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TRANSFER OF INTRACELLULAR HIV NEF TO ENDOTHELIUM 

CAUSES ENDOTHELIAL DYSFUNCTION 

 

          With effective antiretroviral therapy (ART), cardiovascular diseases (CVD), 

are emerging as a major cause of morbidity and death in the aging population 

with HIV infection. Although this increase in CVD could be partially explained by 

the toxic effects of combined anti-retroviral therapy (ART), more recently, HIV 

infection has emerged as an independent risk factor for CVD. However, it is 

unclear how HIV can contribute to CVD in patients on ART, when viral titers are 

low or non-detectable. Here, we provide several lines of evidence that HIV-Nef, 

produced in infected cells even when virus production is halted by ART, can lead 

to endothelial activation and dysfunction, and thus may be involved in CVD. We 

demonstrate that HIV-infected T cell-induced endothelial cell activation requires 

direct contact as well as functional HIV-Nef. Nef protein from either HIV-infected 

or Nef-transfected T cells rapidly transfers to endothelial cells while inducing 

nanotube-like conduits connecting T cells to endothelial cells. This transfer or 

transfection of endothelial cells results in endothelial apoptosis, ROS generation 

and release of monocyte attractant protein-1 (MCP-1). A Nef SH3 binding site 

mutant abolishes Nef-induced apoptosis and ROS formation and reduces MCP-1 

production in endothelial cells, suggesting that the Nef SH3 binding site is critical 

for Nef effects on endothelial cells. Nef induces apoptosis of endothelial cells 
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through both NADPH oxidase- and ROS-dependent mechanisms, while Nef-

induced MCP-1 production is NF-kB dependent. Importantly, Nef can be found in 

CD4 positive and bystander circulating blood cells in patients receiving virally 

suppressive ART, and in the endothelium of chimeric SIV-infected macaques. 

Together, these data indicate that Nef could exert pro-atherogenic effects on the 

endothelium even when HIV infection is controlled and that inhibition of Nef-

associated pathways may be promising new therapeutic targets for reducing the 

risk for cardiovascular disease in the HIV-infected population.  
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INTRODUCTION 

1. HIV 

1.1 Epidemiology of HIV/AIDS 

Human immunodeficiency virus (HIV) is a single-stranded, positive-sense 

RNA lentivirus that causes acquired immunodeficiency syndrome (AIDS). HIV 

infection causes the progressive failure of the immune system, making patients 

vulnerable to life-threatening opportunistic infections and cancers (Sepkowitz 

2001). HIV/AIDS is a global pandemic, with an average of 40,000 new HIV 

infections each year (Cohen, Hellmann et al. 2008). According to the 2011 world 

AIDS report (www.unaids.org), approximately 17.2 million men, 16.8 million 

women and 3.4 million children under 15 years old were infected with HIV.  Of 

these, Sub-Saharan Africa is the region most affected: In 2010, an estimated 

68% (22.9 million) of all HIV cases and 66% of all deaths (1.2 million). In the 

United States, the CDC estimates that 1.1 million persons are living with HIV 

infection, including 18.1% who are unaware of their infection. With the 

development of antiretroviral therapies, the deaths from AIDS decreased to 1.8 

million in 2010 compared with 2.2 million in 2005. However, the deaths of 

persons with an AIDS diagnosis can be due to any cause: the death may or may 

not be related to AIDS (Cheung, Pantanowitz et al. 2005). 
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1.2 Clinical and virological aspects of HIV infection 

There are three main phases of HIV infection: acute infection, clinical 

latency and AIDS (Bartlett 1990). Within 2-4 weeks after infection with HIV, some 

individuals experience “influenza-like illness” while others do not have any 

symptoms. The duration of the symptoms varies, but usually last one or two 

weeks. This is the period when HIV virus is rapidly produced in the patient’s 

body. The initial symptoms are followed by a stage called clinical latency, 

asymptomatic HIV, or chronic HIV. This stage can last from three years to twenty 

years without any treatments. During this phase, HIV reproduces at a very low 

level, with few or no symptoms at first.  Towards the end of this phase, HIV-

patients viral load begins to rise and the CD4 cell counts decrease (Figure 1). As 

this happens, many people experience fever, weight loss, gastrointestinal 

problems and muscle pains, and some of them may also develop persistent 

generalized lymphadenopathy.  However, about 5% of HIV patients retain high 

CD4 cell counts without antiretroviral therapy (ART) for more than 5 years, and 

are considered as HIV long-term nonprogressors (LTNP) (Blankson 2010). 

Another small group of HIV-infected patients (0.03%) maintain a low or 

undetectable viral load without ART and are known as "elite controllers" or "elite 

suppressors". Once the number of CD4 cells begins to fall below 200 cells per 

µL, these patients are diagnosed as AIDS patients (Alimonti, Ball et al. 2003). At 

this stage, people with AIDS have an increased risk of developing various viral 

induced cancers including: Kaposi's sarcoma, Burkitt's lymphoma, primary 

central  
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Figure 1: Timecourse of HIV infection  

The Blue line represents CD4 cell counts while the red line represents viral load. 

Major disease progressions were labled in the figure. Adapted from Grossman, 

Meier-Schellersheim et al. 2006. 
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 nervous system lymphoma, and cervical cancer, which are less common in 

immuno-competent people. 

 

1.3 HIV genome structure 

HIV is a large virus with a diameter of about 120nm, composed of two 

copies of positive single-stranded RNA that codes for the virus's nine genes (gag, 

pol, and env, tat, rev, nef, vif, vpr, vpu). HIV is surrounded by the viral envelope 

(Lu, Heng et al. 2011). The protein, known as Env, consists of a cap made of 

three molecules called glycoprotein (gp) 120, and a stem consisting of three 

gp41 molecules that anchor the structure into the viral envelope. This protein is 

important to enable the virus to gain access into CD4+ cells to initiate the 

infectious cycle. Env together with other two genes: Gag and Pol are the 

structural genes for new virus particles. Gag encodes four structural proteins: 

matrix (MA), capsid (CA), nucleocapsid (NC), and p6 (Poon, Wu et al. 1996; 

Cimarelli, Sandin et al. 2000; Wang and Aldovini 2002). Pol encodes the viral 

enzymes: protease, reverse transcriptase (RT), and integrase (IN) (Hill, 

Tachedjian et al. 2005). These enzymes are produced as a Gag-Pol precursor 

polyprotein by the viral protease, and are important for viral development. The six 

remaining viral genes, Tat, Rev, Vpr, Vif, and Vpu (or Vpx), Nef, play regulatory 

roles in controlling the ability of HIV to infect cells, produce new copies of virus, 

or cause disease. Of these, Tat is the transcriptional transactivators for HIV’s 

landmark long terminal repeats (LTR) promoter acting by binding the trans-

activation response (TAR) RNA element (Debaisieux, Rayne et al. 2012). Rev 
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provides nuclear export of non- or incompletely-spliced HIV mRNAs (Pollard and 

Malim 1998). Vpr is required for targeting the nuclear import of preintegration 

complexes, cell growth arrest, transactivation of cellular genes, and induction of 

cellular differentiation (Bukrinsky and Adzhubei 1999). Vif prevents the activity of 

a strongly anti-HIV host factor, APOBEC3G (Zhang, Pomerantz et al. 2000). Vpu 

increases the efficiency of viral budding from the host cell by down regulate CD4 

in the endoplasmic reticulum (Bour and Strebel 1996). Nef is a multifunctional 

accessory protein (Das and Jameel 2005) (Figure 2) and will be discussed in 

subsequent sections.    

 

1.4 HIV replication cycle 

1.4.1 Entry 

HIV virus entering host cells requires HIV gp120 molecules to bind to CD4 

molecules on the host cell’s surface. In addition to the main receptor CD4 and at 

least one of two chemokine receptors: CXCR4 and CCR5, is required for viral 

entry (Chan and Kim 1998). Following binding to CD4 protein, gp120 undergoes 

a structural change exposing the chemokine binding domains allowing them to 

interact with either CXCR4 (T-tropic isolates), CCR5 (M-tropic isolates) or both 

based on their tropism. This step helps the N-terminal fusion peptide gp41 to 

penetrate the cell membrane (Wyatt and Sodroski 1998). Of note, T-tropic 

isolates refer to the virus isolated from patients later in the infection in the 

symptomatic phase that infect T cells. On the other hand, M-tropic isolates are  
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Figure 2: The structure of HIV genome.  

The HIV genome consists of 9 genes, including the structure genes Gag, Pol and 

Env; the regulatory genes Tat and Rev; and the accessory genes Nef, Vif, Vpu 

and vpr. The HIV genome also has a "Long Terminal Repeat" (LTR) at each end 

of its genome. 
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the viruses isolated from individuals early in an infection during the asymptomatic 

phase, that typically infect macrophages, but not T cells. The mutation of co-

receptors may reduce the ability of virus to infect target cells. Individuals with the 

CCR5-Δ32 mutation are resistant to infection with M-tropic isolates, as the 

mutation stops HIV from binding to the CCR5 co-receptor (Galvani and Slatkin 

2003). 

Besides the classical CD4/co-receptor mediated entry, a few non-standard 

receptors have been reported. For example, Dendritic Cell-Specific Intercellular 

adhesion molecule-3-Grabbing Non-integrin (DC-SIGN), a dendritic cell (DC)–

specific HIV binding protein, enhances trans-infection of T cells. DC-SIGN does 

not function as a receptor for viral entry into DC but instead promotes efficient 

trans-infection in cells that express CD4 and chemokine receptors (Pope and 

Haase 2003; Haedicke, Brown et al. 2009). Similarly, for macrophages, 

mannose-specific macrophage endocytosis receptor interacting with gp120 also 

enhances viral entry. 

 

1.4.2 Replication and transcription 

Following viral entry to the target cell, the virus's RNA and enzymes PI, 

RT, and IN enter the cytoplasm. RT allows the single-stranded RNA to be copied 

and double-stranded DNA (dsDNA) to be generated (Zheng, Lovsin et al. 2005). 

Because of the extremely error-prone process of RT, HIV is rapidly mutated and 

evades the body’s immune system. Integrase enzyme then facilitates the 

integration of this viral DNA into the cellular chromosome. Provirus (HIV DNA) is 
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replicated along with the chromosome when the cell divides. The integration of 

provirus may be dormant in the latent stage of HIV infection that enables the 

virus to evade host responses so effectively. Next, the integrated provirus is 

transcribed into mRNA including Tat, Rev, and Nef, and these are the early viral 

proteins. These mRNA are spliced into smaller pieces, and exported from the 

nucleus into the cytoplasm, where they are translated into the regulatory 

proteins. Rev binds to viral mRNAs to facilitate unspliced RNAs to leave the 

nucleus.  Meanwhile, the structural proteins Gag and Env are produced from the 

full-length mRNA (Pollard and Malim 1998).  

 

1.4.3 Assembly and release 

Assembly of new HIV virions, Env protein (gp160) is localized to lipid rafts 

in cell membrane through the Golgi complex. Gp160 is cleaved into the two HIV 

envelope glycoproteins, gp41 and gp120 (Hallenberger, Bosch et al. 1992). They 

are transported to the plasma membrane of the host cell where gp41 anchors 

gp120 to the infected cell membrane. Once the Gag and Gag-Pol polyproteins 

associate with the inner surface of the plasma membrane, HIV genomic RNA 

begins to bud from the host cell.  Gag protein is then cleaved into the actual 

matrix, capsid and nucleocapsid proteins by the packaged viral enzyme PI 

(Sundquist and Krausslich 2012). The virion now undergoes a morphological 

change and becomes mature and infectious (Figure 3). 



 

 11 

 

 

 
  



 

 12 

Figure 3: HIV life cycle 

The important steps of HIV life cycle: 1. HIV gains the entrance to its target cell. 

2. HIV releases RNA, the genetic code of the virus, into the cell. 3. HIV RNA is 

converted to DNA by reverse transcriptase. 4. The viral DNA enters the nucleus 

of its target cell followed by integration. 5. The DNA of the infected cell now 

produces RNA and proteins that are needed to assemble a new HIV. 6. HIV viral 

assembly at the cell membrane. 7. The new mature HIV virus. 
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1.5 HIV treatment 

1.5.1 HIV vaccines 

HIV surface proteins, especially gp120, are considered as targets for 

vaccines against HIV. However, the gp120 glycosylation patterns are highly 

variable in different HIV strains, which made producing gp120 antibodies difficult.  

In this decade, several research groups brought vaccines to clinical trials, 

including the STEP study and HVTN 505 trials. The STEP study was ceased in 

2007, while HVTN 505 was stopped in 2013, both due to ineffectiveness in 

preventing HIV infections and lowering viral load among those participants who 

had become infected with HIV. In a recent report, a new vaccine has just finished 

FDA Phase I Clinical Trials and has shown promising results. This vaccine uses 

HIV that has been genetically engineered to make it non-infectious, which 

reduces the risk of causing HIV in the recipient compared to making a vaccine 

from whole, killed virus. HIV patients with vaccine intake had as much as 64 

times more antibody against the p24 capsid antigen and up to eight times higher 

antibody against gp120 surface antigen than initial titers. And there were no 

major side effects or reactions to the vaccine reported.  However, the Phase II 

and Phase III trials still have to be run, where most other vaccines had been 

deemed failures. 

 

1.5.2 ART 

Antiretroviral therapy dramatically improves the health and prolongs the 

lives of persons with HIV (Cooper, Nugent et al. 1996). ART efficiently decreases 
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patient’s viral loads, maintains function of their immune system, and prevents 

opportunistic infections. Studies also showed that using ART can reduce the risk 

of sexually transmitting HIV by 90%. ART normally combines at least three 

antiretroviral drugs from at least two different categories. There are five 

categories of drugs which attack HIV in different ways, including nucleoside 

reverse transcriptase inhibitors (NRTI)/nucleotide reverse transcriptase inhibitors 

(NtRTI), non-nucleoside reverse transcriptase inhibitors (NNRTI), protease 

inhibitors (PIs), viral entry inhibitors and integrase inhibitors (Table 1). 

The first approved antiretroviral drugs (1987) NRTI and NtRTI are 

nucleoside and nucleotide analogues, lacking a 3'-hydroxyl group on the 

deoxyribose moiety, which inhibit reverse transcription. NRTIs need to be 

activated for viral DNA incorporation by addition of three phosphate groups to 

their deoxyribose moiety, to form NRTI triphosphates. In contrast, non-nucleoside 

analogs block reverse transcriptase by binding to RT. PIs block the viral protease 

enzyme, preventing cleavage of gag and gag/pol precursor proteins. Thus, the 

newly made virus particles in this case are defective and mostly non-infectious. 

The side effects of first generation PIs that have been reported include causing a 

syndrome of lipodystrophy, hyperlipidaemia, diabetes mellitus type 2 and kidney 

stones. New generation drugs have been developed that are less toxic and are 

effective against some HIV variants that are resistant to first generation PIs. 

Integrase inhibitors inhibit the enzyme integrase, which is responsible for 

integration of DNA from virus into the target cell. Currently, there are only two 

FDA approved integrase inhibitors: raltegravir (2007) and the latest one 
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Elvitegravir (2013), but several others are currently in clinical trials. Entry 

inhibitors interfere with virus binding, fusion and entry to the host cell by blocking 

its receptors. There are two FDA approved entry inhibitors: Maraviroc (targeting 

CCR5) and enfuvirtide (targeting CXCR4).  However, using this class of drugs 

has a risk of tropism shift, which allows HIV to target an alternative co-receptor. 

Fuzeon (enfuvirtide), a peptide drug can act by interacting with the N-terminal 

heptad repeat of gp41 of HIV to form an inactive hetero six-helix bundle, 

therefore preventing infection of host cells. 
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Catogory Brand Name Generic Names 
 Epivir Lamivudine 
 Emtriva Emtricitabine 

NRTIs Retrovir Zidovudine, 
azidotymidine  Trizivir Abacavir, 
zidovudine, 
lamivudine 

 Zerit Stavudine 
 Ziagen Abacavir sulfate 

NNRTIs 

Edurant Rilpivirine 
Intelence Etravirine 
Rescriptor Delavirdine 

Sustive Efavirenz 
Viramune Nevirapine 

PIs 

Agenerase Amprenavir 
Crixivan Indinavir 
Norvir Ritonavir 

Prezista 
Reyataz 
Fuzeon 
Isentress 
EVG 

 

Darunavir 
Reyataz Atazanavir sulfate 

Entry  
Inhibitors 

Fuzeon Enfuvirtide (T-20) 
Selzentry Maraviroc 

Intergrase 
inbitorrs 

Isentress Raltegravir 
EVG Elvitegravir 
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Table 1: FDA-approved antiretroviral drugs 

Data collected from FDA website www.fda.gov/oashi/aids/virals. 
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2. HIV negative factor (Nef) 

2.1 Nef expression and structure 

Nef is a ~27 kDa accessory protein that is devoid of enzyme activity. It is 

found at the 3’ end of the HIV genome, overlapping the 3’LTR (See Figure 2). 

Nef is N-terminal myristoylated, which is crucial for its membrane targeting. The 

Nef core domain structure resembles that of the helix-turn-helix (HTH) family of 

proteins involved in binding DNA. One of the most important motifs for Nef 

function is the proline-rich Src homology-3 (SH3) domain-binding sequence 

(PxxP), allowing Nef to bind to SH3 domain-containing proteins, such as Src, 

Lck, and Hck. This binding site is required for Nef to associate with a P21 

activated kinase (PAK)-Related Kinase, and Nef-induced alterations of signal 

transduction in T cells. In addition, The Nef N-terminal stretch of basic residues 

can contribute to Nef membrane localization: an acidic region (62EEEE65) is 

responsible for Nef perinuclear localization, while three pairs of amino acid 

residues (W57/L58, L164/L165, and D174/D175) act to alter the surface 

expression of many cellular proteins, such as down regulating CD28 expression 

(Figure 4). 

 

2.2 Nef protein function in HIV 

2.2.1 Nef as a positive viral factor 

Nef is an important HIV pathogenic factor, as demonstrated by in vivo 

studies. Studies in Rhesus monkeys have demonstrated that Nef is critical for 

attaining high virus loads and development of AIDS-like disease in SIV-infected 
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macaques. In parallel, studies on SCID-hu mice also demonstrated that nef-

deleted HIV strains showed significantly lower levels of infectivity and 

pathogenicity. A recent study also demonstrated that transgenic mice expressing 

CD4-promoter driven Nef develop a spectrum of pathologies including AIDS-like 

disease. More importantly, in clinical studies, patients infected with a HIV Nef-

deletion or Nef allele mutant strains showed lack of disease progression. 

However, Nef either has no effect or a positive effect on viral replication in vitro 

depending on cell types. Nef generally has no effect on viral replication in 

activated peripheral blood mononuclear cells (PBMCs) and activated CD4+ T 

cells, but plays a significant role in post infection-stimulated PBMCs or lymphoid 

cultures, immature dendritic cell-T cell co-cultures and in the ex vivo tonsil culture 

system. 

Productive HIV infection is regulated by Nef-induced lymphocyte-

stimulating factor release from macrophages. This provides an environment 

where Nef itself can stimulate viral replication by increasing the pool of 

lymphocytes. In addition, HIV Nef also facilitates the incorporation of Nef-

associated cellular kinases that phosphorylate various substrates, including viral 

matrix protein necessary for generating fully infectious viral particles.  
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Figure 4: Residues of HIV Nef protein 

 Important Nef residues are labeled above the figure:  The Nef N-terminal stretch 

of basic residues can contribute to Nef membrane localization; an acidic region 

(62EEEE65) is responsible for Nef perinuclear localization; the proline-rich Src 

homology-3 (SH3) domain-binding sequence (PxxP); the and three pairs of 

amino acid residues (W57/L58, L164/L165, and D174/D175) act to alter the 

surface expression of many cellular proteins. 
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2.2.2 Nef alleles show major differences in pathogenicity  

Nef is a major determinant of panthogenicity in persons. Various Nef 

alleles were reported to show differences in pathogenicity, including SF2, JR-

CSF, YU10x, and NL4-3 [T71R] Nef alleles, as well as some from long-term 

nonprogressors (AD-93, 032an, and 039nm alleles). Except YU10x, all these Nef 

alleles down regulated cell surface CD4 in human cells in vitro, and depleted of 

double-positive and single-positive thymocytes. A loss of peripheral CD4 T cells 

was observed with all alleles but was minimal in Nef YU10x Tg mice. Of these 

alleles, Nef032an and Nef SF2 are highly virulent; associated with severe T-cell 

loss. Moreover, all Nef alleles except the Nef YU10x and Nef NL4-3(T71R) 

alleles induced an enhanced activated memory (CD25(+) CD69(+) CD44(high) 

CD45RB(low) CD62L(low)) and apoptotic phenotype. Also, all could interact with 

and/or activate PAK2 except the Nef JR-CSF allele. Nef NL4-3(T71R), Nef 

032an, Nef 039nm, and Nef SF2 Tg mice, but not Nef YU10x Tg and NefAD-93 

mice, developed organ (lung and kidney) diseases (Priceputu, Hanna et al. 

2007).  

 

2.2.3 Nef alters cell surface expression of critical proteins 

Nef protein was reported to down regulate several important proteins 

involved in the immune synapse, including CD4, MHC I, MHCII, CD28, NKG2D, 

CXCR4, and CD80(Le Gall, Erdtmann et al. 1998; Swigut, Shohdy et al. 2001; 

Blagoveshchenskaya, Thomas et al. 2002; Chaudhry, Das et al. 2005; Cerboni, 

Neri et al. 2007; Chaudhuri, Lindwasser et al. 2007). It is not fully understood 
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how Nef affects these proteins, but in most case, Nef down regulates these 

proteins by interacting with adaptor protein complexes AP-1, AP-2, AP-3, 

Clathrin, and PACS-1 (Foti, Mangasarian et al. 1997; Le Gall, Erdtmann et al. 

1998; Lock, Greenberg et al. 1999). 

 

2.2.4 Nef alters T cell receptors and cellular signaling pathways 

Nef targets various signaling pathways, including the T cell receptor (TcR) 

signalling pathway (Luo and Peterlin 1997; Djordjevic, Schibeci et al. 2004), IL-2 

receptor pathway (Greenway, Azad et al. 1995; Schrager and Marsh 1999), 

pathways in macrophages leading to chemokine production as well as the anti-

apoptotic cascade. Nef binding to SH3 domains of the Src family of kinases p21 

activated protein kinase (PAK2) is important for signal transduction alteration in T 

cells, such as inducing rapid and transient phosphorylation of the α and ß 

subunits of the IκB kinase complex and of JNK, ERK1/2 as well as p38 mitogen-

activated protein kinase family members (Rudel, Zenke et al. 1998). In addition to 

the effects in infected cells, Nef has been shown to induce the formation of 

exosomes (Lenassi, Cagney et al. 2010) to cause cell death in bystander T cells 

and formation of nanotubes, which physically connect to bystander cells 

(Sowinski, Jolly et al. 2008). In infected monocytes, Nef induces nanotube-like 

conduits that can connect to B cells and mediate its own transfer to B cells where 

it inhibits Ig class switching (Qiao, He et al. 2006; Xu, Santini et al. 2009). 
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3. Cardiovascular diseases 

3.1 Coronary artery disease (Atherosclerosis) 

3.1.1 Cholesterol-dependent 

Atherosclerosis refers to hardening of arteries that results from a chronic 

inflammatory response in the walls of arteries. It is caused by the accumulation of 

macrophages and white blood cells and promoted by low-density lipoproteins 

(LDL) (Ross 1999). Endothelial dysfunction is an early precursor to 

atherosclerosis and has been shown to predict future cardiovascular events in 

most population studies, which is defined as an imbalance between vasodilating 

and vasoconstricting substances produced by the endothelium (Deanfield, 

Donald et al. 2005). The normal arterial endothelium resists prolonged contact 

with leukocytes including the blood monocyte. Once endothelial cells undergo 

inflammatory activation, they attract monocytes by increasing adhesion molecule 

expression, such as intercellular adhesion molecule 1 (ICAM-1) and vascular cell 

adhesion molecule-1 (VCAM-1) (Cybulsky, Iiyama et al. 2001). The activated 

endothelial cells secrete various chemokines, including monocyte 

chemoattractant protein-1 (MCP-1), which allow monocytes to penetrate into the 

intima, the innermost layer of the arterial wall (Aiello, Bourassa et al. 1999). After 

the monocyte acquires characteristics of the tissue macrophage, in the atheroma 

in particular, scavenger receptors on these macrophages bind to modified LDL 

by oxidation or glycation. These processes give rise to the arterial foam cell, a 

hallmark of the arterial lesion. The foam cell then secretes pro-inflammatory 

cytokines that amplify the local inflammatory response and reactive oxygen 
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species (ROS) production in the lesion (Mugge 1998). Matrix metalloproteinases 

(MMPs) production can degrade extracellular matrix, followed by the plaque 

ruptures, and eventually induce thrombus formation in the lumen (Figure 5).  

 

3.1.2 Other risk factors: Cholesterol-independent 

Smoking 

Cigarette smoking (CS) is known to increase the incidence of myocardial 

infarction (MI) and fatal coronary artery disease (CAD), even for light smokers. 

Passive CS is associated with a 30% increased risk of CAD, compared with an 

80% increase in active smokers (Jeremy, Mikhailidis et al. 1995; Ambrose and 

Barua 2004). Cigarette smoking impairs endothelium-dependent vasodilation 

through decreasing nitric oxide (NO) availability. NO is not only a vasoregulatory 

molecule, but it also helps regulate inflammation, leukocyte adhesion, platelet 

activation, and thrombosis (Napoli and Ignarro 2001). Thus, an alteration in NO 

biosynthesis could have both primary and secondary effects on the initiation and 

progression of atherosclerosis. Cigarette smoking also increases levels of 

inflammatory markers including C-reactive protein (Tracy, Psaty et al. 1997), 

interleukin-6 (IL6), and tumor necrosis factor alpha (TNFα) (Mendall, Patel et al. 

1997). Furthermore, CS could promote atherosclerosis by its effects on lipid 

profile (Craig, Palomaki et al. 1989). Though the mechanism behind this was not 

fully understood, triglyceride/LDL abnormalities have been suggested to be 

related to insulin resistance. More importantly, CS increases oxidative 

modification of LDL that exposure to CS extract caused a modification of LDL 
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that promoted the formation of foam-cells, and it may also decrease the plasma 

activity of paraoxonase, an enzyme that protects against LDL oxidation (Yokode, 

Kita et al. 1988; Pech-Amsellem, Myara et al. 1996). 

Diabetes 

It is known that coronary heart disease is correlated with both type 1 and 

type 2 diabetes mellitus (Nathan, Lachin et al. 2003). These diabetic patients fail 

to achieve significant reduction in macrovascular events, which may be explained 

by diabetes-related metabolic abnormalities accelerating macrovascular 

complications. In some animal models, diabetes-induced hyperlipidemia occurs 

and may mask toxic effects of hyperglycemia that confer diabetes-specific risk. 

These effects may be caused by the development of increasing advanced 

glycation end products (AGEs) level, toxic intracellular reactions to glucose 

secondary to the production of increasing ROS level, and multiple effects on the 

production of matrix proteins and the biology of cells within the vessel wall 

(Brownlee 2001). 

 

3.2 HIV-related cardiovascular diseases 

3.2.1 ART in coronary artery disease 

Acute coronary syndromes are observed with increasing frequency among 

HIV patients receiving therapy with protease inhibitors as part of ART regimens. 

Several studies reported that currently available HIV PIs are associated with 

increased levels of total cholesterol (36 [75%] of 48 studies), triglycerides (35 

[73%] of 48 studies), and low-density lipoprotein (12 [100%] of 12 studies).  
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Protease inhibitor was also found to increase carotid intima thickness or 

atherosclerotic lesions (7 [88%] of 8 studies) (Rhew, Bernal et al. 2003). In 

particular, HIV PIs (ritonavir, indinavir, and atazanavir), caused the accumulation 

of free cholesterol in intracellular membranes, depleted endoplasmic reticulum 

calcium stores, activated caspase-12, increased apoptosis in macrophages and 

promoted atherosclerosis and cardiovascular disease in HIV-infected patients. 

The most substantial database has recently been provided by the D:A:D study 

group who demonstrated an increased incidence of myocardial infarction in HIV-

infected persons on PIs or NtRTIs-containing therapy in a prospective 

observational cohort study. In a contrast, SMART (Strategies for Management of 

Anti-Retroviral Therapy) analysis revealed slightly elevated risk of cardiovascular 

disease in people who interrupt therapy, which implied that there are other 

factors may potentially increase HIV-cardiovascular diseases (McClay, David 

Fourteenth Conference on Retroviruses and Opportunistic Infections).  

 

3.2.2 HIV viron-related cardiovascular disease 

Controversy currently exists on whether people living with HIV and taking 

ART have greater cardiovascular risks than treatment-naive HIV-infected 

individuals. Untreated HIV infection has been found to associate with increased 

levels of IL6. Higher levels of IL-6 strongly predict cardiovascular events and 

overall mortality in antiretroviral-untreated and treated HIV infection (Kuller, Tracy 

et al. 2008).  
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Figure 5: The process of atherosclerosis. 

The schematic is the representation of atherosclerotic process. Monocytes recruit 

when adhesion molecules (e.g VCAM I and ICAM) express on endothelium. 

Once resident in the arterial intima, activated macrophages become 

phagocytically active.  Followed by the macrophages take up enough cholesterol 

and become foam cells. Foam cells release growth factors that stimulate the 

growth of nearby smooth muscle cells and fibroblasts. Smooth muscle cells 

migrate from the tunica media into the intima. Once they deposit additional 

connective tissue, the abnormal region becomes a fibrous plaque. Ruptures of 

the fibrous cap expose thrombogenic material to the circulation and eventually 

induce thrombus formation. 
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HIV infection is reported to be associated with premature atherosclerosis. 

This occurs even in the absence of detectable viremia, overt immunodefiency 

and exposure to ART and appears to be independent of traditional CD4+ T cell 

count. C-reactive protein was higher in HIV cardiac risk factors. They measured 

401 HIV-seropositive participants by assessing carotid artery intima-media 

thickness (IMT) and found that IMT was strongly associated with the presence of 

HIV disease rather than viral load or controllers than HIV-seronegative persons. 

However, ART was also associated with higher IMT (Hsue, Hunt et al. 2009). 

Recent studies have shown that acute myocardial infarction (AMI) rates and 

cardiovascular risk factors were increased in HIV compared with non-HIV 

patients [11.13 (95% confidence interval [CI] 9.58-12.68) vs. 6.98 (95% CI 6.89-

7.06)], particularly among women (Triant, Lee et al. 2007). Even though there 

were no reports showing that HIV-infected patients with the metabolic syndrome 

(MS) have a faster rate of progression of coronary atherosclerosis, Fitch et al 

reported that HIV-infected men with MS have higher cardiac risk factor - coronary 

artery calcium (CAC) score when compared to HIV-infected and non HIV-infected 

control groups with similar demographic parameters, age and smoking rates 

(Ullrich, Groopman et al. 2000). They also found that presence of plaque and 

numbers of noncalcified plaque segments were increased among both HIV-

infected groups compared with HIV negative controls. Both of the evidence 

suggested that HIV patients without significant metabolic abnormalities may still 

develop noncalcified plaque and be at increased risk for coronary artery 

diseases. 
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3.2.3 HIV proteins in cardiovascular disease 

Endothelial dysfunction injury is pivotal to the development of 

cardiovascular disease in HIV-infected patients (Chi, Henry et al. 2000). 

Endothelial dysfunction is defined as an imbalance between vasodilating and 

vasoconstricting substances produced by the endothelium (Deanfield, Donald et 

al. 2005). Endothelial dysfunction can result from or contribute to coronary artery 

disease, and other atherosclerotic diseases (Flammer, Anderson et al. 2012). 

The previous studies showed that endothelial “activation”, in the form of soluble 

adhesion molecules and procoagulant proteins, led to a pro-inflammatory, 

proliferative and prothrombotic state of the endothelium occurs. Proinflammatory 

cytokines (e.g IL-6, TNF alpha) and HIV proteins are contributory to endothelial 

dysfunction.  

HIV envelope glycoprotein (HIV gp120) 

HIV DNA or RNA was only found in inflammatory cells of heart tissues 

from HIV patients with or without HIV cardiomyopathy (HIVCM) but not 

endothelial cells or cardiomyocytes. Interestingly, HIV gp120 was exhibited in 

both of these cells (Fiala, Popik et al. 2004). Recombinant HIV gp120 protein has 

been shown to damage the endothelium by interaction with CXCR4 (Fiala, 

Murphy et al. 2004), and this induced endothelial apoptosis mediated by 

activating caspase 3,9 and by slightly enhancing expression of the pro-apoptotic 

molecule, Bax (Kanmogne, Primeaux et al. 2005). HIV gp120 was also reported 

to be able to reduce endothelial nitric oxide synthase (eNOS) expression in TNF-

α-activated endothelial cells; HIV gp120 and TNF-α have synergistic effects on 
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inhibition of eNOS expression in endothelial cells (Jiang, Fu et al. 2010). Use of a 

primary human lymphatic endothelial cell model, HIV gp120 induced lymphatic 

hyperpermeability by disturbing the normal function of Robo4, a novel regulator 

of endothelial permeability. Moreover, pretreatment with an active N-terminus 

fragment of Slit2, a Robo4 agonist, protected lymphatic endothelial cells from HIV 

gp120-induced hyperpermeability by inhibiting c-Src kinase activation (Zhang, Yu 

et al. 2012).  

HIV secreted protein: Tat protein 

HIV Tat protein has been found to significantly decrease endothelium-

dependent vasorelaxation and eNOS mRNA and protein expression in 

endothelial cells of porcine coronary arteries (Diaz, King et al. 2000). Tat is also 

known to cause apoptosis of primary microvascular endothelial cells of lung 

origin via a mechanism distinct from tumor necrosis factor secretion or the Fas 

pathway. On the other hand, Tat protein dissemination to extravascular tissue 

can activate human endothelial cells by expressing the endothelial-leukocyte 

adhesion molecules, E-selectin, critical for the initial binding of leukocytes to the 

blood vessel wall, and their increased synthesis of IL-6, a cytokine known to 

enhance endothelial cell permeability (Hofman, Wright et al. 1993).  Tat protein is 

also found to play a role in HIV-related pulmonary hypertension through several 

different mechanisms: In the most recent study, the exposure of HUVECs to HIV 

Tat protein resulted in induced expression of cell adhesion molecule ICAM-1 

through activation of mitogen-activated protein kinases and downstream 

transcription factor NF-κB., leading to increased adhesion of monocytes to the 
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endothelium (Magalhaes, Greenberg et al. 2007); Three receptors: the integrins 

αvβ3, α5β1 and the vascular endothelial growth factor receptor-2 (VEGFR-

2/KDR) were reported to interact with Tat protein, and help Tat protein gain 

access to endothelium (Albini, Soldi et al. 1996; Barillari, Sgadari et al. 1999; 

Mitola, Soldi et al. 2000; Kline and Sutliff 2008). These findings further support 

the concept of how Tat protein causes aberrant cell signaling and leads to altered 

endothelial cell morphology, gene expression, and survival.  

HIV Nef protein 

There have been many reports of low-level transcription of HIV genes 

even after years of ART (Furtado, Callaway et al. 1999; Fischer, Gunthard et al. 

2000; Gunthard, Havlir et al. 2001). Further analysis has shown that the multiply-

spliced mRNAs, the “early” HIV genes Tat, Rev, and Nef, decrease to a lesser 

extent than other HIV gene products after initiation of treatment (Fischer, Joos et 

al. 2008) suggesting that these may play a role in mechanisms of cardiovascular 

damage even in patients on ART. In fact, intracellular mRNA encoding Nef 

showed the cellular viral rebound in PBMCs during therapy and was 

subsequently triggered by the plasma viremia that preceded the recurrence 

(Fischer, Joos et al. 2004). When Nef is expressed specifically in CD4+ cells in 

CD4.Nef Tg mice, Nef can cause development of AIDS-like phenotypes, 

cardiovascular disease and coronary vascular dysfunction (Fischer, Joos et al. 

2004; Hanna, Priceputu et al. 2009; Jolicoeur 2011). Although no reported 

studies have directly assayed the effect of Nef on coronary arteries, Nef has 

been shown to be involved in pulmonary arterial dysfunction. Macaques infected 
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with a chimeric simian immunodeficiency virus (SIV) containing the HIV-nef gene 

(SHIV-Nef) exhibited vasculopathies similar to those in human pulmonary 

hypertension (PH) (Sehgal, Mukhopadhyay et al. 2009). Importantly, 10 

polymorphisms in Nef were significantly more frequent in blood cells or lung 

tissue specimens from individuals with HIV and pulmonary hypertension 

compared to HIV-infected individuals without PH, suggesting the possibility of 

linking particular Nef sequences with specific pathogenic functions of Nef, i.e. 

ability to transfer to bystander cells. 

HIV Nef protein has also been shown to block ATP-binding cassette 

transporter A1-dependent cholesterol efflux, resulting in the accumulation of 

lipids in macrophages, a condition previously shown to be highly atherogenic 

(Mujawar, Rose et al. 2006). There are at least two mechanisms involved for this: 

HIV infection and transfection with Nef induced post-transcriptional down 

regulation of ABCA1; and Nef mediated redistribution of ABCA1 to the plasma 

membrane and inhibited internalization of apolipoprotein A-I. Mutations in ABCA1 

cause Tangier disease, which is associated with low HDL cholesterol and 

accelerated atherosclerosis (Oram and Lawn 2001). Importantly, HDL cholesterol 

levels are reduced in untreated HIV infection, which is greater than the ART 

effect (Grunfeld, Pang et al. 1992; Shafran, Mashinter et al. 2005; Carr and Ory 

2006; Johnson, Gathe et al. 2006).   

Other HIV proteins 

One group quantified the role of expression of HIV-1 proteins on the 

vascular function, biomechanics, and geometry of common carotid arteries and 
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aortas by accessing NL4-3Δ gag/pol transgenic mice (HIV-Tg). These HIV-Tg 

mice have been found to have impaired aortic endothelial function, increased c-

IMT, and increased arterial stiffness; and decreased elastin content, increased 

cathepsin K and cathepsin S activity, and increased mechanical residual stress 

(Hansen, Parker et al. 2013).  
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4. Summary of background and the hypothesis of this study 

Cardiovascular disease is emerging as a major cause of morbidity and 

mortality in the increasingly aging HIV-infected population. A hallmark of many of 

these diseases is evidence of chronic vascular inflammation. Although side 

effects of combined anti-retroviral therapy (ART) could be blamed for some 

increases in CVD, it is becoming evident that HIV infection is an independent risk 

factor for CVD. However, it remains a mystery how HIV can contribute to CVD in 

patients on ART, when viral titers are low or non-detectable. One possible 

explanation could be persistence of toxic viral products despite control of viral 

replication and viremia. In this regard, a myristoylated intracellular protein, Nef, 

has been shown to be produced in infected cells even after virus production is 

halted by ART. Endothelial cells, especially in developing atherosclerotic 

plaques, are in direct contact with circulating HIV-infected cells and in a prime 

position for Nef transfer. Therefore, my primary hypothesis is that Nef may also 

transfer to vascular endothelial cells and thus lead to endothelial activation, 

dysfunction and potentially progression to atherosclerosis. In this study, we 

propose a model in which Nef can mediate its transfer from Jurkat T cells to 

endothelial cells to trigger endothelial dysfunction. We further demonstrate that 

Nef contributes to endothelial dysfunction via two independent mechanisms, (1) 

apoptosis of endothelial cells through an NADPH oxidase-dependent mechanism 

and (2) MCP-1 production through the NF-κB signaling pathway.  
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MATERIALS AND METHODS 

Materials  

Mediums and supplements 

Roswell Park Memorial Institute 1640(RPMI-1640) medium, Eagle Basal 

medium-2 (EMB-2), penicillin, and endothelial cell growth bullet kit-2 (EGM-2MV) 

were purchased from Lonza (Walkersville, MD). EGM-2MV contains 5% FBS, 

0.4% hydrocortisone, 0.4% hFGF, 0.1% VEGF, 0.1% IGF-1, 0.1% ascorbic acid, 

0.1% hEGF, 0.1% GA-100 (Gentamicin, Amphotecerin B), and 0.1% heparin. 

Fetal bovine serum (FBS) was purchased from Hyclone sterile systems (Logan, 

UT). All bacterial culture materials were purchased from Becton Dickenson 

(Sparks, MA). The bacterial culture media were prepared in house, including 

Luria broth (LB) media containing 0.01 g/ml Bacto tryptone, 0.005 g/ml Bacto 

yeast extract, 0.005 g/ml NaCl, and 1 mM NaOH, with the addition of 15 g/L 

Bacto agar to make solid LB culture plates. Super optimal broth with catabolite 

repression (SOC) contained 0.02 g/ml Bacto tryptone, 0.005 g/ml Bacto yeast 

extract, 0.5 g/ml NaCl, 10mM MgCl2, 10 mM MgSO4, and 20 mM glucose. 

Working concentrations of antibiotics were 100 µg/ml ampicillin and 50 µg/ml 

kanamycin, and they were purchased from Sigma-Aldrich (St Louis, MO). 

 

Antibodies 

Mouse anti-Nef EH1 antibody (IF 1:100; Flow 1:25) was obtained from the 

NIH AIDS Reagent Repository, Mouse anti-Nef 3D12 antibody (Flow 1:25), 

mouse anti-CD4 marker (Flow 1:50), phycoerythrin (PE)-conjugated anti-CD19 
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antibody and PE 650 donkey anti-sheep (IF 1:200) were purchased from Abcam 

(Cambridge, MA), Rabbit anti-p65 antibody (WB 1:1000) was purchased from 

Cell Signal Technologies (Danvers, MA). PE-conjugated phalloidin (IF 1:100), 

and AlexaFluor 488 goat anti-mouse (IF 1:200) were from Invitrogen (Carlsbad, 

CA). Normal mouse IgG, mouse anti-GAPDH (WB 1:5000), and anti-mouse HRP 

(WB 1:3000) were from Sigma-Aldrich. 

 

Reagents 

Live dye Vybrant DIO and JC-1 dye were obtained from Life Technologies 

(Grand Island, NY). The Lipofectamine LTX system was purchased from 

Invitrogen. Trolox, Apocynin, and IκB kinase inhibitor (IKKi), were purchased from 

Abcam. P65 siRNA was purchased from Cell Signal Technologies. Western 

Blotting 4–20% bis-Tris polyacrylamide gels and ECL chemiluminesence 

reagents were purchased from Thermoscientific (Walthem, MA). Protease 

inhibitor cocktail set, immunoflourescent mounting buffer, and collagen were 

purchased from Sigma-Alrich. Anti-PE microbeads were purchased from Miltenyi 

Biotec (Auburn, CA). All other chemicals were purchased from Fisher scientific 

(Hampton, New Hampshire). 

 

Biotechnological systems 

Wizard® Plus Maxipreps DNA Purification System was purchased from 

Promega (Madison, WI). RT assay kit was purchased from Roche diagnostics 

(Indianapolis, IN). Nef enzyme-linked immunosorbent assay (ELISA) Kit was 
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purchased from ImmunoDX (Woburn, MA). MCP-1 Elisa kit was purchased from 

R&D Systems (Minneapolis, MN). In Vitro Vascular Permeability Assay kit was 

purchased from Fisher. Caspase 3 detection kit was purchased from Sigma-

Aldrich. Apo-Brdu apoptosis detection kit and CPT™ Cell Preparation Tube with 

Sodium Citrate was purchased from BD biosciences (Franklin Lakes, NJ). 

 

Animals 

Macaque heart tissues were obtained from a cohort of male Indian rhesus 

macaques (Macaca mulatta) infected with SHIVnefSF33, at 1000 TCID50 per 

animal [21]. The animals were housed at the California National Primate 

Research Center in accordance with the standards of the “Guide for the Care 

and Use of Laboratory Animals” and the American Association for Assessment 

and Accreditation of Laboratory Animal Care. Necropsies were performed 

between 37-62 weeks post-infection, when the animals showed signs of 

immunodeficiency. Mouse heart tissues were obtained from University of 

Montreal from mice age 3 to 6 month housed according to institutional 

biosafety/AWA regulations and protocols. These transgenic mice have Nef and 

GFP or GFP itself expressed under the regulatory sequences of the human CD4 

gene promoter. The experiments described in this study used formalin-fixed, 

paraffin-embedded heart tissues from these animals. 
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Cells 

Cell lines 

Human coronary artery endothelial cells (HCAEC) and Human umbilical 

vein endothelial cells (HUVEC) were obtained from Lonza. Jurkat cells and THP1 

cells were purchased from American Tissue Culture Collection (ATCC, 

Manassas, VA). 

 

Cell culture 

HCAEC and HUVEC were maintained in culture medium consisting of 

Eagle’s basal medium-2 (EMB-2), 5% FBS, 0.4% hydrocortisone, 0.4% hFGF, 

0.1% VEGF, 0.1% IGF-1, 0.1% ascorbic acid, 0.1% hEGF, 0.1% GA-100 

(Gentamicin, Amphotecerin B), and 0.1% heparin. Jurkat cells, THP1 cells and 

PBMCs were cultured in RPMI 1640 medium supplemented with 10% fetal 

bovine serum and 100 U/ml penicillin. All cell cultures were maintained at 37 oC 

in 5% CO2 and 95% air. Culture medium was changed every two days. 

 

Isolation of PBMCs from HIV patients blood 

Peripheral blood from HIV patients was obtained from Indiana University 

hospital (Indianapolis, IN). Immediately after blood draw, CPT tubes with 

patients’ blood were centrifuged for a minimum of 20 minutes at 1500-1800 with 

the brake on. The white layer of PBMCs was extracted, and then washed in 40 



 

 41 

ml PBS three times by centrifugation at 440 x g for 5 min.  This study was done 

under IRB approval. 

 

Plasmids and viruses 

Viruses 

pNL4-3 and pNL4-3∆Nef were obtained from the NIH AIDS Reagent 

Repository.  

 

Nef and Nef mutants 

Nef.SF2 and Nef∆SH3 mutant were obtained from the NIH AIDS Reagent 

Respository.  Nef∆SH3 mutant has a point mutation from Proline (PXXP) to 

Alanine (AXXA) in a conserved motif (aa72-75). 

 

Methods 

Bacterial transformation 

GC5™ cells were mixed with 0.5µl DNA ligation reaction, and incubated 

on ice for 20 min. The cells were heat-shocked at 42 °C for 45 sec, followed by 

incubation on ice another 2 min with 1ml RT SOC medium. The cells were then 

incubated at 37 ºC, for 1 h with shaking at 250 RPM. The cells were plated on LB 

plates with either ampicillin or kanamycin. 

 

 

 



 

 42 

Cell transfections 

HCAEC or Jurkat cells were transfected using the Lipofectamine LTX 

system (Invitrogen) according to the manufacturer’s directions. pcDNA3 was 

used in the studies for normalization.  

 

HIV replication assay 

HIV NL4.3 or HIV NL4.3-Nef deficient virus was produced by transfection 

of 293T cells. Transfection was performed with Lipofectamine LTX reagent 

(Invitrogen), according to manufacturer’s instructions. Viral supernatant was 

harvested at 48 h and centrifugated at 900 g for 10 min, to clarify the supernatant 

from remaining cells. Viral supernatant was used to infect Jurkat cells 

corresponding to a 10,000 cpm RT activity (equivalent to 1 ng/ml RT according to 

assay protocol (Roche). Virions in the supernatant were pelleted by 

centrifugation at 12,000 g for 1 hr and the RT activity was determined every other 

day for 9 days using the RT assay kit according to the manufacturer's instruction. 

Infected cells were cocultured with HCAEC when virus titers were the same in 

both infected cells. 

 

Tissue culture based assays 

For analysis using different pharmaceutical inhibitors, HCAEC were 

seeded in 6-well plates. Nef plasmid was transfected into HCAEC by 

Lipofectamine LTX reagent (Invitrogen). The transfection efficiency was ~70% as 

determined by FACS. After 6 h post transfection, culture medium was changed, 
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and inhibitors were added at optimized concentrations (200 nM Apocynin 

(Abcam), 200 nM Trolox (Abcam), and 100 nM Ikki (R&D Systems)). After a 

further 24 h, the supernatant was collected and analyzed for MCP-1 production 

assessed by sandwich ELISA (Quantikine, R&D Systems) and the cells were 

harvested for apoptosis analysis. For coculture working models, pcDNA only 

(mock control) or Nef-containing pcDNA plasmid was transfected into Jurkat cells 

by Lipofectamine LTX reagent. At 48 h post transfection, these Jurkat cells were 

cocultured with HCAEC in a 2:1 ratio (in some cases, inhibitors were added at 

optimized concentrations as described). After 24 h co-culture, the medium was 

centrifuged to remove Jurkat cells and the supernatant collected for analysis of 

MCP-1 production. Any remaining Jurkat cells were washed off with PBS and 

further gated from endothelial cells by FACS, based on forward scatter and side 

scatter profiles. HCAEC were harvested for apoptosis analysis. 

 

Detection of apoptosis by assessing DNA fragmentation (TUNEL) 

Apoptosis by terminal deoxynucleotidyl transferase-mediated dUTP nick 

end labeling in endothelial cells was performed as previously described (Green, 

Petrusca et al. 2012). Detection of apoptosis by FACS via a modified TUNEL 

approach was carried out using a fluorescence labeling system to detect dUTP 

end nicks according to the manufacturer's instructions (APOBRDU kit, Becton 

Dickinson). 
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Confocal immunofluorescence microscopy 
 

For in vitro studies, Nef and cDNA transfected Jurkat cells were stained 

with cytoplasm live dye Dyvant DIO (Life Technologies) (5ul live dye/1 million 

cells at 37ºC for 1 h), and cocultured with HCAEC for 24 h. Cells were fixed in 

4% paraformaldehyde, permeabilized with 0.01% Triton X-100 in PBS (20 min at 

4°C) and stained with 10 uM phalloidin and in some cases, anti-Nef EH1 

antibody. Visualization was achieved by confocal microscopy (Olympus FV1000-

MPE) with the same fluorescence intensities during image acquisition. The 

derived images were analyzed using MetaMorph software.  

 

In Vitro Vascular Permeability Assay 

HCAEC were plated on transwell insert of 24 well Corning® Costar® cell 

culture plate with 0.5 ml EGM-2MV growth media. Nef was transfected to 80% 

confluent HCAEC for 24 h. One hundred fifty milliliters of FITC-Dextran working 

solution was added to each insert for 20 min at room temperature in the dark. 

One hundred milliliters of media was removed from each well for fluorescence 

measurement at 485 nm and 535 nm excitation and emission, respectively. 

  

Ex vivo tissue sections staining 

For staining mice and macaque heart sections, slides were de-paraffinized 

and processed as recently described (Marecki, Cool et al. 2006). Briefly, sections 

were stained with anti-GFP (for macaque), or anti-Nef (EH1) (for transgenic 

mice) antibody and anti-von Willebbrand factor (vWF) prior to staining with 
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appropriate secondary fluorescent labeled antibodies. Visualization was achieved 

by confocal microscopy (Olympus FV1000-MPE) with the same fluorescence 

intensities during image acquisition.  

 

Detection of Reactive oxygen species (ROS) activity by dihydroethidium (DHE) 

ROS production stimulated by Nef was determined using DHE as a 

fluorescent probe. Confluent HCAEC on 96-well black-walled dishes were 

incubated in conditioned BME medium and 5 µM DHE for 30 min to allow 

intracellular uptake. Cells were washed 3 times with PBS and media replaced 

with phenol-free RPMI. Fluorescence of the oxidized dye was subsequently 

determined at 520 nm (excitation), 605 nm (emission), with 590 nm cutoff on a 

Flex station microplate reader set for maximal detection. 

 

NF-κB p65 silencing in endothelial cells with small interfering RNA 

For RNAi knockdown of the NF-κB subunit p65 gene, we used Ambion’s 

Silencer® Select Custom Designed siRNA against p65 was used as previously 

described (Rajashekhar, Traktuev et al. 2008). Briefly, cells were transfected with 

Lipofectamine 2000 transfection reagent (Invitrogen) and after incubation for 2 

days at 37°C, total cell lysate was used to determine the knockdown of p65 in 

human endothelial cells by Western blotting. 

 

Western Blot analysis 

Proteins were isolated from HCAEC using a cell lysis buffer consisting of 

2.5 mM EDTA, 20 mM Tris pH 7.4, 100 mM NaCl, 1 mM Na3VO4, 1% Triton X-
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100, 10 mM NaF, 1% sodium deoxycholate, 0.1% SDS, 2.5 mM sodium 

pyrophosphate, 1 mM β-glycerol phosphate, and 1 tablet/10 ml EDTA-free 

complete protease inhibitor mixture (Sigma Aldrich). Whole-cell extracts prepared 

from HCAEC were resolved in 4–20% bis-Tris polyacrylamide gels 

(Thermoscientific), followed by transfer to nitrocellulose membranes. Membranes 

were probed with primary Abs at suggested concentrations. Proteins were 

visualized by incubation with peroxidase-coupled secondary Abs in the presence 

of LumiGlo reagent while exposing in a Bio-Rad Chemidoc XRS/HQ (Bio-Rad, 

Hercules, CA).  

 

Monitoring mitochondrial function by JC-1 Dye-Mitchondrial Membrane Potential 

Probe 

HCAEC were stained with 2 µg/ml JC-1 dye (Life Technologies) at 24 h 

post Nef transfection. Briefly, JC-1 was dissolved in DMSO and Nef-transfected 

HCAECs were stained for 30 min at 37°C. The medium was replaced with PBS 

before the plate reading. Red fluorescence was determined at 455 nm 

(excitation), 590 nm (emission), with 590 nm cutoff on a Flex station set for 

maximal detection, whereas green fluorescence was determined at 485 nm 

(excitation), 538 nm (emission), with 530 nm cutoff. The ratio of red/green was 

determined as a measurement of mitochondrial depolarization.   
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Detection of Nef in PBMCs 

PBMC were isolated from peripheral blood of HIV patients and uninfected 

controls by standard Ficoll purification. Cells were fixed with 4% PFA for 5 

minutes at RT and permeablized with 0.01% Triton in PBS for 20 min at 4°C. 

Cells were stained with Nef or IgG controls (in some cases, cells were co-stained 

with CD4 T cell marker). The percentage of Nef positive cells was determined 

based on IgG controls.  

 

B cells isolation from PBMCs 

Ten million PBMCs were stained with 10ul PE-conjugated CD19 B cell 

marker, followed by incubating with anti-PE microbeads (Miltenyi). The cells were 

then transferred to the column for magnetic separation step. After washing with 

rinsing buffer, the cells bound in the column represented CD19 positive cells, 

while the elute contained CD19 negative cells. The purity of selected cells from 

this aasay was up to 95%. 

 

Data acquisition and statistical analysis 

MCP-1 production and apoptosis data were both expressed as fold 

increase normalized to controls (mock-transfected cells etc). Data are expressed 

as mean ±SD for each group performed in triplicate and repeated at least three 

times. Shapiro–Wilk test was used to test for normality distribution (n=6). With 

normal distribution, all comparisons were made using parametric ANOVA and 

student’s t test. On some occasions, Welch’s correction was used when the 
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variances were different.  With abnormal distribution, Kruskal-Wallis non-

parametric ANOVA was used. A p value < 0.05 (marked as *) was considered 

statistically significant, and p < 0.01 (marked as **) highly significant.  
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RESULTS 

Part I: HIV Nef causes endothelial activation and dysfunction 

1.1 HIV induces endothelial MCP-1 production and cell death 

In viremic HIV patients, HIV envelope protein gp120 and transcription 

activator Tat are believed to mediate activation of vascular endothelium leading 

to endothelial dysfunction resulting in pulmonary hypertension and 

cardiovascular diseases. However, the role of intracellular proteins such as Nef, 

has been not addressed in cardiovascular diseases. To distinguish between 

effects of cellular Nef and specifically, soluble Tat or HIV-induced cytokine 

release, I asked whether direct contact between T cells and endothelial cells is 

required for endothelial activation. To address this question, I used a transwell 

filter system, which allowed comparison of direct versus cellular contact with 

indirect contact between HIV-infected Jurkat T cells and endothelial cells (Figure 

6A and 6B). In this system, the bottom wells with human coronary artery 

endothelial cells (HCAEC) were either in direct contact with HIV- 

infected/uninfected Jurkat cells or separated by a semi-permeable membrane. As 

shown in Figures 7 and 8, HIV-infected Jurkat cells significantly increased 

endothelial MCP-1 production and apoptosis when in direct contact, whereas 

when HIV-infected Jurkat cells separated from the endothelial monolayer 

exhibited minimal effect. We detected only very minor MCP-1 release from HIV-

infected Jurkat cells alone (Figure 7), suggesting that the observed increased 

MCP-1 production occurred from endothelial cells but not Jurkat cells. As HIV  
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Figure 6: A transwell system  
 
A transwell filter system was used to determine the effects of uninfected or HIV 

infected Jurkat T cells on endothelial MCP-1 release and apoptosis either in 

direct cellular contact (A) or separated by the semi-permeable membrane filter 

(B). 
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Figure 7: HIV-infected Jurkat cells but not acellular HIV virus cause 

endothelial activation  

Endothelial cells were co-cultured in direct or indirect contact with HIV-infected 

Jurkat cells with HCAEC alone (EC), HCAEC in direct contact with uninfected 

Jurkat cells (EC + Jurkat), EC in indirect contact with infected Jurkat cells (EC + 

HIV) or HCAEC in direct contact with infected Jurkat cells (EC + HIV-Jurkat). 

MCP-1 release from HIV infected Jurkat cells was also included (HIV-Jurkat). 

MCP-1 release was analyzed by ELISA. Data were expressed as fold increase in  

MCP-1 production, normalized to mock controls (N=6. *P<0.05, and **P<0.01). 
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Figure 8: HIV-infected Jurkat cells but not acellular HIV virus cause 

endothelial cell death 

A.  HCAEC were co-cultured in direct or indirect contact with HIV-infected Jurkat 

cells (EC), in direct contact with uninfected Jurkat cells (EC + Jurkat), in indirect 

contact with infected Jurkat cells (EC + HIV) or in direct contact with infected 

Jurkat cells (EC + HIV-Jurkat); endothelial apoptosis was determined by TUNEL 

assay.  The cells were then gated for endothelial cells depending on the cell 

sizes by FACS, and only endothelial cells were analyzed for apoptosis 

expression. The “TUNEL” gate was determined by controls from apoptosis kit. B. 

The relative endothelial apoptosis levels. Data were expressed as fold apoptosis, 

normalized to mock controls (N=6. *P<0.05, and **P<0.01). 
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virions containing envelope protein gp120 and soluble Tat or cytokines released 

from infected T cells are able to pass the filter and move freely in the 

supernatant, this finding suggests that a cellular HIV protein in infected T cells or 

a protein induced by HIV causes endothelial MCP-1 production and cell death. 

 

1.2 HIV Nef is necessary for endothelial activation and cell death 

Since HIV gp120 and Tat protein were ruled out by our transwell system, 

HIV early protein, attention was drawn to Nef because of its traits. To specifically 

determine the involvement of Nef in these direct contact dependent effects, we 

employed the same virus titered wild type and Nef-deleted HIV-infected Jurkat 

cells to co-culture with HCAEC. Jurkat cells was infected with wild-type and Nef 

deleted HIV NL4.3 separately, and the virus titers were shown to be queiovalent 

the same in both infected cells at day 9 (Figure 9). Jurkat cells infected with Nef 

deleted HIV induced a much weaker endothelial MCP-1 production (Figure 10A) 

and apoptosis (Figure 10B) in comparison to WT HIV, indicating that Nef protein 

is necessary for HIV-induced endothelial cell death and activation.  

To further analyze whether Nef protein causes endothelial activation and 

dysfunction, we transfected Nef expressing plasmid into Jurkat cells and 

cocultured these cells with HCAEC for 24 h (Figure 11A). Indeed, Nef-Jurkat 

cells induced both endothelial MCP-1 production and cell death (Figure 12A and 

12B). To confirm these Nef dependent activities also apply to monocytes, we 

transfected Nef plasmid into monocytic cell line THP1 cells. Similar to Jurkat cells  
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Figure 9: virus titer determination of ΔNef HIV and WT HIV in Jurkat cells.  

Both WT HIV and ΔNef HIV production reach peak viral production on day 8 or 9 

post infection (dpi) with Jurkat cells. 
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Figure 10:  Nef is necessary for HIV-induced endothelial MCP-1 production 

and cell death 

MCP-1 release (A) and apoptosis (B) in endothelial cells were determined after 

co-culture of endothelial cells with uninfected Jurkat cells (mock), HIV-infected 

Jurkat cells (WT HIV) or Nef deleted HIV-infected Jurkat cells (ΔNef HIV). Data 

were expressed as fold MCP-1 production and apoptosis, normalized to mock 

controls (N=6. *P<0.05, and **P<0.01). 
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Figure 11: The demonstration of Nef transfections. 

(A) Plasmid expressing Nef cDNA was either transfected into Jurkat cells/THP-1 

cells and co-cultured with HCAEC to allow Nef protein transfers to HCAEC (A).  

(B) Alternatively the Nef expressing plasmid was directly transfected into 

HCAEC.  Endothelial cells were measured for or directed transfected to HCAEC 

(B), followed by endothelial apoptosis, and MCP-1 release detection was 

assayed for the transfected cultures. 
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Figure 12: Nef-Jurkat T cells induce endothelial MCP-1 production and cell 

death 

Endothelial MCP-1 production (A) and apoptosis (B) were determined in HCAEC 

alone (EC) or after 24 h coculture with cDNA (Jurkat + EC) or Nef transfected 

Jurkat cells (Jurkat+ Nef + EC). Data were expressed as fold MCP-1 production 

and apoptosis, normalized to mock controls (N=6. *P<0.05, and **P<0.01). 
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Nef dependent increase in MCP-1 production and apoptosis were observed in 

THP-1 cells co-cultured with HCAEC (Figure 13A and 13B).  

 

1.3 HIV Nef is sufficient to cause endothelial activation and cell death 

Next, we questioned if Nef-Jurkat/THP-1 cells induced endothelial 

activation and dysfunction is due to Nef protein triggering cell membrane 

dysfunction or the outcome from the direct effect of Nef protein. We transfected 

Nef into HCAEC (Figure 11B) and measured endothelial MCP-1 release (Figure 

14A), apoptosis (Figure 14B) and ROS formation (Figure 14C). Each was 

significantly increased after 24 h transfection with Nef expressing cells as 

compared to the pcDNA3 controls. Src homology-3 (SH3) domain binding site of 

Nef is essential for many functions in T cells (Manninen, Hiipakka et al. 1998; 

Foti, Cartier et al. 1999). To address the role of this binding site for Nef functions 

in endothelial cells, we also transfected HCAEC with SH3 domain mutated Nef. 

As shown in Fig. 13A-C, the SH3 binding site in Nef is essential for endothelial 

MCP-1 production, apoptosis induction and ROS formation. As ROS has been 

shown to cause vascular leakage, we employed an in vitro vascular permeability 

assay to detect if Nef could increase vascular permeability. Indeed, as shown in 

Figure 15A-C, Nef destroyed the endothelial monolayer and induced HCAEC 

permeability after 24 h post transfection (Figure 15D). In addition, endothelial 

cells transfected with increasing Nef-cDNA amounts display a Nef concentration-

dependent increase (as determined by a Nef-specific ELISA, 

Immunodiangostics) in apoptosis  
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Figure 13: Nef-moncytes THP1 cells induce endothelial MCP-1 production 

and cell death 

Endothelial MCP-1 production (A) and apoptosis (B) were determined in HCAEC 

alone (EC) or after 24 h coculture with cDNA (THP-1 + EC) or Nef transfected 

THP-1 cells (THP-1+ Nef + EC). Data were expressed as fold MCP-1 production 

and apoptosis, normalized to mock controls (N=6. *P<0.05, and **P<0.01). 
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Figure 14. Nef is sufficient to induce endothelial activation and dysfunction.  

A-C. Endothelial MCP-1 release (A), apoptosis (B) and ROS formation (C) were 

determined in endothelial cells transfected with cDNA (EC only), WT Nef (Nef) or 

SH3 binding site mutated Nef (NefΔSH3) after 24 h. Data were expressed as fold 

MCP-1 production and apoptosis, normalized to mock controls (N=6. *P<0.05, 

and **P<0.01). 
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Figure 15: Nef increases HCAEC permeability. 

A-C. Control cDNA or Nef was transfected to HCAEC monolayer in transwells. 

HCAEC vascular permeability was measure after 24 h post-transfection. Basal 

medium treated HCAEC was included as a positive control. D. HCAEC 

permeability was determined by flex station. Data represent mean ±SD from 3 

separate experiments in which measurements were made in triplicate. *P<0.05, 

and **P<0.01.  
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Figure 16: Linear correlation between Nef protein concentration and 

endothelial apoptosis   

Increasing amounts of plasmid expressing HCAEC were transfected with Nef 

plasmid for 24 hrs and concentrations of Nef were measured by ELISA.  The 

measured levels of Nef were then correlated with apoptosis as determined by 

TUNEL-FACS.   
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(Figure 16). In addition, Nef transfected HCAEC displayed increased 

mitochondrial dysfunction and elevated cleaved caspase 3 levels (Figure 17A 

and 17B). There was also a significant linear correlation between intracellular Nef 

concentrations and endothelial MCP-1 production (P= 0.045; Figure 18). These 

data demonstrate that Nef is necessary for HIV-infected T cells to elicit apoptosis 

in HCAEC and sufficient to cause HCAEC activation and increased permeability. 

Importantly, correlation between intracellular Nef concentrations with apoptosis is 

a first step in linking the presence of Nef with pathology. 

 

Part II: Nef mediates its own transfer from T cells to endothelial cells 

2.1 Nef enhances the formation of nanotubes from Jurkat cells to 

endothelial cells.  

Nef protein, but not virus, has been shown to be transferred to HIV-

uninfected bystander cells (Muratori, Cavallin et al. 2009); therefore, we tested 

whether Nef protein could be transferred to endothelial cells by direct contact. To 

achieve this, we labeled Nef or control cDNA transfected Jurkat cells with live 

dye (Vybrant DIO), then co-cultured them with HCAEC and determined live dye 

transfer from Jurkat cells to HCAEC. After 24 hours co-culture, Nef transfected 

Jurkat cells transferred significantly more dye into HCAEC (Figure 19A, 

predominately in perinuclear regions) in comparison to cDNA transfected Jurkat 

cells (Figure 19B). To determine how Nef induced live-dye transfer, we again 

employed the transwell filter system to distinguish between direct contact  
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Figure 17: Nef protein causes endothelial dysfunction. 

A. Mitochondria membrane potentials in endothelial were measured  tested after 

24 h post Nef transfection by the JC-1 staining kit according to the 

manufacturer’s instructions. B. Caspase 3 activity in endothelial cells was tested 

at 24 h post Nef transfection using a caspase 3 kit according to the 

manufacturer’s instructions. Data represent mean ±SD from 3 separate 

experiments in which measurements were made in triplicate. *P<0.05, and 

**P<0.01.  
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Figure 18: Correlation between intracellular Nef concentrations with 

endothelial MCP-1 production 

HCAEC were transfected with Nef expressing plasmid. 24 hrs after transfection 

concentrations of Nef and correlated with endothelial MCP-1 production were 

measured by ELISA, which was also determined by ELISA assay.  
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Figure 19: Nef enhances live dye transfer between cells only when in direct 

contact. 

A-B. Live dye(green) transfer from cDNA transfected Jurkat cells (A) or Nef-

transfected Jurkat cells (B) to endothelial cells after 24 h coculture. Endothelial 

cells (red) were stained by phalloidin. C. Live dye stained Nef or control vector 

transfected Jurkat cells were cocultured with HCAEC either in direct contact, or 

separated by transwell membranes for varying time points. Percentage of live 

dye transfer was determined and quantified by confocal microscopy. The fold dye 

transfer was normalized to cDNA controls for each condition. B is the 

represnatative figure form direct control experiments, which were quantified in C.  

Scale bars represent 10 µm. 
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(nanotube formation) mediated and indirect contact (exosome formation) 

transfer. Indeed, we observed that direct but not indirect contact mediated live 

dye transfer relatively early after 8 hours (Figure 19C). We also found that Nef-

transfected Jurkat cells formed significantly more nanotubes to HCAEC 

compared to cDNA-transfected Jurkat cells (Figure 20A, arrow and Figure 20B), 

which also displayed perinuclear live dye (Figure 20A, arrowheads). These 

studies indicate that Nef can promote cytosol exchange and possibly propel its 

own transfer possibly through nanotubes. 

 

The intracellular membrane bound Nef protein reportedly initiates its own 

transfer between blood cells in a process most likely mediated by nanotubes 

(Rudnicka, Feldmann et al. 2009; Rudnicka and Schwartz 2009). However, the 

mechanism of Nef transfer to target tissue cells including vascular endothelial 

cells has not been addressed yet. Therefore, we tested the ability of Nef to be 

transferred from Nef-transfected Jurkat T cells to endothelial cells. Transfected 

Jurkat cells were co-cultured with HCAEC prior to fixation/labeling with Nef mAB 

EH1. After 24 h of co-culture with Nef-transfected T cells, 19.4% of HCAEC were 

positive for Nef compared to only 2% for mock control via FACS analysis (Figure 

21A), demonstrating the ability of Nef to be transferred from Jurkat cells to 

bystander endothelial cells. Furthermore, as shown in Figure 20B endothelial 

cells are positive for Nef after 24 hr exposure with Nef transfected Jurkat cells as 

determined by confocal microscopy.  
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Figure 20: Nef protein induced nanotube formation between Jurkat cells to 

endothelial cells. 

A. Live dye stained Nef-Jurkat cells formed more conduit-like nanotubes between 

Jurkat cells and endothelial cells compared to cDNA Jurkat cells. B. 

Quantification of nanotubes formation in Nef Jurkat cells or cDNA Jurkat cells.  
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Figure 21. Nef transfer to HCAEC. 

A: Nef transfected T cells were cocultured with HCAEC for varying time 

points,and HCAEC  were stained for Nef expression to determine the timecourse 

of Nef transfer from T cells to endothelial cells. Endothelial cells were washed 

with PBS to ensure no adhesion of T cells. Any remaining T cells were gated 

from endothelial cells by FACS based on forward scatter and side scatter 

profiles. Percentage of Nef+EC was determined after subtraction of background 

cDNA signal. ND represents undetectable Nef B:Nef transfer to HCEAC after 

24hr coculture. Endothelial cells were stained with phalloidin (red) and Nef 

(green).  The right corner insert indicates Nef accumulation in HCAEC without an 

overlay. Original magnification, X60. Scale bars represent 10µm. 
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Together, these data suggest that Nef protein induces nanotube structure 

formation from Jurkat cells to endothelial cells, and these structures are central 

for Nef transfer between cells.  

 

2.2 Nef protein can be detected in the endothelium of in vivo HIV models. 

To access the potential relevance of Nef protein in coronary endothelial 

cells in in vivo models, I first used transgenic mice in which Nef-GFP was 

expressed under  

the regulatory sequences of the human CD4 gene, thereby resulting in Nef 

expression in CD4+ T cells and monocytes. Using double staining with anti-Nef 

and endothelial specific antibodies, GFP signal can be demonstrated in coronary 

vessels of CD4-Nef-GFP transgenic mice by confocal microscopy (arrows, Figure 

22B-22C) but not in single CD4-GFP Tg control mice (Figure 22A).  We also 

confirmed that primary mouse T cells were isolated from either CD4-Nef-GFP or 

CD4-GFP transgenic mice cocultured with HCAEC for 24 h, demonstrated more 

GFP signal transfer from Nef-expessing primary T cells to HCAEC ex vivo, 

system by flow cytometry (17% v.s 3%; Figure 23). We then extended these 

results by using a chimeric simian immunodeficiency virus (SIV) expressing HIV 

Nef (SHIV Nef) macaque model. In this model, we detected Nef in coronary 

vessels (Figure 24B-24C); vWF co-staining confirmed the presence of Nef in the 

endothelial lining (Figure 24C, arrow, yellow overlay). Together these data 

provide in vivo evidence that Nef protein can target endothelial cells within the 

vascular system.  

C
. 

D
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Figure 22: Nef induced GFP transferred from CD4+ cells to endothelial cells 

in Nef transgenic mice 

A-C. Heart sections of single CD4-GFP (A) and double CD4-Nef and GFP (B, C) 

transgenic mice (N=3; at least 4 pictures/slide) were double stained with GFP 

antibody (green, white arrows) and the endothelial marker vWF (red). Shown is 

Nef within the endothelial lining (arrows). Original magnification, X 60. Scale bars 

represent 100 µm. 
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Figure 23: More GFP were transferred from CD4+ primary cells to HCAEC 

with Nef present. 

CD4+ primary cells from either GFP mice or Nef.GFP mice  were cocultured with 

HCAEC for 24 hours. CD4 negative HCAEC were sorted through flow cytometry 

(A, area 1), and then stained with anti-GFP antibody(B).  
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Figure 24: Nef can be detected in SIV-hNef macaque models. 

Macaque heart sections (N=5; at least 4 pictures/slide) were double stained with 

IgG control (A) or Nef (B, C, red) and the endothelial marker vWF (green). Shown 

are cells double positive for Nef and vWF in coronary arteries (arrow). Original 

magnification, X 60. Scale bars represent 100 µm. 
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2.3 Nef protein can be detected in blood cells isolated from HIV positive 

individuals  

Antiretroviral therapy reduces virion production but not Nef gene 

expression. It is possible that these adverse effects of Nef may persist even in 

patients receiving ART. If so, then the persistence of Nef-positive cells during 

ART might contribute to the higher risk of non-AIDS complications observed 

despite ART. We therefore performed a preliminary investigation to assess the 

detection of Nef-positive circulating cells from both ART-untreated and treated 

HIV-infected patients.  PBMCs were isolated from HIV-infected patients and 

uninfected controls by standard Ficoll purification. We found a high mean (SD) 

number of PBMCs from HIV-infected untreated viremic patients that stained 

positive for Nef (Figure 25, Table 2). Of note, Nef dissemination did not correlate 

with viral titers (r = 0.0677; p= 0.86, Figure 26), and one of the HIV patients 

exhibited very low Nef dissemination in PBMC, even though viral titers were high 

(Table 2, patient 8).  We confirmed these results in 4 of the samples using a 

commercially available Nef antibody (3D12, Abcam), which recognizes a different 

epitope, and observed similar Nef staining (EH1: 15.68 ± 3.98%; 3D12: 14.35 ± 

5.139%; p=0.84, n=4) (Figure 27). In addition, we further detected not only Nef 

expression in patients PBMCs, but also nanotubes formation between cells by 

confocal microscopy (Figure 28). Surprisingly, Nef is also detectable in ART 

treated patients with undetectable viral loads (Table 2, patient 10-13). The 

unexpectedly high levels of Nef positive PBMCs cannot be explained by direct  
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Figure 25: Nef is detectable in PBMCs from HIV patients with/without ART.  

FACS analysis of Nef expression in PBMC from untreated (A, frozen samples) 

and virologically suppressive ART treated (C, fresh samples) HIV patients. To 

assure specificity of Nef staining, we included PBMC from healthy donors and 

stained for Nef in parallel (“matched”) with patient derived PBMC (B and D). 
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CD4+ 
count 
(cells/ul)  

Viral load 
(RNA 
copies/ml)  

Nef %(of total  
PBMC )  

ART duration 
(weeks) 

Pooled Uninfected 
ctrl N/A  N/A  0.09  N/A 

Patient 1  365  5700  7.78  N/A 

Patient 2  797  8400  8.66  N/A 

Patient 3  413  1490  12.84  N/A 

Patient 4  913  47800  11.46  N/A 

Patient 5  315  13000  8.04  N/A 

Patient 6  386  5600  24.9  N/A 

Patient 7  593  100000  25.72  N/A 

Patient 8  321  85800  0.02  N/A 

Patient 9 503  35,000  8.02  N/A 

Patient 10  234  <50  1.09  32  

Patient 11  254  <50  1.41  48  

Patient 12  205  <50  1.23  16  

Patient 13  855  <50  0.95  780  
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Table 2: Nef is detectable in PBMCs from HIV patients with/without ART.  

Percentage of Nef+ PBMCs with clinical parameters in patients without and with 

(orange box) ART. 
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Figure 26:  Nef distribution does not correlate with viral load. 

Pearson correlation between viral load and Nef distribution in PBMCs. 
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Figure 27: validation of EH1 monoclonal antibody 

Comparison of 2 anti-NEF monoclonal antibodies (Eh1and Abcam) which are 

directed against unrelated epitopes 
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Figure 28: Nef protein is present in blood cells of HIV patients not on 

antiviral therapy.  

A-B. PBMC from untreated HIV patients (N=3) were stained for Nef (red). 

Matched healthy control (C and D) and untreated patient with IgG control 

antibodies (E and F) were also included. Original magnification, X 60. Scale bars 

represent 5 µm in A and B. Scale bars in the inset of C-F represents 10 µm. 
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HIV infection of cells. In fact, Nef antibody staining was most prominent in non-

CD4-positive cells (Figure 29A). Moreover, when we separated B cells from 

whole patient PBMCs using the Miltenyi anti-PE multisort kit and CD19 antibody 

and stained for Nef, almost 50% of Nef positive cells appear to be B cells (Figure 

29B). 

To test if Nef from blood derived mononuclear cells could also transfer to 

endothelial cells, we cocultured human umbilical cord vein endothelial cells 

(HUVEC) with PBMCs from viremic untreated HIV-infected patients for 24 hours. 

As shown in Figure 30, this experiment resulted in strongly (arrow) and less 

strongly (arrow head) Nef-positive endothelial cells, which is likely due to different 

levels of Nef transfer. Of note, these endothelial cells are not leukocytes based 

on characteristic cytoskeletal morphology as determined by staining with 

phalloidin-Cy5. 
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Figure 29: Nef is prominent present in CD4- cells. 

A. Determination of CD4+ and CD4- Nef-positive PBMCs by double staining and 

FACS. Data represent mean ±SD from 3 separate experiments in which 

measurements were made in triplicate. B. Comparison of Nef-positive B cell 

versus non B cell populations after immune-magnetobead based separation. 

Data represent mean ±SD from 3 separate experiments in which measurements 

were made in triplicate. 
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Figure 30: Nef can be transferred from HIV-PBMCs to endothelial cells ex 

vivo. 

Nef staining of HUVEC after 24 hours in contact with PBMCs from HIV patients 

shown as Nef stain only (green) or as overlay with red phalloidin staining 

depicting endothelial-like cytoskeletal actin staining. 
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Part III: Signal transduction analysis of Nef induced endothelial activation 

and dysfunction. 

We next aimed to specifically analyze the signal transduction pathway of 

Nef-induced HCAEC activation. First we tested involvement of NF-κB signaling 

for Nef-induced MCP-1 production. Using siRNA to knockdown the p65 subunit 

of NF-κB or the NF-κB inhibitor Ikki (Green, Kim et al. 2012),  we addressed the 

role of NF-κB for Nef-induced chemokine production (Figure 31). Based on 

previous reports linking Nef to reactive oxygen species (ROS) formation 

(Olivetta, Pietraforte et al. 2005), we addressed the role of ROS in Nef-induced 

endothelial dysfunction. Whereas the ROS inhibitor vitamin E derivative Trolox 

(Figure 32) had no effect on Nef-induced MCP-1 production (Figure 34A), Nef-

induced apoptosis in HCAEC was abolished by Trolox (Figure 35). We further 

examined if Nef-induced ROS production and apoptosis is derived from NADPH 

oxidase using the NADPH oxidase inhibitors apocynin and the gp91phox/Nox2 

B-loop peptide (Nox2ds) (Figure 33). Both NADPH inhibitors abolished Nef-

induced ROS production and endothelial apoptosis (Figure 35A). However, NF-

κB inhibition (Ikki) did not reduce Nef-induced endothelial apoptosis, indicating 

that Nef-induced apoptosis does not require NF-κB activation (Figure 34). 

Furthermore, to rule out the possibility that Nef induced endothelial dysfunction is 

due to artificially high Nef concentrations caused by overexpression in 

endothelial cells, we used the Nef co-culture based transfer system as described 

above, in which Nef protein shuttles from Nef transfected Jurkat cells into  
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Figure 31. Nef induced endothelial MCP-1 production is NF-kB dependent. 

Endothelial cells were co-transfected with Nef cDNA and NF-κB p65 siRNA. After 

18 h and 24 h, knock-down of p65 was confirmed by Western blot (Inserts: Lane 

1, control; Lane 2, scrambled siRNA; Lane 3, 18h p65siRNA knock-down; Lane 

4, 24h p65siRNA knock-down). MCP-1 production was tested at 24 h post Nef 

transfection in the supernatant using ELISA. Data were expressed as fold MCP-1 

production, normalized to mock controls. Data represent mean ±SD from 3 

separate experiments in which measurements were made in triplicate. *P<0.05, 

and **P<0.01. 
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Figure 32: Optimize Trolox concentration in ROS inhibition. 

Trolox with different dosage were separately added to Nef cDNA transfected 

HCAEC for 18 h incubation. Detection of intracellular ROS formation was 

assessed with DHE using a Flex station. Data represent mean ±SD from 3 

separate experiments in which measurements were made in triplicate. *P<0.05, 

and **P<0.01. 
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Figure 33: NADPH inhibitors dose determination to block Nef-induced 

intracellular ROS activation in HCAEC.   

Apocynin with different dosage and optimized 10uM Nox2 inhibitor were 

separately added to Nef cDNA transfected HCAEC for 18 h incubation. Detection 

of intracellular ROS formation was assessed with DHE using a Flex station. Data 

represent mean ±SD from 3 separate experiments in which measurements were 

made in triplicate. *P<0.05, and **P<0.01. 
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Figure 34. Ikki inhibited Nef induced endothelial MCP-1 production. 

(A) Endothelial cells were transfected with Nef expressing plasmid, incubated for 

further 6 hours and treated with apocynin (200nM), trolox (200nM), or IKKi 

(100nM). After additional 18 hours supernatants were analyzed for Nef-induced 

MCP-1 production. (B) Endothelial cells were cocultured with Nef-transfected 

Jurkat cells for 24 h, and then treated with NADPH gp91 specific peptide Nox2 

inhibitor (10uM), apocynin (200nM),  trolox (200nM), or IKKi (100nM) and 

incubated an additional 12 h, then analyzed for Nef-induced MCP-1 production. 

Data were expressed as fold MCP-1 production, normalized to mock controls. 

Data represent mean ±SD from 3 separate experiments in which measurements 

were made in triplicate. *P<0.05, and **P<0.01. 
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Figure 35. Nef induced endothelial cell death is ROS/NADPH dependent. 

(A) Endothelial cells were transfected with Nef cDNA, incubated for further 6 

hours and treated with NADPH gp91 specific peptide Nox2 inhibitor (10uM), 

apocynin (200nM), trolox (200nM), or IKKi (100nM). After additional 18 hours 

cells, cells were collected or apoptosis TUNEL assay. (B) Endothelial cells were 

cocultured with Nef-transfected Jurkat cells for 24 h, and then treated with 

NADPH gp91 specific peptide Nox2 inhibitor (10uM), apocynin (200nM), trolox 

(200nM), or IKKi (100nM) and incubated an additional 18 h, then analyzed for 

Nef-induced endothelial apoptosis. Data were expressed as fold MCP-1 

production, normalized to mock controls. Data represent mean ±SD from 3 

separate experiments in which measurements were made in triplicate. *P<0.05, 

and **P<0.01. 
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cocultured HCAEC. We demonstrated the same signaling pathways for 

endothelial MCP-1 production and apoptosis in these HCAEC coculture with Nef-

transfected Jurkat cells. We demonstrated the same signaling pathways for 

endothelial MCP-1 production and apoptosis in these HCAEC cocultured with 

Nef-transfected Jurkat cells (Figure 34B and 35B).  Thus, Nef induces endothelial 

MCP-1 through NF-kB pathway while induces endothelial cell death through 

NADPH pathway. 
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DISCUSSION 

Summary of the results 

Nef protein induces its own transfer from T cells and monocytes to 

endothelial cells, which consequently and necessarily induces endothelial cell 

activation, dysfunction, and death. Nef induces apoptosis of endothelial cells 

through an NADPH oxidase- and ROS-dependent mechanism, while Nef-induced 

MCP-1 production is NF-κB dependent. Our findings are in line with the widely 

accepted connection between endothelial dysfunction/oxidative stress and risk of 

cardiovascular events in patients with coronary artery disease in general 

(Heitzer, Schlinzig et al. 2001) and in HIV individuals specifically (Baliga, Chaves 

et al. 2005). Interestingly, Nef was already linked to pulmonary hypertension and 

endothelial endothelial dysfunction (Duffy, Wang et al. 2009; Almodovar, Hsue et 

al. 2011). Our finding of Nef-induced ROS production could explain Nef-induced 

decreased NO levels and ER dysfunctions in pulmonary arteries (Kojda and 

Harrison 1999; Duffy, Wang et al. 2009). Furthermore, our finding of Nef protein 

presence increasing endothelial MCP-1 production concurs with the important 

role of this chemokine in atherosclerosis. This finding is particularly noteworthy in 

light of a link between early atherosclerosis and MCP-1 levels in HIV patients 

(Gosling, Slaymaker et al. 1999; Alonso-Villaverde, Coll et al. 2004), as arterial 

inflammation in HIV patients is a common denominator and associated with a 

circulating marker of monocyte and macrophage activation (Subramanian, 

Tawakol et al. 2012). 
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The next aspect of Nef transfer we investigated was whether Nef protein 

could be also transferred in vivo. We demonstrated a great dissemination of Nef 

protein in PBMCs of HIV-infected individuals that most Nef positive cells were 

CD4- uninfected cells.  We also found not only an unexpected high level of Nef 

expression in HIV-patients without ART, but also a significant levels of Nef-

positive PBMCS in ART treated patients with undetectable HIV RNA viral loads. 

These in vivo findings suggest that Nef protein may be widely transferred from 

HIV-infected cells to uninfected cells, providing a means of pathogenic Nef 

activity even when virus replication is controlled. 

  

Nef protein can be transferred to endothelial cells 

In our tissue culture models, Nef transfection in uninfected Jurkat cells 

was sufficient to stimulate nanotube formation between Jurkat cells and 

endothelial cells. Quantification by FACS analysis revealed that 17% of HCAEC 

had Nef protein transferred to them from Jurkat cells/THP1 cells after 24 hours 

coculture. Our data suggests that the mechanism of Nef protein transfer between 

blood cells and vascular endothelial cells most likely involves nanotube 

formation. Reportedly, using IHC from human tissue many Nef protein 

expressing bystander cells can be found in lymphatic vessels, and under the low 

shear stress conditions in these vessels cellular transfer may be easily mediated 

by nanotube transfer from infected cells (Qiao, He et al. 2006). Under shear 

stress conditions, exosome-mediated transfer would be an alternative 

mechanism for transfer. However, despite previous reports of Nef transfer to 



 

 123 

bystander cells by Nef-containing exosomes, we did not find evidence of Nef 

transfer through this mechanism. Importantly, we applied a membrane staining 

live dye (Vybrant Dio), which excludes the possibility of Nef transfer via gap 

junction. Nanotube transfer from blood cells to the endothelium is possible 

despite shear stress as T cells and monocytes are in constant close contact to 

vascular endothelium as part of immuno-surveillance. In addition, HIV infection 

itself may cause proinflammatory conditions leading to increased adhesion of 

infected and noninfected Nef carrying T cells and monocytes (Yang, Liu et al. 

2010) and thus enhancement of nanotube formation and Nef transfer. 

As a first proof of principle, we provided the evidence that Nef can be 

transferred into endothelial cells in vivo. We assessed a transgenic approach to 

address Nef protein transfer more specifically by using the regulatory sequences 

of the human CD4 gene to drive Nef expression in a Tg mouse model.  Based on 

our in vitro finding that Nef protein can be readily transferred from infected or 

transfected Jurkat cells to endothelial cells, we anticipated that this model was of 

pathophysiological relevance. Indeed, demonstration of Nef protein in endothelial 

cells (Figure 20) provides further support for the hypothesis that Nef presence in 

endothelial cells can occur in the absence of viral infection. Although “leaky” CD4 

regulatory elements cannot be totally excluded, our Nef staining occurs at a 

relatively high intensity, which is usually not seen in expression caused by leaky 

promoters. Importantly, a “leaky” promoter can be further ruled out by our 

established monkey model of HIV infection, in which macaques were infected 

with SHIV-Nef, an SIV construct containing HIV Nef alleles (Sehgal, 



 

 124 

Mukhopadhyay et al. 2009; Almodovar, Hsue et al. 2011). In this model 

endothelial location of Nef has already been demonstrated in stenotic pulmonary 

arteries, indicating a role of HIV Nef in pulmonary hypertension. Unfortunately we 

could not include SHIV negative macaque hearts because they were not kept in 

the corresponding study. We looked for commercially available sections but the 

only provider we could identify had discontinued the provision of paraffin 

embedded coronary sections from apes. However, Nef staining in pulmonary 

arteries from SHIV but not healthy macaques had been demonstrated previously 

(Sehgal, Mukhopadhyay et al. 2009). In fact, this IF-based evidence of human 

Nef in HIV-Nef-SIV chimeric virus infected macaques is in confirmation of Nef 

being present in the vascular system. Further confirmation with human tissue 

samples should be addressed in future studies. 

 

Nef protein is detectable in HIV-patients with/without ART 

Unexpected high Nef levels were detected in most HIV naïve patients; 

however, one of the HIV patients exhibited very low Nef dissemination in PBMC, 

even though viral titers were high (Table 2, patient 8). The identification of 

mechanisms underlying this low spreading tendency of Nef, such as the 

possibility of a mutation impairing Nef protein transfer, would be interesting for 

therapeutic targeting of Nef. The unexpectedly high levels of Nef positive PBMCs 

cannot be explained by direct HIV infection of cells. In fact, Nef antibody staining 

was most prominent in non-CD4-positive cells, which is in line with the reported 

ability of Nef protein to be transferred in vitro from infected monocytes and T cells 
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to bystander cells (Figure 27A). Moreover, our finding that almost 50% of Nef 

positive cells appear to be B cells (Figure 27B) is in line with previous in vitro 

studies showing that Nef can be transferred from HIV infected monocytes to B 

cells (Qiao, He et al. 2006). 

Nef is one of the 3 immediate early HIV genes, which are still transcribed 

in HIV-infected cells even in those receiving ART. Interestingly, we also found 

significant levels of Nef-positive PBMCs (mean (SD), 1.17±0.19%, P=0.001 

compared to non-infected controls) in ART treated patients with HIV RNA viral 

loads < 50 copies/ml (Table 2, orange box). This finding could be explained by 

transfer of Nef from infected cells located in lymphatic tissues, a major HIV 

reservoir (Chiueh, Andoh et al. 2005; Hunt 2010). High endothelial venules 

enable lymphocyte circulation between blood and lymph nodes (Mackay, 

Marston et al. 1990) and are most likely in prolonged direct contact with Nef-

containing mononuclear cells (Stolp, Imle et al. 2012). 

 

Nef as the potential targets for HIV-related cardiovascular disease 

To explore potential targets that could interfere with Nef-induced 

endothelial dysfunction we addressed the mechanism of Nef action. First, we 

employed the fact that Nef protein contains a conserved motif with the minimal 

consensus (PxxP) site for SH3-mediated protein-protein interactions. This SH3 

domain was shown previously to be involved in many Nef activities (Foster and 

Garcia 2008). Further, our demonstration that the Nef SH3 binding site plays a 

key role in Nef-induced endothelial apoptosis is in line with previous reports that 
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Nef activates and induces NADPH oxidase (Vilhardt, Plastre et al. 2002; Salmen, 

Colmenares et al. 2010), which may also explain the known impairment of eNOS 

activity and reduced NO bioavailabilty in HIV-related vascular dysfunction (Kline, 

Kleinhenz et al. 2008; Duffy, Wang et al. 2009). Indeed, we observed that Nef 

induces apoptosis of endothelial cells through a NADPH oxidase- and ROS-

dependent mechanism that is independent of NF-κB activation. In this study, we 

included the ROS inhibitor Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-

carboxylic acid), a water-soluble analog of vitamin E, as a scavenger of O2
- (Arts, 

Haenen et al. 2004). Apocynin usually acts as an NADPH oxidase inhibitor, but 

recent results from Heumüller et al. (Heumuller, Wind et al. 2008) suggest that 

apocynin does not inhibit NADPH oxidase in endothelial cells because apocynin 

dimers cannot form without myeloperoxidase (MPO). These results, however, are 

based on cultured HEK293 cells that were transfected to overexpress NADPH 

oxidase isoforms. Other studies have shown the controversial results, that 

apocynin dimers are present in endothelial cells (Johnson, Schillinger et al. 2002) 

and MPO may be transferred into endothelial cells by a cytokeratin 1 pathway 

(Astern, Pendergraft et al. 2007). Other peroxidases in endothelial cells may also 

substitute for MPO. Schlüter et al. (Schluter, Steinbach et al. 2008) have shown 

that Apocynin does not inhibit vascular NADPH-oxidase-dependent superoxide 

formation but does inhibit Rho kinase activity. Recently, Steven J Miller et al 

found that mesenteric arteries in spontaneously hypertensive rats (SHR) (Zhou, 

Pyriochou et al. 2008) and retired breeder Wistar-Kyoto rats (WKY) have in vivo 

hydrogen peroxide concentrations in excess of what was necessary for apocynin-
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mediated inhibition of superoxide production in the Schlüter study (Miller, 

Coppinger et al. 2010).  In contrast, the Nox2ds peptide we used in this study 

specifically inhibits O(2)(•-) production by the vascular isoform of NADPH 

oxidase-Nox2 oxidase, but does not inhibit ROS production by either Nox1- or 

Nox4-oxidase (Csanyi, Cifuentes-Pagano et al. 2011). Because these NADPH 

oxidase- and ROS inhibitors were added early (6 hours) after transfection with 

Nef cDNA followed by determination of MCP-1 release, mitochondrial 

dysfunctions, ROS and apoptosis after 18 hours, we hypothesize that NADPH 

oxidase induces ROS formation, mitochondria dysfunction and apoptosis in 

endothelial cells. Although we could demonstrate mitochondrial dysfunction in 

Nef-induced endothelial cell apoptosis at later time points, early inhibition of 

NADPH oxidase using either pharmacological or biochemical peptide based 

inhibitors strongly suggests that NADPH activation is an essential early step for 

Nef-induced apoptosis by ROS-dependent mitochondrial dysfunction and 

subsequent release of cytochrome c and caspase activation, as was previously 

reported as a mechanism of ROS-dependent apoptosis. The cross talk between 

mitochondria and NADPH oxidases is bidirectional (Dikalov 2011; Dikalov and 

Ungvari 2013). Our proposed scheme suggests that Nef dysregulates endothelial 

mitochondria through inducing ROS and caspase activity. Increasing evidence 

shows that hypertension is associated with an increased mitochondria-derived 

production of ROS in various animal models, including mitochondria increased 

vascular ROS production by resistant mesenteric arteries and aorta (Viel, 

Benkirane et al. 2008; Dikalova, Bikineyeva et al. 2010). Mitochondria-derived 
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ROS is also critical for the central regulation of systemic cardiovascular function 

(Nautiyal, Arnold et al. 2013).  

Given our finding that Nef-induced ROS production is necessary for Nef-

induced endothelial cell death, anti-oxidant supplementation may be an exciting 

and novel means of reducing CVD in this population. In fact, in non-HIV infected 

patients, long-term administration of antioxidant vitamins C and E improved 

coronary and brachial artery endothelial function in patients with coronary artery 

disease, while multivitamin supplementation of HIV positive women during 

pregnancy reduced hypertension (Kinlay, Behrendt et al. 2004; Merchant, 

Msamanga et al. 2005). However, the beneficial effects of antioxidants for CVD 

in the HIV negative population are controversial (Hodis, Mack et al. 2002; 

Riccioni, Frigiola et al. 2012) and further post-data analyses or new studies within 

the HIV positive population would be interesting.  

In previous studies, MCP-1-stimulated migration was described to require 

ROS production in certain cells (Lo, Shih et al. 2005; Habibzadegah-Tari, Byer et 

al. 2006). In our study, we clearly stated that the MCP-1 pathway is independent 

of ROS activation (Figure 36).  We found that NF-κB inhibition but not NADPH or 

ROS inhibition strongly reduced MCP-1 production. We chose MCP-1 production 

in endothelial cells as a readout for proinflammatory endothelial activation and 

dysfunction because it has been linked to cardiovascular diseases in a series of 

human and mouse studies (Ohman, Wright et al. 2010; Liu, Zhang et al. 2012) as 

well as with HIV infection (Alonso-Villaverde, Coll et al. 2004; Eugenin, Gaskill et 

al. 2009) . Recent studies have reported that pharmaceutical MCP-1 inhibitor L-
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enantiomeric RNA oligonucleotide mNOX-E36 (a so-called Spiegelmer) 

successfully blocked MCP-1 during chronic liver inflammation and damage in an 

animal model (Baeck, Wehr et al. 2012). This could also be applied to future 

studies to test if this inhibitor can block Nef induced endothelial MCP-1 

production. In this context, the myriostylation site of Nef itself could be a target 

for drugs which block protein farnesylation. Of note, statins, as HMG-CoA 

reductase inhibitors, are expected to have this function (Stein, Merwood et al. 

2004; Hurlimann, Chenevard et al. 2006). It would be interesting to test whether 

statins are also able to reduce Nef activity, which would provide a rationale to 

apply an already existing cardiovascular protective regimen for HIV infected 

patients regardless of their cholesterol levels. 

 

Alternative ways to inhibit Nef expression 

Instead of inhibiting Nef-induced endothelium activation and dysfunction 

mechanism, an alternative could be the use Nef inhibitors. So far, only a few Nef 

inhibitors have been described, including chemical compounds capable of 

interfering Nef SH3 binding domains (Hiipakka, Huotari et al. 2001; Betzi, 

Restouin et al. 2007) and an Hck activation blocker (Emert-Sedlak, Kodama et al. 

2009). Unfortunately, some inhibitors were either too cytotoxic or only showed 

activity in cellular and biochemistry-based assays.  However, the new 

breakthrough monoclonal single-domain Nef neutralization antibody (anti-Nef 

sdAb) overcomes these problems and it inhibits the positive effect of Nef on virus 

replication in PBMCs (Bouchet, Basmaciogullari et al. 2011).  This antibody is 
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composed of heavy chains only, with a single variable domain (VHH) capable of 

recognizing cognate antigens. The advantage of sdAb is having no requirement 

for disulfide bond formation when targeting of proteins found in reducing cell 

compartments. Therefore, it will be interesting to test if anti-Nef sdAb can block 

Nef-induced endothelial dysfunction in future studies.   

In summary, the main significance of this study is that the HIV Nef protein 

can transfer to endothelial cells where it has dramatic effects, including the 

release of atherosclerotic chemokines, ROS formation, mitochondrial dysfunction 

and apoptosis. Pharmacologic interventional studies are now needed to 

determine the effects of Nef pathway inhibition, in addition to ART, to improve 

endothelial function and reduce the risk of cardiovascular disease in those 

infected with HIV.  
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Figure 36: Nef signaling pathways in HCAEC 

Nef induced endothelial MCP-1 production and apoptosis pathways are shown in 

the above scheme.  
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Future Directions: 

To validate signal transduction target for therapeutical application 

1.  Transgenic Mice Models  

Based on my finding of Nef presents in endothelium from CD4.Nef.GFP 

mice, we could further investigate these transgenic animals. Our collaborator 

(who provided the mice heart sections) had reported that using this transgenic 

approach tissue specific expression of Nef was sufficient to cause AIDS-like 

disease, B and T cell dysfunction, end organ diseases including lymphatic, 

kidney, and pulmonary, cardiac and coronary pathologies. Although coronary 

vascular dysfunction was compromised in these mice (Kay, Yue et al. 2002), the 

significance of these findings for atherosclerotic diseases was not addressed. 

Therefore, we could crossover Nef Tg mice with ApoE gene-deficient mice, an 

established model of atherosclerosis. Importantly, antiretroviral therapy is well 

known to cause hyperlipidemia (Carpentier, Patterson et al. 2005), which is best 

addressed in the widely used ApoE -/- model (Hofker, van Vlijmen et al. 1998; 

Jawien, Nastalek et al. 2004; Koga, Kai et al. 2007). In this model we can further 

address the hypothesis that Nef in CD4 and possibly also in other PBMC as well 

as in arterial vascular endothelial cells combines Nef-induced mononuclear and 

endothelial cell dysfunction to cause and/or enhance atherosclerotic changes. In 

addition to more specifically addressing the role endothelial Nef in 

atherosclerosis, we can generate Tg mice expressing Nef only in endothelial 

cells, under a tetracycline regulated (tetracycline treatment to be stopped to turn 

expression on) endothelial specific tie2 and/or VE-cadherin promoters (Mukai, 
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Rikitake et al. 2006). Again we will backcross these endothelial Nef expressing 

mice into the apopE -/- background. Thus, these transgenic lines can be used for 

assessing targets of Nef signaling in order to intervene in HIV associated 

vascular diseases, starting these studies with a proof of principle Nef transgenic 

signaling mutant (delta SH3) as this mutant was described previously to lead to 

reduced AIDS-like symptoms in comparison with wild type Nef transgenic mice 

(Hanna, Weng et al. 2001). 

 
2. Pilot Study 

As ART reduces virion production but not Nef gene expression, it is 

possible that these adverse effects of Nef may persist even in patients receiving 

ART. If so, then the persistence of Nef-positive cells during ART might contribute 

to the higher risk of non-AIDS complications observed despite ART. In the 

previous experiments (Table 2), we have demonstrated the dissemination of Nef 

in PBMC of HIV patients and its ability to be transferred to endothelial cells 

(Figure 21). Thus, it is important to further quantify the cellular dissemination of 

Nef protein in the blood from HIV patients on ART and its ability to affect the 

vascular system.  We can isolate PBMCs from up to 40 HIV-infected patients and 

uninfected volunteers to determine the amount of Nef protein in their PBMCs by 

using Nef ELISA kit. In the meantime, the Nef protein concentration in each 

patient will be compared to their malondialdehyde (MDA) level, a circulating 

biomarker of oxidative stress (Gerritsen, van Boven et al. 2006) and flow-

mediated dilation (FMD) level of the brachial artery (Abbott, Harkness et al. 

2002), a well-accepted measure of in vivo endothelial function and predictor of 
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CVD. In addition, my data showed that anti-oxidant could block HIV Nef-induced 

endothelial apoptosis. Thus, we could also assess the effects of the antioxidant 

agents N-acetylcysteine (NAC) and the ACE-inhibitor lisinopril on circulating 

MDA levels and FMD in HIV-infected persons receiving virologically suppressive 

ART.  
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