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Matthew Kazuyuki Muramatsu 

 

THE IDENTIFICATION AND CHARACTERIZATION OF NOVEL PERSISTENCE 

GENES IN CHLAMYDIA TRACHOMATIS 

 

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that 

can infect the eyes, genital tract, and disseminate to lymph nodes in humans. 

Many C. trachomatis infections are clinically asymptomatic and can become 

chronic if left untreated. When humans are infected with C. trachomatis, a 

cytokine that is produced is interferon-gamma (IFN-γ). In vitro, IFN-γ stimulates 

expression of the host enzyme indoleamine 2,3-dioxygenase. This enzyme 

converts free intracellular tryptophan to N-formylkynurenine. Tryptophan 

starvation induces C. trachomatis to enter a viable-but-nonculturable state 

termed persistence, which has been proposed to play a key role in chronic 

Chlamydial disease. To circumvent host induced tryptophan depletion, 

urogenital strains of C. trachomatis encode a functional tryptophan synthase 

(TS). TS synthesizes tryptophan from indole and serine, allowing Chlamydia to 

reactivate from persistence. Transcriptomic analysis revealed C. trachomatis 

differentially regulates hundreds of genes in response to tryptophan starvation. 

However, genes that mediate entry, survival, and reactivation from persistence 

remain largely unknown. Using a forward genetic screen, we identified six 

Susceptible to IFN-γ mediated Persistence (Sip) mutants that have diminished 

capacities to reactivate from persistence with indole. Mapping the deleterious 

persistence alleles in three of the Sip mutants revealed that only one of the 

mutants had a mutation in TS. The two other Sip mutants mapped had 
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mutations in CTL0225, a putative integral membrane protein, and CTL0694, a 

putative oxidoreductase. Neither of these genes plays a known role in 

tryptophan synthesis. However, amino acid (AA) competitive inhibition assays 

suggest that CTL0225 may be involved in the transport of leucine, isoleucine, 

valine, cysteine, alanine, and serine. Additionally, metabolomics analysis 

indicates that all free amino acids are depleted in response to IFN-γ, making this 

amino acid transporter essential during persistence. Taken together we have 

identified two new chlamydial persistence genes that may play a role in chronic 

chlamydial disease. 

 
 

David E. Nelson, Ph.D., Chair 
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Chapter I: Introduction 

Section I:  

A brief history of chlamydial disease 

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that 

has been co-evolving with humans for thousands of years. Scarring in ancient 

Aboriginal Australian skulls, dating back to around 8000 BC, is the earliest 

evidence of chronic C. trachomatis eye infections [1]. Additionally, the ancient 

Egyptians were among the first to describe treatments for a Chlamydia-like 

disease known as nehat in the Ebers Papyrus around 1500 BC [2]. 

C. trachomatis is one of the most prolific human pathogens. The ebb and 

flow of human conquest and exploration have contributed to the global 

dissemination of C. trachomatis. Troops returning from the Napoleonic Wars 

(1803-1815) may have contributed to the spread of C. trachomatis from Egypt to 

Europe [3]. The fear of trachoma was so great that in 1897 the United States 

government classified C. trachomatis as a “loathsome and contagious disease” 

and increased screening of U.S immigrants in an attempt to control its spread 

[4].  

In 1907, Halberstaedter and Prowazek noticed small inclusion bodies, 

later determined to be chlamydial inclusions, in the cytoplasm of cells from 

scrapings of apes and humans with trachoma [5]. Shortly after this, the 

detection of inclusion bodies in newborns with conjunctivitis [6] and people 

with non-gonococcal sexually transmitted disease [7, 8], suggested that there 

may be a link between ocular trachoma, neonatal conjunctivitis, and genital 

disease. Additionally, monkeys infected with material gathered from men and 

women presenting with non-gonococcal genital infections developed trachoma 
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[9]. Results from these studies suggest that trachoma and non-gonococcal 

genital disease were caused by the same etiological agent, later classified as C. 

trachomatis.  

Section II:  

Chlamydia trachomatis infections 

Ocular chlamydial disease 

C. trachomatis serovars differ in their tissue tropisms and pathogenic 

strategies. Serovars A-C are the etiological agents of trachoma and primarily 

infect the conjunctival epithelial cells in the eye. While trachoma is still a global 

public health problem, improvements in sanitation and hygiene have limited the 

spread of C. trachomatis in the past several decades [10]. Currently, trachoma is 

only endemic in poor and rural locations of 42 countries located in Africa, 

Central and South America, Asia, Australia, and the Middle East (Figure 1).  

Despite the fall in the global prevalence of trachoma, C. trachomatis 

serovars A-C remain the leading cause of preventable blindness by an infectious 

agent. When left untreated, repeated infections can lead to conjunctival 

scarring, development of corneal opacities, and possible progression to 

trichiasis (i.e., inversion of the eyelashes), which can result in irreversible 

blindness. Approximately 7.2 million people live with advanced trachoma, while 

another 200 million are at risk by living in trachoma endemic areas. In 2015, 

roughly 54 million people were treated for conjunctival C. trachomatis 

infections. The loss of productivity and treatment costs associated with 

trachoma was recently estimated at 8 billion dollars [11, 12], indicating 

trachoma is still a significant global health and economic burden. 
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Sexually transmitted chlamydial disease 

Urogenital 

C. trachomatis serovars D-K are sexually transmitted and typically cause 

urogenital infections. According to the World Health Organization (WHO), there 

are approximately 131 million new cases of sexually transmitted C. trachomatis 

infections each year [13]. In the United States, the most common sexually 

transmitted bacterial infection is C. trachomatis. National surveillance data, 

provided by the Centers for Disease Control and Prevention (CDC), indicate that 

rates of C. trachomatis infection were among the highest in Washington DC, 

Alaska, and the Virgin Islands (Figure 2).  

In 2014, the CDC documented 1,441,789 new sexually transmitted C. 

trachomatis infections across the United States. However, they estimate that the 

annual number of urogenital C. trachomatis infections may be closer to 2.8 

million per year because the majority of infections are asymptomatic in men 

and women (50% and 70% of all infections, respectively) [14]. When symptoms 

are present, men usually present with urethritis and less commonly with 

epididymitis [15]. Symptomatic women may present with bartholinitis, cervicitis, 

and acute urethral syndrome [16]. Additionally, chronically infected women are 

at risk for pelvic inflammatory disease (PID), endometritis, and ectopic 

pregnancies [17, 18]. A smaller proportion of patients can also develop Reiter’s 

syndrome (reactive arthritis) [19, 20]. The CDC recommends that C. trachomatis 

urogenital infections be treated with a single dose of 1 gram of azithromycin or 

100 milligrams of doxycycline twice daily for seven days.  
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Rectal 

C. trachomatis urogenital strains can also infect the rectum, most 

commonly in men who have sex with men. In heterosexuals, detection of rectal 

infections is not as common as urogenital tract infections. However, the 

frequency of rectal infections in heterosexuals may be higher than what is 

appreciated because screening the rectum for C. trachomatis is not standard 

practice unless patients have specific risk factors. C. trachomatis D-K rectal 

infections are usually asymptomatic. In contrast, C. trachomatis L1-L3 strains, 

which frequently infect the rectum, can cause severe disease and pathology [21].  

While rectal infections with C. trachomatis D-K are rarer than urogenital 

infections in women, there is increasing concern that some apparent urogenital 

treatment failures may arise because of autoinoculation from the rectum [22, 

23]. Additionally, a meta-analysis of rectal chlamydia treatment studies 

indicates doxycycline may be more efficacious than azithromycin for rectal C. 

trachomatis infections [24]. These studies suggest that C. trachomatis GI tract 

infections may be refractory to treatment with azithromycin and that GI tissues 

may be acting as a chlamydial reservoir contributing to apparent azithromycin 

treatment failure in women. 

Section III: 

Intracellular development of Chlamydia trachomatis 

In vitro chlamydial developmental lifecycle 

C. trachomatis is an obligate intracellular pathogen that has a biphasic 

life cycle (Figure 3). The extracellular, infectious forms of Chlamydia spp. are 

known as elementary bodies (EBs). EBs contain an electron dense nucleoid [25] 

that is enveloped in a protein shell known as the chlamydial outer membrane 
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complex (COMC). The COMC is primarily composed of three highly cross-linked 

cysteine-rich proteins OmpA, OmcA, and OmcB. These proteins are connected 

by disulfide bonds to form a semi-permeable lattice. [26-28] The COMC also 

contains “rosette structures” [29] that are thought to be composed of the 

chlamydial type III secretion system (T3SS) pores and the needle-forming 

protein, CdsF [30]. T3SS is a critical virulence factor that facilitates the injection 

of chlamydial proteins into host cells [31]. Ultrastructural analysis indicates that 

EBs have a polarized architecture and that CdsF associated needle-like 

structures form at the pole closest to host cells [32], suggesting that the T3SS 

plays a role in cellular invasion. 

After an EB has successfully entered a host cell, the COMC is reduced 

[26], and EBs transition into reticulate bodies (RBs). Unlike EBs, RBs are non-

infectious, metabolically active, and can replicate [31, 33, 34]. Genes necessary 

for RB replication and EB production are temporally regulated in C. trachomatis 

and fall into three rough categories called early, mid, and late genes [35-37]. 

Transcription of early genes begins 1 to 3 hours after C. trachomatis 

infection. Functions of early genes include suppressing transcription of late 

genes, macromolecular synthesis (transcription, translation, DNA replication), 

and setting up the nascent chlamydial inclusion [36]. During this time, EBs are 

also transitioning into RBs, and early inclusion membrane proteins (Incs) begin 

to decorate the nascent inclusion [38]. The majority of Incs share low primary 

sequence similarity; however, they are capable of forming similar secondary bi-

lobed structures with N- and C- termini facing the cytoplasmic side of the 

inclusion membrane [39, 40]. Early Incs may prevent endocytic maturation of 

the chlamydial inclusion and fusion with lysosomes by preventing the 
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recruitment of early (Rab5) and late (Rab7 and Rab9) endocytic markers [41]. 

Additionally, the Inc protein CT850 plays a role in relocating the inclusion from 

the periphery of the cell to the peri-Golgi region, in a dynein-dependent manner 

[42, 43]. By relocating to the peri-Golgi region, RBs have access to nutrients from 

exocytic vesicles that promote growth and development of RB and the inclusion. 

By eight hours post infection, the majority of C. trachomatis genes 

involved with replication, metabolism, and inclusion development begin to be 

expressed [44]. Incs expressed during mid-development may facilitate inclusion 

and chlamydial growth by recruiting host Rab proteins. Some Rab proteins that 

associate with the inclusion membrane include Rab4 and Rab11, which are 

involved in receptor recycling, and Rab1, which participates in vesicle trafficking 

from the endoplasmic reticulum (ER) to the Golgi [41]. Recruitment of these 

Rabs promotes the association of SNAREs, syntaxin6, and VAMP4 proteins. 

These proteins facilitate eukaryotic vesicle interactions and lead to the fusion of 

nutrient rich vesicles containing sphingomyelin and cholesterol with the 

chlamydial inclusion [45-47]. 

Late in development (>24h), most RBs have undergone 8 to 10 rounds of 

replication by binary fission [48] and a yet undefined asymmetric-polarized 

budding process [49, 50] and have begun to transition back into EBs. Increased 

late gene products may influence RB to EB transition. Known roles of late genes 

include DNA condensation, the formation of the COMC, and EB maturation. Late 

gene transcription has been shown to be inversely related to the expression of 

the early gene euo, which binds to late gene promoters and represses 

transcription [51]. Additionally, sigma-28 is a transcription factor that promotes 

late gene transcription [52]. 
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Once RBs have transitioned into EBs, these are then released by host cell 

lysis or by extrusion of the entire chlamydial inclusion [53]. The release of EB 

from mature inclusions and subsequent host cell lysis is dependent on the 

plasmid gene pgp4. Pgp4 is a transcription factor that regulates chromosomal 

and plasmid genes. One of these genes is a T3S effector that destabilizes actin 

surrounding the chlamydial inclusion [54]. In addition to the destabilization of 

actin, chlamydial phospholipases, expressed during mid and late development 

[37], may weaken the inclusion membrane. In contrast to inclusion lysis, 

extrusion is an actin-dependent process that preserves the chlamydial inclusion 

and releases it without killing the host cell [55]. By manipulating the myosin 

phosphatase pathway, C. trachomatis hijacks phosphorylated myosin light chain 

2 (MLC2), myosin light chain kinase (MLCK), and myosin II to extrude from the 

host cell [56]. 

Section IV: 

Chlamydial persistence 

 Various stimuli can disrupt the C. trachomatis biphasic development 

cycle and induce C. trachomatis to enter a viable-but-non-culturable (VBNC) 

state termed persistence [48]. When this occurs, three phenotypes characterize 

persistent chlamydial forms. First, persistent chlamydia forms small inclusions 

that contain enlarged and non-dividing RB [48]. Second, these aberrant RBs 

continue to replicate their genomes [57]. Third, these aberrant RBs can resume 

development and make infectious EB when the persistence inducing stimulus is 

removed [58]. 

Many stimuli can induce persistence in vitro. In the following paragraphs 

the most studied persistence models will be discussed (e.g. penicillin treatment, 
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iron and amino acid limitation). However, the focus of this dissertation will be 

on the IFN-γ persistence model. 

Penicillin-induced persistence 

 Penicillin was the first stimulus identified that induces Chlamydia 

persistence [48]. Chlamydiae contain 3 PBPs (PBP1, PBP2, and PBP3). PBP1 and 

PBP2 have transpeptidase activity, while PBP3 has carboxypeptidase activity [59, 

60]. When penicillin bind PBPs, RB replication and RB to EB differentiation is 

inhibited, leading to the formation of enlarged RB. Removal of penicillin allows 

persistent RB to reactivate and resume normal development [48]. These studies 

suggest that physically limiting RB division is sufficient to induce persistence. 

However, limiting available nutrients can also induce persistence, and may be 

more relevant in vivo as penicillin treatment is not routinely used to treat 

chlamydia. 

Iron limitation induced persistence 

Iron is a key co-factor utilized in both eukaryotic and prokaryotic cellular 

processes. As obligate intracellular pathogens, chlamydiae are highly dependent 

on host cells for free iron. The iron chelating agent deferoxamine mesylate 

(DAM) reduces free iron and induces chlamydiae to enter persistence. Unlike in 

the penicillin induced persistence model, DAM treatment causes the inclusion to 

bleb vesicles and alters the morphology of RB and EB. Additionally, some of the 

chlamydial inclusions have a ruffled membrane and associate with an unknown 

electron dense material [61].  

The phenotypes observed with DAM treatment are not consistent with 

other chlamydial persistence models. Further investigations revealed DAM does 

not passively diffuse through cellular membranes, suggesting the phenotypes 
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elicited by DAM may be caused by inadequate iron-chelation [62]. Consistent 

with this hypothesis, treatment with 2,2’-bipyridyl (BpdI), a membrane 

permeable iron chelator, caused C. trachomatis to form aberrant RB that 

resemble those seen in other persistence models [63]. 

Amino acid limitation induced persistence 

 Depletion of amino acids (AA) can induce C. trachomatis persistence. For 

example, depleting cells of any of the branched chained amino acids (BCAA), 

isoleucine (Ile), leucine (Leu), or Valine (Val) inhibited Chlamydia pneumoniae 

and C. trachomatis EB production [64, 65]. However, depleting cells of a second 

structurally similar AA partially restored EB production [66]. These results 

indicate that depletion of one AA can be partially reversed by removal of a 

second AA, suggesting that the depleted AA is competitively inhibiting the 

uptake of the second AA, whose unopposed uptake results in persistence. 

 High concentrations of AA can also induce persistence through 

competitive inhibition of chlamydial AA transporters. For example, elevated 

levels of Ile, Leu, phenylalanine (Phe), and methionine (Met) competitively inhibit 

the transport of Val into C. trachomatis. When this occurs, C. trachomatis forms 

small inclusions filled with aberrant RB similar to those seen in other 

persistence models. However, competitive inhibition is alleviated when cells are 

co-treated with Val, suggesting Val starvation induces C. trachomatis persistence 

[67].  

 Co-infection with other intracellular pathogens can also induce C. 

trachomatis persistence. For example, C. trachomatis enters persistence when 

HeLa cells are co-infected with Toxoplasma gondii. As T. gondii is an 

intracellular parasite, it likely outcompetes C. trachomatis for specific nutrients 
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such as iron, lipoic acid, cholesterol, and AA, inducing C. trachomatis 

persistence. Consistent with this hypothesis, when pyrimethamine killed T. 

gondii, C. trachomatis reactivated from persistence. Additionally, by 

supplementing the medium with essential AA, C. trachomatis was able to 

reactivate from persistence. These results suggest essential AA limitation was 

the key factor inducing persistence [68].  

IFN-γ mediated persistence 

  The IFN-γ mediated persistence model may be the most relevant model 

of chlamydial persistence model because this cytokine is essential to controlling 

Chlamydia infections in animals. Moderate concentrations of IFN-γ induces 

Chlamydia psittaci and C. trachomatis to enter persistence in T24 and HeLa 229 

(HeLa) cells, respectively [58, 69]. IFN-γ treatment causes host cells to upregulate 

indoleamine 2,3-dioxygenase (IDO1) (Figure 4A), which catabolizes tryptophan 

(Trp) to N-formylkynurenine (Figure 4B). Additionally, IFN-γ does not induce C. 

trachomatis persistence in IDO1 deficient cells [70], and supplementing the 

medium with Trp causes persistent RB to reactivate [58, 71]. Furthermore, 

decreasing the concentration of Trp in the medium in the absence of IFN-γ can 

also induce C. trachomatis persistence [72]. These results indicate that IDO1 

mediated Trp starvation is the persistence-inducing stimulus in the IFN-γ 

mediated persistence model [58, 73].  

Urogenital strains of C. trachomatis can circumvent Trp starvation 

because they encode a functional tryptophan synthase (TS), which can 

synthesize Trp from indole and serine (Ser) (Figure 4C) [74-78]. Neither humans 

nor C. trachomatis synthesizes indole, suggesting that indole is scavenged from 
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another source, possibly indole-producing microorganisms in the genital and GI 

tract [79-81].  

Differential gene expression between persistence models 

All persistence inducing stimuli cause chlamydiae to form small 

inclusions filled with aberrant RB. However, it is unknown what genes mediate 

this transition. A transcriptomic study indicated many genes are up- or down-

regulated in persistent RB, during IFN-γ mediated persistence, as compared to 

normal RB, growing in the absence of IFN-γ. The microarray data indicate that 

many of the up-regulated genes are involved in tryptophan synthesis, DNA 

repair, and phospholipid biosynthesis, while many of the down-regulated genes 

are involved in RB to EB differentiation, cell division, and the TCA cycle [82]. As 

this is the only transcriptome study focusing on C. trachomatis persistence, it is 

hard to determine if there are common and stimuli specific persistence genes. 

Using different persistence inducing stimuli, several studies have 

examined the differential expression of a few specific genes during chlamydial 

persistence. Comparing the data from these studies suggests that gene 

expression varies between different persistence inducing stimuli [83-85]. For 

example, ftsK, an essential cell division gene, is up-regulated in the penicillin 

induced persistence model, but down-regulated in the IFN-γ mediated 

persistence model [82, 83]. Additionally, ftsW, which encodes a lipid II flippase, 

remains unchanged in the penicillin model but is down-regulated in the IFN-γ 

model [37, 86]. In contrast, some genes share the same transcriptomic profile 

such as hctB, a histone-like gene, which is down-regulated in both the penicillin 

and IFN-γ persistence models. These data suggest that common persistence 

genes are likely involved with RB to EB differentiation, while stimuli specific 
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persistence genes may participate in alleviating the persistence inducing 

triggers. 

In vivo evidence for persistence 

There has been concern that chlamydial persistence is an artifact elicited 

by in vitro stimuli because detecting persistent chlamydial forms in patients has 

proven challenging. Some challenges include detecting persistent RB forms in 

tissue and confirming that these are VBNC.  

Animal models show the presence of VBNC Chlamydia in vivo [87] and 

that they can be reactivated to produce viable EB [88]. Additionally, VBNC C. 

trachomatis may have also been detected in tubal biopsy specimens. The 

majority of these samples contained chlamydial DNA and antigens, but C. 

trachomatis could only be cultivated from 3 out of 25 patient samples [89]. 

Furthermore, persistent RBs have been detected in other patient samples. 

Aberrant RBs have been observed in fibroblasts and macrophages gathered from 

the synovial tissue of patients with Reiter’s syndrome [90], as well as 

macrophages collected from aortic valve tissue [91].  

A recent study of cervical scrapings provided some of the best evidence 

that C. trachomatis persistence models may be relevant in humans. 

Transmission electron microscopy (TEM) of the cervical scrapings revealed 

multiple inclusions of varying size containing normal RB, EB, and aberrant RB. 

These samples also contained a high concentration of chlamydial genomes but 

produced few infectious EBs. Additionally, genital secretions of one patient were 

assayed and found to contain a high concentration of IFN-γ and indole [92]. 

These results suggest that in vivo conditions exist to induce C. trachomatis to 

enter and reactivate from IFN-γ mediated persistence. However, it remains 
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unclear if persistence occurs in vivo or is relevant to human disease because of 

the limited number of patient samples. 

Section VI: 

Chlamydial genetics 

The C. trachomatis serovar D genome indicated it is A+T rich (58.7%), 

approximately one megabase in size, and encodes approximately 900 functional 

genes [78]. Comparisons of chlamydial genomes have indicated that they are 

highly conserved and that relatively few novel genes influence virulence and 

tropism between organisms. However, most of these genes have not been 

systematically characterized because the tools required for genetic 

manipulation of Chlamydia spp. have only been developed in the last few years 

[76, 93-95]. 

Genetic manipulation of C. trachomatis 

The Wyrick group used electroporation to transform C. trachomatis with 

a shuttle vector expressing a chloramphenicol acetyltransferase (cat) cassette 

[96]. However, the shuttle plasmid was not stably maintained. Subsequently, the 

Maurelli group used electroporation to transform C. psittacci with a mutated 16S 

rRNA gene that could confer resistance to spectinomycin (Spc) and kasugamycin 

(Ksm). Recombinants that integrated the foreign DNA were resistant to both Spc 

and Ksm. This study confirmed that electroporation could deliver linear DNA 

and that foreign DNA could be integrated into Chlamydia genomes. 

 Recently, C. trachomatis L2 was transformed with a recombinant shuttle 

plasmid (pBR325::L2) using CaCl2. This shuttle plasmid was a fusion of an E. coli 

plasmid (pBR325) containing a β-lactamase and a cat cassette and an 

endogenous Chlamydia plasmid, which allowed stable maintenance of the 
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plasmid in both E. coli and C. trachomatis [97]. The Clarke group also 

demonstrated that it was possible to stably express GFP from a shuttle vector 

(pGFP::SW2) [97]. Stable plasmid transformation of C. trachomatis led to the 

development of new approaches to mutate chromosomal and plasmid genes and 

express introduced genes in Chlamydia.  

Mutagenizing C. trachomatis 

 Most Chlamydia spp. have a plasmid suggesting that these play vital roles 

in chlamydial pathogenesis. Systematic interrogation of C. trachomatis plasmid 

genes, using PCR-based deletion mutagenesis and transformation indicated that 

pgp1, pgp2, pgp6, and pgp8 are essential for plasmid maintenance [98]. Other 

plasmid studies confirmed that plasmid genes contributed to virulence [99]. 

Identification of plasmid maintenance genes permitted the development 

of a reverse genetic method called fluorescence reported allelic exchange 

mutagenesis (FRAEM). In this approach, a suicide vector was constructed by 

modifying the pGFP::SW2 shuttle plasmid. Plasmid stability was regulated by 

placing pgp6, an essential plasmid maintenance gene, under the control of a 

tetracycline-inducible promoter. In the presence of anhydrotetracycline (ATc), 

pgp6 expression increases and the suicide vector is stably maintained. However, 

in the absence of ATc, pgp6 expression decreases and the suicide plasmid is 

lost. To inactivate specific genes by homologous recombination, regions of the 

chlamydial chromosome surrounding the targeted gene were introduced into 

the suicide plasmid on either side of a β-lactamase and GFP-expressing gene. 

Transformants that had homologously recombined out the target gene were 

enriched for by passaging the recombinants in the absence of ATc and presence 

of penicillin G [100]. 
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Stable transformation permitted adaptation of other genetic tools for 

Chlamydia. Sigma’s TargeTron Gene Knockout System is a reverse genetic 

technique that can inactivate specific genes by inserting a group II intron. This 

approach takes advantage of group II introns’ ability to self-splice from 

precursor RNAs and form RNA lariats, which can invade genomic DNA targets 

by reverse splicing. Self-splicing of group II introns is mediated by the intron-

encoded protein LtrA, which acts as a DNA binding endonuclease, reverse 

transcriptase and RNA maturase [101]. In the TargeTron Gene Knockout System, 

the ltrA region of the group II intron is replaced with a selectable antibiotic 

marker, and ltrA is placed on a suicide vector with the modified group II intron.  

TargeTron was used to inactivate C. trachomatis incA. A modified 

TargeTron vector, containing a β-lactamase cassette and incA targeting 

sequences, was transformed into C. trachomatis. Transformants, which 

incorporated the modified group II intron, were enriched for by growing them in 

the presence of penicillin G. Loss of the suicide vector and inactivation of incA 

by the group II intron was confirmed by PCR [102]. TargeTron mediated 

knockout (KO) of incA was the first report of targeted site-directed mutagenesis 

in Chlamydia. Subsequently, the same group developed a similar vector that 

encodes a Spc resistance cassette, allowing them to construct a double 

incA/rsbV1 mutant [103]. 

 Although the new plasmid-based site-directed mutagenesis methods are 

powerful, their use so far has been is restricted to non-essential genes. In 

contrast, chemical mutagenesis has been employed in a variety of forward and 

reverse genetic applications to investigate essential and non-essential genes. 
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The most frequently used mutagen in the Chlamydia literature is ethyl 

methanesulfonate (EMS) [104, 105], although both N-ethyl-N-nitrosourea (ENU) 

[106] and nitrosoguanidine (NTG) [107] have also been used. EMS preferentially 

causes GC to AT transitions and can generate nonsense and missense mutations 

[108]. A C. trachomatis trpB nonsense mutant was isolated by screening pools of 

EMS mutagenized chlamydiae using a reverse genetic approached called 

targeted induced local lesions in genomes (TILLING) [109]. Other groups have 

used EMS mutagenesis to generate mutant libraries for forward genetic screens. 

Glycogen deficient [110], temperature sensitive [111], and interferon-sensitive 

[112] mutants have been isolated from EMS mutant libraries in recent studies. 

Recombination and mapping mutant genes 

 Chemical mutagens can elicit partial and total loss-of-function mutations 

in chlamydial genes. A limitation of using chemical mutagens is that the 

resulting mutants often contain multiple mutations [106], making it difficult to 

determine which mutated gene causes the phenotype of interest. Sometimes the 

relevant mutation can be identified by sequencing mutants that have the same 

phenotype [110]. 

A more robust method for linking mutations to phenotypes was 

developed based on observations that Chlamydia spp. encode recombination 

machinery [78], and that clinical Chlamydia strains can exchange DNA [77, 113-

115]. Demars et al. first recapitulated natural chlamydial lateral gene transfer 

(LGT) in vitro. They showed that if cells were co-infected with C. trachomatis 

strains encoding different antibiotic resistance alleles, doubly resistant 

recombinants could be enriched in the presence of the cognate antibiotics. 

[116]. 
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Subsequent studies showed that in vitro LGT involves the transfer of 

large contiguous regions of chlamydial genomes, up to 790 kilobases (kb) [77]. 

However, the utility of this approach for mutation mapping was limited by the 

location and scarcity of known endogenous resistance alleles, as well as the 

fitness costs associated with some of these alleles. The development of 

counterselection LGT circumvented some of these limitations. In contrast to 

antibiotic LGT, counterselection LGT enriches for recombinants that have a wild-

type phenotype by selecting against mutants that still contain a deleterious 

mutation [111]. The mutation linked to the phenotype of interest can then be 

inferred by comparing the mutations in the parent and recombinant mutant 

strains. 

Identifying critical C. trachomatis persistence genes  

In this study, we sought to expand upon the classical view of chlamydial 

persistence through the identification of additional genes that induce C. 

trachomatis to enter into, maintain, and reactivate from IFN-γ mediated 

persistence. Using newly developed chlamydial genetic tools, we made an EMS 

mutagenized library and screened for loss-of-function mutants that formed 

fewer inclusions following reactivation with indole. From the persistence screen, 

we identified six mutants that were susceptible to IFN-γ mediated persistence 

(Sip) mutants. We were able to map the persistence alleles in 3 of the Sip 

mutants using counterselection LGT.  

One of the Sip mutants had a mutation in trpB. A mutation in trpB was 

expected because TrpB plays a critical role in the synthesis of Trp. However, the 

other two mapped Sip mutants had mutations in novel persistence genes 
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CTL0225 and CTL0694. In silico analysis of these genes indicate that they might 

play a role in AA transport and DNA damage repair, respectively.  

We used competitive inhibition to test the hypothesis that CTL0225 may 

transport BCAA (Ile, Leu, and Val), as well as Ser, cysteine (Cys) and alanine 

(Ala). Additionally, metabolomics analysis comparing uninfected and infected 

HeLa cells in ± IFN-γ conditions indicated that AA pools might be limiting 

following IFN-γ treatment. These results suggest that AA transport is critical 

during IFN-γ mediated persistence, and that C. trachomatis utilizes multiple 

strategies to counteract the effects of host interferon-stimulated genes. 
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Figure 1. Prevalence of active and suspected regions of trachoma in 2015.  
Globally endemic trachoma infections are only prevalent in 42 countries with 
the highest rates of infection occurring in areas that are rural and have poor 
sanitation. (Trachoma Atlas – Last accessed September 2016) 
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Figure 2. Sexually transmitted C. trachomatis infections in the US.  National 
surveillance data indicate that rates of C. trachomatis infection were highest in 
Washington DC. The majority of the Southern states, such as Louisiana and 
Mississippi, had a higher incidence of infection than Northern states, such as 
Washington and New Hampshire (CDC-2014). 
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Figure 3. In vitro C. trachomatis L2 life cycle. C. trachomatis has a biphasic 
life cycle alternating between an infectious EB and replicative RB. Following the 
invasion of a susceptible eukaryotic cell, EB setup a protective niche known as 
the chlamydial inclusion. The EB then differentiates into an RB and begins to 
replicate. Following several rounds of replication, some RB asynchronously 
differentiate back into EB. By 36 hpi, most RBs have differentiated back into 
EBs. EBs are then released by host cell lysis or extrusion of the inclusion.  
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Figure 4. IFN-γ mediated persistence. (A) IFN-γ causes the dimerization of the 
IFN-γ receptor and Janis Kinase 1 and 2 (Jak1/2), which induces the 
phosphorylation of STAT1. When phosphorylated STAT1 dimerizes and 
translocates to the nucleus where it binds to GAS elements and upregulates 
expression of indo1. (B) Indo1 encodes the Trp catabolizing enzyme IDO1, 
which degrades free Trp to N-formylkynurenine. Trp starvation causes C. 
trachomatis to enter persistence and form aberrant RBs. (C) In response to low 
levels of Trp, urogenital strains upregulate expression of tryptophan synthase 
(TrpBA) and can reactivate from persistence by synthesizing Trp from Ser and 
indole.   
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CHAPTER II: 

RESEARCH GOALS & HYPOTHESIS 

Persistent C. trachomatis may contribute to the pathogenesis of 

chlamydial infections and treatment failure. Determining what genes play a 

critical role in chlamydial persistence is vital to the development of treatments 

that specifically inhibit persistent C. trachomatis and lessen the burden of 

chlamydia associated inflammation and disease. Transcriptomic analysis 

indicates persistent C. trachomatis RB up- and down-regulate many genes 

during IFN-γ mediated persistence. However, none of these genes have been 

characterized except tryptophan synthase.  

Our research goal was to identify susceptible to IFN-γ mediated 

persistence (Sip) mutants and determine what genes play a critical role in C. 

trachomatis entering into, maintaining, or reactivating from IFN-γ mediated 

persistence. We hypothesize that many of the Sip mutants will contain 

mutations in genes involved in tryptophan synthesis, DNA damage repair, 

protein synthesis, and nutrient acquisition.  
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CHAPTER III:  

MATERIALS AND METHODS 

Cell culture 

McCoy and HeLa cells were obtained from the American Type Culture 

Collection (ATCC) and were grown in 5% CO2 humidified incubators at 37°C. 

Unless otherwise stated, the cells were cultivated in DMEM-high glucose medium 

supplemented with four mM L-glutamine (Hyclone), 10% Fetal Bovine Serum 

(FBS; Atlanta Biologicals), sodium pyruvate (Hyclone), 4-2-hydroxyethyl-1-

piperazineethanesulfonic acid (HEPES; Hyclone) and non-essential amino 

acids (NEAA; Gibco) (DMEM-10). 

Chlamydia Propagation and Purification 

Chlamydia trachomatis serovar L2 434/Bu (C. trachomatis L2) was 

obtained from the ATCC and propagated in either HeLa or McCoy cells. For 

infection experiments, C. trachomatis L2 EBs were suspended in sucrose-

phosphate-glutamic acid buffer (SPG). Flask infections were performed by 

overlaying the cells with EBs in SPG and rocking the flask for 2 hours at 37°C. 

Plate infections were carried out by overlaying the cells with EBs in SPG and 

centrifuging the plate for 1 hour at 1600 x g at room temperature (RT), then 

rocking the plate for 30 minutes at 37°C. In both cases, the inoculum was then 

aspirated, and DMEM-10 infection medium was added unless indicated 

otherwise. When used, purified EBs were prepared by centrifugation over 30% 

diatrizoic acid (MD-76R) as previously described [26]. Purified and crude EB 

stocks were stored at -80°C. 
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Transformation of C. trachomatis 

C. trachomatis L2 was transformed with the pGFP::SW2 plasmid, a kind 

gift from Dr. Ian Clarke, to produce L2-GFP using a CaCl2 based protocol with 

some modifications [97]. Briefly, instead of mixing the transformation mixture 

with freshly trypsinized McCoy cells, confluent cell monolayers were infected 

with the transformation inoculum by centrifugation at 250 x g for 1 hour at RT. 

Mutagenesis of L2-GFP 

Confluent monolayers of McCoy cells in T175 flasks were infected with 

L2-GFP at a multiplicity of infection (MOI) of two (MOI = 2). The medium was 

aspirated at 18 hours post-infection (hpi), and pre-warmed DMEM-10 + 4 mg/mL 

ethyl methanesulfonate (EMS) was added. The Flasks were rocked at 37°C for 1 

hour, and then the monolayers were washed 3-times with 25 milliliters (mL) of 

phosphate-buffered saline (PBS). Twenty-five mL of pre-warmed DMEM-10 was 

added, and then the flasks were incubated for 15 hours. Thirty-four hpi, the 

medium was aspirated, and sterile SPG and ~ ¼ of an inch of 3 mm beads were 

added to the flasks. The McCoy cells were detached by manually shaking the 

flasks. EBs were released from the infected cells by transferring the cell SPG 

mixture into a 1.5 ml Eppendorf tube containing three 3mm glass beads and 

then agitating the tube for 2 min at 1600 rpm in an Eppendorf Thermomixer R 

Shaker Incubator Block Thermo Mixer (bead agitation). Host cell debris was 

pelleted by centrifuging the resulting cell lysates (250 x g for 10 minutes), and 

the supernatant containing EBs (mutagenized EB stock) was aliquoted into 

multiple tubes and frozen at -80°C. 

Mutant isolation, library construction, and library expansion 
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L2-GFP mutants were cloned from the mutagenized EB stock using a 

plaque cloning protocol developed by Matsumoto with a few modifications 

[117]. Confluent monolayers of McCoy cells in 6-well plates were infected with 

different doses of the stock to identify an inoculum that yielded 15 to 20 

plaques per well. Multiple 6-well plates of McCoy cells were then infected with 

the same volume of inoculum using replicate aliquots of the mutant EB stock. 

Four thousand plaques were picked from these plates using a P200 pipet with 

large orifice low retention pipet tips (Fisher). EBs were released from the plaques 

by bead agitation in 200 µl SPG and the plaque lysates were arrayed in deep well 

plates and stored at -80°C. The isolates were expanded by thawing the plaque 

lysate plates in a 37°C water bath and then using 30 µl of each lysate to infect a 

McCoy cell monolayer in a 96-well plate. Seventy hpi, the infectious media was 

aspirated and replaced with SPG (100 µl) and infected monolayers were frozen 

at -80°C.  

Screening for Sensitive to IFN-γ-induced Persistence (Sip) mutants 

 HeLa cells were seeded in duplicate 96-well plates in DMEM-10. The 

following day, DMEM-10 was added to one plate (untreated) and DMEM-10 + 10 

ng/mL IFN-γ (Thermo Fisher; DMEM-10G) (IFN-γ treated) was added to the other 

plate. Twenty-four hours later, the monolayers in the two plates were infected 

with equivalent inocula from the L2-GFP mutant library. The infections were 

then incubated for 24 hours in DMEM-10 or DMEM-10G. The untreated 

monolayers were fixed with 3.7% formaldehyde. In contrast, the IFN-γ treated 

monolayers were rinsed with PBS and tryptophan-free DMEM-10 (UCSF Cell 

Culture Facility) (DMEM10-TF) + 10 μM indole was added. Twenty-four hours 

later, these monolayers were fixed in 3.7% formaldehyde (Figure 5). In both 
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cases, GFP-positive inclusions were imaged using an automatic EVOSTM inverted 

fluorescent microscope at 4X magnification using a GFP filter set. Inclusions 

were counted using a custom program developed in FIJI.  

Infectious progeny assays 

HeLa cell monolayers in 24-well plates were infected with various strains. 

Serial dilutions of the infectious inoculum were used to infect confluent 

monolayers of HeLa cells in 96-well plates to determine the exact input titer for 

the progeny assays. At various intervals post infection, the infectious medium 

was aspirated and replaced with SPG (250 µl) and frozen at -80°C. Infected 

monolayers were thawed and detached by scraping with a pipet tip (scraping). 

EBs were released from the thawed cells by bead agitation. Cell debris was 

pelleted by centrifugation, and EB supernatants were isolated and serially 

diluted. Serial dilutions were used to infect HeLa cell monolayers in 96-well 

plates. The infected monolayers were fixed with methanol at 36 hpi. Inclusions 

were labeled with an anti-chlamydial LPS antibody (EVIH1), a kind gift from Dr. 

Harlan Caldwell at the National Institutes of Health in Bethesda MD, and a 

Dylight 488-conjugated anti-mouse IgG. Inclusions were imaged using an 

automatic EVOSTM inverted fluorescent microscope at 4X magnification using a 

GFP filter set. Inclusions were counted using a custom macro in FIJI. 

Genome Sequencing  

Confluent monolayers of HeLa cells in 6-well plates were infected with 

various strains at an MOI = 1. Infected monolayers were detached 36 hpi by 

scraping with a rubber policeman in SPG, and EB supernatants were prepared 

using bead-agitation and centrifugation. Host cell DNA was depleted by treating 

the EB supernatants with RQ1 DNase (Promega) (37 °C, 5 % CO2 for 60 min). 



28 
 

DNase digestion was stopped by adding RQ1 stop buffer to the EB mixture. The 

EB were then lysed to release their chromosomes by heating the mixture to 65 °C 

for 10 minutes. Chlamydial DNA was then amplified using a REPLI-g kit 

(Qiagen), excluding the immunomagnetic cell separation step. Whole genome 

sequencing (WGS) libraries were prepared from the amplified chlamydial DNA 

using the NexteraXT DNA Library Preparation Kit. WGS libraries were sequenced 

at the Center for Genomic Research and Biocomputing Core, Corvallis, OR, on an 

Illumina HiSeq 2000 to obtain 100 base pair (bp) single-end reads. Genomes 

were assembled from the resulting reads using Geneious sequencing software 

version 7, as described previously [118]. 

Generating Sip recombinants 

Confluent HeLa cell monolayers in 12-well plates were infected with 

individual Sip mutants at an MOI = 4, or pairs of Sip mutants each at an MOI of 

2. The infected cells were detached 36 hpi by scraping with a rubber policeman 

in 500 µl SPG and EBs were released from cells by bead agitation and 

centrifugation.  

The persistence screening method (Figure 5) was used to enrich for 

potential recombinants that had a wild-type phenotype following reactivation 

with indole. Briefly, EB supernatants were used to infect HeLa cell monolayers in 

12 well plates that had been pre-incubated in DMEM-10G for 24 hours to deplete 

tryptophan. Fresh DMEM-10G was then added, and the infected monolayers 

were incubated for 24 hours. Infected monolayers were then washed with ice-

cold PBS and incubated in DMEM-10TF + 10 μM indole for an additional 24 hours 

to allow recombinants to reactivate and produce EB. The cells were detached by 

scraping in SPG, and bead agitation released the EBs. EB supernatants were 
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isolated by centrifugation and used to initiate another round of infection. This 

process was repeated until phenotypic revertants that had a wild-type 

persistence phenotype expanded in individual wells or if no inclusions were 

observed after five enrichments. The counterselection LGT strategy is outlined 

in (Figure 6). 

Confirming loss of detrimental persistence allele 

Putative recombinant isolates identified during the co-infections and 

enrichments in the preceding section were plaque-cloned and expanded. 

Chlamydia DNA was isolated from EBs supernatants of these isolates by adding 

50 µl of alkaline lysis buffer to 50 µl supernatant. This mixture was then heated 

to 95°C for 10 minutes, and the solution was neutralized by adding 50 µl 

neutralization buffer. The resulting mixture was used as a template for Sanger 

sequencing. Chlamydia genes of interest were amplified using PhusionTM High 

Fidelity Polymerase (NEB) and primers listed in Table 1. Cycling conditions 

recommended by the manufacturer were used, whereas the annealing 

temperature and extension times were determined by the annealing 

temperatures of the specific primer pairs and amplicon size, respectively. 

Primer annealing temperatures were calculated using an online Tm calculator 

(ThermoFisher). The resulting amplicons were purified using a PCR purification 

kit (Bio Basic Inc) and sequenced by Eurofins Genomics. The sequences were 

manually analyzed using the SnapGene Viewer. 

Transmission Electron Microscopy  

Confluent HeLa cell monolayers in 6-well plates were incubated in DMEM-

10 or DMEM-10G for 24 hours. These monolayers were infected at an MOI = 0.1 

with various strains. The infected monolayers were then treated as described in 
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the persistence mutant screen (Figure 5). Infected monolayers were fixed with 

5% glutaraldehyde and 4% formaldehyde, either 24 hpi, for the untreated plates, 

or 24 hours post-reactivation (hpr) with indole, for the IFN-γ treated plates. 

Fixed monolayers were carefully dislodged using a rubber policeman and 

pelleted in 1.5 mL tubes by centrifugation (250 x g for 10 minutes).  

One-percent osmium tetroxide and 1% tannic acid was used to stain the 

fixed monolayers, which were then dehydrated, and embedded in epoxy resin.  

Ultrathin sections were made using a Leica ultracut UCT ultramicrotome. 

Sections were then stained with uranyl acetate and lead citrate. Sections were 

imaged using a JEOL JEM 1010 microscope with a Gatan 890 4k x 4k digital 

camera at the Indiana University Electron Microscopy Center in Bloomington, IN. 

Quantitative real-time PCR pre- and post- reactivation 

 HeLa cell monolayers were treated using the persistence screening 

conditions (Figure 5). Monolayers in 6-well plates were infected with the 

indicated strains at an MOI = 0.1 and collected by scraping in SPG at various hpi. 

EB supernatants were prepared using bead agitation and centrifugation. DNA 

was purified from the clarified EB supernatants using a gMAX Mini Kit (IBI 

Scientific) and was then eluted with elution buffer (10mM Tris-HCl, pH 8.5) as 

suggested by the manufacturer. One microliter of this template DNA was then 

mixed with FastStart TaqMan Probe Master mix (Roche), nine pmol of primers 

(5’-GTAGCGGTGAAATGCGTAGA-3’ and 5’-CGCCTTAGCGTCAGGTATAAA-3’), 

and a probe targeting the C. trachomatis 16S rRNA gene, (5’-FAM-

ATGTGGAAG/ZEN/AACACCAGT-3’). Quantitative PCR (qPCR) was performed 

using an Eppendorf Realplex4 device. Standard curves were generated using a 

known concentration of plasmid that contained a cloned copy of C. trachomatis 



31 
 

16S rRNA gene. In both cases, the cycling conditions were: 10 min at 95°C, 

followed by 40 cycles of 95°C for 20 s, 60°C for 1 min, and 68°C for 20 s.  

Tryptophan-free reactivation assays 

HeLa cells were seeded in 96-well plates in DMEM-10. The following day, 

the monolayers were rinsed with PBS and then incubated with either DMEM-10 

or DMEM-10TF for twenty-four hours. The monolayers were then infected at an 

MOI = 0.1 with various strains. The infections incubated in DMEM-10 were fixed 

at 24 hpi, while the infections incubated in DMEM-10TF were rinsed with PBS 

and incubated for an additional 24 h in DMEM-10TF + 10 μM indole before they 

were fixed. Inclusions were counted and compared between DMEM-10 and 

DMEM-10TF + 10 μM indole treated monolayers. Persistence ratios were 

calculated as described above. 

IFN-γ free indole and tryptophan reactivation assays 

Confluent HeLa cell monolayers in 96-well plates were incubated for 24 h 

in DMEM-10 or DMEM-10G. The monolayers were then infected with various 

strains at an MOI = 0.1 and incubated in either DMEM-10 (untreated) or DMEM-

10TF (TF). The untreated infections were fixed with 3.7% formaldehyde at 24 

hpi, while the TF treated monolayers were washed with PBS and then incubated 

with DMEM-10TF, supplemented with 10 μM indole or 128 mg/L-tryptophan. 

These infections were fixed 24 hours later. The numbers of inclusions these 

strains formed in untreated and TF conditions was used calculate a persistence 

ratio as described above. 

Cross-sectional area of inclusions 

Infected monolayers were fixed with 3.7% formaldehyde and then 

permeabilized with 100% methanol. Inclusions were labeled with the anti-
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chlamydial LPS antibody EVIH1 and Dylight488-conjugated anti-mouse IgG. 

Inclusions were then imaged at 20X using the automatic EVOSTM inverted 

fluorescent microscope. A custom macro was developed in FIJI to determine the 

area of each inclusion. An image scale bar was used to determine the relative 

pixel to micrometer distance observed in each picture. 

IFN-γ sensitivity assays 

HeLa cell monolayers in 96-well plates were incubated in DMEM-10G for 

24 h. The monolayers were infected with various strains at an MOI = 0.1 then 

incubated in DMEM-10TF supplemented with 128 mg/L-tryptophan and 10 

ng/mL IFN-γ. Infected monolayers were fixed 24 hpi with 3.7% formaldehyde, 

permeabilized with 100% methanol, and the cross-sectional areas of inclusions 

were determined as described above. 

AA competitive inhibition screen 

HeLa cells were seeded in 384-well plates and infected at an MOI = 0.5 

with Sip2. DMEM-10 was supplemented with single AAs (10 mM) or with the 

indicated pairs (X 10 mM + Y 10 mM) (Figure 7). The AA solutions were adjusted 

to pH ~7.0 with 10M HCl or NaOH and were filter sterilized. The infected 

monolayers were fixed 46-48 hpi with 3.7% formaldehyde. Inclusions were 

permeabilized, stained and their cross-sectional area was measured as describe 

above. The effects of select AA was confirmed in a second experiment, 

performed in triplicate, in which the cross-sectional area of at least 1000 

inclusions was determined for each unique assay condition and replicate. 

Dose response amino acid competitive inhibition assays 

Hela cells were seeded in 96-well plates and were infected at an MOI = 0.1 

with L2-GFP, Sip2, or rSip2, as described above. Infected monolayers were 
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treated with DMEM-10 supplemented with the indicated concentrations of AA of 

Ile, Leu, Val, Ala, Cys, Ser. The infected monolayers were fixed 44-48 hpi with 

3.7% formaldehyde, permeabilized with 100% methanol, and stained. Cross-

sectional areas of inclusions were measured as describe above. 

Metabolomics assays 

Infection and collection 

Confluent HeLa cell monolayers in T175 flasks (3 biological replicates for 

each condition ) were incubated in DMEM-10 or DMEM-10G for 24 hours to 

deplete tryptophan. The media was aspirated (time zero), and different sets of 

flasks that had been incubated in DMEM-10 or DMEM10 were either mock 

infected or infected with L2-GFP at an MOI = 0.5. Infected monolayers were 

harvested from the flasks at various times post infection. The monolayers were 

washed with ice-cold PBS and cells were detached by treating them with trypsin 

for five minutes. The cells were then washed with ice-cold PBS and pelleted by 

centrifugation at 500 x g for 5 minutes at 4°C. The supernatants were discarded, 

and the cell pellets were weighed and frozen -80°C.  

Processing of cell pellets and QQQ-HPLC Mass Spectrometry 

Cell pellets were thawed on ice and suspended in 100 µl (ddH2O, 

trichloroacetic acid (TCA) (500 mg/ 350 µl ddH2O) and aminobutyric acid (ABA) 

(10 ug)). The cell pellet mixture was then vortexed for 30 seconds, and cell 

debris was pelleted by centrifugation (500 x g for 10 minutes). The supernatant 

was then transferred to a new tube, and an equal volume of acetonitrile was 

added. Samples were then stored at -20°C. 

Samples and AA standards were thawed on ice and separated on an 

Intrada AA column using an Agilent 6460 triple quadrupole mass spectrometer 
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coupled with the Agilent 1200 Rapid Resolution HPLC. Free AA concentrations 

(ng) were determined using Agilent software and normalized to pellet weight 

(ng/mg). Free AA concentrations were compared between the indicated 

conditions and time points. 

Isolation of suppressor mutants 

Confluent monolayers of HeLa cells in T175 flasks were incubated in 

DMEM-10G for 24 hours and then infected at an MOI = 10 with various Sip 

mutants in SPG. The SPG was aspirated, and DMEM-10G was added. Twenty-four 

hpi, the flasks were washed with ice-cold PBS and then DMEM-10TF + indole was 

added. Twenty-four hours later, the infected monolayers were lysed using glass 

beads in SPG and centrifuged to produce EB supernatants. These supernatants 

were then used to infect fresh flasks of HeLa cells that had been pretreated with 

IFN-γ. The process mentioned above was repeated until most of the HeLa cells in 

the flask were infected or if no inclusions were observed after five passages. 

Putative suppressor mutants were plaque cloned and expanded for further 

characterization similarly as described above.  

Electroporation of E. coli strains 

Mutant and wild-type copies of CTL0225 and CTL0226 were cloned into 

E. coli expression vectors (Table 2). E. coli strains were ordered from the E. coli 

genetics stock center at Yale University (Table 3). The strains were made 

electrocompetent using a protocol from the Dr. Jeffery Barrick’s Lab with some 

modifications 

(http://barricklab.org/twiki/bin/view/Lab/ProtocolsElectrocompetentCells). E. 

coli colonies were picked from plates and were then grown overnight in LB + 

Kanamycin broth (50 µg/mL). Five-hundred microliters of the overnight cultures 
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were used to inoculate 250 mL of LB broth, and these were incubated shaking at 

37°C until an OD600 of ~0.6-1.0 was reached. The bacteria were pelleted by 

centrifugation (3220 x g for 10 minutes) in 50 mL conical tubes. The pellet was 

then suspended and washed with 30 mL of ice-cold 10% glycerol solution. The 

centrifugation and washing steps were repeated four times. The cells were then 

suspended in 500 µl of 10% glycerol and 50 µl aliquots were flash frozen in dry 

ice and stored at -80°C.  

Electrocompetent E. coli strains were thawed on ice and transformed with 

~70 ng of the desired vector using pre-chilled electroporation cuvettes (BioRad 

0.1 cm gap). The transformation mixture was then added to 900 µl pre-warmed 

SOC media in 15 mL Falcon tubes and incubated for 60 minutes at 37°C with 

shaking. Fifty microliters were then plated on LB + Amp plates and incubated 

overnight at 37°C. Transformant colonies were picked to a patch plate and 

screened for the desired insert by colony PCR. 

Bioinformatic Analysis 

Transmembrane prediction software TMHMM Server 2.0 

FASTA formatted AA sequences were submitted for analysis to the 

TMHMM Server 2.0 transmembrane prediction server 

(http://www.cbs.dtu.dk/services/TMHMM/). Transmembrane domains were 

graphed using TOPO2 transmembrane protein display software 

(http://www.sacs.ucsf.edu/TOPO2/).  

Statistics 

Data were analyzed using GraphPad Prism version 6.0 for Windows. 

Statistics were calculated using One-Way and Two-way ANOVA and Dunnett’s 

post hoc test for multiple comparisons.  
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Figure 5. IFN-γ persistence screen. HeLa cells were seeded in parallel plates. 
One plate was treated with IFN-γ while the other plate received fresh DMEM-10. 
Untreated and IFN-γ treated HeLa cell monolayers were then infected with equal 
volumes of mutant isolates from an EMS-mutagenized L2-GFP library. Untreated 
monolayers were fixed at 24 hpi, while the media from IFN-γ treated monolayers 
was replaced with DMEM-TF supplemented with indole. Persistent chlamydiae 
were reactivated for 24 hours and then monolayers were fixed. Inclusions from 
the untreated and IFN-γ treated plates were counted and compared. Copyright © 
American Society for Microbiology, [Infection and Immunity, 84, 2016, 2791-
2801, and 10.1128/IAI.00356-16] 
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Co-infect HeLa cells 
with Sip mutants 

Sip1 Sip2 

No Selection 

Enrich for recombinants 

Persistence Screening Conditions 

Pre-treatment 

IFN-γ 

Infect 

Lysate 

Harvest 

Lysate Indole 

Reactivate 

Infect with EB 
supernatants 

Figure 6. Counterselection LGT. HeLa cells were infected with pairs of Sip mutants (e.g. 
Sip1 x Sip2). Thirty six hpi, EBs were collected in SPG and then a portion was used to 
infect HeLa cell monolayers pre-treated with IFN-γ. Twenty four hpi, infected monolayers 
were washed and treated with DMEM-10TF + 10 μM indole to allow Sip recombinants to 
reactivate. Twenty four hours post reactivation, the infected monolayers were collected 
in SPG and the EB supernatants were then used to initiate another round of infection. 
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Figure 7. AA competitive inhibition screen. HeLa cell monolayers in 384-well 
plates were infected with Sip2 and treated with the above combinations of AAs 
at a concentration of 10 mM. Blue boxes indicate wells with large inclusions, red 
boxes indicate wells that contained small inclusions, and green boxes indicate a 
combination of AAs that inhibited the formation of small inclusions. 
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Table 1. Primers used in this study 

Primer Gene Purpose 5' to 3' Sequence 

DN0247 trpA PCR-Forward 
 
ATCATCCGCAGAAACAGAGG 

DN1593 trpRBA PCR-Forward GCTATGCGACATTACTGAAGACTAG 

DN1594 trpB Mutation confirmation-Reverse GTCCATCGTCATCTTGAAGAAGATAC 

DN1595 trpB Sequencing-Forward GTATCTTCTTCAAGATGACGATGGAC 

DN1596 trpRBA PCR-Reverse GCTCATCAAAGGATATGATTCCATG 

DN1597 trpB Sequencing-Forward GCTATTGATGGCCCTAGAGTATTTC 
DN1598 trpB Sequencing-Reverse GAAATACTCTAGGGCCATCAATAGC 

DN1599 trpA Sequencing-Reverse CGGATACCTTCTACGATCTCTAAC 

DN1621 trpB Sequencing-Forward GCATTGGAGTCTTCACATGC 

DN1622 trpA Sequencing-Reverse ACACCTCCTTGAATCAGAGC 

DN1623 trpR Sequencing-Forward AATCAAGAGGAGTCTGGCT 

DN1624 trpR Sequencing-Reverse GAGGATCTGATCCTTTAAG 

DN1626 16S rRNA qRT-PCR-Forward GGAGAAAAGGGAATTTCACG 
DN1627 16S rRNA qRT-PCR-Reverse TCCACATCAAGTATGCATCG 
DN1639 CTL033 Mutation confirmation-Forward  CACTATTGGATAATAAGGTGATTATCG 
DN1640 CTL033 Mutation confirmation-Reverse  GTCTGCACCTTACTCTGTAC 

DN1641 CTL0124 Mutation confirmation-Forward  GAAGCGATGGTTAATAGAGAAC 

DN1642 CTL0124 Mutation confirmation-Reverse  CTCCTATAGAACTGCCTCTAC 
DN1643 CTL0133 Mutation confirmation-Forward  CCACTATGGGCTAATTTATGG 

DN1644 CTL0133 Mutation confirmation-Reverse  CCTAACGCCTATTAAGACATTG 

DN1645 CTL0209 Mutation confirmation-Forward  GATTTCTTACGATTATTCCAGTGG 

DN1646 CTL0209 Mutation confirmation-Reverse  CTATAGCTTTGAATAATGGCCC 

DN1647 CTL0129 Mutation confirmation-Forward  GCAAGTTTACCTACATCCTGAATTAG 
DN1648 CTL0129 Mutation confirmation-Reverse  CCCAGAAACAACACCCAAG 
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Primer Gene Purpose 5' to 3' Sequence 

DN1649 CTL0225 Mutation confirmation-Forward  
 
GTCGATGTAATCATTGCTGGG 

DN1650 CTL0225 Mutation confirmation-Reverse  CCTTCATGGCTATGTGCTTG 

DN1651 CTL0233 Mutation confirmation-Forward  CTACCATAGCTCCTTCTATCAGG 
DN1652 CTL0233 Mutation confirmation-Reverse  CATCCTGAGTCAGAATCATTCTATG 

DN1653 CTL0257 Mutation confirmation-Forward  CATGATTGACCATGTTTAGGATGG 

DN1654 CTL0257 Mutation confirmation-Reverse  CTTAATTCTAAAGCACTCTTACGATAC 
DN1655 CTL0325 Mutation confirmation-Forward  CCTATCAAGTAGGTGTGAGAG 

DN1656 CTL0325 Mutation confirmation-Reverse  GATCACCTGAATGTCATCGATATAC 

DN1657 CTL0447 Mutation confirmation-Forward  GCCAAATCTAATACCTCAGACTATC 

DN1658 CTL0447 Mutation confirmation-Reverse  CGTCGTTACCAGTATTCTATTACCTATC 

DN1659 CTL0722 Mutation confirmation-Forward  CTAGGAGGATGGAAGCGTATAC 

DN1660 CTL0722 Mutation confirmation-Reverse  GTATCTAAGCATTGAGGAGTATGG 

DN1661 CTL0176 Mutation confirmation-Forward  GTTCGTCAAGTTAGAATTTCTTTGTAG 
DN1662 CTL0176 Mutation confirmation-Reverse  GGAATTGAGTTATAAATAGGTGTGTTG 

DN1663 CTL0566 Mutation confirmation-Forward  GATCTCATGTGGAACAACTAAACC 

DN1664 CTL0566 Mutation confirmation-Reverse  GCTGAGGTAGAGCTTCATAACATC 

DN1665 CTL0354 Mutation confirmation-Forward  GCACTACAAGTAATAAGATGCATCTC 

DN1666 CTL0354 Mutation confirmation-Reverse  CGCAATGTATCTCTCCTATGAAC 

DN1667 CTL0366 Mutation confirmation-Forward  CGCTCCTTAAATCTTACTTCACTCTC 

DN1668 CTL0366 Mutation confirmation-Reverse  CATCAGCTCCTATGCTTAAAGC 
DN1669 CTL0440 Mutation confirmation-Forward  GCTTATCTCCCACAACATGATAAC 

DN1670 CTL0440 Mutation confirmation-Reverse  CGTCTTGTCAATCTTCGAGAAG 

DN1671 CTL0175 Mutation confirmation-Forward  GAGAAAATGTAAGTACAAGAATG 

DN1672 CTL0175 Mutation confirmation-Reverse  CTCTTTTAGGATATACTGAGACCTC 
DN1673 CTL0641 Mutation confirmation-Forward  CGATACTCACAAAAACGCATTC 

DN1674 CTL0641 Mutation confirmation-Reverse  CTTTCTGTATGGGATAGTCAAG 
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Primer Gene Purpose 5' to 3' Sequence 

DN1675 CTL0157 Mutation confirmation-Forward  
 
GAACATTCCGGAGTTCATGG 

DN1676 CTL0157 Mutation confirmation-Reverse  CTCCCTAACTTGTAGACAGGAG 
DN1677 CTL0312 Mutation confirmation-Forward  GTAGAAGCGTCAGAGAGAGG 

DN1678 CTL0312 Mutation confirmation-Reverse  CGATGGGTTATTCACAACGAC 
DN1679 CTL0402 Mutation confirmation-Forward  GCTTACATGGCTTCCTATTATGC 
DN1680 CTL0402 Mutation confirmation-Reverse  CTTGAGTATAATGAGCTTCTTGATGAG 

DN1681 CTL0694 Mutation confirmation-Forward  GAACATGTTGGAGAAGAAGCTATAG 
DN1682 CTL0694 Mutation confirmation-Reverse  GTAGATATTAAGATCAAGGCTGCC 

DN2100 CTL0694 
PCR Gene amplification-
Forward 

CAAGAGAATAGCCGAGGTTCTTC 

DN2101 CTL0694 
PCR Gene amplification -
Reverse 

GAGCAGTTTGAAATTCGTACTCAC 

DN2102 CTL0225,  
PCR Gene amplification -
Forward 

GTAAAGTTGTCGTAAATTATCAAGGG 

DN2103 CTL0225 Sequencing Forward CGAATAGTAGCAGCAAGAG 

DN2104 CTL0226 Sequencing Reverse CCATAGCCCTTCCTCTCATG 

DN2105 CTL0226 
PCR Gene amplification -
Reverse 

CTTTCTCGTTGATTATTAGGTTTC 

DN2119 CTL0442 Mutation confirmation-Forward  GGTCTCGATCCCTGAATATAAATAGG 
DN2120 CTL0442 Mutation confirmation-Reverse  GATACGCTTTTTATTAGGATAGTTATGG 
DN2121 CTL0250 Mutation confirmation-Forward  GAATGCGCTGAAGATAAGAAC 
DN2122 CTL0250 Mutation confirmation-Reverse  CCTCAATAGTAAACAGTCCATC 
DN2123 CTL0352 Mutation confirmation-Forward  GAGCTAGTTTCTGTTTCAGTTTATC 
DN2124 CTL0352 Mutation confirmation-Reverse  CAAGAGAGGCAGGATATCGAAC 
DN2125 CTL0658 Mutation confirmation-Forward  GAAAGAGGACAATTATATGCCTGAG 
DN2126 CTL0658 Mutation confirmation-Reverse  CCTACAGATCATCATCTTTGC 
DN2127 CTL0737 Mutation confirmation-Forward  GATTGAAGAATGGCGATATGG 
DN2128 CTL0737 Mutation confirmation-Reverse  CTCTTCACAGGTATGACGAGTG 
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Primer Gene Purpose 5' to 3' Sequence 
DN2144 trpBA Cloning pBAD18-EcoRI GAAAAGGAATTCATGTTCAAACATAAACATCC 

DN2145 trpBA Cloning pBAD18-HindIII CATAAAAAGCTTTTATCCAGGAATAACTGTTTGTGC 

DN2146 CTL0225 Cloning pBAD18-EcoRI GTATTTGAATTCATGCTACATTCACTATTTCGTC 

DN2147 CTL0225 Cloning pBAD18-HindIII ATTTCCAAGCTTCTATCTCTTGACATAGAGAAG 

DN2148 CTL0226 Cloning pBAD18-EcoRI CGTCTCGAATTCATGGACTGGTCATTTTTTTTGTTG 

DN2149 CTL0226 Cloning pBAD18-HindIII GCTTTCAAGCTTTTATAGGAAAGTTTGTTGTAG 

DN2150 CTL0694 Cloning pBAD18-EcoRI TTAAAAGAATTCATGTCTTTATTTTCTAAATTCAAAGC 

DN2151 CTL0694 Cloning pBAD18-XbaI TCGGTATCTAGATTAGTATACGTCTGAAACTAGTC 
aBold faced text indicate inserted restriction enzyme site sequence 
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Table 2. Plasmids used in this study 

Plasmid Name Description Source 

pGFP::SW2 C. trachomatis shuttle plasmid [97] 
pBAD18 Arabinose inducible gene expression cloning vector  
pMM1 pBAD18 expressing wild-type C. trachomatis CTL0225 This study 
pMM2 pBAD18 expressing mutant C. trachomatis CTL0225  This study 
pMM3 pBAD18 expressing wild-type C. trachomatis CTL0226, CTL0225  This study 
pMM4 pBAD18 expressing mutant C. trachomatis CTL0226, CTL0225  This study 
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Table 3. Bacterial strains used in this study 

Strains Description Source 

E. coli   
    BW25113 Parent of JW strains Yale Coli Genetic Stock Center #7636 
    JW2767 Keio collection knockout of serine transporter sdaC Yale Coli Genetic Stock Center #10170 
    JW3060 Keio collection knockout sstT Yale Coli Genetic Stock Center #10335 
C. trachomatis   
    L2-GFP L2 434/Bu transformed with pGFP::SW2 plasmid This study 
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CHAPTER IV:  

Isolation and characterization of persistence mutants  

Prior comparative transcriptomic studies identified a large number of C. 

trachomatis genes that are differentially expressed in normal and persistent RB 

[37, 82]. Except for tryptophan synthase (TS) genes, the roles these genes play 

during IFN-γ mediated persistence have not been explored. Thus, we performed 

a forward genetic screen to identify genes that are essential for Chlamydia to 

enter into, maintain, and reactivate from IFN-γ mediated persistence. 

Mutant library construction 

 A urogenital lymphogranuloma venereum (serovar L2 434/BU) strain that 

expresses GFP (L2-GFP) was used as the library parent because inclusions of this 

strain can be visualized directly by GFP fluorescence (Figure 8). L2-GFP was 

mutagenized with the chemical mutagen ethyl methanesulfonate (EMS). EMS 

primarily causes GC to AT transition mutations, which can generate both 

missense and nonsense mutations, but rarely induces insertion and deletion 

(Indel) mutations [119]. An advantage of using a point mutagen was that it 

reduced the probability of causing polar effects.  

L2-GFP infected McCoy cells were initially treated with EMS to produce a 

pool of mutant EBs. We observed that high concentrations of EMS substantially 

decreased chlamydial EB production. However, we were able to recover 

sufficient numbers of L2-GFP EBs from HeLa cells treated with 4 mg/mL EMS for 

library construction. EBs were cloned from this mutagenized stock using a 

plaque assay, and these were then were expanded and arrayed in 96 deep-well 

plates to make the mutant library. 

Screening for IFN-γ persistence mutants 
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We screened a library of 2,016 chemically mutagenized L2-GFP isolates 

for mutants that had a reduced ability to reactivate from IFN-γ-mediated 

persistence with indole. Briefly, we infected HeLa cells with the mutant library in 

± IFN-γ conditions. We then compared the number of inclusions formed by each 

isolate in the (−) IFN-γ condition, 24 hours post-infection (hpi), and in the (+) IFN-

γ condition, 24 hours post-reactivation (hpr). This comparison led us to calculate 

a mutant persistence ratio. Mutant and L2-GFP persistence ratios were then 

compared to normalize for differing MOIs. Similar to previous studies, we 

observed that L2-GFP produced approximately 50% fewer inclusions following 

reactivation from IFN-γ mediated persistence than in untreated cells (data not 

shown) [74, 82]. In contrast, some library isolates formed markedly fewer 

inclusions following reactivation than in the untreated cells. We identified six 

persistence mutants from the primary screen and verified that their persistence 

phenotypes were statistically significant (p < 0.0001) in subsequent assays 

(Figure 9). We named these isolates Sip mutants because they were sensitive to 

IFN-γ-mediated persistence. 

One-step growth curve analysis was used to compare the developmental 

kinetics of L2-GFP and these six Sip mutants during normal growth conditions. 

Untreated HeLa cells were infected with L2-GFP and each of the Sip mutants in 

parallel. The numbers of EBs generated by each Sip mutant were 

indistinguishable from the number produced by L2-GFP (Figure 10). These 

results indicated that the Sip mutants were not compromised in fitness and that 

the mutant persistence phenotypes we observed were related to their inability 

to enter, maintain, and be reactivated from, IFN-γ mediated persistence.  

Mapping deleterious persistence alleles in the Sip mutants 
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A whole-genome sequencing (WGS) approach was used to compare the 

genomic sequences of L2-GFP and the Sip mutants. Sip mutants had between 2 

to 8 mutations and contained at least two nonsynonymous mutations in 

predicted coding sequences (Table 4).  

The lack of overlapping polymorphisms prevented us from using linkage 

analysis to map the deleterious persistence mutations in the Sip mutants. 

However, Sip1 had a missense mutation in trpB, which encodes the β-subunit of 

TS. A mutation in a TS related gene was expected and is a key datum that 

validates the efficacy of the screen we developed. However, because Sip1 

contains two other missense mutations we could not definitively conclude that 

the mutation in trpB was causing Sip1 to form fewer inclusions following 

reactivation from persistence. Thus, we needed a way to link the persistence 

phenotype to a specific genotype. 

We initially used an in vitro antibiotic lateral gene transfer (LGT) 

approach to isolate Sip recombinants and map the deleterious persistence 

alleles in each strain. Antibiotic LGT enriches for recombinants by selecting 

against strains that only have one endogenous resistance allele [110, 116]. A 

limitation of this approach is that endogenous antibiotic resistance alleles 

acquired by mutating genes such as rpoB, gyrA, and 16S rRNA are known to 

affect growth [120-124]. Unfortunately, the antibiotic-resistant Sip and 

recombinant mutant strains we generated had growth defects that confounded 

attempts to map persistence alleles. 

We next sought to map causative persistence mutations by using a 

counterselection LGT approach. This technique produces markerless 

recombinants by enriching for strains that have a wild-type phenotype and 
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selecting against strains that still retain a deleterious persistence allele [111, 

112]. As a proof of concept for this mapping strategy, we focused on the Sip 

mutants that had the strongest persistence phenotypes (Sip1, Sip2, and Sip6).  

HeLa cells were co-infected with different pairs of Sip mutants (Sip1 x 

Sip2, Sip1 x Sip6, Sip2 x Sip6). Co-infections were then repeatedly passaged in 

HeLa cells cultivated in the persistence screen conditions (Figure 6). Phenotypic 

revertants arose from these co-infection experiments. In contrast, no revertants 

arose from control infections that used twice the amount of infectious inoculum 

of single Sip mutants after several passages. This observation suggested that the 

phenotypic revertants detected in co-infected wells resulted from recombination 

and were not genetic revertants or suppressor mutants.  

We next attempted to use counterselection LGT to map the other Sip 

mutants. However, we were unable to enrich for recombinants using the 

attempted crossing strategy (Sip3 x Sip4, Sip3 x Sip5, and Sip4 X Sip5) because 

almost every HeLa cell was infected in the co-infected and Sip parent alone wells 

after the first passage using the persistence screen conditions. This trend 

continued for several passages. This observation indicated that EB production 

might influence the ease of enriching for recombinants. To address this 

hypothesis, we investigated how much infectious EB each of the Sip mutants 

produced following reactivation from persistence with indole. 

Infectious progeny assays were used to compare Sip mutant EB 

production following IFN-γ treatment and reactivation with indole. Sip1, Sip2, 

and Sip6 produced the fewest infectious EB as compared to L2-GFP (<5%). In 

contrast, the decline in EB production of Sip 3, Sip4 and Sip5 was relatively 

modest (19%, 40%, and 39%, respectively) (Figure 11). These data suggest that 
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enriching for recombinants is more efficient when Sip mutants produce little to 

no infectious EB after reactivating from persistence. Since we were unable to 

map the persistence alleles in Sip3, Sip4, and Sip5, all subsequent assays focus 

on characterizing Sip1, Sip2, and Sip6. 

Allele mapping uncovers novel persistence genes 

L2-GFP and recombinant Sip (rSip) strains (rSip1, rSip2, and rSip6) formed 

similar numbers of inclusions after reactivation with indole (Figure 12). Sanger 

sequencing confirmed that each rSip strain differed from a Sip mutant parent by 

one nonsynonymous mutation. This analysis linked nonsynonymous mutations 

in genes encoding the β-subunit of TS (trpB), a putative integral membrane 

protein (CTL0225), and a putative oxidoreductase (CTL0694) to the persistence 

phenotypes of Sip1, Sip2, and Sip6, respectively (Table 4). 

Sip mutants fail to reactivate from persistence 

 Results from our secondary screen could not be used to determine 

whether the Sip mutants were compromised in their ability to enter, maintain, 

or be reactivated from, IFN-γ mediated persistence. To address this issue, we 

used established methods to examine the inclusions of each mutant. Light 

microscopy indicated the inclusions of the Sip mutants were significantly 

smaller (p <0.0001) than those of L2-GFP following reactivation, despite being 

similar or larger in size under normal growth conditions (Figure 13 B-C). TEM 

revealed that there were no obvious differences in EB or RB morphology in 

untreated HeLa cells (Figure 14 A-D), consistent with the results of the one-step 

growth curve experiments (Figure 10). However, in IFN-γ + indole treated HeLa 

cells, only Sip mutant inclusions still contained aberrant RB following 

reactivation. In contrast, dividing RB were frequently observed in HeLa cells 
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infected with L2-GFP, and rSip strains (Figure 14E-H). These results suggested 

that the Sip mutants could enter persistence, but could not reactivate from 

persistence. 

Since the results from the TEM analysis indicated that the Sip mutants 

could not reactivate from IFN-γ mediated persistence, we wanted to test if the 

remaining inclusions produced infectious EB. Untreated HeLa cells were infected 

with lysates from IFN-γ-plus-indole-treated infections and inclusions were 

counted 34 hpi. All three of the Sip mutant strains produced significantly (p < 

0.0001) fewer infectious EBs than L2-GFP (Figure 15A). This result confirmed 

that the Sip mutants do not reactivate from persistence with indole and are 

impaired in their ability to produce infectious progeny. 

Additionally, we tested if the Sip mutants produced infectious EBs 

following reactivation with Trp to determine if Sip2 and Sip6 had defects in 

acquiring or converting indole into Trp. Trp and indole similarly rescued L2-GFP 

EB production. In contrast, Trp did not enhance EB production of the any of the 

Sip mutants (p < 0.0001) (Figure 15B). Interestingly, Sip1 EB production was not 

fully rescued by treatment with Trp (p < 0.0001), which was surprising because 

EB production of a C. trachomatis trpB null mutant can be reactivated with Trp 

[109]. These results suggest that the reason the Sip mutants are unable to 

reactivate from persistence is unrelated to Trp availability and that mutant TrpB 

(TrpBP221S) in Sip1 may have a deleterious alternative function.  

Sip1 and Sip2 make fewer genomes following reactivation with indole and 

tryptophan 

 Next, we wondered why the Sip mutants failed to reactivate from 

persistence with Trp. One possibility was they were dying during persistence. If 

http://iai.asm.org/content/84/10/2791.long#F6
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the Sip mutants were dying during persistence, then they should have reduced 

genome replication following reactivation from persistence. Using quantitative 

PCR (qPCR), we measured and compared the rate at which L2-GFP and the Sip 

mutants replicated their genomes during IFN-γ treatment and reactivation from 

persistence with indole and tryptophan.  

Consistent with previous reports that C. trachomatis genome replication 

continues during persistence, albeit more slowly [57], L2-GFP and the Sip 

mutants replicated their genomes slowly between 2 to 24 hpi in IFN-γ treated 

HeLa cells (Figure 16). However, Sip1 genome replication diverged during 

reactivation with indole and Trp. Genome replication of Sip1 slightly increased 

36 hpr with indole but increased approximately 5-fold during the same interval 

after the addition of Trp. This result suggested that Trp, but not indole, was 

able to mitigate the deleterious effects of mutant TrpB (TrpBP221S) expressed in 

Sip1. Genome replication of Sip2 was decreased and delayed during reactivation 

with indole and Trp, suggesting that this mutant might be dying during 

persistence and is unable to resume rapid replication of its genome. In contrast, 

Sip6 genome replication was similar to L2-GFP following reactivation with both 

indole and Trp. These data indicate that Sip6 can survive during persistence, but 

is unable to transition back into normal RB and EB, while both Sip1 and Sip2 

may be dying during persistence due to an unknown mechanism. 

Sip mutants are differentially sensitive to IFN-γ 

IFN-γ upregulates the expression of many ISGs [125]. We tested if IFN-γ 

treatment could inhibit the development of the Sip mutants in Trp replete 

conditions, as it could indicate if ISGs are playing a role in Sip1 and Sip2 dying 

during persistence. Untreated and IFN-γ treated HeLa cells were infected with L2-
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GFP and the Sip mutants in parallel. IFN-γ-plus-Trp was added immediately 

following infection to prevent C. trachomatis from entering persistence. The 

numbers of inclusions formed (Figure 17A) and their relative sizes (Figure 17B) 

were assessed 24 hpi. Sip1 produced more inclusions (p < 0.01) that were not 

significantly different in size than L2-GFP in the Trp-replete conditions. This 

result suggested that TrpBP221S expression in Sip1 was only detrimental to 

chlamydial survival during IFN-γ mediated persistence. Sip2 also formed slightly 

more inclusions (p < 0.05), which were significantly larger (p < 0.0001) than 

those seen with L2-GFP in IFN-γ-plus-tryptophan-treated cells. This result is 

consistent with the Sip2 inclusions being significantly (p < 0.0001) larger than 

L2-GFP inclusions under normal growth conditions (Figure 13B). In contrast, the 

numbers of inclusions Sip6 formed were similar to L2-GFP (n.s), but Sip6 formed 

significantly smaller inclusions (p < 0.0001). This result indicated that a Trp-

independent effect of IFN-γ might affect the development and subsequence size 

of Sip6 inclusions during persistence. 

Trp starvation alone prevents Sip mutants from reactivating  

Next, we used a Trp-limiting (TL) persistence model to determine if Trp 

starvation alone was sufficient to inhibit the Sip mutants from reactivating from 

persistence with either indole or Trp [72]. We incubated HeLa cells in Trp-free 

medium (DMEM-10TF) for 24 hours to deplete Trp. Trp-replete and Trp-depleted 

HeLa cell monolayers were then infected with L2-GFP, Sip and rSip strains. We 

then compared the number of inclusions formed in Trp-replete conditions, 24 

hpi, to the number of inclusions formed in the Trp-deleted conditions, 24 hpr, 

with indole or Trp. L2-GFP, Sip, and rSip strains formed similar ratios of 

inclusions following reactivation with either indole or tryptophan (Figure 18). 

http://iai.asm.org/content/84/10/2791.long#F4
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The ratios calculated from the TF persistence model were similar to ratios 

observed in the IFN-γ mediate persistence model (Figure 9). These results 

suggest that Trp limitation alone is sufficient to inhibit the Sip mutants from 

reactivating from persistence. Additionally, these results indicate Trp starvation 

was responsible for the phenotypes observed with the Sip mutants in the IFN-γ 

mediated persistence model. 

The P221S mutation may disrupt substrate channeling of indole and Trp 

synthesis 

Indole is usually shuttled through a substrate tunnel to the active site of 

the β-subunit where it interacts with Ser to form Trp. However, in the absence of 

indole, the β-subunit of TS hydrolyzes Ser into pyruvate and ammonia [126]. We 

hypothesized that the P221S mutation in Sip1 disrupts indole from interacting 

with the active site of the β-subunit leading to the production of ammonia 

instead of Trp. If ammonia is being produced while Sip1 is in persistence, then 

this could explain why Sip1 does not fully reactivate from persistence with Trp.  

Using Phyre2 and PyMOL analysis, we mapped the P221S mutation in 

TrpB onto the crystal structure of Salmonella typhimurium TS. Results from this 

in silico analysis suggested that the P221S mutation was located on the 

periphery of TrpB and did not directly interact with the substrate tunnel or the 

active site of the β-subunit. This observation suggests that the P221S mutation 

must cause a conformational change that disrupts indole from reaching the 

active site of TrpBP221S (Figure 19). 

To gain a better understanding of the P221S mutation and how it may 

lead to the production of ammonia we generated suppressor mutants. HeLa 

cells were infected with Sip1, which was then induced to enter and reactivate 
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from IFN-γ mediated persistence with indole. After several passages, suppressor 

mutants were isolated, and trpB was Sanger sequenced to determine the location 

of the suppressor mutation. One of these suppressor mutants had a Q52P 

mutation, also, located on the periphery of TrpBP221S (Figure 19). This result 

suggested that the Q52P mutation likely corrects the conformational change 

that prevented indole from interacting with the active site of the β-subunit. 

CTL0694 may be involved in DNA damage repair 

CTL0694 is annotated as a putative oxidoreductase [78]. Blastp analysis 

indicated that CTL0694 shares strong protein homology (47%) with an 

oxidoreductase in Bacteroides fragilis whose function is unknown. Other 

proteins that are similar to CTL0694 are annotated as being part of the sulfite 

reduction pathway, specifically the α-subunit of the sulfite reductase complex, 

CysJ. 

E. coli CysJ shares 28% protein homology to CTL0694. CysJ transfers 

reducing elections to effector proteins in both the sulfite reduction and a DNA 

damage repair pathways. In the sulfite reduction pathway, CysJ helps to reduce 

sulfite to hydrogen sulfide by forming a multimeric complex with CysI 

(CysJ8CysI4), through its FMN domain. In a DNA damage repair pathway, CysJ 

forms a complex with YcbX (CysJYcbX) and helps to detoxify mutagenic 

nucleobases such as HAP to adenine. As CTL0694 lacks an FMN domain, we 

hypothesize CTL0694 is likely playing a role in DNA damage repair during IFN-γ 

mediated persistence. 

Using PyMOL analysis, we aligned mutant CTL0694 (CTL0694P105L) to E. coli 

CysJ, which revealed that the P105L mutation is close to an FAD-binding site 

(Figure 20). This observation suggests that the P105L mutation may interfere 
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with FAD binding to CTL0694. To determine if the this was the case, we 

generated Sip6 suppressor mutants as described above. We isolated a 

suppressor mutant that encoded a G75S mutation mapped to the periphery of 

CysJ, far from the FAD binding site (Figure 20). This result indicated that the 

P105L mutation likely does not disrupt FAD binding but may affect CTL0694 

from binding to an effector protein.  
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Figure 8. C. trachomatis L2 was transformed with pGFP::SW2. GFP expression 
(Green) and anti-chlamydial LPS Alexa 594 staining (Red) was compared 36 hpi. 
The pattern of GFP expression was similar to that of chlamydial LPS staining. 
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Figure 9. Secondary screening confirmed that the Sip mutants made fewer 
inclusions following reactivation as compared to untreated wells and L2-GFP. 
Bars represent the mean untreated/IFN-γ treated inclusion ratios normalized to 
L2-GFP. n=3. Error bars indicate SD, ***, p <0.001, ****, p <.0001. Copyright © 
American Society for Microbiology, [Infection and Immunity, 84, 2016, 2791-
2801, and 10.1128/IAI.00356-16] 
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Figure 10. Sip mutants exhibit normal growth kinetics. The number of 
infectious EB produced by L2-GFP and Sip mutants was assessed at various 
intervals post infection. The number of inclusions formed for each strain was 
normalized to the initial inoculum. Data points represent the mean number of 
infectious progeny obtained from the indicated time points. n=3. Error bars 
indicate SD.  

Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 11. Sip mutants make fewer EB following reactivation. Cell lysates for 
L2-GFP and Sip mutants were harvested following reactivation with indole. 
Infectious EB was enumerated using an infectious progeny assay. Bars represent 
the mean percentage normalized to L2-GFP. n=3 
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Figure 12. Sip recombinants form similar numbers of inclusions as L2-GFP. 
Sip mutant recombinants isolated from counter-selection LGT, make similar 
numbers of inclusions as L2-GFP following reactivation from IFN-γ mediated 
persistence. Bars represent the mean percentage normalized to L2-GFP. n=3, 
Error bars indicate SD. n.s, non-significant.  

Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 13. Sip mutants make smaller inclusions following reactivation. (A) 
Fluorescent images of inclusions under normal growth conditions and following 
reactivation from IFN-γ mediated persistence with indole. (B-C) Quantification of 
the size of inclusions depicted in (A). > 1000 inclusions were measured. Bars 
represent the mean percentage normalized to L2-GFP.  Error bars indicate SD. 
****, p <.0001, n.s, non-significant.  

Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 14. Transmission electron microscopy of L2-GFP and Sip mutants. (A-
D) L2-GFP and Sip mutants form normal sized inclusions and RB in untreated 
HeLa cells 24hpi. (E-H) Only Sip mutants form small inclusions containing 
aberrant RB following reactivation with indole from IFN-γ mediated persistence. 
White arrows indicate examples of aberrant RB. 

Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 15. Sip mutant EB production cannot be rescued by Trp or indole. IFN-γ 
treated HeLa cells were infected with L2-GFP or Sip mutants and then the 
infections were reactivated with (A) indole or (B) tryptophan. The infections 
were harvested 24 h post-reactivation and the EBs in the lysates enumerated in 
untreated HeLa cells. The number of inclusions each strain formed were 
normalized to the inoculum and then compared to L2-GFP. The graph depicts 
the mean of the results of three experiments performed in triplicate. The error 
bars indicate SD. ****, p <.0001. 
Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 16. Genome replication is altered during Sip mutant reactivation. 
Genome copy numbers of L2-GFP and the Sip mutants were characterized pre- 
and post- (A) indole or (B) Trp reactivation using primers and a probe-set 
targeting the C. trachomatis 16S rRNA gene. The arrows indicate the time of 
indole or Trp addition. Data points represent the mean number of genome 
copies from two experiments performed in duplicate. 
 
Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 17. Sip 6 forms small inclusions in the presence of IFN-γ + Trp (A) The 
Sip mutants form similar numbers of inclusions in the presence of IFN-γ and 
excess Trp when compared to L2-GFP. (B) However, only Sip6 makes 
significantly smaller inclusions. Bars represent the mean percentage normalized 
to L2-GFP for the number of inclusions, and inclusion area. n=3. At least 1000 
inclusions for each strain were analyzed for area of inclusion studies. Error bars 
indicate SD. *,p <.05, **, p <.01, ****, p <.0001, n.s, non-significant. 

Copyright © American Society for Microbiology, [Infection and Immunity, 84, 
2016, 2791-2801, and 10.1128/IAI.00356-16] 
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Figure 18. Trp starvation alone induces Sip mutants to enter persistence HeLa 
cells were depleted of Trp and infected with the indicated strains. The number 
of inclusions produced by each strain was compared to L2-GFP following 
reactivation with either indole or Trp. Bars represent the mean percentage 
normalized to L2-GFP. n=3. Error bars indicate SD. 
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Figure 19. Sip1 TrpBP221S aligned to Salmonella typhimurium TS. The mesh 
crystal structures of the α- and β- subunits of S. typhimurium TS are outlined in 
cyan and green, respectively. The purple spheres outline a bound substrate 
threaded through the substrate tunnel connecting the active sites of the α- and 
β- subunits. The yellow spheres represent pyridoxal 5’-phosphate in the active 
site of the β subunit. The red spheres outline the location of the P221S mutation 
in TrpBP221S, and the green spheres indicate the location of the G52P suppressor 
mutation in Sip1. This image was generated using the PyMOL molecular graphics 
system. 
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Figure 20. Sip6 CTL0694P105L aligned to the crystal structure of E. coli CysJ. 
The ribbon model outlines CTL0694P105L and CysJ in green and cyan, respectively. 
The blue spheres depict the location of a NAD binding site. The red spheres 
indicate the location of FAD binding sites with bound FAD, which is shown as 
yellow spheres. Orange and white spheres outline the location of the P105L 
mutation in CTL0694 and the G75S suppressor mutation in Sip6, respectively. 
This image was generated using the PyMOL molecular graphics system. 
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Table 4. Mutations in Sip mutants. 

Mutant AA Codon Gene Locus Expected Function 

Sip1 

 818  CTL0033 Phosphopeptide binding protein 
 341 groEL CTL0124 60 kDa chaperonin GroEL 

A -> T 241  CTL0133 Hypothetical protein 
D -> N 62  CTL0209 Hypothetical protein 
P -> S 221 trpB CTL0423a Tryptophan synthase subunit beta 

Sip2 

G -> R 298 ftsW CTL0129 Cell division protein 
G -> E 77  CTL0225 a Putative integral membrane protein 

 258 cpa CTL0233 Putative exported protease 
 93 gatC CTL0257 Aspartyl/glutamyl-tRNA amidotransferase subunit C 

S -> F 365  CTL0325 ABC transporter permease 
Intergenic     

G -> E 299  CTL0447 Putative integral membrane protein 

 64 ispD CTL0722 
2-C-methyl-D-erythritol 4-phosphate 
cytidylyltransferase 

Sip3 

S -> N 246 plsB CTL0176 Glycerol-3-phosphate acyltransferase 
Intergenic     

 245  CTL0291 Hypothetical protein 
P -> L 1,128 rpoC CTL0566 DNA-directed RNA polymerase subunit beta' 

Sip4 
G -> R 37 trxB CTL0354 Thioredoxin reductase 
G -> R 14 groES CTL0366 Co-chaperonin GroES 
G -> E 39 tmk CTL0440 Thymidylate kinase 

Sip5 
P -> S 831 ptr CTL0175 Exported insulinase/protease 
H -> Y 37  CTL0641 Hypothetical protein 

Sip6 
S -> F 71  CTL0157 Putative integral membrane protein 

 39 pmpG CTL0250 Polymorphic outer membrane protein 
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Mutant AA Codon Gene Locus Expected Function 

P -> S 225  CTL0312 Hypothetical protein 

Sip6 

 381 nusA CTL0352 Transcription elongation factor NusA 
D -> N 945  CTL0402 Putative integral membrane protein 

 238 gltT CTL0658 Sodium:dicarboxylate symport protein 
P -> L 105  CTL0694 a Putative oxidoreductase 

 296  CTL0737 Hypothetical protein 
L2-GFP 

SNP 
R -> C 131  CTL0882 Hypothetical protein 

a Mapped persistence allele 

Copyright © American Society for Microbiology, [Infection and Immunity, 84, 2016, 2791-2801, and 10.1128/IAI.00356-
16] 
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CHAPTER V: 

Characterization of Sip2 

The G77E mutation in CTL0225 may disrupt AA transport 

BLASTp identified CTL0225 as a putative integral membrane protein that 

is highly conserved among Chlamydia species (>89%) that is homologous to 

other intracellular and extracellular bacterial proteins in E. coli (31%), B. 

aphidicola (33%), and C. burnetii (35%). Additionally, CTL0225 shares homology 

with a small neutral AA transporter (SnatA) from Thermococcus strain KS-1 

(29%).  

SnatA is predicted to have six transmembrane domains and has been 

shown to transport glycine (Gly) and alanine (Ala) [127]. Similar to SnatA, 

THMHMM server 2.0 analysis indicated CTL0225 also contains six 

transmembrane domains (Figure 21A). Additionally, results from this in silico 

analysis suggested that the Gly77 to glutamate (G77E) mutation in Sip2 disrupts 

the 3rd transmembrane domain of CTL0225 (Figure 21B). This disruption may 

occur because Gly77 is located one AA away from a GXXXG motif, which is 

hypothesized to mediate helix-helix association and proper folding of integral 

membrane proteins [128]. Collectively, these observations suggest that CTL0225 

is an AA transporter and that mutant CTL0225 (CTL0225G77E) is nonfunctional. 

Amino acid competitive inhibition causes Sip2 to form small inclusions.  

Typically, similar AAs are transported through the same AA transporters 

[129-131]. However, when one AA is present in excess, AA transport can be 

inhibited due to competitive inhibition. Braun et al. suggested that C. 

trachomatis formed small inclusions in the presence of excess Leu, Ile, Met, and 

Phe because these AAs are antagonists of Val. They speculated that these AAs 



 

72 
 

competitively inhibited the transport of Val, which led to a shortage of Val 

inside Chlamydia [67]. 

We speculated that CTL0225 transports a specific group of AAs and that 

the G77E mutation in Sip2 makes CTL0225 nonfunctional. Additionally, we 

hypothesized that Sip2 will form small inclusions in the presence of excess AA 

that CTL0225 normally transports, due to increased competitive inhibition of 

other chlamydial AA transporters. To test this hypothesis, we devised an AA 

competitive inhibition screen where Sip2 infected HeLa cells were treated with a 

high concentration (10 mM) of 18 single AAs alone or in the indicated pairs 

(Figure 7). Tyrosine (Tyr) or Trp could not be assessed because high 

concentrations were either insoluble or cytotoxic, respectively (data not shown).  

Sip2 formed small inclusions in cells treated with excess Ile, Leu, Ser, and 

cysteine (Cys). Small inclusions were not detected in cells co-treated with Val + 

Ile and Leu or for Ala + Ser and Cys (Figure 7). These results confirm the 

observation made by Braun et al. that high concentrations of Ile and Leu cause 

Val starvation, and indicate Ser and Cys antagonize the transport of Ala. 

Additionally, these results indicate that CTL0225 may be playing a role in two 

different AA transport systems, as these AAs have not been previously 

described to be transported together. 

Sip2 is hypersensitive to excess isoleucine 

 The competitive inhibition screen indicated that Sip2 formed small 

inclusions in response to treatment with 10 mM Ile. However, it did not 

differentiate if the small inclusions observed were a normal C. trachomatis 

response to 10 mM Ile. Inclusion sizes of strains encoding a wild-type allele of 

CTL0225 (L2-GFP, Sip1, Sip6, rSip2) were compared to Sip2 in the presence of 
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increasing concentrations of Ile (0-30 mM). In the absence of Ile, all strains 

formed similar sized inclusions. However, when treated with 10 mM Ile, only 

Sip2 formed significantly smaller inclusions (p <0.0001). This trend continued 

even at the highest dose (30 mM) assayed (p <0.0001) (Figure 22).  

Excess isoleucine starves Sip2 of valine 

Some AA transporters can transport Ile, Leu, and Val [132-134]. However, 

the AA competitive inhibition screen indicated that only excess Ile antagonized 

the transport of Val and not Leu. To confirm our screening results, HeLa cells 

were infected with L2-GFP, Sip1, Sip2, Sip6, or rSip2 in the presence of 10 mM Ile 

and increasing concentrations (0-30 mM) of Val or Leu. Results from the 

competitive inhibition assays indicated that 5 mM Val was sufficient to allow 

Sip2 to form large inclusions in the presence of Ile (Figure 23A). However, even 

at the highest concentration of Leu assayed (30 mM), Sip2 did not form large 

inclusions (Figure 23B). These results indicate that 10 mM Ile starves Sip2 of Val 

and not Leu. Additionally, these results suggest that when Sip2 is treated with 

Ile, antagonism of Val transport increases due to the inability of CTL0225G77E to 

transport Ile. 

Excess cysteine or serine starve Sip2 of alanine 

The competitive inhibition screen indicated that Sip2 was sensitive to 

high concentrations of Ser and Cys. Using similar competitive inhibition assays 

as described above with Ile, we validated that treatment with 10 mM Ser (Figure 

24) and Cys (Figure 25) caused Sip2 to form significantly smaller inclusions than 

L2-GFP (P<.0001) 44-48 hpi. Additionally, we confirmed that when Sip2 was co-

treated with 10 mM Ser or Cys + Ala, Sip2 formed large inclusions that were 

similar in size to L2-GFP (Figure 24 and 25). Interestingly, two distinct 
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populations of inclusions were evident when Sip2 was treated with 10 mM Ser. 

Most the Sip2 inclusions assayed, following treatment with Ser, were small; 

however, a minority of inclusions formed a distinct cluster of large inclusions. 

This phenomenon was only observed when Sip2 inclusions treated with Ser, as 

treatment with Cys, Ile, or Leu induce Sip2 to form a tighter cluster of small 

inclusions (Figure 26).  

Next, we wanted to validate results of the AA competitive inhibition 

screen that suggested only structurally similar AAs (Ile, Leu, Val or Ala, Cys, Ser) 

mediate competitive inhibition and rescue of Sip2. HeLa cells were infected with 

Sip2 and then treated with either 10 mM Ile and Ala or Ser and Val. We 

confirmed that the addition of 10 mM Ala does not alleviate AA starvation 

caused by Ile treatment, as Sip2 still formed significantly smaller inclusions 

than L2-GFP (p < .0001) (Figure 27). Similarily, Ser treatment still caused Sip2 to 

form small inclusions when co-treated with 10 mM Val (Figure 28). These results 

indicated that excess Ile exclusively antagonizes the transport of Val, while 

excess Ser only inhibits the transport of Ala. These results support the 

hypothesis that CTL0225 is involved in the transport of two classes of AA that 

have not been previously described as limited during IFN-γ mediated 

persistence. 

IFN-γ depletes free amino acid pools 

Our competitive inhibition assays suggested that free AA may be limiting 

during IFN-γ mediated persistence. HPLC-mass spectrometry was used to 

determine if free AA pools in HeLa cells deplete over time in ± IFN-γ conditions. 

Untreated and IFN-γ treated monolayers were pelleted and weighed at each time 

point indicated. Following cell lysis, proteins were precipitated, and free AAs 
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were isolated from the supernatant. The concentration of free AAs was 

normalized to cell pellet weight to control for variability between samples. The 

average concentration of free AAs collected from 3 biological replicates was 

then compared between ± IFN-γ conditions.  

Initially, we wanted to determine if free AA concentrations fluctuated 

during normal HeLa cell growth. If free AA concentrations fluctuated over time 

during normal growth, then this could confound our interpretations about the 

availability of free AA when HeLa cells are treated with IFN-γ and/or infected 

with C. trachomatis. Metabolomics analysis of normally growing HeLa cells 

suggested that the concentrations of free AAs were stable (Figure 29).  

Next, we wanted to determine if IFN-γ depletes free AA in HeLa cells. Most 

AA decreased over time in IFN-γ treated HeLa cells (Figure 30). This observation 

led us to speculate that CTL0225 may circumvent host AA limitation during IFN-

γ mediated persistence. Additionally, we observed that the concentration of free 

Trp was the low at every time point assayed in IFN-γ treated cells compared to 

untreated HeLa cells (Figure 31). This result suggested that IDO1 was the only 

host factor actively degrading an AA. Furthermore, we speculate general AA 

depletion, caused by IFN-γ treatment, might be due to an increase in protein 

synthesis and charging of unbound tRNAs. 

C. trachomatis increases free amino acid pools 

Sip2 has normal growth kinetics in the absence of IFN-γ (Figure 10), 

indicating that CTL0225 is nonessential during normal growth. Additionally, 

this suggests free AA pools are not limiting during C. trachomatis infection. To 

test this hypothesis, we used HPLC-mass spectrometry to determine the free AA 

concentrations in uninfected and infected HeLa cells over time, as described 
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above. The concentration of free AA was higher in C. trachomatis infected HeLa 

cells as compared to uninfected cells, 24 and 36 hpi (Figure 32). These results 

indicate C. trachomatis infection causes an increase in free AA and suggest that 

having multiple AA transporters may be dispensable during normal growth. 

IFN-γ decreases AA pools in C. trachomatis infected cells 

Lastly, we tested if C. trachomatis could increase free AA pools in IFN-γ 

treated HeLa cells. Free AA concentrations were determined as described above 

and compared to uninfected HeLa cells. The concentration of most of the free 

AAs resembled what was observed in uninfected IFN-γ treated HeLa cells by 24 

hpi (Figure 33). This result showed that C. trachomatis did not counteract the 

effects of IFN-γ to decrease free AA pools. Additionally, all the AA CTL0225 may 

transport, specifically Ile, Leu, Val, Ala, Cys, and Ser, were decreased 24 hpi. 

These observations support the hypothesis that AA transporters, such as 

CTL0225, are essential for survival during IFN-γ mediated persistence. 
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Figure 21. G77E alters CTL0225 membrane topology. (A) Membrane 
topology of wild type CTL0225. (B) G77E in Sip2 is predicted to disrupt the 
third transmembrane helix of CTL0225. TMHMM Server 2.0 predicted 
transmembrane orientation and TOPO2 display software. 
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Figure 22. Sip2 is sensitive to high concentrations of Ile. All of the indicated 
strains make smaller inclusions in response to increasing concentrations of 
isoleucine. L2-GFP, Sip1, Sip6 and rSip2 make similar sized inclusions at the 
same Ile concentrations. In constrast, Sip2 makes significantly smaller 
inclusions when compared to L2-GFP. Bars represent mean inclusion size. n=3.  
At least 1000 inclusions for each strain were analyzed. Error bars indicate SD. 
****, p <.0001 
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Figure 23. Only Val reverses the Sip2 small inclusion phenotype. The strains 
were treated with 10mM Ile in the presence of increasing concentrations of 
either (A) Val, or (B) Leu. The addition of 5mM Val was sufficient to allow Sip2 
to form large inclusions when co-treated with 10mM Ile. However, increasing 
concentrations of Leu did not allow Sip2 to form large inclusions when co-
treated with Ile. Bars represent mean inclusion size. n=3. At least 500 inclusions 
for each strain were analyzed. Error bars indicate SD. ****, p <.0001 
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Figure 24. Ala reverses formation of small inclusions induced by excess Ser. 
HeLa cells were infected with the above strains and were either left untreated or 
treated with 10 mM Ser, or 10 mM Ser + Ala. Sip2 formed significantly smaller 
inclusions that L2-GFP and rSip2 strains when treated with Ser alone and this 
phenotype was reversed with the addition of 10 mM Ala. Bars represent the 
mean inclusion size of at least 1000 inclusions. n=3. Error bars indicate SD. ****, 
p <.0001. 
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Figure 25. Ala reverses Sip2 small inclusion phenotype caused by Cys. HeLa 
cells were infected with the indicated strains and were either left untreated or 
treated with 10 mM Cys or 10 mM Cys + Ala. Sip2 formed significantly smaller 
inclusions than L2-GFP and rSip2 when treated with Cys alone. Sip2 formed 
large inclusions when co-treated with 10 mM Cys and Ala. Bars represent the 
mean inclusions size of at least 1000 inclusions. n=3. Error bars indicate SD. 
****, p <.0001. n.s. non-significant. 
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Figure 26. Sip2 forms two populations of inclusions when treated with Ser. 
Sip2 infected cells were treated with 10 mM Cys, Ser, Ile, or Leu. Infected 
monolayers were fixed 44-48 hpi, and the area of each inclusion was 
determined. Measurements of individual inclusion sizes are depicted. The 
average and standard deviation of inclusion sizes in each condition are 
represented by the indicated lines. At least 500 Sip2 inclusions were measured 
for each treatment condition. 
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Figure 27. Ala does not reverse the small inclusion phenotype caused by Ile. 
Hela cells were infected with L2-GFP, Sip2, and rSip2, and were either left 
untreated or treated with 10 mM Ile and Ala. The small inclusion phenotype 
caused by Ile treatment was not reversed with the addition of Ala. Bars 
represent the mean inclusions size of at least 1000 inclusions. n=3. Error bars 
indicate SD. ****, p <.0001. n.s. non-significant. 
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L2-GFP 

Sip2 

rSip2 

10mM Serine Untreated 
10mM Serine 
10mM Valine 

Figure 28. Sip2 does not form large inclusions in the presence of Val + Ser. 
The indicated strains were used to infect HeLa cells that were left untreated, 
treated with 10 mM Ser or 10 mM Ser + Val. These are representative images 
from one experiment. Inclusions were stained with anti-chlamydial LPS and 
Alexa Flour 488 secondary antibody. FIJI was used to adjust brightness and 
contrast. 
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Figure 29. Free AA concentrations remain stable over time. Uninfected and untreated HeLa 
cells were harvested at the indicated time points and free AA were quantified using HPLC-
Mass spectrometry. Concentrations were normalized to an internal standard, and mg cell 
weight. Bars represent the mean concentration from three replicate samples. Error bars 
indicated SD. 
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Figure 30. Free AA decrease over time in IFN-γ treated HeLa cells. HeLa cells were treated for 
24 hours with IFN-γ. This time point was redefined as time zero. Free AA were collected and 
quantified at the indicated time points. Concentrations of the majority of the AAs decreased 
over time. Bars represent the mean of three replicate samples. Error bars indicated SD. 
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Figure 31. IFN-γ decreases free AA pools in HeLa cells. Free AA concentrations were compared between 
untreated and IFN-γ treated HeLa cells at the indicated time points. IFN-γ treatment decreased all free AA 
pools by 36 hours. Bars represent the average free AA concentrations of three replicate samples 
normalized to uninfected HeLa cells. 
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Figure 32. C. trachomatis increases some free AA pools. Free AA concentrations were compared 
between uninfected and L2-GFP infected HeLa cells. Pools of some AAs progressively increased in 
infected cells over time as compared to uninfected HeLa cells. Bars represent the average free AA 
concentrations of three replicate samples normalized to uninfected HeLa cells. 
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Figure 33. Free AAs do not increase during IFN-γ mediated persistence. HeLa cells were treated with IFN-γ for 24 hours 
and then infected with L2-GFP. Monolayers were collected, and the concentration of free AAs was determined as 
described above. Free AAs pools were compared between C. trachomatis infected + IFN-γ treated HeLa cells and 
untreated HeLa cells. Most AA pools decreased over time. Bars represent the average free AA concentrations of three 
replicate samples normalized to uninfected HeLa cells. 
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Chapter VI: 

Discussion 

Caveats in chlamydial genetics 

In the past decade, there have been significant advances in the 

development of chlamydial genetic tools such as transformation, 

complementation, and allele mapping [40, 100, 135, 136]. Despite these recent 

advances in chlamydial genetics, several challenges for genetically manipulating 

Chlamydia spp. remain. 

CaCl2 based transformation efficiency of strains containing the 

endogenous chlamydial plasmid and the transformation of large shuttle 

plasmids still needs improvement. Curing the endogenous plasmid may improve 

transformation efficiency, but this is a laborious process that takes many 

rounds of passaging with sub-inhibitory concentrations of novobiocin [137]. 

Reducing the shuttle plasmid size by eliminating nonessential pgp genes could 

increase transformation efficiency; however, the side effects of eliminating 

these genes has not been fully explored [138]. An alternative approach is to use 

a more efficient method of introducing large plasmids into C. trachomatis. A 

known method of transforming large plasmids into bacteria is electroporation 

[139]. Additionally, this approach has previously been used to transform C. 

trachomatis with shuttle plasmids [140]. Thus, electroporation may be worth 

revisiting as a more efficient method of introducing large plasmids into 

Chlamydia. 

Complementation in C. trachomatis is another genetic tool that is in its 

infancy. Only three mutant genes have been complemented in C. trachomatis 

[100, 102, 106]. However, it is unknown how the overexpression of chlamydial 
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proteins affects chlamydial fitness. The problem with existing complementation 

methods is that they introduce the gene of interest at a non-physiological copy 

number. Gene dosage toxicity caused by overexpression of proteins has been 

observed in other organisms [141, 142], suggesting elevated concentrations of 

chlamydial proteins may be deleterious to chlamydial fitness.  

A possible way to mitigate gene dosage toxicity is to use an inducible 

system. A Tet-inducible GFP system, recently developed in C. trachomatis, only 

expresses GFP when ATc is present in the medium [143]. However, the authors 

indicate this system is leaky. While this may not affect the results of 

complementation experiments, the “leakiness” of the Tet-inducible system 

should be considered when interpreting some results. A possible way of limiting 

the “leakiness” of the Tet promoter is to increase binding of the tetracycline 

repressor (TetR) to the shuttle plasmid by introducing additional Tet response 

elements upstream of the Tet promoter. 

Mapping mutant alleles in C. trachomatis is challenging. Antibiotic LGT 

has been used to generate recombinants and map alleles [110, 116]. However, 

this method has some limitations such as the limited number of chromosomal 

genes that confer resistance to antibiotics and the fact that antibiotic resistance 

decreases chlamydial fitness [144, 145]. For example, rpoB and gyrA are 

routinely mutated to confer resistance to rifampicin and ofloxacin, respectively 

[110, 116, 144, 146, 147]. However, mutations in rpoB and gyrA inhibit growth 

and development [121, 122]. Additionally, mutating the chlamydial 16S rRNA 

gene confers resistance to spectinomycin and kasugamycin; however, mutating 

this gene also decreases chlamydial fitness [124, 148]. Thus, antibiotic LGT is 

not an ideal mapping strategy for mutants whose phenotype is tied to 
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development because recombinants generated using this method will have 

growth defects. 

Limitations of identifying Sip mutants and mapping persistence genes 

The purpose of the persistence screen was to identify genes C. 

trachomatis uses to enter, maintain, and reactivate from IFN-γ mediated 

persistence. We were only able to isolate six Sip mutants and all of these 

mutants had mutations in different genes, which suggests that our screen was 

not saturated. This result is likely linked to the concentration of EMS we used to 

mutate L2-GFP. We used a low concentration of EMS to mutate L2-GFP because 

we wanted fewer mutations in each Sip mutant [109]. Having fewer mutations 

per genome would make mapping the deleterious persistence mutations easier 

by LGT. Alternatively, mapping could have been facilitated by performing a 

screen of minimally mutagenized mutants but this would have increased screen 

size. 

We chose not to use antibiotic LGT to map the deleterious persistence 

mutations in the Sip mutants because the persistence phenotype is related to 

chlamydial development and we found introducing resistance mutations into 

rpoB and gyrA confounded our persistence screen results. To circumvent the 

limitations of antibiotic LGT we developed a counterselection LGT approach, 

which does not use selective antibiotic markers. The main premise behind 

counterselection LGT is that chlamydiae naturally recombine their genomes at a 

low frequency [149]; however, the trick is enriching for these rare recombinants.  

We have noticed counterselection LGT works best with mutants that have 

strong phenotypes related to EB production. For example, the Sip mutants that 

we could map (Sip1, Sip2, Sip6) generate almost no infectious progeny following 
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reactivation from persistence with indole. In contrast, we could not map the Sip 

mutants that made 25 to 50% of EBs (Sip3, Sip4, Sip5), as compared to L2-GFP 

(Figure 11). These results suggest the main limitation of counterselection LGT is 

that enrichment of recombinants depends heavily on mutant EB production, 

which influences the strength of selection. Additionally, these results indicate a 

more robust LGT technique needs to be developed to map the deleterious 

persistence mutation in these types of Sip mutants or the enrichment strategy 

needs to be more carefully designed. A possible way of improving upon 

counterselection LGT is to recombine mutants such as Sip3 with other mutants 

that make fewer EB such as Sip1, or with conditional temperature-sensitive 

mutants, which make little to no EB at 42°C [111].  

Mutant tryptophan synthase in Sip1 may be detrimental 

One of the Sip mutants identified in the persistence screen had a P221S 

mutation in TrpB (TrpBP221S). Isolating a Sip mutant with a mutation in a TS 

related gene was expected. However, this mutant does not fully reactivate from 

IFN-γ mediated persistence with Trp (Figure 15). This result was surprising 

because a C. trachomatis serovar D mutant that contains a null mutation in TrpB 

can fully reactivate by Trp from IFN-γ mediated persistence [109]. This result 

suggests that either the persistence model we used differs from the model used 

by Kari et al. or TrpBP221S may not ablate the function of TrpB but cause toxicity 

that is not resolved by the addition of Trp. 

In the absence of indole, the β-subunit of TS favors a side reaction that 

hydrolyzes Ser into pyruvate, ammonia, and H2O [126]. Normally, indole is 

shuttled from the α-subunit to the active site of the β-subunit through a 

hydrophobic tunnel. Once at the active site of the β-subunit, indole interacts 
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with an aminoacrylate intermediate, formed by the β-elimination of OH- from 

Ser, to synthesize Trp [150-152]. However, disrupting the hydrophobic tunnel 

between the α- and β-subunits can allow H2O molecules to enter the active site 

of the β-subunit. When this occurs, H2O hydrolyzes the aminoacrylate 

intermediate to produce pyruvate and ammonia [153].  

We speculate that the P221S mutation, located on the periphery of TrpB, 

may cause a conformational change that prevents the shuttling of indole and 

may allow H2O to leak into the active site of the β-subunit. This hypothesis is 

supported by suppressor analysis, which indicates a suppressor mutation 

(Q52P), also located on the periphery of TrpBP221S, may restore the substrate 

tunnel (Figure 19). We observed that Sip1 genomes replicate more rapidly during 

Trp compared to indole reactivation. This result suggests that TrpR (repressor 

of TS operon) is dampening expression of TrpBP221S, resulting in lower ammonia 

production due to less TS expression. This hypothesis could be test by inducing 

expression of TrpR during IFN-γ mediated persistence may allow Sip1 to 

reactivate with Trp [74, 109, 154, 155]. 

CTL0694 may be involved in DNA damage repair 

CTL0694 is an oxidoreductase that is similar to CysJ. In E. coli, CysJ 

forms a multimeric complex with CysI (CysJ8CysI4) through its FMN domain and 

plays a critical role in the sulfite reductase pathway. However, CTL0694 lacks an 

FMN domain, and C. trachomatis does not encode an obvious CysI homologue, 

suggesting CTL0694 is not playing a role in sulfite reduction.  

Recently, E. coli CysJ has been shown to have a secondary function. By 

forming a complex with YcbX, the CysJYcbX complex plays a critical role in 

detoxifying N-hydroxylated nucleobases, such as 6-N-hydroxylaminopurine 
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(HAP) [156, 157]. Enzymes that detoxify HAP-like nucleobases have been 

observed in phylogenetically diverse organisms ranging from green algae [158] 

to humans [159, 160], suggesting most organisms need to detoxify mutagenic 

nucleobase analogs. 

Humans naturally generate HAP-like nucleobase analogs in the presence 

of oxidative radicals [161]. To reduce incorporation of toxic nucleobase analogs 

into replicating DNA, humans encode mitochondrial amidoxime reducing 

component (mARC) 2 which is capable of converting these toxic analogs into 

non-toxic bases. However, this system may become overwhelmed in the 

presence of IFN-γ because IFN-γ is known to increase the generation of oxidative 

radicals [162]. Thus, during IFN-γ mediated persistence, C. trachomatis may need 

to rely on nucleobase detoxifying enzymes to prevent incorporation of toxic 

nucleobases during genome replication.  

We speculate that CTL0694 is playing a critical role in preventing 

incorporation of toxic nucleobases into replicating genomes during IFN-γ 

mediated persistence, as chlamydiae scavenge purines and pyrimidines from 

host nucleotide pools [163]. Failure to detoxify these nucleobases in the 

presence if IFN-γ could explain why Sip6 makes smaller inclusions than L2-GFP 

in IFN-γ + excess tryptophan conditions (Figure 16). Additionally, it could 

explain why Sip6 makes similar numbers of genomes as L2-GFP but produces 

fewer infectious progeny following reactivation with either Trp or indole (Figure 

14). Lastly, we hypothesize that the P105L mutation in Sip6 may be inducing a 

conformational change that is preventing CTL0694 from binding to a YcbX-like 

protein. Protein-protein interaction assays could elucidate what CTL0694 binds 
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during IFN-γ mediated persistence and provide insight into what role CTL0694 

plays in IFN-γ ± conditions. 

Chlamydia increase AA during normal development 

Intracellular pathogens are known to encode effectors that increase the 

concentration of free AA. For example, Legionella pneumophila injects Ankyrin-

B, a type IV effector, into the host cytoplasm to hijack host polyubiquitination 

and protein degradation machinery. When this occurs, degradation of host 

proteins increases, and there is a significant increase in free AA levels [164, 

165]. Like L. pneumophila, C. trachomatis may increase free AA concentrations 

(Figure 32). However, it is unknown if the increase in free AA pools is caused by 

C. trachomatis or the host response to infection. Many of these host proteins are 

involved in cellular growth and proliferation [166], suggesting increased host 

AA transport may play a role in increasing free AA pools. Additionally, these 

results support the hypothesis that AA transporters, such as CTL0225, are 

dispensable during normal growth due to sufficient AA concentrations. 

Amino acid transport in Chlamydia 

There are only a few AA transporters annotated in the chlamydial 

genome. The chlamydial MtR homologue TyrP may transport Trp and tyrosine 

(Tyr), although this has never been verified. The only characterized chlamydial 

AA transporter is CTL0817, a BrnQ homolog. Chlamydial BrnQ transports Val 

and may be involved in the transport of Ile, Leu, Phe, and Met, as determined by 

AA competitive inhibition assays [67]. Notably, chlamydial BrnQ has expanded 

substrate specificity. In other bacteria, BrnQ only transports BCAA [132, 167], 

but in Chlamydia it may also transport Phe and Met [67]. Our results suggest 

CTL0225 is another AA transporter with expanded substrate specificity.  
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CTL0225 is likely a component of two AA transport systems 

Sip2 formed significantly smaller inclusions than L2-GFP when treated 

with a high concentration of Ile, Leu, Ser or Cys. As discussed in the 

introduction, a high concentration of one AA can block the transport of another 

similar AA. When competitive inhibition occurs, subsequent AA starvation 

induces C. trachomatis to form small inclusions. Consistent with this, when Sip2 

is treated with Ile, Leu, Ala, or Ser it forms small inclusions. However, when Sip2 

is co-treated with Val + either Ile or Leu, or Ala + either Ser or Cys, it forms large 

inclusions. Thus, CTL0225 is likely an AA transporter that is involved in the 

transport of BCAA, Ala, Cys, and Ser across the chlamydial inner membrane. 

These AAs have not been previously shown to be transported together [168, 

169]. This observation suggests that CTL0225 may be a component of two 

distinct transporters.  

CTL0225 has an upstream paralog, CTL0226. Both of these proteins are 

predicted to be members of the small neutral amino acid transporter (SNAT) 

family. This family of proteins is predicted to contain six transmembrane 

domains [170]. Like SnatA, CTL0226 is also predicted to contain six 

transmembrane domains.  

SnatA family members are also predicted to transport neutral AAs. 

Recombinant SnatA transports Gly, whose transport can be competitively 

inhibited by a broad range of neutral AAs. Ala, Ser, and Cys, were amongst the 

strongest inhibitors (>80%) of Gly transport [171]. These observations are 

consistent with our competitive inhibition data that suggests CTL0225 may be 

involved in the transport of Ala, Ser, and Cys in C. trachomatis. Interestingly, Ile, 

Leu, and Val also weakly inhibit Gly transport. However, because most BCAA 
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transporters are predicted to have 12 transmembrane domains [134, 172], and 

Sip2 shows distinct competitive inhibition of Val transport by Ile and Leu, we 

speculate that CTL0225 may form a homodimer or heterodimer with its 

paralogue CTL0226 to transport BCAA. 

SnatA mediated Gly transport was 60% inhibited by Trp [171]. We 

speculate that CLT0225 may also be involved in the transport of Trp. However, 

we were unable to test this because high concentrations were cytotoxic to HeLa 

cells. Additionally, we observed that the Sip2 mutant made fewer inclusions 

than L2-GFP following reactivation with Trp, suggesting Sip2 could not make 

proteins critical for survival and reactivation due to the inefficient transport of 

Trp and the above-mentioned AAs.  

IFN-γ restricts host free AA pools 

Chlamydiae are auxotrophic for many AA and are highly dependent on 

their host cells for nutrients [78, 173]. Depleting or limiting the availability of 

AA, such as BCAA, Trp, and phenylalanine can inhibit chlamydial development 

and induce entry into persistence [72, 174, 175]. It is unknown how host AAs 

traverse the inclusion membrane or if chlamydiae actively or passively transport 

AAs once they are inside the inclusion lumen. However, it is known that 

cycloheximide can enhance chlamydial development by increasing free cytosolic 

AAs pools by inhibiting host protein synthesis [173, 176]. Additionally, 

chlamydiae incorporate radiolabeled AA added to cell culture medium [177]. 

These data suggest AA concentrations in the host cell cytoplasm can affect AA 

availability within the chlamydial inclusion. Thus, in AA limiting conditions 

chlamydial AA transporters may become important. 
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The broad specificity of AA substrates that CTL0225 may transport 

suggested AAs are limiting during IFN-γ mediated persistence. Our 

metabolomics data indicate IFN-γ treatment causes all free AAs to decrease over 

time as compared to untreated cells (Figure 30). This observation was surprising 

because IFN-γ has not been shown to deplete AAs other than Trp [178]. 

Additionally, IFN-γ induces autophagy, which maintains critical levels of AAs for 

cell host survival by degrading host proteins [179]. This is consistent with our 

metabolomic data, which suggests IFN-γ treatment causes the depletion of AAs 

in HeLa cells over time. Additionally, these results support the hypothesis that 

C. trachomatis may encode multiple AA transporters and effectors to counter 

AA starvation caused by IFN-γ mediated AA depletion. 

Overall, we have validated the hypothesis that C. trachomatis has 

mechanisms, besides tryptophan synthesis, to circumvent the effects of IFN-γ 

mediated persistence. We have identified two additional genes that play a role in 

IFN-γ mediated persistence. We hypothesize that CTL0694 plays a critical role in 

C. trachomatis reactivating from persistence because Sip6 makes similar 

numbers of genomes as L2-GFP but is unable to transition from aberrant RB 

back into EB. Identifying the protein partner of CTL0694 is paramount to 

understanding its role during persistence. CTL0225 is an AA transporter with a 

broad substrate specificity that becomes necessary during AA limiting 

conditions. Metabolomics data indicate for the first time that free AA pools 

decreased over time in HeLa cells treated with IFN-γ treatment, and that the 

active or passive mechanisms of AA depletion in eukaryotic cells should be 

investigated. Additionally, chlamydial effectors that increase AA concentrations 

should be identified and tested as they may function as nutritional virulence 
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factors. Lastly, we have described a TS mutant that may produce ammonia 

instead of Trp. This mutant could test the hypothesis that ocular strains of 

Chlamydia have inactivated TS to avoid ammonia production in the absence of 

indole. 
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Chapter VII: 

Future Directions 

Constructing a larger library to screen for additional Sip mutants 

 We identified only 6 Sip mutants from our persistence screen. These 

mutants did not have overlapping mutations, indicating the screen was 

unsaturated. A larger mutant library needs to be constructed to identify 

additional Sip mutants. However, making a larger library by plaque cloning is 

cost prohibitive, time-consuming, and labor-intensive. Fluorescence-activated 

cell sorting (FACS) is a fast and robust tool that has been used to sort cells 

infected with a GFP-expressing Rickettsia prowazekii [180] and cells containing 

fluorescently labeled C. trachomatis inclusions [181, 182]. Additionally, FACS 

has been used to sort single cells into individual wells [183, 184]. These studies 

indicate that cells infected with GFP-expressing C. trachomatis could be quickly 

sorted into individual wells by FACS to make a large mutant library. 

Mapping additional Sip mutant persistence alleles 

We were unable to map the deleterious persistence alleles in Sip3, Sip4, 

and Sip5 by recombining them with each other (Sip3 x Sip4, Sip3, x Sip5, Sip4 x 

Sip5). However, it may be possible to map these alleles by altering the 

recombination scheme. By recombining these mutants with mutants that make 

little to no EB, such as Sip1, or Sip6 it may be possible to map the remaining 

persistence alleles. Alternatively, reverse genetic techniques could also be used 

to map the deleterious persistence alleles. 

Determine if autophagy is involved in clearing persistent inclusions 

 L2-GFP forms fewer inclusions following reactivation from persistence 

compared to when it infects untreated HeLa cells. However, it is unknown how 
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cells are clearing inclusions during persistence. A possible mechanism that cells 

use to clear inclusions is autophagy. IFN-γ induces autophagy and the formation 

of autophagosomes that localize with lysosomes [185]. Additionally, IFN-γ 

induces expression of human guanylate binding proteins 1 and 2, which 

associate with the chlamydial inclusion and facilitate fusion with 

autophagosomes [186]. These studies suggest that during IFN-γ mediated 

persistence cells induce autophagy to clear chlamydial inclusions. 

To test the hypothesis that IFN-γ is inducing autophagy to clear 

inclusions during persistence, wild-type and KO cell lines lacking key autophagy 

proteins, such as ATG7 or ATG16, could be treated with IFN-γ and infected with 

L2-GFP [187]. If autophagy is playing a key role in the clearance of inclusions 

during persistence, then the autophagy KO cell lines should have more 

inclusions than wild-type cells.  

Fluorescent microscopy could also be used to monitor autophagosome 

formation in wild-type and autophagy KO cell lines. LC3 is an autophagosomal 

marker that associates with autophagosomes. If autophagosomes are clearing 

chlamydial inclusions in wild-type cells during persistence, then LC3 should 

colocalize with chlamydial inclusions. Conversely, in autophagy KO cell lines 

LC3 should not colocalize with chlamydial inclusions. 

Determine if Sip1 is degrading mutant TrpB 

 We have not determined if TrpBP221S is being expressed at similar 

concentrations as wild-type TrpB during persistence. Western blot analysis can 

be used to compare expression of wild-type and mutant TrpB; however, we do 

not have an antibody to chlamydial TrpB. Alternatively, we can place an N- or C- 

terminal His-tag on TrpB and mutant TrpB, and express these proteins from a 
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shuttle plasmid, using their native promoter, in a ∆trpB C. trachomatis 

background. An anti-His antibody could then be used to detect wild-type TrpB, 

and mutant TrpB by Western blot and relative expression could be quantified by 

densitometry [188]. 

Assess if mutant TrpB produces ammonia 

In the absence of indole the β-subunit of TS can slowly hydrolyze Ser to 

pyruvate and ammonia [153]. We hypothesize that mutant TrpB (TrpBP221S) 

cannot utilize indole and is producing ammonia instead of Trp. Mutant and 

wild-type TS could be expressed and purified from E. coli [155]. By mixing 

purified wild-type and mutant TS with Ser and indole, ammonia and Trp should 

be produced [126, 189]. The concentration of ammonia and Trp can be 

quantified using HPLC [190]. 

Determine if TrpBP221S expression is deleterious for chlamydial growth 

If TrpBP221S is deleterious to chlamydial growth, then strains that express 

TrpBP221S should make smaller inclusions and fewer EB than strains expressing 

TrpB. Wild-type and mutant trpB genes, placed under control of an inducible 

promoter, could be expressed from a shuttle vector in the presence of indole in 

a ∆trpB C. trachomatis background. As a control, ∆trpB C. trachomatis, 

harboring an empty vector, should be assessed in parallel with TrpB and 

TrpBP221S -expressing strains. If TrpBP221S is deleterious to chlamydial growth, then 

it should make smaller inclusions and less EB than strains expressing wild-type 

TrpB or the empty vector. 

Determine CTL0694 interacting partners and function 

CTL0694 is predicted to be an oxidoreductase that provides reducing 

electrons to an unknown protein during IFN-γ mediated persistence. 
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Determining what protein CTL0694 binds to will help to define the role of 

CTL0694 during normal growth and IFN-γ mediated persistence. By expressing 

wild-type and mutant CTL0694 (CTL0694P105L) in C. trachomatis during normal 

growth and IFN-γ mediated persistence, co-immunoprecipitation assays could be 

used to isolate proteins that interact with CTL0694. Mass spectrometry and 

database mining could then be used to identify the interacting protein partners 

and help us to define the role CTL0694 plays during persistence. Additionally, 

we could also compare the binding partners between wild-type and CTL0694P105L 

to determine if the P105L mutation disrupts protein-protein interactions.  

Determine if Sip2 expresses CTL0225G77E during IFN-γ mediated persistence 

 Loss of the third transmembrane domain of CTL0225 likely inhibits AA 

transport function. However, it may be possible that the G77E mutation induces 

transcriptional degradation, translational silencing, or post-translational 

degradation of mutant CTL0225 (CTL0225G77E). Quantitative PCR can be used to 

detect mutant CTL0225 mRNA expression levels to confirm that CTL0225G77E is 

still being transcribed throughout normal development and during IFN-γ 

mediated persistence. However, since we do not have an antibody to CTL0225, 

we cannot readily determine if CTL0225G77E is post-translationally degraded. An 

alternative approach to creating an antibody to CTL0225 would be to fuse an 

epitope tag to the N- or C- terminal end of CTL0225G77E and express it under its 

endogenous promoter from a shuttle plasmid. If this protein is being expressed 

and not degraded, it should be detectable by Western blot. 

While it is suggestive that the G77E mutation causes the loss of function 

of CTL0225, it may be possible that this mutation causes translational silencing 

or post-translational degradation of mutant CTL0225. Quantitative PCR can be 
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used to detect mutant CTL0225 mRNA expression levels to confirm that 

CTL0225G77E is still being transcribed throughout normal development and 

during IFN-γ mediated persistence. However, determining if Sip2 is post-

translationally degrading CTL0225G77E is more challenging since we do not have a 

CTL0225 antibody. As an alternative approach to making an antibody, we could 

fuse an N- or C- terminal epitope tag to CTL0225 and CTL0225G77E and express 

these proteins under their endogenous promoter from a shuttle plasmid. If 

CTL0225G77E is being expressed and not degraded, it should be detectable by 

Western blot. Additionally, we can determine if CTL0225 forms a homodimer or 

heterodimer with CTL0226 by comparing native and SDS-PAGE gels. 

Confirm CTL0225 transports amino acids 

 We hypothesize that the CTL0225 transports Ser, Cys, and Ala, while a 

homodimer or heterodimer of CTL0225 + CTL0226 is responsible for the 

transport of Leu, Ile, and Val. To directly assess the substrate specificity of 

those these proteins we could use radiolabeled (C14) AA in AA transport assays. 

We can clone these chlamydial genes into E. coli expression vectors and then 

transform these recombinant plasmids into strains of E. coli that cannot 

transport Ser or BCAA. By assessing radioactivity uptake in competitive 

inhibition assays with “cold AA,” we can determine how well these proteins 

transport each AA. 

Determine if Sip2 is sensitive to low concentrations of AA 

 Metabolomics analysis of IFN-γ treated HeLa cells suggest AA are limiting 

during IFN-γ mediated persistence. Having multiple AA transporters may help to 

circumvent the effects of low AA concentrations. To test the hypothesis, HeLa 

cells could be incubated in DMEM-10 with no AA for 24 hours, to deplete AA, 
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and then infected with L2-GFP, Sip2, or rSip2. Inclusion sizes and EB production 

can then be compared at 24, 36, and 48, hpi. If Sip2 makes smaller inclusions 

and less EB than L2-GFP or rSip2, then it would suggest that Sip2 is not able to 

fully reactivate from persistence because of AA starvation and because it 

expresses a non-functional CTL0225. 
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