post-transplant with 

reduced HSC frequency at 24 weeks, suggesting a greater effect on short-term 

rather than long-term repopulating cells.  Our studies show that PGE2-induced 

enhancement of HSC frequency was stable throughout a >20 week period and 

was maintained in secondary transplants through 24 weeks, clearly indicating a 

sustained effect on LTRC.  The reasons for this difference in repopulating 

stability are not clear, but may relate to more precise head-to-head quantitation 

of HSC competition in our model. 

 Full hematopoietic reconstitution was observed in serially transplanted 

recipients using either control or PGE2 treated cells, indicating no adverse impact 

of PGE2 on HSC self-renewal.  Maintenance of the PGE2 treated graft through 

four separate serial transplantations clearly indicates that LT-HSC were 

enhanced, and not the recently described IT-HSC (Benveniste et al., 2010).  In 

fact, a trend towards increased LTRC activity was seen, indicating that the 

enhancing effect of short-term PGE2 exposure on HSC observed in primary 

transplants was long lasting, since no additional treatment was performed on 

cells or animals before secondary transplants.  However, our long-term 

competitiveness assay, in which we equalized HSC content from previously 

treated PGE2 and vehicle grafts, demonstrates that there is not an inherent 
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competitive advantage to the PGE2 treated grafts, but rather enhancements in 

the serial transplants were simply mediated by increased numbers of HSC in the 

primary graft, presumably by increased homing and self-renewal.  While it is 

commonly assumed that a single HSC compartment gives rise to all 

hematopoietic lineages, recent studies have demonstrated the presence of 

normal HSC biased towards lymphoid or myeloid differentiation (Muller-Sieburg 

and Sieburg, 2006a).  In secondary transplants, we observed a myeloid bias in 

mice transplanted with PGE2 treated HSC, suggesting a possible selective effect 

of PGE2 on myeloid-biased HSC.  However, white blood cell counts in serial 

transplanted mice have remained within normal ranges, and this myeloid shift 

was not observed in subsequent transplants. 

 While it was suggested that PGE2 does not affect HSC homing, earlier 

studies evaluated WBM (North et al., 2007) and did not specifically assess HSC 

or HPC.  When evaluating total transplanted cells we also observed no difference 

in homing efficiency between control and PGE2 treated cells; however, enhanced 

homing of SKL cells by PGE2 was clearly evident.  Furthermore, enhanced 

homing efficiency of PGE2 treated, sorted SKL cells was observed, suggesting a 

direct effect on HSC.  PGE2 also enhanced homing of human CD34+ UCB in 

immunodeficient NSG mice, strongly indicating translation of HSC enhancement 

to human stem cell grafts.  Although more primitive populations of HSC than 

defined by SKL can be identified, (e.g. CD34- SKL and SLAM SKL), the small 

number of homed events that can ultimately be detected using these markers 
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precludes the ability to define effects of PGE2 on these extremely rare cells in 

vivo in individual mice as we performed.  The fact that we see similar activities of 

PGE2 on LTRC and on SKL and SLAM SKL cells in a number of assays of HSC 

function without significant effects on the progenitor cell-enriched KL cell 

population, indicates that the SKL cell fraction is a valid indicator of the effects of 

PGE2 on HSC homing. 

PGE2 treatment increased SKL CXCR4 mRNA and surface expression, 

consistent with effects of PGE2 on CXCR4 in CD34+ cells (Goichberg et al., 

2006).  This increase in CXCR4 corresponds directly with a functional increase in 

chemotaxis to SDF-1α, and chemotaxis was blocked using AMD3100.  In 

addition, AMD3100 significantly reduced the enhancing effect of PGE2 on homing 

in vivo; suggesting that increased CXCR4 expression and chemo-attraction to 

marrow SDF-1α are largely responsible for the enhanced homing effect, although 

additional effects on adhesion molecule expression or function cannot be 

excluded.  We also found elevated mRNA and protein levels of Survivin, with 

concomitant reduced active caspase-3 in PGE2 treated SLAM SKL cells.  It is 

likely that enhanced HSC survival, mediated through Survivin, also contributes to 

enhanced engraftment. 

Pulse-exposure to PGE2 increased the proportion of HSC in cell cycle by 

~2-fold, with increased frequency of HSC, CRU and homed BrdU+ SKL cells and 

maintenance of enhanced HSC frequency in serial transplants, suggesting that 

PGE2 pulse-exposure initiated at least a single round of HSC self-renewal.  EP2 
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and EP4 receptor activation can result in phosphorylation GSK-3 and increased 

β-catenin signaling (Regan, 2003), which is downstream of the Wnt pathway that 

has been implicated in HSC survival and self-renewal (Fleming et al., 2008; Khan 

and Bendall, 2006).  Signaling by PGE2 through EP4 can directly increase β-

catenin and synergistic cross-talk between COX2 and Wnt pathways has been 

suggested (Wang et al., 2004).  Further exploration of specific signaling 

pathways and EP receptors involved in mediating the effects of PGE2 may refine 

our understanding of the role of PGE2 on HSC function.  While it has been 

suggested that cycling cells have reduced marrow homing, which may be the 

result of triggered apoptosis (Jetmore et al., 2002), it is clear that PGE2 treated 

cells have both enhanced homing and enhanced migration, despite their 

enhanced cycling.  This may be explained by the increase in CXCR4 migratory 

response overcoming deficits in cycling-cell homing and/or increased homing 

occurring before an increase in cycling.  Additionally, PGE2 may protect homed 

cycling HSC from apoptosis, thus allowing for simultaneous enhanced homing, 

survival and proliferation in these cells. 

Our laboratory previously reported that Survivin is required for HSC to 

enter and progress through cell cycle (Fukuda et al., 2002; Fukuda and Pelus, 

2002) and deletion in conditional knockout mice indicates Survivin is required for 

HSC maintenance (Leung et al., 2007).  Survivin also facilitates HSC cell cycle 

through p21WAF1/CDKN1 (Fukuda et al., 2004), known to be involved in HSC 

function (Cheng et al., 2000), and blocks caspase-3 activity (Tamm et al., 1998), 
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recently implicated in HSC self-renewal (Janzen et al., 2008).  Our findings that 

PGE2 up-regulates Survivin, which is consistent with previous reports in cancer 

(Krysan et al., 2004) and dendritic cells (Baratelli et al., 2005), and decreases 

intracellular levels of active caspase-3 in primitive HSC, suggest that the Survivin 

pathway may also be involved in the effects of PGE2 on self-renewal.  It is 

interesting to note that Survivin (Peng et al., 2006) and CXCR4 (Staller et al., 

2003) transcription are both up-regulated by the transcription factor hypoxia-

inducible factor-1α (HIF-1α), which can be stabilized by PGE2 (Piccoli et al., 

2007), potentially linking these PGE2 responsive pathways.  

In summary, we have defined specific mechanisms of action and new 

pathways for enhancement and regulation of HSC function by PGE2.  The 4-fold 

increase in HSC frequency and engraftment produced by exposure to PGE2 

results from the cumulative effect of a 2-fold increase in HSC homing and a 2-

fold increase in HSC cell cycle activity.  Although the precise signaling pathways 

remain to be determined, enhanced engraftment involves up-regulation of 

CXCR4 and Survivin, with subsequent increased chemotactic response to SDF-

1α and reduced apoptosis.  The ability to easily improve homing and 

survival/proliferation of HSC by short-term PGE2 exposure is exciting from a 

clinical perspective, especially in transplant settings where insufficient or low 

HSC numbers are found, e.g. UCB and some mobilized peripheral blood stem 

cell (PBSC) products.  Our limiting dilution transplant studies show that 

equivalent engraftment is achieved with one-fourth the number of PGE2 treated 
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cells compared to controls, supporting a use for PGE2 when HSC numbers are 

limiting.  Homing and migration studies utilizing UCB CD34+ cells clearly suggest 

potential translation to human hematopoietic grafts.  Lastly, it will be interesting to 

determine if enhanced engraftment/recovery can be achieved by administering 

PGE2 in vivo or if PGE2 used in vivo can further facilitate engraftment of HSC 

exposed to PGE2 ex vivo.  In COX2 knockout mice, recovery from 5-fluorouracil 

(5-FU) is delayed (Lorenz et al., 1999) suggesting that COX2 activation and 

subsequent PGE2 production may be critical for HSC expansion.  Analysis of the 

effects of COX inhibition is explored in Chapter 3, and new findings on COX 

inhibition in irradiated animals are discussed in Chapter 4. 
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Chapter 3.  Modulation of Eicosanoid Signaling to Enhance  
Hematopoietic Expansion and Mobilization 

 
 

Introduction: 

 As discussed in Chapter 1, mobilized adult HSC and HPC are widely used 

for autologous and allogeneic transplantation and have improved patient 

outcomes.  G-CSF-mobilized PBSC are associated with more rapid engraftment, 

shorter hospital stay (Jansen et al., 1999; Kennedy et al., 1993; McQuaker et al., 

1997; Nemunaitis et al., 1995), and in some circumstances, superior overall 

survival compared to bone marrow (Stem Cell Trialists’ Group, 2005). 

Administration of G-CSF for 5-7 days to patients and normal donors is associated 

with morbidity in the form of bone pain, nausea, headache and fatigue (Anderlini 

et al., 1998; Anderlini et al., 2001; Fortanier et al., 2002; Rowley et al., 2001), 

which can be lifestyle disruptive in normal volunteers.  G-CSF is associated with 

serious toxicity, including enlargement of the spleen (Platzbecker et al., 2001; 

Stroncek et al., 2003) and splenic rupture (Balaguer et al., 2004; Becker et al., 

1997; Falzetti et al., 1999; Kroger et al., 2002) in normal donors.  The pro-

coagulant effects of G-CSF increase risk of myocardial infarction and cerebral 

ischemia in high-risk individuals (Hill et al., 2005; Lindemann and Rumberger, 

1993).  G-CSF is contraindicated in patients with Sickle Cell Disease for its 

potential to precipitate sickle crisis (Adler et al., 2001; Kang et al., 2002) 

precluding its use as a mobilizing agent in this patient population, which has a 
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potential negative impact on utility of adult HSC gene therapy for these patients.  

Poor mobilization in response to G-CSF occurs in 25% of patients, particularly 

those with lymphoma and multiple myeloma (Stiff et al., 2000) and 15% of normal 

donors (Anderlini et al., 1997), requiring extended aphereses (Schmitz et al., 

1995).  The incidence of chronic GVHD is higher (Couban et al., 2002; Cutler et 

al., 2001; Mohty et al., 2002) for G-CSF-mobilized PBSC than bone marrow.  

Hence, there continues to be a search for safe and effective mobilizing agents to 

expand the use of hematopoietic grafts and PBSC transplantation. 

 Expanded application of allogeneic transplantation for malignant disease, 

tolerance induction for solid organ transplant, and HSC based gene therapies 

that do not provide a competitive advantage to the graft, require larger doses of 

PBSC to ensure durable engraftment, acceptable leukocyte recovery kinetics and 

low incidence of GVHD (Aversa et al., 1998; Reisner and Martelli, 2000).  

Optimum CD34+ cell dose for allogeneic transplantation remains unknown.  

Studies suggest that doses >3x106/kg are associated with reduced morbidity and 

mortality (Bittencourt et al., 2002), however higher CD34+ cell doses result in 

more rapid engraftment, less morbidity and better survival rates (Pulsipher et al., 

2009), particularly for patients with disease at high risk of relapse (Nakamura et 

al., 2008; Panse et al., 2005).  The small molecule CXCR4 antagonist AMD3100 

has been used successfully to mobilize PBSC from normal donors for allogeneic 

transplant (Devine et al., 2008).  However, the use of AMD3100 alone for 
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mobilization of HSC and HPC is unlikely to yield sufficient CD34+ cells for over 

half of patients undergoing allogeneic transplant. 

 As discussed in Chapter 2, we have identified new roles for PGE2 in 

regulating HSC homing to bone marrow, survival, and stem cell self-renewal.  

These findings, coupled with earlier findings on the inhibition of HPC expansion 

by PGE2  (Gentile and Pelus, 1988; Kurland et al., 1978; Kurland et al., 1979; 

Pelus et al., 1979; Pelus et al., 1981; Pelus et al., 1983; Pelus et al., 1988; Pelus 

and Gentile, 1988) led to our hypothesis that inhibition of PGE2 synthesis with 

NSAIDs would block the inhibition of HPC expansion, and would reduce HSC 

and HPC tethering within the bone marrow to facilitate mobilization.  In this 

Chapter, we provide evidence demonstrating that NSAIDs alone and in 

combination with mobilizing agents facilitate mobilization of HSC and HPC.  

NSAID facilitated grafts have superior engraftment capability in lethally irradiated 

mice, with long-term repopulation.  We also show enhancement of HSC and HPC 

mobilization in NSAID treated baboons.  These positive effects on HSC and HPC 

regulation require inhibition of both COX1 and COX2 enzymes, and we show 

here that HPC expansion and mobilization is elicited through a reduction in PGE2 

EP4 receptor signaling.  Our results define a novel role for NSAIDs and suggest 

that the addition of NSAIDs, particularly Meloxicam, to current mobilization 

regimens will increase HSC and HPC yield.  In addition, we have identified novel 

mechanisms mediated by EP receptors and show that HPC expansion and 

hematopoietic mobilization can be enhanced in vivo through antagonism of the 



 

113 
 

EP4 receptor, defining a new pharmaceutical target for hematopoietic 

mobilization and transplantation. 

Materials and Methods: 

Mice and baboons 

C57Bl/6 (CD45.2) mice were purchased from Jackson Laboratories (Bar 

Harbor, ME).  B6.SJL-PtrcAPep3B/BoyJ (BOYJ) (CD45.1) mice were bred in-

house.  Mice used in transplant studies received Doxycycline feed for 30 days 

post-transplant.  The Animal Care and Use Committee of IUSM approved all 

protocols.  Female olive baboons, Papio anubis, within the weight range of 16-19 

kg, were housed individually in conventional caging and holding rooms of the 

Biological Resources Laboratory, a centralized animal facility for the University of 

Illinois at Chicago Medical Center, Chicago, IL, which is accredited by the 

Association for the Assessment and Accreditation of Laboratory Animal Care-

International.  Baboons were maintained in rooms conditioned to 18.5-24.0 ºC 

with an average relative humidity of 30% and provided a 12-hour light, 12-hour 

dark full-spectrum light cycle.  Baboons were fed with commercial 15% protein 

monkey chow (Teklad 8714, Harlan, Indianapolis, IN) supplemented with fresh 

fruit and foraging mix and had ad libitum access to tap water.  The conducted 

research was approved by the University of Illinois at Chicago Animal Care and 

Use Committee.  The use of baboon PBSC was similarly approved by the 

Indiana University IACUC and IRB. 
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Peripheral blood and bone marrow acquisition and processing 

Peripheral blood from mice was obtained by cardiac puncture following 

CO2 asphyxiation using an ethylenediaminetetraacetic acid (EDTA) rinsed 

syringe.  Blood was transferred to tubes containing EDTA for complete blood cell 

(CBC) analysis.  CBC analysis was performed on a Hemavet 950FS (Drew 

Scientific).  Peripheral blood mononuclear cells (PBMC) were prepared by 

centrifugation over Lympholyte Mammal (Cedarlane Laboratories Ltd, Hunby, 

Ontario, Canada) at 800g for 30-40 minutes at room temperature, followed by 

triplicate washes.  Bone marrow cells were harvested by flushing femurs with ice-

cold PBS and single-cell suspensions prepared by passage through a 26-gauge 

needle.  For baboons, peripheral blood was obtained from the femoral vein of 

baboons anesthetized with an intramuscular injection of 10 mg/kg ketamine 

hydrochloride (Bionichepharma, Lakeforest, IL).  Blood was collected into 10 ml 

sterile EDTA vacutainers (Becton, Dickinson and company, Franklin, NJ) and 

transported on ice to the IUSM campus for analysis.  Complete blood counts with 

differential counts were performed on a Hemavet 950FS.   Peripheral blood was 

then diluted 1:3 with PBS and mononuclear cells were isolated using Ficoll-

Paque™ Plus (Amersham Biosciences), per manufacturer’s protocol. 
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Colony assays 

Bone marrow cells or PBMC  were resuspended in McCoy’s 5A modified 

media supplemented with 100 U/ml penicillin, 100 µg/ml streptomycin, 0.6 X 

modified essential medium (MEM) vitamin solution, 1 mM sodium pyruvate, 0.8 X 

MEM essential amino acids, 0.6 X MEM nonessential amino acids, 0.05% 

sodium bicarbonate (all from Gibco), serine, asparagine, glutamine mixture and 

15% HI-FBS (Hyclone Sterile Systems, Logan, UT) as described (King et al., 

2001; Pelus et al., 1979).  Cells were mixed with 0.3% agar (Difco Laboratories, 

Detroit, MI) in McCoy’s 5A medium with 10 ng/ml rhGM-CSF and 50 ng/ml 

rmSCF (R&D).  PBMC were cultured at 2x105 cells per ml and bone marrow cells 

at 5x104 cells per ml.  All cultures were established in triplicate from individual 

animals, incubated at 37 ºC, 5% CO2, 5% O2 in air for 7 days and colonies 

quantitated by microscopy.  In some experiments, total CFC including CFU-GM, 

BFU-E and CFU-GEMM were enumerated in 1% methylcellulose/IMDM 

containing 30% fetal bovine serum, 1 U/ml recombinant human erythropoietin 

(EPO), 10 ng/ml rhGM-CSF and 50 ng/ml rmSCF as described (Broxmeyer et al., 

2007a; Fukuda et al., 2007).  For baboon colonies, similar assays were 

performed using recombinant human growth factors. 

Flow cytometry 

All antibodies were purchased from BD Biosciences unless otherwise 

noted.  For detection of SKL cells, we used streptavidin conjugated with PE-Cy7 
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(to stain for biotinylated MACS® lineage antibodies (Miltenyi), c-kit-APC, Sca-1-

PE or APC-Cy7, CD45.1-PE, CD45.2-FITC.  For SLAM SKL, we utilized Sca-1-

PE-Cy7, c-kit-FITC, CD150-APC (eBiosciences, San Diego, CA), CD48-biotin 

(eBiosciences) and streptavidin-PE.  CXCR4 expression was analyzed using 

biotinylated Lineage antibodies, streptavidin-PECy7, c-kit-APC, Sca-1-APC-Cy7, 

and CXCR4-PE.  For baboon CD34 analysis, CD34-PE (Clone 563) was used.  

Analyses were performed on an LSRII flow cytometer (BD). 

Peripheral blood mobilization 

Several different mobilization strategies were employed throughout this 

dissertation.  The specific details of dosing and schematics of dosing regimens 

are shown on the data figures or included in the figure legends.  In general, mice 

were given subcutaneous treatments of vehicle, NSAID (at varying doses), G-

CSF (50µg/kg, twice a day for 4 days), or G-CSF plus NSAID.  For studies 

exploring mobilizing agents other than G-CSF, mice were treated with AMD3100 

(5 mg/kg day 5; single injection), or AMD3100 plus GROβ (5 mg/kg and 20 mg/kg 

respectively, day 5; single co-injection), and peripheral blood harvested at 1 hour, 

or 15 minutes after injection, respectively.  For comparisons of multiple different 

NSAIDs, all NSAIDs were dosed by oral gavage.  Animals were restrained by 

tightly scruffing with the non-gavage hand, and oral gavage was performed using 

a 1.5 inch, curved, 20-gauge, stainless steel feeding needle with a 2.25 mm ball 

(Braintree Scientific, Braintree, MA).  Each gavage treatment was given in a 0.2 

ml bolus (10 ml/kg) of 0.5% methyl cellulose (Methyl Cellulose M-0512, Sigma- 
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Aldrich, St. Louis, MO) with an NSAID suspended in solution.  For EP receptor 

analysis, mice were mobilized with G-CSF in combination with Meloxicam, 

AH6809 (EP1-3 antagonist, 10 µg per mouse, ip, 4 days), AH23848 (EP4 

antagonist, 10 µg per mouse, ip, 4 days), L-161,982 (EP4 antagonist, 10 µg per 

mouse, ip, 4 days) or G-CSF plus Meloxicam and an EP2, EP1/3 or EP4 agonist 

(10 µg per mouse, ip, 4 days) or dmPGE2 (10 µg per mouse, ip, 4 days).  For 

baboon studies, a baseline bleed was performed for CBC, CD34 and CFC 

analysis.  Two days later, 2 baboons were treated with 10µg/kg G-CSF, and 2 

baboons were treated subcutaneously with 10µg/kg G-CSF and 0.2 mg/kg 

Meloxicam on day 1, followed by 0.1 mg/kg Meloxicam subsequent days, for 5 

total days.  Blood was collected following treatment regimen for CBC, CD34, and 

CFC analysis.  Following a 2 week resting period, the above procedure was 

repeated, switching treatment groups for individual baboons.  Additionally, after 

another 2 week resting period, blood was collected before and after a 5 day 

treatment regimen with Meloxicam and CBC, CD34, and CFC were analyzed. 

Limiting dilution competitive transplantation 

CD45.1 mice were mobilized with a standard 4 day regimen of G-CSF, or 

G-CSF plus a 4 day regimen of Meloxicam (6 mg/kg).  In some studies designed 

to evaluate timing and duration of NSAID dosing in combination with G-CSF, 

initiation of the NSAID regimen preceded G-CSF and was staggered such that 

NSAID administration ended simultaneous with the G-CSF regimen (no stagger), 

1 day prior to G-CSF (1 day stagger) or 2 days prior to G-CSF (2 day stagger) 



 

118 
 

(regimens as depicted in the corresponding data figure).  On day 5, PBMC were 

acquired and transplanted at 1:1, 2:1, 3:1 or 4:1 ratios with 5x105 C57Bl/6J WBM 

competitors into lethally irradiated C57Bl/6J recipient mice.  Peripheral blood 

chimerism was monitored monthly, and CRU and LT-HSC frequency calculated 

as described earlier.  

Recovery assay 

Mice were mobilized with G-CSF or G-CSF plus Meloxicam with 

staggered dosing as described above and 2x106 mobilized PBMC transplanted 

into cohorts of 10 lethally irradiated recipients per group.  A cohort of non-

irradiated mice was bled on the same schedule as the experimental treated 

groups of mice.  Every other day, 5 mice from each group were bled (~50µl from 

a tail snip) and neutrophils and platelets in blood were enumerated using a 

Hemavet 950FS.  Alternate groups of 5 mice were bled on each successive 

bleeding time point so that mice were only bled once every 4 days.  Recovery of 

neutrophils and platelets to 50% and 100% were determined by comparison to 

the average neutrophil and platelet counts in the control group throughout the 

experimental period.  After 90 days, mice were sacrificed, bone marrow 

harvested, and transplanted at a 2.5:1 ratio with 2x105 congenic competitors into 

lethally irradiated recipients to determine long-term repopulating ability of the 

primary mobilized graft. 

  



 

119 
 

Results: 

NSAID treatment results in increased HPC 

 Previous work (Lu et al., 1986; Lu et al., 1987; Pelus, 1982; Pelus, 1984; 

Pelus, 1989b) and recent studies by us (Hoggatt et al., 2009) and others (Feher 

and Gidali, 1974; North et al., 2007; Verma et al., 1981) demonstrate a positive 

role of PGE2 on HSC function.  In addition, our studies extend the effects of 

PGE2 to include enhancement of HSC homing, survival and self-renewal 

(Hoggatt et al., 2009).  These results suggest that PGE2 signaling facilitates HSC 

maintenance/self-renewal.  However, continued exposure to PGE2 in vitro and in 

vivo can inhibit HPC proliferation and differentiation (Gentile and Pelus, 1988; 

Kurland et al., 1978; Kurland et al., 1979; Pelus et al., 1979; Pelus et al., 1981; 

Pelus et al., 1983; Pelus et al., 1988; Pelus and Gentile, 1988) and reduce 

hematopoietic expansion.  Previous studies showed that blockade of 

prostaglandin biosynthesis enhanced HPC expansion induced by IL-1 (Pelus, 

1989a).  We confirmed and extended these findings and showed that daily 

administration of the prototypical dual COX inhibitor Indomethacin produced 

incremental expansion of CFU-GM in the marrow of treated mice reaching ~2-

fold after 4 days (not shown).  Bone marrow HPC expansion was not observed 

with COX1 (SC560) or COX2 (Valdecoxib) selective NSAIDs (Figure 19), 

suggesting that HPC expansion requires inhibition of both COX enzymes.  

Meloxicam was as effective as Indomethacin in increasing HPC within the bone 

marrow of treated mice.  
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Figure 19 
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Figure 19.  Dual COX inhibitory NSAIDs expand HPC within bone marrow. 

Mice were administered dual (Indomethacin, Meloxicam), COX2 selective 

(Valdecoxib) or COX1 selective (SC560) inhibitors twice daily for 4 days.  On day 

5, mice were sacrificed, bone marrow from one femur isolated, total nucleated 

cells counted on a Hemavet 950FS and CFU-GM determined.  Data are Mean ± 

SEM for N=5 mice per group, each assayed individually. 
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NSAID treatment enhances mobilization of HSC and HPC 

 In Chapter 2, we presented findings that PGE2 signaling increased 

CXCR4 receptor expression (Figure 14) and homing of murine and human HSC 

to the bone marrow (Figures 11-13).  The fact that PGE2 is produced in bone 

marrow suggests that it may be involved in maintenance of HSC and HPC 

CXCR4 expression.  Therefore, we reasoned that inhibition of PGE2 biosynthesis 

by NSAID administration that reduces PGE2 signaling that maintains CXCR4 

expression and chemoattraction/tethering in the bone marrow, in combination 

with NSAID expansion of HPC could enhance mobilization of HSC and HPC to 

peripheral blood.  To test this hypothesis, mice were treated with vehicle, 

Indomethacin, G-CSF, or G-CSF plus Indomethacin twice daily for 4 days (Figure 

20A).  On day 5, peripheral blood was acquired and analyzed for CFU-GM.  

Administration of NSAID alone resulted in a marginal, but significant increase in 

CFU-GM in peripheral blood (Figure 20B, left) and when co-administered with G-

CSF synergistically increased mobilization (Figure 20B, right).  The LOX inhibitor 

Baicalein was also evaluated alone and in combination with G-CSF, and had no 

significant effect on mobilization, indicating that enhancements by NSAIDs are 

specific to the COX pathway and not due to general eicosanoid inhibition.  

Multiple experiments demonstrated a ~2-fold increase in CFU-GM mobilization 

over G-CSF (Figure 21A).  Mobilization of BFU-E and CFU-GEMM were similarly 

enhanced (not shown) indicating that the effect of NSAIDs is not selective for 

CFU-GM.  Immunophenotypic analysis of peripheral blood by flow cytometry 
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demonstrated significant enhancement in both the SKL and SLAM SKL 

populations with co-administration of NSAID (Figure 21B), suggesting that both 

HPC and HSC mobilization are enhanced.  Additionally, analysis of CFU-GM 

colonies from G-CSF mobilized mice compared to G-CSF plus Indomethacin 

mobilized mice showed a marked shift in monocytic and multi-centric colony 

formation (Figure 22), which possibly indicates preferential expansion of an 

altered HPC pool and/or egress of a subset of HPC. 
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Figure 20.  Indomethacin enhances mobilization of CFU-GM. 

(A)  Schematic of the dosing regimen used to evaluate the mobilization of CFU-

GM using G-CSF, Indomethacin, or the combination of G-CSF plus 

Indomethacin. 

(B)  Effects of daily subcutaneous administration of 150 μg/kg Indomethacin  or 

150 µg/kg Baicalein (LOX inhibitor) alone (left panel) or with G-CSF (right panel) 

for 4 days on CFU-GM mobilization.  Data are expressed as Mean ± SEM, CFU-

GM mobilized per ml of blood for N=3 mice, each assayed individually. 

  



 

126 
 

0.0

0.5

1.0

1.5

2.0

2.5

Fo
ld

 In
cr

ea
se

 in
 C

FU
-G

M
/m

l B
lo

od
 o

ve
r G

-C
S

F G-CSF
G-CSF + Indomethacin

*

0

100

200

300

400

500

600

700

800

900

SKL x 10 SLAM SKL

*

*

P
he

no
ty

pi
ca

lly
de

fin
ed

 c
el

ls
 p

er
 m

l P
B

G-CSF
G-CSF + Indomethacin

Figure 21 

A 

 

 

 

 

 

 

B 

 

 

 

 

 

 

 



 

127 
 

Figure 21.  NSAIDs increase mobilization of functionally and phenotypically 

defined HSC and HPC. 

(A)  Mobilization of CFU-GM with G-CSF, or the combination of G-CSF and 

Indomethacin.  Data are expressed as Mean ± SEM from 3 experiments, N=12 

mice total per group, each assayed individually.  * P<0.01. 

(B)  Flow cytometric analysis of phenotypically defined HSC in peripheral blood 

of mice treated with G-CSF or the combination of G-CSF and Indomethacin.  

Data are expressed as Mean ± SEM, N=5 mice per group, each assayed 

individually.  * P<0.01. 
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Figure 22 
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Figure 22.  Representative CFU-GM colonies from G-CSF and G-CSF plus 

NSAID mobilized mice. 

(A)  Mice were mobilized with a 4 day regimen of G-CSF, and peripheral blood 

LDMC plated for CFC in the presence of SCF and GM-CSF.  Shown (left side) 

are “prototypical” colonies found in blood.  This representation is not inclusive of 

all colony types present, but is indicative of the morphology of the predominant 

colony types present. 

(B)  Mice were mobilized with a 4 day regimen of G-CSF plus NSAID, and 

peripheral blood LDMC plated for CFC in the presence of SCF and GM-CSF.  

Shown (right side) are representations of various “non-prototypical” colonies 

found as a result of NSAID treatment.  This representation is not inclusive of all 

colony types present, rather it highlights the increase in distinct morphological 

colony types not routinely observed in control cultures in panel A. 
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 The CXCR4 receptor selective antagonist  AMD3100 mobilizes HSC and 

HPC (Broxmeyer et al., 2005b; Broxmeyer et al., 2007b; Devine et al., 2008; 

Liles et al., 2003; Liles et al., 2005; Pelus et al., 2005), and has recently received 

FDA approval for use in combination with G-CSF for use in patients who do not 

respond well to G-CSF.  To evaluate the potential of NSAIDs to enhance 

mobilization by AMD3100, mice were administered vehicle, Indomethacin, 

AMD3100, or AMD3100 plus Indomethacin as shown (Figure 23A).  As shown 

previously, Indomethacin increased CFU-GM in peripheral blood (Figure 23B, 

left), and when co-administered with AMD3100 synergistically enhanced 

mobilization (Figure 23B, right).  To further evaluate the ability of NSAIDs to 

facilitate mobilization of hematopoietic grafts, mice were treated with vehicle, 

Indomethacin, AMD3100, G-CSF, AMD3100 plus GROβ (Pelus et al., 2006a; 

Pelus et al., 2006b; Pelus and Singh, 2008), AMD3100 plus Indomethacin, or G-

CSF plus Indomethacin.  NSAID co-administration facilitated mobilization with 

both AMD3100 and G-CSF, with the AMD3100 plus Indomethacin regimen 

mobilizing CFU-GM with at least the equivalency of G-CSF alone, or AMD3100 

plus GROβ (Figure 24).  These results demonstrate that facilitation of 

mobilization with NSAID administration is independent of the mobilization 

mechanisms of G-CSF, suggesting that bone marrow expansion with an NSAID 

can be used concurrently with any mobilizing agent to increase hematopoietic 

yield. 
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Figure 23.  NSAIDs synergistically increase mobilization with AMD3100. 

(A)  Schematic of dosing regimen used to evaluate the mobilization of HSC and 

HPC using AMD3100, Indomethacin, or the combination of AMD3100 plus 

Indomethacin. 

(B)  Mobilization of CFU-GM by vehicle or Indomethacin (50 µg, bid sc, 4 days) 

treatment alone (left panel).  Mobilization of CFU-GM by a single administration 

of AMD3100 (5 mg/kg on day 5), or Indomethacin treatment plus AMD3100 (right 

panel) was determined.  Data are expressed as Mean ± SEM, N=5 mice per 

group, each assayed individually.  P<0.05. 
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Figure 24 
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Figure 24.  Enhancement in mobilization by NSAIDs is independent of 

mobilizing agent mechanism. 

Mice were treated with vehicle, Indomethacin (50 µg, bid sc, 4 days), AMD3100 

(5 mg/kg day 5), G-CSF (1 µg, bid sc, 4 days), AMD3100 plus GROβ (5 mg/kg 

and 20 mg/kg respectively, day 5), AMD3100 plus Indomethacin (Indomethacin 

50 µg, bid sc, 4 days; AMD3100 5 mg/kg day 5), or G-CSF plus Indomethacin (1 

µg and 50 µg respectively, bid sc, 4 days).  Mobilization of CFU-GM was 

determined.  Data are expressed as Mean ± SEM, N=4 mice per group, each 

assayed individually. 
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Enhanced mobilization requires inhibition of COX1 and COX2 

 Increases in HPC within the bone marrow by NSAID administration 

required inhibition of both COX1 and COX2 enzymes (Figure 19).  To evaluate 

the optimal NSAID for facilitation of HSC and HPC mobilization, NSAIDs with 

relative COX1 to COX2 selectivity were evaluated in combination with G-CSF for 

their ability to mobilize CFU-GM.  Administration of highly selective COX1 

NSAIDs (SC-560 and Valeryl Salicylate) or highly selective COX2 NSAIDs 

(Celecoxib, Valdecoxib, NS-398) resulted in no significant enhancements in 

mobilization over G-CSF alone (Figure 25).  However, administration of NSAIDs 

having dual COX1 and COX2 inhibition capabilities (Indomethacin, Aspirin, 

Ibuprofen or Meloxicam) resulted in significant enhancement of mobilization over 

G-CSF alone, in agreement with the earlier findings on bone marrow HPC 

expansive capabilities of NSAIDs.  While dual COX/LOX inhibitors have been  

shown to inhibit migration, selectins, and leukocyte rolling and adhesion (Ulbrich 

et al., 2005; Zhou et al., 1996); administration of the COX/LOX inhibitor 

Licofelone showed no enhancements in mobilization over NSAIDs, further 

demonstrating that NSAID facilitation of mobilization is due to COX1 and COX2 

inhibition, and not due to general eicosanoid inhibition.  While Meloxicam inhibits 

both COX2 and COX1 at normal physiological doses (Kato et al., 2001; Shi and 

Klotz, 2008), when compared to other dual inhibitors, it has a reduced incidence 

of gastrointestinal (GI) discomfort (Ahmed et al., 2005) and inhibition of platelet 

aggregation (Rinder et al., 2002), adverse events usually associated with 
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NSAIDs.  We believe that Meloxicam has an ideal clinical profile, and will be the 

NSAID of focus of the remainder of described studies. 
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Figure 25 
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Figure 25.  Enhancement in mobilization requires inhibition of COX1 and 

COX2. 

Mice were mobilized by a 4 day regimen of G-CSF (50 µg/kg, twice daily) with 

co-administration of NSAIDs ranging in COX1 (left) and COX2 (right) selectivity:  

SC-560 (10 mg/kg, twice daily), Valeryl Salicylate (10 mg/kg, twice daily), 

Indomethacin (2.5 mg/kg, twice daily), Aspirin (50 mg/kg, twice daily), Ibuprofen 

(40 mg/kg, twice daily), Meloxicam (6 mg/kg, once daily), Licofelone (10 mg/kg, 

twice daily), Celecoxib (40 mg/kg, twice daily), Valdecoxib (10 mg/kg, twice daily) 

and NS-398 (10 mg/kg, twice daily).  Data are expressed as fold change over G-

CSF alone, Mean ± SEM, N=4 mice per group, each assayed individually.  

*P<0.05. 
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NSAID co-administration with G-CSF facilitates mobilization of a superior 

hematopoietic graft with enhanced recovery and long-term repopulation 

 Analysis of mobilization facilitation by NSAIDs up to this point has relied 

primarily on functional HPC colony assays and immunophenotypic analysis of 

HSC and HPC by FACS.  To determine if NSAIDs enhanced mobilization of HSC 

capable of reconstitution, donor mice were treated with G-CSF with or without 

NSAID for 4 days, and peripheral blood LDMC isolated and transplanted 

competitively into lethally irradiated congenic recipients.  Analysis of CRU 12 

weeks post-transplant demonstrated no significant increases in repopulating 

units (Figure 26), despite observed increases in CFU-GM, and SKL and SLAM 

SKL cells (Figure 21).  Since we previously demonstrated that PGE2 signaling 

enhances CXCR4 expression and homing and engraftment of HSC (Hoggatt et 

al., 2009), we hypothesized that NSAID administration, while increasing HPC in 

bone marrow and mobilization to peripheral blood, may be reducing CXCR4 

expression on HSC and HPC, thus reducing the ability of NSAID facilitated grafts 

to home and engraft in recipients.  To address this issue, donor mice were 

treated in a staggered regimen, such that mice still received a standard 4 day 

regimen of G-CSF and a 4 day regimen of Meloxicam, however the Meloxicam 

regimen was either administered concurrently with G-CSF, or started earlier such 

that it stopped 1 or 2 days before the end of the G-CSF regimen (Figure 27A), to 

allow for restoration of PGE2 biosynthesis and signaling.  Analysis of CXCR4 

receptor expression on mobilized SKL cells demonstrated significant reductions 
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in CXCR4 expression when Meloxicam was concurrently administered, or 

administered with a 1 day stagger (Figure 27B), whereas, 2 day staggered 

administration resulted in restoration of CXCR4 receptor expression, when 

compared to G-CSF alone.  To evaluate repopulating ability of these staggered 

and non-staggered NSAID facilitated grafts, we utilized a limiting-dilution 

competitive repopulation assay, transplanting LDMC from mobilized mice at 1:1, 

2:1, 3:1 and 4:1 ratios with congenic WBM competitor cells into lethally irradiated 

mice.  Analysis of chimerism 12 weeks later demonstrated significantly enhanced 

repopulation with grafts mobilized with staggered NSAID administration (Figure 

28A) when compared to non-staggered administration, or G-CSF alone.  In 

addition, analysis of CRU (Figure 28B) or LT-HSC frequency as calculated by 

Poisson distribution (Figure 29) demonstrated significantly enhanced long-term 

repopulating units in staggered NSAID facilitated grafts, when compared to non-

staggered administration or G-CSF alone, with a 2 day stagger resulting in a 2.55 

fold increase in LT-HSC frequency over the G-CSF mobilized graft (P0 = 

4.82x105 and P0 = 1.23x106, respectively).  These results clearly indicate that 

staggered NSAID co-administration with G-CSF can significantly increase the 

repopulating ability of G-CSF mobilized grafts. 
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Figure 26 
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Figure 26.  Non-staggered administration of G-CSF and NSAID results in no 

increase in CRU in the mobilized graft. 

BoyJ mice were treated with G-CSF with or without NSAID for 4 days.  On day 5, 

LDMC from peripheral blood were acquired and transplanted at a 1:1 ratio with 

C57Bl/6J WBM competitors into lethally irradiated C57Bl/6J recipient mice.  

Competitive repopulating units were calculated 3 months post-transplant (Mean ± 

SEM).  Data represent 2 pooled experiments, N=5 mice per group, per 

experiment, each assayed individually. 
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Figure 27.  Staggered administration of NSAID with G-CSF restores CXCR4 

expression on HSC. 

(A)  Schematic of staggered dosing regimens of G-CSF with Meloxicam (MXC).  

A 4 day regimen of Meloxicam was either co-administered with G-CSF for 4 days 

(no stagger) or was staggered 1 or 2 days to allow for restoration of PGE2 

biosynthesis. 

(B)  Mice were bled and PBMC were stained for SKL and the CXCR4 receptor 

and evaluated by FACS.  Data represent the percent of control mean 

fluorescence intensity (MFI) for CXCR4 expression on SKL cells, expressed as 

Mean ± SEM, N=5 mice per group, each assayed individually.  *P<0.05. 
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Figure 28.  Staggered administration of NSAID with G-CSF enhances 

mobilized graft repopulating ability. 

(A)  BoyJ mice were treated with G-CSF with or without Meloxicam for 4 days 

with either no stagger, 1 day stagger, or 2 day stagger.  On day 5, LDMC from 

peripheral blood were acquired and transplanted at a 1:1, 2:1, 3:1 or 4:1 ratio 

with 5x105 C57Bl/6J WBM competitors into lethally irradiated C57Bl/6J recipient 

mice.  Chimerism at multiple donor competitor ratios is shown.  Data are 

expressed as Mean ± SEM, N=5-8 mice per group, each assayed individually. 

(B)  Shown are competitive repopulating units of mobilized grafts with or without 

staggered Meloxicam administration calculated from mice receiving the 4:1 ratio 

of LDMC to WBM competitors.  Data are expressed as Mean ± SEM, N=8 mice 

per group, each assayed individually.  * P<0.05. 

  



 

147 
 

Figure 29 
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Figure 29.  Staggered administration of NSAID with G-CSF enhances 

mobilized graft LTRC frequency. 

Frequency analysis for G-CSF with or without staggered Meloxicam mobilized 

grafts, determined by Poisson statistics, at 12 weeks; P0 = 1.23x106 (G-CSF),   

P0 = 1.09x106 (G-CSF + Meloxicam), P0 = 7.27x105 (G-CSF + Meloxicam 1 day 

stagger), P0 = 4.82x105 (G-CSF + Meloxicam 2 day stagger). 

 

  



 

149 
 

NSAID facilitated grafts enhance hematopoietic recovery 

 Successful hematopoietic transplantation requires engraftment of HSC 

capable of lifelong blood reconstitution in recipients.  In addition to long-term 

engraftment, early recovery of blood parameters, particularly neutrophils and 

platelets, is important to reduce the length of time of neutropenia and 

thrombocytopenia associated with myeloablative conditioning regimens and 

subsequent transplant related morbidity and  mortality (Gerson et al., 1984; 

Pizzo, 1984; Taylor et al., 1989).  Increasing the number of HSC and HPC 

contained within a hematopoietic graft has been demonstrated to reduce the time 

necessary for neutrophil and platelet recovery (Bittencourt et al., 2002), while the 

functional quality of the transplanted graft is also important (Graf et al., 2001).  

We evaluated the recovery kinetics of neutrophils and platelets in lethally 

irradiated mice that received transplants containing equivalent numbers of 

peripheral blood LDMC from donors mobilized with either G-CSF or a staggered 

G-CSF plus NSAID regimen.  In mice receiving the G-CSF plus NSAID mobilized 

graft, ~4 day faster recovery of both neutrophils (Figure 30A) and platelets 

(Figure 30B) was observed and maintenance of neutrophil and platelet levels 

after full recovery was seen throughout 90 days for both transplant recipient 

groups.  After 90 days, the mice were sacrificed and bone marrow transplanted 

competitively into lethally irradiated congenic recipients to evaluate LT-HSC.  

Secondary recipients receiving grafts from the G-CSF plus NSAID graft donors 

had significantly higher peripheral blood chimerism 16 weeks post-transplant 
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compared to G-CSF graft donors (Figure 31), demonstrating that increased early 

recovery of blood parameters of G-CSF plus NSAID mobilized grafts did not 

occur at the expense of long-term repopulation, but rather is coupled with 

increased long-term repopulation, suggesting that NSAID facilitated grafts are a 

superior transplantation product. 

NSAIDs facilitate mobilization in non-human primates 

 To validate the NSAID enhancing effects seen in murine mobilization, 4 

baboons were mobilized with 5 days of G-CSF or G-CSF plus Meloxicam, in a 

crossover design protocol, allowing for analysis of NSAID enhancement in 

individual baboons (Figure 32A).  While individual baboons varied in response to 

mobilization regimens, peripheral blood CD34+ cells counts (2.73±0.94 fold) and 

CFU-GM (4.58±1.78 fold) were significantly higher in all 4 baboons treated with 

G-CSF plus NSAID co-administration compared to G-CSF alone (Figure 32B).  In 

addition, administration of Meloxicam without G-CSF resulted in a rise in CD34+ 

cell counts (5.22±0.61 fold) and CFU-GM (2.07±0.12 fold) compared to baseline 

levels (Figure 33), consistent with findings of  administration of NSAID alone in 

mice.  These results clearly indicate that NSAID facilitation of PBSC mobilization, 

both with and without an additional mobilization agent, is successful in non-

human primates.  
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Figure 30.  NSAID co-administration enhances neutrophil and platelet 

recovery capacity of G-CSF mobilized grafts. 

Mice were mobilized with G-CSF or staggered administration of G-CSF plus 

Meloxicam and 2x106 PBMC were transplanted into lethally irradiated recipients.  

(A) Neutrophils and (B) platelets in blood were enumerated with a Hemavet 

950FS  every other day in alternate groups of 5 mice until full recovery 

(compared to control subset).  Data are expressed as Mean ± SEM, N=10 mice 

per group, each assayed individually.  P<0.05 determined using a Student's T-

test at each of the time points. 
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Figure 31 
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Figure 31.  NSAID facilitated grafts retain long-term repopulating ability. 

Mice were mobilized with G-CSF or staggered administration of G-CSF plus 

Meloxicam and 2x106 PBMC were transplanted into lethally irradiated recipients.  

Neutrophils and platelets in blood were enumerated every other day until full 

recovery.  After 90 days, mice were sacrificed, bone marrow acquired, and 

transplanted at a 2.5:1 ratio with congenic competitors into lethally irradiated 

recipients.  Peripheral blood chimerism at 16 weeks post-transplant is shown.  

Data are expressed as Mean ± SEM, N=10 mice per group, each assayed 

individually. *P<0.05. 
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Figure 32.  Enhanced mobilization in baboons with co-administration of 

Meloxicam with G-CSF. 

(A)  Schematic of baboon mobilization crossover design.  Baboons were 

mobilized with G-CSF or G-CSF plus Meloxicam for five days.  Blood was 

collected after treatment and the number of CFU-GM and CD34+ cells 

determined.  Baboons were rested for 2 weeks, and then given the alternate 

treatment, allowing comparison of both treatment regimens within individual 

animals. 

(B)  CD34+ cells in PB were determined by FACS analysis (left panel).  CFU-GM 

per ml of blood are shown for both treatment groups (right panel).  The black bar 

represents the average CD34+ and CFU-GM values. 
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Figure 33 
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Figure 33.  Meloxicam administration increases CD34+ cells and CFU-GM in 

peripheral blood in baboons. 

Baboons were bled to establish baseline parameters, followed by a 5 day 

regimen of Meloxicam.  CD34+ cells in PB were determined by FACS analysis 

(left panel).  CFU-GM per ml of blood are shown for both treatment groups (right 

panel).  The black bar represents the average CD34+ and CFU-GM values. 
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Enhancement in mobilization is mediated through a reduction in EP4 

receptor signaling 

 Mobilization studies described thus far used NSAIDs to block PGE2 

biosynthesis, and clearly demonstrate enhancements in HSC and HPC 

mobilization.  Since PGE2 signals through four different receptors (EP1-4) 

(Breyer et al., 2001; Hull et al., 2004; Sugimoto and Narumiya, 2007; Tsuboi et 

al., 2002), we hypothesized that antagonism of one or more of these receptors 

would mimic the mobilization enhancing effects of NSAIDs.  Mice were 

administered EP specific antagonists plus G-CSF, or EP specific agonists plus 

NSAID plus G-CSF, and CFU-GM mobilization to peripheral blood was 

assessed.  Co-administration of EP4 antagonists (AH23848 and L-161,982) with 

G-CSF significantly enhanced mobilization over G-CSF alone, while an EP1-3 

antagonist (AH6809) had no effect (Figure 34).  Furthermore, when a selective 

EP4 agonist (L-902,688) was administered along with G-CSF plus NSAID, the 

NSAID enhancement in mobilization was abrogated, and to the same degree as 

dmPGE2 co-administration, while the EP2 agonist (Butaprost) or EP1/3 agonist 

(Sulprostone) were unable to reduce the effects of NSAIDs, indicating that a lack 

of EP4 receptor signaling is responsible for NSAID enhanced HSC and HPC 

mobilization.   

 Using semisolid culture assays of mouse and human bone marrow cells, 

previous work showed that PGE2 dose-dependently inhibits CFC proliferation 

(Pelus et al., 1979; Pelus et al., 1981), and preferentially inhibits monocyte-
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committed CFC differentiation (Pelus et al., 1979; Pelus et al., 1981).  These 

effects of PGE2 were reproduced using db-cAMP or agents that increase cAMP 

or inhibit its metabolism (Kurland et al., 1977; Taetle and Koessler, 1980).   

Although the existence of multiple EP receptors was unknown at the time these 

studies were performed, new studies in our lab have utilized available 

pharmacological EP receptor selective agonists and antagonists to define the 

receptors involved in PGE2 suppression of myelopoiesis (Table 5).  As expected, 

EP1 and EP3 receptors were not involved, consistent with the fact that they do 

not link to an increase in cAMP, as depicted previously in Figure 3.  The EP2 

receptor agonist Butaprost was without activity whereas the weak EP4 agonist 1-

hydroxy PGE1 showed inhibitory activity, albeit at 2 log higher concentration, 

suggesting that EP4 likely mediates the inhibitory activity of PGE2.  Dose curve 

analysis in the presence of the selective EP4 antagonist AH23848 showed 

antagonism of PGE2 with Schild plot analysis clearly showing that the EP4 

antagonist was a competitive inhibitor of the PGE2 effect.  A log ratio of agonist to 

antagonist of -5.77 was determined on CFU-M, which is consistent with the 

antagonist ratio of AH23848 on other cell types (Smith et al., 1994).  These 

results coupled with our in vivo data, suggest a model in which a lack of EP4 

signaling drives progenitor expansion, possibly elucidating one of the 

mechanisms responsible for increased CFU-GM found in blood and marrow post-

NSAID treatment. 
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Figure 34 
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Figure 34.  Enhanced mobilization mediated through a reduction in EP4 

receptor signaling. 

Mobilization enhancement with G-CSF plus Meloxicam (red bar) over G-CSF 

alone (blue bar).  Enhanced mobilization over G-CSF is not recapitulated with an 

antagonist for EP receptors 1, 2 and 3 (AH6809), but is enhanced with 2 different 

EP4 receptor antagonists (AH23848 and L-161,982).  Meloxicam enhancement 

of G-CSF mobilization is not blocked by co-treatment with an EP2 agonist 

(Butaprost) or an EP1/3 agonist (Sulprostone), but is blocked by an EP4 agonist 

(L-902,688), which mimics the effects of dmPGE2. 
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Table 5 

(Work performed by Dr. Louis Pelus) 

 

  

Inhibition of CFU-M

Compound Agonist Specificity IC50 (nm) Ratio

PGE2 EP1, EP2, EP3, EP4 2.37±0.3 1

dmPGE2 EP2, EP3, EP4 3.1±0.9 2.1

17-phenyl trinor PGE2 EP1, EP3 1392±383 587

Butaprost EP2 89,100±2145 37,595

Sulprostone EP3, EP1 6990±349 2949

11-deoxy PGE2 EP2, EP3, EP4 11.5±5 4.8

1-hydroxy PGE1 EP4 [weak] 147±28 62

PGE2 2.4±0.3 1

+ 5µM AH23848 EP4 antagonist 10.6±0.2 4.5

+ 10µM AH23848 “                       ” 14.6±0.6 6.2

+ 30µM AH23848 “                       ” 36.8±4.5 15.5

+ 60µM AH23848 “                       ” 92.1±14.6 38.9

Schild Plot Kb 1.69x10-6 M: R2= 0.95 A/A’=-5.57: = Competitive Antagonist  
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Table 5.  Blockade of PGE2 inhibition of CFU-M by EP4 antagonism 

Mouse bone marrow cells (5x104/plate) were cultured in 0.3% agar in 

supplemented McCoy’s 5A medium with 10% HI-FBS and 10 ng/ml recombinant 

mouse macrophage colony-stimulating factor (M-CSF) (R&D Systems).  Serial 

log dilutions of PGE2 or EP receptor agonists over the dose range of 10-5 - 10-12 

M were added directly to the bottom of the dishes prior to plating as previously 

described (Pelus et al., 1979; Pelus et al., 1981).  For antagonist studies, marrow 

cells were incubated with PGE2 or PGE2 plus EP receptor antagonists in 

suspension culture for 30 minutes prior to plating.  All plates were cultured for 7 

days at 37 oC, 5% CO2, 5% O2 in air and total colonies per plate enumerated.  

IC50 values were calculated based on control plates receiving M-CSF plus vehicle 

(0.01% ETOH).  Data are expressed as Mean ± SEM from 3-12 complete log 

dilution experiments for each compound.  The IC50 of authentic PGE2 was set to 

a value of 1 and relative potencies of agonist or antagonist compounds 

calculated accordingly.  
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Reduced bone marrow osteoblasts and increased myelopoiesis in NSAID 

treated mice 

 Niche osteoblasts have been shown to regulate hematopoiesis (Arai et al., 

2004; Calvi et al., 2003; Visnjic et al., 2004; Zhang et al., 2003) and are a major 

source of PGE2  (Chen et al., 1997; Miyaura et al., 2003; Raisz et al., 1979) and 

other cytokines.  Osteoblasts express all 4 EP receptors (Suzawa et al., 2000), 

with EP4 linked to regulation of osteoblast pool size (Shamir et al., 2004; 

Weinreb et al., 2006; Yoshida et al., 2002).  Conversely, inhibition of PGE2 

synthesis with NSAIDs suppresses osteoblast proliferation and induces 

apoptosis (Chang et al., 2005; Kellinsalmi et al., 2007; Li et al., 2010).  Since 

osteoblasts are an important component of the hematopoietic niche that 

maintains HSC, disruption of this niche can lead to HSC mobilization, which has 

been suggested as a possible mechanism for the mobilizing effects of G-CSF 

(Kollet et al., 2006).  To begin to evaluate if the 4 day regimen of NSAIDs affects 

the hematopoietic niche and endosteal osteoblasts, femurs from vehicle and 

NSAID treated mice were isolated, fixed, sectioned and stained with hematoxylin 

and eosin (H&E).  Femurs from NSAID treated mice exhibited a marked increase 

in myelopoiesis with full maturation, and a decrease in erythropoiesis (Figures 35 

A,B).  While osteoblasts were still present, there was a less distinct layer lining 

both bony trabeculae and cortical bone in the diaphyseal (Figures 35 C,D) and 

epiphyseal (Figures 35 E,F) regions of the femur.  No overt changes were seen 

in total cellularity, megakaryopoiesis, or trabeculae morphology. 
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Figure 35 

 

A      B 

 

C      D 

 

E      F  
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Figure 35.  NSAIDs increase myelopoiesis and reduce osteoblasts in the 

bones of treated mice. 

Mice were treated with a 4 day regimen of vehicle or NSAIDs, femurs were 

acquired, sectioned and H&E stained.  Shown is the marrow from (A) control and 

(B) NSAID treated mice, showing increased myelopoiesis and reduced 

erythropoiesis after treatment.   

(C)  Control mice maintained normal osteoblast lining of bone (arrows) in the 

diaphyseal region of the femur, while (D) NSAID treated mice showed a less 

distinct layer of osteoblasts. 

(E)  Control mice also had normal osteoblast lining within the epiphyseal region 

of the femur, while (F) NSAID treated mice showed a less distinct layer of 

osteoblasts. 

400X magnification 
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Cannabinoid receptor agonism mobilizes HPC 

 As was discussed in Chapter 1, the eicosanoid system consists of 

numerous signaling pathways, which have the capacity to complement or 

antagonize each other.  Recent evidence suggests that cannabinoids, via the 

CB2 receptor, inhibit SDF-1α induced and CXCR4 mediated chemotaxis of Jurkat 

T-cells (Ghosh et al., 2006) and activated human derived peripheral T-cells 

(Coopman et al., 2007).  In addition, cannabinoid receptor transfected 

hematopoietic cell lines migrate in response to the endogenous cannabinoid, 2-

AG (Jorda et al., 2002).  Cannabinoids have been reported to affect matrix 

metalloproteinase-9 (MMP-9) production (Rosch et al., 2006) in a number of cell 

lines and can modulate neutrophil function (Alberich et al., 2004; Kurihara et al., 

2006).  Moreover, the endogenous cannabinoid, anandamide, can be a 

synergistic growth factor for hematopoietic cells (Valk et al., 1997).  Taken 

together, these data suggest that cannabinoids may play a role in PBSC 

mobilization, through interference in the SDF-1α/CXCR4 axis and/or release of 

MMP-9, which can degrade niche tethering components (McQuibban et al., 

2001) thereby increasing the HSC/HPC pool, or through undefined mechanisms. 

 The presence of CB receptors on HSC and HPC has been controversial 

and earlier reports failed to demonstrate receptor expression on murine HPC 

(Jorda et al., 2002), likely due to issues of antibody specificity.  Using two 

different recently developed anti-CB1 and CB2 polyclonal antibodies, we found 

that both the central CB1 and peripheral CB2 receptors are expressed on murine  
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Figure 36.  HSC and HPC express CB receptors and CB agonism decreases 

CXCR4 and VLA-4. 

(A)  Using two different antibodies for cannabinoid receptor expression (Sigma 

Aldrich and Affinity BioReagents (ABR)) mouse bone marrow cells were stained 

for SKL and the proportion of phenotyped cells expressing CB1 and CB2 

determined.  Data are expressed as Mean ± SEM, N=5 mice, each assayed 

individually. 

(B)  Human CD34+ and CD34+ CD38- UCB cells were stained with 2 different 

antibodies for CB1 and CB2 receptors.  Data are Mean ± SEM, N=3-5 UCB 

samples, each assayed individually. 

(C)  Mouse Linneg bone marrow was treated with dmPGE2, the cannabinoid 

agonist CP55940, or vehicle control.  Sixteen hours post-treatment, cells were 

stained for CXCR4 receptor or VLA-4, and SKL phenotypic markers, and % MFI 

compared to control treated cells determined.  Data are Mean ± SEM, N=5 mice, 

each assayed individually. 
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KL and SKL cells (Figure 36A), and on human CD34+ and CD34+ CD38- cells 

(Figure 36B).  The peripheral CB2 receptor was the predominate receptor on 

murine and human HSC and HPC.  In addition, we utilized the dual CB1 and CB2 

agonist CP55940 (Thomas et al., 1998) in in vitro assays and examined 

expression of CXCR4 and the adhesion molecule VLA-4 on SKL cells, compared 

to cells treated with dmPGE2.  As we have previously reported, dmPGE2 

increased expression of CXCR4 on treated SKL cells (Figure 36C), and also 

increased expression of VLA-4.  In contrast, SKL cells treated with cannabinoids 

demonstrated reduction in both receptors, suggesting that cannabinoids may be 

able to facilitate un-tethering of HSC and HPC from bone marrow niches. 

 To determine the effects of cannabinoid receptor agonists on HPC 

mobilization, BALB/c mice were treated with single injections of the CB1 selective 

agonist ACEA (Pertwee, 1999), the CB2 selective agonist GP1a (Murineddu et 

al., 2006), or the dual CB1 and CB2 agonist CP55940 and CFU-GM in peripheral 

blood was quantitated after 2 hours.  Single administration of the CB2 selective 

agonist GP1a and the dual CB1/CB2 agonist CP55940 significantly mobilized 

CFU-GM to peripheral blood (Figure 37A).  The CB1 selective agonist ACEA had 

only marginal mobilizing activity.  In separate groups of mice, combination 

mobilization with G-CSF and the dual CB1/CB2 agonist CP55940 was evaluated.  

Mice were mobilized with a standard 4-day regimen of G-CSF alone, G-CSF plus 

a daily dose of CP55940, or the G-CSF regimen plus a single dose of CP55940 

administered on day 5, 16 hours after the last dose of G-CSF and 2 hours prior to 
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sacrifice.  The addition of CP55940 co-administered daily with G-CSF did not 

produce a significant increase in mobilization, however, the addition of a single 

dose of CP55940 on day 5 after the 4-day G-CSF regimen, ~16 hours after the 

last dose of G-CSF significantly increased CFU-GM mobilization compared to G-

CSF alone (Figure 37B).  The lack of effects of daily CP55940 may reflect timing 

or GPCR desensitization.  These data suggest that CB receptor ligation, 

particularly CB2, rapidly but transiently mobilizes CFU-GM, and that CB receptor 

activation enhances mobilization by G-CSF, likely by an effect on inhibition of 

CXCR4 signaling, or reductions in integrin adherence, since the kinetics of 

mobilization are in close alignment with the kinetics of mobilization by the CXCR4 

antagonist AMD3100 and/or VLA-4 inhibitors. 
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Figure 37.  Cannabinoid agonism through the CB2 receptor rapidly and 

synergistically mobilizes HPC. 

(A) CFU-GM mobilization 2 hours post single administration of 10 mg/kg ACEA, 5 

mg/kg GP1a or 10 mg/kg CP55940.  Data are expressed as Mean ± SEM, N=3 

mice per group, each assayed individually.  

(B) Mobilization by G-CSF, G-CSF + CP55940 (10 mg/kg) once daily for 4 days, 

or G-CSF once daily for 4 days, followed by a single dose of CP55940 on day 5.  

Data are expressed as Mean ± SEM, N=3 mice per group, each assayed 

individually.  
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Discussion: 

 The inhibitory effects of PGE2 on myelopoiesis have been well 

documented (Gentile and Pelus, 1988; Kurland et al., 1978; Kurland et al., 1979; 

Pelus et al., 1979; Pelus et al., 1981; Pelus et al., 1983; Pelus et al., 1988; Pelus 

and Gentile, 1988) though it is clear that its role in regulation of overall 

hematopoiesis is more complex.  While PGE2 signaling is inhibitory to CFU-M 

colony formation, it actually stimulates BFU-E and CFU-GEMM formation (Lu et 

al., 1984; Lu et al., 1986; Lu et al., 1987; Rossi et al., 1980), and we and others 

have recently reported positive effects on more immature HSC (Hoggatt et al., 

2009; North et al., 2007).  New data from our laboratory also indicate positive 

effects of PGE2 on common dendritic progenitors (CDPs), and reductions in 

dendritic cell formation from these CDPs as a result of NSAID administration 

(Singh et al., 2009).  We report here that inhibition of PGE2 biosynthesis, and as 

a consequence, EP receptor signaling, results in an increase in HPC, both in 

bone marrow and in peripheral blood.  Intriguingly, analysis of CFU-GM colonies 

from G-CSF mobilized mice compared to G-CSF plus NSAID mobilized mice 

show a marked shift in monocytic and multi-centric colony formation, which 

possibly indicates preferential expansion of an altered HPC pool and/or egress of 

a subset of HPC.  Further detailed analysis of the exact phenotype and 

proportions of HPC present in bone marrow and blood following NSAID 

administration are currently ongoing. 
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 It is important to note that in in vitro and in vivo assays, PGE2 does not act 

alone but along with accompanying cytokines and growth factors.  In response to 

stimuli, PGE2, and its related eicosanoids, are almost instantly produced from 

already existing pools of phospholipids and enzymes and then are rapidly 

degraded.  It is tempting to suggest a model in which PGE2 and other 

eicosanoids are produced to rapidly shift fate decisions of stem and progenitor 

cells to readily respond to a particular challenge, followed by rapid restoration of 

homeostasis through metabolism of the eicosanoids, and subsequent loss of 

signaling.  Isolation of single HSCs and HPCs, followed by in vitro tracking of fate 

decisions, which has recently been reported (Wu et al., 2007), may help to 

elucidate the fate decisions enacted by PGE2 and other eicosanoids. 

 We have tested a broad panel of NSAIDs for their ability to expand HPC in 

bone marrow and to facilitate mobilization to peripheral blood.  In both cases, 

only NSAIDs that inhibit both COX1 and COX2 had the ability to increase HPC 

and facilitate mobilization.  These findings likely indicate that maximal reduction 

of PGE2 signaling is needed to initiate progenitor expansion and that 

maintenance of activity of one of the COX enzymes and its resulting PGE2 

synthesis and signaling reduces/eliminates HPC expansion.  The bulk of our 

described studies have utilized the NSAID Meloxicam, which was as effective as 

Indomethacin, Aspirin and Ibuprofen in facilitating mobilization.  While Meloxicam 

is generally regarded as a COX2 selective NSAID, it is an efficient COX1 inhibitor 

(Kato et al., 2001; Shi and Klotz, 2008) at normal physiological doses.  However,  
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Meloxicam shows reduced incidence of GI discomfort (Ahmed et al., 2005) and 

inhibition of platelet aggregation (Rinder et al., 2002), adverse events usually 

associated with dual COX inhibitors.  Reduced inhibition of platelet aggregation is 

particularly noteworthy in the context of mobilization, which would employ central 

catheter lines for apheresis.  We believe that Meloxicam has an ideal clinical 

profile for future translation into the clinic for PBSC transplantation. 

 As was discussed and depicted (Figure 2) in Chapter 1, regulation of 

eicosanoids is a complex process that employs a delicate balance of available 

substrate (Arachidonic Acid released by cPLA2) and available enzymes (COX, 

LOX, FAAH, etc.).  Disruptions of any of these strands of the “eicosanoid web” 

are likely to send ripple effects throughout the broader system.  Numerous 

reports have begun to characterize effects of eicosanoids that are actually 

mediated by altering signaling/production of another class of eicosanoids (Ates et 

al., 2003; Lee et al., 2009; Massi et al., 2008; Stengel et al., 2007); for example, 

some effects of an NSAID can result from endocannabinoid signaling, or the 

effect of PGE2 can result from reduction in LTB4 signaling, etc.  In our studies, we 

have blocked the biosynthesis of PGE2 through inhibition of COX enzymes.  

However, these NSAIDs do not have direct effects on cPLA2 release of 

Arachidonic Acid; therefore, the substrate is available for other enzymes like LOX 

or FAAH, and recent evidence demonstrates that this shunting of eicosanoid 

synthesis does occur as a result of NSAID administration (Duffield-Lillico et al., 

2009).  A condition known as “Aspirin induced asthma” is the result of increased 
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leukotriene production as a result of COX inhibition eicosanoid synthesis 

shunting (Park et al., 2010; Szczeklik and Sanak, 2006).   

 Our studies have utilized both a LOX inhibitor and a dual COX/LOX 

inhibitor and have found no effects on HPC mobilization by blocking leukotriene 

synthesis.  These results, coupled with the findings that specific EP receptor 

antagonism can mimic the effects of NSAIDs and that co-treatment with dmPGE2 

or EP4 agonist with NSAID blocks the enhanced mobilization effect, strongly 

suggest that the NSAID facilitation of mobilization is specific to the COX-PGE2 

pathway; although we cannot completely rule out secondary effects due to 

eicosanoid shunting and cross-talk.  Our results demonstrating mobilization by 

cannabinoid receptor agonism possibly suggest a role for this class of 

eicosanoids in hematopoietic trafficking.  In light of our findings and those of 

others, it is clear that investigation of the role of eicosanoids in hematopoietic 

regulation should be cognizant of the system in its entirety, and it is highly likely 

that future therapeutic strategies that target multiple points of intervention in the 

eicosanoid pathway will be more effective; a proof of concept exists in the 

treatment of Aspirin induced asthma with leukotriene antagonists (Park et al., 

2010). 

 Mobilization by the hematopoietic growth factor G-CSF and the chemokine 

CXCR4 receptor antagonist AMD3100 are significantly enhanced by NSAID co-

treatment, which suggests that enhancement is independent of the mobilization 

mechanisms of the mobilizing agent.  A small amount of mobilization is also seen 
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in both mouse and baboon after administration of NSAID alone, the implications 

of which are further discussed in Chapter 5.  Extensive limiting dilution transplant 

analysis, assays monitoring neutrophil and platelet recovery, and secondary 

transplantation analysis, clearly indicate that NSAIDs facilitate mobilization of a 

hematopoietic graft with superior functional activity compared to the graft 

mobilized by G-CSF alone.  Intriguingly, we found that despite increases in 

functionally and phenotypically defined HSC in peripheral blood when NSAIDs 

were administered concurrently with G-CSF, these parameters did not result in 

enhanced functional activity when analyzed in primary transplantation studies.  

We have previously reported (in Chapter 2 and (Hoggatt et al., 2009)) that PGE2 

signaling enhances HSC CXCR4 receptor expression and homing/engraftment to 

the bone marrow.  This implies that loss of PGE2 signaling in the marrow 

microenvironment might reduce CXCR4 expression, which we subsequently 

confirmed, and provides an explanation for the lack of benefit seen with NSAID 

mobilized PBSC graft despite containing increased HSC number.  To 

compensate for reduced CXCR4 expression, we developed a novel staggered 

dosing regimen, which maintains the enhancements in HSC and HPC 

mobilization, but also allows for restoration of PGE2 biosynthesis and signaling 

prior to transplant, recovering CXCR4 receptor expression on mobilized HSC and 

HPC and significantly increasing repopulation in lethally irradiated recipients.  

While this staggered dosing regimen is easy to implement, and can be rapidly 

translated to the clinic, future studies should also investigate short-term pulse of 
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an NSAID facilitated graft ex vivo with PGE2 immediately prior to transplantation 

to restore PGE2 positive tone on CXCR4/homing as we have described (Hoggatt 

et al., 2009), thus possibly eliminating the need for staggered dosing of NSAID 

and mobilizing agent. 

 We have explored several possible mechanisms responsible for the  

enhanced mobilization resulting from NSAID treatment.  While it is tempting to 

speculate that NSAID facilitated mobilization is a result of the aforementioned 

reduction in CXCR4, this does not completely explain the effect, since NSAIDs 

are highly synergistic with the CXCR4 antagonist AMD3100, and the requirement 

for multiple days of NSAID administration to observe mobilization effects does 

not correspond to the kinetics of CXCR4 receptor down-regulation.  We have 

clearly demonstrated that NSAIDs increase the HPC pool within the bone 

marrow, and this pool can be synergistically mobilized with both G-CSF and 

AMD3100.  This suggests that the increases in mobilization may be the result of 

an increase in “available HPCs” for mobilization.  Put simply, if there are more 

HPCs in the bone marrow, there are more that can potentially leave the bone 

marrow.  However, while we see an increase in total HPC within the bone 

marrow, data thus far does not indicate expansion of more primitive HSC, yet our 

phenotypic and transplant studies clearly indicate elevated levels of HSC in the 

mobilized graft.  However, it should also be pointed out that we do not see a 

reduction in HSC, clearly indicating that HPC expansion does not occur at the 
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expense of HSC self-renewal, perhaps indicative of an asymmetric self-renewal 

fate decision. 

 Osteoblasts within the endosteal bone marrow niche are a significant 

regulatory component of hematopoiesis (Arai et al., 2004; Calvi et al., 2003; 

Visnjic et al., 2004; Zhang et al., 2003).  Activation of the parathyroid hormone 

(PTH) receptor in osteoblasts expands HSC by ~4-fold (Taichman et al., 2000; 

Taichman and Emerson, 1994), and co-transplantation of osteoblasts along with 

HSC increases engraftment (El Badri et al., 1998).  Effects of NSAIDs on 

osteoblasts have been reported (Chang et al., 2005; Kellinsalmi et al., 2007; Li et 

al., 2010), and our histological findings in the femurs of NSAID treated mice 

clearly show reductions in the endosteal osteoblast layer.  These findings 

suggest that the enhanced mobilization of SLAM SKL and LTRCs we observed 

may result, at least in part, from loss of endosteal niche support and tethering, 

allowing for release of HSC from the niche and egress into the peripheral blood.  

While these findings are exciting, it should be noted that most reports on NSAID 

reductions in osteoblast numbers used NSAID exposures considerably longer 

than our 4 day regimen.  Stimulation of osteoblasts and bone formation by PGE2 

has been attributed to EP4 receptor signaling and antagonism of the EP4 

receptor and its downstream signaling results in a reduction in osteoblasts and 

promotes osteoclast bone resorption (Li et al., 2010; Shamir et al., 2004; Tomita 

et al., 2002).  We found that enhanced mobilization by NSAIDs is the result of a 

reduction in EP4 signaling, and EP4 antagonists are able to mimic the effects of 
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NSAID to at least the same degree.  These results are highly suggestive that 

disruption of the osteoblastic endosteal niche within the bone marrow 

microenvironment by NSAIDs, and specifically EP4 antagonism, may mediate 

the enhancement in mobilization and should be further explored.  Coincidentally, 

we have demonstrated in vitro that EP4 antagonism blocks the inhibition of 

myleopoiesis by PGE2.  This suggests a unifying mode of action of PGE2 on 

hematopoiesis mediated through the EP4 receptor.  NSAID enhanced 

mobilization results from reduced PGE2 signaling through the EP4 receptor, 

allowing HPC expansion and reduction of the HSC niche support in the bone 

marrow, culminating in increased HSC and HPC mobilization.  Specifically 

antagonizing EP4, while retaining normal PGE2 signaling via EP1-3, is a highly 

attractive pharmaceutical target, since signaling through EP1-3 protects the 

stomach and intestine (Kunikata et al., 2001; Takeuchi et al., 2003).  Thus, 

specific antagonism of EP4 may induce the HPC expansion and mobilization 

effects while retaining the positive GI protective effects of PGE2 (Houchen et al., 

2003), particularly in transplantation settings and cases of hematopoietic injury, 

which is discussed further in Chapter 4. 

 As has been discussed throughout this dissertation, it is clear that within 

the eicosanoid system there is a dynamic balance between signaling of 

prostaglandins, leukotrienes, and cannabinoids, and that this balance can be 

shifted to alter homeostasis and generate physiological effects.  Intriguingly, in 

numerous systems, some of which have been reviewed in Table 1, cannabinoids 
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act in an opposing fashion to PGE2, possibly acting as endogenous regulators of 

each other.  We would expect then that many of the effects attributed to PGE2 

could be mimicked by cannabinoid antagonists, or that many of the effects 

attributed to cannabinoids could be mimicked by PGE2 antagonism.  We have 

shown that a reduction in PGE2 signaling, either through NSAID administration or 

EP4 antagonism, enhances mobilization and cannabinoid agonism elicits a 

similar response.  It is tempting to speculate that combination therapies 

employing both strategies would further enhance hematopoietic mobilization.  

Further studies evaluating this “yin and yang” relationship are likely to lead to 

novel pharmaceutical approaches.  In particular, in light of our previous findings 

on the ability of PGE2 to increase homing, and our recent findings of down-

regulation of CXCR4 and VLA-4 by cannabinoids, it is tempting to speculate that 

cannabinoid antagonism, with or without additional PGE2 agonism, may further 

enhance homing/engraftment of HSC to the bone marrow.  Studies are ongoing 

in our laboratory to explore these possibilities. 
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Chapter 4.  Recovery From Hematopoietic Injury by Modulating PGE2 
Signaling or HIF-1α Post-Irradiation 

 

Introduction:  

 With the proliferation of nuclear weapons, increasing use of nuclear 

power, and the advent of worldwide radical terrorism, there is an increasing need 

and research emphasis on developing countermeasures in the event of a 

radiological mass casualty event (Moulder, 2004; Pellmar and Rockwell, 2005; 

Poston, Sr., 2005).  As discussed in Chapter 1, HSC and HPC are constantly 

proliferating to supply the upwards of a trillion cells a day (Ogawa, 1993) needed 

to maintain homeostasis.  This constant state of proliferation make HSC and 

HPC highly radiosensitive (Chinsoo and Glatstein, 1998; Hall, 2000a), meaning 

that most, if not all, successful countermeasures will need to account for the 

hematopoietic system.  Regulation of hematopoiesis at this radiation sensitive 

stage is controlled through accessory cell produced cytokines and growth factors 

and interactions with the microenvironmental niche stromal cells themselves 

(Broxmeyer and Smith, 2009; Shaheen and Broxmeyer, 2009).  It is known that 

radiation damage to the hematopoietic system occurs, both at the levels of HSC 

and HPC, and through changes to cells within the marrow microenvironment that 

provide signals for their self-renewal, proliferation, survival, differentiation, and 

migration (Broxmeyer et al., 1976; Coleman et al., 2003; Dainiak et al., 2003; 

MacVittie et al., 2005; Till and McCulloch, 1964), and that substantive damage to 
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bone marrow causes the hematopoietic syndrome of the acute radiation 

syndrome (HS-ARS). 

 HS-ARS is characterized by life-threatening lymphocytopenia, 

neutropenia, and thrombocytopenia, and possible death due to infection and/or 

bleeding.  Doses <2 Gy do not cause significant bone marrow damage (Anno et 

al., 1989); however, at doses of 2-8 Gy the acute radiation syndrome develops 

proportional to radiation dose, resulting in development of cytopenias and 

marrow failure in ensuing weeks post exposure (Chinsoo and Glatstein, 1998; 

Hall, 2000a; Wald, 1982), with the resultant sequela of infection, bleeding and 

deficient wound healing, in the absence of treatment (Coleman et al., 2003; 

Dainiak et al., 2003).  While bone marrow HSC and HPC are susceptible to 

radiation exposure, surviving populations of these cells can recover 

hematopoiesis, given critical time to repair DNA damage, self-renew, expand and 

differentiate.   

 The unpredictability of a mass casualty radiation event requires 

development and utilization of post exposure mitigators of radiation injury with 

appropriate ease of administration, stability for purposes of stockpiling, ability for 

rapid distribution and a window of efficacy.  In addition, faced with the 

complexities of a mass casualty event and difficulty of individual dosimetry and 

triage, interventions that can mitigate or reduce the severity of exposure, but that 

are benign to those individuals with limited or no exposure are required. 
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 In Chapter 2, we reported positive effects on HSC by PGE2 treatment, 

both decreasing apoptosis through up-regulation of Survivin, and increasing self-

renewal division and homing/engraftment in the bone marrow.  In addition, 

results described in Chapter 3 clearly demonstrate that reduction of PGE2 

signaling by inhibiting PGE2 biosynthesis with NSAID administration results in a 

rapid expansion of HPC in bone marrow.  We hypothesized that similar strategies 

modulating PGE2 signaling post-irradiation could both protect HSC from radiation 

induced apoptosis and/or lead to quicker hematopoietic recovery, resulting in 

increased survival.  In this Chapter, we show that treatment with dmPGE2 shortly 

following irradiation or delayed administration of Meloxicam post-irradiation 

results in significantly enhanced hematopoietic recovery and survival.  In 

addition, since many radioprotecting agents, including PGE2, increase hypoxia 

(Allalunis-Turner et al., 1989; Glover et al., 1984; Purdie et al., 1983), we 

explored the potential of HIF-1α modulation for radiomitigation and report 

increases in hematopoietic recovery and survival. 

Materials and Methods: 

Mice 

 Male and female C57Bl/6 mice were purchased from Jackson 

Laboratories at 10-12 weeks of age.  Mice were housed in microisolator cages (5 

mice per cage) with sterilized direct contact bedding (Alpha Dri).  Animal holding 

rooms were maintained at 21 ± 3 ºC with 30 to 80% relative humidity, with at 
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least 10 air changes per hour of 100% fresh air, and a 12 hour light/dark cycle.  

Mice were fed ad libitum with commercial rodent chow (Harlan 2018SXC) in cage 

hoppers and acidified (pH 2.0 - 3.0) water in sipper tube bottles.  The Institutional 

Animal Care and Use Committee of IUSM approved all protocols. 

Radiation 

 Mice were placed in single chambers of a plexiglass irradiation pie 

(Braintree), with 15 mice per pie, alternating groups of males and females within 

the same pie.  Each group of mice irradiated together in the same pie were 

divided equally among all treatment groups to ensure that each group received 

the same irradiation exposure conditions.  Mice were irradiated between 9:00 

a.m. and 11:00 a.m. from a 137Cesium gamma radiation source (GammaCell 40; 

Nordion International, Kanata, Ontario, Canada) at an exposure rate ~63 cGy per 

minute, and received 796 cGys total exposure. 

Post-irradiation treatment 

 Irradiated mice were identified by ear punches and treated with either a 

single subcutaneous dose of dmPGE2 (40 µg/mouse) or vehicle control at 6 

hours post irradiation (N=20 mice per group, evenly split male/female); 6 mg/kg 

Meloxicam dosed once daily on days 2 through 5 post-irradiation or vehicle 

control (N=20 or 40 mice per group, respectively, evenly split male/female); or a 

single subcutaneous dose of CoCl2 (60 mg/kg) at 6 hours post irradiation (N=20 
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mice per group, evenly split male/female).  One mouse per treatment group were 

housed in each individual cage. 

Morbidity and mortality monitoring 

 Mice were observed for morbidity or mortality once daily during the 

acclimation period and twice daily starting on the day after irradiation for thirty 

days.  Moribund mice were scored for signs of early euthanasia based on three 

parameters: the severity of hunched posture, squinted/closed eyes, and 

decreased activity.  Each criteria was scored on a scale of 1 to 3, with 3 being 

the most severe.  Moribund mice with a score of 8 or 9 were euthanized and the 

date of death was recorded. 

 Colony assays 

After 35 days, remaining irradiated mice were sacrificed, bone marrow 

acquired from femurs, and total CFC including CFU-GM, BFU-E and CFU-GEMM 

were enumerated in 1% methylcellulose/IMDM containing 30% HI-FBS, 1 U/ml 

rhEPO, 10 ng/ml rhGM-CSF and 50 ng/ml rmSCF as described (Broxmeyer et 

al., 2007a; Fukuda et al., 2007).  All cultures were established in triplicate from 

individual animals, incubated at 37 ºC, 5% CO2, 5% O2 in air for 7 days and 

colonies quantitated by microscopy. 
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Results: 

PGE2 treatment increases survival post-irradiation  

 PGE2 biosynthesis is increased following γ-radiation and can result from 

up-regulation of cPLA2 (Chen et al., 1996) or COX2 (Isoherranen et al., 1999).  In 

rats, spinal cord irradiation elevates PGE2 levels within 3-24 hours that persist for 

3 days (Siegal and Pfeffer, 1995).  In mice, brain irradiation induces COX-

dependent PGE2 production and elevated levels of PGE synthases (Moore et al., 

2005).  In breast cancer patients, radiation therapy triggers monocyte PGE2 

production (Cayeux et al., 1993) and in leukemia and lymphoma patients 

undergoing autologous transplant, plasma PGE2 levels were 3-12 fold higher 

than controls between days 0 and 10 post-transplant (Cayeux et al., 1993).  High 

PGE2 levels occurred when patients were cytopenic, suggesting that PGE2 was 

produced by cells less sensitive to cytoreductive therapies.  Due to the anti-

apoptotic and self-renewal properties of PGE2 signaling, as described in Chapter 

2, it is possible that up-regulation of PGE2 synthesis is an endogenous 

mechanism for radioprotection.  Although PGE2 is endogenously produced as a 

consequence of radiation damage, exogenous administration, particularly using 

the metabolically stable dmPGE2 analog is likely to be more efficacious and 

maintain higher levels of active PGE2 to positively affect HSC survival and 

function.  Early studies have explored the use of dmPGE2 administered prior to 

radiation exposure (Hanson, 1987; Hanson and Ainsworth, 1985; Walden, Jr. et 

al., 1987; Walden, Jr. and Farzaneh, 1995); however, in the case of a mass 
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casualty event, prophylactic administration is not feasible, and little research has 

explored the use of dmPGE2 post-irradiation as a “radiomitigator” rather than a 

“radioprotector”.   

 We performed a preliminary test of hypothesis for mitigating the damage 

to hematopoietic cells post irradiation with dmPGE2 treatment, using a murine 

HS-ARS model developed by Dr. Orschell at IUSM.  Irradiated mice were treated 

with a single subcutaneous dose of dmPGE2 or vehicle control at 6 hours post 

irradiation and moribund status and mortality were monitored for 30 days post-

irradiation.  Single dmPGE2 treatment at 6 hours post-irradiation resulted in 95% 

survival (P=0.0011) compared to 50% survival in control mice (Figure 38A).  In 

normal, non-irradiated mice, total CFC (CFU-GM + BFU-E + CFU-GEMM) are 

generally in the range of 40,000 per femur.  In control mice that received 796 

cGys and survived to day 35, a significant deficit in marrow HPC is evident 

(Figure 38B).  However, in mice treated with dmPGE2, marrow HPC were still 

lower than historical controls , but were significantly higher than control irradiated 

mice (Figure 38B), indicating that hematopoiesis is more robust, likely as a result 

of enhanced stem cell repair, self-renewal and HSC and HPC expansion.  These 

results indicate that dmPGE2 is a highly effective radiomitigator. 
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Figure 38.  Radiomitigation by treatment with dmPGE2, Meloxicam or CoCl2. 

(A)  Cohorts of 20-40 mice were irradiated with 796 cGys from a 137Cs source.  

Mice received a single dose of dmPGE2 (40 µg/mouse) at 6 hours post 

irradiation, or 6 mg/kg Meloxicam dosed daily on days 2-5 post irradiation.  

Animals were monitored for morbidity and mortality twice/daily for 30 days and 

euthanzied when moribund.  Survival curves were analyzed with a log-rank test. 

(B)  Analysis of total CFC (CFU-GM, BFU-E and CFU-GEMM) in methylcellulose 

culture.  Data are Mean ± SEM from N=5 mice per group, each assayed 

individually. 

(C)  Cohorts of 20 mice were irradiated with 796 cGys from a 137Cs source.  Mice 

received a single dose of CoCl2 (60 mg/kg) at 6 hours post irradiation.  Animals 

were monitored for morbidity and mortality twice/daily for 30 days and euthanzied 

when moribund.  Survival curves were analyzed with a log-rank test. 
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Radiomitigation with delayed NSAID administration  

 While it is clear that exposure to PGE2 early post-irradiation increases 

survival, continued exposure to PGE2 is inhibitory to HPC expansion (Gentile and 

Pelus, 1988; Kurland et al., 1978; Kurland et al., 1979; Pelus et al., 1979; Pelus 

et al., 1981; Pelus et al., 1983; Pelus et al., 1988; Pelus and Gentile, 1988).  By 

reducing PGE2 biosynthesis with a delayed administration of an NSAID, HPC 

inhibitory signaling by PGE2 would be ablated, and rapid hematopoietic 

expansion could occur, allowing for repopulation of the irradiated animal.  Work 

discussed in Chapter 3 has demonstrated that Meloxicam administration, in non-

irradiated mice, can increase HPCs within the bone marrow, leading to an 

increase in mature blood cells.  To assess if Meloxicam administration post-

irradiation would lead to increased survival, irradiated mice were treated with 6 

mg/kg Meloxicam dosed once daily on days 2 through 5 post irradiation and 

moribund status and mortality were monitored for 30.  This delayed regimen of 

Meloxicam post-irradiation resulted in 80% survival (P=0.034) compared to 50% 

survival in control mice (Figure 38A).  Similarly to our analysis of dmPGE2 

treatment, we also evaluated total CFC content in femurs 35 days post-

irradiation, as a measure of hematopoietic recovery.  Meloxicam administration 

significantly increased bone marrow CFC content compared to control, indicating 

that delayed NSAID administration post-irradiation can expand the hematopoietic 

compartment and increase survival in treated animals. 
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Cobalt chloride administration increases survival post-irradiation  

 PGE2 is a known transcriptional inducer of HIF-1α (Fukuda et al., 2003; 

Jung et al., 2003; Kaidi et al., 2006) and stabilizes HIF-1α protein (Liu et al., 

2002; Piccoli et al., 2007).  HIF-1α is a key transcriptional regulator with a broad 

repertoire of downstream target genes and is responsible for physiological 

adaptation from normoxia (21% O2) to hypoxia (1% O2) (reviewed in (Ke and 

Costa, 2006) ).  HIF-1α up-regulates EPO production (Semenza et al., 1991), the 

anti-apoptotic protein Survivin (Peng et al., 2006; Wei et al., 2006; Yang et al., 

2004), numerous cell proliferation and survival genes (Cormier-Regard et al., 

1998; Feldser et al., 1999; Krishnamachary et al., 2003), the angiogenic growth 

factor VEGF (Levy et al., 1995) and others.  The HSC bone marrow niche is 

hypoxic (Levesque et al., 2007), and it has been suggested that this hypoxic 

niche maintains HIF-1α activity that maintains stem cells (Lin et al., 2006).  

Hypoxic conditions expand human HSC (Danet et al., 2003) and HPC 

(Broxmeyer et al., 1989; Broxmeyer et al., 1990; Smith and Broxmeyer, 1986) in 

vitro, creating a role for HIF-1α in HSC maintenance.  In addition, HIF-1α has 

recently been reported to prevent hematopoietic cell damage caused by 

overproduction of reactive oxygen species (ROS) (Kirito et al., 2009).  While the 

damaging effects of radiation exposure have largely been attributed to direct 

DNA damage (Hall, 2000b), it is now well recognized that the radiation damaging 

effects on HSC are also mediated by other stress response pathways including 

oxidative stress.  ROS have been implicated in mediating chronic oxidative stress 
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resulting from radiation-induced late morbidity in long-term cancer survivors 

(Zhao et al., 2007).  Oxidative stress-mediated radiation injury of hematopoietic 

(Nunia et al., 2007) and non-hematopoietic cells (Ishii et al., 2007; Wan et al., 

2006), and the use of free radical scavengers to reverse the damage, has been 

previously documented (Ishii et al., 2007; Rabbani et al., 2005; Sandhya et al., 

2006; Wan et al., 2006).  The reduction of ROS induced-damage, coupled with 

the up-regulation of erythropoiesis, angiogenesis, cell survival/proliferation, DNA 

repair and anti-apoptotic functions of HIF-1α support a a hypothesis of altering 

HIF-1α as a radiomitigation strategy.   

 Numerous radioprotectors, including dmPGE2, cysteamine, 5-HT, and the 

FDA approved compound Amifostine, induce marrow hypoxia, and only doses of 

the compounds that induce sufficient hypoxia are radioprotective (Allalunis-

Turner et al., 1989; Glover et al., 1984; Purdie et al., 1983).  While the effects of 

Amifostine are traditionally thought to be due to free radical scavenging, it has 

been suggested that this induction of marrow hypoxia may play an important role 

for radioprotection (Kouvaris et al., 2007), further indicating that compounds 

which induce HIF-1α may be potent radioprotectors.  Cobalt chloride (CoCl2) is a 

known potent inducer and stabilizer of HIF-1α (Ke et al., 2005; Salnikow et al., 

2004; Wang and Semenza, 1993; Yuan et al., 2003), and even before its 

mechanism of action was known, CoCl2 was used to treat anemia in pregnant 

women, infants, and hemodialysis patients (Holly, 1955).  
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 In one case, CoCl2 was explored immediately after irradiation and was 

found to have positive effects on erythropoietic recovery and survival (Vittorio 

and Whitfield, 1971), yet its use as a radiomitigator is largely unexplored.  In 

parallel with our previously described studies exploring the role of altering PGE2 

signaling for radiomitigation, irradiated mice were treated with a single 

subcutaneous dose of CoCl2 (60 mg/kg) at 6 hours post-irradiation and moribund 

status and mortality were monitored as described.  Single CoCl2 treatment at 6 

hours post-irradiation resulted in 95% survival (P=0.0011) (Figure 38C), similar to 

the effectiveness of dmPGE2.  In addition, as was the case with dmPGE2 and 

Meloxicam, increased survival in CoCl2 treated mice correlated with significantly 

increased CFC in bone marrow (Figure 38B), indicating that CoCl2 increased 

hematopoietic recovery and expansion post-irradiation. 

Discussion: 

 These studies outline three different pharmaceutical strategies for 

radiomitigation.  In the context of a radiation incident, particularly one in a 

densely populated area where there are numerous affected (and non-affected) 

individuals, strategies that can be employed quickly and safely to the masses are 

ideal.  While hematopoietic transplantation may be able to treat patients after 

exposure to radiation, the logistics and timing involved in a mass casualty 

situation make transplantation impractical.  Therefore, the ideal treatment should 

be able to be stockpiled and distributed to a large amount of people after an 

incident.  Currently, the Centers for Disease Control and Prevention (CDC) have 
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several compounds in the Strategic National Stockpile (SNS) in the case of a 

radiological incident.  These include the decorporation agents Prussian Blue 

(ferrihexacyanoferrate (II)) and Diethylenetriamenepentaacetate (DTPA), which 

work by binding to radioactive isotopes in the body and preventing entrance into 

the bloodstream and facilitating excretion (Kargacin and Kostial, 1985), and 

Neupogen® (G-CSF), for expansion of hematopoiesis to treat HS-ARS.   While 

these agents are relatively safe and can easily be stockpiled, Prussian Blue and 

DTPA only serve to help reduce radioisotopes in the body, and do not treat 

already exisiting consequences of radiation exposure.  Treatment with 

Neupogen® and other recombinant growth factors have shown some modest 

success for radiomitigation (Herodin et al., 2003; Herodin and Drouet, 2005; 

MacVittie et al., 2005); however, these compounds require administration 

through injections, and given the known occurrences of adverse events 

associated with these compounds, they are less attractive for distribution to a 

large population, since many of the individuals seeking care after a radiation 

event are likely to have received little to no exposure warranting treatment.  

Taking into consideration these issues, Meloxicam is a highly attractive 

radiomitigation agent:  it is safe to distribute to a broad spectrum of patients, both 

those exposed and non-exposed to radiation, it has relatively few side effects, 

and it can be easily added to the SNS and is essentially already stockpiled in 

micro-distribution centers, since most pharmacies currently carry it in stock. 
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 Work by others has explored NSAID administration prior to irradiation in 

mice to increase hematopoietic recovery (Kozubik et al., 1994; Nishiguchi et al., 

1990; Pospisil et al., 1989; Serushago et al., 1987).  Two recent studies exploring 

the use of Meloxicam post-irradiation report contradictory results.  One study by 

Hofer et al. exploring hematologic parameters in mice after sub-lethal irradiation 

followed by 4 days of Meloxicam showed increased hematopoietic recovery 

(Hofer et al., 2006), while another study by Jiao et al. showed a marginal 

decrease in survival with 7 days administration of Meloxicam, and greater 

decreases in survival using the highly COX2 selective drug Celecoxib (Jiao et al., 

2009) in post-irradiated mice.  Our results clearly demonstrate enhanced survival 

and hematopoietic recovery in mice treated with 796 cGys when Meloxicam was 

administered daily post-irradiation for 4 days, starting on Day 2 (Figure 38A).  It is 

important to highlight that the study showing a detrimental effect of NSAID 

administered after radiation exposure began NSAID administration immediately 

following radiation exposure, while the studies performed by us or by Hofer et al. 

delayed administration of NSAID for 1 or 2 days, respectively.  Furthermore, it is 

important to note that our results also clearly indicate that early exposure to 

PGE2 facilitates hematopoietic recovery and survival in irradiated mice (Figure 

38A).  In light of this data, we have formed a “just right (Goldilocks)” hypothesis 

for PGE2 exposure and post-irradiation survival.  Too little PGE2 in the early 

period post-irradiation reduces positive anti-apoptotic and self-renewal effects, 

while too much PGE2 signaling at later time points inhibits HPC expansion and 
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reduces hematopoietic recovery.  In contrast, early exposure to PGE2 to reduce 

apoptosis and stimulate self-renewal, followed later by exposure to an NSAID to 

block PGE2 inhibition of HPC expansion produces an environment that fosters 

reconstitution of hematopoiesis.  Based on our model, we would predict the 

detrimental effects observed by the early administration of NSAID by Jiao et al. 

(Jiao et al., 2009), since it would block the positive effects of endogenously 

produced PGE2 on HSC survival (Cayeux et al., 1993; Chen et al., 1996; 

Isoherranen et al., 1999; Moore et al., 2005; Siegal and Pfeffer, 1995) leading to 

reduced hematopoietic recovery and increased mortality in these treated mice.  

However, our strategy of allowing/utilizing PGE2 to exert positive effects early 

post-irradiation, then blocking its myelosuppresive effect later with Meloxicam, 

would predict facilitation of hematopoietic expansion and recovery, as we 

demonstrated.   

 Our recent findings on the effects of NSAID administration on the 

endosteal osteoblastic niche (Figure 35) in non-irradiated mice may indicate that 

administration of NSAIDs too early would have detrimental effects on the already 

compromised HSC microenvironment, reducing the available niche support to 

reconstitute hematopoiesis.  As has been thoroughly discussed, PGE2 is a 

known anabolic stimulator of bone formation.  It has recently been demonstrated 

that the antiapoptotic protein Survivin is necessary for the survival of 

megakaryocyte progenitors (Wen et al., 2009).  As we showed in Chapter 2, 

PGE2 up-regulates Survivin transcription and expression in hematopoietic cells.  
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Moreover, an important role of megakaryocytes in supporting osteoblasts after 

irradiation has been demonstrated (Dominici et al., 2009).  It is therefore possible 

that PGE2 treatment enhances megakaryocyte Survivin expression post-

irradiation, increasing the total number of megakaryocytes available to enhance 

the hematopoietic niche support.  To further explore these mechanisms, in 

collaboration with Dr. Kacena at IUSM, femurs from irradiated mice treated with 

dmPGE2 or control were examined.  Preliminary results indicate a substantial 

increase in megakaryocyte numbers in dmPGE2 treated mice compared to 

control mice (data not shown), suggesting another possible mechanism for 

increased survival in these mice, but also suggesting a possible mechanism for 

the adverse effects seen by Jiao et al. with early administration of NSAID.  

Further analysis is currently ongoing to assess the role of 

megakaryocytes/osteoblasts and HSC niche in our radiomitigation strategies. 

 While we have clearly demonstrated the utility of the eicosanoid pathway, 

particularly the prostaglandin pathway, in recovery of hematopoiesis after severe 

radiation injury, the true potential of this pathway for modulating recovery after a 

wide spectrum of hematopoietic injuries, e.g., chemotherapy, radiotherapy, post-

hematopoietic transplant, remains underexplored.  Further mechanistic based 

studies are ongoing to define the therapeutic utility of individual members of this 

pathway and combination approaches to develop additional strategies for 

recovery from hematopoietic injury. 
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Chapter 5.  Future Directions 

 

Ex vivo pulse with PGE2: 

 We have provided clear evidence that a short, ex vivo pulse of a 

hematopoietic graft prior to transplantation increases HSC and HPC CXCR4 

receptor expression and homing/engraftment in the bone marrow (Hoggatt et al., 

2009).  However, the exact mechanisms behind this enhancement in CXCR4 

receptor expression and homing are still largely unknown.  In particular, a pulse 

with dmPGE2 is presumably activating multiple different EP receptors on HSC, 

and since the ultimate signaling within the cell is the culmination of the signaling 

events of all the receptors, it is possible that a focused agonism of only the EP 

receptor(s) involved in the increase in homing would lead to a substantially 

greater therapeutic product.  Early work in our laboratory has begun to explore 

which EP receptor is responsible for enhancing homing by examining CXCR4 

receptor expression after in vitro treatment with EP receptor specific agonists and 

antagonists.  Exciting preliminary studies indicate that specific agonism of the 

EP4 receptor with L-902,688 increases CXCR4 receptor expression 299±34% 

compared to 29.8±9.1% for dmPGE2, while the EP2 agonist Butaprost and EP1/3 

agonist Sulprostone had little effect (Figure 39A).  In addition, this increase in 

CXCR4 in response to the specific EP4 agonist could be attenuated by pre-

treatment with the EP4 antagonist L-161,982, but was not affected by the EP1-3 

antagonist AH6809 (Figure 39B).  These results were only seen in human CD34+ 
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Figure 39.  Specific agonism of EP4 increases CXCR4 receptor expression 

on CD34+ UCB cells. 

(A)  MACS® selected CD34+ cells from UCB samples were pulsed with dmPGE2, 

the EP2 agonist Butaprost, the EP1/3 agonist Sulprostone, or the EP4 agonist L-

902,688.  MFI of expression of CXCR4 on CD34+ cells was determined. 

(B)  MACS® selected CD34+ cells from UCB samples were pulsed with the EP4 

agonist L-902,688 with or without a 30 minute pre-incubation with the EP1-3 

antagonist AH6809, or the EP4 antagonist L-161,982.  MFI of expression of 

CXCR4 on CD34+ cells was determined. 
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cells, and were not seen with mouse SKL cells, likely indicating either species 

specific differences in the binding and signaling properties of the EP4 

pharmaceutical, species differences in downstream signaling events that lead to 

CXCR4 up-regulation, or differences in kinetics of response or culture conditions.  

In either case, future studies should focus on EP specific agonism to increase 

CXCR4 and homing, particularly if the large increases in CXCR4 seen with EP4 

agonism are recapitulated with similar magnitude in in vivo homing studies. 

Additional agents to increase homing: 

It is interesting to note that Survivin (Peng et al., 2006; Wei et al., 2006; 

Yang et al., 2004) and CXCR4 (Phillips et al., 2005; Staller et al., 2003; Wang 

and Semenza, 1993) transcription, which we have shown to be increased by 

PGE2, are both up-regulated by the transcription factor HIF-1α, which can be 

stabilized (Liu et al., 2002; Piccoli et al., 2007) and transcriptionally increased 

(Fukuda et al., 2003; Jung et al., 2003; Kaidi et al., 2006) by PGE2, potentially 

linking these PGE2 responsive pathways.  In addition, HIF-1α has been 

demonstrated to increase HPC homing to gliomas (Tabatabai et al., 2006), and 

generally regulates genes associated with migration (Ricciardi et al., 2008).  

Future studies should explore the role of HIF-1α in HSC and HPC homing and 

engraftment and should utilize agents like CoCl2, perhaps in combination with 

PGE2, Diprotin A (Christopherson et al., 2004), or other agents known to 

increase homing, to develop novel homing therapeutic strategies.  In light of our 

findings that cannabinoid agonism decreases CXCR4 and facilitates mobilization, 
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cannabinoid antagonists, many of which function as inverse agonists (Pertwee, 

2005), are potential agents that can be used to facilitate homing of HSC and 

HPC.  In addition, the use of multiple agents in combination may lead to 

synergistic increases in mobilization.  Inhibition of CD26 has been shown to 

increase HSC and HPC homing to the marrow (Christopherson et al., 2004), and 

the CD26 inhibitor Sitagliptin is currently being explored clinically to improve UCB 

hematopoietic transplantation.  Eicosanoid based strategies in combination with 

CD26 inhibition should be explored to enhance HSC homing and engraftment. 

Mobilization of bone marrow-derived progenitor cells: 

 Bone marrow derived progenitors have been implicated in 

neoangiogenesis.  Circulating endothelial progenitor cells (EPC) are found at low 

levels in mouse bone marrow and peripheral blood (Aicher et al., 2005; Orlic et 

al., 2001a; Orlic et al., 2001b) and in the CD34+ adult blood and cord blood 

populations (Asahara et al., 1997; Rafii and Lyden, 2003), and can be mobilized 

by ischemic injury, cytokines such as GM-CSF and G-CSF, SDF-1α and vascular 

endothelial growth factor (VEGF) (Aicher et al., 2005; Asahara et al., 1999; 

Hattori et al., 2001; Orlic et al., 2001a; Powell et al., 2005; Takahashi et al., 1999; 

Wolfram et al., 2007).  Mobilization of EPC represents a possible novel 

therapeutic option to enhance neovascularization.  In animal models, mouse and 

human EPCs have been shown to partially rescue cardiovascular dysfunction 

following ischemic hind limb or myocardial injury, with evidence for contribution to 

new vessel growth and re-endothelialization (Dimmeler et al., 2005; Hu et al., 



 

206 
 

2006; Orlic et al., 2001a; Rafii and Lyden, 2003).  Clinically, intracoronary EPC 

administration has resulted in enhanced neovascularization with beneficial post-

infarct remodeling (Assmus et al., 2002; Strauer et al., 2002), but with little 

evidence for EPC engraftment in newly formed blood vessels (Dimmeler et al., 

2005; Hristov and Weber, 2006).  Since most EPC populations are defined by 

biomarkers that are shared by hematopoietic cells and also contain CD14+ 

monocytic cells, it is likely that reported positive effects result from paracrine 

effects of HSC and HPC driving the angiogenic process (Kopp et al., 2006; 

Willett et al., 2005). 

 The fact that potent mobilizers such as G-CSF also exert pro-inflammatory 

capacity that may enhance atherosclerosis in patients with coronary artery 

disease (Aicher et al., 2005), suggests the need for additional methods to 

enhance the frequency of EPC.  The fact that we observe a significant increase 

in CD34+ cells in baboons and HSC and HPC in mice treated with the NSAID 

Meloxicam strongly suggests the possibility of NSAID-mediated mobilization of 

EPC populations.  In fact, a recent study showed that low dose aspirin promotes 

EPC migration and prevents senescence (Hu et al., 2008).  It also is tempting to 

hypothesize that mobilization of EPC or circulating angiogenic cells may 

contribute to the well know effects of aspirin in preventing major adverse cardiac 

events and mortality (Freimark et al., 2002; Leon et al., 1998) in addition and in 

coordination with aspirin’s already known anti-platelet activity.  It is interesting to 

note that the highly COX2 selective NSAID Valdecoxib was recently withdrawn 
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from the market due to adverse cardiovascular events, and our studies 

demonstrate that Valdecoxib is unable to mobilize HSC and HPC from bone 

marrow, while Aspirin is highly effective, possibly explaining some of the 

cardiovascular differences between these two compounds. 

 A critical issue currently restricting the field is a lack of unique biomarkers 

to define EPC (Yoder, 2009) and it is imperative to define EPC at a clonogenic 

level.  We have recently received IRB approval to study the ability of a 5 day 

regimen of Meloxicam to mobilize CD34+ cells as well as EPCs.  Our 

collaborator, Dr. Yoder and his colleagues have recently utilized a functional 

approach to define a rare population of circulating endothelial colony forming 

cells (ECFC) in adult human peripheral blood that appear to be true EPC (Ingram 

et al., 2004; Yoder et al., 2007).  ECFC express markers of primary endothelium 

(CD31, 105,144,146, VWF, KDR and UEA1) but lack hematopoietic cell markers.  

They clonally propagate with high proliferative capacity and replate into 

secondary and tertiary ECFC, and form capillary structures in vitro, and human 

blood vessels in vivo in immunodeficient mice with incorporation into the murine 

vasculature (Yoder et al., 2007).  We have recently obtained IRB approval to 

conduct a healthy volunteer study to evaluate the potential for Meloxicam to 

mobilize ECFCs, and if so, future studies will determine what contribution this 

mobilization has to neovascularization and cardiac repair. 
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Mobilization with other agents: 

 Similar to the future studies previously proposed for EP receptor specific 

effects on HSC homing, receptor analysis studies should continue to progress for 

hematopoietic mobilization.  The results presented in Chapter 3 suggest that 

antagonism of the EP4 receptor will facilitate HPC expansion and reduction of 

the HSC niche support in the bone marrow, culminating in increased HSC and 

HPC mobilization.  Specifically antagonizing the EP4 receptor, while retaining 

normal PGE2 signaling via EP1-3, is a highly attractive pharmaceutical target, 

since signaling through EP1-3 protects the stomach and intestine (Kunikata et 

al., 2001; Takeuchi et al., 2003), which may allow for increased dose escalation 

for greater mobilization responses.  In addition, EP4 antagonists are already 

being explored in clinical trials (Maubach et al., 2009), suggesting that rapid 

translation to the clinic may be possible for EP4 antagonist based mobilization 

strategies. 

 The incidence of chronic GVHD is higher (Couban et al., 2002; Cutler et 

al., 2001; Mohty et al., 2002) for G-CSF-mobilized PBSC than bone marrow.  In 

contrast, GVHD is significantly lower in patients receiving GM-CSF mobilized 

PBSC grafts compared to G-CSF; however mobilized CD34+ counts are 

significantly lower (Devine et al., 2005).  We have demonstrated that NSAID co-

administration significantly increases mobilization of HSC and HPC, including 

CD34+ cells in baboons, independent of mobilizing mechanisms of the co-

administered mobilizer.  These results suggest that NSAIDs can increase CD34+ 
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cell mobilization in combination with GM-CSF, overcoming one of the major 

hurdles for its clinical use, and allowing for robust mobilized hematopoietic grafts 

with reduced GVHD potential.  Similarly, further analysis on the ability of NSAIDs 

to enhance mobilization of AMD3100, or the combination of AMD3100 and Groβ 

(Fukuda et al., 2007; King et al., 2001; Pelus et al., 2006a), should be performed 

to identify possible mobilizing regimens which are independent of recombinant 

growth factor administration. 

 Eicosanoid regulation to improve gene therapy: 

 Since a single HSC can give lifelong production of all blood lineages, 

transplantation of HSCs that have been transduced with a gene is a potential 

curative therapy for many inherited and acquired diseases.  However, gene 

therapies have been hampered due to less than adequate culture conditions 

used to transduce adult HSC ex vivo and their propensity towards apoptosis 

(Santoni de Sio and Naldini, 2008), and to modification of HSC that alters their 

function, particularly homing to the marrow microenvironment (Hall et al., 2006).  

Preculture of HSC prior to viral transduction is common in transduction protocols, 

but can lead to reduced stemness, (i.e., differentiation and loss of self-renewal) 

and as a consequence, less long-term engraftment (Dorrell et al., 2000; Gothot et 

al., 1998; Rebel et al., 1999).  Ex vivo expansion using hematopoietic growth 

factor cocktails has also been attempted to increase the number of HSC 

following gene transduction protocols to speed engraftment and hematopoietic 

reconstitution, with limited success (Liu et al., 2008; Piacibello et al., 2002; Tesio 
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et al., 2008).  However, it is generally held that there is a loss of long-term 

repopulating ability, likely due to inadequate culture conditions, introduction of 

defects that promote apoptosis (Domen et al., 2000; Liu et al., 2003; Wang et al., 

2000), disruption of marrow homing efficiency (Orschell-Traycoff et al., 2000; 

Ramirez et al., 2001; Zhai et al., 2004) and initiation of cell cycle (Giet et al., 

2001; Glimm et al., 2000).  Therefore, there is considerable need for novel 

techniques to improve the efficiency and efficacy of gene therapy protocols. 

 Our data demonstrating that dmPGE2 pulse exposure enhances self-

renewal division and reduces apoptosis in HSC (Hoggatt et al., 2009)  form the 

rationale for a strategy to treat cells with dmPGE2 prior and/or during the 

transduction protocol to reduce apoptosis and maintain stemness/initiate 

symmetrical self-renewal HSC cell division, and enhance homing and 

engraftment.  In addition, a recent report has demonstrated that antagonism of 

the leukotriene LTB4 receptor expands CD34+ cells in culture (Chung et al., 

2005), in agreement with other eicosanoid “yin and yang” hematopoietic effects 

attributed to leukotrienes (Table 1).  We have recently confirmed that treatment 

of UCB CD34+ cells with an LTB4 antagonist maintains and expands the CD34+ 

population in in vitro culture in the presence of growth factors (Figure 40), 

suggesting that addition of LTB4 antagonists to viral transduction protocols for 

gene therapy may improve yield and hematopoietic reconstitution of gene 

transduced HSC.  Further studies should evaluate the use of eicosanoids in 

current and future gene transduction and gene-transduced engraftment 
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Figure 40.  LTB4 antagonism expands CD34+ UCB cells. 

CD34+ cells from UCB samples were expanded in media with 5% HI-FBS, 50 

ng/ml SCF, 100 ng/ml TPO and 100 ng/ml Flt-3L for 3 days in the presence of 1 

µM of the LTB4 antagonist U-75302, or vehicle control.  CD34+ cell were 

quantitated by FACS.  Shown are representative FACS plots with total CD34+ 

cells present in cultures initiated with 5x105 CD34+ cells. 
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protocols, particularly considering that the mechanisms of action for enhanced 

transduction (i.e. reduced apoptosis, increased self-renewal/maintenance of 

stemness, increased HSC homing, etc.) are likely independent of a particular 

transduction protocol, allowing for optimization of a broad spectrum of current 

and future gene therapies. 

Clinical trials and patent applications: 

Despite its dramatic effect on the field of hematopoietic transplantation, 

poor mobilization in response to G-CSF occurs in 25% of patients, particularly 

those with lymphoma and multiple myeloma (Stiff et al., 2000) and 15% of normal 

donors (Anderlini et al., 1997), requiring extended aphereses (Schmitz et al., 

1995).  Our data in mice and baboons clearly demonstrates that NSAID co-

administration with G-CSF results in a synergistic increase in mobilization, 

suggesting that the addition of NSAIDs along with G-CSF regimens for 

autologous mobilization would be clinically beneficial.  A phase I/II clinical trial to 

assess the safety and efficacy of Meloxicam in combination with G-CSF 

(Filgrastim) for mobilization of autologous PBSC from patients with hematological 

cancers undergoing autologous PBSC transplantation will soon be conducted at 

the IUSM Medical Center. 

AMD3100 has been used successfully as a single agent to mobilize 

peripheral blood stem cells (PBSC) from normal donors for allogeneic stem cell 

transplantation (Devine et al., 2008).  Following a single dose of AMD3100 (240 
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µg/kg) followed by leukapheresis 4 hours later, a median of 2.9 (range, 1.2-6.3) x 

106 CD34+ cells/kg recipient weight were collected.  Furthermore, AMD3100 was 

safe and well tolerated in normal donors, and mobilized HSPC engrafted 

successfully (Devine et al., 2008).  A potential advantage of AMD3100 mobilized 

PBSC products is the presence of a greater number of mature T cells (Devine et 

al., 2008) and plasmacytoid dendritic cell precursors (Rettig et al., 2009) which 

may improve immune function post-transplantation compared to Filgrastim 

mobilized stem cells, which have been associated with an increased risk of 

infections following transplantation (Volpi et al., 2001).  In light of these findings, 

and of our recent findings of the ability of NSAID co-administration to 

synergistically increase hematopoietic mobilization, we believe that a mobilization 

strategy utilizing a regimen of NSAID, followed by AMD3100, without any 

administration of G-CSF, will lead to a superior hematopoietic graft for allogeneic 

transplantation.  A phase I/II clinical trial to assess the safety and efficacy of 

Meloxicam in combination with AMD3100 for mobilization of PBSC in normal 

donors for allogeneic PBSC transplantation will be performed at the IUSM 

Medical Center. 

Two separate patent applications have been filed encompassing many of 

the therapeutic applications discussed throughout this dissertation, including 

increasing homing through PGE2 agonism of the EP4 receptor; improving gene 

therapy with PGE2 based modalities; and enhancement of hematopoietic 

mobilization with NSAIDs or EP4 antagonism.  These inventions are described in 
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PCT Patent Application  PCT/US09/63654 “Materials and Methods to Enhance 

Hematopoietic Stem Cell Engraftment Procedures” (Filed 11/06/08), and U.S. 

Provisional Application 61/261,352 “Inhibition of Prostaglandin E2 (PGE2) 

Signaling by Non-Steroidal Anti-Inflammatory Drugs.” 

HSC and HPC fate decisions directed by eicosanoids: 

 Our preliminary findings suggest that PGE2 facilitates an increase in HSC 

function, presumably by self-renewal division, and blockade of PGE2 signaling 

facilitates HPC expansion.  Hematopoietic expansion and maintenance of HSC 

can occur via symmetrical self-renewal divisions giving two daughter HSCs, 

symmetrical differentiation divisions giving two daughter cells destined for 

differentiation, or asymmetric division giving one daughter HSC and one 

daughter destined to differentiate (reviewed in (Morrison and Kimble, 2006)).  

Recently, it has been demonstrated that phenotypically defined hematopoietic 

precursors have the capacity for all three types of division (Wu et al., 2007).  

Future studies should employ a combination CFC analysis, long-term 

repopulation assays, and single-cell live tracking (Wu et al., 2007) to determine 

what effect eicosanoid signaling has on HSC and HPC.  For instance, if we see 

increased progenitor function in a CFC assay, with no difference in long-term 

repopulating capacity, this would be suggestive of asymmetric division of HSC.  

If, however, we see a reduction in long-term repopulating capacity, this would be 

suggestive of symmetric differentiation of HSC.   
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