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ABSTRACT 

Lisa C. Barrow 

E7 Proteins of High-Risk (Type 16) and Low-Risk (Type 6) Human  
 

Papillomaviruses Regulate p130 Differently 
 

Human papillomaviruses (HPVs) are one of the most common causes of 

sexually transmitted disease in the world. HPVs are divided into high-risk (HR) or 

low-risk (LR) types based on their oncogenic potential. HPVs 16 and 18 are 

considered HR types and can cause cervical cancer. HPVs 6 and 11 are 

classified as LR and are associated with condyloma acuminata (genital warts). 

Viral proteins of both HR and LR HPVs must be able to facilitate a replication 

competent environment. The E7 proteins of LR and HR HPVs are responsible for 

maintenance of S-phase activity in infected cells. HR E7 proteins target all pRb 

family members (pRb, p107 and p130) for degradation. LR E7 does not target 

pRb or p107 for degradation, but does target p130 for degradation. 

Immunohistochemistry experiments on HPV 6 infected patient biopsies of 

condyloma acuminata showed that detection of p130 was decreased in the 

presence of the whole HPV 6 genome. Further, the effect of HR HPV 16 E7 and 

LR HPV 6 E7 on p130 intracellular localization and half-life was examined. 

Experiments were performed using human foreskin keratinocytes transduced 

with HPV 6 E7, HPV 16 E7 or parental vector. Nuclear/cytoplasmic fractionation 

and immunofluorescence showed that, in contrast to control and HPV 6 E7-

expressing cells, a greater amount of p130 was present in the cytoplasm in the 
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presence of HPV 16 E7. The half-life of p130, relative to control cells, was 

decreased in the cytoplasm in the presence of HPV 6 E7 or HPV 16 E7, but only 

decreased by HPV 6 E7 in the nucleus. Inhibition of proteasomal degradation 

extended the half-life of p130, regardless of intracellular localization. Experiments 

were also conducted to detect E7-binding partners. Cyclin C and cullin 5 were 

identified as proteins capable of binding to both HPV 6 E7 and HPV 16 E7. 

Preliminary experiments showed that decreasing protein levels of p600, a binding 

partner of both HPV 6 E7 and HPV 16 E7, by RNA interference might affect p130 

stability. Elucidating the mechanisms of p130 degradation may identify potential 

targets for preventing degradation of p130 and allowing restoration of cell cycle 

control. 

 

        Ann Roman, Ph.D., Chair 
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INTRODUCTION 

Human papillomaviruses (HPV) have been established as the causative 

agent in over 99% of cervical cancers (Walboomers et al., 1999). High-risk (HR) 

types of HPV, such as HPV 16, 18, 31 or 33 are responsible for cervical cancer 

development. Annually, 470,000 new cervical cancer cases are reported 

worldwide. Low-risk (LR) types of HPV, such as HPV 6 and 11, are not capable 

of transforming cells but can cause condyloma acuminata (genital warts) 

(Longworth and Laimins, 2004; zur Hausen, 1996). 

HPV E6 and E7 are known oncoproteins. HR HPV E6 targets p53 for 

degradation whereas HR HPV E7 targets the pRb family members, pRb, p107 

and p130 for degradation (Wise-Draper and Wells, 2008). Although the LR type 

of HPV E7 does not degrade pRb, LR HPV 6 E7 has been reported to target 

p130 for degradation (Zhang et al., 2006). Degradation of p130 is found to 

correlate with delayed differentiation. HPV E7 increases the number of cells in S-

phase, therefore the ability of both HR and LR HPV to target p130 may be 

important for the HPV life cycle (Zhang et al., 2006). 

The focus of this thesis is to understand HPV E7 regulation of p130 and to 

identify potential binding partners of HPV E7 that may be involved in E7-

mediated degradation. This chapter addresses general HPV biology, including 

the viral proteins with emphasis on HPV E7. Background information pertinent to 

the rationale of this study is addressed, including the information related to p130 

intracellular localization, E7 localization and p130 degradation.  
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HPV and cervical cancer 

In women, cervical cancer is the second most frequent cancer worldwide 

and the leading cause of cancer-related deaths in women in developing countries 

(Drain et al., 2002; Snijders et al., 2006). In fact, Latin American and the 

Caribbean (LAC) are reported to have the greatest incidence of HPV infection in 

the world (Almonte et al., 2008). There is a correlation between cervical cancer 

incidence and socio-economic sub-standards. Haiti has a cervical cancer 

incidence of 87.3 per 100,000 women, the highest of the LAC region. The 

incidence of HPV infection in Barbados is 26 per 100,000 women and in the US 

is significantly lower at 8.2 per 100,000 women (Almonte et al., 2008; Watson et 

al., 2008). There are also variations of cervical cancer incidence amongst ethnic 

groups with African American and Hispanic women being diagnosed at twice the 

rate of Caucasian women (Watson et al., 2008).  

The incidence of cervical cancer has significantly decreased over the last 

15 years in developed countries due to utilization of the Pap smear test, which 

allows for early detection (Singer, 1995). Nonetheless, cervical cancer is 

responsible for claiming 4,000 lives per year in the US and there are over 11,000 

new cases yearly; therefore, it is not a trivial disease (Horner et al., 2009). 

Further, in developed countries HPV infection occurs at alarming rates: HPV 

causing the most common viral sexually transmitted disease in the US, with 1 to 

5 million new infections yearly (Burd, 2003). It is estimated that over 75% of 

sexually-active individuals have been infected with HPV (Cates, 1999).  
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In the 1930s papillomaviruses (PVs) were identified as etiologic agents 

that could cause warts and mammalian cancer (Rous and Beard, 1934; Shope 

and Hurst, 1933). Richard Shope was the first investigator to determine that 

infection with cottontail rabbit papillomaviruses resulted in the development of 

cutaneous papillomas and to correlate infection of a virus to development of a 

mammalian cancer (Shope and Hurst, 1933; zur Hausen, 1996). In 1976 Miesels 

and Fortin observed koilocytes in human biopsies and determined them to be a 

characteristic of PV infection. These koilocytes were described as PV producing 

cells that acquired an owl-eye shape and had a halo around abnormally small 

nuclei. Miesels and Fortin also postulated that differentiation between benign 

lesions that do not progress to cancer and those that do was possible (Meisels 

and Fortin, 1976; Meisels et al., 1981; zur Hausen, 2002). HPV were initially 

cloned and identified in the laboratory of Harold Zur Hausen. HPV 6 was isolated 

by centrifugation of a genital wart extract (Gissmann and zur Hausen, 1980) and 

HPV 16 DNA was detected by low-stringency hybridization (Durst et al., 1983; 

Gissmann and zur Hausen, 1980). 

Cervical neoplasia is classified based on the morphology of HPV infected 

cells. Cells can be obtained by a pap smear in order to perform cytology, 

whereas histology is performed on a biopsy of a patient’s tissue. Mild dysplasia is 

defined as CIN1 by histology and low-grade squamous intraepithelial lesion 

(LSIL) by cytology and generally represents the morphologic abnormality 

associated with transient HPV infections. In CIN1, only a few cells are considered 

to be abnormal. Malignant precursors of squamous cervical carcinoma include 
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moderate and severe dysplasia, that are traditionally defined, respectively, as 

cervical intraepithelial neoplasia grade 2 (CIN2) and grade 3 (CIN3) by histology 

and as high-grade squamous intraepithelial lesions (HSIL) by cytology. In CIN2 

approximate half of the cells in the tissue are considered as abnormal. In CIN3 

virtually all of the cells are abnormal, and if left untreated will invade the 

basement membrane, resulting in invasive cervical cancer (Crum and McLachlin, 

1995; Kurman et al., 1994; Solomon et al., 2002). 

 

HPV classification and genome organization 

HPV are non-enveloped, double-stranded DNA viruses with a genome of 

approximated 7.9 kb (zur Hausen, 1996). The genome organization of HPV is 

illustrated in Figure 1. Transcription occurs from one of the two strands of the 

genome. The genome is divided into three segments; the early region (encoding 

proteins necessary for replication and transcription), the late region (encoding the 

L1 and L2 capsid proteins) and the long control region (containing cis regulatory 

elements necessary for replication and gene expression) (Longworth and 

Laimins, 2004; zur Hausen, 1996).  

Sequence analysis has allowed the identification of more than 200 

different types of HPV with differentiation of HPV types based on less than a 90% 

corresponding sequence of the L1 ORF with any previously identified HPV types 

(Burd, 2003; Delius and Hofmann, 1994). Two to ten percent similarity is 

recognized as a sub-type and <2% a variant (Munger and Howley, 2002). Ninety  
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Figure 1. The HPV genome. The genome consists of an early region, late region 

and a long control region (LCR). The early region contains the E1, E2, E4, E5, 

E6 and E7 genes which regulate transcription, replication and cell cycle control. 

The late region encodes L1, and L2 capsid proteins. The LCR contains the origin 

of replication and cis-regulatory elements necessary for HPV transcription and 

replication. Figure adapted from Doorbar, 2006. 
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percent of HPV are classified into two major genera, Alpha and Beta. Alpha 

papillomaviruses include those HPV which cause genital/mucosal infections: 

HPV that infect the lining of the mouth, throat, respiratory tract, the anogenital or 

cervical epithelium (Burd, 2003; Doorbar, 2006). HPV 16 is the HR type of HPV 

responsible for more than 50% of cervical cancers (Hebner and Laimins, 2006). 

Beta papillomaviruses are associated with cutaneous infections, infecting the 

hands and feet. The remainder of the HPV are classified in Gamma, Mu and Nu 

genera and typically infect cutaneous sites (Doorbar, 2006).  

HPV are associated with over 99% of all cervical cancer, 40-50% of penile 

and vulvar cancers and greater than 20% of head and neck cancers (D'Souza et 

al., 2007; Dillner et al., 2000; Hebner and Laimins, 2006; zur Hausen, 2002). 

HPV are classified as high-risk (HR) or low-risk (LR) depending on their ability to 

cause cancer. HPV 16, 18, 31, 33, and 45 and 59 are commonly associated with 

these malignancies (Burd, 2003; zur Hausen, 2000; zur Hausen, 2002). HPV 6, 

11, 42, 43 and 44 are classified as LR, and can cause condyloma acuminata 

(genital warts) (Burd, 2003; Longworth and Laimins, 2004).  

 

HPV life cycle 

Completion of the HPV life cycle is dependent upon epithelial differentiation. In 

normal epithelium, cell proliferation occurs in the basal cell layer; as cells migrate 

upwards they exit the cell cycle and differentiate as shown in Figure 2 (zur 

Hausen, 1996). HPV gains entry into cells as a result of microabrasions in the 

epithelium (Longworth and Laimins, 2004). The receptor needed for HPV 
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infection is not certain, but studies suggest that this receptor may be integrin 

α4ß6 (Munger et al., 2004). Heparin sulfate has also been reported to 

orchestrate attachment of the virions to cells (Giroglou et al., 2001; Joyce et al., 

1999). However, the role of heparin sulfate has been contradicted by a report 

from the Ozbun’s laboratory that heparin sulfate only played a role in COS-7 

cells, a monkey kidney cell line (Smith et al., 2007). Further, they have reported 

that viral HPV 31 entry was caveolae-dependent, whereas HPV 16 entry was 

through clathrin-dependent endocytosis (Smith et al., 2007). An additional caveat 

to these studies is that, in vivo, HPV capsids have been shown to bind to the 

basement membrane therefore the in vitro studies discussed above do not truly 

recapitulate what occurs in a natural infection, since binding in these experiments 

is to the cell surface receptors (Horvath et al., 2010). 

After virus infection, viral DNA is maintained extra-chromosomally at 50-

100 copies in the basal cell layer (Hebner and Laimins, 2006; Longworth and 

Laimins, 2004). The infected cells then move to the differentiated suprabasal 

layer, where viral DNA is amplified and late genes are expressed resulting in 

mature virions (zur Hausen, 2002). Several studies indicate that both HR and LR 

HPV require the host cell to initiate cellular DNA replication for viral DNA 

amplification to occur (Hebner and Laimins, 2006; Longworth and Laimins, 2004; 

Snijders et al., 2006; zur Hausen, 2002).  
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Figure 2. The HPV life cycle. HPV amplifies its genome and synthesizes 

structural proteins within differentiated keratinocytes. Both HR and LR HPV must 

either delay differentiation or induce differentiated keratinocyes to enter S phase. 

Figure adapted from zur Hausen, 2002. 
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Viral proteins of both HR and LR HPV must be able to facilitate a 

replication competent environment within the differentiated compartment of the 

stratified squamous epithelium (Hebner and Laimins, 2006; Longworth and 

Laimins, 2004; Snijders et al., 2006). CCAAT displacement protein (CDP) is a 

protein that is highly expressed in undifferentiated cells of the basal cell layer, but 

as cells differentiate the expression of CDP significantly decreases. CDP 

negatively regulates the promoters of HPV E6, E7 and E1 and participates in the 

inhibition of HPV replication in undifferentiated cells (Ai et al., 1999). Therefore, 

HPV replication occurs in the stratified squamous epithelium where no CDP is 

present, but HPV still has the task of creating a replication competent 

environment in these cells that may be exiting the cell cycle. HPV E7 creates a 

replication competent environment by driving suprabasal cells into S-phase and 

causes unscheduled DNA synthesis (Collins et al., 2005; Munger et al., 2001). 

However, a recent report suggests that HPV may initiate viral DNA replication 

when the cells are in the G2 phase (Wang et al., 2009). The E7 proteins of both 

HR and LR HPV are required for viral DNA maintenance and/or amplification 

(Flores et al., 2000; McLaughlin-Drubin et al., 2005; Oh et al., 2004b; Zhang and 

Roman, unpublished data). In the case of low-grade infections, after infection the 

viral genome is maintained as an extrachromosomal genome. In contrast, HPV 

DNA is integrated with host DNA in most cancerous lesions (Doorbar, 2006). 

In HR HPV, transcripts are initiated at 2 major promoters, an early and late 

promoter. The early promoter is located upstream of the E6 open reading frame 

(ORF) whereas the late promoter initiates in the E7 ORF. In HPV 16 and 31 the 
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early promoter is p97, whereas in HPV 18 it is p105 (Hebner and Laimins, 2006). 

Initially after infection, E6, E7, E1 and E2 genes are transcribed from the early 

promoter. Activation of the late promoter and productive replication of HPV 

occurs simultaneously and E1, E2, E4, E5, as well as the capsid proteins L1and 

L2 are transcribed (zur Hausen, 1996).  

 

HPV gene products and their activities 

HPV E1 and E2 

Replication factors E1 and E2 are initially expressed after infection and 

are required for maintenance of the extrachromosomal genome. HPV E1 is 

approximately 68 kDa in size (Longworth and Laimins, 2004). E1 has a lower 

affinity than E2 for binding to the origin; this ability is enhanced by E2. After initial 

binding of E1, additional E1 molecules bind in an ATP-dependent manner. E1 

also possess 3’-5’ helicase activity. E1 molecules form hexameric rings that, with 

chaperones, allow unwinding of supercoiled HPV DNA (Hughes and Romanos, 

1993; Longworth and Laimins, 2004; Yang et al., 1993). DNA polymerase also 

binds to E1 (Hebner and Laimins, 2006). 

HPV E2 is a 50 kDa protein. The N-terminus of HPV E2 plays a role in 

transactivation and the C-terminus is important for DNA binding and dimerization. 

These sequences are greater than 90% conserved in all HPV types (Blakaj et al., 

2009; Longworth and Laimins, 2004; McBride et al., 1989; McBride et al., 1988). 

E2 binds to a consensus palindromic sequence (ACCGNNNCGGT) or the E2 
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binding site, at the origin of replication and as stated, recruits the E1 helicase via 

its C-terminus.  

E2 also initiates transcription from the early promoter (Hegde, 2002; 

Longworth and Laimins, 2004). E2 represses binding of transcription factors such 

as TFIID and Sp1 when it is highly expressed, but at low expression activates the 

early promoter. The ability of E2 to act as an activator is due to binding to high-

affinity sites, whereas E2 acts in a repressive manner when binding to low-affinity 

sites. In HPV E2 is mainly repressive. HPV-infected basal cells express low-

levels of E2. As these cells differentiate the levels of E2 increase and so does 

viral copy number (Longworth and Laimins, 2004; Penrose and McBride, 2000). 

In cervical cancer, integration of HPV DNA occurs, interrupting the E2 ORF. This 

prevents E2-mediated transcription repression from occurring and allows E6 and 

E7 to be highly expressed (Doorbar, 2006; Longworth and Laimins, 2004; 

Shirasawa et al., 1987).  

Reintroduction of bovine PV E2 or HPV E2 into HeLa carcinoma cell line 

represses E6 and E7 expression, resulting in restoration of p53 and pRb 

functions and causing cellular senescence (Dowhanick et al., 1995; Goodwin and 

DiMaio, 2000; Goodwin et al., 2000; Hwang et al., 1993). Recent studies also 

show that HPV 16 E2 interacts with p53 and CBP, a coactivator protein that plays 

a role in p53-dependent apoptosis, promoting apoptosis (Lee et al., 2000a; 

Massimi et al., 1999). However, it has been confirmed that LR HPV 11 E2 has no 

interaction with p53 (Parish et al., 2006). 
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HPV E1^E4 

RNA splicing is responsible for the generation of E1^E4, a protein 

consisting of the first five E1 codons fused to the open reading frame of E4. Full -

length E1^E4 is predominantly localized to the cytoplasm in the differentiated 

compartment of the HPV infected epithelium and is a 17 kDa protein (Doorbar et 

al., 1986; Jareborg and Burnett, 1991; zur Hausen, 1996). There are also 16 

kDa, 11kDa and 10 kDa cleaved forms of E1^E4 (Doorbar et al., 1988). 

 The function of E1^E4 has not been clearly defined, but its expression 

had been shown to correlate with viral DNA amplification (Doorbar et al., 1997). 

However, a recent publication from Fang et al., showed that HPV 11 E1^E4 was 

not required for DNA amplification (Fang et al., 2006). E1^E4 is thought to 

supplement HPV E7’s role in DNA synthesis activation. E1^E4 has been reported 

to induce the break-down of epithelial cytokeratins, permitting the escape of 

mature virions from the cornified envelope (Doorbar et al., 1991). Additionally, 

E1^E4 is associated with the cornified cell enveloped (CCE) (Bryan and Brown, 

2000). This association disrupts the expression of loricrin (present in 

approximately 70% of healthy epithelium) and cytokeratin 10. This may result in 

the CCE becoming fragile and vulnerable to the escape of HPV, therefore 

allowing HPV to more readily infect new hosts (Bryan and Brown, 2000; Bryan 

and Brown, 2001). Both LR 11 HPV E1^E4 and HR 16 HPV E1^E4 are capable 

of altering the normal expression of cytokeratins (Bryan and Brown, 2000; 

Doorbar et al., 1997). Bryan et al. specifically showed that upon expression of 
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HPV 11 E1^E4, expression of loricrin and cytokeratin 10 was no longer 

detectable (Bryan and Brown, 2000). 

HPV E5 

HPV E5 is a hydrophobic protein consisting of 85 amino acids. It is located 

in the various membranes such as the Golgi, ER and plasma membranes 

(Conrad et al., 1993). Bovine papillomavirus E5 is an oncogene and activates the 

platelet derived growth factor receptor; however, both LR and HR HPV E5 have 

meager transforming abilities but can co-operate with E7 to enhance its 

transformation potential (Valle and Banks, 1995). HPV E5 associates with the 

epidermal growth factor receptor (EGFR) (Hwang et al., 1995). Overexpression 

of HR HPV 16 E5 results in an activating phosphorylation of EGFR, which 

enhances its biological functions and prevents the receptor from being degraded 

(Crusius et al., 1997; Pim et al., 1992; Zhang et al., 2002).  

Detection of HPV E5 is very low in undifferentiated cells. It is thought that 

HPV E5 may play a role in the later stages of the HPV life-cycle since it is only 

detected in differentiated cells and disruption of HPV E5 expression interferes 

with the life cycle of HR HPV (Fehrmann et al., 2003; Genther et al., 2003). It has 

also been reported that expression of E5 correlates with a reduction in the 

amount of HLA-A and HLA-B molecules (Ashrafi et al., 2005) and a decrease in 

antigen presentation of major histocompatibility complex (MHC) class II 

molecules (Zhang et al., 2003).  
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HPV L1 and L2 

L1 and L2 are the two structural proteins of HPV. The L1 protein is the 

major capsid protein and has a molecular weight of 55 kDa. The L2 protein is not 

as abundant as the L1 protein and migrates between 72 and 78 kDa (Conway 

and Meyers, 2009). 80% of the capsid consists of L1 pentamers. L1 alone or with 

L2 can assemble into virus like particles (VLP) (Finnen et al., 2003; Rose et al., 

1993; Yuan et al., 2001; Zhou et al., 1991). VLP are particles that mimic the 

external protein structure of a virus but do not contain genetic material that is 

required for viral replication and are therefore not infectious (Campo and Roden, 

2010; Finnen et al., 2003). HPV prophylactic vaccines based on VLP containing 

only L1 are FDA-approved and are currently being marketed. These vaccines 

have 100% efficacy at preventing HPV infections caused by the HPV types in the 

vaccine (Campo and Roden, 2010). The efficiency of the HPV prophylactic 

vaccines is due to generation of high titer type-specific neutralizing antibodies by 

the immune system in response to exposure to VLP (Lowy and Schiller, 1998). 

These vaccines are thought to provide long-term protection from HPV infection 

(Conway and Meyers, 2009).  

The HPV vaccine produced by Merck Sharp and Dohme offers specific 

protection from the four mucosal types of HPV, HR HPV 16 and 18 and LR HPV 

6 and 11, whereas the vaccine marketed by Glaxo Smith Kline protects against 

HPV 16 and 18 only (Campo and Roden, 2010). The L1 capsid protein used to 

make up the vaccine from Merck was produced using transgenic yeast and the 

L1 capsid protein used in Glaxo’s vaccine produced using a recombinant 
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baculovirus propagated in insect cells (Campo and Roden, 2010). Although the 

types of HPV included in these vaccines are the most prevalent types, there are 

obvious drawbacks. The vaccine does not protect against all HPV types. Another 

concern about the vaccine is that its production is expensive and therefore 

vaccines are not readily available in developing countries. Hopefully, there will be 

a broad spectrum vaccine manufactured in the near future that will also be 

relatively inexpensive to produce.  

HPV E6 

There are approximately 150 amino acids residues in the HPV E6 protein 

and it its approximate size is 18 kDa. The E6 protein consists of two zinc-binding 

domains, each containing a C-X-X-C-X29-C-X-X-C sequence (Barbosa et al., 

1989; Grossman and Laimins, 1989; Huibregtse et al., 1993). HR HPV E6 binds 

to E6-associated protein (E6-AP), a cellular ubiquitin-ligase, and targets the 

tumor suppressor p53 for degradation (Huibregtse et al., 1993; Scheffner et al., 

1993). p53 plays many roles in cell-cycle regulation. It activates repair proteins in 

response to DNA damage, and if this damage is irreparable can induce cell 

arrest by activating p21, a cyclin kinase inhibitor (Hebner and Laimins, 2006; 

Levine, 1997).  

The E6:E6-AP complex also targets NFX1-91 for degradation, enhances 

telomerase activity and increases cellular life-span (Gewin et al., 2004). 

Telomerase is an enzyme that is responsible for extending telomeric ends by the 

addition of hexamer repeats. NFX1-91 transcriptionally represses telomerase 

reverse transcriptase (TERT) expression (Gewin et al., 2004). E6:E6-AP complex 
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has also been reported to target E6TP1, MCM7 (minichromosome maintenance 

7) and Bak for degradation (Munger et al., 2004; Wise-Draper and Wells, 2008). 

Bak is a pro-apoptotic protein that is proteasomally degraded by HPV E6 

(Thomas and Banks, 1999). MCM7 plays a role in guaranteeing that DNA 

replication occurs only once per cycle. Therefore, interaction of HPV E6 with 

MCM7 may result in over-duplication of chromosomes, contributing to genomic 

instability (Kukimoto et al., 1998).  

HR HPV E6 also binds directly to PDZ [PSD-95 (a 95 kDa protein involved 

in signaling), Dlg (the Drosophila discs large protein), and ZO1 (the zonula 

occludens 1 protein] domain-containing proteins via its C-terminal domain which 

is highly conserved amongst HR HPV types (Glaunsinger et al., 2000; Lee et al., 

2000b; Nakagawa and Huibregtse, 2000; Thomas et al., 2001). LR HPV does not 

possess the PDZ binding motif (Pim et al., 2000). PDZ proteins are necessary for 

cell-cell adhesion and are implicated in cell signaling (van Ham and Hendriks, 

2003). Binding of PDZ by HPV E6 is an important feature in progression to 

carcinogenesis. HPV E6 mutants that can no longer bind PDZ are deficient for 

E6-induced transformation in rodent cells and reduction of tumor development in 

transgenic mouse models (James et al., 2006; Kiyono et al., 1997).  

There are other proteins that have been discovered to interact with HPV 

E6. Paxillin has been reported to bind to HR HPV E6, while both LR and HR HPV 

E6 bind to p300, MCM7 and Bak. HR HPV E6 has a higher affinity for p300, 

MCM7 and Bak (Kukimoto et al., 1998; Patel et al., 1999; Thomas and Banks, 

1999; Thomas and Chiang, 2005; Tong and Howley, 1997; Zimmermann et al., 
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2000). p300 functions as a transcriptional coactivator and a histone 

acetyltransferase (Iyer et al., 2004). Binding of p300 by HPV E6 prevents 

acetylation of p53 at p300-dependent sites, down-modulating p53-mediated 

expression (Zimmermann et al., 2000).  

HPV E7 

E7 proteins consist of approximately 100 amino acid residues and can be 

divided into three regions: conserved region 1 (CR1, amino acids 2-15), CR2 

(amino acids 16-38), and the C-terminal zinc-binding region (amino acids 39-98) 

containing two Cys-X-X-Cys motifs. CR1 and CR2 are conserved with 

adenovirus E1A and SV 40 large T antigen. The zinc-binding C-terminal domain 

of E7 oncoprotein is proposed to be involved in homodimerization (Gage et al., 

1990; Jewers et al., 1992; Munger et al., 2004; Munger et al., 2001). E7 proteins 

of HR HPV 16 and LR HPV 6 share 50% amino acid sequence identity and 15% 

conservative changes (Armstrong and Roman, 1992; Gage et al., 1990). 

Both HR and LR HPV E7 proteins bind pRb family members through their 

LXCXE binding motif (Dyson et al., 1989). Furthermore, several in vitro studies 

have revealed that HPV 16 E7, as compared to HPV 6 E7, has a greater affinity 

for pRb, p107, and p130 (Ciccolini et al., 1994; Gage et al., 1990). HR HPV 

destabilize all pRb family members and this is a critical event that drives cellular 

transformation (Berezutskaya et al., 1997; Boyer et al., 1996; Davies et al., 1993; 

Gonzalez et al., 2001; Halbert et al., 1991; Helt and Galloway, 2001). The main 

contributing factor that results in enhanced binding of HR HPV E7 to pRb and its 

ability to target pRb for degradation is an aspartic acid versus glycine residue in 
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HR vs. LR E7 proteins at the position immediately before the LXCXE binding 

motif. Although HPV 6 E7 has a lower affinity for binding p130 than HPV 16 E7, it 

is as efficient in targeting p130 for degradation (Zhang et al., 2006).  

Significant differences between the HPV 16 E7 and HPV 6 E7 proteins 

have been reported such as HPV 16 E7, but not HPV 6 E7, can cooperate with 

ras to transform primary rodent cells, immortalize primary keratinocytes, and 

abrogate growth arrest mediated by DNA damage (Demers et al., 1996; Halbert 

et al., 1991; Jewers et al., 1992; Matlashewski et al., 1987; Storey et al., 1988; 

Watanabe et al., 1992). The molecular basis for the transformation ability of HR 

HPV E7 has been mapped to the amino-terminal half of the E7 protein (Heck et 

al., 1992; Phelps et al., 1992). The amino-terminal halves of HR and LR E7 

proteins contain consensus recognition sequences for casein kinase II (CK II) 

(Barbosa et al., 1990; Firzlaff et al., 1989; Massimi and Banks, 2000). There are 

2 serines in E7 that are specifically phosphorylated by CKII. When these sites 

are mutated the transforming ability of HPV E7 decreases (Barbosa et al., 1990). 

The E7 proteins of the HR HPV are phosphorylated in vitro at a higher rate than 

the LR HPV-encoded E7 proteins (Storey et al., 1988).  

HR HPV E7 proteins have a number of cellular binding partners other than 

the pocket proteins. HR HPV E7 but not LR HPV E7 has been reported to 

interact with cyclin A/cyclin dependent kinase (Cdk) 2, cyclin E/Cdk2, PCAF, 

TATA box-binding protein (TBP), histone deacetylases (HDAC), E2F1, p21CIP1 

and p27KIP1 via its C-terminus (Dell and Gaston, 2001; Munger et al., 2004; Wise-

Draper and Wells, 2008). pRb is a substrate of both the cyclin A/Cdk2 and cyclin 
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E/Cdk2 complexes. HPV E7 interaction with these complexes results in reduction 

of Rb-associated transcriptional repression (McIntyre et al., 1996; Tommasino et 

al., 1993). Binding of HPV E7 to HDAC is indirect and is mediated by Mi2β 

(Brehm et al., 1999). p21CIP1 and p27KIP1 are cyclin kinase inhibitors and binding 

by E7 perturbs cell cycle inhibition (Funk et al., 1997; Zerfass-Thome et al., 

1996). In differentiating cells, E7 binding to HDAC contributes to enhanced E2F-

mediated transcription and increases proliferation (Hebner and Laimins, 2006). 

 

pRb family members 

The pRb family of proteins (pRb, p107 and p130) plays important roles in 

regulating cell cycle control and differentiation (Gonzalez et al., 2001; Munger et 

al., 2001). pRb family members are homologous in the “pocket” region, 

composed of subdomains A and B and separated by a spacer region that is 

highly conserved among each of the proteins. p130 and p107 share more 

homology than pRb. p130 and p107 contain a region between the A and B sub-

domains that is responsible for inhibition of cyclin A/Cdk2 and cyclin E/CKD2 

(Classon and Dyson, 2001; Claudio et al., 2002).     

pRb family members each bind to specific members of the E2F family of 

transcription factors, which are responsible for the transcription of E2F-

responsive genes, and hence S-phase entry (Cam and Dynlacht, 2003; Dimova 

and Dyson, 2005). The E2F family members, E2Fs 1-8 are transcription factors 

that are divided into two groups, activators and repressors. E2F1-E2F3 are 

activators and E2F4-E2F8 are repressors (Chen et al., 2009). E2F1-6, and form 
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heterodimeric complexes with the DP family of proteins, DP-1 and DP-2 whereas 

E2F7 and E2F8 do not (Chen et al., 2009). E2F1, E2F2, and E2F3 are almost 

exclusively regulated by pRb. p130 and p107 normally associate with E2F4 and 

E2F5, and p130 associates with E2F4/5 at the G0/G1 
stage of the cell cycle 

(Dimova and Dyson, 2005; Helin et al., 1993). p130 and p107 may be able to 

compensate for each other under certain conditions, but they both also have 

independent roles. Of the pRb family members, p130 is highly expressed in 

quiescent and differentiated cells, whereas p107 is primarily expressed during S 

phase (Smith et al., 1996). It is important to note that p130-E2F complexes 

appear to be fundamental in the permanent cell cycle withdrawal characteristic of 

terminal differentiation. E2F4 and E2F5 lack nuclear localization signals (NLS). 

These repressor E2Fs can be translocated to the nucleus by co-expression of 

p130 or p107 (Lindeman et al., 1997). 

p130 levels, like the levels of other pRb family members, are regulated in 

response to the proliferative state of cells and are controlled by Skp-Cullin-F-box 

(SCF) complexes which mediate proteolysis in a phosphorylation-dependent 

manner (Classon and Dyson, 2001); (DeCaprio et al., 1992; Tedesco et al., 

2002); (Shirodkar et al., 1992). p130 has been shown to be phosphorylated in 

cycling cells by cyclin D/Cdk4 or Cdk6, cyclin A/Cdk2 and cyclin E/Cdk2 (Classon 

and Dyson, 2001; Cobrinik, 2005). Cdk4/Cdk6, not Cdk2, is responsible for 

targeting p130 for degradation in fibroblasts (Tedesco et al., 2002). In cycling 

cells Cdk4/ Cdk6 phosphorylates p130 on Ser 672, resulting in a 

hyperphosphorylated form of p130 that is targeted for degradation by an SCF 
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complex (Tedesco et al., 2002). In growth-arrested and terminally differentiated 

cells, p130 is phosphorylated by glycogen synthase kinase 3 (GSK3) in the loop 

region in the B subdomain and thus stabilized (Litovchick et al., 2004).  

 

Proteasomal degradation 

The majority of intracellular proteins are degraded by the ubiquitin-

proteasome pathway (Glickman and Ciechanover, 2002). The proteasome is a 

large 26S multisubunit complex that degrades polyubiquitylated proteins to small 

peptides. Proteasomes act on proteins marked specifically for degradation by a 

small protein called ubiquitin (Ciechanover et al., 2000). Ubiquitin is activated for 

transfer to substrate through the ATP-dependent formation of a thioester bond 

with the ubiquitin-activating (E1) enzyme and is subsequently transferred to a 

ubiquitin-conjugating (E2) enzyme. Finally, thioesterified ubiquitin is transferred 

to the target protein with the assistance of a ubiquitin ligase (E3). E3s bind 

directly to substrate, suggesting that they provide specificity in ubiquitylation 

reactions. It is likely that protein degradation in vivo is controlled primarily by 

regulating E3 activity or E3-substrate interaction (Ciechanover et al., 2000; 

Glickman and Ciechanover, 2002).  

SCF complexes (E3 ubiquitin ligases) recognize and polyubiquitylate 

substrates in a phosphorylation-dependent manner, targeting them for 

degradation by the 26S proteasome (Deshaies, 1999). HPV 16 E7 and p130 both 

interact with and are ubiquitylated by SCFSkp2 complex (Oh et al., 2004a; 

Tedesco et al., 2002). 
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Nucleocytoplasmic shuttling 

Nuclear localization signals (NLS) (K-K/R-X-K/R) are generally contained in 

proteins that are to be imported in the nucleus, whereas proteins to be exported 

from the nucleus contain nuclear export signals (NES) (L-x(2,3)-[LIVFM]-x(2,3)-L-

x-[LI]) (Neufeld, 2009). Proteins are transported through the nuclear pore 

complex, and this import/export is mediated by karyopherins (Neufeld, 2009; 

Weis, 2003). Karyopherins that function in nuclear import are called importins 

(e.g. NTF2), whereas those that play a role in nuclear export are exportins (e.g. 

CAS). The karyopherins bind to their cargo proteins via the NLS or NES 

recognition sequence (Weis, 2003). Proteins that are imported in the nucleus are 

associated with the karyopherins until this karyopherin:cargo protein complex is 

bound to RanGTP which results in dissociation of the protein from karyopherin, 

as illustrated in Figure 3. Karyopherin is then recycled to the cytoplasm. 

Translocation of proteins that contain an NES from the nucleus to the cytoplasm 

occurs by these cargo proteins forming a complex with Crm1/RanGTP. In the 

cytoplasm this Crm1/RanGTP: cargo protein complex is disassociated by GTP 

hydrolysis facilitated by RanGAP (Pemberton and Paschal, 2005). 

 

p130 localization 

p130 contains three nuclear localization signals (NLS), two in the C-

terminus and one in the loop region (Chestukhin et al., 2002). In undifferentiated 

cells, hypophosphorylated p130 is predominantly in the nucleus in the G0/G1  
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Figure 3. Nuclear import and export pathways. (A) Nuclear import of proteins 

containing an NLS, mediated by the karyopherin-α: importin-β1 heterodimer 

(Imp-α and Imp-β) and NTF2, which serves as a nuclear import receptor. Imp-α: 

A 

B 
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Figure 3 (con’t). imp-β, NTF2 and the protein containing the NLS bind to Ran-

guanosine diphosphate (Ran-GDP) and then bind to the nuclear pore. Entry into 

the nucleus occurs when Ran-GDP is exchanged for Ran-guanosine 

triphosphate (GTP) by Ran-guanine exchange factor (GEF). (B) Nuclear export 

of proteins containing an NES as mediated by Crm1, a nuclear export receptor. 

Crm1 recognizes the protein that contains the NES and binds to Ran-GTP. This 

complex is then shuttled to the cytoplasm. Figure adapted from Pemberton and 

Paschal, 2005 and Faustino et al., 2007. 
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phase of the cell cycle. In S-phase, p130 is typically phosphorylated and 

transported to the cytoplasm where it is targeted for degradation. Shuttling of 

p130 between the nucleus and the cytoplasm therefore provides a means of 

regulation (Chestukhin et al., 2002; Tedesco et al., 2002).  

 

HPV E7 localization 

Guccione et al. reported that HR and LR E7 proteins are detected 

predominantly in the nucleus by immunofluorescence (Guccione et al., 2002; 

Smith-McCune et al., 1999). Other studies, using subcellular fractionation, 

detected HPV 16 E7 in the cytoplasm and the nucleus (Nguyen et al., 2007; 

Smotkin and Wettstein, 1987). E7 is known to have both cytoplasmic and nuclear 

targets (Wise-Draper and Wells, 2008). In support of such observations, it has 

been reported that HPV 16 E7 has two NLS and one nuclear export signal (NES) 

(Knapp et al., 2009). HPV E7 has been shown to alter the localization of various 

proteins. Both HPV 6 E7 and 16 E7 relocalize steroid receptor coactivator 1 

(SRC1) to the cytoplasm (Baldwin et al., 2006). HPV 16 E7 reduces the nuclear 

localization of p21Cip1 by a mechanism mediated by AKT (Westbrook et al., 

2002). 

 

Rationale for present studies 

Data generated in the Roman lab have established that LR HPV 6 E7 is 

capable of targeting p130 for degradation through the proteasome pathway 

(Zhang et al., 2006). Zhang et al. 2006, have also published that there is a direct 
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correlation between a decrease in p130 expression and a delay in differentiation. 

The data suggest that p130 degradation is important for the HPV life cycle since 

both LR and HR HPV E7 have this ability and HPV 6 E7 mutants that could not 

target p130 for degradation also are not able to delay differentiation as efficiently 

as wild type (WT) HPV 6 E7 (Zhang et al., 2006).  

In this thesis, to validate the loss of p130, immunohistochemical assays 

were performed on HPV 6 infected patient biopsies to determine the level of 

p130 expression in vivo. It was determined that there was a decrease of p130 

levels in the presence of HPV 6, supporting the published retroviral transduction 

data. 

Experiments were then conducted to determine the effect of LR and HR 

HPV E7 on p130 localization. Immunofluorescence and sub-cellular fractionation 

techniques were used. Both techniques established that there was an increase of 

cytoplasmic p130 in the presence of HR HPV 16 E7, but p130 localization of LR 

HPV 6 E7 transduced human foreskin keratinocytes was similar to the control 

cells. Treatment with leptomycin B (LMB), an inhibitor of Crm1/exportin 1, (a 

nuclear export protein) did not affect the HPV 16 E7-mediated cytoplasmic p130 

localization. This suggests that HPV-E7 may retain p130 in the cytoplasm or else 

localization to the cytoplasm from the nucleus is via a Crm1/exportin 1 

independent pathway. 

Half-life studies were also conducted to address whether there was 

preferential degradation of p130 in either the cytoplasm or the nucleus in the 

presence of HPV 6 or 16 E7. The half-life of cytoplasmic p130 in the presence of 
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HPV 6 and 16 E7 was similar and shorter than the control. Interestingly, the half-

life of nuclear p130 in HPV 6 E7 transduced cells was half as long as in HPV 16 

E7 expressing cells and the control cells. 

The mechanism of HPV E7-mediated p130 degradation was also 

investigated. p600 was previously identified as a cellular protein that binds to 

both HPV 6 E7 and HPV 16 E7 (Huh et al., 2005). p600 has been speculated to 

be an E3 ubiquitin ligase (Huh et al., 2005). Knock-down experiments using 

shRNA to p600 were performed. The results suggested that there was an 

increase in p130 stability. Earlier tandem-affinity purification experiments and 

mass spectrometry, from the Roman lab, showed binding of cyclin C to HPV 6 

E7. Cyclin C/CDK3 is known to phosphorylate pRb resulting in G0 exit (Ren and 

Rollins, 2004). HPV 6 E7 and HPV 16 E7 were confirmed to bind to cyclin C by 

glutathione-sepharose transferase (GST) pull-down experiments. Cullin 5 is a 

component of an E3 ubiquitin ligase. Adenovirus protein E4orf6 forms a complex 

with the Cullin5-ElonginB-ElonginC E3 ubiquitin ligase and targets p53 for 

polyubiquitination and proteasomal degradation (Luo et al., 2007). GST pull-

down experiments showed that both HPV 6 and 16 E7 bound to cullin 5. 

 Thus, in this thesis, data show that LR HPV 6 E7 and HR HPV 16 E7 

regulate p130 differently. HPV 6 E7 seems to have evolved to be able to target 

p130 in the nucleus. In contrast, HPV 16 E7 seems to sequester p130 in the 

cytoplasm, targeting it for degradation there, therefore providing HR HPV 16 E7 

two ways of removing p130 from its nuclear targets. E7 binds to p600, cyclin C 
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and cullin 5; one or more of the latter proteins may participate in E7-mediated 

degradation.  
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MATERIALS AND METHODS 

Preparation of human foreskin keratinocytes from neonatal foreskins 

Human foreskin keratinocytes (HFKs) were isolated from neonatal 

foreskins obtained from routine circumcisions at Wishard Hospital (Rheinwald, 

1980). Foreskins were washed with 1X PBS and fat and dermis removed using a 

sterile scalpel and scissors. Foreskins were washed again, minced and added to 

5 ml of 37°C 1X trypsin-EDTA (Invitrogen, Carlsbad, CA) in a 25 ml flask 

containing a small stir-bar. HFKs were released from the minced tissue by 

incubation in trypsin/EDTA with gentle agitation with the stir bar, for 15 min in a 

37°C, 5% CO2 incubator. Cells were collected and transferred to a 15 ml conical 

tube containing 1 ml fetal bovine serum (FBS) (Invitrogen). Trypsin-EDTA was 

added to the foreskin tissue in the 25 ml flask and incubated in 37°C incubator 

twice more, stirring as before. The three tubes were spun for 2 min at 2000 rpm 

at room temperature (RT). Supernatant was aspirated and pelleted cells 

resuspended in E medium [(3 parts Dulbecco's Modified Eagles Medium (DMEM, 

Invitrogen), 1 part HAMS F12 (Invitrogen), 10% fetal calf serum (FCS) (Hyclone, 

Logan, UT), 0.4 µg/ml hydrocortisone, 0.1 nM cholera toxin, 5 µg/ml transferrin 

and 1X antibiotic-antimycotic solution containing 100 U penicillin/ml, 0.1 mg/ml 

streptomycin and 0.25 µg/ml amphotericin B). HFKs were then plated in E 

medium on three 10 cm tissue culture dishes in the presence of 3 X 105 

mitomycin C-treated J2 fibroblasts per plate. Media was changed after 3 days 

and EGF added to the E media. At 80% confluence, media was aspirated and 

the plate rinsed twice with 1X PBS. Five ml of 0.02% EDTA/PBS was added to 
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each plate and incubated for 2 min at RT. The J2 fibroblasts were removed by 

forcefully pipeting the 0.02% EDTA/PBS solution over the surface of the plate. 

The plate was then rinsed several times with 1X PBS. HFKs were trypsinized and 

plated 1:10 on 3 X 105 mitomycin C-treated J2 feeder cells in E medium. When 

HFKs became 80% confluent they were frozen in 1 ml DMEM containing 20% 

FBS and 10% dimethyl sulfoxide (DMSO, Sigma-Aldrich, St. Louis, MO) at one 

plate/vial, stored temporarily as stocks at -80°C and then transferred to liquid 

nitrogen tanks. 

 

Production of retrovirus stock with stably transduced PA317 cells 

PA317 LXSN retrovirus packaging cells and PA317 L(16E7)SN retrovirus 

packaging cells were acquired from the American Type Culture Collection 

(ATCC, Manassas, VA). A vial of cells was thawed and plated on one 6 cm tissue 

culture dish in DMEM plus 10% FBS and 1 mg/ml geneticin (G418, Invitrogen; 

selection media). The next day the cells were transferred to a 10 cm tissue 

culture dish. Media was changed every three days until the plate was 90% 

confluent. The cells were then split 1:10 to 10 cm dishes and maintained in 

selection media until 80% confluent. The plates were then rinsed three times and 

the media changed to 5 ml of DMEM plus 10% FBS, in the absence of G418. 

Twenty-four hours later, virus was harvested and filtered through a 0.2 micron 

filter (Millipore, Billerica, MA) and 5 ml aliquots were frozen at -80°C. Fresh 

media were added to each plate and this process repeated once more to obtain 

two sets of virus.  
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Production of virus in transiently transfected SD3443 (Phoenix) cells 

Viruses encoding HPV 6 E7, C-terminally tagged HPV 6 E7, C-terminally 

tagged 16 E7 and parental vector C-tap (Roman laboratory) and pCMV-HA-p130 

(obtained from Dr. DeCaprio, Harvard University) were generated by transfection 

of the respective DNAs into Phoenix-ampho cells (ATCC). One vial of Phoenix-

ampho cells (ATCC) was thawed to one 10 cm tissue culture dish, in DMEM plus 

10% FBS. When cells were 90% confluent they were split to ten 10 cm dishes. 

Cells were transfected when they were 70% confluent. Media was removed from 

cells and 5 ml DMEM (serum and antibiotic free) containing 25 µM of chloroquine 

was added. Cells were then incubated at 37°C for approximately 15 min. For 

each plate to be transfected the following procedure was performed: 4 µg of 

DNA, 20 µl of plus reagent (Invitrogen) and 730 µl of DMEM were added to a 15 

ml polystyrene Falcon conical tube. 30 µl lipofectamine (Invitrogen) and 720 µl of 

DMEM were added to another tube. The two solutions were mixed with a pipet 

and allowed to stand for 15 min (transfection solution). One and a half ml of 

transfection solution was then added to each plate containing DMEM plus 

chloroquine and the plate incubated for 3.5 h in the 37°C, 5% CO2 incubator. 

After this period, 6.5 ml of DMEM plus 20% FBS was added. The following day, 

media were removed and 5 ml of DMEM plus 10% FBS added. Virus was 

harvested, filtered and stored on the third and fourth days following transfection 

as described above for the PA317 packaging cell line.  
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Titering retrovirus 

NIH 3T3s were plated at 5 x 105 cells/6 cm tissue culture plate in 4 ml of 

DMEM plus 10% FBS. The next day, NIH 3T3s were infected with varying 

dilutions of virus (10-2,10-3,10-4,10-5) with 8 µg/ml polybrene, made up in 2 ml 

DMEM plus 10% FBS. The next day the cells were split 1:1 onto 10 cm dishes 

with 1 mg/ml G418 in DMEM containing 10% FBS. Three days later, the cells 

were fluid changed and this was repeated until colonies formed. Upon formation 

of colonies, the media was aspirated from the plates and the plates fixed and 

stained with 1% methylene blue/10% ethanol solution in water to visualize 

individual colonies. The plates were then rinsed with distilled water and allowed 

to air-dry overnight (O/N). The colonies were counted and viral titer calculated 

using the formula shown below. 

Infectious virus/ml      =         Number of colonies                            
                                       Virus volume (ml) x dilution factor of cells plated 
 
 

Transfection of HFKs using FuGENE 6 

At 50% confluence HFKs were transfected using FuGENE 6 transfection 

reagent (Roche, Indianapolis, IN). HFKs were growing in 4 ml of C-K-SFM: 

serum free media (SFM) supplemented with bovine pituitary extract and human 

recombinant epidermal growth factor (EGF) (both purchased from Invitrogen) and 

1:1000 dilution of 50 mg/ml gentamicin (Sigma-Aldrich). A 3:1 ratio of FuGENE 6 

tranfection reagent: DNA complex (18 ul of transfection reagent: 6 µg of DNA) 

made up to 600 µl in C-K-SFM was incubated for 30 min and then added to the 
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HFKs. Forty-eight hours later the transfected cells were harvested. Rev-green 

fluorescent protein (GFP) expression plasmid (Ludwig et al., 1999) was obtained 

from Dr. Johnny He’s laboratory; HA-p130 and HA-p130- 21-5A-m-NLS-1&2 

DNAs were obtained from Dr. Jim DeCaprio, Harvard University (Chestukhin et 

al., 2002). 

 

Retroviral infection of HFKs 

Third-passage HFKs were grown to about 40% confluence in a 10 cm 

tissue culture dish in C-K-SFM. The media was aspirated and HFKs were 

infected with 5 ml of the recombinant retrovirus or parental virus, in the presence 

of 8 μg/ml of polybrene. Depending on the titer of the virus, cells were either 

infected once or twice, with the amount of virus needed to obtain approximately 5 

X 106 viruses per 1.5 X 106 cells. After 6 h the cells were fed with C-K-SFM and 

kept at 37°C in 5% CO2 for 48 h. The cells were then transferred to four 10 cm 

diameter dishes and selected with 200 μg/ml of G418 for 3 days. Selected cells 

were expanded and generally harvested at 80% confluence. For differentiation 

experiments, transduced HFKs were grown to 100% confluence and induced to 

differentiate in 2 mM CaCl2 for 48 h.  

Ten ng/ml leptomycin B (LMB) (Sigma-Aldrich; stock solution: 5.5 µg/ml), 

an inhibitor of CRM-1 mediated nuclear export, was used to address the effects 

of HPV E7 on p130 localization. Transduced HFKs were treated for 4 h with 10 

ng/ml of LMB. For studies to determine the half-life of p130 in the cytoplasm and 

nucleus of HPV E7 transduced cells, the transduced HFKs were treated with 0.25 
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mM cycloheximide [(CHX, Sigma-Aldrich); stock solution 0.355 M, dissolved in 

DMSO] for 2h, 4h and 6h to inhibit protein synthesis. HPV E7 transduced cells 

were also treated with CHX plus 50 μM MG132 (Sigma-Aldrich; stock solution 50 

mM, dissolved in DMSO) an inhibitor of proteasomal degradation for 2 h, 4h and 

6h. For experiments to determine the effect of cyclin-Cdk activity on E7-mediated 

degradation, cells were treated with 12.5 μM roscovitine (Sigma-Aldrich), 50 μM 

flavopiridol (Sigma-Aldrich) or 12.5 μM 3-amino thioacridone (3-ATA) (Alexis 

Biochemicals) for 4 h. All Cdk inhibitors were dissolved in DMSO at a 

concentration of 25 mM for roscovitine and 3-ATA and 50 mM for flavopiridol. 

 

Nuclear/cytoplasmic fractionation 

For fractionation experiments, HFKs transduced with LXSN, L(6 E7)SN or 

L(16 E7)SN were washed twice with 1X PBS, trypsinized and pelleted. Cells 

were washed again with 1X PBS and 300 µl ice cold cell fractionation buffer 

(PARIS kit, AppliedBiosystems/Ambion, Austin, TX) containing 100 X protease 

inhibitor cocktail (Sigma-Aldrich) was added to the cell pellet. The mixture of 

fractionation buffer and cells were incubated on ice for 10 min; the suspension 

became clear rapidly, indicating lysis of the plasma membrane. Lysates were 

spun at 2000 rpm for 3 min in a microcentrifuge and the supernatant saved 

(cytoplasmic fraction). The pellet was washed in 300 µl ice-cold cell fractionation 

buffer and spun at the speed indicated above. Three hundred microliters of 2× 

Laemmli buffer [4% sodium dodecyl sulfate (SDS), 20% glycerol, 0.125 M Tris–

HCl) was then added to the pellet, and the pellet vortexed and vigorously pipeted 



35 

 

to obtain the nuclear fraction. The nuclear fraction was incubated on ice for 10 

min to ensure complete cell disruption. Cytoplasmic and nuclear fractions were 

clarified by centrifugation at 4°C for 1 min at top speed in a microcentrifuge.  

 

Western blotting 

For whole cell extracts (WCEs), cells were lysed with extraction buffer C 

(EBC: 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.5% NP-40) or 2X SDS lysis 

buffer [(20% glycerol, 4% SDS, 120 mM Tris-HCl pH 6.8)]. Cells harvested with 

EBC buffer were scraped with a rubber policeman while the plate sat on ice. 

Cells harvested with 2X SDS lysis buffer were harvested at RT. Protease and 

phosphatase inhibitors were added before use: protease inhibitor cocktail,125 μM 

Na3VO4 (Sigma-Aldrich; stock solution 200 mM made up in ddH2O) and 50 mM 

NaF (Sigma-Aldrich; stock solution 100 mM made up in ddH2O). Protein 

concentrations were determined using the Bio-Rad DC protein assay kit. Proteins 

were separated on 6% or 10% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS/PAGE) at 130 V, using a mini-gel apparatus. The proteins 

were then transferred to nitrocellulose at 100 V for 1h with an ice pack. Following 

transfer, the nitrocellulose membranes were stained for 7 min at RT with 

ponceau red (Sigma-Aldrich) as a preliminary indicator of equal loading. Excess 

ponceau red was removed from the membrane with brief rinsing with 5% acetic 

acid (diluted in ddH2O) followed by a ddH2O rinse. The stained membrane was 

then scanned. Western analysis was performed using the established standard 

protocol. Membranes were blocked for at least 1 h at RT or O/N at 4°C in 
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blocking solution [TBS-T (20mM Tris-HCl ph 7.5, 500mM NaCl and 0.05% v/v 

Tween 20) that contained 5% wt/vol non-fat dry milk (Kroger brand)].  

Monoclonal antibodies were generally incubated for 1h at the designated 

dilution in the above blocking solution. However, monoclonal p130 and pRb were 

incubated O/N at 4°C. Rabbit polyclonal antibodies were always incubated with 

the membrane O/N in 5% bovine serum albumin (BSA) (Sigma-Aldrich) in TBST. 

After addition of primary antibody, the blot was washed three times with 1X 

TBST, 10 min each wash. Goat anti-mouse-horse radish peroxidase (HRP) 

conjugated secondary antibody (Bio-rad, Hercules, CA) was used at a dilution of 

1:8000 in 1X TBST and goat anti-rabbit secondary antibody (Bio-rad) was used 

at a dilution of 1:3000 in 1X TBST. Blots were incubated for 1h with secondary 

antibodies at RT and washed three times with 1X TBST. Blots were then 

developed using the enhanced chemiluminescent (ECL) Western blotting 

substrate kit (Thermo Scietific, Rockford, IL).  

The following antibodies were used: monoclonal p130, 1:1000 dilution (cat 

# 610261) and pRb, 1:1000 dilution (cat # 554136) BD Biosciences, San Jose, 

CA. Polyclonal p130, 1:100 dilution (cat # sc-317), E2F5, 1:1000 dilution (cat # 

sc-599), GFP, 1:2000 dilution (cat # sc-9996), cyclin C, 1:500 dilution (cat # sc-

5610), nucleolin, dilution 1:1000 (cat # sc-8031), Cdk8, 1:200 dilution (cat # sc-

1521) and p600, 1:1000 dilution (cat # sc-100615), Santa Cruz. GAPDH 

(glyceraldehyde 3-phosphate dehydrogenase), 1:30,000 dilution (cat # MAB374) 

and cullin 1, 1:1000 dilution (cat # MAB3783), Millipore. Tubulin, 1:3000 dilution 

(cat # T6074), Sigma-Aldrich. Lamin B, 1:2000 dilution (cat # AB16048), Abcam, 
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San Francisco, CA. HA, 1:1000 dilution (cat # 11583816001), Roche. Cdk3, 

1:200 dilution (cat # AHZ0172), Invitrogen. Cullin 5, 1:700 dilution (cat # A302-

173A), Bethyl Laboratories, Montgomery, TX. For fractionation experiments used 

to determine localization of proteins, equal volume fractions of cytoplasmic to 

nuclear protein were used. For all other experiments equal quantity of protein 

was analyzed and samples normalized to tubulin, for cytoplasmic fractions, lamin 

B or nucleolin for nuclear fractions, or nucleolin or GAPDH for WCEs. 

For experiments to determine the phosphorylation status of p130, lambda 

protein phosphatase was used (New England Biolabs, Ipswich, MA). One 

hundred units of λ-phosphatase were incubated in 1x λ-phosphatase reaction 

buffer (50 mM Tris-HCl, 100 mM NaCl, 0.1 mM ethylene glycol tetraacetic acid, 2 

mM dithiothreitol (DTT), 0.01% Brij 35) with WCEs (harvested in EBC buffer) for 

30 min at 30°C. Fifty mM EDTA was then added to samples and incubated at 

65°C for 1 h to heat inactivate phosphatase activity. 

 

Immunofluorescence 

 Infected HFKs were grown on glass coverslips in C-K-SFM and 

transduced with LXSN, L(6E7)SN or L(16E7)SN. Cells were fixed in 4% 

paraformaldehyde for 10 min, rinsed and permeabilized with 0.1% Triton X-100 in 

PBS for 10 min. The cells were immersed in 0.1% BSA/PBS for 30 min to block 

nonspecific binding. Cells were incubated with polyclonal antibody to p130 

(Santa Cruz) diluted in 0.1% BSA/PBS for 1.5 h at RT. Various concentrations of 

p130 antibody were tested (1:50, 1:100 and 1:200); the 1:100 dilution was 
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determined to be the optimal concentration. Cells were then washed with 0.1% 

BSA/PBS at RT and incubated with fluorescein isothiocyanate (FITC)-conjugated 

secondary antibody (Santa Cruz) at a 1:200 dilution. Cells were counterstained 

with 5 μg/ml of 4′-6-Diamidino-2-phenylindole (DAPI) for 7 min at RT, washed 

again, mounted and stored in the dark for at least 2 h. Fluorescent images were 

then taken with a Nikon Eclipse microscope (Dr. Johnny He’s laboratory). For 

experiments with the Rev-GFP plasmid (Ludwig et al., 1999), HFKs were 

transfected with FuGENE 6 transfection reagent as described earlier.  

 

Generation of HA-p130 mutants 

Three putative nuclear export sequences were identified using the NES 

predictor (www.cbs.dtu.dk/). Deletion mutants were generated in the individual 

three NES (p130 ∆1, deleted 228-238; p130 ∆2, deleted 510-520; p130 ∆3, 

deleted 850-860) and all combinations thereof. Two complimentary 

oligonucleotides with the desired NES deleted were synthesized using the 

QuikChange II XL site-directed mutagenesis kits (Agilent Technologies, Inc., 

Santa Clara, CA). The parental DNA used was pHA-p130, a 4.3 kb plasmid 

obtained from Dr. Jim DeCaprio, Harvard University (Chestukhin et al., 2002). 

The polymerase chain reaction (PCR) conditions were as follows. In a 1.5 

ml eppendorf tube a 50 µl reaction was set up containing 10 ng of HA-p130 

dsDNA template in 10x reaction buffer. To the template solution was added 1 µl 

dNTP mix, 125 ng of oligonucleotide primers 1 and 2 and 3 µl of QuikSolution. 

Two and a half units of PfuUltra HF DNA polymerase were added. The DNA 

http://www.cbs.dtu.dk/�
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thermocycler was programmed for 1 min at 95°C, followed by 18 cycles of 50 s at 

95°C (denaturation), 1 min at 55°C (annealing) and 5 min at 68°C (extension), 

followed by an additional 7 min extension reaction at 68°C. Listed below are the 

sequences of single stranded oligonucleotides used as primers for generation of 

HA-p130 deletion NES mutants.  

p130 ∆1 sense, 5’-ATTTGGTCAATTCTTAATTCTTATCACCTGAATG 

CACTTCAGTGTTCTAATCG-3’ 

p130 ∆1 antisense, 5’-CGATTAGAACACACTGAAGTGCATTCAGGTGATAAGA                             

ATTGACCAAAT-3’ 

p130 ∆2 sense, 5’-TTAGAATCTGTTATTGAGCAGGAAGGTATTCTGGAACAAG 

ATGCGTTC-3’ 

p130 ∆2 antisense, 5’ GAACGCATCTTGTTCCAGAATACCTTCCTGCTCAATAACAG 

ATTCTAA-3’ 

p130 ∆3 sense, 5’-GTATACCATTTAGCAGCTGTCCGCTCAGATGAATTGAGG 

AAAAAAATC -3’ 

p130 ∆3 antisense, 5’- GATTTTTTTGGTCAATTCATCTGAGCGGACAGCTGC 

TAAATGGTATAC 

 

Dpn I Digestion of the Amplification Products 

Ten units of the Dpn I restriction enzyme was then added directly to each 

amplification reaction. The reaction was mixed by pipeting up and down several 

times. The reaction mixtures were then spun at RT at full speed for 10 s in a 
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microcentrifuge and the reaction incubated at 37°C for 1 h to digest the parental 

supercoiled dsDNA. 

 

Transformation of XL10-Gold Ultracompetent Cells 

XL10-Gold ultracompetent cells were gently thawed on ice. Forty-five µl of 

ultracompetent cells per reaction were aliquoted to a prechilled 15 ml BD Falcon 

polypropylene tube. 2 µl of β-mercaptoethanol (Sigma-Aldrich), were added the 

cells, contents were swirled gently and incubated on ice for 10 mins, swirling 

every 2 mins. Two µl of the Dpn I-treated DNA was then transferred to the aliquot 

of ultracompetent cells. The transformation reaction was mixed gently and 

incubated on ice for 30 mins. The tubes were heat-pulsed in a 42°C water-bath 

for 30 s and incubated on ice for 2 min. 500 µl of NZY+ broth (NZB plus 

supplements:10 g NZ amine, 5 g yeast extract, 5 g NaCl, 12.5 mM MgCl2, 12.5 

mM MgSO4, 20 mM glucose) was added to each tube and incubated at 37°C for 

1 h with shaking at 225-250 rpm. Two hundred and fifty µl of transformation 

reaction was plated on an agar plate containing 100 µg/ml ampicillin per ml of NZ 

agar. The transformation plates were incubated at 37°C for approximately 16 h. 

 

Plasmid purification 

Colonies were picked, grown up in 500 ml cultures and purified using 

QIAGEN-tip 500TM columns according to the manufacturer’s recommendations 

(QIAGEN, Inc., Valencia, CA). Ultraviolet absorbance at 260 nm was used to 

determine DNA concentration using a NanoDrop 2000 spectrophotometer 
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(Thermo Scientific). Purity and quantity were verified by the OD260/OD280 ratio 

and by examination of the electrophoretic pattern of the DNA in agarose mini-

gels.  

 

DNA sequence analysis 

The DNA sequences of the mutants (p130 ∆1 NES, p130 ∆2 NES, p130 

∆3 NES, p130∆1∆2 NES, p130 ∆1∆3 NES, p130 ∆2∆3 NES, p130 ∆1∆2∆3) were 

provided by the DNA Core Sequencing Facility (IUSM Department of 

Biochemistry and Molecular Biology) using the following primers: 

p130 ∆1 sense, 5’ CAGCCCTGTACTGTGCTG 3’ 

p130 ∆1 antisense, 5’GCCATCATGTAAGGAACACAG 3’ 

p130 ∆2 sense, 5’CAGCATTTCCAGCCAGACGAG 3’ 

p130 ∆2 antisense, 5’ GACGACCTCAAGGCAGCAGGC 3’ 

p130 ∆3 sense, 5’ CAAGGCCAGTCTGTAACCAGC 3’ 

p130 ∆3 antisense, 5’GGTCCAGATGTCTGTCCATC 3’ 

All of the p130 mutants were confirmed to have been successfully generated. 

 
DNA in Situ hybridization 

Sections from biopsies of HPV 6 positive condyloma acuminata were used 

that have been typed by polymerase chain reaction in Dr. Darron Brown’s 

laboratory. To identify individual cells that contain HPV DNA, DNA in situ 

hybridization was performed using an in situ typing assay (Enzo Diagnostics, 

Farmingdale, NY). Sections were deparaffinized in xylene followed by ethanol, 
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and treated with 25 µg/ml proteinase K for 5 min at 37° C. Sections were then 

treated with 3% H2O2 in methanol for 30 min to reduce endogenous peroxidase 

activity. Sections were washed in 1x PBS, dehydrated by incubation in ethanol, 

and dried. HPV 6 type specific probe was added at 5 ng/µl to DNA in situ 

hybridization buffer (Dako, Carpinteria, CA). Sections were then covered with a 

HybriStrip (Research Products International, Mt. Prospect, IL) and heated at 

95°C for 10 min. Probe and target DNA were hybridized O/N at 37°C. Sections 

were washed two times in 2X SSC (diluted in ddH2O from 20x SSC: 175.3 g 

NaCl, 88.2 g Na Citrate) plus 0.05% Tween-20 for 10 min at 37°C. Sections were 

blocked and probes detected using detection reagent, as instructed by the 

manufacturer. Sections were dehydrated in ethanol and mounted using 

Vectashield (Vector Laboratories, Burlingame, CA); slides were viewed by light 

microscopy. 

 

Immunohistochemistry 

Sections from biopsies were deparaffinized and treated with 3% H2O2 in 

methanol as described above. Sections were blocked with non-specific rabbit 

serum (Santa Cruz) and incubated with antibody against p130 at a 1:100 dilution 

in phosphate buffered saline (PBS) (Santa Cruz). HPV negative foreskin tissue 

was used as control. Antibodies to keratin 14 (a marker for stratified squamous 

epithelium) at a 1:100 dilution in PBS and proliferating cell nuclear antigen 

(PCNA; expressed in the nuclei of cells during the DNA synthesis phase of the 

cell cycle) at a 1:100 dilution in PBS (both antibodies from Santa Cruz) were 

http://en.wikipedia.org/wiki/Cell_nucleus�
http://en.wikipedia.org/wiki/S_phase�
http://en.wikipedia.org/wiki/Cell_cycle�
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used as positive controls to validate the assay. As a negative control primary 

antibodies were omitted. Antibody binding was detected using the Vectastain 

ABC detection system (Vector Laboratories) to yield a purple precipitate. Slides 

were then examined by light microscopy using a Nikon microscope (Dr. Johnny 

He’s laboratory) and images captured. 

Generation of glutathione-sepharose transferase (GST) fusion proteins 

Five µl of E.coli DH5α bacterial cells containing plasmid that expressed 

GST or GST fusion proteins were grown O/N in 5 ml of NZB in the presence of 

0.1 mg/ml of ampicillin. The next day, the 5 ml culture was added to 250 ml NZB 

containing 0.1 g/L of ampicillin. The bacteria were grown for 1 h at 37°C and then 

at RT for 2 h with continuous shaking. After 2 h, 1 mM isopropyl β-D-1-

thiogalactopyranoside, dissolved in NZB, was added to the flask. Sixteen to 

eighteen hours later the bacteria were pelleted by centrifuging at 6000 rpm for 15 

min. The cell pellet was resuspended in a volume of the detergent lysis buffer 

[200 mM NaCl, 50mM Tris-HCl pH 8.0, 1mM DTT and protease inhibitor tablet 

(Roche)] equal to 3X the size of the pellet. The bacteria were disrupted by 

processing 3 times in a French-press. Bacterial debris was pelleted at 15,000 

rpm for 30 mins. Glutathione sepharose beads (GE Healthcare, Piscataway, NJ) 

were pre-equilibrated in binding buffer by washing the desired quantity of beads 

for 30 min with 1 ml of detergent lysis buffer, spinning down and 3000 rpm for 3 

mins and aspirating detergent lysis buffer. This was done three times and an 

equal volume of detergent lysis buffer added to the beads (50% slurry). Five 
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hundred µl of the 50% slurry was then added to the supernatant (containing 

unpurified GST or GST fusion proteins) and rocked O/N at 4°C. Beads were 

pelleted by centrifugation at 3,000 rpm for 5 min. The sepharose beads were 

washed three times with 1 ml of detergent lysis buffer, with rocking for 30 min at 

4°C and aspiration of the supernatant between each wash. Two hundred and fifty 

µl of 20 mM glutathione (Sigma-Aldrich) in detergent lysis buffer was added to 

the beads with rocking for 30 min at 4°C, to elute the bound GST protein. The 

elution step was performed three times. The elutions were combined and 

concentrated using 10,000 molecular weight cut off ultra-centrifugal filtration 

devices (Millipore). GST fusion proteins were placed in dialysis cassettes 

(Thermo Scientific) and dialyzed O/N at 4°C in 1 L of detergent lysis buffer. 

Proteins were quantified, quick frozen using a dry/ice ethanol mix and stored at -

80°C.  

 

Glutathione-s-transferase (GST) pull-down assays 

HeLa nuclear extract (Accurate, Westbury, NY) was pre-cleared O/N by 

rocking with 10 µg of GST protein and 25 µl of pre-equilibrated glutathione-

sepharose beads 50% slurry. This solution was spun down and the supernatant 

used for the GST pull down assay. Ten μg of GST or GST fusion protein in 

binding buffer [20 mM Hepes, 150 mM KCl, 4 mM MgCl2,1 mM EDTA, 0.02% 

Nonidet P-40 (NP-40), 10% glycerol, 0.035% 2-mercaptoethanol, mini protease 

inhibitor cocktail tablet (Roche: 1 tablet in 10 ml of solution)] was rocked with 

glutathione-sepharose beads for 1 h at 4°C. Precleared HeLa nuclear extract 
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(1000 µg) was added to each reaction and rocked for another hour. The beads 

were then washed with 1 ml of washing buffer (20 mM Hepes, 150 mM KCl, 4 

mM MgCl2, and 1 mM EDTA, 0.1% NP-40, 10% glycerol, 0.035% 2-

mercaptoethanol, protease inhibitor cocktail tablet) three times, resuspended in 

30 µl of 2x SDS sample buffer and boiled. Beads were spun down and 

supernatant used to perform Western analysis. The proteins were separated by 

SDS/PAGE. Proteins were transferred to the nitrocellulose membrane, stained 

with Ponceau red, and probed with antibodies to cyclin C (Santa Cruz), Cdk3 

(Invitrogen), Cdk8 (Santa Cruz), cullin 1 (Chemicon) and cullin 5 (Bethyl 

Laboratories) as described under Western Blot Analysis. 

 

Immunoprecipitations 

For immunoprecipitations (IPs), HFKs were transduced with C-Tap 6 E7 

(HA-myc-6 E7), C-Tap 16 E7 (HA-myc-16 E7), or control vector C-Tap (HA-myc-

LXSN) and harvested in IP lysis buffer (0.1% NP-40, 0.25 M NaCl, 50 mM 

HEPES, 5 mM EDTA, 0.2 mM Na3VO4, 8 mM NaF, protease inhibitor cocktail). 

Cell lysate was clarified by spinning for 10 s at full speed in a micro-centrifuge at 

4°C. For IPs using rabbit polyclonal antibodies (cyclin C and cullin 5 antibodies), 

lysates (1000 µg for each IP) were pre-cleared with 20 µl of protein-A beads 

(protein-A beads used in this protocol were equilibrated in IP lysis buffer) and 

1:100 dilution of rabbit IgG for 1h at 4°C. This mixture was then spun at 3000 rpm 

for 1 min and supernatant transferred to a new eppendorf tube. Antibody was 

added at a 1:100 dilution and rocked for 2 h at 4°C. Next, 50 µl of protein-A 
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agarose beads (Millipore) were added and rocked O/N. Lysate containing 

antibody bound to agarose beads was spun at 3000 rpm for 1 min and the 

supernatant transferred to a new eppendorf tube. This supernatant was saved as 

input to insure that equal quantity of protein was used in each IP. Beads were 

then washed three times, for 1 min, with cold IP lysis buffer. Thirty µl of 2x SDS 

sample buffer was used to resuspend the beads, the beads boiled for 5 mins, 

spun down for 10 s at 12,000 rpm and the supernatant ran on a 10% gel. For IPs 

using mouse monoclonal antibody (HA antibody), no pre-clear step was 

performed. Lysates were incubated with 50 µl of protein-G agarose beads 

(Roche) instead of protein-A agarose beads. 
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RESULTS 

Chapter 1 

The Effect of HPV 6 on Expression of p130 (a pRb family member) In Vivo 

The Roman laboratory has published data showing that HPV 6 E7 is 

capable of destabilizing p130 (Zhang et al., 2006). To further validate these 

results, the expression of p130 in HPV 6 infected condyloma acuminata was 

investigated. HPV 6 positive biopsies and control foreskin tissues were obtained 

from Dr. Darron Brown’s laboratory. These biopsies were typed by polymerase 

chain reaction in the Brown laboratory and determined to contain only HPV type 

6. Control foreskin tissue was not infected with HPV.  

Seven samples were processed, 3 of the biopsies of condyloma 

acuminata were obtained from male patients and 4 from female patients. Tissues 

had to have their epithelium intact in order to be processed. In situ hybridization 

was performed as additional verification of the presence of HPV 6 DNA in the 

nuclei of the cells of the patient biopsies as well as to differentiate between HPV 

positive and HPV negative cells, as it was a possibility that the biopsies 

contained normal tissue as well (Figure 4). A dense nuclear signal was detected 

in the PCR typed HPV 6 positive condyloma acuminata after hybridization with 

HPV 6 probe. Cells were HPV 6 positive. No staining was detected in the control 

foreskin tissue.  

Immunohistochemical analysis was performed to detect expression of 

p130 in the uninfected foreskin (Figure 5) and HPV 6 infected condyloma  
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Figure 4. DNA in situ analysis of foreskin tissue and HPV 6 positive biopsy. 

DNA in situ analysis was performed on uninfected foreskin tissue, using biotin- 

labeled HPV 6 DNA probe (A and B). As a negative control no probe was used 

(C and D). DNA in situ analysis was then conducted on a biopsy of a condyloma 
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acuminatum from a female patient (E and F), and without probe as a negative 

control probe (G and H). Arrow in panel F indicates an HPV 6 positive cell. 

Original magnifications: 100x and 400x. 



50 

 

 

A  B  

C  D  

E  F  

G  H  

I  J  



51 

 

Figure 5. Immunohistochemical analysis of control foreskin tissue to 

determine p130 expression. Histology of the control foreskin tissue that is not 

infected with HPV is indicated by hematoxylin and eosin-stained sections (A and 

B). The 100x magnification is shown in the left panel; the boxed region shows 

what is magnified at 400x and shown in the right panels. Immunohistochemical 

analysis was performed to detect p130, a pRb family member (C and D); the 

arrow in panel D indicates the nucleus of a cell that stained positive for p130. 

PCNA staining was used as a positive control (E and F) and detected in the 

nuclei, indicated by the arrow in panel F. Keratin 14, a marker for stratified 

squamous epithelium was also used as a positive control (G and H). The arrow in 

panel H points to the basement membrane. The bottom panels (I and J) are 

without primary antibody as a negative control.  
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acuminata (Figures 6, 7 and 8). Hematoxylin and eosin staining allowed for 

determination of the tissue’s architecture. Antibodies to keratin 14 and 

proliferating cell nuclear antigen (PCNA) were used as positive controls for 

cytoplasmic staining and nuclear staining, respectively. Keratin 14 is specifically 

expressed in keratinocytes and forms keratin intermediate filaments. PCNA is a 

protein that is expressed in the nuclei of cells undergoing DNA synthesis. Keratin 

staining was detected throughout the stratified squamous epithelium in foreskin 

tissue and patient biopsies. PCNA was detected mainly in the nuclei of the basal 

cells and a few suprabasal cells in foreskin tissue. In infected tissue there was 

positive staining in the nuclei of cells in the basal layer and more staining in the 

suprabasal layer than foreskin tissue. This was expected since more cells are in 

S-phase. As a negative control, primary antibodies were omitted and no staining 

was detected in either patient biopsies or foreskin tissue. p130 was detected in 

the nuclei of basal and suprabasal cells in foreskin tissue. In contrast to foreskin 

tissue, there was complete absence of p130 staining in the patient biopsies 

assayed. This supports the retroviral data published by Zhang et al., that HPV 6 

E7 destabilizes p130 (Zhang et al., 2006).  

 



53 

 

 

A B 

C D 

E F 

G H 

I J 



54 

 

Figure 6. Immunohistochemistry to detect p130 expression levels in HPV 6 

positive biopsy. Immunohistochemistry was performed on patient biopsy #1505 

(a condyloma acuminatum from a female patient). Histology is indicated by 

hematoxylin and eosin-stained sections (A and B). The 100x magnification is 

shown in the left panels and the 400x magnification in the right panels. 

Immunohistochemical analysis was performed to detect p130, a pRb family 

member (C and D). The arrow in panel D points to a nucleus that is negative for 

p130 staining. PCNA and keratin 14 were used as positive controls as in Figure 5 

(E, F, G and H). The bottom panels (I and J) are without primary antibody as a 

negative control.  
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Figure 7. Immunohistochemical analysis of HPV 6 positive biopsy # 1184 to 

detect p130 expression. Immunohistochemistry was performed on patient 

biopsy #1184 (a condyloma acuminatum from a male patient). Histology is 

indicated by hematoxylin and eosin-stained sections (A and B). The 100x 

magnification is shown in the left panels and the 400x magnification in the right 

panels. No staining of p130 was detected (C and D). The arrow in panel D points 

to a nucleus with an absence of p130 staining. Keratin 14 was used as positive 

control as in Figure 6 (E and F).  
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Figure 8. Immunohistochemical analysis of HPV 6 positive biopsy # 

1390. Immunohistochemistry was performed on patient biopsy #1390 (a 

condyloma acuminatum from a female patient).Hematoxylin and eosin-

staining is shown in the top panels sections (A and B), the arrow points to the 
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basement membrane. This HPV 6 positive biopsy was also negative for p130 

staining (C and D). The arrow in panel D points to a nucleus with an absence 

of p130 staining. PCNA was used as a positive control (E and F), the arrow 

points to a nucleus that stained positive for PCNA.  
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Chapter 2 

p130 phosphorylated forms 1 and 2 are present in human foreskin 

keratinocytes (HFKs). It has been reported that p130 has over 22 

serine/threonine phosphorylation sites, 3 of which are present in pRb and 10 in 

p107 (Hansen et al., 2001). p130 is phosphorylated by Cdk 4/6 at serine 672 and 

phosphorylation at this site targets p130 for degradation (Figure 9). The migration 

of p130 is affected by its phosphorylation: there are 3 migratory forms of p130, 

form 1, 2 and 3, with the assumption that form 3 is present when p130 is fully 

phosphorylated (Tedesco et al., 2002). Therefore, we were interested in 

investigating the phosphorylation status of p130 in HFKs retrovirally transduced 

with LXSN, or retrovirus encoding HPV 6E7 [L(6E7)SN] or HPV 16 E7 

[L(16E7)SN]. HFKs were grown in C-K-SFM in undifferentiated conditions or 

induced to differentiated with 2 mM CaCl2 for 48 h. Proteins were harvested with 

EBC buffer and 100 µg of cell lysate treated with 100 U of λ-phosphatase (a 

serine/threonine phosphatase). Treatment with λ-phosphatase decreased p130 

phosphorylation, resulting in unphosphorylated p130 and p130 form 1 that 

migrated more quickly than cell lysates that were left untreated. The results of 

cells grown under undifferentiated (Figure 10) and differentiated conditions (data 

not shown) were similar. A sample prepared from cycling T98G human 

glioblastoma cells (obtained from Dr. Jim DeCaprio, Harvard University) was 

used as a control lysate. T98G cells are known to express p130 form 
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Figure 9. Schematic figure of p130 regulation in normal cycling cells. p130 

is phosphorylated by cycD/Cdk 4/6 complex at serine 672 and targeted for 

degradation by an SCF-Skp2 complex. Protein phosphatase 2A (PP2A) has 

been reported to dephosphorylate p130 at the serine 672 resulting in its 

stabilization (Garriga et al., 2004; Tedesco et al., 2002). 
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Figure 10. Phosphorylated forms of p130 in HFKs. HFKs were grown in C-K-

SFM and infected with LXSN, L(6E7)SN or L(16E7)SN and selected for 3 days 

with G418. HFKs were harvested at 80% confluence in EBC buffer. One hundred 

µg of cell lysate (HFKs and T98G glioblastoma cells) were left untreated or 

treated with 100 U of λ-phosphatase for 30 min. Antibody to p130 was used and 

Western analysis performed to detect phosphorylated and unphosphorylated 

form of p130. *, unknown protein cross-reacting with anti-p130.  
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3 (Hansen et al., 2001). Only p130 phosphorylated forms 1 and 2 were detected 

in untreated retrovirally transduced HFKs (Figure 10). 

Expression of p130 in HPV E7 expressing cells treated with 

cylin/Cdk inhibitors. p130 is unique in that it is the only pRb family member that 

is targeted for degradation by both HPV 6 E7 and HPV 16 E7 (Zhang et al., 

2006). In uninfected cells, p130 phosphorylation by Cdk4/6 results in p130 being 

targeted for degradation by an SCFSkp2 complex in a cell-cycle dependant 

manner (Tedesco et al., 2002). To ascertain whether E7-mediated degradation of 

p130 is dependent on cyclin/Cdk activity, HFKs transduced with LXSN, L(6E7)SN 

or L(16E7)SN were treated with 12.5 µM 3-ATA (an inhibitor of Cdk4/6) (Kubo et 

al., 1999), 12.5 µM roscovitine (an inhibitor of Cdk1, 2 and 5) (Meijer et al., 1997) 

(Figure 11A) or 50 µM flavopiridol (an inhibitor of Cdk 1, 2, 4, 6, 7 and 9) (Chao 

et al., 2000; Dai and Grant, 2003; Sedlacek, 2001) (Figure 11B). Whole cell 

extracts (WCEs) were harvested using EBC and Western analysis performed 

with 40 µg of protein. Analysis of the phosphorylation status of pRb validated that 

the inhibitors were functional. Hypophosphorylated and hyperphosphorylated 

forms of pRb were present in cells expressing LXSN and treated with vehicle 

only. However, in the presence of each of the Cdk inhibitors, only the 

hypophosphorylated form of pRb was detected (Figure 11). This result was 

expected as pRb is known to be phosphorylated by cyclin D2-Cdk4, cyclin E-

Cdk2, and cyclin A-Cdk2 (Cobrinik, 2005). The hyperphosphorylated band of was 

lost only upon treatment with flavopiridol (Figure 11B), but not 3-ATA or 

roscovitine (Figure 11A). The steady-state level of p130 in HPV expressing cells 
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in the presence of each Cdk inhibitor was compared to LXSN expressing cells. In 

the presence of Cdk inhibitors, both HPV 6 E7 and HPV 16 E7 retained the ability 

to decrease the steady-state level of p130 (Figure 11).  

p130 is located mainly in the cytoplasm in HFK transduced with HPV 

16 E7. p130 is known to shuttle between the nucleus and cytoplasm (Chestukhin 

et al., 2002). HPV E7 has been shown to alter the localization of various proteins. 

Both HPV 6 and 16 E7 relocalize steroid receptor coactivator 1 (SRC1) to the 

cytoplasm (Baldwin et al., 2006), and HPV 16 E7 reduces the nuclear localization 

of p21Cip1 (Westbrook et al., 2002). Therefore, the effect of LR and HR HPV E7 

on the intracellular localization of p130 was investigated to test the hypothesis 

that E7 could alter p130 localization (Figure 12). Subcellular fractionation was 

performed on HFKs transduced with LXSN (control), HPV 6 E7 or HPV 16 E7. 

Equal-volume fractions of cytoplasmic and nuclear extracts were obtained and 

Western analysis performed using monoclonal antibodies to p130, lamin B 

(marker for nuclear fraction) and tubulin (marker for cytoplasmic fraction). 

Endogenous p130 was detected at similar levels in the cytoplasmic and nuclear 

fraction in cells expressing LXSN and HPV 6 E7. In contrast, HFKs expressing 

HPV 16 E7 had significantly more p130 (three fold) in the cytoplasm (Figure 13).  
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Figure 11. Effect of Cdk inhibitors on p130 expression. (A) HFKs were 

infected as in Figure 10 and grown in C-K-SFM. Cells were then treated with 12.5 

µM 3-ATA, 12.5 µM roscovitine or DMSO (vehicle). Experiment conducted by 

Wei Chen. (B) Retrovirally transduced HFKs were treated with 50 µM flavopiridol 

or DMSO (vehicle) as a negative control. Whole cell extracts (WCEs) were 

harvested using EBC buffer and Western analysis performed using mouse 

A 

B 
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Figure 11 (con’t). monoclonal antibodies to p130, pRb, GAPDH and lamin B. *, 

unknown protein cross-reacting with anti-p130 (A and B). 
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Figure 12. Schematic of the possible effect of E7 on p130 intracellular 

localization. HPV E7 may either be able to retain p130 in the cytoplasm or 

localize p130 from the cytoplasmic to the nucleus and thereby, allow for 

expression of E2F1/2/3-responsive genes which would drive the cell into S-

phase. 
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Figure 13. Determination of p130 localization in nuclear and cytoplasmic 

fractions in undifferentiated cells. (A) HFKs were infected as in Figure 10 

and grown in C-K-SFM. Cells were harvested using EBC buffer for whole cell 

A 

B 
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Figure 13 (con’t). extracts [WCEs (left three lanes)], or cytoplasmic and 

nuclear buffers to harvest cytoplasmic fractions (CF) and nuclear fractions 

(NF). Equal-volume fractions of nuclear and cytoplasmic protein were 

analyzed using monoclonal antibodies to p130. Antibodies to E2F5 were used 

to determine where this protein localized in the presence of control (LXSN), 

6E7 or 16E7 expressing cells. Antibodies to lamin B (nuclear marker) and 

GAPDH (cytoplasmic marker) were used to establish that the fractions were 

enriched. A representative experiment is shown. *, unknown protein cross-

reacting with anti-p130. (B) Quantity one software was used for densitometric 

analysis. The nuclear fractions were then set to 1 and the ratio of cytoplasmic 

to nuclear p130 localization is shown. The average ± standard deviation of 4 

independent experiments is shown, (++), p< 0.01. A student two-tailed T-test 

was performed to acquire statistical significance.  
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E2F5 was localized to the nuclear fraction in all cases. In differentiated 

cells there was more p130 (nearly 5 fold) in the cytoplasm in HPV 16 E7 

expressing HFKs, whereas in LXSN and HPV 6 E7 expressing cells the ratio of 

cytoplasmic to nuclear p130 was similar (Figure 14). This result is similar to the 

results in undifferentiated cells. 

The distribution of p130 in HFKs transduced with LXSN, L(6 E7)SN or 

L(16 E7)SN was also determined by immunofluorescence. Localization of p130 

was mostly nuclear in HFKs transduced with LXSN and HPV 6 E7. p130 staining 

was mostly cytoplasmic in HFKs transduced with HPV 16 E7 (Figure 15). This 

difference in the intracellular localization of p130 in the presence of HPV 16 E7 

compared to that seen in LXSN or HPV 6 E7 expressing cells is consistent with 

subcellular fractionation results.  

To test whether HPV 16 E7 relocalizes p130 to the cytoplasm via Crm1-

dependent nuclear export we took advantage of a specific inhibitor of Crm1, 

leptomycin B (LMB). LMB inhibits nuclear export of the human immunodeficiency 

virus Rev protein (Wolff et al., 1997). We verified that the concentration of LMB 

(10 ng/ml) used in our experiments was sufficient to inhibit Crm1-mediated 

nuclear export in HFKs by transfecting the cells with a Rev-GFP plasmid using 

FuGENE 6 transfection reagent. We also transfected Rev-GFP into COS-7 cells, 

since the concentration of LMB used was shown to be adequate at inhibiting 
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Figure 14. Determination of p130 localization in nuclear and cytoplasmic 

fractions in differentiated cells. (A) HFKs were infected as in Figure 10, 

differentiation was induced by the addition of 2 mM CaCl2 for 48 h. 

Cytoplasmic fractions (CF) and nuclear fractions (NF) were obtained as in 

Figure 13. Equal-volume fractions of nuclear and cytoplasmic protein were 

analyzed using monoclonal antibodies to p130. *, unknown protein cross 

A 

B 
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Figure 14 (con’t). reacting with anti-p130. Antibodies to lamin B (nuclear 

marker) and GAPDH (cytoplasmic marker) were used to establish that the 

fractions were enriched (data not shown). A representative experiment of 2 

performed is shown. (B) Quantity one software was used for densitometric 

analysis. The nuclear fractions were then set to 1 and the ratio of cytoplasmic 

to nuclear p130 localization is shown.  
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Figure 15. Determination of p130 localization by immunofluorescence. 

Immunofluorescence studies were performed on HFKs infected as in Figure 10 

and grown on coverslips in C-K-SFM. Cells were incubated with rabbit polyclonal 

antibody to p130 and visualized by immunofluorescence using FITC-conjugated 

secondary antibody. A representative experiment is shown.  Magnification: 100x. 
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nuclear export in this cell type. Treatment of COS-7 cells (Figure 16) and HFKs 

(Figure 17) with LMB resulted in the accumulation of Rev-GFP fusion protein in 

the nucleoli of cells, as detected by immunofluorescence. Western analysis of 

equal quantity of protein from cytoplasmic and nuclear subcellular fractions 

obtained from COS-7 cells transfected with Rev-GFP, also confirmed that the 

concentration of LMB was sufficient (Figure 18). However, LMB treatment did not 

affect cytoplasmic localization of p130 in HPV 16 E7 expressing cells as shown 

by subcellular fractionation (Figure 19). There was a 3 fold increase of p130 in 

the cytoplasm compared to nuclear p130 in HFKs expressing 16 E7 whether 

treated with LMB or left untreated. In contrast, the ratio of p130 in the cytoplasm 

and nucleus of p130 in the LXSN control was similar.  

To further address the effect of E7 on p130 localization, three putative 

nuclear export sequences were identified in p130 using an NES predictor 

(NESpredictor www.cbs.dtu.dk/) and deletion mutants of HA-p130 wild type (WT) 

HA-p130 plasmid obtained from Dr. Jim DeCaprio) were generated using a 

Quikchange mutagenesis kit (Figure 20). Individual deletion mutants and all 

combinations of these deletions were successfully generated. HA-p130 NES ∆1, 

HA-p130 NES ∆2 and HA-p130 NES ∆3 were characterized by 

immunofluorescence. WT HA-tagged p130 and HA-p130-Δ21-5A-m-NLS-1&2 

were used as controls. WT HA-tagged p130 was shown to be capable to shuttle 

between the cytoplasm and nucleus (Chestukhin et al., 2002) and HA-p130-Δ21- 

 

http://www.cbs.dtu.dk/�
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Figure 16. Effect of LMB on COS-7 cells transfected with a plasmid 

encoding Rev-GFP. Transfected cells were grown on coverslips and treated or 

not with LMB (10 ng/ml) for 4 h. Cells were fixed with 4% formaldehyde, 

counterstained with 5 μg/ml of 4'-6-Diamidino-2-phenylindole (DAPI) for 7 min at 

RT to label the nuclei, washed and mounted. Autofluorescence of Rev-GFP was 

detected by fluorescence microscopy (above). Magnification: 100x. 
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Figure 17. Effect of LMB on the cytoplasmic localization of HFKs 

transfected with a plasmid encoding Rev-GFP. Cells were treated and imaged 

as in Figure 16. Magnification: 100x. 
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Figure 18. Western Blot Analysis showing effect of LMB on Rev-GFP. WCEs 

were harvested with EBC buffer from COS-7 cells transfected with Rev-GFP. 

Equal quantity of cell lysate was used and Western analysis performed using 

antibodies to GFP, tubulin and lamin B. 
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Figure 19. Effect of LMB on the cytoplasmic localization of p130 in HPV 

16 E7 expressing cells. HFKs were infected as in Figure 10 and grown in C-

K-SFM to 80% confluence. Cells were then treated with LMB (10 ng/ml) for 4 

h and harvested for cytoplasmic and nuclear extracts. Equal-volume fractions 

of nuclear and cytoplasmic extracts were analyzed using antibodies to p130. 

Antibodies against lamin B (nuclear marker) and tubulin (cytoplasmic marker) 

were used as in Figure 13. Densitometric analysis was performed using 

Quantity one software and the result normalized as in Figure 13. The 

averages and standard deviation from 4 experiments are shown, (++), p<0.01. 

Student’s two-tailed T-test was performed to acquire statistical significance.  
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Figure 20. Schematic figure of HA tagged-p130 ∆NES 1, 2 and 3 constructs. 

Deletion mutations were made in putative nuclear export sequences. Deletions 

are denoted by ∆ and the positions of the amino acids deleted are indicated. 

Figure adapted from Canhoto et al., 2000.  
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5A-m-NLS-1&2, generated by DeCaprio’s laboratory, was shown to an 

exclusively cytoplasmic mutant (Chestukhin et al., 2002). Fluorescence 

microscopy was performed using these two plasmids; the cytoplasmic mutant 

was specifically localized to the cytoplasm as previously reported. It was 

expected that WT HA-p130 would localize to the cytoplasm and nucleus, as did 

endogenous p130 (Figure 15, as in LXSN expressing cells). Surprisingly, HA-

p130 was detected only in the nuclei of transfected HFKs (Figure 21). Following 

transfection, the new HA-p130 NES mutants 1, 2 and 3 were also found to be 

exclusively nuclear but it could not be verified whether these mutations were 

successful at preventing cytoplasmic localization since the WT plasmid did not 

behave as expected (Figure 22). We also obtained CMV HA-p130 from 

DeCaprio’s laboratory and retrovirally transduced HFKs with this construct and 

selected with puromycin. Again, the tagged protein was only detected in the 

nucleus by flurorescence microscopy (data not shown). 

The half-life of p130 in the nucleus is shorter in HFKs transduced 

with HPV 6 E7. In WCEs, the half-life of p130 in the presence of HPV 6 E7 and 

HPV 16 E7 is decreased relative to control cells (Zhang et al., 2006). The 

reduced half-life of p130 in the presence of HPV E7 is restored following 

treatment with proteasomal inhibitors, implying that E7 targets p130 for 

degradation through the proteasome pathway (Zhang et al., 2006). To determine 

the half-life of p130 in the cytoplasmic and nuclear fractions, HPV E7 expressing 

cells were treated with 0.25 mM cycloheximide (CHX), a protein synthesis  
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Figure 21. Localization of HA-p130 and HA-p130-Δ21-5A-m-NLS-1&2. HFKs 

were transfected with HA-p130 and HA-p130 mNLS 1&2 ∆21 cytoplasmic mutant 

(obtained from Dr. Jim DeCaprio). Cells were fixed with 4% formaldehyde and 

HA-FITC antibody was used to detect the localization of the plasmids. Cells were 

counterstained with 5 μg/ml of DAPI for 7 min at RT to label the nuclei, washed 

and mounted. Fluorescence microscopy was used to image cells. Arrows 

indicate cells that are expressing the plasmids. Magnification: 40x. 
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Figure 22. Detection of localization of HA-p130 ∆NES 1, 2 and 3 mutants. 

HFKs were transfected with the HA-p130 NES mutants using FuGENE 6 and 

cells were processed and visualized as in Figure 21. Arrows show cells that have 

been successfully transfected and are expressing HA-p130 ∆NES 1, 2 or 3. 

Magnification: 40x.  
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inhibitor. At 0, 2, 4, and 6 h post-treatment, p130 levels in cytoplasmic and 

nuclear fractions were determined by Western blot analysis. The half-life of p130 

in the cytoplasmic fraction of HPV 6 E7 and 16 E7 expressing cells was ~2 h, 

significantly shorter than the > 6h half life in control cells (Figure 23). In a minority 

of cases, the half-life of p130 in the cytoplasm was shorter in HPV 16 E7 cells 

than HPV 6 E7 cells. The half-life of nuclear p130 was between 3 and 4 h in HPV 

6 E7 expressing cell, less than half as long as in control and HPV 16 E7 

expressing cells (Figure 24). To establish whether the decrease in p130 half-life 

by HPV E7 in the nuclear and cytoplasmic fractions was due to degradation 

through the proteasome pathway, HFKs were infected as above and treated with 

0.25 mM CHX plus 50 μM MG132, a proteasome pathway inhibitor. After 

treatment with MG132 the ability of either E7 to shorten the half-life of p130 in the 

cytoplasmic and nuclear fraction was decreased (Figures 25 and 26). This 

suggests that although both HPV 6 E7 and HPV 16 E7 efficiently target p130 for 

proteasomal degradation in the cytoplasm, HPV 6 E7 is also very efficient at 

targeting p130 for proteasomal degradation in the nucleus. 

 

 

 



82 

 

 

 

Figure 23. Half-life of p130 in the cytoplasm in the presence of HPV 6 E7 

and HPV 16 E7. HFKs were infected as in Figure 10 and treated with 0.25 mM 

cycloheximide (CHX) for the indicated times. Immunoblots of cytoplasmic 

fractions (CF) (top) and densitometry (bottom) from a representative experiment 

of seven experiments are shown. Cytoplasmic fractions (CF) were corrected for 
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Figure 23 (con’t). tubulin and are relative to untreated LXSN. *, unknown protein 

cross-reacting with anti-p130. 
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Figure 24. Half-life of p130 in the nucleus in the presence of HPV 6 E7. 

HFKs were infected as in Figure 10 and treated with CHX for 2h, 4h or 6h or left 

untreated. Immunoblots of nuclear fractions (CF) (top) and densitometry (bottom) 

from a representative experiment are shown. Seven experiments were 

performed. Nuclear fractions were corrected for nucleolin and are relative to  
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Figure 24 (con’t). untreated LXSN. *, unknown protein cross-reacting with anti-

p130. 
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Figure 25. Effect of MG132 on cytoplasmic p130. HFKs were infected as in 

Figure 10 and treated with 0.25 mM CHX plus 50 µM MG132 for the indicated 

times. Immunoblots of cytoplasmic fractions (CF) (top) and densitometry 

(bottom) from a representative experiment (of 7) are shown.  
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Figure 25 (con’t).*, unknown protein cross-reacting with anti-p130. Cytoplasmic 

fractions were corrected for tubulin and are relative to untreated LXSN.  
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Figure 26. Effect of MG132 on nuclear p130. Experiments were conducted as 

in Figure 25. Immunoblots of nuclear fractions (NF) (top) and densitometry 

(bottom) from a representative experiment of 7 are shown. *, unknown protein 

cross-reacting with anti-p130. 
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Chapter 3 

HPV E7 and cullin 5 

Adenovirus E1A E4orf6 and E1B55K have been reported to reduce the 

half-life of p53, a tumor suppressor protein, and target it for degradation via a 

proteasomal pathway. E4orf6 and E1B55K bind to cullin 5, elongin B, elongin C 

and Rbx1, a complex with E3 ubiquitin ligase activity (Querido et al., 2001). The 

ability of E4orf6 and E1B55K to recruit this complex is also responsible for 

degradation of DNA ligase IV and the Mre11/Rad50/Nbs1 DNA repair complex 

(Blanchette and Branton, 2009). To determine whether E7 binds to cullin 5, 

glutathione sepharose transferase (GST) pull-down assays were performed. GST 

16 E7 migrated more slowly than GST 6 E7 based on a negative charge due to 

aspartic acid at residue 4 (Armstrong and Roman, 1993). Binding of GST 6 E7 

and 16 E7 to cullin 5 was detected by GST pull-down experiments; GST alone 

did not bind to cullin 5 (Figure 27).  

HPV 6 E7 mutants HPV 6 E7 H2AR4AH5A (mutant in conserved region 1) 

and HPV 6 E7 L67R (mutant in C-terminal half) are loss of function mutants for 

p130 degradation although they still bind to p130. HPV 6 E7 C25A (mutant in 

conserved region 2) neither binds nor degrades p130 (Zhang et al., 2006) (Figure 

28). Therefore, to determine whether binding of E7 to cullin 5 correlates with the 

ability of E7 to target p130 for degradation, E7 mutants were used. Using 

antibody to cullin 5 from Santa Cruz, both HPV 6 E7 H2AR4AH5A and C25A 

bound cullin 5 less well than wild type (WT) 6 E7 (Figure 29). Consistent with 

these findings, antibody to cullin 5 from Bethyl also showed that HPV  
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Figure 27. Characterization of HPV 6 and 16 E7 with respect to cullin 5 

binding. GST, GST 6 E7, GST 16 E7 were incubated with 1 mg each of pre-

cleared HeLa nuclear extract. Bound proteins were detected, after separation by 

SDS/PAGE and transfer to nitrocellulose membrane, by immunoblotting with 

antibodies to cullin 5 (Bethyl Laboratories). Ponceau red staining of the 

membrane before probing indicated that similar levels of GST or GST fusion 

proteins were present. The 1.5% input showed that the amounts of lysate used to 
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Figure 27 (con’t). conduct each pull down were equal. Immunoprecipitations of 

cullin 5 were performed using 1 mg of pre-cleared HeLa nuclear extract per 

reaction and 1:100 dilution of antibody to cullin 5 from Bethyl Laboratories or 

Santa Cruz, first and last lanes respectively. 
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Figure 28. HPV 6 E7 mutants. HPV 6 E7 mutants H2AR4AH5A, C25A and 

L67R were generated in the Roman laboratory by site directed mutagenesis and 

characterized with respect to p130 binding and degradation (Zhang et al., 2006).  
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Figure 29. Characterization of HPV E7 with respect to cullin 5 binding using 

Santa Cruz antibody. GST, GST 6 E7, GST 16 E7, GST 6 E7 H2AR4AH5A and 

GST 6 E7 C25A were incubated with 1 mg each of pre-cleared HeLa nuclear 

extract. Bound proteins were detected after separation by SDS/PAGE and 

transfer to nitrocellulose membrane. The membrane was probed with antibodies 

to cullin 5 (Santa Cruz). Ponceau red staining of the membrane before probing 

indicated that similar levels of GST or GST fusion proteins were present in the 

precipitate. The input shows that the amounts of lysate used to conduct each pull 

down were relatively the same.  
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6 E7 C25A bound less efficiently than HPV 6 E7. However, the result with HPV 6 

E7 H2AR4AH5A was inconsistent with the results obtained with the Santa Cruz 

antibody. In this GST pulldown assay the quantity of GST 6 E7 H2AR4AH5A was 

less than GST 6 E7, therefore GST 6 E7 H2AR4AH5A may bind to cullin 5 as 

well as GST 6 E7. Additional experiments will be needed to determine the 

efficiency of binding of GST 6E7 H2AR4AH5A to cullin 5. 

Next, antibody to cullin 5 from Bethyl Laboratories was used to further 

confirm our results and to take advantage of a cullin 5 blocking peptide (Bethyl 

Laboratories). To confirm that the band identified as cullin 5 was indeed cullin 5 

the blot was stripped and five times the amount of cullin 5 blocking peptide 

incubated with antibody to cullin 5 for 1 h and then incubated O/N with the blot. 

This confirmed that the band that was detected with antibody to cullin 5 was truly 

cullin 5 since no band is seen in the presence of blocking peptide (Figure 30). 

The implication of these results will be further addressed in the Discussion. 

 

HPV E7 and cyclin C 

Cyclin C was identified by the Roman laboratory as an HPV E7-associated 

cellular protein, by mass spectrometric analysis of proteins isolated by tandem-

affinity purification, using epitope tagged HPV E7. Cyclin C/Cdk3 phosphorylates 

pRb at S807/811 during the G0/G1 transition; this is required for cells to 

effectively exit G0 (Ren and Rollins, 2004). Interested in cyclin C as a candidate 

for p130 degradation, the hypothesis was formed that cyclin C/Cdk3 may be 

capable of phosphorylating p130 and contributing to its destabilization.  
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Figure 30. Characterization of HPV 6 E7 mutants with respect to cullin 5 

binding using Bethly Laboratories antibody. (A) The ability of HPV E7 to bind 

cullin 5 using antibody to cullin 5 (Bethyl Laboratories) was investigated. GST, 

GST 6 E7, GST 16 E7, GST 6 E7 H2AR4AH5A and GST 6 E7 C25A were 

incubated with 1 mg each of pre-cleared HeLa nuclear extract as in Figure 25. 
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Figure 30 (con’t). Immunprecipitation of cullin 5 was performed using 1 mg of 

pre-cleared HeLa nuclear extract and 1:100 dilution of antibody to cullin 5 (Bethyl 

Laboratories). (B) Blot was stripped and re-probed with antibody to cullin 5 

incubated with cullin 5 blocking peptide (Bethyl Laboratories). The band that was 

detected as cullin 5 was no longer detected after incubation with blocking 

peptide. (C) Ponceau red staining of the membrane was performed as in Figure 

27.  
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GST pull down assays were conducted to confirm the interaction detected 

by tandem affinity purification. GST 6 E7 and GST 16 E7 were shown to bind to 

cyclin C; there was no binding to the GST negative control (Figure 31). HPV 6 E7 

mutants, H2AR4AH5A, C25A and L67R, were also analyzed with respect to 

cyclin C binding. GST 6 E7 H2AR4AH5A did not bind cyclin C as efficiently as 

GST 6 E7, whereas no decrease in binding of cyclin C to mutants GST 6 E7 

C25A and 6 E7 L67R was observed (Figure 32). Immunoprecipitation 

experiments using antibody to HA to immunoprecipitate HA-tagged E7 from 

HFKs did not show binding to cyclin C. This may be due to the low expression of 

cyclin C in this cell type. We did not detect any binding of GST E7 to Cdk3 

(Figure 33) or Cdk8 (data not shown) by GST pull down assays.  

Effect of p600 knockdown on p130 stability 

p600 was identified as a cellular protein that binds to both HPV 6 E7 and 

HPV 16 E7 (Huh et al., 2005). p600 has been speculated to be an E3 ubiquitin 

ligase (Huh et al., 2005), and has been reported to bind the N-terminus of HPV 

16 E7. Therefore, p600 is a candidate regulatory protein needed for efficient 

p130 degradation by both HPV 16 E7 and HPV 6 E7. p600i (p600 knockdown) 

shRNA and p600r (reverse) shRNA retrovirus was obtained from Dr. Karl 

Munger’s laboratory. HFKs were transduced with LXSN, L(6E7)SN or L(16E7)SN 

and selected with G418. They were then transduced with p600i or p600r (as a 

control) and selected with puromycin. At 80% confluence HFKs were harvested  
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Figure 31. Validation of HPV E7 binding to cyclin C. GST pulldown 

experiments were performed as in Figure 25 using GST, GST 6 E7 and GST 16 

E7. Cyclin C was detected using antibody from BD Biosciences.  

 

 

 

 

 

 

25 

40 

50 



99 

 

            

 

 

Figure 32. Characterization of the ability HPV 6 E7 mutants to bind to cyclin 

C. GST pulldown experiments were performed as in Figure 25 using GST, GST 6 

E7 and GST 16 E7, GST 6 E7 H2AR4AH5A, C25A and L67R. Binding to cyclin C 

was detected using antibody from Santa Cruz.  
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Figure 33. HPV E7 and Cdk3. GST pull-down assays were performed as 

in Figure 27.  
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and Western analysis performed, antibodies to p600, p130 and nucleolin were 

used.  

Expression of p600 was decreased from 40-70% in cells expressing p600i 

when compared to HFKs expressing p600r (Figure 34). Decreased expression of 

p600 in HFKs transduced with HPV E7 resulted in some stabilization of p130 

(Figure 35). 
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Figure 34. Knock-down of p600 using p600 shRNA retrovirus. (A) HFKs were 

transduced with LXSN, L(6E7)SN or (L16E7)SN), selected with G418 and 

transduced with p600i (p600 knock-down) or p600r (p600-shRNA retrovirus and 

selected with puromycin. Cells were harvested and western analysis performed. 

Antibodies to p600 and nucleolin (as a loading control) were used. (B) Ratio of 

p600i:p600 reverse after densitometry and normalization to nucleolin. *, 

unknown protein cross-reacting with anti-p130. 

 

 

 

 

 

 

 

 

 

 

 



104 

 

 

Figure 35. Effect of p600 knock-down on p130 stability. (A) HFKS were 

transduced as in Figure 33. Western analysis was performed using antibodies to 

p130 and nucleolin. (B) Quantity one software was used for densitometric 

A 

B 
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analysis. Whole cell extracts (WCEs) were normalized to nucleolin and LXSN-

600r and LXSN-p600i set to 1.  
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DISCUSSION 

Overview 

HPV 16 E7 targets pRb family members for degradation. The ability of 

HPV 16 E7 to target pRb for degradation in particular, is necessary for malignant 

transformation (zur Hausen, 2000). In contrast to HPV 16 E7, HPV 6 E7 is not 

transforming and does not affect the stability of pRb or p107 (Demers et al., 

1994; Zhang et al., 2006); however it does target p130 for degradation (Zhang et 

al., 2006). pRb family members play a key role in regulating progression through 

the cell cycle. p130 is specifically up-regulated in G0 and is responsible for 

keeping cells in a differentiated state (Cobrinik, 2005). The fact that both HR and 

LR E7 target p130 for degradation may indicate that p130 is important for the 

HPV life cycle. Targeting p130 for degradation may be conducive to creating an 

“S-phase-like” environment (Banerjee et al., 2006; Collins et al., 2005; Munger et 

al., 2001). Zhang et al. 2006, proposed that the mechanism of degradation of 

p130 by HPV 16 E7 and HPV 6 E7 might be similar based on mutational analysis 

(Zhang et al., 2006). However, the results presented in this thesis suggest that 

HR and LR E7 may achieve this by different mechanisms.  

This thesis focuses mainly on understanding how p130 is regulated by 

HPV E7. Initial studies were conducted to investigate the expression of p130 in 

patient biopsies. Experiments were also conducted to determine the effect of 

HPV E7 on p130 localization and whether there was preferential degradation of 

p130 in the nucleus or cytoplasm in the presence of HPV 6 E7 or HPV 16 E7. 
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Binding partners of HPV E7 were also identified and the possible effect of p600 

(an established binding partner of HPV E7) on p130 stability was investigated. 

These findings will be discussed in detail in this chapter.  

 

p130 is not detected by immunohistochemistry in HPV 6 positive biopsies  

Patient biopsies infected with HPV 6 were analyzed for p130 expression to 

determine whether there would be a decrease in p130 expression, in the 

presence of HPV 6 genome. The results showed an absence of staining of p130. 

However, Doorbar reported that the expression of E7 in CIN1/CIN2 does not 

completely extend to the most differentiated epithelial layer (Doorbar, 2006). This 

may imply that p130 expression should be detected in the upper suprabasal 

layers. Nonetheless, in our experiments no p130 expression was detected in any 

of the cells in HPV 6 infected patient biopsies. The integrity of the nuclei of the 

cells was determined by using antibodies to proliferating cell nuclear antigen 

(PCNA). In agreement with the studies in this thesis, Wang et al. 2009, reported 

that organotypic raft cultures of HFKs infected with HPV 18 lacked p130 

expression in basal and suprabasal cells (Wang et al., 2009).  

 

Preliminary data shows that HPV E7 upregulates the p130-specific target, 

phospholipid scramblase 1 

In an effort to further understand the implications of HPV E7-mediated 

degradation of p130, the effect of HPV E7 on p130 specific targets was 

investigated. Chip-on-chip experiments have shown phospholipids scramblase 1 
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(PLSCR1) and Treacher Collin syndrome factor 1 (TCOF1) to be bound 

exclusively by p130 (Balciunaite et al., 2005). PLSCR1 is involved in the 

processes of cell differentiation, apoptosis and proliferation. Of interest, cells that 

have a decreased expression of PLSCR1 are proliferate at a slower rate than 

wild type cells. TCOF1 is involved in ribosomal RNA gene transcription by 

interacting with an upstream binding factor. These genes are negatively 

regulated by p130 (Balciunaite et al., 2005). Loss of p130 should result in 

increased expression of such genes. RT-PCR using primers designed to amplify 

PLSCR1 performed during this thesis work showed that, in the presence of HPV 

6 or 16 E7, there was an increase in the RNA expression of PLSCR1. This result 

was consistent with degradation of p130. One possibility is that the increasing 

PLSCR expression may result in more cells undergoing proliferation, allowing for 

increased replication of HPV. Results were inconclusive for TCOF1.  

The subcellular location of E2F4 and E2F5 in the presence of HPV E7 

was investigated by fractionation experiments. E2F4 and E2F5 associate with 

pRb, p130 and p107 and play a role in negatively regulating S-phase responsive 

genes (Deschenes et al., 2004). We hypothesized that in the presence of 16 E7, 

E2F4/5 may have an altered localization. However, E2F4/5 appeared to be 

predominantly nuclear in 16 E7 expressing cells, 6 E7 expressing cells and 

control cells. This may be due to the fact that E2F4/5 can enter the nucleus with 

pRb or p107 and, therefore, although p130 localization is altered, E2F4/5 

localization is not. 
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HPV E7-mediated degradation of p130 is independent of cyclin/Cdk 

activity 

Experiments were designed to test whether p130 degradation by HPV 6 

E7 and HPV 16 E7 was dependent on cyclin/Cdk activity, since HPV E7 

enhances entry of cells into the cell-cycle. An increase in the quantity of 

hyperphosphorylated p130 due to cell cycle entry might result in enhanced 

degradation of p130 (Tedesco et al., 2002). Treatment with three Cdk inhibitors, 

flavopiridol, 3-ATA and roscovitine, showed that both HR and LR HPV E7 

retained their ability to target p130 for degradation (Figure 9). Therefore, 

destabilization of p130 by either HPV E7 may not simply be a result of entry into 

the cell cycle induced by E7. Rather, our results demonstrate that degradation of 

p130 by HPV E7 is independent of cyclin/Cdk activity. Previous studies have 

shown that, in human fibroblasts, inhibition of Cdk4/6 results in the loss of the 

hyperphosphorylated form of p130 (Tedesco et al., 2002). However, in E7 

expressing HFKs treated with 3-ATA, a Cdk4/6 inhibitor, there was no difference 

in p130 phosphorylation status as compared to E7 expressing cells treated with 

DMSO control. Of the Cdks known to responsible for phosphorylating p130, 

flavopiridol and 3-ATA are both active against Cdk4/6, and flavopiridol and 

roscovitine are active against Cdk2. Treatment with flavopiridol resulted in the 

abolishment of the hyperphosphorylated form of p130. This suggests that in 

HFKs, hyperphosphorylated p130 may be derived from phosphorylation by both 

Cdk2 and Cdk4/6. 

 



110 

 

Detection of HPV E7 localization 

HPV 16 E7 has been detected in the cytoplasm and in the nucleus. In 

most experiments where E7 has been reported to be in the nucleus, E7 was 

visualized by immunofluorescence (Smith-McCune et al.,1999, Guccione et al., 

2002). Most times when E7 has been found in the cytoplasm, E7 has been 

detected by western analysis of subcellular fractions (Nguyen et al., 2007; 

Smotkin and Wettstein, 1987). The ability of HPV E7 to localize to both the 

cytoplasm and nucleus is supported by the fact that HPV E7 has both 

cytoplasmic and nuclear targets.  

It is possible that HPV E7 appears mainly nuclear by immunofluorescence 

because the cytoplasmic signal is dispersed and therefore harder to detect, 

whereas the nuclear signal might be so dense and prominent that is obscures the 

cytoplasmic signal. Additionally, it has been proposed that cell fractionation 

disrupts the association of E7 with the nucleus if the association is weak and that 

is why HPV E7 appears to be more cytoplasmic by fractionation experiments 

(Smith-McCune et al., 1999). A recent study identified two nuclear localization 

signals and one nuclear export signal in HPV 16 E7 (Knapp et al., 2009), 

providing further evidence that HPV 16 E7 shuttles between the cytoplasm and 

nucleus. Data generated from this thesis support that HPV 16 E7 localizes to 

both the nucleus and cytoplasm, but HPV 16 E7 may preferentially localize to the 

cytoplasm, since p130 is mainly cytoplasmic in the presence of HPV 16 E7.  
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p130 is retained/relocalized to the cytoplasm in the presence of HPV 16 E7 

p130 localized to the cytoplasm in the presence of HPV 16 E7. In contrast, 

the localization of p130 in the presence of HPV 6 E7 was similar to control cells. 

Identical results were also obtained in experiments where cells were grown under 

differentiated conditions. Analysis of putative NES (NES predictor 

www.cbs.dtu.dk/) suggests that HPV 6 E7 may have an NES in the N-terminus, 

in contrast to the identified NES in HPV 16 E7 which is in the C-terminus (Knapp 

et al., 2009). It is possible that upon binding to p130, a confirmation change 

occurs in HPV 6 E7 resulting in the NES being concealed. Alternatively, binding 

of HPV 16 E7 to p130 may result in a conformational change that causes the 

NLS to be inaccessible. Slight variations in the p130 localization results obtained 

by subcellular fractionation versus immunofluorescence (Figures 13 and 15) may 

be due to differences in the p130 epitopes recognized by the monoclonal and 

polyclonal antisera, p130 epitopes being masked in the cytoplasm and/or 

sensitivity issues with the immunofluorescence assay due to p130 being diffuse 

in the cytoplasm.  

 

Treatment with LMB does not affect 16 E7-mediated p130 cytoplasmic 

localization 

In HPV 16 E7 expressing cells, p130 localized mainly to the cytoplasm 

with or without LMB treatment (Figure 19). This may be because HPV 16 E7-

mediated p130 nuclear export is Crm1-independent; alternatively, HPV 16 E7 

may cause p130 to be retained in the cytoplasm. In published reports, p130 

http://www.cbs.dtu.dk/�
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cytoplasmic localization has been shown to be insensitive to treatment with LMB 

(Chestukhin et al., 2002). Additionally, although the C-terminus of HPV 16 E7 

fused to GFP was shown to accumulate in the nucleus with LMB treatment 

(Knapp et al., 2009), no studies have shown that the subcellular localization of 

full length HPV 16 E7 protein is LMB sensitive.  

 

HPV 6 E7 can target p130 for degradation in the nucleus 

It has long been established that proteins can be targeted for degradation 

in the cytoplasm. There is robust evidence to support that proteins can also be 

targeted for degradation in the nucleus (von Mikecz, 2006). This is the first study, 

to our knowledge, to address the capacity of nuclear proteasomes in p130 

degradation. The data presented here suggest that in the presence of HPV 16 

E7, p130 degradation is mainly mediated by cytoplasmic proteasomes (Figures 

23 and 25). However, for HPV 6 E7, nuclear proteasomes may also play a 

significant role (Figures 24 and 26). 

HPV 16 E7 may preferentially target p130 for degradation in the cytoplasm 

after sequestering it there, whereas HPV 6 E7 may have evolved a mechanism 

for degrading p130 more efficiently in the nucleus. However, p130 degradation 

does not occur exclusively in either the nucleus or cytoplasm for HPV 6 E7 or 

HPV 16 E7. There may be more than one mechanism by which p130 is targeted 

for degradation by HPV 6 E7 and HPV 16 E7. Huh et al. reported that HPV 16 E7 

recruits a cullin 2 E3 ubiquitin ligase complex that contributes to degradation of 

pRb. The authors suggest that this E3 ubiquitin ligase also contributes to the 
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degradation of p130. HPV 6 E7 was not found to bind this cullin 2 complex (Huh 

et al., 2007). It is possible that HPV 6 E7 facilitates the interaction of another E3 

ubiquitin ligase with p130 (discussed below). Additionally, HPV 6 E7, similar to 

human T-cell leukemia virus type 1 tax, may function as a molecular bridge 

(Kehn et al., 2005), or as a chaperone, like simian virus large T antigen 

(Srinivasan et al., 1997; Stubdal et al., 1997), to facilitate interaction of p130 

directly with the proteasome.  

 

Pitfalls of HA-p130 mutants 

HA-p130 NES mutants were constructed to determine whether HPV 16 E7 

could alter the localization of a p130 mutant that was located exclusively in the 

nucleus. Another purpose of generating HA-p130 NES mutants was to determine 

the ability of HPV 6 E7 to target them for degradation in the nucleus. These 

experiments would be important to perform because in the half-life experiments 

conducted in this thesis work, nucleocytoplasmic shuttling was a confounder to 

the interpretation of results. Using HA-p130 mutants that were exclusively 

nuclear would potentially avoid the caveat of p130 moving from the nucleus to 

the cytoplasm and therefore change in p130’s location contributing to the 

decrease in p130 expression. These mutants were generated using a WT HA-

p130 plasmid. It proved difficult to transfect HFKs. Approximately 30% 

transfection efficiency was obtained using FuGENE 6 transfection reagent. 

Immunofluorescence showed HA-p130 and HA-p130 mutants to be localized in 

the nuclei of cells, although p130 has been reported to be capable of shuttling 
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between the cytoplasm and nucleus. It is possible that the tagged protein no 

longer functions like WT p130. 

 

HPV 6 E7 and HPV 16 E7 bind to cullin 5 

Human adenovirus E1B55K and E4orf6 target p53 for degradation by 

recruiting an E3 ubiquitin ligase containing cullin 5, elongin B/C, and the RING 

finger protein Rbx1 (Querido et al., 2001). Other proteins have also been 

described that are targeted by this cullin 5 complex as mentioned in Chapter 3. 

Cullin 2 and 5 both use elongin B/C adaptor proteins. Although HPV 16 E7 

hijacks and directs the cullin 2 E3 ubiquitin ligase complex to target pRb family 

members for degradation, other HR (high-risk) and LR (low-risk) HPV E7 proteins 

do not, indicating that binding of cullin 2 is not an universal requirement for p130 

degradation (Huh et al., 2007). Therefore, it is possible that the cullin 5 E3 

ubiquitin ligase complex may be involved in targeting of p130 for degradation by 

HPV E7. To investigate whether p130 might be a substrate for cullin 5, binding of 

cullin 5 to HPV E7 was determined. Data generated from this thesis show that 

HPV 6 and HPV 16 E7 both are capable of binding to cullin 5 (Figures 27, 29 and 

30). To determine whether binding of HPV E7 to cullin 5 correlated with the ability 

of HPV E7 to target p130 for degradation, HPV 6 E7 mutants were analyzed. 

HPV 6 E7 mutant H2AR4AH5A binds to p130 but does not degrade p130, 

whereas HPV 6 E7 mutant C25A does not bind or degrade p130 (Zhang et al., 

2006). Preliminary results obtained by GST pull-down assays indicated GST 6 

E7 C25A bound cullin 5 less efficiently than GST 6 E7. Results with GST 6 E7 
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H2AR4AH5A, however, were inconclusive. Further experiments to determine 

whether cullin 5 is important for HPV-E7 p130 degradation need to be conducted 

(Future Directions section). It is still an interesting finding that HPV E7 can bind 

to cullin 5, as cullin 5 has been reported to regulate Hsp 90, Hif1 alpha (Ehrlich et 

al., 2009) and Src tyrosine kinase (Laszlo and Cooper, 2009). 

 

HPV 6 E7 and HPV 16 E7 bind to cyclin C  

Cyclin C was found to bind to HPV 6 and HPV 16 E7 and bound HPV 16 E7 

more efficiently than HPV 6 E7 (Figures 31 and 32). HPV 6 E7 mutant 

H2AR4AH5A bound less efficiently than HPV 6 E7 (Figure 32). Mutant HPV 6 E7 

H2AR4AH5A is a loss of function mutant for p130 degradation, although it binds 

to p130 as efficiently as HPV 6 E7. This may indicate that the ability of HPV E7 to 

bind to cyclin C is important for p130 degradation. Binding to cyclin C may allow 

p130 to be phosphorylated by its binding partner CDK3, at serine 672 or another 

phosphorylation site, that then results in p130 becoming unstable by being 

targeted for degradation.  

Cycin C also associates with Cdk8. The cyclin C/Cdk8 complex regulates 

transcription. Reports indicate that the cyclin C/Cdk8 complex phosphorylates the 

carboxy-terminal domain (CTD) of RNA pol II, resulting in premature 

phosphorylation of CTD and inhibition of transcription initiation. In contrast, cyclin 

C/Cdk8 can enhance transcription by phosphorylation of transcription factor Sip4 

and by phosphorylation of TFIID (Hoeppner et al., 2005). HPV E7 may bind to 

cyclin C, preventing it from interacting with CDK8 and thereby enhancing 
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transcription initiation. Conversely, HPV E7 may bind to the cyclin C/CDK8 

complex and increase transcription of genes that are necessary for its life cycle.  

 

Knockdown of p600 may stabilize p130 

p600 was identified as a cellular protein that binds to both HPV 6 E7 and 

HPV 16 E7 (Huh et al., 2005). p600 is necessary for cellular transformation and 

anchorage-independent growth and has also been speculated as being an E3 

ubiquitin ligase (Huh et al., 2005) because it contains a RING-finger domain. 

p600 was identified as a protein that associates with pRb although it binds E7 

independently of pRb. Knockdown of p600 did not affect the stability of pRb (Huh 

et al., 2005). Here, experiments were conducted to determine the possibility that 

knockdown of p600 would destabilize p130. Preliminary data showed that there 

was an increase in p130 expression in HFKs transduced with HPV 6 E7 or HPV 

16 E7 that were then transduced with p600 shRNA. This experiment, however, 

was only conducted once and needs to be repeated. 

 

Ubiquitinated p130 has not been detected 

Experiments to identify ubiquitinated p130 have been unsuccessful. In 

these experiments HFKs were transduced with LXSN, L(6E7)SN or L(16E7)SN 

selected and then transduced with a retrovirus encoding histidine-tagged 

ubiquitin (His-Ub: in order to express tagged ubiquitin). Cells were treated for 4 h 

with MG132 to inhibit proteasomal degradation and harvested in the presence of 

N-ethylmalamide to cross-link cysteine residues and inactivate deubiquitinases. 
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p130 was immunoprecipitated with polyclonal antibody to p130 and 

immunoblotted with monoclonal antibodies to p130 and ubiquitin but no 

ubiquitinated p130 was identified, although p130 was detected. This inability to 

detect ubiquitinated p130 may signify that degradation of p130 is ubiquitin 

independent or that p130 is monoubiquitinated. The cytomegalovirus protein 

pp71 has been reported to target the pRb family members for degradation, in a 

ubiquitin-independent manner (Kalejta and Shenk, 2003). A monoubiquitinated 

form of p130 would be difficult to observe by Western analysis. It is also possible 

that the conditions of the assay are not optimized for finding ubiquitinated 

species. 

 

Conclusions 

In conclusion, the data presented in this thesis argue that although both 

LR and HR HPV target p130 for degradation, the mechanism by which the E7 

proteins destabilize p130 may be different as presented by localization and half-

life studies in Chapter 2. However, it is possible that there are some shared 

aspects of the mechanism used by HPV 6 E7 and HPV 16 E7 to target p130, 

since both of the E7 proteins bind cullin 5, cyclin C and p600. Additional 

experiments will be proposed in the Future Directions section to delineate the 

activities that are shared by the E7 proteins in regards to the identified binding 

partners mentioned above and p130 degradation. HPV 6 E7 seems to have 

evolved to co-exist better with its host cell, causing a productive infection (a 

benign condyloma) but not a lesion which is non-productive for the virus (a 
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carcinoma). As such, HPV 6 E7 causes less perturbation of the Rb family 

circuitry than HPV 16 E7, consequently raising fewer distress signals for the cell 

to counter. Since HPV 6 E7 distinguishes between the Rb family members but 

HPV 16 E7 does not, the two E7 proteins may have evolved different 

mechanisms to deal with p130. By altering the intracellular localization of p130 so 

that more is found in the cytoplasm, 16 E7 has not only targeted p130 for 

degradation but also effectively removed p130 from its nuclear targets. Even 

though preliminary studies show that both HPV 6 E7 and HPV 16 E7 bind to 

cullin 5 and cyclin C remains to be determined what role, if any, binding to these 

proteins plays in the degradation of p130. Additional experiments to knockdown 

p600 need to be performed to confirm whether decreasing p600 expression truly 

plays a role in stabilizing p130 in the presence of HPV E7. 
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FUTURE DIRECTIONS 

The major focus of this thesis work has been to compare the ability of LR 

HPV 6 E7 and HR HPV 16 E7 to regulate p130. In the presence of HPV 16 E7, 

more p130 was localized to the cytoplasm, whereas in HPV 6 E7 and LXSN 

transduced cells, p130 was mainly localized to the nucleus. HPV 16 E7 may 

have evolved to regulate p130 by not only targeting it for degradation, but by 

essentially removing it from its nuclear targets. In contrast, although HPV 6 E7 

did not alter the nuclear localization of p130, HPV 6 E7 was found to 

preferentially target p130 for degradation in the nucleus. This is an interesting 

finding, since nuclear degradation of proteins has been relatively recently 

described. This data is novel as no other study has described p130 as being 

capable of being targeted for degradation in the nucleus.  

 . A caveat of the experiments described above is the fact that both 

localization and degradation events occur synchronously Therefore, it would be 

worthwhile to further delineate the role of these two processes in the regulation of 

p130 by HPV To atempt to separate these events HPV E7 transduced HFKs 

could be treated with MG132 (proteasomal inhibitor) and then performing 

immunofluorescence and subcellular fraction performed using antibodies to 

p130, p107 and pRb. 

 HA-tagged NES mutants were generated in an effort to more closely 

examine the ability of HPV 16 E7 to alter the intracellular localization of p130. 

However, the localization of these mutants could not be validated since the WT 
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HA-p130 appeared to be only nuclear by immunofluorescence, although it was 

expected to be expressed in both the cytoplasm and nucleus. It is possible that 

the HA-tag on p130 affected its normal function; therefore, it may be necessary 

to generate untagged p130 NES mutants to clarify these studies. 

 Tandem mass spectrometry data generated by the laboratory suggest that 

HPV E7 binds to cyclin C. GST pulldown experiments also suggest that HPV 6 

E7 and HPV 16 E7 bind to cyclin C. More HPV 6 E7 and 16 E7 mutants could be 

tested for their ability to bind to cyclin C. Immunoprecipitation experiments using 

HA-myc tagged HPV E7 also could be performed to demonstrate in vivo binding 

of HPV E7 to cyclin C. Knock-down experiments using shRNA to cyclin C would 

provide greater insight into its potential role in p130 degradation. 

 Binding of HPV 6 E7 and HPV 16 E7 to cullin 5 was detected by GST 

pulldown experiments. Additional experiments using HPV 6 E7 and HPV 16 E7 

mutants also could be conducted to determine whether loss of function mutants 

for p130 degradation can bind to cullin 5. As with cyclin C, immunoprecipitations 

of tagged HPV E7 to look for cullin 5 need to be pursued and knock-down of 

cullin 5 using RNA interference in HPV E7 expressing cells performed.  

 Preliminary data using shRNA of p600 indicated that, in HPV E7 

expressing cells, knock-down of p600 may stabilize p130. Experiments need to 

be repeated to confirm this data. Also, HFKs, when transduced and selected 

twice, appeared to grow somewhat slowly. Changing to near-immortalized 

keratinocytes (NIKS) should be considered since these cells may be better at 

undergoing two rounds of selection.  
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 Initial immunofluorescence studies detected cyclin C mainly in the 

nucleus. Immunofluoresence and fractionation experiments can be performed to 

verify the location of cullin 5 and p600 in HPV E7 expressing cells. These 

experiments would provide insight into whether cyclin C, cullin 5 or p600 co-

localize with p130. Also, if knock-down experiments to decrease expression of 

cyclin C, cullin 5 proved to also be successful, HPV 6 E7 and HPV 16 E7 

expressing cells, knocked-down for each of p600, cyclin C or cullin 5 could be 

treated with cycloheximide (CHX) and studies performed to determine the half-

life of p130 in these whole cell extracts, cytoplasmic and nuclear fractions. If one 

of these proteins were critical to E7-mediated p130 degradation the half-life of 

p130 would be extended upon its knock-down. If p130 half-life is extended upon 

knocking-down either cullin 5, cyclin C or p600 in HPV E7 expressing cells the 

effect on differentiation could be Whole cell extracts could be harvested from 

these HPV E7 cells knocked-down for the E7 binding partners stated above and 

Western analysis performed using antibodies to involucrin or keratin 14 

(indicators or differentiation) to detect whether there was an increase in 

differentiation compared to control cells that express normal levels of cyclin C, 

cullin 5 or p600. 
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