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ABSTRACT 

Gretta L. Stritesky 

 

 

THE DEVELOPMENT AND COMMITTEMENT OF T HELPER SUBSETS 

 

T helper cells play a crucial role in providing protection against a wide variety of 

pathogens.  The differentiation and effector function of T helper cell subsets is 

dependent on cytokine activation of Signal Transducer and Activator of 

Transcription (STAT) family members.  The development of Th17 cells, which are 

important for immunity to fungi and extracellular bacteria, relies on STAT3.  We 

show that IL-23 in combination with IL-1β promotes maintenance of the Th17 

phenotype following multiple rounds of stimulation.  However, IL-23 does not 

promote commitment of Th17 cells, and when Th17 cells are cultured with IL-12 

or IL-4 they switch to a Th1 and Th2 phenotype, respectively.  The maintenance 

of the Th17 phenotype by IL-23 also requires STAT4.  STAT4-deficient memory 

cells cultured with IL-23 have reduced IL-17 production following stimulation with 

either anti-CD3 or IL-18+IL-23 stimulation compared to wild type memory cells.  

Furthermore, STAT4-deficient mice have impaired in vivo Th17 development 

following immunization with ovalbumin.  This challenges a one-STAT/one-subset 

paradigm and suggests that multiple STAT proteins can contribute to a single 

phenotype.  To test this further we examined whether STAT3 is required for the 

development of Th2 cells, a subset known to depend upon the IL-4-induced 
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activation of STAT6 for immunity to parasites and promoting allergic 

inflammation.  We demonstrate that in the absence of STAT3, the expression of 

Th2-associated cytokines and transcription factors is dramatically reduced.  

STAT3 is also required for in vivo development of Th2 cells.  Moreover, allergic 

inflammation is diminished in mice that have T cells lacking expression of 

STAT3.  STAT3 does not affect STAT6 activation, but does impact how STAT6 

functions in binding target genes.  Thus, multiple STAT proteins can cooperate in 

promoting the development of specific T helper subsets. 

 
 
 
 
 
                                                                                 Mark H. Kaplan, Ph.D.-Chair 
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INTRODUCTION  

Innate and adaptive immune responses 

Humans are threatened by invading pathogens on a daily basis.  However, we 

are usually unaware of this due to the sophisticated protection provided by our 

immune system.  The immune system is composed of two subdivisions important 

for host protection; the innate and adaptive immune systems.  The innate 

immune system plays an important role in fast acting clearance of pathogens.  

Following infection, the innate immune response does not provide long lasting 

immunity.  Conversely, the adaptive immune response is specific for particular 

pathogens or components of pathogens.  The adaptive immune system plays a 

critical role in protection against subsequent infections due to its ability to provide 

long-lasting protective immunity.  Collectively, the innate and adaptive immune 

systems provide a comprehensive defense against most pathogens the host may 

encounter.   

 

The ability to recognize a wide variety of pathogens allows the innate immune 

system to combat a diverse repertoire of pathogens.  The innate immune system 

employs several mechanisms that help avoid or destroy pathogens.  The first line 

of defense provided by the innate immune system includes both physical and 

chemical barriers of the body.  The skin and linings of the gastrointestinal tract 

and respiratory tract provide a physical barrier that blocks the entrance of many 

infectious organisms.  Working in concert with the physical barriers, chemical 

barriers such as sweat, digestive enzymes, defensins, gut flora, surfactant, 
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mucus, saliva, and tears provide an additional line of defense.  Even though the 

physical and chemical barriers are successful in providing protection against 

most invaders, some pathogens break the barriers and initiate an infection.  The 

innate immune system provides further protection upon breach of the host 

barriers through the actions of the innate immune cells.  The basic function of the 

innate immune system is to opsonize or phagocytose pathogens, activate the 

complement cascade, and/or initiate the pro-inflammatory response.  

 

In order to carry out these functions the innate immune system is armed with 

many highly specialized cell types including granulocytes (neutrophils, 

eosinophils, basophils, and mast cells) Natural Killer (NK) cells, γδ T cells, NKT 

cells, and phagocytic cells (neutrophils, dendritic cells, and macrophages).  

Granulocytes are one of the first responders to infection.  They express several 

chemokine and cytokine receptors that help them quickly migrate to the site of 

infection.  Granulocytes, as their name implies, secrete granules that are anti-

microbial as well as cytokines that aide in the recruitment and activation of other 

immune cells (Nathan, 2006). 

 

NK cells play an important role in tumor rejection and killing of virally infected 

cells.  NK cells express several surface receptors that recognize target cells that 

do not express inhibitory ligands.  Upon encountering cells lacking these ligands, 

NK cells become activated and release cytotoxic granules consisting of perforin 

and granzyme, which can kill tumor or infected cells.  NK cells also release large 
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amounts of IFN-γ and IL-4 which in turn activate other immune cells (Lodoen and 

Lanier, 2005; Raulet and Guerra, 2009). 

 

γδ T cells represent a small subset of T cells that express a T cell receptor (TCR) 

composed of the γ chain and the δ chain.  The expression of the γδ TCR makes 

these T cells distinct from the conventional T cells that express a TCR composed 

of an α and β chain.  γδ T cells have restricted TCR diversity and it is thought 

that antigen processing and presentation is not necessary for antigen 

recognition.  The TCR of γδ T cells can function as a pattern recognition receptor 

and therefore can recognize and respond to microbes directly.  γδ T cells have 

many functions that are not restricted to innate immunity, but rather are also 

thought to be important in adaptive immunity (Born et al., 2006).  

 

Like γδ T cells, the characterization of NKT cells as innate versus adaptive 

immune cells is not very clear.  NKT cells are a lineage of T cells that express NK 

cell markers.  The T cell receptors expressed on NKT cells are very limited and 

are thought to play an important role in recognizing lipids.  The recognition of 

lipids by NKT cells requires the antigen-presenting molecule CD1.  After lipid 

recognition, NKT cells secrete cytokines, such as IL-4 and IFN-γ, which help 

guide the adaptive immune response (Bendelac et al., 2007). 

 

Perhaps the most critical cell in innate immunity is the phagocyte.  Phagocytes 

are able to discriminate between pathogen and host surface molecules and upon 
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recognition, phagocytes engulf the pathogen.  Once the pathogen is internalized, 

phagocytes utilize several mechanisms to kill the pathogen.  The intracellular 

compartments of the phagocyte contain antimicrobial enzymes, proteins and 

peptides that can fuse with the pathogen-containing compartment and lead to 

killing of the pathogen.  Other mechanisms of pathogen killing utilized by 

phagocytes include the production of nitric oxide, superoxide anion, and 

hydrogen peroxide, which are all lethal to bacteria.  The other role of phagocytes 

in innate immunity lies at the crucial interface of the innate and adaptive immune 

responses.  After ingestion by the phagocyte, pathogens are broken down into 

small peptides, which are then loaded onto major histocompatibility complex 

(MHC) molecules.  This MHC-antigen complex is then transported to the cell 

surface where it can activate lymphocytes and initiate the adaptive immune 

response (Blander, 2008; Guermonprez et al., 2002; Jutras and Desjardins, 

2005).   

 

It is critical for the innate immune system to be capable of distinguishing foreign 

pathogens from host molecules.  Innate immune cells express a variety of 

receptors that allow them to recognize many components of bacteria, viruses, 

fungi, and parasites or pathogen-associated molecular patterns (PAMPs).  The 

recognition of PAMPs is through pattern recognition receptors (PRRs) which 

innate immune cells express at high levels.  Surface pattern recognition 

receptors that recognize PAMPs include toll like receptors and the mannose 

receptor (Apostolopoulos and McKenzie, 2001; Beutler et al., 2006; Takeda et 
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al., 2003).  There are also PRR family members, NOD-like receptors and RNA 

helicases, that are cytoplasmic and therefore recognize intracellular pathogens 

(Inohara et al., 2005; Thompson and Locarnini, 2007).  Upon PRR engagement, 

innate cells secrete several cytokines and chemokines, up-regulate co-

stimulatory molecules, and process and present antigen to adaptive immune 

cells.  These processes are important for the clearance of the pathogen through 

the activation and recruitment of adaptive immune cells (Blander, 2008).  

 

The primary cell type important for carrying out the adaptive immune response is 

the lymphocyte.  The major types of lymphocytes are B and T cells.  The 

prominent function of B cells in the adaptive immune response is to produce 

antibodies.  B cells express a B cell receptor on the cell surface, which 

recognizes a specific native antigen.  Upon engagement of the B cell receptor 

(and in most cases additional help from CD4+ T cells is required) the B cell 

differentiates into a short-lived plasma cell.  Plasma cells produce and secrete 

large amounts of antibody.  A small percentage of plasma cells become memory 

B cells, which are important in subsequent infections.  T cells are the other 

important lymphocyte type in the adaptive immune response.  T cells are further 

differentiated based on the surface expression of CD8 or CD4.  CD8 cells T cells, 

also called cytotoxic T lymphocytes (CTLs), are important for protection and 

clearance of intracellular pathogens and tumor surveillance due to their cytotoxic 

potential (Harty et al., 2000).  CD4 T cells are referred to as “T helper cells” (Th).  
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Like their name suggests, T helper cells provide protection to the host by helping 

or directing other cells to carry out effector functions. 

 

JAK-STAT pathway 

Cytokines play a critical role in T helper cell differentiation, the process through 

which antigen naïve CD4 T cells acquire effector phenotypes.  They mediate 

their actions primarily through the activation of the Janus family tyrosine kinases 

(JAKs)/Signal Transducer and Activator of Transcription (STAT) pathway.  The 

Janus kinase family consists of 4 family members, JAK1, JAK2, JAK3, and 

TYK2.  JAKs associate and bind to receptors.  Upon cytokine binding to the 

receptor, JAKs become activated and phosphorylate specific tyrosine residues 

on the intracellular portion of the receptor.  The specific tyrosine residues 

phosphorylated by JAKs provide docking sites for the STAT proteins.  The STAT 

family of transcription factors includes STAT1, STAT2, STAT3, STAT4, STAT5A, 

STAT5B, and STAT6.  The STAT family members are all capable of carrying out 

6 specific functions: bind phosphorylated tyrosines on the intracellular portion of 

the appropriate receptor, become phosphorylated on their conserved tyrosine 

residue, hetero- or homo-dimerize, translocate to the nucleus, bind DNA, and 

modulate gene expression.  The first function of STAT proteins occurs when 

STAT proteins are recruited to the phosphorylated tyrosine residues on the 

receptor through their conserved src homology 2 (SH2) domains.  After docking 

to the receptor, a conserved tyrosine residue on the STAT protein becomes 

phosphorylated.  The phosphorylated tyrosine residue allows STAT family 
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members to form homo or heterodimers through the interaction of the SH2 

domain and the phosphorylated tyrosine present on both proteins.  Dimerization 

of the STAT proteins promotes translocation to the nucleus where they bind and 

activate lineage specific genes (Figure 1).  Thus, cytokine induced STATs allow 

appropriate expression of genes important for differentiation and commitment to 

a specific lineage.  Each cytokine receptor is associated with specific JAK and 

STAT family members.  Therefore, each T helper cell lineage is associated with 

specific STAT family members and their differentiation and effector function is 

dependent on them (Leonard and O'Shea, 1998).   
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Figure 1.  Activation of STAT proteins following cytokine stimulation.  
Cytokines in the microenvironment (often secreted by antigen presenting cells) 
bind to their specific receptor on the T cell.  Receptor engagement activates 
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JAKs which phosphorylate specific tyrosine residues on the intracellular portion 
of the receptor.  Following phosphorylation of the receptor, STATs are recruited 
and bind to the receptor where they become phosphorylated.  Phosphorylated 
STATs dimerize and translocate to the nucleus where they mediated gene 
expression. 
 

 

T helper subsets 

T helper cell activation and differentiation requires 3 distinct signals from the 

antigen-presenting cell.  The first signal is the recognition of the peptide-MHC 

molecule presented by the antigen-presenting cell.  The second signal is termed 

co-stimulation or verification.  The APC up-regulates ligands that engage 

receptors on the T cell leading to further stimulation and activation.  The final 

signal is transduced through the secretion of cytokines that skew the cells toward 

a specific cell lineage.  Depending on the strength of signal and cytokines 

present during the APC-T cell interaction, the T helper cell will become activated, 

proliferate, and differentiate into an effector cell.  Each T helper cell lineage 

expresses specific transcription factors and cytokines important for associated 

effector functions.  Originally T helper subsets were defined as either Th1 or Th2 

(Mosmann et al., 1986).  However, recently many new distinct T helper subsets 

have been added to the T helper cell family.  Each T helper subset differentiates 

in the presence of specific cytokines and thus specific STAT family members are 

required.  Once differentiated, T helper cells express lineage specific 

transcription factors and cytokines that play a crucial role in clearance of 

pathogens (Figure 2). 
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Figure 2.  Differentiation of T helper cell subsets from naïve precursors. 
Naïve T cells differentiate into several distinct subsets based on the signals 
received during their interaction with APCs. 
 

Th1 cells 

Naïve CD4+ T cells activated in the presence of IL-12 and anti-IL-4 differentiate 

into Th1 cells (Hsieh et al., 1993; Manetti et al., 1993).  Th1 cells are a unique 

subset of T helper cells characterized by the production of IFN-γ and 

lymphotoxin-α.  IFN-γ is important for the activation of macrophages and can 

increase their microbicidal activity (Suzuki et al., 1988).  Immunity against 

intracellular bacteria, protozoa, and fungi is dependent on Th1 effector function 
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(Fieschi et al., 2004; Fieschi et al., 2003; Hsieh et al., 1993).  The differentiation 

of Th1 cells requires several cytokines, transcription factors and receptors. 

 

Importance of STAT family members in Th1 development 

Th1 cells differentiate in the presence of IL-12 and differentiation is further 

enhanced by IFN-γ.  IL-12 and IFN-γ signal through STAT family members 

STAT4 and STAT1, respectively.  The combination of the cytokines IL-12 and IL-

18 can also synergize to promote IFN-γ production.  The synergistic effects of IL-

12 and IL-18, like IL-12 stimulation alone, are STAT4 dependent (Barbulescu et 

al., 1998; Ouyang et al., 1999; Yang et al., 1999).  Since the differentiation of Th1 

cells is dependent on both STAT1 and STAT4, mice deficient in either STAT4 or 

STAT1 have impaired Th1 differentiation (Afkarian et al., 2002; Kaplan et al., 

1996b; Lighvani et al., 2001; Thierfelder et al., 1996).  Additionally, STAT1 and 

STAT4-deficient mice have increased susceptibility to both bacterial and viral 

infections illustrating their importance in Th1 development and effector function 

(Cai et al., 2000; Kaplan, 2005; Meraz et al., 1996; Tarleton et al., 2000).    

 

Additional transcription factors required for Th1 differentiation  

Along with the STAT family members STAT4 and STAT1, there are several other 

transcription factors important in the development of Th1 cells.  T-box 

transcription factor family member T-bet (Tbx21) has been identified as the 

“master regulator” of Th1 differentiation.  T-bet expression is induced upon TCR 

stimulation and is downstream of IFN-γ/STAT1 (Afkarian et al., 2002; Lighvani et 
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al., 2001).  The expression of T-bet was originally thought to be independent of 

STAT4, however T-bet expression is significantly reduced in Stat4-/- Th1 cells.  

Moreover, it is clear that T-bet requires STAT4 for complete IL-12 induced Th1 

differentiation (Mullen et al., 2001; Thieu et al., 2008).  T-bet is expressed 

specifically in Th1, but not Th2 cells.  However, over-expression of T-bet in Th2 

cells using retro-viral transduction can induce the expression of IFN-γ (Mullen et 

al., 2002; Szabo et al., 2000).  In addition to inducing IFN-γ expression, T-bet 

also induces the expression of IL-12Rβ2.  Increased expression of IL-12Rβ2 on 

developing Th1 cells leads to increased IFN-γ production and Th1 lineage 

commitment (Afkarian et al., 2002; Mullen et al., 2001).  The importance of T-bet 

in Th1 differentiation and effector function can be seen using T-bet-deficient 

mice.  In vitro, T-bet-deficient CD4 T cells cultured under Th1 skewing conditions 

have significantly impaired IFN-γ production.  Furthermore, in vivo, T-bet-

deficient mice failed to mount a Th1 response following infection or antigen 

immunization (Szabo et al., 2002).  T-bet is also important for the expression of 

the transcription factor H2.0-like homeobox-1 (Hlx).  Hlx is a homeobox gene that 

is specifically expressed in Th1 cells and can synergize with T-bet to promote 

IFN-γ production and increased IL-12Rβ2 expression (Martins et al., 2005; 

Mullen et al., 2002).  Other transcription factors including ERM and Runx3 are 

highly expressed in Th1 cells.  ERM is induced by IL-12 in a STAT4 dependent 

manner, however the role of ERM in Th1 development is still not completely 

understood (Ouyang et al., 1999).  Runx3 has the ability to both repress Th2 

development and augment IFN-γ production.  Runx3 repression of Th2 
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development is mediated through binding of the IL-4 silencer in a complex with T-

bet and attenuating GATA3 transcriptional activity (Djuretic et al., 2007; Kohu et 

al., 2009).  The expression and cooperation of all Th1 associated transcription 

factors play an important role in promoting Th1 development and repressing 

other lineages specific factors. 

 

The role of Th1 cells in human diseases 

The protection Th1 cells provide against mycobacterial species is further 

illustrated by the increased susceptibility to these infections in patients who have 

mutations in IFNGR1, IFNGR2, STAT1, IL12RB1, and IL12B (Filipe-Santos et al., 

2006; Zhang et al., 2008).  Additionally, polymorphisms in the Th1 master 

regulator, TBX21 (T-bet) are associated with increased incidence of asthma and 

airway hyperresponsiveness, suggesting a switch in the Th1-Th2 balance (Raby 

et al., 2006).  It is important to keep in mind that many of the Th1 associated 

genes mutated in these patients are also required for IFN-γ production from 

innate cells including NK cells.  Delineating the role the mutations play in Th1 

cells versus innate cells in these patients will need further study.  Additionally, 

Th1 cells are important in the anti-tumor response.  CD4 T cells from lymphoma 

patients who underwent autologous stem cell transplantations are deficient in 

STAT4 expression and do not respond to IL-12 immunotherapy.  This acquired 

decreased expression of STAT4 in CD4 T cells from these patients’ results in the 

inability of the cells to differentiate into Th1 cells.  Reconstitution with STAT4 

rescues the Th1 defect in the patients’ cells demonstrated by the production of 
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IFN-γ.  These data suggest that the treatment given to lymphoma patients may 

affect their ability to respond to systemic IL-12 therapy.  Therefore, it is important 

to elucidate the mechanism leading to reduced STAT4 expression in patient CD4 

T cells following transplantation before therapies such as IL-12 are used (Chang 

et al., 2009; Robertson et al., 2005).  

 

Role of Th1 cells in mouse models of disease  

It is evident that Th1 responses are required for clearance of intracellular bacteria 

and parasites, however inappropriate Th1 responses contribute to autoimmunity.  

It was originally shown that Th1 cells were required for and were the predominant 

pathogenic cell type in mouse models of autoimmune diseases including 

experimental autoimmune encephalomyelitis (EAE), experimental autoimmune 

uveitis (EAU), and collagen induced arthritis (CIA) (Caspi et al., 1996; Germann 

et al., 1996; Merrill et al., 1992; Pettinelli and McFarlin, 1981; Saoudi et al., 1993; 

Tarrant et al., 1998).  These data contradicted the studies that showed targeting 

IFN-γ or the p35 subunit of IL-12 did not protect mice from developing EAE or 

CIA, or EAU.  Furthermore, neutralization of IFN-γ or IL-12 or mice deficient in 

IFN-γR had exacerbated EAE and CIA (Billiau et al., 1988; Ferber et al., 1996; 

Gran et al., 2002; Jones et al., 1997; Vermeire et al., 1997).  The recent 

discovery of Th17 cells (discussed below) and the role they play in autoimmunity 

has helped clarify the conflicting results.  Even though the contribution of Th1 

versus Th17 is not completely clear, increasing evidence suggests that both Th1 

and Th17 cells contribute to the pathogenesis of most autoimmune diseases.   
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Th2 cells 

The differentiation of Th2 cells occurs when a naïve T cell is activated by antigen 

in the presence of IL-4.  Th2 cells secrete IL-4, IL-5, and IL-13.  IL-4 production 

leads to a positive feedback loop and increased Th2 differentiation, and is also 

important in B-cell class switching to IgE (Kopf et al., 1993; Le Gros et al., 1990; 

Swain et al., 1990).  IL-5 is necessary for the recruitment of eosinophils (Coffman 

et al., 1989) whereas the induction of airway hypersensitivity and expulsion of 

worms are two functions of IL-13 (Urban et al., 1998; Wynn, 2003).  Collectively, 

Th2 cytokines are important for immunity against extracellular parasites and for 

providing B cell help leading to antibody production (Zhu and Paul, 2008).  IL-4 is 

required for Th2 differentiation, however the initial source of IL-4 is not 

completely clear.  The IL-4 receptor is composed of the common cytokine 

receptor gamma subunit and the IL-4Rα chain.  IL-4R is expressed at low levels 

on the surface of naïve CD4 T cells, but upon antigen stimulation IL-4R surface 

expression is increased.  IL-4 binding to its receptor leads to the activation of 

STAT6 and Th2 specific genes (Nelms et al., 1999).  

 

Importance of STAT family members in Th2 development 

Because of its role in IL-4 signaling, STAT6 was initially shown to be required for 

Th2 development, however in some in vivo Th2 models STAT6 is dispensable for 

Th2 differentiation (Kaplan et al., 1996a; Paul and Zhu, 2010; Shimoda et al., 

1996; Takeda et al., 1996).  Moreover, STAT6 is required for the expression of 

the Th2 transcription factors Gata3 and Gfi1 as well as Th2 cytokine genes and 
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has been shown to bind directly to a subset of these loci (Lee and Rao, 2004; 

Sherman et al., 2002; Zhu et al., 2002).  The importance of the IL-4-STAT6 

pathway in Th2 differentiation and effector function has been illustrated by use of 

mice with impaired IL-4-STAT6 signaling.  Stat6-/- mice or mice injected with 

neutralizing IL-4 antibodies have an impaired Th2 response following nematode 

infection (Else et al., 1994; Takeda et al., 1996).  Conversely, CD4 T cells from 

transgenic mice expressing constitutively active STAT6 (STAT6VT) have a 

predisposition towards the Th2 lineage even in non-skewing conditions (Bruns et 

al., 2003; Sehra et al., 2008).  In addition to IL-4-STAT6 signaling, IL-2 induced 

STAT5 activation is also necessary for optimal Th2 differentiation.  The role of IL-

2-STAT5 signaling in Th2 cells is both through direct effects on Th2 cytokines, as 

well as induction of Th2 gene expression.  STAT5 is required for Il4 chromatin 

accessibility, Il4ra expression, and the induction of Socs3 which extinguishes Th1 

differentiation (Cote-Sierra et al., 2004; Kagami et al., 2001; Takatori et al., 

2005b).  Disruption of the IL-2-STAT5 pathway by the neutralization of IL-2 or 

STAT5a-deficiency in Th2 cultures impaired Il4 expression (Takatori et al., 

2005a; Zhu et al., 2003).  Conversely, the expression of constitutively active 

STAT5a induced, albeit limited, Th2 differentiation and cytokine production even 

in the absence of STAT6 (Zhu et al., 2003).  Therefore, both STAT6 and STAT5 

are required for the induction of Th2 specific genes leading to Th2 development. 
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Additional transcription factors required for Th2 differentiation 

In addition to STAT6 and STAT5 there are a number of transcription factors 

associated with establishing the Th2 phenotype.  IL-4 activation of STAT6 

induces expression of GATA3 which is considered to be the master regulator of 

Th2 cells (Ouyang et al., 2000).  GATA3 directly binds to the promoter regions of 

IL-5 and IL-13 and the enhancer regions of IL-4, and is therefore important in Th2 

cytokine expression (Agarwal et al., 2000; Kishikawa et al., 2001; Siegel et al., 

1995; Yamashita et al., 2002; Zhang et al., 1998).  Retroviral expression of 

GATA3 in Th1 cells promotes IL-4 production and the up-regulation of GATA3 

itself (Ouyang et al., 2000; Ouyang et al., 1998).  Alternatively, mice deficient in 

GATA3 or expressing a dominant-negative form of GATA3 have impaired Th2 

development both in vitro and in vivo (Pai et al., 2004; Zhang et al., 1999a; Zhu 

et al., 2004).  In addition to GATA3, c-maf plays a critical role in Th2 

development.  The expression of c-maf is induced during Th2 differentiation by 

IL-6 and not IL-4 (Yang et al., 2005).  c-Maf is important for the expression of IL-

4, but not IL-5, or IL-13 in Th2 cells.  c-Maf can directly bind and transactivate the 

IL-4 promoter and when it is expressed ectopically can induce IL-4 production 

(Ho et al., 1996).  In agreement with the role of c-maf in promoting IL-4 

production, c-maf-deficient mice have decreased IL-4 production (Kim et al., 

1999).  The transcription factor IFN regulatory factor 4 (IRF4), which is up-

regulated following TCR stimulation, is also important in Th2 differentiation 

(Lohoff et al., 2002; Matsuyama et al., 1995; Rengarajan et al., 2002).  Th2 cells 

lacking IRF4 have diminished IL-4 production.  Since over-expression of GATA3 
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can rescue IL-4 production from IRF4-deficient cells, it has been suggested that 

one function of IRF4 might be to up-regulate GATA3 expression (Lohoff et al., 

2002).  Furthermore, IRF4 might be directly involved in the regulation of IL-4 

expression by cooperating with NFATc2 and c-maf (Rengarajan et al., 2002).  

The activation of STAT6 by IL-4 induces expression of Growth factor 

independent 1 (Gfi-1). Gfi-1 is preferentially expressed in Th2 cells and is 

important for the expansion of cells expressing GATA3 (Zhu et al., 2002; Zhu et 

al., 2006).  Another transcription factor expressed by Th2 cells is JunB.  JunB 

plays an important role in the induction of IL-4 production by collaborating with c-

maf to bind and activate the Il4 promoter (Li et al., 1999).  Additionally, the 

expression of the NFAT family members, NFATc1 and NFATc2, is augmented by 

co-stimulatory signals and IL-6, respectively.  NFATc1 and NFATc2 activation 

and their cooperation with other Th2 transcription factors leads to increased IL-4 

production and Th2 differentiation (Diehl et al., 2002; So et al., 2006).  It has 

recently been shown that the transcription factor Dec2 is induced throughout Th2 

differentiation.  Mice deficient in Dec2 have an impaired Th2 response both in an 

asthma model and a parasite infection model (Yang et al., 2009).  The over-

expression of Dec2 in CD4 T cells or transgenic mice expressing Dec2 have 

increased Th2 development (Yang et al., 2009).  The mechanism of Dec2 in 

mediating increased Th2 development is thought to be partially through the 

induction of IL-2Rα (Liu et al., 2009).  BATF is a transcription factor important in 

Th17 development.  However, BATF is also required for Th2 development and 

mice deficient in BATF have reduced IL-4 production and Gata3 expression (Betz 
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et al., 2010).  The expression of all of these transcription factors is necessary for 

optimal Th2 development.   

 

The role of Th2 cells in human diseases 

Non-protective Th2 responses contribute to asthma, allergy and other allergic 

diseases.  Polymorphisms in a variety of Th2 genes including the human Il13 

promoter and Il4 locus have been directly linked to susceptibility of allergic 

disease (Ono, 2000; Wills-Karp, 2000).  Additionally, gain of function mutations in 

the human IL-4Rα gene, which is required for Th2 differentiation, are associated 

with atopic asthma, Stat6 activation, and elevated IgE production as well as 

atopic dermatitis (Hershey et al., 1997; Mitsuyasu et al., 1998; Mitsuyasu et al., 

1999).  Conversely, patients with GATA3 haploinsufficiency have reduced Th2 

cell numbers and their T cells have diminished ability to differentiate into Th2 

cells in vitro.  These individuals also suffer from hypoparathyroidism, 

sensorineural deafness, and renal dysplasia syndrome (Skapenko et al., 2004; 

Van Esch et al., 2000).  Furthermore, polymorphisms in GATA3 observed in 

Finnish populations have been shown to be associated with increased IgE and 

susceptibility to asthma (Pykalainen et al., 2005). 

 

Role of Th2 cells in mouse models of disease 

Various mouse models have been established to determine the role of Th2 cells 

in the development of allergic disease.  It is evident that both IL-4 and STAT6 are 

important in driving Th2 mediated allergic disease.  Transgenic mice expressing 



19 
 

IL-4 or constitutively active STAT6 are characterized by the development of 

spontaneous allergic inflammation (Sehra et al., 2008; Tepper et al., 1990).  

Conversely, the development of allergic disease is dependent on IL-4 as allergic 

inflammation is diminished in mice deficient in IL-4 or STAT6 (Akimoto et al., 

1998; Brusselle et al., 1995; Kuperman et al., 1998; Sehra et al., 2008).  

Futhermore, mice expressing the dominant-negative form of GATA3 are 

protected from the induction of airway hypersensitivity (Zhang et al., 1999a).  

These reports take together highlight the importance of Th2 cells in the 

development and pathogenesis of allergic inflammatory diseases. 

 

Th17 cells 

Within the past 10 years a new T helper subset, Th17, has been discovered and 

studied intensely.  Th17 cells are pro-inflammatory cells that secrete IL-17A, IL-

17F, IL-21 and IL-22 (Bettelli et al., 2007a; Cua and Tato, 2010).  IL-17A 

activates other cell types and results in the production of pro-inflammatory 

cytokines (Yao et al., 1995).  Both IL-17 family members, IL-17A and IL-17F, can 

recruit and activate neutrophils, whereas IL-22 promotes skin inflammation and is 

also important for hepatocyte protection during acute liver injury (Zenewicz et al., 

2007; Zheng et al., 2007a).   

 

Th17 cells play an important role in the adaptive immune response by providing 

immunity to several extracellular bacteria and fungi.  More specifically, Th17 cells 

are required for host defense against infections with Klebsiella, Citrobacter, 
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Bacteroides, and Candida (Happel et al., 2005; Huang et al., 2004; Mangan et 

al., 2006; Ye et al., 2001).  The initial characterizations of Th17 cells showed that 

Th17 cells differentiate when cultured with IL-23, although only a small 

percentage of cells within these cultures were IL-17-positive (Harrington et al., 

2005; Park et al., 2005).  This resulted from the inability of IL-23 to prime naive 

cells to become Th17 cells, largely due to the lack of IL-23R on naïve CD4 T cells 

(Zhou et al., 2007).  Subsequently, it was shown that Th17 cells differentiate de 

novo in the presence of TGF-β+IL-6 (Bettelli et al., 2006; Mangan et al., 2006; 

Veldhoen et al., 2006a).  Furthermore, the cytokine IL-21, a cytokine also 

secreted by Th17 cells, in combination with TGF-β can promote Th17 

differentiation (Korn et al., 2007; Nurieva et al., 2007; Zhou et al., 2007).   

 

In addition to TGF-β, IL-6, and IL-21, several cytokines are important in the 

development and repression of Th17 cells.  The Th1 cytokine IFN-γ and Th2 

cytokine IL-4 both negatively regulate Th17 development, and neutralization of 

these cytokines is necessary for in vitro Th17 differentiation (Harrington et al., 

2005; Park et al., 2005).  The IL-12 family member IL-27 is not only important in 

promoting IFN-γ production, but is also a negative regulator of Th17 

development.  Inhibition of Th17 development by IL-27 requires STAT1, however 

the direct mechanism of repression is still unclear (Batten et al., 2006; Stumhofer 

et al., 2006).  In addition, IL-2 is important in Treg development and consistent 

with the reciprocal development of Th17 and Treg cells, IL-2 inhibits Th17 

development.  Th17 cells differentiated in the presence of IL-2 have reduced 
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numbers of IL-17 secreting cells.  Conversely, cells deficient in IL-2 or the 

downstream transcription factor of IL-2, STAT5, display enhanced Th17 

differentiation.  This same effect can be observed when Th17 cells are cultured in 

the presence of IL-2 neutralizing antibodies (Laurence et al., 2007).  In contrast, 

the cytokine IL-1β promotes Th17 development.  IL-1β augments Th17 

differentiation and enhances IL-23 responsiveness (Cho et al., 2006; Cua et al., 

2003; Veldhoen et al., 2006a).  Furthermore, the importance of IL-1β in the Th17 

lineage is illustrated by mice deficient in IL-1RI, as mice deficient in IL-1 signaling 

are protected from the development of Th17 mediated disease autoimmune 

encephalomyelitis (Sutton et al., 2006).   

 

IL-23 is required for the in vivo function of Th17 cells.  Although some Th17 cells 

can develop in the absence of IL-23, mice deficient in IL-23p19 have a greatly 

diminished ability to mediate inflammation (Bettelli et al., 2007a; Weaver et al., 

2007).  In short-term cultures, IL-23 maintains a population of IL-17-secreting 

CD4 T cells, which has been interpreted as a function of promoting Th17 cell 

expansion or survival (Veldhoen et al., 2006a).  Additionally, IL-23 has also been 

shown to maintain a pathogenic Th17 phenotype compared with cells cultured in 

TGF-β and IL-6 due to an inability of IL-23 to induce IL-10 production (McGeachy 

et al., 2007).  
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Importance of STAT family members in Th17 development 

Many cytokines important for the differentiation and maintenance of Th17 cells, 

such as IL-6, IL-21, and IL-23, signal through STAT3.  Thus, STAT3 is required 

for the differentiation and effector function of Th17 cells (Mathur et al., 2007; 

Yang et al., 2007).  STAT3-deficient Th17 cells fail to produce IL-17 and induce 

transcription factors RORγt and RORα, which are important for Th17 

development (Mathur et al., 2007; Yang et al., 2007; Yang et al., 2008b).  Human 

mutations in STAT3 also results in the loss of IL-17 producing CD4 T cells (Ma et 

al., 2008; Milner et al., 2008).  STAT3 binds directly to the Il17 and Il21 genes 

and is required for the expression of IL-23R, RORγt and RORα (Chen et al., 

2006b; Mathur et al., 2007; Wei et al., 2007; Yang et al., 2007; Yang et al., 

2008b).  Th17 cells and T regulatory cells are thought to have a reciprocal 

relationship.  IL-6 plays a critical role in the switch from Tregs to Th17 cells 

(Bettelli et al., 2006).  Therefore, an additional role of IL-6 induced STAT3 is to 

down regulate Foxp3 expression.  The down regulation of Foxp3 leads to Th17 

development and the repression of Treg development (O'Malley et al., 2009; 

Yang et al., 2007; Yao et al., 2007).  IL-23 is required for Th17 differentiation in 

vivo and the maintenance of Th17 cells in vitro.  IL-23 in Th17 cells signals 

through both STAT3 and STAT4.  STAT4 is partially required for IL-17 production 

from IL-23 cultured cells and is completely required for IL-17 production from 

Th17 cells stimulated with IL-23 and IL-18 (Mathur et al., 2007).  Thus, STAT4 is 

also required for the IL-23 driven Th17 response.  This is in agreement with 
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studies showing that STAT4-deficient mice are completely protected from the 

Th17 mediated disease EAE (Chitnis et al., 2001).   

 

Additional transcription factors required for Th17 differentiation 

In addition to STAT3 and STAT4, many other transcription factors contribute to 

Th17 development and effector function.  Like T-bet in Th1 and Gata3 in Th2 

cells, RORγt is thought to be the Th17 master regulator.  RORγt expression is 

dependent on STAT3 activation (Ivanov et al., 2006) and mice deficient in RORγt 

have dramatically impaired IL-17 production and are protected from EAE (Ivanov 

et al., 2006).  Subsequently it was shown that RORα is also induced by TGF-

β+IL-6 and promotes Th17 differentiation through direct activation of Il17.  The 

expression of RORα is also dependent on STAT3.  Mice deficient in both RORα 

and RORγt lack IL-17 production and are completely protected from EAE (Yang 

et al., 2008b).  The transcription factor IκBζ cooperates with both RORγt and 

RORα to promote Th17 development by binding and activating Il17a.  

Furthermore, IκBζ itself is required for Th17 differentiation and mice deficient in 

IκBζ have impaired Th17 development and are resistant to EAE (Okamoto et al.).  

The Th2 associated transcription factor IRF4 is also required for Th17 

development.  IRF4 is important in the IL-21-mediated autocrine response and in 

early Th17 differentiation, although the mechanisms are not well understood 

(Chung et al., 2009; Huber et al., 2008).  However, it is known that IRF4-deficient 

mice have impaired Th17 differentiation and have increased resistance to EAE 

(Brustle et al., 2007).  Another Th2 associated transcription factor, c-maf, is 
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expressed in Th17 cells.  c-Maf expression is induced by TGF-β+IL-6 and is 

required for IL-10 production from Th17 cells (Xu et al., 2009).  Moreover, c-maf 

can directly bind and activate the promoter of the Th17 cyotkine IL-21 (Hiramatsu 

et al., 2010).  BATF is a basic leucine zipper transcription factor that is expressed 

in Th1, Th2 and Th17 cells (Schraml et al., 2009).  BATF is required for both in 

vitro and in vivo Th17 development (Betz et al., 2010; Schraml et al., 2009).  

BATF-deficient mice have decreased IL-17 production and increased Treg cell 

numbers and are therefore protected from the development of EAE (Schraml et 

al., 2009).  One function of BATF is to synergize with RORγt at the Il17 promoter 

to induce expression, however the exact mechanism of BATF in Th17 

development is not completely understood (Schraml et al., 2009).  The 

transcription factor BCL6 is important for the repression of Th2 development and 

is required for Tfh differentiation. (Johnston et al., 2009; Kusam et al., 2003; 

Nurieva et al., 2009; Yu et al., 2009).  Additionally it has been shown that BCL6 

is important in Th17 development.  In vitro, BCL6-deficient Th17 differentiation is 

defective resulting in reduced IL-17 production.  However, BCL6-deficient Th17 

development is similar to wild type when purified naïve T cells are used, blocking 

IL-4 throughout Th17 culture, or increased doses of TGF-β are used in culture.  

Retroviral expression of BCL6 leads to increased Th17 development (Mondal et 

al., 2010).  Conversely, BCL6-deficient memory cells have increased IL-17 

production compared to wild type controls.  The increase in Th17 development in 

vivo differentiated memory cells could be due to increased Th17 promoting 

cytokines from BCL6 deficient macrophages.  Therefore, Th17 development may 
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require BCL6, however the role of BCL6 in Th17 development may be more 

important in the macrophage lineage (Mondal et al., 2010).  Aryl hydrocarbon 

receptor (AhR) ligands are found in T cell culture medium and in the environment 

(Veldhoen et al., 2009).  Engagement of the AhR and various ligands induces 

Th17 development and represses Treg development (Quintana et al., 2008).  

AhR-deficient T cells have impaired Th17 differentiation due to the activation of 

STAT1 and STAT5 which are both negative regulators of Th17 development 

(Kimura et al., 2008).  Furthermore, the addition of AhR ligands during the onset 

of EAE increases disease severity and pathology (Veldhoen et al., 2008a).  

These data provide a solid link between the environment and autoimmunity.   

 

Role of Th17 cells in human diseases 

The importance of Th17 cells is illustrated by humans who have mutations or 

polymorphisms in genes important in the Th17 pathway.  Patients who have 

dominant-negative mutations in STAT3 suffer from hyper-IgE syndrome.  T cells 

from hyper-IgE syndrome patients fail to develop into Th17 cells.  Some 

abnormalities associated with these patients include increased susceptibility to 

Staphylococcus aureus, Streptococcus pneumoniae and Candida albicans 

infections (Buckley, 2001; Holland et al., 2007; Ma et al., 2008; Milner et al., 

2008; Minegishi et al., 2007).  There is reasonable overlap of susceptibility to 

infections between patients with mutated STAT3 and mice deficient in Th17 cells, 

however the link between hyper-IgE syndrome and Th17 is still not apparent.  

Conversely, polymorphisms in the p40 subunit of IL-23 or the IL-23R is 
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associated with the increased risk of another Th17 mediated disease, psoriasis 

(Cargill et al., 2007).  Mutations in the IL-23R are also associated with 

inflammatory bowl diseases such as Crohn’s disease (Duerr et al., 2006).  

Furthermore, in humans the expression of IL-17 is directly linked to multiple 

sclerosis, rheumatoid arthritis, and psoriasis (Aarvak et al., 1999; Lock et al., 

2002; Matusevicius et al., 1999; Teunissen et al., 1998).  Additionally, the 

expression of IL-23p19, which induces IL-17 production, is increased in psoriatic 

lesions and inflamed tissues from patients with Crohn’s disease and ulcerative 

colitis (Lee et al., 2004; Schmidt et al., 2005; Stallmach et al., 2004).  These 

studies taken together provide a clear relationship between autoimmune 

diseases and Th17 cells. 

 

Role of Th17 cells in mouse models of disease 

Th17 cells have become of great interest due to the key role they play in 

autoimmune diseases.  Originally Th1 cells were thought to be the main mediator 

of autoimmune diseases, however following the description of Th17 cells and 

subsequent analysis, it has become evident that Th17 cells are indispensible for 

most autoimmune diseases.  Many mouse models reflecting human autoimmune 

diseases have been utilized in order to study the effector cells and cytokines 

important in disease development.  Studies using mouse models of autoimmunity 

have shown the importance of the Th17 pathway in autoimmunity.  For example, 

Il17-/- mice have reduced collagen induced arthritis and development of EAE is 

delayed with decreased severity (Komiyama et al., 2006; Nakae et al., 2003a).  
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In agreement with IL-17-deficient studies, the transfer of IL-17 producing Th17 

cells to wild type mice were more potent in inducing EAE compared to the 

transfer of Th1 cells (Langrish et al., 2005).  Along with IL-17, other factors 

important in Th17 differentiation have significant effects on the development of 

autoimmune diseases.  IL-23 is required for the development of EAE, and 

therefore IL-23p19-deficient mice are resistant to EAE (Cua et al., 2003; Murphy 

et al., 2003).  In addition, wild type mice with EAE that were treated with anti-p19 

were protected from disease relapse and had reduced levels of IL-17 in their 

serum (Chen et al., 2006a).  As TGF-β is required for Th17 differentiation, mice 

that express a dominant negative mutant of the TGF-βR in CD4 T cells lack Th17 

cells and are completely resistant to EAE development (Veldhoen et al., 2006b).  

Mice deficient in IL-6, which promotes Th17 differentiation in combination with 

TGF-β, do not develop Th17 cells and like TGF-βR mutant mice are protected 

from EAE development (Bettelli et al., 2006).  Although the exact role of IL-1β in 

Th17 differentiation and effector function is not clear, there is evidence 

suggesting that it is critical in Th17-mediated autoimmunity.  Mice deficient in the 

natural IL-1 receptor antagonist develop spontaneous arthritis through an IL-17-

dependent mechanism (Nakae et al., 2003b).  Alternatively, incidence of EAE in 

mice deficient in IL-1R1 is significantly lower than that observed in wild type mice 

which correlates with a reduction in antigen specific IL-17 producing cells (Sutton 

et al., 2006).  Taken together, these data indicate that the IL-23-Th17 pathway is 

critical in the development of autoimmune diseases.    
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T regulatory cells (Tregs) 

The immune system has a specialized subset of T cells, T regulatory cells, that 

play an important role in down modulating the immune response and providing 

self-tolerance.  Naturally occurring Tregs (nTregs) emigrate from the thymus 

expressing the transcription factor Foxp3 and have suppressive functions 

(Fontenot et al., 2005).  T regulatory cells can also differentiate in vitro from 

naïve CD4 T cells in the presence of TGF-β (Chen et al., 2003; Fantini et al., 

2004; Fu et al., 2004; Sakaguchi et al., 2008; Zheng et al., 2004).  Differentiation 

of Tregs can be enhanced in the presence of retinoic acid, which at the same 

time blocks Th17 differentiation (Benson et al., 2007; Coombes et al., 2007; 

Mucida et al., 2007; Sun et al., 2007).  Naïve cells differentiated in the presence 

of TGF-β with or without retinoic acid are referred to as induced Tregs (iTregs) 

and share many of the in vitro and in vivo characteristics of nTregs (DiPaolo et 

al., 2007).  The differentiation of naïve CD4 T cells to iTregs results in cells that 

are unresponsive to TCR stimulation, lack production and secretion of T effector 

cytokines, and produce the immunosuppressive cytokine TGF-β.  In co-cultures, 

iTregs can inhibit proliferation of CD4+CD25- T cells in response to anti-CD3 

stimulation.  In vivo, iTreg transfer can suppress T cell proliferation in response to 

OVA peptide following immunization.  Furthermore, in an asthma model using 

house dust mite, co-transfer of iTregs prevents allergic pathogenesis in the lungs 

(Chen et al., 2003).  At this time there is not a way to distinguish iTregs from 

nTregs and the existence of endogenous iTregs in vivo is still controversial. 

 



29 
 

Importance of STAT family members in Treg cell development 

In addition to TGF-β, iTreg development and effector functions require STAT5 

activation by IL-2 (Burchill et al., 2007; Davidson et al., 2007).  IL-2 is critical for 

the differentiation and survival of iTreg cells.  Furthermore, iTreg cell 

responsiveness to IL-2 can be attributed to high surface expression of CD25 (IL-

2Rα), which is expressed higher on iTreg cells than all other T helper cell 

lineages.  The mechanism of how IL-2 induced STAT5 promotes iTreg 

development is still not clear.  However, STAT5 may be important for the direct 

induction of Foxp3 expression (Burchill et al., 2007; Yao et al., 2007).  

 

Additional transcription factors required for Treg cell differentiation 

Foxp3 is thought to be the critical transcription factor for iTreg cell function.  

Foxp3 directly binds several genes encoding signal transduction molecules, 

transcription factors, cytokines, cell-surface molecules, and enzymes for cell 

metabolism (Marson et al., 2007; Zheng et al., 2007b).  It is known that Foxp3 

acts as a transcriptional activator and repressor, however more detailed studies 

need to be performed to further examine the requirement and exact function of 

Foxp3 in iTreg cells.  The induction of Foxp3 is dependent on TGF-β signaling.  

TGF-β activation of Smad3 and TCR activation of NFAT cooperate in remodeling 

and expression of Foxp3 (Tone et al., 2008).  In addition to STAT5 and Foxp3, 

the Runx family member, Runx1, is required for Treg cell development.  Runx1 

interacts with Foxp3 and is required for both the expression of Foxp3 and 
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suppressive function of Treg cells (Egawa et al., 2007; Kitoh et al., 2009; Ono et 

al., 2007; Rudra et al., 2009).   

 

Role of Treg cells in human diseases 

Abnormalities in Treg differentiation due to mutations in FOXP3 in humans 

results in immunodeficiency, polyendocrinopathy, enteropathy, and X-linked 

syndrome (IPEX).  Patients with mutated FOXP3 suffer from autoimmune 

symptoms such as insulin-dependent diabetes, hypothyroidism, anemia, and 

neutropenia (Bennett et al., 2001; Wildin et al., 2001).  Since IL-2 is critical for 

Treg development and function, patients with IL2RA mutations have syndromes 

resembling IPEX (Caudy et al., 2007).  It has also been suggested that Treg cells 

are increased in tumor tissues and in the blood of cancer patients.  Furthermore, 

Treg cells may inhibit anti-tumor immunity and induce immune tolerance to 

tumors in several different cancers (Wang and Wang, 2007).  Therefore, Treg 

cells may contribute to the progression of cancer and tumor growth. 

 

Role of Treg cells in mouse models of disease 

Mutation of Foxp3 in mice results in diseases similar to human patients with 

FOXP3 mutations (Brunkow et al., 2001; Patel, 2001).  Mice deficient in IL-2, IL-

2Rα, or IL-2Rβ have significantly reduced Treg cells, which correlates with the 

development of autoimmune diseases (Malek et al., 2002; Papiernik et al., 1998; 

Thornton and Shevach, 1998). 
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Tfh cells 

A central function of T helper cells is providing B cell help leading to antibody 

production and class switching.  Although Th2 cells can direct class switching in 

B cells, a specific subset of T helper cells termed T follicular helper (Tfh) cells 

specialize in providing B cell help within the lymphoid tissues (King et al., 2008).  

Tfh cells differentiate in the presence of IL-6 or IL-21.  Initially both IL-6 and IL-21 

were thought to be required for Tfh cell differentiation and function and mice 

deficient in either IL-21 or IL-6 have significantly reduced Tfh cells (Chtanova et 

al., 2004; Nurieva et al., 2008).  Tfh cells are characterized by the expression of 

chemokine receptor CXCR5, high expression of inducible co-stimulator (ICOS), 

and IL-21 production (Breitfeld et al., 2000; Chtanova et al., 2004; Hutloff et al., 

1999; Mackay, 2000; Schaerli et al., 2000).  The interaction of B cells and Tfh 

cells occurs in the B cell follicles.  Therefore, Tfh cells express CXCR5 which 

allows them to localize to the B cell follicles where the CXCR5 ligand CXCL13 is 

expressed (King et al., 2008).  ICOS is a co-stimulatory molecule expressed by 

most T helper cell lineages, but expression on Tfh cells is very high.  Mice 

deficient in ICOS lack Tfh cells and therefore have defective germinal center 

formation following exposure to a T-cell dependent antigen (Akiba et al., 2005; 

Bossaller et al., 2006; Dong et al., 2001; Tafuri et al., 2001).  ICOS expression is 

also required for optimal IL-21 production by Tfh cells (Vogelzang et al., 2008).  

IL-21 is produced by both Th17 and Th2 cells, but production by Tfh cells is 

significantly greater (Chtanova et al., 2004).  IL-21 is an autocrine growth factor 

and is a potential explanation why IL-21-deficient mice have significantly reduced 
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Tfh cell number (Nurieva et al., 2008; Vogelzang et al., 2008).  IL-21 signaling 

also leads to increased CXCR5 expression on Tfh cells which is important for 

migration (Vogelzang et al., 2008).   

 

Importance of STAT family members in Tfh development 

Both cytokines important for Tfh cell development, IL-6 and IL-21, signal through 

STAT3.  Consistent with the requirement for STAT3 in both IL-6 and IL-21 

signaling, STAT3-deficient mice have a significantly reduced number of Tfh cells 

(Nurieva et al., 2008).  Moreover, STAT3-deficent mice have a defect in germinal 

center B cell formation and antibody response (Nurieva et al., 2008).  

 

Additional transcription factors required for Tfh differentiation 

Recently it has been discovered that the transcriptional repressor B-cell 

lymphoma 6 protein (Bcl-6) is required for Tfh cell development and commitment 

(Johnston et al., 2009; Nurieva et al., 2009; Yu et al., 2009).  Bcl-6 is necessary 

and sufficient for expression of Tfh cell associated molecules CXCR5, PD-1, IL-

6R, and IL-21R (Johnston et al., 2009; Nurieva et al., 2009).  In support of the 

importance of Bcl-6 in Tfh cell differentiation, studies where a known Bcl-6 

repressor Blimp-1 is retrovirally expressed, Tfh cell differentiation was blocked 

and this coincided with reduced expression of factors associated with Tfh cells 

(Johnston et al., 2009).  A more recent report shows that the up-regulation of Bcl-

6 and therefore differentiation of Tfh cells was independent of IL-6 and IL-21 and 

the factor or factors involved in the induction of Bcl-6 expression in vivo have not 
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been elucidated (Poholek et al., 2010).  The transcription factor BATF is also 

important for Tfh cell development and function.  Mice deficient in BATF have 

reduced numbers of Tfh cells (CCR5+).  Furthermore, the Tfh cells from BATF-

deficient mice have impaired chemotaxis (Betz et al., 2010). 

 

Role of Tfh cells in human diseases 

The critical role of Tfh cells in B cell antibody production is exemplified in patients 

lacking Tfh cell associated molecule ICOS.  Patients who are deficient in ICOS 

have decreased numbers of CXCR5+CD4+ T cells.  Many of the patients suffer 

from common variable immunodeficiency (CVID).  CVID patients lack germinal 

cell formation and consequently have a significant reduction in isotype-switched 

memory B cells (Bossaller et al., 2006; Grimbacher et al., 2003).  There is also 

substantial evidence showing that Tfh cells are the cells driving the auto-antibody 

production in diseases such as systemic lupus erythematosus (SLE) (Pugh-

Bernard et al., 2001).  Furthermore, patients with SLE have increased frequency 

of CD4+ICOS+ T cells in their blood (Hutloff et al., 2004).  Additionally, Tfh cells 

may also contribute to the development of lymphomas.  Malignant T cells from 

patients with angioimmunoblastic T cell lymphoma (AITL) share many 

characteristics of human Tfh cells including the expression of Bcl-6 and CXCR5.  

It has been proposed that these cells may be responsible for increased 

recruitment of B cells to follicles leading to aberrant activation and antibody 

production (de Leval et al., 2007; de Leval et al., 2001; Krenacs et al., 2006; Ree 

et al., 1999).   
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Role of Tfh cells in mouse models of disease        

Human disease can be recapitulated in several mouse models of SLE.  One 

mouse model of lupus is the sanroque mouse.  Sanroque mice have a missense 

mutation in the gene Roquin encoding an ICOS repressor.  These mice develop 

lupus which correlated with increased number of Tfh cells and increased IL-21 

production (Vinuesa et al., 2005).  Other lupus mouse models had similar results 

showing increased Tfh cells and factors in mice with lupus (Ozaki et al., 2004; 

Subramanian et al., 2006).  Moreover, blocking ICOS interactions or IL-21 

signaling can delay and reduce disease progression of SLE (Herber et al., 2007; 

Iwai et al., 2003).   

 

Th9 cells 

The most recently discovered subset of CD4 T helper cells is Th9.  In vitro Th9 

cells differentiate de novo with TGF-β+IL-4 or by culturing Th2 differentiated cells 

in the presence of TGF-β (Dardalhon et al., 2008; Veldhoen et al., 2008b).  The 

secretion of IL-9 and not IL-4, IL-5, and IL-13 make Th9 cells distinct from Th2 

cells.  IL-9 was initially identified as a cytokine that promoted T helper cell growth 

and proliferation (Uyttenhove et al., 1988; Van Snick et al., 1989).  In addition to 

IL-9 promoting T helper cell growth and proliferation, IL-9 stimulates mucin 

expression in epithelial cells and is an important factor in mast cell growth and 

survival (Hultner et al., 1990; Longphre et al., 1999; Renauld et al., 1995).  

Before the discovery of Th9 cells, IL-9 was characterized as a Th2 cytokine 

important for immunity to helminth infections (Faulkner et al., 1998; Khan et al., 
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2003).  Recently the role of Th9 cells in worm infections was demonstrated with 

the use of mice expressing a dominant-negative form of the TGF-βR.  Wild type 

mice infected with Trichuris muris exhibited a protective immune response, which 

correlated with the accumulation of mast cells and subsequent expulsion of the 

worm.  Conversely, transgenic mice expressing the dominant-negative form of 

the TGF-βR failed to mount a protective immune response.  The defective 

immune response correlated with low IL-9 expression and therefore decreased 

mast cell recruitment and/or survival (Veldhoen et al., 2008b).  These results 

suggest that specifically Th9 and not Th2 cells are required for immunity to worm 

infection.   

 

Importance of STAT family members in Th9 development 

Differentiation of Th9 cells requires both TGF-β and IL-4.  IL-4 by itself induces 

Th2 differentiation through the activation of STAT6, so as expected STAT6 is 

also required for TGF-β+IL-4 mediated Th9 differentiation (Dardalhon et al., 

2008).  The requirement for other Th2 associated STAT family members such as 

STAT5 and STAT3 in Th9 differentiation and effector function have not been 

examined carefully. 

 

Additional transcription factors required for Th9 differentiation   

Th9 cell development requires the Th2 associated transcription factor GATA3.  In 

Th2 cells GATA3 is important for the expression of IL-4, IL-5 and IL-13, however 

Th9 cells repress the production of these cytokines and produce IL-9.  
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Furthermore, differentiated Th9 cells do not express GATA3 suggesting that 

GATA3 is important for the initial differentiation of Th9 cells but is not required for 

effector function (Dardalhon et al., 2008; Veldhoen et al., 2008b).  Recently the 

transcription factor PU.1 was shown to be expressed predominantly in Th9 cells.  

PU.1 was previously shown to be important in negatively regulating Th2 cytokine 

production (Chang et al., 2005).  Distinct from GATA3, PU.1 is expressed in fully 

differentiated Th9 cells and is important for Th9 effector function (Chang et al., 

2010).  Ectopic expression of PU.1 in Th2 or Th9 differentiating cells induced IL-9 

production.  In vivo, PU.1 expression is required for a mouse model of allergic 

inflammation.  These data clearly show a role for PU.1 in Th9 differentiation and 

effector function (Chang et al., 2010).  Nevertheless, PU.1-deficient Th9 cells still 

have the ability to secrete low levels of IL-9 suggesting other transcription factors 

may contribute to Th9 development. 

   

Role of Th9 cells in human diseases 

IL-9, the hallmark cytokine produced by Th9 cells, has been linked to allergic 

disease in humans.  Genetics studies have linked the regions of DNA containing 

IL-9 and IL-9R to susceptibility to allergic disease (Doull et al., 1996; Holroyd et 

al., 1998).  Subsequently, it was shown that the expression of IL-9 in asthmatic 

lungs is significantly increased compared to healthy controls (Erpenbeck et al., 

2003b; Shimbara et al., 2000).  Additional studies have observed increased IL-9 

in the bronchiolar alveolar lavage (BAL) of asthmatic patients following allergen 

challenge and increased IL-9 mRNA+ cells in the airway of asthmatics compared 
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to control patients (Erpenbeck et al., 2003a; Shimbara et al., 2000; Ying et al., 

2002).  Collectively, these reports have clear evidence linking IL-9 thus Th9 to 

allergic disease.   

 

Role of Th9 cells in mouse models of disease        

Similar to what is observed in humans, IL-9 is important for several allergic 

disease models in mice.  Transgenic mice expressing IL-9 have increased airway 

hyper-responsiveness, elevated IgE, and eosinophilia following antigen 

challenges (Forbes et al., 2008; McLane et al., 1998; Temann et al., 1998; 

Temann et al., 2002).  Conversely, IL-9-deficient mice are not resistant to allergic 

disease, however blocking IL-9 prior to challenge resulted in decreased airway 

hyper-responsiveness and reduced eosinophils in the BAL (Cheng et al., 2002; 

McMillan et al., 2002).  The transcription factor PU.1 is required for Th9 

development and therefore, mice that have T cells deficient in PU.1 have 

significantly less IL-9 expression and have attenuated allergic pulmonary 

inflammation compared to wild type mice (Chang et al., 2010).  These data 

provide additional evidence that Th9 cells are important in allergic inflammation.   
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Figure 3.  T helper subsets protective and pathogenic functions.  Each T 
helper subset is required for specific protective responses, however inappropriate 
responses of each T helper subset can be harmful to the host. 
 

 

Plasticity of T helper subsets 

Each T helper subset has a specific cytokine repertoire and transcription factor 

network that makes them distinct from all other subsets.  Originally what defined 

a T helper subset was the expression of unique cytokines and transcription 

factors and commitment to that specific lineage.  The initial clear lines drawn 

between T helper subsets are now arrows signifying their plasticity.   
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Th1/Th2 cells 

Early studies showed that fully differentiated Th1 and Th2 cells cannot convert to 

the opposing subset (Murphy et al., 1996).  However Th1 or Th2 cells primed for 

one week are not committed to their respective lineages and when primed for an 

additional week in the opposing cytokines can convert from Th1 to Th2 or Th2 to 

Th1 (Murphy et al., 1996).  In vivo model of lymphocytic choriomeningitis virus 

(LCMV) infection illustrates Th2 cell plasticity.  Virus specific cells that were 

differentiated for 2-3 weeks in vitro under Th2 conditions were transferred into 

mice that were subsequently infected with LCMV.  Following infection, Th2 

transferred cells up-regulated Th1 transcription factor T-bet and acquired IFN-γ 

producing abilities.  This switch from Th2 to Th1 can also be observed in vitro 

when antigen specific Th2 cells are cultured with IL-12, IFN-γ, and type I 

interferons (Hegazy et al., 2010).  Besides the ability to switch to Th1, Th2 cells 

can convert to Th9 cells when cultured with TGF-β.  In the presence of TGF-β 

Th2 cells repress Th2 cytokines and stimulate IL-9 production (Dardalhon et al., 

2008).  Furthermore, Th2 memory cells can be re-differentiated into Foxp3 

expressing cells.  The re-differentiated cells behave like Treg cells and can 

actively suppress Th2 mediated allergic inflammation (Kim et al., 2010).  

Additionally, reports have suggested that Th2 cells have the ability to convert to 

Tfh cells following helminth infections.  Infection with the enteric nematode 

Heligmosomoides polygyrus led to development of T cells in the B cell follicles 

that expressed the Th2 cytokine IL-4 and the Tfh cell phenotypic markers 

CXCR5, ICOS, PD-1, IL-21 and BCL-6 (King and Mohrs, 2009).  Additional 
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evidence of Th2 to Tfh cell conversion was provided by Zaretsky et al.  Zaretsky 

et al. transferred CXCR5 and PD-1 negative cells that expressed IL-4 into naïve 

mice.  After transfer, the mice were challenged with parasite eggs.  Ex vivo 

analysis of the transferred cells showed a conversion from the Th2 to Tfh cell 

phenotype (Zaretsky et al., 2009).  However, the conversion from Th2 to the Tfh 

lineage is still controversial.  It is possible that there are several subsets of Tfh 

cells, one of which that produces IL-4.  In agreement with this notion, it has been 

shown that Tfh cells secreting IL-4 were functionally distinct from Th2 cells found 

in peripheral tissues (Reinhardt et al., 2009).  Additional studies will have to be 

performed in order to clarify the relationship between Th2 and Tfh cells.  

 

Th17 cells  

Th17 cell instability has been reported both in vitro and in vivo by several groups.  

IL-23 cultured T cells lose the ability to produce IL-17 following multiple TCR 

stimulations and convert to a Th1-like cell.  The conversion from IL-17 secreting 

to IFN-γ secreting phenotype is dependent on T-bet (Mathur et al., 2006).  

Furthermore, cells cultured under Th17 skewing conditions for up to 3 weeks are 

not committed to the Th17 phenotype and following IL-12 or IL-4 stimulation can 

convert to Th1 or Th2-like phenotype (Lee et al., 2009; Lexberg et al., 2008; 

Stritesky et al., 2008).  Many in vivo studies recapitulate the instability of Th17 

cells observed in vitro.  Adoptively transferred Th17 cells in several different 

mouse models showed the conversion of Th17 cells to a Th1 phenotype 
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(Bending et al., 2009; Lee et al., 2009; Martin-Orozco et al., 2009; Muranski et 

al., 2008).   

 

Treg cells 

T regulatory cells can convert to an IL-17 secreting phenotype when exposed to 

several different stimuli including IL-6 (Osorio et al., 2008; Radhakrishnan et al., 

2008; Xu et al., 2007; Yang et al., 2008a).  Additionally, Tregs can be re-

programmed to express T-bet and produce IFN-γ following Th1 in vitro 

stimulation (Wei et al., 2009).  Futhermore,the conversion of Foxp3+ Tregs to Tfh 

cells can be observed in Peyer’s patches following interactions with B cells (Tsuji 

et al., 2009).   

 

Commitment to a specific subset is achieved in part through the repression of the 

other T helper cell lineages.  The repression of other lineages can be 

accomplished by many different mechanisms.  Committed Th1 cells repress Th2 

development by disrupting IL-4 signaling (Huang and Paul, 1998).  Whereas, Th2 

cells block Th1 development by the selective loss of IL-12R and STAT4 

expression (Szabo et al., 1995).  Therefore T helper plasticity can be limited by 

repression of specific cytokine receptors and transcription factors.  Additionally, 

plasticity of the T helper subsets can be inhibited through epigenetic repression 

of lineage specific factors of opposing lineages.  Therefore, the flexibility of T 

helper cells may reflect the promiscuous epigenetic status of loci of lineage 

specific factors.  Supporting this idea, it has been observed that T helper cells 
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that are competent to assume other T helper cell phenotypes have non-

repressive marks on genes associated with opposing lineages (Wei et al., 2009).   

 

The plasticity observed in many of the T helper cell subsets reflects the 

importance of the epigenetic status and expression of cytokine receptors and 

transcription factors of opposing lineages.  However, the lack of terminal 

differentiation and the ability to re-program may give T helper cells the flexibility 

to shape their effector response to be more efficient.   

 

Each T helper cell subset relies on a specific STAT family member for 

differentiation and effector function.  However, many T helper subsets require 

several STAT family members for optimal differentiation.  For example, Th17 cell 

development and effector function requires signals from both STAT3 and STAT4 

whereas Th2 cells require signals from both STAT6 and STAT5.  The activation 

of each STAT family member provides a unique signal that helps promote the 

development of a specific T helper lineage.  However, the mechanism that allows 

naïve T helper cells to of interpret multiple STAT signals is still unclear.   
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Research goals 

Our overall goals of this research were to gain an understanding of T helper cell 

commitment and determine the role of different STAT family members in the 

development and effector function of T helper subsets.  Specifically, we have two 

basic goals of our research.  The first goal is to determine the commitment of 

Th17 cells and the role of IL-23 plays in the Th17 lineage.  Our second goal is to 

further elucidate the STAT family members important for Th17 and Th2 

development and effector function. 

 

Th17 cells are of great interest due to their proposed pathogenic role in several 

autoimmune diseases.  In vivo studies have shown that IL-23 clearly plays a role 

in Th17 development.  However, the exact mechanism of action of IL-23 is not 

clear.  In order to determine the role of IL-23 in the Th17 lineage we will utilize 

several in vitro experiments.  IL-23 has been proposed as a potential therapeutic 

target, therefore these experiments will be critical in understanding the Th17-IL-

23 relationship.  Additionally, stability of each T helper subset has become an 

area of increasing interest.  Since the differentiation of Th17 cells yields only a 

small fraction IL-17 producing cells the stability of Th17 cells has been difficult to 

test.  Using a unique IL-17 cytokine capture assay we aim to determine the 

stability of Th17 cells using a pure population of IL-17 secreting cells. 

 

Many T helper subsets require more than one STAT family member for optimal 

differentiation.  The known STAT requirements for each T helper lineage have 
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been highlighted above.  However, the importance of STAT4 in the Th17 lineage 

is still not clear.  Since IL-23 signals through STAT4 and our data highlights the 

importance of IL-23 in the Th17 lineage, we wanted to determine the role of 

STAT4 in the Th17 lineage.   

 

Th2 development requires both STAT6 and STAT5.  Even though several 

cytokines important in Th2 development activate STAT3, the requirement of 

STAT3 in the Th2 lineage has not been carefully examined.  Furthermore, the 

role of STAT3 expression in T cells in Th2 mediated allergic inflammation has not 

been defined.  Using in vivo models we want to determine if STAT3 is required 

for allergic inflammatory disease.   
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MATERIALS AND METHODS 

Mice  

The generation of Stat3fl/fl mice with a CD4-Cre (Stat3CD4-/-) transgene were 

previously described (Chiarle et al., 2005; Raz et al., 1999).  Wild type (WT) mice 

were from Harlan Sprague Dawley on a C57BL/6 background.  Stat3fl/fl mice 

were backcrossed to a C57BL/6 genetic background and the presence of the 

CD4-Cre transgene deletes exons 16-21 in T cells (Raz et al., 1999).  WT mice in 

experiments using Stat3CD4-/- mice were Cre-negative littermates.  The generation 

of STAT6VT transgenic mice was previously described (Bruns et al., 2003).  

Transgene positive founders (CD2:STAT6VT), where the human Stat6 gene with 

V547 and T548 mutated to alanine is under transcriptional control of the CD2 

locus control region, were backcrossed to C57BL/6 mice (Harlan Breeders, 

Indianapolis, IN).  Stat3CD4-/- mice with a conditional deletion of Stat3 in T cells 

were mated to STAT6VT transgenic mice to generate STAT6VT transgenic mice 

with a conditional deletion of Stat3 in T cells (STAT6VTxStat3CD4-/-).  Stat4-/-, 

Stat6-/-, Tbx21-/-, STAT4α, and STAT4β mice used were all previously described 

(Hoey et al., 2003; Kaplan et al., 1996a; Kaplan et al., 1996b; Szabo et al., 

2002).  All mice were maintained in specific pathogen-free conditions and 

experiments approved by the Indiana University Institutional Animal Care and 

Use Committee. 
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Quantitative RT-PCR 

Total RNA was isolated from either un-stimulated or anti-CD3 (2μg/ml) re-

stimulated cells using Trizol and reverse transcribed according to manufacturer’s 

instructions (Invitrogen Life Technologies, Carlsbad, CA).  cDNA (2 µl) was 

added to 0.5 µl primer (inventoried FAM-labeled TaqMan Gene Expression 

Assays, Applied Biosystems), and 5 µl Taqman Fast Universal PCR Master Mix 

(Applied Biosystems).  DEPC H20 was added to a final reaction volume of 10 µl.  

Samples were analyzed in duplicate, mixed in 96-well optical reaction plates, and 

capped with optical reaction caps (Applied Biosystems).  Quantitative PCR was 

performed using the 7500 Fast Real-Time PCR system (Applied Biosystems, 

Foster City, CA).  RNA was normalized to expression levels of β2-microglobulin 

and relative expression was calculated using the -ΔΔCt method. 

 

Murine T helper cell differentiation 

Naïve CD4+CD62L+ T cells were purified from spleens using magnetic isolation 

according to manufacturer’s instructions (Miltenyi Biotec, Auburn, CA).  Naïve 

CD4+ T cells (1x106 cells/ml of complete RPMI-1640 medium) were cultured with 

plate bound anti-CD3 (4 µg/ml 145–2C11) and soluble anti-CD28 (1 µg/ml; BD 

Pharmingen) monoclonal antibodies under Th2 (IL-4 at 10 ng/ml (PeproTech, 

Rocky Hill, NJ) and anti-IFN-γ monoclonal antibody at 10 µg/ml), Th1 (anti-IL-4 

(10 µg/ml 11B11) and IL-12 (5 ng/ml; R&D Systems), or Th17 (anti-IFN-γ, anti-IL-

4, TGF-β1 (2 ng/ml; R&D Systems), IL-6 (100 ng/ml; PeproTech) where noted IL-

1β (10 ng/ml; eBioscience), and IL-23 (10 ng/ml; eBioscience).  In neutralizing 
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experiments α-IL-6 (BD Pharmingen), α-IL-21 (R&D Systems), α-rat IgG (BD 

Pharmingen), or α-goat IgG (R&D Systems) were used at a concentration of 10 

µg/ml.  Cells were expanded on day three after stimulation by adding half the 

dose of the original cytokines in fresh medium.  After 5 days of culture, 

differentiated cells were re-stimulated with plate bound anti-CD3 at 4 μg/ml for 1 

or 3 days, and the cell-free supernatant was collected after centrifugation and 

stored at -20°C until use.  In some experiments, cells underwent additional 

rounds of stimulation.  For the subsequent rounds of stimulation, cells were re-

plated (0.5x106 cells/ml) and stimulated with anti-CD3 (1 µg/ml) and anti-CD28 

(0.5 µg/ml) in the presence of CD4-depleted irradiated splenocytes (1:5).  Cells 

were stimulated and maintained with the same cytokine and neutralizing antibody 

concentrations as used in the first five days.   

 

Intracellular c-MAF staining 

T cells were collected and fixed with formaldehyde (final concentration of 1.5%) 

for 10 minutes at room temperature.  Following fixation cells were permeabilized 

for 15 minutes at 4°C with 100% methanol.  Cells were then stained with anti-c-

MAF (Santa Cruz ) for 15 minutes followed by anti-IgG alexa647 for 15 minutes 

at room temperature.   

 

Retroviral transduction 

Bicistronic retroviral vectors encoding mouse GATA3 or IRF4 and human CD4 

(Ahyi et al., 2009; Chang et al., 2005), STAT6VT or c-MAF (kindly provided by 
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Prof. I.-Cheng Ho) and EGFP,  or STAT3C as described (Mathur et al., 2007) 

subcloned into the bicistronic retroviral vector containing the marker Thy1.1 and 

Thy1.1 empty vector (kindly provided by Shreevrat Goenka) were used to 

generate virus.  Retroviral supernatants were generated by transfecting a 

Phoenix-Eco packaging cell line in chloroquine containing DMEM media with 15 

μg of purified plasmid by calcium phosphate precipitation.  Cells were cultured at 

37ºC and one day after transfection, chloroquine containing DMEM media was 

replaced with fresh DMEM media.  After 1 more day, the supernatants containing 

retrovirus were collected, filtered through a 0.45 μm filter and stored at -80°C.   

 

After 2 days of differentiation, T helper cells were transduced by spinning at 2000 

RPM at room temperature for 1 hour with 4 ml of retroviral supernatant 

containing 4 μg/ml polybrene.  For double transductions, 2 ml of each virus were 

mixed together for the spin infection.  Following the spin infection the retroviral 

supernatant was replaced with the original conditioned media.  On day 5 

transduced cells (EGFP, Thy1.1, or hCD4 positive cells) were sorted by flow 

cytometry before cytokine production and gene expression analyses. 

 

Phospho-STAT protein analysis 

T cells were collected and fixed with 1.5% (final concentration) formaldehyde for 

10 minutes at room temperature.  Following fixation cells were permeabilized for 

15 minutes at 4°C with 100% methanol.  Cells were then stained for phospho-
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STAT3 or phospho-STAT6 (BD Pharmingen) for 30 minutes at room 

temperature. Cells were analyzed using flow cytometry. 

 

Sensitization and challenge protocol 

WT and Stat3CD4-/- mice were sensitized by two intra-peritoneal (i.p.) injections of 

20 µg OVA (Sigma) adsorbed with 2 mg alum (Sigma) on days 0 and 7 of the 

protocol.  The mice were challenged intra-nasally with OVA (100 µg) from days 

14-18.  Forty-eight hours after the last intranasal challenge, mice were sacrificed 

by intra-peritoneal injection of pentobarbital (5 mg per mouse). Splenocytes from 

the mice were stimulated with OVA (100 µg/ml) for 72h and Th2 cytokines in cell-

free supernatants were assessed using ELISA. Paraffin-embedded sections were 

stained with hematoxylin and eosin for evaluation of the infiltration of 

inflammatory cells by light microscopy. 

 

Bronchoalveolar lavage (BAL) 

BAL was performed by cannulating the trachea and lavaging the lungs 3X with 

1ml PBS.  The cells recovered in BAL fluid were counted with a hemocytometer.  

Eosinophils (CD3-B220-CCR3+) in the BAL fluid were distinguished by cell size 

and by expression of CCR3 by flow cytometry as described (van Rijt et al., 2004). 

 

Chromatin immunoprecipitation (ChIP) 

ChIP assay was performed as previously described (Yu et al., 2007).  Similar 

numbers of cells between samples were used in each experiment.  In brief, cells 
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were cross linked using 1% formaldehyde, washed with PBS, re-suspended in 

cell lysis buffer and incubated on ice for 10 minutes.  The nuclei were then lysed 

using Nuclear Lysis Buffer followed by shearing of genomic DNA.  Cell lysates 

were diluted with ChIP dilution buffer and pre-cleared with salmon sperm DNA, 

BSA and protein A agarose bead slurry (50%) at 4°C for 1 hour.  The 

supernatant was incubated overnight at 4°C with 5 µg antibody (anti-Stat3 sc-

482x, anti-Stat6 sc-1698, Normal Rabbit serum (Santa Cruz)).  The 

immunocomplex was precipitated with protein A agarose beads at 4°C for 1 hour 

and the supernatant from IgG control was used as input material.  The beads 

were washed consecutively with low salt wash buffer, high salt wash buffer, LiCl 

wash buffer, and twice in TE buffer.  Bound DNA was eluted from the beads 

twice with elution buffer by vortexing at room temperature for 10 minutes and 

then incubating at 37°C for 10 minutes.  The supernatant was collected, 

supplemented with 2 mM EDTA, 20 mM Tris-Cl, 10 mg/ml Proteinase K and 

incubated at 42°C. DNA crosslinks were reversed by incubating the precipitates 

overnight at 65°C.  DNA was purified by phenol/chloroform extraction and 

ethanol precipitation, and was resuspended in H2O.  Quantification of ChIP assay 

was done using site-specific SYBR Green primers (Table 1) using ABI 

PRISM7500.  To quantify immunoprecipitated DNA, a standard curve was 

generated from serial dilutions of Input DNA.  To calculate ChIP results as a 

percentage of input, the amount of the immunoprecipitated DNA from the IgG 

was subtracted from the amount of the immunoprecipitated DNA from the 
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specific antibody ChIP followed by normalizing against the amount of the input 

DNA. 

 

 

Table 1.  Primer sequences used for ChIP. 

 

Detection of cytokines using ELISA 

To generate cell free supernatants for analysis, T cells differentiated for 5 days 

were washed and stimulated (1x106 CD4+ T cells/ml) with plate bound anti-CD3 

(4 µg/ml) for 24 hours or freshly isolated CD4+ T cells (1x106 CD4+ T cells/ml) 

were stimulated with plate bound anti-CD3 (4 µg/ml) for 48-72 hrs.  To test for 

cytokine secretion, 2 µg/ml of -IFN-, -IL-17, -IL-21, -IL-22, α-IL-4, α-IL-5, α-

IL-13, and α-IL-10 capture antibodies (BD Pharmingen, eBioscience) were 

dissolved in 0.1 M NaHCO3 (pH 9) or and 50 µl/well was used to coat a 96 well 
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Immunosorbent plate.  Plates were incubated at 4ºC overnight and washed three 

times in ELISA Wash buffer (0.1% Tween-20 in PBS) and blocked for at least two 

hours at room temperature in FACS/ELISA buffer (100 µl/well).  FACS/ELISA 

buffer was removed and supernatants and cytokine standards (R&D Systems) 

were added and incubated overnight at 4ºC.  Plates were washed three times 

with ELISA wash buffer and incubated at room temperature with 1 µg/ml of 

biotinylated detection antibodies dissolved in FACS/ELISA buffer for at least two 

hours.  Plates were washed three times with ELISA wash buffer and incubated 

with streptavidin alkaline phosphatase (1:2000 dilution; Sigma) in FACS/ELISA 

buffer for at least one hour.  Cytokine levels were determined following the 

addition of Sigma 104 phosphatase substrate (5 mg/ml; Sigma) dissolved in 

ELISA substrate buffer (10% diethanoloamine, 0.05 mM MgCl2, 0.02% NaN3, pH 

9.8) by measuring the absorbance at 415 nm (BIO-RAD microplate reader model 

550). 

 

Th17 enrichment 

Th17 cells were activated with plate-bound anti-CD3 (4 µg/ml). After 4 h, Th17 

cells were labeled with 75 µl of previously crosslinked (Controlled Protein-Protein 

Crosslinking Kit; Pierce) anti-CD45 (clone 30-F11; BD Pharmingen) and anti-IL17 

(clone Tc11–18H10; BD Pharmingen) Abs (0.2 mg/ml) for 5 min on ice.  Labeled 

cells were then diluted in pre-warmed complete RPMI 1640 to a concentration of 

105 cells/ml and rotated for 1 h at 37°C.  After capture, the Th17 cells were 

stained with 100 µl of biotin-labeled anti-IL-17 (0.2 mg/ml; clone Tc11–8H4.1; BD 
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Pharmingen) for 15 min before washing and incubating 10 min with Streptavidin-

PE (BD Pharmingen).  IL-17 captured cells were sorted using a FACS Aria cell 

sorter (BD Biosciences).  

 

Intracellular cytokine staining   

Differentiated cells (0.25-1x106) were stimulated with phorbol-myristate acetate 

(PMA) (50 ng/mL; Sigma) and ionomycin (750 ng/ml; Sigma) for 4-6 hours in the 

presence of GolgiPlug (BD Biosciences) or monensin for the last 2-3 hours.  

Cells were fixed for 10 minutes at room temperature with formaldehyde at a final 

concentration of 2%, stained for surface markers as described below, and 

permeabilized by washing twice with FACS/ELISA buffer plus 0.1% saponin.  

Cells were stained for IL-17, IL-4, IL-5, IFN-γ (eBioscience) using fluorescently 

conjugated antibodies for 30 minutes at 4ºC.  Cells were washed one time in 

FACS/ELISA buffer plus 0.1% saponin.  Samples were analyzed by flow 

cytometry using FACS-Caliber machines and data were analyzed using WinMDI 

software. 

 

Cell surface staining    

Total splenocytes or isolated T cells (0.25-1x106) were placed in 12x75 mm flow 

cytometry tubes.  Following centrifugation at 1,500 rpm for 5 minutes at 4ºC, cells 

were washed once in FACS/ELISA buffer (2% BSA, 0.01% NaN3 in PBS) and re-

suspended with formaldehyde at a final concentration of 2% and a total volume 

of 100 l.  Cells were incubated for 10 minutes at room temperature and washed 
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twice with FACS/ELISA buffer.  Cells were washed with FACS/ELISA buffer two 

times.  Cells were then surface stained for CD25 and IL-4Rα using fluorochrome 

conjugated antibodies (BD Pharmigen) for 30 minutes at 4ºC.  Cells were washed 

one time in 2 mL of FACS/ELISA buffer and permeabilized for intracellular 

staining or analyzed by flow cytometry on FACS-Calibur machines (BD 

Biosciences).  In each sample 10,000-20,000 events were collected and data 

were analyzed using WinMDI software.   

 

Generation of whole cell protein lysates 

T cells were collected and lysed in 30 µl of protein lysis buffer (10% glycerol, 

0.5% IGEPAL, 50 mM Tris pH 8.0, 0.1 mM EDTA, 150 mM NaCl, NaF, Sodium 

Orthovandate, β-glycerol, DTT, and protease inhibitors (aprotinin, leupeptin, 

pepstatin A, iodoacetamide, 4-(2-Aminoethyl) benzenesulfonyl fluoride 

hydrochloride (AEBSF), benzamidine).  Cells were then incubated on ice for 10-

15 minutes and centrifuged (14,000 rpm) at 4°C.  Supernatant was transferred to 

a new pre-chilled tube and stored at -80°C until used. 

 

SDS-PAGE and Western blot 

Protein (100 µg) was added to SDS-PAGE loading buffer (200 mM Tris HCl pH 

6.8, 40% glycerol, 8% SDS, 4% β-mercaptoethanol, 0.04% bromophenol blue).  

Proteins were denatured by boiling for 5 minutes.  Samples and Precision Blue 

plus marker (Bio-Rad) were loaded and electrophoresed on a 10 well pre-cast 4-

12% gradient Bis-Tris polyacrylamide gel (Invitrogen).  The gel was run at 150 V 
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for 1-2 hours.  Proteins from gel were transferred to a nitrocellulose membrane 

(Schleicher and Schuell) at 250 mAmps overnight at 4°C.  Following transfer, the 

membrane was blocked in 1X TBST (Tris-Base, NaCl, Tween-20) supplemented 

with 5% nonfat powdered milk for one hour while rotating. 

 

After blocking, membranes were immunoblotted using primary antibodies to 

detect phospho-STAT4 (Zymed), Stat4 (Santa Cruz), or β-actin (Calbiochem, 

San Diego, CA).  Primary antibody was diluted in 1X TBST with 5% nonfat milk 

(according to manufacturer’s recommendations) and incubated with membrane 

for at least 2 hours at room temperature or 4°C overnight.  The membrane was 

then washed for 5 minutes 3 times with TBST.  Secondary antibody diluted in 

TBST and 5% nonfat milk was added to the membrane for 45 minutes.  Following 

incubation, membrane was washed with TBST 4 times (5 minutes each).  

Western lighting chemiluminescence reagent (PerkinElmer Life Sciences, 

Wellesley, MA) was used for detection of enzymatic activity and CL-Xposure film 

(Pierce, Rockford, IL) was used to visualize the signal.    
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RESULTS 
PART I: Role of IL-23 in Th17 stability 

Th17 differentiation is dependent on STAT3  

The differentiation of inducible T regulatory cells occurs when naïve cells are 

activated in the presence of TGF-β.  However, cells cultured with TGF-β+IL-6 

differentiate into Th17.  Therefore, the presence or absence of IL-6 is thought to 

be the critical switch to determine T regulatory cell versus Th17 cell fate.  IL-6 

signals predominantly through STAT3.  In order to determine if STAT3 is required 

for Th17 development we differentiated both WT and STAT3-deficient naïve CD4 

T cells with various concentrations of TGF-β or TGF-β+IL-6.  As expected, naïve 

cells from both wild type and STAT3-deficent mice differentiated into iTregs when 

cultured with TGF-β (Figure 4).  Wild type cells cultured with TGF-β+IL-6 

repressed Foxp3 expression and produced IL-17.  The number of IL-17 positive 

cells was increased when cells were cultured with increasing doses of IL-6 and/or 

TGF-β (Figure 4).  Conversely, STAT3-deficient cells cultured with TGF-β+IL-6 

failed to induce IL-17 production and a large population of cells remained Foxp3 

positive (Figure 4).  Therefore, IL-6 induced STAT3 activation is required for both 

IL-17 production and repression of Foxp3 expression. 
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Figure 4.  STAT3 is required for Th17 differentiation.  Naïve CD4 T cells from 
WT and Stat3CD4-/- mice were activated with various concentrations of TGF-β or 
TGF-β +IL-6 for 5 days.  On day 5 cells were re-stimulated with PMA+Iono and 
intracellularly stained for Foxp3 and IL-17.  Data are representative of 2 
independent experiments.  
 

 

IL-23 maintains IL-17 secretion without affecting Th17 cell proliferation or 

expansion 

Although the requirement for IL-23 in the function of Th17 cells in vivo is 

established, the precise role of this cytokine in affecting the Th17 phenotype is 

unclear.  Among other functions, IL-23 was proposed to act as a Th17 cell 

proliferation or survival factor.  To directly test these functions, we developed a 

cytokine capture assay for IL-17-secreting cells to compare IL-23 functions in 

enriched IL-17-high and low secretor populations.  Naive CD4 T cells were 

cultured with TGF-β1+IL-6+IL-1β for 5 days before stimulation with anti-CD3 and 

selection of IL-17-high and low cells by cell sorting (Figure 5A).  Following sorting 

there was a 10-12-fold enrichment for IL-17 secreting cells in the IL-17-high 

population (Figure 5A).  The separation of cells into distinct populations was 
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confirmed by demonstrating segregated expression of Il23r and Rorc and 

production of IL-17 and IL-22 while IFN-γ production was indistinguishable 

between the two populations (Figure 5B and C).  Intracellular staining for IFN-γ in 

these populations demonstrated less than 0.5% in any population. 
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Figure 5.  Cytokine selection of IL-17+ Th17 cells.  (A) Naive CD4+ T cells 
were activated, cultured in TGF-β plus IL-6 plus IL-1β and blocking antibodies 
(anti-IFN-γ and anti-IL-4) for 5 days and activated before surface staining for IL-
17 using cytokine capture.  Cells were then sorted into IL-17-high and low 
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populations.  (B) Supernatants from IL-17-high and -low cells stimulated with 
anti-CD3 were tested for cytokines using ELISA.  (C) RNA was isolated from 
cells treated in B and gene expression was assessed using real-time PCR.  Data 
are representative of 2 experiments. 
 

 

One of the proposed functions of IL-23 is promoting the proliferation or expansion 

of Th17 cells.  To test this directly, naive CD4 T cells were cultured with TGF-

β+IL-6+IL-1β for 5 days, separated based on IL-17 production and labeled with 

CFSE (Figure 6A).  CFSE-labeled IL-17-high and low populations were cultured 

in blocking Abs (anti-IFN-γ and anti-IL-4) alone or blocking antibodies plus IL-23 

for 24 or 48 hours to assess proliferation.  Although IL-17-high cells had an 

intrinsically higher rate of proliferation than IL-17-low cells, there was not a 

significant difference in proliferation between cultures incubated with or without 

IL-23 (Figure 6B and C), suggesting that IL-23 does not promote a robust 

proliferative response. 

 

IL-23 was also proposed to affect Th17 survival.  However, in examining the 

overall cell growth in IL-17-high and low cells, we observed the increased 

proliferative capacity of IL-17-high cells that resulted in a 2-3-fold increase in cell 

number compared with IL-17-low cells, but only minor effects of IL-23 (Figure 

6D).  Similarly, IL-17-high and low cells cultured in the presence or absence of 

IL-23 had similar percentages of Annexin V+ cells after 2 or 4 days of culture with 

little effect of IL-23 culture (Figure 6E).  
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In contrast, we did note that in IL-17-high populations cultured with IL-23, a 

higher percentage of cells, with a higher intensity of IL-17 staining, was 

maintained compared with cells cultured in the absence of IL-23 (Figure 6B).  

The effects of IL-23 on maintaining the IL-17-secreting phenotype were even 

more dramatic when cells were activated with anti-CD3. After 2 days of 

activation, IL-17-high cells cultured in IL-23 still had >60% IL-17+ cells, while 

cultures incubated in the absence of IL-23 has <30% IL-17+ cells (Figure 6F).  

This effect was also observed in the IL-17-low cultures where IL-17+ cells 

comprised <10% of the population when cultured in the absence of IL-23 (Figure 

6F).  These data suggest that IL-23 maintains the IL-17-secreting phenotype 

without detectable effects on Th17 cell proliferation or expansion.  
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Figure 6.  IL-23 maintains the IL-17-secreting phenotype without affecting 
cell expansion or survival.  (A) Naive CD4+ T cells were activated and cultured 
in TGF-β plus IL-6 plus IL-1β and blocking antibodies (anti-IFN-γ and anti-IL-4) 
for 5 days before sorting into IL-17-high and low populations.  Cells were then 
labeled with CFSE and for intracellular IL-17 following stimulation with PMA plus 
ionomycin.  Numbers indicate percent of cells in each quadrant and bracketed 
numbers indicate CFSE mean fluorescence intensity.  (B) IL-17-high cells were 
cultured with IL-23 and blocking antibodies or blocking antibodies alone for the 
indicated times before cells were stimulated and stained for intracellular IL-17.  
Numbers indicate percent of cells in each quadrant and bracketed numbers 
indicate CFSE mean fluorescence intensity.  (C) IL-17-high or -low CFSE-stained 
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cells prepared as in B were cultured for 2 days with blocking antibodies in the 
presence or absence of IL-23 as indicated.  CFSE staining is shown from freshly 
stained cells (day 0) for comparison.  (D), IL-17-high and -low cells cultured as in 
B were counted after 48 h.  (E) IL-17-high and -low cells were cultured as in B 
and were analyzed for Annexin V staining after 2 or 4 days of culture in the 
presence or absence of IL-23.  (F) IL-17-high and-low cells were stimulated with 
anti-CD3 and cultured with blocking antibodies with or without IL-23.  Cells were 
stimulated with PMA plus ionomycin for 4 h and stained for intracellular IL-17.   
Data are representative of 2 experiments. 
 

 

IL-23 maintains the Th17 phenotype in long-term cultures 

To test the ability of IL-23 to maintain the Th17 phenotype over long term culture, 

we cultured naive CD4 T cells for 1 week with TGF-β plus IL-6 plus IL-1β, the 

latter which we found amplifies IL-23 responsiveness in vitro (Veldhoen et al., 

2006a), and then for subsequent rounds of stimulation with either blocking 

antibodies alone or IL-23 with blocking antibodies.  Despite a high level of IL-17 

in the initial cultures, IL-23 was only partially effective in attenuating the decrease 

of IL-17 production from T cells following subsequent rounds of stimulation, 

compared with blocking antibodies alone (Figure 7A).  IL-23 was effective in 

limiting IFN-γ production from these cultures suggesting that the decrease in IL-

17 production observed over multiple rounds of stimulation is not due to 

coincident increases in IFN-γ production or increases in the percentage of cells 

that are IFN-γ positive.  

 

Given the similarity in autoimmune disease phenotype between IL-1RI- and IL-

23p19-deficient mice, and that IL-1 enhances IL-23 responsiveness (Cho et al., 

2006; Cua et al., 2003; Sutton et al., 2006), we next tested the ability of IL-1β to 
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cooperate with IL-23 in long term cultures.  Naive CD4 T cells were cultured as in 

Figure 5A for the first week and then cultured for subsequent rounds of 

stimulation with IL-23, IL-1β, or a combination of IL-23 and IL-1β.  Although IL-1β 

was no more effective than IL-23 in attenuating the loss of IL-17 secretion over 

multiple rounds of stimulation, the combination of IL-23 and IL-1β was able to 

maintain a high level of IL-17 secretion over three rounds of stimulation (Figure 

7B).  There were not dramatic differences in the growth or survival among these 

cultures over several rounds of culture, suggesting that the effects of these 

cytokines are not on survival or expansion, but rather on maintaining the 

phenotype of the cells.  The combination of IL-23 and IL-1β was similarly capable 

of maintaining higher levels of IL-21 and IL-22 secretion than IL-23 alone, 

although there were decreases in these cytokines over rounds of stimulation 

(Figure 7B). 
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Figure 7.  IL-1β increases IL-23 stimulated maintenance of the Th17 
phenotype.  (A). Naive T cells were activated, primed with TGF-β plus IL-6 plus 
IL-1β for the first round and cultured for two additional rounds of stimulation in the 
presence of blocking antibodies with or without IL-23.  After each round of culture 
cells were stimulated and cell-free supernatants were tested for cytokine 
production using ELISA.  (B) Naive T cells were activated and primed as in A and 
cultured for two additional rounds of stimulation with IL-23, IL-1β, or IL-23 plus IL-
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1β as indicated.  Cytokine production was measured using ELISA.  Data are 
representative of 2 experiments. 
 

 

To define the mechanism for the ability of IL-1β to augment IL-23 function we first 

analyzed IL-23R expression in cells cultured with IL-23, IL-1β, or both cytokines 

for the second and third rounds of stimulation.  Although culture with IL-23 

maintained or enhanced Il23r mRNA expression, there was no increased 

expression in cells cultured with IL-1β alone or with both cytokines (Figure 8A).  

We then examined IL-23 signaling using flow cytometry to assess levels of 

phospho-STAT3 following acute stimulation of cultures incubated for three 

rounds in IL-23, IL-1β, or both cytokines.  IL-23 stimulated STAT3 

phosphorylation in cells from each of the conditions with insignificant differences 

in the phospho-STAT3 levels among the conditions, suggesting that the effect of 

IL-1β was not altering IL-23 signaling (Figure 8B).  To test whether IL-1β had 

altered the Il17 gene to make it more responsive to IL-23, we took advantage of 

an assay we previously described for the acute stimulation of IL-17 production by 

a combination of IL-23 and IL-18 (Mathur et al., 2007).  Naive CD4 T cells primed 

with TGF-β plus IL-6 plus IL-1β for the first round of stimulation and cultured in 

IL-23 or IL-23 plus IL-1β for two rounds of stimulation were re-stimulated with IL-

23 plus IL-18.  Cells that were cultured with IL-23 plus IL-1β generated higher 

amounts of IL-17 than cells cultured in IL-23 alone in response to IL-23 plus IL-18 

(Figure 8C).  Because analysis of Il23r expression in these cultures (Figure 8A) 

showed only minor differences in expression, with slightly lower levels in the IL-
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23 plus IL-1β cultured cells, it suggests that culture in IL-23 plus IL-1β is directly 

affecting the responsiveness of the Il17 locus, although we did not find 

differences in the level of total histone acetylation between cells that were 

cultured with or without IL-1β.  IL-1β may enhance IL-23 function by activating 

cooperative transcription factors, or through indirect mechanisms including the 

ability to limit the inhibitory effects of IL-2 on Th17 development (Kryczek et al., 

2007). 
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Figure 8.  IL-1β increases responsiveness of the IL-17 locus.  (A) Naive T 
cells were activated and primed with TGF-β plus IL-6 plus IL-1β for the first round 
and cultured for two additional rounds of stimulation with IL-23, IL-1β, or IL-23 
plus IL-1β as indicated.  At the end of the first, second, and third round of 
stimulation RNA was isolated from cells stimulated with anti-CD3 for 4 h. 
Quantitative PCR of Il23r expression is shown as relative to Th1 cultures after 
the third round of stimulation.  (B) Cells cultured and stimulated as in A for three 
rounds were stimulated with IL-23 for 30 min before intracellular staining for 
phospho-STAT3.  (C) Naive cells primed and cultured as in A were stimulated 
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with IL-18 and IL-23 for 24 h. Cell-free supernatants were measured for IL-17 
using ELISA.  Data are representative of 2 experiments. 
 

 

IL-23 does not mediate commitment to the Th17 lineage 

Because IL-23 was capable of maintaining the IL-17-secreting phenotype, it 

allowed us to determine whether IL-23 mediated commitment to the Th17 

lineage, with commitment being defined as the ability of cells to maintain the IL-

17-secreting phenotype in the presence of cytokines promoting the development 

of other subsets.  Th1 and Th2 cells are committed to their respective lineages 

after three rounds of stimulation (Murphy et al., 1996).  Naive CD4 T cells were 

primed with TGF-β plus IL-6 plus IL-1β for the first round, cultured for two rounds 

in IL-23 plus IL-1β, and then either maintained in IL-23 plus IL-1β or switched to 

IL-12 or IL-4 containing medium for the fourth round of stimulation before 

stimulation with anti-CD3 to assess cytokine production.  Although cells cultured 

for the fourth round in IL-23 plus IL-1β maintained the ability to produce IL-17, 

cells switched to Th1 or Th2 promoting conditions showed diminished IL-17 

production and the induction of IFN-γ and IL-4, respectively (Figure 9A).  Similar 

results were generated using cultures derived from C57BL/6 or BALB/c mice.  

The levels of IL-4 induced following switching into Th2 conditions were lower 

than seen from cells cultured for 4 weeks under Th2 conditions, though the levels 

of IFN-γ secreted by Th17 cultures switched to Th1 conditions were comparable 

to long term Th1 cultures (Figure 9A and B).  Expression of other Th17 genes 

including Il17f, Il23r, Il22, and Rorc were also diminished in cultures switched to 
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Th1 or Th2 conditions (Figure 9C and D).  In contrast, naive CD4 T cells primed 

with TGF-β plus IL-6 plus IL-1β for the first round, cultured for two rounds in IL-23 

plus IL-1β, and subsequently switched to culture conditions that promote Treg 

development were unable to develop into Foxp3-expressing cells (Figure 9E).  

Culture of cells with TGF-β plus IL-2 increased the percentage of IL-17+ cells.  

Thus, Th17 cells cultured with IL-23 can adopt some, but not all CD4 T cell 

lineages.  
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Figure 9.  IL-23 does not program commitment to the Th17 lineage.  (A) 
Naive T cells were activated, primed with TGF-β plus IL-6 plus IL-1β for the first 
round followed by two rounds of stimulation in IL-23 plus IL-1β, were cultured for 
an additional round of stimulation in Th1 or Th2 conditions, or IL-23 plus IL-1β.  
Supernatants from anti-CD3 stimulated cells were tested for cytokine production 
using ELISA.  (B) Naive CD4+ T cells were activated and cultured under Th1 or 
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Th2 priming conditions for four rounds of stimulation. At the end of the fourth 
round of stimulation, supernatants from anti-CD3 stimulated cells were tested for 
cytokine production using ELISA.  (C) Cells stimulated and cultured as in A were 
stimulated with anti-CD3 for 4 h and RNA was isolated for quantitative PCR.  (D) 
Cells were stimulated and cultured for three rounds as in A.  After 3 days of 
culture in Th1, Th2, or IL-23 plus IL-1β conditions, RNA was isolated from control 
or switched cultures for quantitative PCR.  (E) Naive T cells were activated, 
primed with TGF-β plus IL-6 plus IL-1β for the first round followed by two rounds 
of stimulation in IL-23 plus IL-1β, were cultured for an additional round of 
stimulation in IL-23 plus IL-1β or TGF-β plus IL-2.  The percentages of cells 
positive for Foxp3 or IL-17 intracellular staining are indicated with cells cultured 
for 1 wk in TGF-β plus IL-2 shown as a control for Foxp3 expression. 
ND= not detected.  Data are representative of 2-3 experiments. 

 

 

Although T cells cultured for three rounds under these Th17 conditions produce 

large amounts of IL-17, there is still some production of IFN-γ, and it remained 

possible that a contaminating population of cells was expanding and overtaking 

the Th17 cells upon switching cultures to Th1 or Th2 conditions.  To eliminate this 

possibility, we used the cytokine capture protocol to isolate IL-17-high cells from 

Th17 cultures after three rounds of stimulation (Figure 10A) and then maintained 

the cultures with IL-23 plus IL-1β or switched to conditions promoting Th1 or Th2 

development.  As observed with un-separated Th17 cultures, IL-17-high cells 

maintained their phenotype with continued culture in IL-23 plus IL-1β, but showed 

decreased IL-17 and IL-22 production, and increased IFN-γ and IL-4 production 

in Th1 and Th2 conditions, respectively (Figure 10B and C).  Thus, IL-17-high 

cells are not stable secretors of IL-17 and upon exposure to conditions promoting 

the development of other Th subsets, they acquire new cytokine secreting 

characteristics. 
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Figure 10.  Sorted IL-17 high cells are not committed to the IL-17 secreting 
phenotype.  (A) Naive CD4+ T cells were primed and cultured as in 5A, and after 
the third round of culture, cells were enriched for IL-17-secreting cells by cytokine 
selection.  Surface staining for IL-17 is shown pre- and post sort.  (B) IL-17-high 
cells from A were cultured in Th1, Th2, or IL-23 plus IL-1β for an additional round 
of stimulation.  Cells were stimulated for 4 h and stained for intracellular IL-17 
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and IFN-γ.  (C) Supernatants from anti-CD3 stimulated cells cultured as in B 
were tested for cytokine production using ELISA.  Data are representative of 2 
experiments. 
 

 

We then defined if the switch from Th17 to Th1 or Th2 was characterized by 

induction of the standard pathways and lineage determining factors.  IL-4 

signaling is qualitatively altered in Th1 cells through mechanisms that are still not 

clear but do not involve altered STAT6 activation (Huang and Paul, 1998), and 

IL-4 was able to activate STAT6 in cells cultured under Th1, Th2, or Th17 

conditions (Figure 11A).  During Th2 development, IL-12 signaling is 

extinguished, contributing to commitment in the Th2 lineage (Szabo et al., 1997).  

However, while Il12rb2 expression was greatly decreased in cells cultured for 

three rounds in Th2 conditions, cells cultured in IL-23 plus IL-1β demonstrated 

expression of Il12rb2 similar to Th1 cells (Figure 11B).  To determine whether IL-

12 signaling was functional, we examined STAT4 expression and IL-12-induced 

phosphorylation of STAT4 in Th1, Th2, and Th17 cultures after three rounds of 

stimulation.  Although STAT4 expression is reduced and IL-12-induced STAT4 

phosphorylation is eliminated in Th2 cultures, normal expression of STAT4 was 

retained in Th17 cultures.  IL-12-induced STAT4 activation was only modestly 

diminished in IL-23 plus IL-1β and IL-23 cultured cells compared with Th1 

cultures (Figure 11C).  Despite the reduction in IL-12-induced STAT4, IL-12 and 

IL-4 were still able to promote an increase in Tbx21 and Gata3 expression in 

Th17 cultures switched to Th1 or Th2 conditions, respectively (Figure 11D).  
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Thus, Th17 cells, even after long-term culture, are competent to assume a Th1 or 

Th2 phenotype. 
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Figure 11.  Signals promoting Th1 or Th2 development are intact in Th17 
cultures.  (A) Cells stimulated and cultured  in Th17, Th1, or Th2 conditions 
were incubated with IL-4 for 30 min and stained for phospho-STAT6.  (B) RNA 
from cells stimulated as in A for three rounds of stimulation was examined for 
relative levels of Il12rb2 expression.  Levels are relative to three-round Th1 
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cultures.  (C) Cells stimulated and cultured as in A for three rounds of stimulation 
were then stimulated with IL-12 for 1 hour.  Phospho-STAT4, total STAT4, and 
actin were detected by immunoblot.  (D) Cells were stimulated and cultured for 
three rounds as in A. After 3 days of culture in Th1, Th2, or IL-23 plus IL-1β, RNA 
was isolated from control or switched cultures for quantitative PCR to test for 
expression of the indicated genes.  Expression is relative to the level of 
expression of each gene in IL-23 plus IL-1β cultured cells before the fourth round 
of culture.  Data are representative of 2 experiments.  

 

 

T-BET and STAT4 are not required for the repression of IL-17 in Th17 cells 

cultured with Th1 priming conditions 

Th17 cells cultured for multiple rounds of stimulation secrete IFN-γ when cultured 

with IL-12 (Figures 9 and 10).  Both T-bet and STAT4 are important for IFN-γ 

production from Th1 cells.  To determine if T-bet and STAT4 are required for the 

repression of IL-17 and induction of IFN-γ from Th17 cells cultured with IL-12, we 

cultured T-bet-deficient and STAT4-deficient naïve T cells under Th17 conditions 

for 3 rounds of stimulation.  For the 4th round of stimulation Th17 cells were 

cultured with IL-12, IL-4, or IL-23+IL-1β.  T-bet- and STAT4-deficient Th17 

cultured in IL-23+IL-1β for the 4th round of stimulation secreted high levels of IL-

17.  However, T-bet- and STAT4-deficient Th17 cells cultured in IL-4 had a 

significant decrease in IL-17 production and secreted increased levels of IL-4 

(Figure 12).  Similar to culture with IL-4, IL-12 cultured Th17 cells deficient in T-

bet or STAT4 had significantly decreased IL-17 production.  However, in the 

absence of T-bet or STAT4, Th17 cells cultured with IL-12 did not induce IFN-γ 

production (Figure 12).  Therefore, T-bet and STAT4 are not required for IL-12 



76 
 

repression of IL-17, however they are required for IL-12 induced IFN-γ production 

in Th17 differentiated cells. 
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Figure 12.  Tbx21 and Stat4 are not required for the reduction of IL-17 
following culture with IL-12 or IL-4.  (A) Naive T cells from WT and Stat4-/- (B) 
WT and Tbx21-/- mice were activated, primed with TGF-β plus IL-6 plus IL-1β for 
the first round followed by two rounds of stimulation in IL-23 plus IL-1β, were 
cultured for an additional round of stimulation in Th1 or Th2 conditions, or IL-23 
plus IL-1β.  Supernatants from anti-CD3 stimulated cells were tested for cytokine 
production using ELISA.  Data are representative of 2 mice and 1 experiment. 
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PART II: Role of STAT4 in IL-17 Producing Memory Cells 

Stat4 is required for memory cell IL-17 production  

STAT4 is required for the differentiation of Th1 cells (Kaplan et al., 1996b; 

Thierfelder et al., 1996).  Th1 cells deficient in STAT4 have decreased IFN-γ and 

IL-10 production compared to wild type Th1 cells (Figure 13A and B).  However, 

expression of either STAT4 isoform, α or β, in Th1 cells lead to IFN-γ production 

similar to wild type Th1 cells (Figure 13A).   
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Figure 13.  STAT4 is required for Th1 differentiation.  (A) Naïve CD4 T cells 
from wild type, Stat4-/-, STAT4α, and STAT4β were cultured under Th1 priming 
conditions (IL-12, anti-IL-4) and with irradiated APCs for 5 days.  On day 5 cells 
were re-stimulated with anti-CD3 for 24 hours.  Cell free supernatant was 
collected and IFN-γ and production was assayed using ELISA.  (B) Naïve CD4 T 
cells from WT and Stat4-/- mice were cultured under Th1 priming conditions for 5 
days.  On day 5 cells were re-stimulated with anti-CD3 for 24 hours.  Cell free 
supernatant was collected and IL-10 production was assessed using ELISA.  
Data are representative of 2-4 experiments.  Experiments were done in 
collaboration with Dr. John T. O’Malley. 
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Although STAT4 is clearly required for Th1 differentiation and IFN-γ production, 

initial reports showed Th17 development and IL-17 production occurs 

independent of STAT4 (Harrington et al., 2005; Park et al., 2005).  We have 

shown that IL-23 plays an important role in maintaining IL-17 production from 

activated or effector Th17 cells (see PART I).  IL-23, although to a lesser extent 

than IL-12, signals through STAT4 (Oppmann et al., 2000; Parham et al., 2002), 

thus we sought to test the role of STAT4 in IL-17 production from 

effector/memory cells.  Wild type (WT) and STAT4-deficient naïve (CD4+CD44-

CD62L+) and activated/memory (CD4+CD44+CD62L-) cells were isolated and 

sorted from spleens.  Naïve CD4 cells were stimulated and cultured with TGF-

β+IL-6 and memory/activated T cells were cultured with IL-23.  Naïve Th17 cells 

differentiated independent of STAT4 determined by the production of IL-17 

(Figure 14A).  Wild type memory cells produced high amounts of IL-17.  

However, STAT4 deficient memory cells had significantly reduced IL-17 

production compared to wild type memory cells (Figure 14A).  Following 

differentiation, sorted cells were re-stimulated with PMA+ionomycin for 6 hours 

and stained for IL-17 and IFN-γ.  Similar to ELISA results, STAT4-deficient Th17 

cells had similar percentage of IL-17+ cells compared to wild type.  However, 

memory cells from STAT4-deficient mice had significantly reduced numbers of 

IL-17+ cells (Figure 14B).  Taken together, these data show that STAT4 is 

required for IL-17 production from IL-23 cultured memory cells.  
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Figure 14.  STAT4 is required for IL-17 production from effector/memory 
cells cultured with IL-23.  (A) CD4+ T cells were isolated from WT and Stat4-/- 
spleens.  CD4+ cells were stained and sorted for naïve (CD4+CD44-CD62L+) 
and memory (CD4+CD44+CD62L-).  Naïve cells were cultured for 5 days with 
TGF-β+IL-6 and memory cells with IL-23.  On day 5 cells were re-stimulated with 
anti-CD3 for 24 hours.  Cell free supernatant was assessed for IL-17 production 
using ELISA.  (B) Cells sorted and cultured as in A were re-stimulated on day 5 
with PMA+ionomycin for 4 hours.  Cells were then stained for IL-17 and IFN-γ.  
Data are representative of 1 (B) or 2 (A) experiments. 

 

We previously published that re-stimulation of Th17 cells with IL-18 and IL-23 

results in IL-17 production (Mathur et al., 2007).  Naïve Th17 cells from wild type 

and STAT4-deficient mice cultured with TGF-β+IL-6 had similar amounts of IL-17 
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production after IL-18+IL-23 re-stimulation, shown by both ELISA and 

intracellular staining (Figure 15A and B).  Conversely, Stat4 deficient memory 

cells cultured with IL-23 had reduced IL-17 production after IL-23+IL-18 re-

stimulation compared to wild type memory cells (Figure 15A and B).  Collectively, 

these data show that STAT4 is required for IL-17 production from memory cells 

re-stimulated with IL-23+IL-18. 
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Figure 15.  STAT4 is required for IL-17 production after IL-23+IL-18 re-
stimulation from effector/memory cells cultured with IL-23.  (A) CD4+ T cells 
were isolated from WT and Stat4-/- spleens.  CD4+ cells were isolated for naïve 
(CD4+ CD62L+) and memory (CD4+ CD62L-).  Naïve cells were cultured for 5 
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days with TGF-β+IL-6 and memory cells with IL-23.  On day 5 cells were re-
stimulated with IL-18+IL-23 for 24 hours.  Cell free supernatant was assessed for 
IL-17 production using ELISA.  (B) Cells sorted and cultured as in Figure 14A 
were re-stimulated on day 5 with IL-18+IL-23 for 4 hours.  Cells were then 
stained for IL-17 and IFN-γ.  Data are average ± SD of 2 mice and representative 
of 3-4 experiments (A) or representative of 1 experiment (B). 

 

 

STAT4-deficient memory cells have reduced Rorc expression 

STAT4 deficient memory cells have reduced IL-17 production after 5 days of 

culture with IL-23.  It is possible that STAT4 is required for Il23r expression and 

thus responsiveness to IL-23.  To directly test this we isolated memory cells 

(CD62L-) from wild type and Stat4-/- spleens.  Immediately following the 

magnetic sort we isolated RNA from the two populations.  Il23r expression was 

assessed using real time PCR.  Wild type and Stat4 deficient memory cells had 

comparable Il23r expression (Figure 16A).  These data show that the expression 

of Il23r in memory cells is independent of STAT4.  We also wanted to evaluate 

Rorc expression of wild type and STAT4-deficient memory cells.  Directly ex vivo, 

Stat4-/- memory cells had reduced Rorc expression compared to wild type 

memory cells (Figure 16B).  These data suggest that Stat4 is required for Rorc 

expression in memory cells.   
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Figure 16.  Stat4-/- memory cells have reduced Rorc expression.  (A) Naïve 
(CD62L+) and memory (CD62L-) were isolated from spleen of wild type and 
Stat4-/- mice.  Following magnetic selection RNA was isolated and real time PCR 
was performed on Il23r (B) Rorc.  Data are average of 2 mice ± SD. 

 

 

IL-23 stimulation activates STAT4 in IL-23 cultured memory, but not TGF-

β+IL-6 cultured naïve CD4 T cells 

IL-23 signaling leads to the activation of several STATs including STAT1, STAT3, 

and STAT4 (Parham et al., 2002).  Since STAT4 is differentially required for IL-

17 production in naïve versus memory cells we wanted to test if the activation of 

STAT4 following IL-23 stimulation is different between naïve CD4 T cells cultured 

with TGF-β+IL-6 and memory CD4 T cells cultured with IL-23.  Naïve T cells 

were cultured with TGF-β+IL-6 and memory T cells (CD62L-) with IL-23 for 5 
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days.  After 5 days of differentiation cells were washed and re-stimulated with IL-

23 for 1 hour.  Following the 1 hour stimulation cells were intracellularly stained 

for pSTAT3 and pSTAT4.  Both naïve and memory cultured cells had a small 

percentage of pSTAT3 positive cells following IL-23 stimulation.  However, only 

the memory cells cultured with IL-23 had a shift, albeit modest, in pSTAT4 

positive cells (Figure 17).  These data suggest that naïve and memory cultured 

cells have different STAT activation patterns following IL-23 stimulation.  
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Figure 17.  IL-23 stimulation leads to the phosphorylation of STAT4 in 
memory, but not naïve cells.  (A) Naïve CD4+ T cells were activated and 
cultured in TGF-β+IL-6 and memory (CD62L-) CD4 T cells with IL-23.  On day 5 
cells were washed and re-stimulated with IL-23 for 1 hour.  Following stimulation 
cells were intracellularly stained for phospho-STAT3 and phospho-STAT4.  (B) 
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Histogram representation of dot plot graphs in A.  (C) Graphical representation of 
mean fluoresce intensity of dot plots in A. 
 

 

IL-23, not TGF-β+IL-6 leads to increased Il23r expression following 5 day 

culture 

Previous publications show that T cell activation, IL-6, TGF-β, IL-21, and IL-23 

increase the expression of Il23r (Bettelli et al., 2007b; Chen et al., 2007; Ivanov 

et al., 2006; Parham et al., 2002; Yang et al., 2007; Zhou et al., 2007; Zhou et al., 

2008).  It is possible the differences observed in cultured naïve and memory 

Th17 phospho-STAT4 following IL-23 re-stimulation are because of a difference 

in Il23r expression.  In order to determine Il23r expression in naïve and memory 

T cells we isolated CD4+CD62L+ naïve T cells and CD4+CD62L- memory cells 

from wild type spleens and cultured  them with TGF-β+IL-6 or IL-23, respectively.  

Following 5 days of culture RNA was isolated from both populations and real time 

PCR was performed to assess Il23r expression.  Naïve T cells cultured with TGF-

β+IL-6 had significantly lower Il23r expression compared to memory T cells 

cultured with IL-23 (Figure 18).  These data suggest the differences in phospho-

STAT4 following IL-23 stimulation may be due to differences in Il23r expression. 
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Figure 18.  Naïve cells cultured with TGF-β+IL-6 have reduced Il23r 
compared to memory cells cultured with IL-23.  Naïve and memory cells were 
isolated from wild type mice.  Naïve cells were cultured with TGF-β+IL-6 and 
memory cells with IL-23 for 5 days.  After 5 days of culture RNA was isolated and 
real time PCR was performed to assess Il23r expression. 
 

 

Stat4 deficient mice have reduced IL-17 production upon ex vivo recall 

response 

Stat4 is required for memory IL-17 production in vitro (Figure 14).  In order to test 

the role of Stat4 in IL-17 production in vivo we immunized wild type and Stat4-/- 

BALB/C mice with ovalbumin + Alum.  Day 7 after immunization half of the mice 

were sacrificed.  The remaining mice were immunized with another i.p. injection 

of OVA + Alum on day 7 and were sacrificed on day 14.  After day 7 or day 14 

inguinal and mesenteric lymph nodes were isolated.  Total lymph node cells were 

re-stimulated with 250 or 500 µg/ml OVA for 72 hours.  Cell free supernatant was 

collected and IL-17 production was assessed.  Wild type mice immunized once 

with OVA + Alum had increased IL-17 production from lymph node cells after ex 

vivo re-stimulation with OVA compared to PBS injected mice.  Wild type mice 

immunized two times with OVA + Alum had increased IL-17 production compared 

to PBS injected mice, albeit in lower amounts than mice immunized a single time 
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(Figure 19).  Stat4 deficient mice immunized either once or twice with OVA + 

Alum had increased IL-17 production compared to wild type PBS injected mice.  

However, the levels of IL-17 produced by Stat4 deficient lymph node cells were 

reduced compared to wild type lymph node cells (Figure 19).  The decrease in IL-

17 production did not reach statistical significance, however the trend towards 

significance was consistent.  Taken together Stat4 is required for optimal ex vivo 

IL-17 production. 
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Figure.19.  Immunized Stat4-/- mice have reduced IL-17 production after 
OVA re-stimulation.  Wild type and Stat4 deficient mice were immunized i.p. 
with Ovalbumin (OVA) (20 µg) + Alum (1 mg) or PBS control.  At day 7 half of the 
mice were challenged with OVA (20 µg) + Alum (1 mg) or PBS again and 
sacrificed at day 14.  The other mice were sacrificed on day 7.  Inguinal and 
mesenteric lymph nodes were isolated from all mice.  Total lymph node cells 
were then re-stimulated with 250 or 500 µg/ml OVA.  Following 72 hours of 
stimulation cell-free supernatant was assessed for IL-17 production using ELISA.  
Data are average of 2-4 mice per group ± SD.  
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Part III: STAT3 is required for Th2 differentiation 

STAT3 is activated during Th2 differentiation 

STAT6 activation is critical in Th2 cell differentiation.  Though several cytokines 

important in Th2 differentiation and cytokine production signal through STAT3, 

the activation of STAT3 during Th2 development has not been carefully 

examined.  To define STAT3 activation throughout Th2 differentiation, wild type 

and STAT3 deficient Th2 cells were assessed for intracellular phospho-STAT3 

and phospho-STAT6 each day during Th2 differentiation.  Wild type Th2 cells 

were nearly all phospho-STAT6 positive early on in differentiation and remained 

phospho-STAT6 positive throughout differentiation (Figure 20A and B).  Wild type 

Th2 cells also demonstrated a high percentage of phospho-STAT3 positive cells 

throughout Th2 differentiation.  STAT3 phosphorylation occurs early in 

differentiation, peaks at 48 hours and falls by 72 hours (Figure 20A and B).  

There is a second peak of STAT3 phosphorylation following expansion of cells in 

culture and addition of further cytokines at 72 hours, as assessed by percent 

phospho-STAT6 positive and mean fluorescence intensity (Figure 20).  Overall 

these data show that STAT3 becomes phosphorylated during Th2 differentiation. 
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Figure 20.  STAT3 is activated during normal Th2 differentiation.  (A) Wild 
type (WT) and Stat3CD4-/- naïve CD4+ T cells were activated with anti-CD3 and 
anti-CD28 and cultured in IL-4 + anti-IFN-γ.  Each day during differentiation cells 
were stained for intracellular phospho-STAT3 and phospho-STAT6.  (B) 
Graphical representation of % pSTAT positive cells and mean fluorescence 
intensity from A.  Data are average of 2 mice per group.  Data are representative 
of 2-3 independent experiments. 

 

 

The phosphorylation of STAT3 occurs early on in differentiation and the highest 

peaks of phospho-STAT3 take place after the addition of IL-4.  These data 

suggest that IL-4 can directly activate STAT3.  In order to test if IL-4 can directly 

activate STAT3, wild type cells were cultured under Th2 skewing conditions.  On 



89 
 

day 5 cells were washed and stimulated for 30 minutes or 1 hour with 

recombinant IL-4.  Cells were then intracellularly stained for both phospho-

STAT6 and phospho-STAT3.  Cell stimulated with IL-4 were nearly all phospho-

STAT6 positive.  However, stimulation with exogenous IL-4 did not lead to the 

phosphorylation of STAT3 (Figure 21).   

pSTAT3 pSTAT6

30 minutes
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IL-4

No stimulation

 

Figure 21.  STAT6, but not STAT3 is phosphorylated following IL-4 
stimulation.  Wild type naïve CD4+ cells were differentiated under Th2 
conditions for 5 days.  On day 5 cells were stimulated with IL-4 for 30 minutes or 
1 hour as indicated.  Following stimulation cells were assessed for phospho-
STAT3 and phospho-STAT6 by intracellular staining.  Data are representative of 
2-3 experiments. 

 

 

Since IL-4 does not directly activate STAT3, we sought to determine what 

cytokines are responsible for the phosphorylation of STAT3 throughout Th2 

differentiation.  To test if cytokines known to be secreted by Th2 cells were 
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responsible for the phosphorylation of STAT3, IL-21 and IL-6 were neutralized 

throughout Th2 differentiation using neutralizing antibodies.  Th2 cells cultured 

with anti-IL-6 and anti-IL-21 had significantly decreased percent of phopho-

STAT3 positive cells compared to Th2 cells.  The effect of IL-21 and IL-6 

blocking antibodies is specific to STAT3 because phospho-STAT6 was not 

effected (Figure 22A).  Th2 cytokine production was also significantly decreased 

when IL-6 and IL-21 were neutralized, recapitulating the STAT3-deficient 

phenotype (Figure 22B).  However, the neutralization of either IL-6 or IL-21 alone 

had minimal effect on Th2 cytokine production.  Taken together, IL-6 and IL-21 

are required for maximum STAT3 activation throughout Th2 differentiation and 

for the production of Th2 cytokines.   
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Figure 22.  IL-21 and IL-6 are required for the phosphorylation of STAT3 

and Th2 cytokine production.  (A) Naïve CD4+ cells were isolated from WT 

spleens.  Naïve cells were activated with anti-CD3 and anti-CD28 and cultured in 

IL-4 + anti-IFN-γ or IL-4, anti-IFN-γ, anti-IL-6, and anti-IL-21.  On day 2 and day 5 

cells were stained for intracellular pSTAT3 and pSTAT6.  (B) Cells were 

stimulated and cultured same as A. After 5 days of differentiation cells were 

collected and counted.  1x106 cells were then re-stimulated with anti-CD3 (4 

µg/ml) for 24 hours.  Cell-free supernatant was collected and tested for various 

cytokines using ELISA.  

 

STAT3-deficient cells are defective in Th2 differentiation 

To define if the activation of STAT3 during Th2 development reflected a 

requirement for STAT3 in this process, we used mice that have a floxed Stat3 

allele, mated to mice expressing Cre from a CD4 transgene (referred to as 

Stat3CD4-/- mice).  As previously described, T cell development in mice with 

STAT3-deficient T cells is undistinguishable from wild type mice (Mathur et al., 

2007).  Moreover, growth of STAT3-deficient cells is not different from wild type 

cultures.  Importantly, STAT6 phosphorylation was not dependent on STAT3 as a 

similar pattern was observed in STAT3-deficient cultures (Figure 20A and B).  To 

examine differentiation, naïve CD4 T cells were isolated from spleens of wild type 

and Stat3CD4-/- mice and cultured under Th1, Th2, or Th17 conditions.  STAT3-

deficient Th1 cells had IFN-γ and GM-CSF production similar to amounts 

produced by wild type Th1 cells (Figure 23A).  In agreement with previously 
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published reports, STAT3 is required for the generation of cells secreting both IL-

17A and IL-17F (Figure 23A).  Although wild type Th2 cells secreted high levels 

of IL-4, IL-5 and IL-13, STAT3-deficient CD4 T cells cultured under Th2 skewing 

conditions had significantly reduced IL-4, IL-5, and IL-13 production and gene 

expression (Figure 23B and C).  
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Figure 23.  STAT3-deficient Th2 cultures have reduced Th2 cytokine 
production.  (A) Naïve CD4+ T cells from WT and Stat3CD4-/-  mice were 
activated with anti-CD3 and anti-CD28 and cultured in IL-12 + anti-IL-4 (Th1) or 
TGF-β+IL-6 (Th17).  After 5 days of differentiation cells were collected and 
counted.  Cells were then re-stimulated with anti-CD3 (4 µg/ml) for 24 hours.  
Cell-free supernatant was collected and tested for various cytokines using 
ELISA.  (B) WT and Stat3CD4-/- naïve CD4+ T cells were activated with anti-CD3 
and anti-CD28 and cultured with IL-4 + anti-IFN-γ (Th2 conditions).  After 5 days 
of differentiation cells were collected and counted.  Differentiated cells (1x106) 
were then re-stimulated with anti-CD3 (4 µg/ml) for 24 hours.  Cell-free 
supernatant was collected and tested for various cytokines using ELISA.  (C) 
After re-stimulation of differentiated Th2 cells with anti-CD3 and recovery of 
supernatants as described in B, cell pellets were collected, RNA was isolated, 
and quantitative PCR was performed for the indicated cytokines.  *p< 0.05 (two-
tailed Student's t-test).  Data are representative of 2 independent experiments 
(A), representative of more than 5 independent experiments (B average and SD 
of two mice), representative of 2 independent experiments (C).  
 

We then examined the kinetics of both IL-4 and IL-5 gene expression and 

secretion on day 5 following anti-CD3 stimulation.  The gene expression of Il4 

and Il5 is similar between the wild type and STAT3-deficient Th2 cells early after 

stimulation.  However, the expression of both Il4 and Il5 is reduced in STAT3-

deficient Th2 cells compared to wild type Th2 cells 6, 8, 12, or 24 hours after 

stimulation (Figure XA).  Wild type and STAT3-deficient Th2 cells cytokine 

production kinetics were similar to those observed in gene expression.  STAT3-

deficient Th2 cells had similar levels of IL-4 and IL-5 production as wild type Th2 

cells during early time points following stimulation.  Conversely, following 12 or 

24 hours of anti-CD3 stimulation, STAT3-deficient Th2 cells have significantly 

reduced IL-4 and IL-5 production compared to wild type Th2 cells (Figure XB).   
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Figure 24.  STAT3-Deficient Th2 cells have similar expression and 
production of IL-4 and IL-5 initially after stimulation compared to wild type.  
Wild type and STAT3-deficient CD4 T cells were activated and cultured as in 
figure 23B.  On day 5 cells were re-stimulated for 0, 2, 4, 6, 8, 12, or 24 hours 
with anti-CD3.  RNA and supernatants were collected and tested for IL-4 and IL-5 
gene expression or cytokine production, respectively.  Data are representative of 
1 (A) or 2 (B) experiments.  
 

 

To test the requirement for STAT3 in the expression of other Th2 associated 

genes quantitative PCR was performed to assess the expression of Growth 

factor independence 1 (Gfi1), C-C chemokine receptor type 4 (Ccr4), and IL-24 

(Il24) in wild type and STAT3-deficient cultures.  The expression of both Gfi1 and 

Ccr4 were not statistically different between wild type and STAT3-deficient cells, 

p>0.09 and p>0.24, respectively (Figure 25).  The expression of Il24 was 

significantly reduced in Th2 cells lacking STAT3 (Figure 25).  Thus, STAT3 is 
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required for the production of Th2 cytokines, but not for the expression of all Th2 

associated genes. 
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Figure 25.  STAT3 is not required for the expression of all Th2 associated 
genes.  RNA was isolated from Th2 cells differentiated for five days before re-
stimulation (Gfi1 and Ccr4) or after 6 hours stimulation with anti-CD3 (2 µg/ml) 
(Il24) and quantitative PCR was performed.  *p< 0.05 (two-tailed Student's t-test)  
Data are the average of ± SD of 2-5 experiments. 

 

 

It is possible that Stat3 deficient Th2 cells are converting to another T helper 

lineage.  In order to test if Th2 cells lacking Stat3 are becoming Th1 cells, wild 

type and STAT3-deficient naïve CD4 T cells were differentiated under Th2 

skewing conditions.  Following 5 days of differentiation IFN-γ production was 

assessed using ELISA.  Stat3 deficient Th2 cells had a two-fold increase in IFN-γ 

production.  However, the amount of IFN-γ produced by the STAT3-deficient Th2 

cells is significantly lower than wild type Th1 cells (Figure 26A).  Therefore, 

STAT3-deficient Th2 cells are not converting to Th1 cells.  In order to test if 

STAT3-deficient Th2 cells are converting to T regulatory cells, Foxp3 expression 

was assessed from wild type and Stat3 deficient Th2 cells using real-time PCR.  
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Foxp3 expression was not significantly different between wild type and STAT3-

deficient Th2 cells (Figure 26B).  These data show that Stat3 deficient Th2 cells 

are not simply converting to Th1 or T regulatory cells.   
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Figure 26.  STAT3-deficient Th2 cells do not convert to Th1 or T regulatory 
cells.  (A) Wild type and STAT3-deficient naïve CD4 T cells were differentiated 
with IL-4 and anti-IFN-γ or IL-12 and anti-IL-4 for 5 days.  On day 5 cells were re-
stimulated with anti-CD3 for 24 hours.  Cell-free supernatants were tested for 
IFN-γ production using ELISA.  (B) Th2 cells cultured as in A were collected and 
RNA was isolated.  Real time PCR was performed to assess Foxp3 expression.  
Data are representative of 2-4 experiments.   

 

 

To test if STAT3 is also required for in vivo Th2 differentiation, wild type and 

Stat3CD4-/- mice were immunized twice with alum-adsorbed OVA.  Two weeks 
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after the second immunization, splenocytes from these mice were stimulated in 

vitro with OVA and cytokine production was analyzed using ELISA.  The 

production of Th2 cytokines was significantly decreased in mice that lacked 

expression of STAT3 in T cells (Figure 27).  These data suggest that STAT3 is 

required for Th2 development in vivo. 
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Figure 27.  STAT3 is required for in vivo Th2 differentiation.  WT and 
Stat3CD4-/- mice were immunized with OVA+Alum on days 0 and 7 and challenged 
as described in methods. After challenges, splenocytes were re-stimulated with 
OVA for 72 hrs.  Cell free supernatant was assessed for cytokines using ELISA. 
 

 

STAT3 is required for Th2 transcription factor expression 

To define the mechanism for how STAT3 promotes Th2 development, we first 

tested the expression of receptors required for Th2 development.  Previous 

studies have demonstrated STAT3-deficient CD4 T cells have reduced CD25 

expression (Akaishi et al., 1998).  Moreover, IL-2 signaling is required for Th2 

differentiation at multiple levels including the expression of Il4ra (Liao et al., 

2008).  To determine if CD25 expression was decreased on STAT3-deficient 

cells during Th2 differentiation, we examined CD25 surface expression 



98 
 

throughout differentiation.  The percent of CD25 positive cells was comparable 

between wild type and STAT3-deficient Th2 cells, however the MFI of CD25 was 

decreased on one day during differentiation (Figure 28A and B).  Previous 

studies have also shown that CD25 expression can be recovered in STAT3-

deficient T cells with the addition of exogenous IL-2 (Akaishi et al., 1998).  In 

order to test if the slight decrease in the level of CD25 expression on STAT3-

deficient Th2 cells was responsible for the decreased Th2 cytokine production we 

supplemented the STAT3-deficient Th2 cells with high dose of exogenous IL-2.  

WT or STAT3-deficient T cells were differentiated in Th2 skewing conditions in 

the presence or absence of exogenous IL-2.  The addition of exogenous IL-2 did 

not rescue Th2 cytokine production, suggesting that the decrease in CD25 

expression was not effecting Th2 cytokine production in the STAT3-deficient Th2 

cells (Figure 28C).  We also examined IL-4Rα expression in STAT3-deficient Th2 

cultures.  IL-4Rα expression in STAT3-deficient Th2 cells was similar to that 

observed in wild type cultures (Figure 28A and B), and this is consistent with 

normal STAT6 activation in the absence of STAT3 (Figure 20A and B).  These 

data suggest that the reduction in Th2 cytokine production in STAT3-deficient 

Th2 cells is not due to reduced CD25 or IL-4Rα expression. 
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Figure 28.  STAT3-deficient Th2 cells have CD25 and IL-4Rα expression 
similar to wild type Th2 cells.  (A) Wild type (WT) and Stat3CD4-/- naïve CD4+ T 
cells were isolated and cultured as in Figure 20.  Each day during differentiation 
cells were surfaced stained for CD25 and IL-4Rα.  (B) Graphical representation 
of mean fluorescents intensity of CD25 and IL-4Rα.  (C) Wild type (WT) and 
Stat3CD4-/- naïve CD4+ T cells were isolated and cultured with IL-4 ± IL-2 (100 
ng/ml) for 5 days.  On day 5 cells were re-stimulated with anti-CD3 for 24 hours.  
Supernatant was collected and cytokine production was assessed using ELISA.  
Data are representative of 2 mice (A) or average or two mice ±SD (B,C). 
 

 

We then examined the expression of transcription factors associated with 

establishing the Th2 phenotype, including Gata3, Irf4, Maf and Batf. In order to 
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determine the importance of STAT3 in Th2 transcription factor expression, RNA 

was isolated from wild type and STAT3-deficient Th2 cultures.  Following Th2 

differentiation, STAT3-deficient Th2 cells had similar levels of Gata3, Irf4, and 

Batf, but reduced Maf expression (Figure 29A).  Conversely, the expression of 

Th2 transcription factors Gata3, Irf4, Maf, and Batf were all significantly 

decreased in the STAT3-deficient Th2 cultures following anti-CD3 re-stimulation 

compared to wild type stimulated Th2 cells (Figure 29B).  
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Figure 29.  STAT3-deficient Th2 cells have reduced Th2 specific 
transcription factor expression.  WT and STAT3-deficient naïve CD4 T cells 
were differentiated as in Figure 23B.  RNA was isolated for quantitative PCR (A) 
before or (B) after 4 hour anti-CD3 stimulation.  Data are representative of 2-3 
independent experiments. 
 

 

Since STAT3 is known to bind the Maf gene, we directly tested if reduced c-Maf 

expression in STAT3-deficient cells was responsible for reduced Th2 cytokine 

production by retro-virally expressing Maf in STAT3-deficient Th2 cells.  

Intracellular staining showed that c-Maf expression was reduced in STAT3-
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deficient Th2 cells, compared to wild type Th2 cells, but that expression was 

recovered when c-Maf was transduced (Figure 30A).  Similar to what was 

observed with non-transduced cells (Figure 29), STAT3-deficient Th2 cells 

transduced with vector control had reduced Th2 cytokine production compared to 

wild type Th2 cells transduced with vector control.  STAT3-deficient cells 

transduced with c-Maf had increased IL-4 production, consistent with the 

published reports that c-maf can directly activate IL-4 expression.  However, the 

IL-4 production was still lower than control-transduced wild type cells.  

Transduction of c-Maf in STAT3-deficient Th2 cells had modest effects on IL-5 

and IL-13 production (Figure 30B).  To test if ectopic expression of other Th2 

transcription factors could rescue Th2 development in STAT3-deficient T cells, 

Irf4 or Gata3 were retro-virally transduced into STAT3-deficient Th2 cells.  

STAT3-deficient cells transduced with vector control had reduced Irf4 and Gata3 

expression compared to wild type cells transduced with vector control.  The 

transduction of Irf4 or Gata3 rescued their expression in STAT3-deficient cells 

(Figure 30C and E).  However, the transduction of Irf4 or Gata3 did not rescue 

Th2 cytokine production by the STAT3-deficient Th2 cells (Figure 30D and F).  

Overall we conclude that decreased expression of a single Th2 transcription 

factor cannot completely account for the STAT3-deficient Th2 phenotype.   
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Figure 30.  Over-expression of c-Maf, Gata3, or Irf4 in STAT3-deficient Th2 
cells does not rescue Th2 cytokine production.  (A-F) WT and STAT3-
deficient T cells were differentiated as in Figure 23B.  On Day 2 cells were 
transduced with control or c-Maf-expressing, Gata3-expressing, or Irf4-
expressing retrovirus.  (A) Transduced cells were sorted and stained for 
intracellular c-maf.  (B) Sorted transduced cells were re-stimulated with anti-CD3 
for 24 hours.  Supernatant was tested for Th2 cytokines using ELISA.  (C,E) 
Transduced cells were sorted and RT PCR was performed.  (D,F) Sorted 
transduced cells were re-stimulated with anti-CD3 for 24 hours.  Supernatant was 
tested for Th2 cytokines using ELISA.  Data are representative of 2 independent 
experiments. 
 

 

Phosphorylation of STAT3 is independent of STAT6 

STAT6 is required for Th2 differentiation (Kaplan et al., 1996a; Shimoda et al., 

1996; Takeda et al., 1997).  Similar to the previous reports STAT6-deficient Th2 

cultured cells have reduced percentage of IL-4 and IL-5 secreting cells (Figure 
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31A).  In agreement with Th2 cytokine production, STAT6-deficient Th2 cells 

have significantly reduced expression of Th2 transcription factors Gata3 and c-

Maf.  However, the expression of Irf4 in Th2 cells is not effected in the absence 

of STAT6 (Figure 31B).  The reduced expression of Gata3 and c-Maf is more 

severe than STAT3-deficient Th2 cells, however Stat3 and not Stat6 is required 

for optimal Irf4 expression (Figures 29 and 31B).  To assess phospho-STAT3 in 

the absence of STAT6, wild type and STAT6-deficient naïve CD4 T cells were 

differentiated into Th2 cells.  On each day during differentiation, cells were 

stained for phospho-STAT3.  STAT6-deficient Th2 cells activated STAT3 with 

similar kinetics and amounts as wild type Th2 cells during the first 3 days of 

differentiation.  However, STAT6-deficient Th2 cells displayed reduced phospho-

STAT3 following expansion of cells during the last 2 days of differentiation 

(Figure 31C).  These data taken together suggest that STAT3 and STAT6 have 

distinct but overlapping effects on the expression of Th2 cytokines and 

transcription factors.  Furthermore, the activation of STAT3 in Th2 cells is at least 

initially independent of STAT6. 
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Figure 31.  The activation of STAT3 in Th2 cells is independent of STAT6.  
(A) WT and STAT6-deficient T cells were activated and cultured with IL-4 and 
anti-IFN-γ.  On day 5, cells were re-stimulated with anti-CD3 for 4 hours and 
intra-cellularly stained for IL-4 and IL-5.  (B) Cells were differentiated as in A and 
on day 5 were re-stimulated with anti-CD3 for 4 hours.  Following stimulation 
RNA was isolated and real-time PCR was performed.  (C) Cells were 
differentiated as in A.  Each day during differentiation cells were intracellularly 
stained for phospho-STAT3.  Data are representative of 2-4 experiments (A,B) or 
average of 6 mice ± SEM (C). 
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STAT3 and STAT6 cooperate in promoting Th2 cytokine production 

Our results suggest that STAT3 and STAT6 are required for optimal Th2 

differentiation.  To determine if STAT6 and STAT3 are cooperating to promote 

Th2 cytokine production we used 2 previously described constitutively active 

STAT mutants.  Both the STAT6VT and STAT3C have two amino acid mutations 

within the SH2 domain, which renders them constitutively active in the absence 

of a stimulus.  Previous reports have already shown that constitutively active 

STAT6 can promote Th2 cytokine production (Bruns et al., 2003; Sehra et al., 

2008; Zhu et al., 2001).  Our previous data show STAT3 is required for Th2 

differentiation (Figure 23B and C).  In order to test if constitutively active STAT3 

can induce Th2 cytokine production, naïve CD4 T cells were activated under 

non-skewing conditions (anti-IFN-γ).  On day 2 of differentiation cells were 

transduced with vector control or STAT3C.  Sorted cells were then re-stimulated 

with anti-CD3 to assess cytokine production (Figure 32).   
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Figure 32.  Procedure for retro-viral expression of STAT6VT and STAT3C.  
Wild type naïve CD4 T cells were activated under non-skewing conditions (anti-
IFN-γ + IL-2) or sub-optimal Th2 (anti-IFN-γ+ IL-4 (1 ng/ml)).  On day 2 cells 
were transduced with STAT3C, STAT6VT, or both.  Cells were collected and 
sorted on day 5.  Sorted cells were re-stimulated with anti-CD3 for 24 hours and 
cell free supernatant was tested for cytokines using ELISA. 
 

Under non-skewing conditions STAT3C induced Th2 cytokines IL-4, IL-5, and IL-

13 (Figure 33A).  To directly test if the combination of constitutively active STAT6 

and STAT3 could increase Th2 cytokine production compared to constitutively 

STAT6 alone, naïve T cells cultured under sub-optimal Th2 conditions were 

transduced with retroviruses expressing STAT6VT alone or STAT6VT and 

STAT3C.  Sorted transduced cells were re-stimulated with anti-CD3.  Th2 

cytokine production was increased in cells transduced with STAT6VT only, and 

cells transduced with both STAT6VT and STAT3C had enhanced Th2 cytokine 

production compared to those transduced with STAT6VT alone (Figure 33B).  
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Previous reports have shown that in non-skewed or Th17 cultured cells, 

transduction with STAT3C enhanced IL-17 production (Mathur et al., 2007).  

Under sub-optimal Th2 conditions STAT3C expression still has the ability to 

induce IL-17 production, however in the presence of STAT6VT, STAT3C did not 

induce IL-17 production (Figure 33C).  These data suggest that STAT6 and 

STAT3 cooperate to enhance Th2 cytokine production. 
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Figure 33.  STAT3 and STAT6 cooperate in promoting Th2 cytokine 
production.  (A) Naïve CD4+ T cells were activated for 48 hours with anti-IFN-γ 
before being transduced with control vector or constitutively active Stat3 
(STAT3C).  After 5 days in culture, cells were sorted and re-stimulated with anti-
CD3 (4 µg/ml) for 24 hours before cell-free supernatant was tested for cytokines 
using ELISA.  (B) Naïve CD4+ T cells were activated for 48 hours with a low 
dose of IL-4 (1 ng/ml) before being transduced with control vectors, constitutively 
active Stat6 (STAT6VT), or both constitutively active Stat6 and constitutively 
active Stat3 (STAT3C).  After 5 days in culture, cells were sorted and re-
stimulated with anti-CD3 (4 µg/ml) for 24 hours before cell-free supernatant was 
tested for cytokines using ELISA.  (C) Naïve cells activated as in B were 
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transduced with control vectors, STAT3C, STAT6VT, or both STAT3C and 
STAT6VT.  After 5 days in culture, cells were sorted and re-stimulated with anti-
CD3 (4 µg/ml) for 24 hours before cell-free supernatant was tested for cytokines 
using ELISA.  Data are representative of 2 independent experiments. 
 

 

Peripheral T cells in STAT6VT transgenic mice have an increased propensity 

towards a Th2 cytokine-secreting phenotype (Bruns et al., 2003; Sehra et al., 

2008).  To directly test if STAT3 is necessary for Th2 cytokine production in this 

in vivo system, we isolated CD4 T cells from the spleens of wild type, STAT6VT 

transgenic, and STAT6VT transgenic crossed to Stat3CD4-/- (STAT6VT-Stat3CD4-/-) 

mice, and stimulated cells with anti-CD3 for 24 hours before cytokine production 

was assessed using ELISA.  As shown previously, STAT6VT mice have 

increased production of IL-4, IL-5 and IL-13, whereas STAT6VT T cells lacking 

STAT3 produced Th2 cytokines in amounts similar to wild type cells (Figure 

34A).  The observation of STAT3-dependent increased Th2 cytokine production 

in the STAT6VT cells was confirmed using intracellular staining.  Wild type, 

STAT6VT, and STAT6VT-Stat3CD4-/- CD4+ cells were re-stimulated ex vivo with 

PMA+ionomycin for 6 hours were stained for intracellular IL-4, IL-5, and IL-13.  

Cells from the STAT6VT mice had a 3-4 fold increase in percent of IL-4, IL-5, and 

IL-13 producing cells.  However, STAT6VT cells deficient in Stat3 had very few 

IL-4, IL-5, and IL-13 producing cells (Figure 34B).  These results demonstrate 

that STAT3 cooperates with STAT6 to promote Th2 cytokine production.  
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Figure 34.  STAT3 is required for promoting Th2 predisposition of STAT6VT 
CD4 T cells.  (A) CD4+ cells were isolated from WT, STAT6VT and STAT6VT-
Stat3CD4-/- mice.  Cells were then re-stimulated with anti-CD3 for 24 hours.  Cell-
free supernatant was collected and tested for various cytokines using ELISA.  (B) 
Cells from (A) were re-stimulated for 6 hours with PMA+ionomycin.  Cells were 
then intracellularly stained with IL-4, IL-5 and IL-13.  Graphs represent % 
cytokine stain positive.  *p< 0.05 (two-tailed Student's t-test).  Data are 
representative of 2 experiments (average of 2-6 mice ± SD) (A) or average of 2 
mice ± SD (B).  
 

 

We then wanted to examine Th2 cytokine production from Th2 cultured cells.  

CD4 positive T cells from WT, STAT6VT, or STAT6VT-Stat3CD4-/- mice were 

isolated and cultured under Th2 skewing conditions.  After 5 days of culture Th2 

cytokine production was assessed.  In general, Th2 cytokines were increased in 

CD4 T cells from STAT6VT mice.  The increase in Th2 cytokines in STAT6VT 

cells was diminished in STAT6VT-Stat3CD4-/- Th2 cells (Figure 35A and B).  

However, the STAT3-dependent increase of Th2 cytokines in STAT6VT Th2 cells 

was variable between cytokines and experiments (Figure 35A and B).  These 

data suggest that Th2 cytokine production following Th2 differentiation is 
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increased in STAT6VT cells and in the absence of STAT3 the increases are 

diminished, although the data is not completely consistent.   
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Figure 35.  Th2 cytokine production from 5 day differentiated STAT6VT CD4 
T cells is reduced in the absence of STAT3.  (A,B) CD4 positive T cells were 
isolated from WT, STAT6VT, or STAT6VT-Stat3CD4-/- mice.  Cells were activated 
and cultured under Th2 conditions for 5 days.  On day 5 cells were re-stimulated 
with anti-CD3 24 hours.  Cytokine production was assessed using ELISA.  Data 
are average ± SD of 2-3 mice per group. 
 

 

STAT3 binds Th2-associated gene loci and defines the STAT6 binding 

pattern 

To further examine the cooperation of STAT6 and STAT3 in enhancing Th2 

cytokine production, binding of these proteins to gene targets was determined 

using chromatin immunoprecipitation.  In Th2 cells, STAT3 can directly bind the 

Gata3 gene, and similar to published reports, the Maf promoter region (Figure 

36A).  We also observed binding to the Irf4 and Il24 promoters (Figure 36A).  In 

Th17 cells, STAT3 binding to Gata3 and Il24 was lower than in Th2 cells, while 
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STAT3 binding to Maf and Irf4, which also contribute to Th17 development 

(Bauquet et al., 2009; Brustle et al., 2007; Xu et al., 2009), was higher in Th17 

than in Th2 cells, or equivalent in both cell types (Figure 36A).  However, STAT3 

binding to the Th17 genes Il17f and Il21 was only observed in Th17 cultures 

(Figure 36A).  Thus, STAT3 can bind to target genes that are relevant for Th2 

development, and the pattern of binding to those genes is different when cells 

are cultured under different polarizing conditions. 

 

In Th2 cells, STAT6 binds to the Gata3, Maf and Irf4 genes (Figure 36B).  

However, in the absence of STAT3, STAT6 binding is altered.  STAT3-deficient 

Th2 cells had decreased STAT6 binding to Gata3 and Irf4, but increased binding 

to Maf (Figure 36B).  Data were similar for cells examined at three or four days of 

culture. 

 

We then tested whether an active STAT6 was capable of inducing expression of 

Th2 transcription factors in the absence of STAT3.  Expression of Gata3 and Maf 

were significantly increased in STAT6VT CD4 T cells examined directly ex vivo, 

compared to cells wild type cells.  However, STAT3-deficient STAT6VT CD4 T 

cells had reduced expression of both Gata3 and Maf, compared to T cells from 

STAT6VT transgenic mice on a wild type background (Figure 36C).  Together, 

these data suggests that STAT3 and STAT6 do not cooperate in binding the 

same gene targets.  Furthermore, STAT3 dictates STAT6 binding efficiency to 
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the regulatory regions of Th2 transcription factors and in the absence of STAT3, 

STAT6 has altered binding and is unable to activate target genes. 
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Figure 36.  STAT3 binds Th2-associated gene loci and defines the STAT6 
binding pattern.  (A) Naïve CD4+ T cells were activated with anti-CD3 and anti-
CD28 and cultured with under Th2 or Th17 conditions for 3 days.  Chromatin 
immunoprecipitation was performed with control Ig or anti-STAT3 and 
quantitative PCR was performed for the indicated genes.  Data are expressed 
relative to STAT3 binding in Th17 (1).  (B) Naïve CD4+ T from WT and Stat3CD4-/- 
were activated with anti-CD3 and anti-CD28 and cultured under Th2 conditions 
for 3 days.  Chromatin immunoprecipitation was performed with control Ig or anti-
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STAT6 and quantitative PCR was performed for the indicated genes.  Data are 
expressed relative to WT STAT6 binding (1).  (C) CD4+ cells were isolated from 
WT, STAT6VT and STAT6VT-Stat3CD4-/- mice as in Figure 32A.  Cells were then 
re-stimulated with anti-CD3 (2 µg/ml) for 6 hrs.  After stimulation RNA was 
isolated and quantitative PCR was performed.  *p< 0.05 (two-tailed Student's t-
test).  Data are average ± SD of 2-3 experiments.  (A,B) or representative of 2 
experiments (average of 2-6 mice ± SD) (C).  ChIP experiments were done in 
collaboration with Dr. Rajarajeswari Muthukrishnan. 
 

 

STAT3 in T cells is required for the development of allergic inflammation 

Since our data suggest that STAT3 is required for Th2 differentiation, we next 

tested the requirement for STAT3 in Th2-mediated allergic inflammation.  The 

expression of constitutively active STAT6 in lymphocytes of the STAT6VT mice 

leads to splenomegaly or increased spleen size.  This is due to increased B cell 

number.  The spleen size of the STAT6VT compared to the wild type mice are 

much increased, however STAT6VT mice crossed to mice lacking STAT3 in their 

T cells have decreased spleen size similar to the size of wild type mice (Figure 

37A).  The size of the spleen can also be assessed by total splenocyte counts.  

STAT6VT mice have significantly increased cell number in the spleen compared 

to wild type mice.  In the absence of STAT3, STAT6VT mice splenocyte numbers 

are reduced to wild type numbers (Figure 37B). 
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Figure 37.  STAT3 deficiency protects STAT6VT mice from splenomegaly.  
(A) Pictures of wild type, STAT6VT, and STAT6VTxStat3CD4-/- spleens.  (B) Total 
cell counts from spleens of wild type, STAT6VT, and STAT6VTxStat3CD4-/- 

spleens.   
 

Additionally, mice that express STAT6VT in T cells spontaneously develop multi-

organ allergic inflammation, including pulmonary inflammation, blepharitis, and 

skin inflammation, all of which are completely dependent on IL-4 (Sehra et al., 

2008; Sehra et al., 2010).  The incidence of blepharitis in STAT6VT mice is 
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nearly 75%, and is essentially never observed in wild type mice. STAT6VT-

Stat3CD4-/- mice are protected from blepharitis and have 0% incidence even in 

older mice (Figure 38A).  Approximately 40% of STAT6VT mice develop skin 

inflammation resembling atopic dermatitis, a condition not observed in wild type 

mice.  As with blepharitis, STAT6VT transgenic mice lacking STAT3 in their T 

cells are protected from skin inflammation (Figure 38A and B).  Histology from 

sections of the ear demonstrated increased thickness in the STAT6VT transgenic 

mice and at higher magnification increased cell infiltrate of immune cells can be 

observed.  STAT6VT-Stat3CD4-/- mice have ear thickness similar to wild type with 

minimal cell infiltrate (Figure 38B).  STAT6VT mice develop lung inflammation 

characterized by peri-bronchial and peri-arterial accumulation of eosinophils and 

lymphocytes.  However the STAT6VT-Stat3CD4-/- mice, like wild type mice, had 

very few cells infiltrating the lungs (Figure 38C).  Inflammation of the lung was 

also assessed by the total number of eosinophils in the bronchoalveolar lavage.  

STAT6VT transgenic mice have increased eosinophils in the BAL, compared to 

the wild type mice.  The loss of STAT3 in the STAT6VT transgenic T cells 

resulted in reduced cell numbers in the BAL to numbers that were similar to wild 

type mice (Figure 38C).  These results demonstrate that the loss of STAT3 in T 

cells protects STAT6VT mice from Th2-mediated inflammatory diseases.  Taken 

together, STAT3 and STAT6 proteins are both necessary for optimal Th2 

development and in the context of the STAT6 signal, STAT3 enhances Th2 cell 

development. 
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Figure 38.  STAT3-deficiency in CD4 T cells of constitutively active STAT6 
transgenic mice protects the mice from the development of allergic 
pulmonary inflammation.  (A) Incidence of blepharitis and atopic dermatitis of 
WT, STAT6VT and STAT6VT-Stat3CD4-/- mice are shown.  Incidence was 
determined by visual examination of mice.  (B) Ear tissue from WT, STAT6VT 
and STAT6VT-Stat3CD4-/- mice were fixed and paraffin-embedded sections were 
stained with hematoxylin-eosin.  Magnification is indicated in the panel.  (C) 
Lungs from WT, STAT6VT and STAT6VT-Stat3CD4-/- mice were embedded in 
paraffin and stained with H & E.  Magnification is indicated in the panel.  
Numbers of total cells and eosinophils (defined by flow cytometry) recovered in 
bronchoalveolar lavage.  *p< 0.05 (two-tailed Student's t-test).  Percentages are 
from 25 mice per group (A).  Histology sections are representative of 10 mice per 
group (B,C).  BAL data are representative of 2 independent experiments and 
shown as the average ± SEM of 2 mice per group (C).  Analysis of allergic 
inflammation in the STAT6VT transgenic mice was performed in collaboration 
with Dr. Sarita Sehra. 
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DISCUSSION 

In this thesis we demonstrate that Th17 cells are not committed to the IL-17 

secreting phenotype.  Cells primed under Th17 conditions for multiple rounds of 

stimulation convert to a Th1 or Th2 phenotype following stimulation with IL-12 or 

IL-4, respectively.  Additionally, we have defined a role for IL-23 in the Th17 

phenotype.  Using cytokine capture assays, we have shown that IL-23 

maintained the Th17 phenotype without affecting proliferation or survival.  The 

ability of IL-23 to promote IL-17 production, specifically in memory cells, required 

STAT4.  Simulation of memory cells with IL-23 results in the activation of both 

STAT3 and STAT4.  Therefore, in addition to STAT3, STAT4 is required for IL-17 

production from Th17 cells. 

 

In agreement with the idea that multiple STAT family members contribute to T 

helper cell development, we observed a previously unrecognized role for STAT3 

in Th2 differentiation.  STAT3 is required for Th2 cytokine production and 

transcription factor expression.  STAT3 is activated throughout Th2 differentiation 

and when ectopically expressed with STAT6 can augment Th2 cytokine 

production.  We also observed that STAT3 is required for Th2 mediated allergic 

inflammation.  Thus, in the presence of activated STAT6, STAT3 promotes 

optimal Th2 differentiation and cytokine production. 
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PART I: Role of IL-23 in Th17 Stability 

Th17 cells are not committed to the IL-17 secreting phenotype 

IL-23 is a critical cytokine in the development of inflammation.  However, the 

direct affects of IL-23 have not been well defined.  We have demonstrated that IL-

23 maintains a Th17 phenotype in the absence of promoting proliferation or 

survival, but that IL-23-cultured cells are not committed and can assume other 

cytokine secreting phenotypes.  There are several reasons that it may be 

advantageous to have a transient Th17 phenotype.  In the absence of multiple 

levels of control, the potent pro-inflammatory activity of these cells, if left 

unrestrained, could result in excessive tissue damage in vivo.  In that respect, 

requiring several cytokines to establish and maintain the phenotype, while the 

presence of IL-4 or IL-12 effectively diminishes the phenotype, potentially limits 

the effect of Th17 cells and allows Th1 or Th2 cells to mediate progressive 

inflammation.  The sensitivity of Th17 cells to the cytokine environment is 

consistent with the earliest reports of Th17 cells that demonstrated the 

importance of neutralizing IFNs and IL-4 in the culture of IL-17-secreting T cells 

(Harrington et al., 2005; Park et al., 2005).  Our work takes this further by 

showing that Th1- and Th2-promoting cytokines repress an established Th17 

gene program.  This sensitivity to other cytokines may also be reflected in vivo.  

In experimental autoimmune encephalomyelitis models, where Th17 cells are 

clearly important for the initiation of disease, analysis of lymphocytes from the 

target organ show a heterogeneous population of IL-17- and IFN-γ-secreting cells 

(Korn et al., 2007).  Similarly, while IL-17 is required at early time points in the 
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establishment of allergic inflammation, Th2 cells establish the cytokine 

environment characteristic of the allergic response.  IL-17 administered to mice 

with established allergic disease inhibits inflammation (Schnyder-Candrian et al., 

2006).  Together, these data suggest that, as we have shown for in vitro cultured 

cells, established Th17 cells in vivo may be inhibited by the appearance of other 

Th subsets where a changing cytokine environment results in repression of the 

Th17 phenotype. 

 

Th17 cells have limited plasticity 

The plasticity of Th subsets is of considerable interest and is important in 

understanding how T cells regulate inflammation over time.  In the long-term 

cultures we have described, the percentages of IL-17+ cells, and total IL-17 

secretion, decrease over rounds of stimulation.  Importantly, in the absence of 

cytokines that promote skewing to other phenotypes, cells that were secreting IL-

17 do not appear to take on other phenotypes.  We did not observe increases in 

IFN-γ-secreting or Foxp3+ cells and the population seems to acquire cells that do 

not secrete any of the cytokines examined.  Whether this is conversion of Th17 

cells to non-secretor phenotypes or expansion of uncommitted cells is unclear.  

Following exposure to skewing conditions, Th17 cells appear to have differing 

abilities to acquire other phenotypes.  For example, while IL-23-cultured IL-17+ 

Th17 cells may become Th1 or Th2 phenotype cells, we observe that culture of 

long-term Th17 cells with TGF-β plus IL-2 did not convert them into Foxp3 

expressing cells, but rather increased IL-17 production (Figure 9E), suggesting 
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that IL-23-cultured cells are not capable of subsequently becoming adaptive 

regulatory T cells (Tregs).  In contrast, natural Tregs have been shown to adapt a 

Th17 phenotype when cultured with IL-6 (Xu et al., 2007; Yang et al., 2008a), 

though there is still not a consensus on the ability of adaptive Tregs to acquire an 

IL-17-secreting phenotype (Yang et al., 2008a; Zheng et al., 2008).  Because of 

the phenotypic overlap, IL-23 may also be important for polarizing Th cells to 

distinguish the Th17 and Tfh phenotypes (Nurieva et al., 2008; Suto et al., 2008; 

Vogelzang et al., 2008).  Even with our culture conditions optimized for 

maintaining IL-17 secretion, IL-21 levels still decrease over time, and IL-22 levels 

are lower than in some previous reports (Figure 7B) (Liang et al., 2006; Zheng et 

al., 2007a).  Although some of these effects might arise from the specific culture 

conditions, including the concentrations of cytokines added to the culture, it is 

possible that IL-23, as it maintains IL-17 production, limits IL-21 production, as it 

does for IL-10 production (McGeachy et al., 2007).  Thus, even though IL-23 

does not limit conversion to Th1 or Th2 lineages, it might restrict cells from 

adopting Treg or Tfh phenotypes. 

 

IL-23 promotes IL-17 production and synergizes with IL-1β and IL-18 

IL-23 production may promote IL-17 production in at least two ways, by 

maintaining the IL-17-secreting potential of Th17 cells following Ag receptor 

stimulation and by directly activating Il17 in conjunction with IL-18 or IL-1 (Guo et 

al., 2009; Mathur et al., 2007).  The mechanism of IL-23 function at the level of 

the gene remains unclear. IL-23 requires Stat3 for activity and several reports 
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have noted that IL-23-induced Stat3 can bind to the Il17 promoter and this might 

play a role in chromatin remodeling and histone acetylation at the locus (Chen et 

al., 2006b; Mathur et al., 2007).  Conversely, enhanced Stat3 activity potentiates 

IL-23 activity (Chen et al., 2006b; Mathur et al., 2007).  However, as other Stat3 

activating cytokines have distinct effects on Th cell cytokine production, IL-23 

must provide a qualitatively unique signal.  As the synergy between IL-12 and IL-

18 depends on the engagement of MAPK and NF-κB signals to cooperate with 

Stat4 signaling (Murphy and Reiner, 2002), it is likely that IL-23-activated Stat3 

collaborates with other pathways activated by IL-18 or IL-1β.  It is also possible 

that IL-23 inhibits the expression or function of other factors that inhibit the Th17 

phenotype.  For example, T-bet is a potent inhibitor of IL-17 production and anti-

CD3 induced T-bet expression is responsible for changing cells from a Th17 to a 

Th1 cytokine secreting pattern in IL-23-stimulated cultures (Mathur et al., 2006).  

In that culture system Ag receptor stimulation was responsible for decreasing IL-

17 production and cells cultured in IL-23 without Ag receptor stimulation 

maintained IL-17-secreting potential.  Thus, in the absence of commitment, the 

balance of activating and inhibitory signals a Th17 cell receives may determine 

the level of cytokine it will subsequently produce.  It is still possible that IL-23 has 

effects on Th17 cell expansion or survival in vivo, though our results suggest that 

those effects must be indirect.  
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Epigenetic status of Th17 cells 

The epigenetic status of several gene loci encoding cytokines and transcription 

factors have been examined using high-throughput sequencing or ChIP on chip 

analysis.  Specific modifications are associated with active and inactive genes.  

Wei et al. focused primarily on trimethylation of histone H3 lysine 2 (H3K4me3) 

which is found at promoter and enhancer regions of active genes and 

trimethylation of histone H3 lysine 27 (H3K27me3) which is found in various 

regions of inactive genes (Wei et al., 2009).  Consistent with our findings, in vitro 

differentiated Th17 cells have a bivalent epigenetic status at the Tbx21 and 

Gata3 loci, the Th1 and Th2 master regulators, respectively.  The presence of 

both H3K27me3 and H3K4me3 marks at these loci suggests that Th17 cells 

have the ability to be reprogrammed to become Th1 or Th2 cells.  Conversely, 

Th1 and Th2 cells have repressive marks at the Il17a and Rorc loci suggesting 

the plasticity is uni-directional (Wei et al., 2009).  Additionally, Th17 cells 

stimulated with IL-12 have rapid remodeling of the Ifng locus leading to 

decreased IL-17 production and increased IFN-γ production.  IL-12 also induced 

repressive histone modifications at the Il17a and Il17f loci of Th17 cells (Mukasa 

et al., 2010).  These data suggest that the plasticity of Th17 cells is at the level of 

epigenetic modifications of lineage specific genes. 

 

Function of IL-23: Summary 

The ability of IL-23 to promote inflammation in vivo likely involves several of the 

functions we have described, including the acute induction of IL-17, functioning in 
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concert with IL-18 or IL-1β, and the ability of IL-23 to preserve the IL-17-secreting 

potential of T cells.  However, in the absence of IL-23 and the presence of other 

cytokine environments, IL-17 production can be diminished in favor of 

establishing new patterns of cytokine secretion.  The transient Th17 phenotype 

may be key to understanding how Th cell control may evolve during 

inflammation.  
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Figure 39.  The maintenance and commitment of Th17 cells.  The Th17 
phenotype is maintained by cells cultured with IL-23+IL-1β for multiple rounds of 
stimulation.  However, Th17 cells cultured with IL-12 or IL-4 convert to the Th1 or 
Th2 phenotype, respectively.  Whereas Th17 cells cultured with IL-23+IL-1β for 
multiple rounds of stimulation and then cultured with the Treg promoting cytokine 
TGF-β do not convert to the Treg lineage and have increased IL-17 production. 
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PART II: Role of STAT4 in IL-17 producing memory cells 

STAT4 is required for IL-23 induced IL-17 production in memory cells 

IL-23 is clearly required for in vivo Th17 cell development and the maintenance 

of Th17 cells in vitro.  Initial reports showed that IL-23 signals predominantly 

through STAT3 and to a lesser extent through STAT4 (Oppmann et al., 2000; 

Parham et al., 2002).  Our data show that STAT4 is required for IL-17 production 

from memory cells cultured with IL-23, and is dispensable for IL-17 production 

from naïve cells cultured with TGF-β+IL-6 (Mathur et al., 2007).  One of the first 

papers to characterize Th17 cells as a unique lineage, separate from both Th1 

and Th2 subsets, showed Th17 cells develop normally in the absence of STAT4 

(Harrington et al., 2005).  However, in that report IL-17 production from Stat4-/- 

CD4+ T cells cultured with IL-23, was assessed following PMA+Ionomycin 

stimulation.  The discrepancies between our studies and Harrington et al. may be 

due to several differences.  First, STAT4 dependence can be overcome by 

stimulation with strong stimuli including PMA+Ionomycin (Mathur et al., 2007).  

Moreover, our studies focused on CD4+CD62L- cells (effector/memory 

population) whereas Harrington et al. isolated total CD4 T cells (naïve and 

effector/memory populations) from TCR transgenic mice.  The variations 

between experimental designs may explain the differences observed when 

attempting to define the role of STAT4 in IL-23 induced IL-17 production. 

 

Our results show that STAT4 is also required for IL-17 production from IL-23 

cultured memory cells following IL-23+IL-18 stimulation.  However, when STAT4-
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deficient naïve cells cultured with TGF-β+IL-6 were re-stimulated with IL-23+IL-

18 they secreted IL-17 amounts similar to wild type cells.  Similar to IL-17 

production following anti-CD3 stimulation, naïve cells cultured with TGF-β+IL-6 

and memory cells cultured with IL-23 have different requirements for STAT4 

following IL-18+IL-23 stimulation.  Therefore, the requirement for STAT4 in IL-17 

production could be restricted to the memory cell population and may be 

important for re-activation of the antigen experienced cell.   

 

STAT4 is required for in vivo Th17 development 

To determine if STAT4 is required for Th17 development in vivo we immunized 

wild type and Stat4-/- mice with OVA and the adjuvant Alum.  Following ex vivo 

stimulation, STAT4-deficient lymph node cells had reduced IL-17 production 

compared to wild type cells.  These data conflict with a previous study using the 

KLH+CFA immunization model.  Splenocytes and lymph node cells from wild 

type and STAT4-deficient mice immunized with KLH+CFA were re-stimulated ex 

vivo with KLH.  STAT4-deficient splenocytes and lymph nodes had similar 

amounts of IL-17 production compared to wild type cells (Park et al., 2005).  

These conflicting results could be due to the immunization model.  The adjuvant 

CFA is traditionally associated with a Th1 response whereas Alum promotes a 

Th2 response.  Since STAT4 is required for the Th1 response and promotes IFN-

γ production, the STAT4 requirement for IL-23 induced IL-17 production could be 

masked by the differences in IFN-γ within the system.  Whereas in the Alum 

model, where a Th2 response is induced, STAT4 might be predominantly 
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activated by IL-23, not IL-12, since there is no Th1 response, and thus the 

difference in IL-17 production can be observed.  Our data clearly show a role for 

STAT4 in IL-23 induced IL-17 production in the absence of a Th1 response.  

Therefore, it is important to examine the model, specifically the adjuvant, before 

clearly defining the role of STAT4 in promoting IL-17 production in vivo. 

 

Stat4-/- mice are resistant to the development of EAE.  The studies showing that 

STAT4-deficient mice are protected from the Th17 mediated disease, EAE, were 

published before the discovery of Th17 cells.  The potential explanations given 

by the authors included: STAT4-deficient mice fail to be primed, STAT4-deficient 

mice have reduced expression of Th1 cytokines important for EAE and have 

increased production of Th2 cytokines, and/or STAT4-deficient mice lack 

chemokine expression important for entering the central nervous system (Chitnis 

et al., 2001).  It is unlikely that STAT4-deficient mice fail to be primed since in 

response to MOG stimulation STAT4-deficient splenocytes proliferate similar to 

wild type cells (Mo et al., 2008).  However, it is clear that STAT4-deficient mice 

have less inflammation in the CNS and have reduced Th1 cytokine production, 

both of which can contribute to their resistance (Chitnis et al., 2001; Mo et al., 

2008). 
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Rorc expression in STAT4-deficent memory cells is reduced 

Th17 cells express both the IL-23R and the transcription factor Rorγt, encoded 

by the gene Rorc.  STAT4-deficient memory cells express similar levels of IL-23R 

compared to wild type memory cells, suggesting that both wild type and Stat4-/- 

memory cells can respond to IL-23 stimulation.  However, IL-23R expression was 

assessed using real-time PCR, and therefore it is hard to draw conclusions 

without assessing surface expression of the IL-23R.  IL-23R surface expression 

is difficult to measure since there is no IL-23R antibody commercially available.  

The surface expression either by percent positive or expression amount per cell 

(MFI) might be different between wild type and STAT4-deficient memory cells, 

which cannot be distinguished by real-time PCR.  Therefore, further experiments 

are necessary to rule out potential differences in IL-23R surface expression.  

Conversely, STAT4-deficient memory cells have decreased Rorγt expression 

directly ex vivo.  The reduction in Rorγt expression could be a result of 

diminished Rorγt expression in the STAT4-deficient Th17 memory cells or a 

reduction in total number of Th17 memory cells.  STAT3-deficient mice have 

significantly reduced IL-17 producing memory cells and it is possible that STAT4-

deficient mice have a similar phenotype (Yang et al., 2007).  Alternatively, STAT4 

could be required for Rorγt expression in memory cells.  It is clear that STAT3 

can bind and activate Rorc (Durant et al., 2010), therefore it is possible STAT4 

could also bind to the regulatory regions of Rorc and might be important for Rorγt 

expression.  Further studies will have to be performed to elucidate the cause for 

reduced Rorγt expression in STAT4-deficient memory cells.   
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Memory and naïve cultured Th17 cells have different STAT activation 

patterns  

Memory cells cultured in IL-23 require STAT4 for IL-17 production, however 

naïve cells cultured in TGF-β+IL-6 produce IL-17 independently of STAT4.  After 

5 days of culture the pattern of pSTAT3 and pSTAT4 following IL-23 stimulation 

is distinct between the 2 cell populations.  IL-23 stimulation of IL-23 cultured 

memory cells led to the phosphorylation of STAT4 in a small population of cells.  

Conversely, IL-23 stimulation of naïve TGF-β+IL-6 cultured cells led to the 

phosphorylation of STAT3, not STAT4, in a small population of cells.  Both cell 

populations had a small number of pSTAT positive cells and it is possible that the 

slight shift in pSTAT3 or pSTAT4 positive cells could be a result of limiting IL-23R 

expression.  For future studies it will be important to assess the IL-23R 

expression and gate or sort IL-23R positive cells to see a more significant shift in 

pSTAT staining.  Nevertheless, the presence of pSTAT4 and pSTAT3 in memory 

and naïve cultured cells, respectively, suggests that IL-23-induced activation of 

STAT4 and STAT3 is different between cell populations.  The activation of 

STAT4 specifically in memory cells cultured with IL-23 coincides with the 

requirement of STAT4 for IL-17 production.  It will be important to look at 

downstream gene targets of both STAT3 and STAT4 to see if memory and naïve 

cultured cells have different expression of STAT3 and STAT4 dependent genes.  
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Role of STAT4 in IL-23 signaling: Summary 

STAT4 is important for memory cell production of IL-17 following IL-23 priming.  

Furthermore, IL-17 production following IL-18+IL-23 stimulation from the IL-23 

cultured memory cells also required STAT4.  Whereas, naïve cells cultured with 

TGF-β+IL-6, STAT4 is dispensable for IL-17 production following either anti-CD3 

or IL-18+IL-23 stimulation.  These data correlate with the data showing IL-23 

stimulation preferentially activates STAT4 in memory, not naïve cultured cells.  

Taken together, these data suggest a different requirement for STAT4 in memory 

versus naïve cultured cells.  Although it is not completely clear why, STAT4-

deficient memory cells have reduced Rorγt expression compared to wild type 

memory cells.  Furthermore, in an OVA+Alum immunization model, STAT4 is 

required for IL-17 production from ex vivo stimulated lymph node cells.  Overall, 

these data suggest a previously unrecognized role for STAT4 in IL-17 production 

by memory cells.  
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Figure 40.  STAT4 is required for IL-17 production following culture with IL-
23.  STAT4-deficient memory cells have reduced RORγt expression compared to 
wild type memory cells.  Memory cells cultured with IL-23 require STAT4 for 
optimal IL-17 production.  Furthermore, IL-23 stimulation of memory cells 
cultured for 5 days with IL-23 leads to the phosphorylation of both STAT3 and 
STAT4.   
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PART III: STAT3 is required for Th2 differentiation 

Multiple STATs are required for T helper cell development 

The paradigm that STAT family members promoted specific Th effector 

phenotypes was developed when the number of known effector subsets was 

more limited.  Researchers initially defined that STAT4 is required for Th1 

development and STAT6 is required for Th2 development (Kaplan et al., 1996a; 

Kaplan et al., 1996b; Shimoda et al., 1996; Takeda et al., 1996; Thierfelder et al., 

1996).  However, this simple one STAT-one phenotype paradigm became more 

complicated when it was shown that STAT1 also contributed to Th1 

differentiation (Afkarian et al., 2002; Lighvani et al., 2001), and STAT5 could 

function with STAT6 in the development of Th2 cells (Cote-Sierra et al., 2004; 

Takatori et al., 2005a; Zhu et al., 2003).  This was an important finding as 

STAT5, which is critical for the development of T regulatory cells (Burchill et al., 

2007; Yao et al., 2007), has different functions when activated in the presence of 

STAT6.  Thus, the differentiating T helper cell is able to assimilate multiple 

signals and acquire the appropriate effector phenotype.  In this report, we further 

expand our understanding of the integration of STAT signals by demonstrating 

that STAT3, which clearly promotes Th17 development in the absence of other 

signals, is required for the function of STAT6 during Th2 development. 

 

Gene targets of STAT3 and STAT6 

The integration of multiple STAT signals likely includes the ability of each STAT 

protein to bind both overlapping and distinct sets of genes.  STAT6 is required for 
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the expression of Gata3, Gfi1 and Th2 cytokine genes and has been shown to 

bind directly to a subset of these loci (Lee and Rao, 2004; Sherman et al., 2002; 

Zhu et al., 2002).  STAT5 is required for Il4 chromatin accessibility, Il4ra 

expression, and induction of Socs3 to extinguish Th1 differentiation (Cote-Sierra 

et al., 2004; Kagami et al., 2001; Takatori et al., 2005b).  In Treg cells, STAT5 

binds Foxp3, although this binding is reduced in the presence of an IL-4 signal 

(Burchill et al., 2007; O'Malley et al., 2009; Yao et al., 2007).  Similarly, STAT3 

binds to Th17 genes, though the amount of STAT3 binding to those genes is 

diminished in Th2 cultures.  Conversely, STAT3 binding to Th2 genes is greater 

in Th2 than in Th17 cells.  However, the differences are not as apparent in genes 

that have roles in both cell types such as Maf and Irf4 (Bauquet et al., 2009; 

Brustle et al., 2007; Xu et al., 2009).  Whether STAT3 directly activates Th2 

genes, or whether by binding genes it aids in orchestrating STAT6 binding is not 

entirely clear.  The fact that increased STAT6 binding to Maf is observed in 

STAT3-deficient Th2 cultures, which is insufficient for normal Maf expression, 

coupled with previous data showing that STAT3 activates Maf expression (Yang 

et al., 2005) suggests that STAT3 plays an important role in activating genes 

during Th2 differentiation.  However, the displacement of STAT6 binding from the 

Gata3 gene to the Maf promoter in the absence of STAT3 suggests that it 

occupies a transcriptional niche required for appropriate binding of other factors.  

For example, STAT3 can functionally interact with AP-1 family members (Yoo et 

al., 2001; Zhang et al., 1999b), though it is not known if STAT6 has a similar 

capability.  It is likely that STAT-interacting transcription factors at each of the 
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promoters define the ability of STAT3 or STAT6 to function at specific gene 

promoters. 

 

STAT3 Th2 phenotype cannot be rescued by ectopic expression of Th2 

transcription factors 

Although the Maf gene is a characterized target of STAT3 (Yang et al., 2005), 

and expression of Maf is deficient in the absence of STAT3, ectopic expression 

of Maf resulted in only a partial recovery of IL-4 production, and was insufficient 

to recover the entire Th2 phenotype.  Similarly, we did not see recovery of Th2 

cytokine production when Gata3 or Irf4 were ectopically expressed.  This is 

distinct from STAT6-deficient cells where expression of GATA3 induces Th2 

cytokine production (Chang et al., 2005; Ouyang et al., 2000).  Together these 

data suggest that the defect in STAT3-deficient Th2 cultures is more complex 

than the absence of one factor, and recovery of Th2 cytokine expression may 

require the coordinated function c-maf, GATA3 and other factors. 

 

STAT3 is activated throughout Th2 differentiation 

It is still not entirely clear which cytokines are responsible for the activation of 

STAT3 during Th2 differentiation.  We have neutralized IL-6 and IL-21 during 

differentiation of wild type Th2 cultures and saw a 2-fold decrease in Th2 

cytokine production (Figure 22B).  The neutralization of IL-6 and IL-21 also 

resulted in decreased phospho-STAT3 but not phospho-STAT6 (Figure 22A).  

The partial decrease in Th2 cytokines and pSTAT3 suggests that STAT3 
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activation may result from several cytokines, some in addition to those we have 

neutralized.  Furthermore, it has also been proposed that IL-4 might activate 

STAT3 in some cell context (Orchansky et al., 1999; Umeshita-Suyama et al., 

2000; Wery-Zennaro et al., 1999), although we did not observe IL-4-induced 

phospho-STAT3 in Th2 cultures (Figure 21).  Phospho-STAT3 was observed in 

STAT6-deficient Th2 cultures (Figure 31C), suggesting that the induction of 

endogenous STAT3-activating cytokine(s) is not downstream of IL-4 signaling. 

IL-6 has also been shown to have important roles in proliferation and cell survival 

(Kishimoto, 2006).  STAT3 is required for the proliferation and survival of T cells 

in response to IL-6, and in the absence of STAT3, IL-6 induced proliferation and 

survival are reduced (Takeda et al., 1998).  It is possible that STAT3 dependent 

IL-6 functions are important for Th2 proliferation and/or survival.  Further 

examination of STAT3-deficient Th2 cells should be performed in order to 

determine the contribution of both proliferation and survival in Th2 cytokine 

production.  

 

The in vivo differentiation of Th2 cells requires STAT3 

Important in the demonstration that STAT3 promotes Th2 development are the 

observations that STAT3 is also required for in vivo Th2-mediated inflammation.  

Following immunization with alum-adsorbed ovalbumin we observed that antigen 

induced Th2 cytokine production was diminished in cultures from Stat3CD4-/- mice, 

compared to those from wild type mice (Figure 27).  In studies performed by 

Sehra et al. it was also observed that allergic pulmonary inflammation was 
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diminished in mice that were sensitized and challenged with ovalbumin.  

However, in addition to decreases in Th2 cells, Stat3CD4-/- mice had decreased 

Th17 cells and increased Foxp3 expression in the lung (unpublished data), both 

of which affect the development of allergic inflammation (Lewkowich et al., 2005; 

Schnyder-Candrian et al., 2006), thus limiting the ability to draw conclusions from 

those studies.  This led us to use a model we previously developed wherein mice 

express a constitutively active STAT6 in T cells and develop spontaneous 

allergic inflammation that is dependent upon IL-4, without any observed 

decreases in IL-17 expression (Sehra et al., 2010).  In this model, STAT3-

deficiency in T cells of STAT6VT transgenic mice resulted in decreased ex vivo 

Th2 cytokine production and nearly eliminated allergic inflammation in vivo.  

These data further support a model wherein STAT6 is not sufficient in the 

absence of STAT3 to promote Th2 development. 

 

STAT3 is required for Th2 development: Summary 

Multiple signals contribute to the generation of differentiated T helper subsets.  

However, in this model there is a dominant signal, IL-4 in the case of Th2 cells 

that defines the outcome of the differentiation process.  It is clear that STAT3 is 

required for the development of Th17 cells, and that constitutively active STAT3 

promotes the development of IL-17-secreting cells (Ma et al., 2008; Mathur et al., 

2007; Milner et al., 2008; Nurieva et al., 2008; Yang et al., 2007; Yang et al., 

2005).  However, IL-4 provides a dominant signal that diminishes Th17 

development (Harrington et al., 2005; Park et al., 2005) and decreases 
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symptoms of autoimmunity in multiple models (Rocken et al., 1996).  Thus, when 

both STAT3 and STAT6 signals are present in a cell, the pro-Th17 effects of 

STAT3 are reduced, while the pro-Th2 effects of STAT6 are amplified.  

Mechanistically this occurs through the binding of STAT3 to specific Th2 genes 

that facilitate the ability of STAT6 to activate genes necessary for Th2 

development.  Thus, multiple STAT proteins, activated by cytokines present in 

the milieu of a developing immune response, cooperate in defining the ultimate 

phenotype of the differentiating effector T cell. 

 

 
 
Figure 41.  Multiple STAT family members are important in T helper cell 
development.  The cytokines and STAT family members associated with the 
development of each T helper subset.  
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Overall conclusions 

Our studies have focused on the role of cytokines and STATs in T helper cell 

differentiation and commitment.  The development of both Th2 and Th17 requires 

numerous signals transduced by multiple STAT family members.  Elucidating the 

cytokines and transcription factors important in the development and regulation 

of Th17 and Th2 cells has become increasingly important due to the therapeutic 

potential of targeting these cells in both autoimmunity and allergic disease, 

respectively.  Our studies suggest that Th17 cells are not committed to the IL-17 

secreting phenotype.  Potential therapies could exploit this characteristic of Th17 

cells in order to reduce damage caused by their potent inflammatory response.  

Additionally, targeting STAT family members has also been proposed as a 

potential treatment in several diseases (Catlett-Falcone et al., 1999; Morel and 

Berenbaum, 2004; Nakamura and Hoshino, 2005; O'Shea et al., 2000).  

However, caution should be used when proposing STAT family members as 

targets due to the overlap of some STAT family members in several T helper 

subsets.  For example, targeting STAT3 in Th17 mediated autoimmune diseases 

such as multiple sclerosis or colitis could also affect the protective effects of not 

only Th17 cells, but, according to our data, also Th2 cells.  Overall, our studies 

have helped elucidate the specific factors involved in T helper cell differentiation 

and effector function.  In the future, our results as well as others in the field will 

help identify potential therapeutic targets for specific diseases. 
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FUTURE DIRECTIONS 

PART I: Role of IL-23 in Th17 stability  

Determining if in vivo generated Th17 cells are committed to the Th17 

phenotype 

Our in vitro studies have shown that Th17 cells are not committed to the IL-17 

secreting phenotype and when cultured with opposing cytokines can switch to a 

Th1 or Th2 phenotype.  Subsequently it was shown that in vitro differentiated 

Th17 cells transferred into several different mouse models are not stable.  

Transferred Th17 cells become IFN-γ secreting cells and no longer secrete IL-17.  

The previous in vivo studies of Th17 stability rely on the transfer of in vitro 

differentiated Th17 cells.  Many of the studies transferred “Th17 cells” composed 

of impure populations, and therefore allowing the possibility of outgrowth of IL-17 

negative cells.  Even in studies that transferred pure populations of IL-17 

secreting cells, it is possible that throughout in vitro culture they are not receiving 

the signals necessary for Th17 commitment.  In order to further investigate Th17 

stability we have designed an IL-17 knock-in mouse.  The IL-17 knock-in mouse 

has the Cre recombinase gene inserted into the IL-17F gene.  When crossed to 

ROSA-EYFP mice, cells that have or are expressing IL-17F will express 

enhanced yellow fluorescent protein.  One advantage of using the IL-17 knock-in 

mouse is that it allows us to isolate cells that at one time expressed IL-17F.  As a 

result, we would be able to transfer in vivo generated Th17 cells in order to 

assess stability.  Furthermore, we could take advantage of the marker protein 

and be able to assess the current cytokine secreting profile of cells that at one 
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time secreted IL-17F.  These mice could also be used in several disease models 

such as EAE, CIA, and colitis in order to determining the plasticity of IL-17-

secreting cells within in vivo disease models.   

 

Determining the stability of Th17 cells in Th1 and Th2 cytokine 

environments 

We have shown that Th17 cells lose their IL-17 secreting phenotype when 

exposed to IL-12 or IL-4 in vitro.  To determine if this is also true in vivo we could 

transfer Th17 differentiated cells into several different Th1 and Th2 mouse 

models.  Specifically, STAT6VT and IL-4 transgenic mice or IFN-γ and T-bet 

transgenic mice provide an environment that promotes Th2 or Th1 development, 

respectively.  Our data suggests that Th17 cells transferred into an environment 

rich in Th1 or Th2 promoting cytokines would repress the Th17 phenotype and 

switch to the Th1 or Th2 phenotype.  These studies would further define the 

ability of Th1 and Th2 cytokines to repress established Th17 cells in vivo. 

 

Determining the epigenetic status of Th1, Th2 and Th17 associated genes 

following Th17 cells cultured in opposing cytokines 

The epigenetic status of lineage specific genes has been recently characterized.  

Overall, it has been shown that Th17 cells lack repressive marks in Th1 and Th2 

associated genes, however repressive marks were abundant throughout Th17 

genes in Th1 and Th2 cells (Wei et al., 2009).  Furthermore, Th17 cells 

stimulated with IL-12 undergo rapid epigenetic remodeling.  IL-12 stimulation led 
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to increased H3K27me3 modifications at the Il17a-Il17f locus and increased 

H3K4me modifications at the Ifng locus.  These epigenetic modifications 

coincided with the repression of IL-17A and IL-17F production and increased 

IFN-γ production (Mukasa et al., 2010).  Our data show that Th17 cells cultured 

in IL-12 or IL-4 have decreased Th17 gene expression and increased Th1 and 

Th2 gene expression, respectively.  The report by Mukasa et al. has clearly 

demonstrated the epigenetic changes of Th17 and Th1 associated genes that 

Th17 cells undergo following IL-12 stimulation(Mukasa et al., 2010).  However, 

we would like to expand upon their study and look at epigenetic modifications of 

Th17 cells following culture with IL-4.  Specifically, we would like to look at 

H3K27me3 and H3K4me modifications to Th2 cytokine and transcription factor 

genes.  Furthermore, the ability of Th17 cells switched to Th1 or Th2 cells to 

return back to the Th17 phenotype has not been examined.  It would be 

interesting to do the in vitro culture experiments to address this question.  

Moreover, we could assess the epigenetic status of lineage specific genes of 

Th17 cells switched to Th1 and Th2 and then again after culture with TGF-β+IL-

6.  Specifically, it would be interesting to look at repressive marks at the Il17a/f 

and Rorc loci as well as Th1 and Th2 associated genes of the Th17 cells 

switched to Th1 and Th2 cells and then back to Th17 cells.  These data would 

determine if the switch of Th17 cells to Th1 or Th2 cells is irreversible.   
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Defining the ability of Th17 cells to switch to additional lineages 

Our data show that Th17 cells can convert to both Th1 and Th2 cells following 

culture with IL-12 and IL-4, respectively.  However, Th17 cells do not convert to 

Treg cells following culture with TGF-β+IL-2.  Recently, additional Th subsets 

have been defined based on the expression of unique cytokines and transcription 

factors.  To further define the plasticity of Th17 cells, it would be important to 

determine the ability of Th17 cells to switch to both Tfh and Th9 cells.  We could 

directly test this by culturing Th17 cells for multiple rounds of stimulation and then 

culture them under Tfh or Th9 conditions.  Elucidating the ability of Th17 cells to 

convert to Tfh and Th9 lineages would be interesting since the differentiation of 

both cell types require cytokines important in Th17 differentiation. 

 

PART II: Role of STAT4 in IL-17 producing memory cells  

The requirement of STAT4 for in vivo IL-17 production  

According to our results, STAT4 is required for antigen specific IL-17 production 

following immunization with OVA.  However, the amount of IL-17 production 

following OVA stimulation is low.  It is possible that one immunization, with or 

without an additional boost, does not lead to sufficient priming of antigen specific 

T cells.  In order to increase the number of antigen specific T cells we could 

increase the number of challenges.  Many groups, including our own, do multiple 

challenges intranasally before analysis (Figure 42).  The additional challenges 

might increase IL-17 production from splenocytes and emphasize the STAT4 

dependence.  Additionally, we could stimulate the cells ex vivo with both antigen 
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(OVA) and IL-23±IL-18.  IL-23 should further increase IL-17 production from 

activated cells.  According to our data, the increase in IL-17 production following 

the addition of IL-23 will be STAT4 dependent.    

 

Since there are conflicting reports on the dependence on STAT4 for in vivo IL-17 

production we could directly test the importance of the cytokine environment.  

Using the OVA immunization model, we could immunize WT and STAT4-

deficient mice with OVA plus the adjuvant Alum or CFA.  Following ex vivo 

stimulation we could directly compare IL-17 production and the dependence on 

STAT4 from OVA+Alum or OVA+CFA immunized mice. 

 

 

 

Figure 42.  OVA immunization protocol.  On day 0 and day 7 WT and STAT4-
deficient mice would be injected with OVA and Alum i.p.  Mice would then be 
challenged i.n. with OVA on days 14-18.  48 hours following the last i.n. 
challenge mice would be sacrificed and splenocytes would be re-stimulated and 
cytokine production would be assessed. 
 

 

Characterization of Stat4-/- memory cells 

STAT4-deficient memory cells have expression of Il23r similar to wild type 

memory cells.  However, memory cells from STAT4-deficient mice have a 2-fold 

decrease in Rorc expression compared to wild type memory cells.  Further 
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characterization of STAT4-deficient memory cells is necessary to elucidate the 

mechanism responsible for reduced IL-17 production.  We have shown that IL-17 

production from memory cells cultured with IL-23 requires STAT4.  However, in 

order to determine if IL-17 production following direct ex vivo stimulation requires 

STAT4, we will isolate wild type and STAT4-deficient memory cells and stimulate 

them with anti-CD3 or IL-23+IL-18.  IL-17 production can be assessed by both 

intracellular staining and ELISA.  Additionally, it is important to assess pSTAT3 

and pSTAT4 of wild type and Stat4-/- memory cells following ex vivo stimulation 

with IL-23. 

 

Since Rorγt expression is reduced in STAT4-deficient memory cells, the 

expression of other Th17 transcription factors including Ahr, Rorα, and Batf 

should be compared between wild type and Stat4-/- memory cells.  We will also 

test the requirement for STAT4 in the production of other Th17 cytokines 

including IL-21, IL-22, and IL-17F by memory cells.   

 

STAT4 dependence of IL-17 production in other cell types 

Our results show that STAT4 is required for IL-17 production from CD4 memory 

T cells.  However the requirement of STAT4 for IL-17 production from other cell 

types has not been examined.  To directly test the STAT4 dependence in NK, 

NKT, and γδ T cell IL-17 production we could sort different populations based on 

surface markers and then stimulate them with IL-23±IL-18 and assess IL-17 

production.  Similar to CD4 memory T cells, we could also do longer in vitro 



144 
 

cultures with IL-23 and re-stimulate to see IL-17 production following a re-call 

response from wild type and Stat4-/- mice. 

 

PART III: STAT3 is required for Th2 differentiation  

Determine if constitutively active STAT3 can rescue Th2 cytokines in 

STAT6-deficient Th2 cells 

We have illustrated that STAT6 and STAT3 are both required for optimal Th2 

differentiation.  Our data show that constitutively active STAT6 cannot rescue 

Th2 cytokines production in CD4 T cells lacking STAT3.  Furthermore, the 

expression of constitutively active STAT3 can induce Th2 cytokine production.  

To directly test if over expression of active STAT3 can recover Th2 cytokine 

production in STAT6-deficient Th2 cells we could retro-virally transduce STAT6-

deficient Th2 cells with constitutively active STAT3.  Following transduction with 

constitutively active STAT3, cells could be re-stimulated and Th2 cytokine 

production could be compared to wild type Th2 cells.   

 

Affinity of STAT6 and STAT3 to STAT binding sites in Th2 associated 

genes  

STAT6 and STAT3 both directly bind Th2 associated genes.  Furthermore, our 

data suggests that STAT3 is required for directing STAT6 binding.  In wild type 

cells STAT6 binds to Gata3 and to a lesser extent c-Maf.  Conversely, STAT3 

binds predominantly to c-Maf.  These data suggest that STAT6 and STAT3 could 

preferentially bind to the STAT binding site in Gata3 and c-Maf, respectively.  To 
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directly test the affinity of one binding site versus the other we could use DNA 

affinity purification analysis (DAPA).  Biotinylated oligos containing the STAT 

binding sequences within the Gata3 and c-Maf genes could be incubated with 

nuclear extracts of Th2 cultured cells.  Following incubation and 

immunoprecipitation, western blots could be performed for both STAT3 and 

STAT6.  Therefore, the binding preference of STAT3 and STAT6 could be 

elucidated.  Additionally, STAT6 binding could be assessed in STAT3-deficient 

cells in order to determine if STAT6 binding is altered in the absence of STAT3. 

 

Elucidating the requirement of STAT3 in helminth infections 

Th2 cells are required for the clearance of extracellular parasites including 

helminth infections.  Since STAT3 is required for Th2 development, STAT3 may 

also be required for clearance of helminth infections.  To directly test if STAT3 is 

required for immunity to helminth infections we could infect wild type and STAT3-

deficient mice (specifically in T cells) with helminthes.  Following infection, 

cytokine response and worm burden could be assessed to establish the role of 

STAT3 in clearance.  Additionally, STAT6VT transgenic mice have increased 

Th2 development and we hypothesize that infection with helminthes will be 

cleared as or more efficient as wild type mice.  We could also use this model to 

determine the requirement of STAT3 by using STAT6VTxStat3CD4-/-.   
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Testing the ability of STAT3 inhibitors to suppress allergic disease 

Data from our lab has shown that STAT3-deficient mice have reduced allergic 

inflammation compared to wild type controls (Sehra, unpublished data).  

Currently there are at least 2 patented STAT3 inhibitors developed for the 

treatment of different inflammatory diseases.  It would be important to test the 

ability of STAT3 inhibitors to suppress the development of asthma or treat 

established allergic inflammation.  The inhibitors can be given before the 

induction of asthma or during intranasal challenges of OVA sensitized mice.  It is 

important to consider that STAT3 is expressed in other cell types in addition to T 

cells.  Moreover, it has been shown that STAT3 is required in airway epithelial 

cells for the induction of allergic inflammation (Simeone-Penney et al., 2007).  

Conversely, in some models of allergic inflammation the expression of STAT3 is 

reduced in sensitized mice compared to saline controls.  The reduced STAT3 

expression correlated with increased SOCS3, a known negative regulator of 

STAT3 (Paul et al., 2009).  It will be important to determine the activation of 

STAT3 in different cell types throughout the induction of allergic inflammation.  

Additionally, the requirement of STAT3 can be determined using the STAT3 

inhibitors.  Elucidating the role of STAT3 in allergic inflammation is important 

before the use of STAT3 inhibitors to treat allergic inflammation can be 

considered. 
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Determining if ectopic expression of multiple transcription factors can 

rescue the STAT3-deficient Th2 phenotype 

STAT3-deficient Th2 cells have reduced expression of Th2 transcription factors 

Gata3, c-Maf, and Irf4.  Ectopic expression of Gata3, c-Maf, or Irf4 in STAT3-

deficent Th2 cells does not rescue Th2 cytokine production.  However, it is 

possible that several of the Th2 transcription factors are required for optimal Th2 

development.  To test this directly, STAT3-deficient Th2 cells could be 

transduced with different combinations of the Th2 transcription factors or all 

three.  If Th2 cytokine production is not rescued in STAT3-deficient Th2 cells 

transduced with all 3 transcription factors it is possible that other STAT3 

dependent factors are required for Th2 development. 



148 
 

REFERENCES 
 

Aarvak, T., Chabaud, M., Miossec, P., and Natvig, J.B. (1999). IL-17 is produced 
by some proinflammatory Th1/Th0 cells but not by Th2 cells. J Immunol 
162, 1246-1251. 

Afkarian, M., Sedy, J.R., Yang, J., Jacobson, N.G., Cereb, N., Yang, S.Y., 
Murphy, T.L., and Murphy, K.M. (2002). T-bet is a STAT1-induced 
regulator of IL-12R expression in naive CD4+ T cells. Nat Immunol 3, 549-
557. 

Agarwal, S., Avni, O., and Rao, A. (2000). Cell-type-restricted binding of the 
transcription factor NFAT to a distal IL-4 enhancer in vivo. Immunity 12, 
643-652. 

Ahyi, A.N., Chang, H.C., Dent, A.L., Nutt, S.L., and Kaplan, M.H. (2009). IFN 
regulatory factor 4 regulates the expression of a subset of Th2 cytokines. 
J Immunol 183, 1598-1606. 

Akaishi, H., Takeda, K., Kaisho, T., Shineha, R., Satomi, S., Takeda, J., and 
Akira, S. (1998). Defective IL-2-mediated IL-2 receptor alpha chain 
expression in Stat3-deficient T lymphocytes. Int Immunol 10, 1747-1751. 

Akiba, H., Takeda, K., Kojima, Y., Usui, Y., Harada, N., Yamazaki, T., Ma, J., 
Tezuka, K., Yagita, H., and Okumura, K. (2005). The role of ICOS in the 
CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175, 
2340-2348. 

Akimoto, T., Numata, F., Tamura, M., Takata, Y., Higashida, N., Takashi, T., 
Takeda, K., and Akira, S. (1998). Abrogation of bronchial eosinophilic 
inflammation and airway hyperreactivity in signal transducers and 
activators of transcription (STAT)6-deficient mice. J Exp Med 187, 1537-
1542. 

Apostolopoulos, V., and McKenzie, I.F. (2001). Role of the mannose receptor in 
the immune response. Curr Mol Med 1, 469-474. 

Barbulescu, K., Becker, C., Schlaak, J.F., Schmitt, E., Meyer zum Buschenfelde, 
K.H., and Neurath, M.F. (1998). IL-12 and IL-18 differentially regulate the 
transcriptional activity of the human IFN-gamma promoter in primary 
CD4+ T lymphocytes. J Immunol 160, 3642-3647. 

Batten, M., Li, J., Yi, S., Kljavin, N.M., Danilenko, D.M., Lucas, S., Lee, J., de 
Sauvage, F.J., and Ghilardi, N. (2006). Interleukin 27 limits autoimmune 
encephalomyelitis by suppressing the development of interleukin 17-
producing T cells. Nat Immunol 7, 929-936. 

Bauquet, A.T., Jin, H., Paterson, A.M., Mitsdoerffer, M., Ho, I.C., Sharpe, A.H., 
and Kuchroo, V.K. (2009). The costimulatory molecule ICOS regulates the 
expression of c-Maf and IL-21 in the development of follicular T helper 
cells and TH-17 cells. Nat Immunol 10, 167-175. 

Bendelac, A., Savage, P.B., and Teyton, L. (2007). The biology of NKT cells. 
Annu Rev Immunol 25, 297-336. 



149 
 

Bending, D., De La Pena, H., Veldhoen, M., Phillips, J.M., Uyttenhove, C., 
Stockinger, B., and Cooke, A. (2009). Highly purified Th17 cells from 
BDC2.5NOD mice convert into Th1-like cells in NOD/SCID recipient mice. 
J Clin Invest. 

Bennett, C.L., Christie, J., Ramsdell, F., Brunkow, M.E., Ferguson, P.J., 
Whitesell, L., Kelly, T.E., Saulsbury, F.T., Chance, P.F., and Ochs, H.D. 
(2001). The immune dysregulation, polyendocrinopathy, enteropathy, X-
linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27, 
20-21. 

Benson, M.J., Pino-Lagos, K., Rosemblatt, M., and Noelle, R.J. (2007). All-trans 
retinoic acid mediates enhanced T reg cell growth, differentiation, and gut 
homing in the face of high levels of co-stimulation. J Exp Med 204, 1765-
1774. 

Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L., 
and Kuchroo, V.K. (2006). Reciprocal developmental pathways for the 
generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 
235-238. 

Bettelli, E., Korn, T., and Kuchroo, V.K. (2007a). Th17: the third member of the 
effector T cell trilogy. Curr Opin Immunol 19, 652-657. 

Bettelli, E., Oukka, M., and Kuchroo, V.K. (2007b). T(H)-17 cells in the circle of 
immunity and autoimmunity. Nat Immunol 8, 345-350. 

Betz, B.C., Jordan-Williams, K.L., Wang, C., Kang, S.G., Liao, J., Logan, M.R., 
Kim, C.H., and Taparowsky, E.J. (2010). Batf coordinates multiple aspects 
of B and T cell function required for normal antibody responses. J Exp 
Med 207, 933-942. 

Beutler, B., Jiang, Z., Georgel, P., Crozat, K., Croker, B., Rutschmann, S., Du, 
X., and Hoebe, K. (2006). Genetic analysis of host resistance: Toll-like 
receptor signaling and immunity at large. Annu Rev Immunol 24, 353-389. 

Billiau, A., Heremans, H., Vandekerckhove, F., Dijkmans, R., Sobis, H., 
Meulepas, E., and Carton, H. (1988). Enhancement of experimental 
allergic encephalomyelitis in mice by antibodies against IFN-gamma. J 
Immunol 140, 1506-1510. 

Blander, J.M. (2008). Phagocytosis and antigen presentation: a partnership 
initiated by Toll-like receptors. Ann Rheum Dis 67 Suppl 3, iii44-49. 

Born, W.K., Reardon, C.L., and O'Brien, R.L. (2006). The function of gammadelta 
T cells in innate immunity. Curr Opin Immunol 18, 31-38. 

Bossaller, L., Burger, J., Draeger, R., Grimbacher, B., Knoth, R., Plebani, A., 
Durandy, A., Baumann, U., Schlesier, M., Welcher, A.A., et al. (2006). 
ICOS deficiency is associated with a severe reduction of CXCR5+CD4 
germinal center Th cells. J Immunol 177, 4927-4932. 

Breitfeld, D., Ohl, L., Kremmer, E., Ellwart, J., Sallusto, F., Lipp, M., and Forster, 
R. (2000). Follicular B helper T cells express CXC chemokine receptor 5, 
localize to B cell follicles, and support immunoglobulin production. J Exp 
Med 192, 1545-1552. 



150 
 

Brunkow, M.E., Jeffery, E.W., Hjerrild, K.A., Paeper, B., Clark, L.B., Yasayko, 
S.A., Wilkinson, J.E., Galas, D., Ziegler, S.F., and Ramsdell, F. (2001). 
Disruption of a new forkhead/winged-helix protein, scurfin, results in the 
fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 27, 68-
73. 

Bruns, H.A., Schindler, U., and Kaplan, M.H. (2003). Expression of a 
constitutively active Stat6 in vivo alters lymphocyte homeostasis with 
distinct effects in T and B cells. J Immunol 170, 3478-3487. 

Brusselle, G., Kips, J., Joos, G., Bluethmann, H., and Pauwels, R. (1995). 
Allergen-induced airway inflammation and bronchial responsiveness in 
wild-type and interleukin-4-deficient mice. Am J Respir Cell Mol Biol 12, 
254-259. 

Brustle, A., Heink, S., Huber, M., Rosenplanter, C., Stadelmann, C., Yu, P., 
Arpaia, E., Mak, T.W., Kamradt, T., and Lohoff, M. (2007). The 
development of inflammatory T(H)-17 cells requires interferon-regulatory 
factor 4. Nat Immunol 8, 958-966. 

Buckley, R.H. (2001). The hyper-IgE syndrome. Clin Rev Allergy Immunol 20, 
139-154. 

Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R., and Farrar, M.A. (2007). 
IL-2 receptor beta-dependent STAT5 activation is required for the 
development of Foxp3+ regulatory T cells. J Immunol 178, 280-290. 

Cai, G., Radzanowski, T., Villegas, E.N., Kastelein, R., and Hunter, C.A. (2000). 
Identification of STAT4-dependent and independent mechanisms of 
resistance to Toxoplasma gondii. J Immunol 165, 2619-2627. 

Cargill, M., Schrodi, S.J., Chang, M., Garcia, V.E., Brandon, R., Callis, K.P., 
Matsunami, N., Ardlie, K.G., Civello, D., Catanese, J.J., et al. (2007). A 
large-scale genetic association study confirms IL12B and leads to the 
identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80, 273-
290. 

Caspi, R.R., Silver, P.B., Chan, C.C., Sun, B., Agarwal, R.K., Wells, J., Oddo, S., 
Fujino, Y., Najafian, F., and Wilder, R.L. (1996). Genetic susceptibility to 
experimental autoimmune uveoretinitis in the rat is associated with an 
elevated Th1 response. J Immunol 157, 2668-2675. 

Catlett-Falcone, R., Dalton, W.S., and Jove, R. (1999). STAT proteins as novel 
targets for cancer therapy. Signal transducer an activator of transcription. 
Curr Opin Oncol 11, 490-496. 

Caudy, A.A., Reddy, S.T., Chatila, T., Atkinson, J.P., and Verbsky, J.W. (2007). 
CD25 deficiency causes an immune dysregulation, polyendocrinopathy, 
enteropathy, X-linked-like syndrome, and defective IL-10 expression from 
CD4 lymphocytes. J Allergy Clin Immunol 119, 482-487. 

Chang, H.C., Han, L., Goswami, R., Nguyen, E.T., Pelloso, D., Robertson, M.J., 
and Kaplan, M.H. (2009). Impaired development of human Th1 cells in 
patients with deficient expression of STAT4. Blood 113, 5887-5890. 



151 
 

Chang, H.C., Sehra, S., Goswami, R., Yao, W., Yu, Q., Stritesky, G.L., Jabeen, 
R., McKinley, C., Ahyi, A.N., Han, L., et al. (2010). The transcription factor 
PU.1 is required for the development of IL-9-producing T cells and allergic 
inflammation. Nat Immunol 11, 527-534. 

Chang, H.C., Zhang, S., Thieu, V.T., Slee, R.B., Bruns, H.A., Laribee, R.N., 
Klemsz, M.J., and Kaplan, M.H. (2005). PU.1 expression delineates 
heterogeneity in primary Th2 cells. Immunity 22, 693-703. 

Chen, W., Jin, W., Hardegen, N., Lei, K.J., Li, L., Marinos, N., McGrady, G., and 
Wahl, S.M. (2003). Conversion of peripheral CD4+CD25- naive T cells to 
CD4+CD25+ regulatory T cells by TGF-beta induction of transcription 
factor Foxp3. J Exp Med 198, 1875-1886. 

Chen, Y., Langrish, C.L., McKenzie, B., Joyce-Shaikh, B., Stumhofer, J.S., 
McClanahan, T., Blumenschein, W., Churakovsa, T., Low, J., Presta, L., et 
al. (2006a). Anti-IL-23 therapy inhibits multiple inflammatory pathways and 
ameliorates autoimmune encephalomyelitis. J Clin Invest 116, 1317-1326. 

Chen, Z., Laurence, A., Kanno, Y., Pacher-Zavisin, M., Zhu, B.M., Tato, C., 
Yoshimura, A., Hennighausen, L., and O'Shea, J.J. (2006b). Selective 
regulatory function of Socs3 in the formation of IL-17-secreting T cells. 
Proc Natl Acad Sci U S A 103, 8137-8142. 

Chen, Z., Tato, C.M., Muul, L., Laurence, A., and O'Shea, J.J. (2007). Distinct 
regulation of interleukin-17 in human T helper lymphocytes. Arthritis 
Rheum 56, 2936-2946. 

Cheng, G., Arima, M., Honda, K., Hirata, H., Eda, F., Yoshida, N., Fukushima, F., 
Ishii, Y., and Fukuda, T. (2002). Anti-interleukin-9 antibody treatment 
inhibits airway inflammation and hyperreactivity in mouse asthma model. 
Am J Respir Crit Care Med 166, 409-416. 

Chiarle, R., Simmons, W.J., Cai, H., Dhall, G., Zamo, A., Raz, R., Karras, J.G., 
Levy, D.E., and Inghirami, G. (2005). Stat3 is required for ALK-mediated 
lymphomagenesis and provides a possible therapeutic target. Nat Med 11, 
623-629. 

Chitnis, T., Najafian, N., Benou, C., Salama, A.D., Grusby, M.J., Sayegh, M.H., 
and Khoury, S.J. (2001). Effect of targeted disruption of STAT4 and 
STAT6 on the induction of experimental autoimmune encephalomyelitis. J 
Clin Invest 108, 739-747. 

Cho, M.L., Kang, J.W., Moon, Y.M., Nam, H.J., Jhun, J.Y., Heo, S.B., Jin, H.T., 
Min, S.Y., Ju, J.H., Park, K.S., et al. (2006). STAT3 and NF-kappaB signal 
pathway is required for IL-23-mediated IL-17 production in spontaneous 
arthritis animal model IL-1 receptor antagonist-deficient mice. J Immunol 
176, 5652-5661. 

Chtanova, T., Tangye, S.G., Newton, R., Frank, N., Hodge, M.R., Rolph, M.S., 
and Mackay, C.R. (2004). T follicular helper cells express a distinctive 
transcriptional profile, reflecting their role as non-Th1/Th2 effector cells 
that provide help for B cells. J Immunol 173, 68-78. 



152 
 

Chung, Y., Chang, S.H., Martinez, G.J., Yang, X.O., Nurieva, R., Kang, H.S., Ma, 
L., Watowich, S.S., Jetten, A.M., Tian, Q., and Dong, C. (2009). Critical 
regulation of early Th17 cell differentiation by interleukin-1 signaling. 
Immunity 30, 576-587. 

Coffman, R.L., Seymour, B.W., Hudak, S., Jackson, J., and Rennick, D. (1989). 
Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. 
Science 245, 308-310. 

Coombes, J.L., Siddiqui, K.R., Arancibia-Carcamo, C.V., Hall, J., Sun, C.M., 
Belkaid, Y., and Powrie, F. (2007). A functionally specialized population of 
mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta 
and retinoic acid-dependent mechanism. J Exp Med 204, 1757-1764. 

Cote-Sierra, J., Foucras, G., Guo, L., Chiodetti, L., Young, H.A., Hu-Li, J., Zhu, 
J., and Paul, W.E. (2004). Interleukin 2 plays a central role in Th2 
differentiation. Proc Natl Acad Sci U S A 101, 3880-3885. 

Cua, D.J., Sherlock, J., Chen, Y., Murphy, C.A., Joyce, B., Seymour, B., Lucian, 
L., To, W., Kwan, S., Churakova, T., et al. (2003). Interleukin-23 rather 
than interleukin-12 is the critical cytokine for autoimmune inflammation of 
the brain. Nature 421, 744-748. 

Cua, D.J., and Tato, C.M. (2010). Innate IL-17-producing cells: the sentinels of 
the immune system. Nat Rev Immunol 10, 479-489. 

Dardalhon, V., Awasthi, A., Kwon, H., Galileos, G., Gao, W., Sobel, R.A., 
Mitsdoerffer, M., Strom, T.B., Elyaman, W., Ho, I.C., et al. (2008). IL-4 
inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, 
generates IL-9+ IL-10+ Foxp3(-) effector T cells. Nat Immunol 9, 1347-
1355. 

Davidson, T.S., DiPaolo, R.J., Andersson, J., and Shevach, E.M. (2007). Cutting 
Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T 
regulatory cells. J Immunol 178, 4022-4026. 

de Leval, L., Rickman, D.S., Thielen, C., Reynies, A., Huang, Y.L., Delsol, G., 
Lamant, L., Leroy, K., Briere, J., Molina, T., et al. (2007). The gene 
expression profile of nodal peripheral T-cell lymphoma demonstrates a 
molecular link between angioimmunoblastic T-cell lymphoma (AITL) and 
follicular helper T (TFH) cells. Blood 109, 4952-4963. 

de Leval, L., Savilo, E., Longtine, J., Ferry, J.A., and Harris, N.L. (2001). 
Peripheral T-cell lymphoma with follicular involvement and a CD4+/bcl-6+ 
phenotype. Am J Surg Pathol 25, 395-400. 

Diehl, S., Chow, C.W., Weiss, L., Palmetshofer, A., Twardzik, T., Rounds, L., 
Serfling, E., Davis, R.J., Anguita, J., and Rincon, M. (2002). Induction of 
NFATc2 expression by interleukin 6 promotes T helper type 2 
differentiation. J Exp Med 196, 39-49. 

DiPaolo, R.J., Brinster, C., Davidson, T.S., Andersson, J., Glass, D., and 
Shevach, E.M. (2007). Autoantigen-specific TGFbeta-induced Foxp3+ 
regulatory T cells prevent autoimmunity by inhibiting dendritic cells from 
activating autoreactive T cells. J Immunol 179, 4685-4693. 



153 
 

Djuretic, I.M., Levanon, D., Negreanu, V., Groner, Y., Rao, A., and Ansel, K.M. 
(2007). Transcription factors T-bet and Runx3 cooperate to activate Ifng 
and silence Il4 in T helper type 1 cells. Nat Immunol 8, 145-153. 

Dong, C., Juedes, A.E., Temann, U.A., Shresta, S., Allison, J.P., Ruddle, N.H., 
and Flavell, R.A. (2001). ICOS co-stimulatory receptor is essential for T-
cell activation and function. Nature 409, 97-101. 

Doull, I.J., Lawrence, S., Watson, M., Begishvili, T., Beasley, R.W., Lampe, F., 
Holgate, T., and Morton, N.E. (1996). Allelic association of gene markers 
on chromosomes 5q and 11q with atopy and bronchial 
hyperresponsiveness. Am J Respir Crit Care Med 153, 1280-1284. 

Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., 
Steinhart, A.H., Abraham, C., Regueiro, M., Griffiths, A., et al. (2006). A 
genome-wide association study identifies IL23R as an inflammatory bowel 
disease gene. Science 314, 1461-1463. 

Durant, L., Watford, W.T., Ramos, H.L., Laurence, A., Vahedi, G., Wei, L., 
Takahashi, H., Sun, H.W., Kanno, Y., Powrie, F., and O'Shea, J.J. (2010). 
Diverse targets of the transcription factor STAT3 contribute to T cell 
pathogenicity and homeostasis. Immunity 32, 605-615. 

Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I., and Littman, D.R. (2007). The 
role of the Runx transcription factors in thymocyte differentiation and in 
homeostasis of naive T cells. J Exp Med 204, 1945-1957. 

Else, K.J., Finkelman, F.D., Maliszewski, C.R., and Grencis, R.K. (1994). 
Cytokine-mediated regulation of chronic intestinal helminth infection. J Exp 
Med 179, 347-351. 

Erpenbeck, V.J., Hohlfeld, J.M., Discher, M., Krentel, H., Hagenberg, A., Braun, 
A., and Krug, N. (2003a). Increased expression of interleukin-9 messenger 
RNA after segmental allergen challenge in allergic asthmatics. Chest 123, 
370S. 

Erpenbeck, V.J., Hohlfeld, J.M., Volkmann, B., Hagenberg, A., Geldmacher, H., 
Braun, A., and Krug, N. (2003b). Segmental allergen challenge in patients 
with atopic asthma leads to increased IL-9 expression in bronchoalveolar 
lavage fluid lymphocytes. J Allergy Clin Immunol 111, 1319-1327. 

Fantini, M.C., Becker, C., Monteleone, G., Pallone, F., Galle, P.R., and Neurath, 
M.F. (2004). Cutting edge: TGF-beta induces a regulatory phenotype in 
CD4+CD25- T cells through Foxp3 induction and down-regulation of 
Smad7. J Immunol 172, 5149-5153. 

Faulkner, H., Renauld, J.C., Van Snick, J., and Grencis, R.K. (1998). Interleukin-
9 enhances resistance to the intestinal nematode Trichuris muris. Infect 
Immun 66, 3832-3840. 

Ferber, I.A., Brocke, S., Taylor-Edwards, C., Ridgway, W., Dinisco, C., Steinman, 
L., Dalton, D., and Fathman, C.G. (1996). Mice with a disrupted IFN-
gamma gene are susceptible to the induction of experimental autoimmune 
encephalomyelitis (EAE). J Immunol 156, 5-7. 



154 
 

Fieschi, C., Bosticardo, M., de Beaucoudrey, L., Boisson-Dupuis, S., Feinberg, 
J., Santos, O.F., Bustamante, J., Levy, J., Candotti, F., and Casanova, 
J.L. (2004). A novel form of complete IL-12/IL-23 receptor beta1 deficiency 
with cell surface-expressed nonfunctional receptors. Blood 104, 2095-
2101. 

Fieschi, C., Dupuis, S., Catherinot, E., Feinberg, J., Bustamante, J., Breiman, A., 
Altare, F., Baretto, R., Le Deist, F., Kayal, S., et al. (2003). Low 
penetrance, broad resistance, and favorable outcome of interleukin 12 
receptor beta1 deficiency: medical and immunological implications. J Exp 
Med 197, 527-535. 

Filipe-Santos, O., Bustamante, J., Chapgier, A., Vogt, G., de Beaucoudrey, L., 
Feinberg, J., Jouanguy, E., Boisson-Dupuis, S., Fieschi, C., Picard, C., 
and Casanova, J.L. (2006). Inborn errors of IL-12/23- and IFN-gamma-
mediated immunity: molecular, cellular, and clinical features. Semin 
Immunol 18, 347-361. 

Fontenot, J.D., Rasmussen, J.P., Williams, L.M., Dooley, J.L., Farr, A.G., and 
Rudensky, A.Y. (2005). Regulatory T cell lineage specification by the 
forkhead transcription factor foxp3. Immunity 22, 329-341. 

Forbes, E.E., Groschwitz, K., Abonia, J.P., Brandt, E.B., Cohen, E., Blanchard, 
C., Ahrens, R., Seidu, L., McKenzie, A., Strait, R., et al. (2008). IL-9- and 
mast cell-mediated intestinal permeability predisposes to oral antigen 
hypersensitivity. J Exp Med 205, 897-913. 

Fu, S., Zhang, N., Yopp, A.C., Chen, D., Mao, M., Chen, D., Zhang, H., Ding, Y., 
and Bromberg, J.S. (2004). TGF-beta induces Foxp3 + T-regulatory cells 
from CD4 + CD25 - precursors. Am J Transplant 4, 1614-1627. 

Germann, T., Hess, H., Szeliga, J., and Rude, E. (1996). Characterization of the 
adjuvant effect of IL-12 and efficacy of IL-12 inhibitors in type II collagen-
induced arthritis. Ann N Y Acad Sci 795, 227-240. 

Gran, B., Zhang, G.X., Yu, S., Li, J., Chen, X.H., Ventura, E.S., Kamoun, M., and 
Rostami, A. (2002). IL-12p35-deficient mice are susceptible to 
experimental autoimmune encephalomyelitis: evidence for redundancy in 
the IL-12 system in the induction of central nervous system autoimmune 
demyelination. J Immunol 169, 7104-7110. 

Grimbacher, B., Hutloff, A., Schlesier, M., Glocker, E., Warnatz, K., Drager, R., 
Eibel, H., Fischer, B., Schaffer, A.A., Mages, H.W., et al. (2003). 
Homozygous loss of ICOS is associated with adult-onset common variable 
immunodeficiency. Nat Immunol 4, 261-268. 

Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C., and Amigorena, S. 
(2002). Antigen presentation and T cell stimulation by dendritic cells. Annu 
Rev Immunol 20, 621-667. 

Guo, L., Wei, G., Zhu, J., Liao, W., Leonard, W.J., Zhao, K., and Paul, W. (2009). 
IL-1 family members and STAT activators induce cytokine production by 
Th2, Th17, and Th1 cells. Proc Natl Acad Sci U S A 106, 13463-13468. 



155 
 

Happel, K.I., Dubin, P.J., Zheng, M., Ghilardi, N., Lockhart, C., Quinton, L.J., 
Odden, A.R., Shellito, J.E., Bagby, G.J., Nelson, S., and Kolls, J.K. (2005). 
Divergent roles of IL-23 and IL-12 in host defense against Klebsiella 
pneumoniae. J Exp Med 202, 761-769. 

Harrington, L.E., Hatton, R.D., Mangan, P.R., Turner, H., Murphy, T.L., Murphy, 
K.M., and Weaver, C.T. (2005). Interleukin 17-producing CD4+ effector T 
cells develop via a lineage distinct from the T helper type 1 and 2 
lineages. Nat Immunol 6, 1123-1132. 

Harty, J.T., Tvinnereim, A.R., and White, D.W. (2000). CD8+ T cell effector 
mechanisms in resistance to infection. Annu Rev Immunol 18, 275-308. 

Hegazy, A.N., Peine, M., Helmstetter, C., Panse, I., Frohlich, A., Bergthaler, A., 
Flatz, L., Pinschewer, D.D., Radbruch, A., and Lohning, M. (2010). 
Interferons direct Th2 cell reprogramming to generate a stable GATA-
3(+)T-bet(+) cell subset with combined Th2 and Th1 cell functions. 
Immunity 32, 116-128. 

Herber, D., Brown, T.P., Liang, S., Young, D.A., Collins, M., and Dunussi-
Joannopoulos, K. (2007). IL-21 has a pathogenic role in a lupus-prone 
mouse model and its blockade with IL-21R.Fc reduces disease 
progression. J Immunol 178, 3822-3830. 

Hershey, G.K., Friedrich, M.F., Esswein, L.A., Thomas, M.L., and Chatila, T.A. 
(1997). The association of atopy with a gain-of-function mutation in the 
alpha subunit of the interleukin-4 receptor. N Engl J Med 337, 1720-1725. 

Hiramatsu, Y., Suto, A., Kashiwakuma, D., Kanari, H., Kagami, S., Ikeda, K., 
Hirose, K., Watanabe, N., Grusby, M.J., Iwamoto, I., and Nakajima, H. 
(2010). c-Maf activates the promoter and enhancer of the IL-21 gene, and 
TGF-beta inhibits c-Maf-induced IL-21 production in CD4+ T cells. J 
Leukoc Biol 87, 703-712. 

Ho, I.C., Hodge, M.R., Rooney, J.W., and Glimcher, L.H. (1996). The proto-
oncogene c-maf is responsible for tissue-specific expression of interleukin-
4. Cell 85, 973-983. 

Hoey, T., Zhang, S., Schmidt, N., Yu, Q., Ramchandani, S., Xu, X., Naeger, L.K., 
Sun, Y.L., and Kaplan, M.H. (2003). Distinct requirements for the naturally 
occurring splice forms Stat4alpha and Stat4beta in IL-12 responses. Embo 
J 22, 4237-4248. 

Holland, S.M., DeLeo, F.R., Elloumi, H.Z., Hsu, A.P., Uzel, G., Brodsky, N., 
Freeman, A.F., Demidowich, A., Davis, J., Turner, M.L., et al. (2007). 
STAT3 mutations in the hyper-IgE syndrome. N Engl J Med 357, 1608-
1619. 

Holroyd, K.J., Martinati, L.C., Trabetti, E., Scherpbier, T., Eleff, S.M., Boner, A.L., 
Pignatti, P.F., Kiser, M.B., Dragwa, C.R., Hubbard, F., et al. (1998). 
Asthma and bronchial hyperresponsiveness linked to the XY long arm 
pseudoautosomal region. Genomics 52, 233-235. 

Hsieh, C.S., Macatonia, S.E., Tripp, C.S., Wolf, S.F., O'Garra, A., and Murphy, 
K.M. (1993). Development of TH1 CD4+ T cells through IL-12 produced by 
Listeria-induced macrophages. Science 260, 547-549. 



156 
 

Huang, H., and Paul, W.E. (1998). Impaired interleukin 4 signaling in T helper 
type 1 cells. J Exp Med 187, 1305-1313. 

Huang, W., Na, L., Fidel, P.L., and Schwarzenberger, P. (2004). Requirement of 
interleukin-17A for systemic anti-Candida albicans host defense in mice. J 
Infect Dis 190, 624-631. 

Huber, M., Brustle, A., Reinhard, K., Guralnik, A., Walter, G., Mahiny, A., von 
Low, E., and Lohoff, M. (2008). IRF4 is essential for IL-21-mediated 
induction, amplification, and stabilization of the Th17 phenotype. Proc Natl 
Acad Sci U S A 105, 20846-20851. 

Hultner, L., Druez, C., Moeller, J., Uyttenhove, C., Schmitt, E., Rude, E., Dormer, 
P., and Van Snick, J. (1990). Mast cell growth-enhancing activity (MEA) is 
structurally related and functionally identical to the novel mouse T cell 
growth factor P40/TCGFIII (interleukin 9). Eur J Immunol 20, 1413-1416. 

Hutloff, A., Buchner, K., Reiter, K., Baelde, H.J., Odendahl, M., Jacobi, A., 
Dorner, T., and Kroczek, R.A. (2004). Involvement of inducible 
costimulator in the exaggerated memory B cell and plasma cell generation 
in systemic lupus erythematosus. Arthritis Rheum 50, 3211-3220. 

Hutloff, A., Dittrich, A.M., Beier, K.C., Eljaschewitsch, B., Kraft, R., 
Anagnostopoulos, I., and Kroczek, R.A. (1999). ICOS is an inducible T-cell 
co-stimulator structurally and functionally related to CD28. Nature 397, 
263-266. 

Inohara, Chamaillard, McDonald, C., and Nunez, G. (2005). NOD-LRR proteins: 
role in host-microbial interactions and inflammatory disease. Annu Rev 
Biochem 74, 355-383. 

Ivanov, II, McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., 
Cua, D.J., and Littman, D.R. (2006). The orphan nuclear receptor 
RORgammat directs the differentiation program of proinflammatory IL-17+ 
T helper cells. Cell 126, 1121-1133. 

Iwai, H., Abe, M., Hirose, S., Tsushima, F., Tezuka, K., Akiba, H., Yagita, H., 
Okumura, K., Kohsaka, H., Miyasaka, N., and Azuma, M. (2003). 
Involvement of inducible costimulator-B7 homologous protein 
costimulatory pathway in murine lupus nephritis. J Immunol 171, 2848-
2854. 

Johnston, R.J., Poholek, A.C., DiToro, D., Yusuf, I., Eto, D., Barnett, B., Dent, 
A.L., Craft, J., and Crotty, S. (2009). Bcl6 and Blimp-1 are reciprocal and 
antagonistic regulators of T follicular helper cell differentiation. Science 
325, 1006-1010. 

Jones, L.S., Rizzo, L.V., Agarwal, R.K., Tarrant, T.K., Chan, C.C., Wiggert, B., 
and Caspi, R.R. (1997). IFN-gamma-deficient mice develop experimental 
autoimmune uveitis in the context of a deviant effector response. J 
Immunol 158, 5997-6005. 

Jutras, I., and Desjardins, M. (2005). Phagocytosis: at the crossroads of innate 
and adaptive immunity. Annu Rev Cell Dev Biol 21, 511-527. 

Kagami, S., Nakajima, H., Suto, A., Hirose, K., Suzuki, K., Morita, S., Kato, I., 
Saito, Y., Kitamura, T., and Iwamoto, I. (2001). Stat5a regulates T helper 
cell differentiation by several distinct mechanisms. Blood 97, 2358-2365. 



157 
 

Kaplan, M.H. (2005). STAT4: a critical regulator of inflammation in vivo. Immunol 
Res 31, 231-242. 

Kaplan, M.H., Schindler, U., Smiley, S.T., and Grusby, M.J. (1996a). Stat6 is 
required for mediating responses to IL-4 and for development of Th2 cells. 
Immunity 4, 313-319. 

Kaplan, M.H., Sun, Y.L., Hoey, T., and Grusby, M.J. (1996b). Impaired IL-12 
responses and enhanced development of Th2 cells in Stat4-deficient 
mice. Nature 382, 174-177. 

Khan, W.I., Richard, M., Akiho, H., Blennerhasset, P.A., Humphreys, N.E., 
Grencis, R.K., Van Snick, J., and Collins, S.M. (2003). Modulation of 
intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: 
correlation with worm expulsion in murine nematode infections. Infect 
Immun 71, 2430-2438. 

Kim, B.S., Kim, I.K., Park, Y.J., Kim, Y.S., Kim, Y.J., Chang, W.S., Lee, Y.S., 
Kweon, M.N., Chung, Y., and Kang, C.Y. (2010). Conversion of Th2 
memory cells into Foxp3+ regulatory T cells suppressing Th2-mediated 
allergic asthma. Proc Natl Acad Sci U S A 107, 8742-8747. 

Kim, J.I., Ho, I.C., Grusby, M.J., and Glimcher, L.H. (1999). The transcription 
factor c-Maf controls the production of interleukin-4 but not other Th2 
cytokines. Immunity 10, 745-751. 

Kimura, A., Naka, T., Nohara, K., Fujii-Kuriyama, Y., and Kishimoto, T. (2008). 
Aryl hydrocarbon receptor regulates Stat1 activation and participates in 
the development of Th17 cells. Proc Natl Acad Sci U S A 105, 9721-9726. 

King, C., Tangye, S.G., and Mackay, C.R. (2008). T follicular helper (TFH) cells 
in normal and dysregulated immune responses. Annu Rev Immunol 26, 
741-766. 

King, I.L., and Mohrs, M. (2009). IL-4-producing CD4+ T cells in reactive lymph 
nodes during helminth infection are T follicular helper cells. J Exp Med 
206, 1001-1007. 

Kishikawa, H., Sun, J., Choi, A., Miaw, S.C., and Ho, I.C. (2001). The cell type-
specific expression of the murine IL-13 gene is regulated by GATA-3. J 
Immunol 167, 4414-4420. 

Kishimoto, T. (2006). Interleukin-6: discovery of a pleiotropic cytokine. Arthritis 
Res Ther 8 Suppl 2, S2. 

Kitoh, A., Ono, M., Naoe, Y., Ohkura, N., Yamaguchi, T., Yaguchi, H., 
Kitabayashi, I., Tsukada, T., Nomura, T., Miyachi, Y., et al. (2009). 
Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-
suppressive function of FoxP3+ regulatory T cells. Immunity 31, 609-620. 

Kohu, K., Ohmori, H., Wong, W.F., Onda, D., Wakoh, T., Kon, S., Yamashita, M., 
Nakayama, T., Kubo, M., and Satake, M. (2009). The Runx3 transcription 
factor augments Th1 and down-modulates Th2 phenotypes by interacting 
with and attenuating GATA3. J Immunol 183, 7817-7824. 

Komiyama, Y., Nakae, S., Matsuki, T., Nambu, A., Ishigame, H., Kakuta, S., 
Sudo, K., and Iwakura, Y. (2006). IL-17 plays an important role in the 
development of experimental autoimmune encephalomyelitis. J Immunol 
177, 566-573. 



158 
 

Kopf, M., Le Gros, G., Bachmann, M., Lamers, M.C., Bluethmann, H., and 
Kohler, G. (1993). Disruption of the murine IL-4 gene blocks Th2 cytokine 
responses. Nature 362, 245-248. 

Korn, T., Bettelli, E., Gao, W., Awasthi, A., Jager, A., Strom, T.B., Oukka, M., and 
Kuchroo, V.K. (2007). IL-21 initiates an alternative pathway to induce 
proinflammatory T(H)17 cells. Nature 448, 484-487. 

Krenacs, L., Schaerli, P., Kis, G., and Bagdi, E. (2006). Phenotype of neoplastic 
cells in angioimmunoblastic T-cell lymphoma is consistent with activated 
follicular B helper T cells. Blood 108, 1110-1111. 

Kryczek, I., Wei, S., Vatan, L., Escara-Wilke, J., Szeliga, W., Keller, E.T., and 
Zou, W. (2007). Cutting edge: opposite effects of IL-1 and IL-2 on the 
regulation of IL-17+ T cell pool IL-1 subverts IL-2-mediated suppression. J 
Immunol 179, 1423-1426. 

Kuperman, D., Schofield, B., Wills-Karp, M., and Grusby, M.J. (1998). Signal 
transducer and activator of transcription factor 6 (Stat6)-deficient mice are 
protected from antigen-induced airway hyperresponsiveness and mucus 
production. J Exp Med 187, 939-948. 

Kusam, S., Toney, L.M., Sato, H., and Dent, A.L. (2003). Inhibition of Th2 
differentiation and GATA-3 expression by BCL-6. J Immunol 170, 2435-
2441. 

Langrish, C.L., Chen, Y., Blumenschein, W.M., Mattson, J., Basham, B., 
Sedgwick, J.D., McClanahan, T., Kastelein, R.A., and Cua, D.J. (2005). IL-
23 drives a pathogenic T cell population that induces autoimmune 
inflammation. J Exp Med 201, 233-240. 

Laurence, A., Tato, C.M., Davidson, T.S., Kanno, Y., Chen, Z., Yao, Z., Blank, 
R.B., Meylan, F., Siegel, R., Hennighausen, L., et al. (2007). Interleukin-2 
signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 
371-381. 

Le Gros, G., Ben-Sasson, S.Z., Seder, R., Finkelman, F.D., and Paul, W.E. 
(1990). Generation of interleukin 4 (IL-4)-producing cells in vivo and in 
vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing 
cells. J Exp Med 172, 921-929. 

Lee, D.U., and Rao, A. (2004). Molecular analysis of a locus control region in the 
T helper 2 cytokine gene cluster: a target for STAT6 but not GATA3. Proc 
Natl Acad Sci U S A 101, 16010-16015. 

Lee, E., Trepicchio, W.L., Oestreicher, J.L., Pittman, D., Wang, F., Chamian, F., 
Dhodapkar, M., and Krueger, J.G. (2004). Increased expression of 
interleukin 23 p19 and p40 in lesional skin of patients with psoriasis 
vulgaris. J Exp Med 199, 125-130. 

Lee, Y.K., Turner, H., Maynard, C.L., Oliver, J.R., Chen, D., Elson, C.O., and 
Weaver, C.T. (2009). Late developmental plasticity in the T helper 17 
lineage. Immunity 30, 92-107. 

Leonard, W.J., and O'Shea, J.J. (1998). Jaks and STATs: biological implications. 
Annu Rev Immunol 16, 293-322. 



159 
 

Lewkowich, I.P., Herman, N.S., Schleifer, K.W., Dance, M.P., Chen, B.L., 
Dienger, K.M., Sproles, A.A., Shah, J.S., Kohl, J., Belkaid, Y., and Wills-
Karp, M. (2005). CD4+CD25+ T cells protect against experimentally 
induced asthma and alter pulmonary dendritic cell phenotype and function. 
J Exp Med 202, 1549-1561. 

Lexberg, M.H., Taubner, A., Forster, A., Albrecht, I., Richter, A., Kamradt, T., 
Radbruch, A., and Chang, H.D. (2008). Th memory for interleukin-17 
expression is stable in vivo. Eur J Immunol 38, 2654-2664. 

Li, B., Tournier, C., Davis, R.J., and Flavell, R.A. (1999). Regulation of IL-4 
expression by the transcription factor JunB during T helper cell 
differentiation. Embo J 18, 420-432. 

Liang, S.C., Tan, X.Y., Luxenberg, D.P., Karim, R., Dunussi-Joannopoulos, K., 
Collins, M., and Fouser, L.A. (2006). Interleukin (IL)-22 and IL-17 are 
coexpressed by Th17 cells and cooperatively enhance expression of 
antimicrobial peptides. J Exp Med 203, 2271-2279. 

Liao, W., Schones, D.E., Oh, J., Cui, Y., Cui, K., Roh, T.Y., Zhao, K., and 
Leonard, W.J. (2008). Priming for T helper type 2 differentiation by 
interleukin 2-mediated induction of interleukin 4 receptor alpha-chain 
expression. Nat Immunol 9, 1288-1296. 

Lighvani, A.A., Frucht, D.M., Jankovic, D., Yamane, H., Aliberti, J., Hissong, B.D., 
Nguyen, B.V., Gadina, M., Sher, A., Paul, W.E., and O'Shea, J.J. (2001). 
T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid 
cells. Proc Natl Acad Sci U S A 98, 15137-15142. 

Liu, Z., Li, Z., Mao, K., Zou, J., Wang, Y., Tao, Z., Lin, G., Tian, L., Ji, Y., Wu, X., 
et al. (2009). Dec2 promotes Th2 cell differentiation by enhancing IL-2R 
signaling. J Immunol 183, 6320-6329. 

Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., 
Langer-Gould, A., Strober, S., Cannella, B., Allard, J., et al. (2002). Gene-
microarray analysis of multiple sclerosis lesions yields new targets 
validated in autoimmune encephalomyelitis. Nat Med 8, 500-508. 

Lodoen, M.B., and Lanier, L.L. (2005). Viral modulation of NK cell immunity. Nat 
Rev Microbiol 3, 59-69. 

Lohoff, M., Mittrucker, H.W., Prechtl, S., Bischof, S., Sommer, F., Kock, S., 
Ferrick, D.A., Duncan, G.S., Gessner, A., and Mak, T.W. (2002). 
Dysregulated T helper cell differentiation in the absence of interferon 
regulatory factor 4. Proc Natl Acad Sci U S A 99, 11808-11812. 

Longphre, M., Li, D., Gallup, M., Drori, E., Ordonez, C.L., Redman, T., Wenzel, 
S., Bice, D.E., Fahy, J.V., and Basbaum, C. (1999). Allergen-induced IL-9 
directly stimulates mucin transcription in respiratory epithelial cells. J Clin 
Invest 104, 1375-1382. 

Ma, C.S., Chew, G.Y., Simpson, N., Priyadarshi, A., Wong, M., Grimbacher, B., 
Fulcher, D.A., Tangye, S.G., and Cook, M.C. (2008). Deficiency of Th17 
cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med 205, 
1551-1557. 

Mackay, C.R. (2000). Follicular homing T helper (Th) cells and the Th1/Th2 
paradigm. J Exp Med 192, F31-34. 



160 
 

Malek, T.R., Yu, A., Vincek, V., Scibelli, P., and Kong, L. (2002). CD4 regulatory 
T cells prevent lethal autoimmunity in IL-2Rbeta-deficient mice. 
Implications for the nonredundant function of IL-2. Immunity 17, 167-178. 

Manetti, R., Parronchi, P., Giudizi, M.G., Piccinni, M.P., Maggi, E., Trinchieri, G., 
and Romagnani, S. (1993). Natural killer cell stimulatory factor (interleukin 
12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and 
inhibits the development of IL-4-producing Th cells. J Exp Med 177, 1199-
1204. 

Mangan, P.R., Harrington, L.E., O'Quinn, D.B., Helms, W.S., Bullard, D.C., 
Elson, C.O., Hatton, R.D., Wahl, S.M., Schoeb, T.R., and Weaver, C.T. 
(2006). Transforming growth factor-beta induces development of the 
T(H)17 lineage. Nature 441, 231-234. 

Marson, A., Kretschmer, K., Frampton, G.M., Jacobsen, E.S., Polansky, J.K., 
MacIsaac, K.D., Levine, S.S., Fraenkel, E., von Boehmer, H., and Young, 
R.A. (2007). Foxp3 occupancy and regulation of key target genes during 
T-cell stimulation. Nature 445, 931-935. 

Martin-Orozco, N., Chung, Y., Chang, S.H., Wang, Y.H., and Dong, C. (2009). 
Th17 cells promote pancreatic inflammation but only induce diabetes 
efficiently in lymphopenic hosts after conversion into Th1 cells. Eur J 
Immunol 39, 216-224. 

Martins, G.A., Hutchins, A.S., and Reiner, S.L. (2005). Transcriptional activators 
of helper T cell fate are required for establishment but not maintenance of 
signature cytokine expression. J Immunol 175, 5981-5985. 

Mathur, A.N., Chang, H.C., Zisoulis, D.G., Kapur, R., Belladonna, M.L., Kansas, 
G.S., and Kaplan, M.H. (2006). T-bet is a critical determinant in the 
instability of the IL-17-secreting T-helper phenotype. Blood 108, 1595-
1601. 

Mathur, A.N., Chang, H.C., Zisoulis, D.G., Stritesky, G.L., Yu, Q., O'Malley J, T., 
Kapur, R., Levy, D.E., Kansas, G.S., and Kaplan, M.H. (2007). Stat3 and 
Stat4 Direct Development of IL-17-Secreting Th Cells. J Immunol 178, 
4901-4907. 

Matsuyama, T., Grossman, A., Mittrucker, H.W., Siderovski, D.P., Kiefer, F., 
Kawakami, T., Richardson, C.D., Taniguchi, T., Yoshinaga, S.K., and Mak, 
T.W. (1995). Molecular cloning of LSIRF, a lymphoid-specific member of 
the interferon regulatory factor family that binds the interferon-stimulated 
response element (ISRE). Nucleic Acids Res 23, 2127-2136. 

Matusevicius, D., Kivisakk, P., He, B., Kostulas, N., Ozenci, V., Fredrikson, S., 
and Link, H. (1999). Interleukin-17 mRNA expression in blood and CSF 
mononuclear cells is augmented in multiple sclerosis. Mult Scler 5, 101-
104. 

McGeachy, M.J., Bak-Jensen, K.S., Chen, Y., Tato, C.M., Blumenschein, W., 
McClanahan, T., and Cua, D.J. (2007). TGF-beta and IL-6 drive the 
production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated 
pathology. Nat Immunol 8, 1390-1397. 



161 
 

McLane, M.P., Haczku, A., van de Rijn, M., Weiss, C., Ferrante, V., MacDonald, 
D., Renauld, J.C., Nicolaides, N.C., Holroyd, K.J., and Levitt, R.C. (1998). 
Interleukin-9 promotes allergen-induced eosinophilic inflammation and 
airway hyperresponsiveness in transgenic mice. Am J Respir Cell Mol Biol 
19, 713-720. 

McMillan, S.J., Bishop, B., Townsend, M.J., McKenzie, A.N., and Lloyd, C.M. 
(2002). The absence of interleukin 9 does not affect the development of 
allergen-induced pulmonary inflammation nor airway hyperreactivity. J Exp 
Med 195, 51-57. 

Meraz, M.A., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., 
Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., et al. (1996). 
Targeted disruption of the Stat1 gene in mice reveals unexpected 
physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431-
442. 

Merrill, J.E., Kono, D.H., Clayton, J., Ando, D.G., Hinton, D.R., and Hofman, F.M. 
(1992). Inflammatory leukocytes and cytokines in the peptide-induced 
disease of experimental allergic encephalomyelitis in SJL and B10.PL 
mice. Proc Natl Acad Sci U S A 89, 574-578. 

Milner, J.D., Brenchley, J.M., Laurence, A., Freeman, A.F., Hill, B.J., Elias, K.M., 
Kanno, Y., Spalding, C., Elloumi, H.Z., Paulson, M.L., et al. (2008). 
Impaired T(H)17 cell differentiation in subjects with autosomal dominant 
hyper-IgE syndrome. Nature 452, 773-776. 

Minegishi, Y., Saito, M., Tsuchiya, S., Tsuge, I., Takada, H., Hara, T., Kawamura, 
N., Ariga, T., Pasic, S., Stojkovic, O., et al. (2007). Dominant-negative 
mutations in the DNA-binding domain of STAT3 cause hyper-IgE 
syndrome. Nature 448, 1058-1062. 

Mitsuyasu, H., Izuhara, K., Mao, X.Q., Gao, P.S., Arinobu, Y., Enomoto, T., 
Kawai, M., Sasaki, S., Dake, Y., Hamasaki, N., et al. (1998). Ile50Val 
variant of IL4R alpha upregulates IgE synthesis and associates with atopic 
asthma. Nat Genet 19, 119-120. 

Mitsuyasu, H., Yanagihara, Y., Mao, X.Q., Gao, P.S., Arinobu, Y., Ihara, K., 
Takabayashi, A., Hara, T., Enomoto, T., Sasaki, S., et al. (1999). Cutting 
edge: dominant effect of Ile50Val variant of the human IL-4 receptor 
alpha-chain in IgE synthesis. J Immunol 162, 1227-1231. 

Mo, C., Chearwae, W., O'Malley, J.T., Adams, S.M., Kanakasabai, S., Walline, 
C.C., Stritesky, G.L., Good, S.R., Perumal, N.B., Kaplan, M.H., and Bright, 
J.J. (2008). Stat4 isoforms differentially regulate inflammation and 
demyelination in experimental allergic encephalomyelitis. J Immunol 181, 
5681-5690. 

Mondal, A., Sawant, D., and Dent, A.L. (2010). Transcriptional repressor BCL6 
controls Th17 responses by controlling gene expression in both T cells 
and macrophages. J Immunol 184, 4123-4132. 

Morel, J., and Berenbaum, F. (2004). Signal transduction pathways: new targets 
for treating rheumatoid arthritis. Joint Bone Spine 71, 503-510. 



162 
 

Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A., and Coffman, R.L. 
(1986). Two types of murine helper T cell clone. I. Definition according to 
profiles of lymphokine activities and secreted proteins. J Immunol 136, 
2348-2357. 

Mucida, D., Park, Y., Kim, G., Turovskaya, O., Scott, I., Kronenberg, M., and 
Cheroutre, H. (2007). Reciprocal TH17 and regulatory T cell differentiation 
mediated by retinoic acid. Science 317, 256-260. 

Mukasa, R., Balasubramani, A., Lee, Y.K., Whitley, S.K., Weaver, B.T., Shibata, 
Y., Crawford, G.E., Hatton, R.D., and Weaver, C.T. (2010). Epigenetic 
instability of cytokine and transcription factor gene loci underlies plasticity 
of the T helper 17 cell lineage. Immunity 32, 616-627. 

Mullen, A.C., High, F.A., Hutchins, A.S., Lee, H.W., Villarino, A.V., Livingston, 
D.M., Kung, A.L., Cereb, N., Yao, T.P., Yang, S.Y., and Reiner, S.L. 
(2001). Role of T-bet in commitment of TH1 cells before IL-12-dependent 
selection. Science 292, 1907-1910. 

Mullen, A.C., Hutchins, A.S., High, F.A., Lee, H.W., Sykes, K.J., Chodosh, L.A., 
and Reiner, S.L. (2002). Hlx is induced by and genetically interacts with T-
bet to promote heritable T(H)1 gene induction. Nat Immunol 3, 652-658. 

Muranski, P., Boni, A., Antony, P.A., Cassard, L., Irvine, K.R., Kaiser, A., Paulos, 
C.M., Palmer, D.C., Touloukian, C.E., Ptak, K., et al. (2008). Tumor-
specific Th17-polarized cells eradicate large established melanoma. Blood 
112, 362-373. 

Murphy, C.A., Langrish, C.L., Chen, Y., Blumenschein, W., McClanahan, T., 
Kastelein, R.A., Sedgwick, J.D., and Cua, D.J. (2003). Divergent pro- and 
antiinflammatory roles for IL-23 and IL-12 in joint autoimmune 
inflammation. J Exp Med 198, 1951-1957. 

Murphy, E., Shibuya, K., Hosken, N., Openshaw, P., Maino, V., Davis, K., 
Murphy, K., and O'Garra, A. (1996). Reversibility of T helper 1 and 2 
populations is lost after long-term stimulation. J Exp Med 183, 901-913. 

Murphy, K.M., and Reiner, S.L. (2002). The lineage decisions of helper T cells. 
Nat Rev Immunol 2, 933-944. 

Nakae, S., Nambu, A., Sudo, K., and Iwakura, Y. (2003a). Suppression of 
immune induction of collagen-induced arthritis in IL-17-deficient mice. J 
Immunol 171, 6173-6177. 

Nakae, S., Saijo, S., Horai, R., Sudo, K., Mori, S., and Iwakura, Y. (2003b). IL-17 
production from activated T cells is required for the spontaneous 
development of destructive arthritis in mice deficient in IL-1 receptor 
antagonist. Proc Natl Acad Sci U S A 100, 5986-5990. 

Nakamura, Y., and Hoshino, M. (2005). TH2 cytokines and associated 
transcription factors as therapeutic targets in asthma. Curr Drug Targets 
Inflamm Allergy 4, 267-270. 

Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nat 
Rev Immunol 6, 173-182. 

Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J., and Paul, W.E. (1999). The 
IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev 
Immunol 17, 701-738. 



163 
 

Nurieva, R., Yang, X.O., Martinez, G., Zhang, Y., Panopoulos, A.D., Ma, L., 
Schluns, K., Tian, Q., Watowich, S.S., Jetten, A.M., and Dong, C. (2007). 
Essential autocrine regulation by IL-21 in the generation of inflammatory T 
cells. Nature 448, 480-483. 

Nurieva, R.I., Chung, Y., Hwang, D., Yang, X.O., Kang, H.S., Ma, L., Wang, Y.H., 
Watowich, S.S., Jetten, A.M., Tian, Q., and Dong, C. (2008). Generation 
of T follicular helper cells is mediated by interleukin-21 but independent of 
T helper 1, 2, or 17 cell lineages. Immunity 29, 138-149. 

Nurieva, R.I., Chung, Y., Martinez, G.J., Yang, X.O., Tanaka, S., Matskevitch, 
T.D., Wang, Y.H., and Dong, C. (2009). Bcl6 mediates the development of 
T follicular helper cells. Science 325, 1001-1005. 

O'Malley, J.T., Sehra, S., Thieu, V.T., Yu, Q., Chang, H.C., Stritesky, G.L., 
Nguyen, E.T., Mathur, A.N., Levy, D.E., and Kaplan, M.H. (2009). Signal 
transducer and activator of transcription 4 limits the development of 
adaptive regulatory T cells. Immunology 127, 587-595. 

O'Shea, J.J., Visconti, R., Cheng, T.P., and Gadina, M. (2000). Jaks and stats as 
therapeutic targets. Ann Rheum Dis 59 Suppl 1, i115-118. 

Okamoto, K., Iwai, Y., Oh-Hora, M., Yamamoto, M., Morio, T., Aoki, K., Ohya, K., 
Jetten, A.M., Akira, S., Muta, T., and Takayanagi, H. IkappaBzeta 
regulates T(H)17 development by cooperating with ROR nuclear 
receptors. Nature 464, 1381-1385. 

Ono, M., Yaguchi, H., Ohkura, N., Kitabayashi, I., Nagamura, Y., Nomura, T., 
Miyachi, Y., Tsukada, T., and Sakaguchi, S. (2007). Foxp3 controls 
regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 
685-689. 

Ono, S.J. (2000). Molecular genetics of allergic diseases. Annu Rev Immunol 18, 
347-366. 

Oppmann, B., Lesley, R., Blom, B., Timans, J.C., Xu, Y., Hunte, B., Vega, F., Yu, 
N., Wang, J., Singh, K., et al. (2000). Novel p19 protein engages IL-12p40 
to form a cytokine, IL-23, with biological activities similar as well as distinct 
from IL-12. Immunity 13, 715-725. 

Orchansky, P.L., Kwan, R., Lee, F., and Schrader, J.W. (1999). Characterization 
of the cytoplasmic domain of interleukin-13 receptor-alpha. J Biol Chem 
274, 20818-20825. 

Osorio, F., LeibundGut-Landmann, S., Lochner, M., Lahl, K., Sparwasser, T., 
Eberl, G., and Reis e Sousa, C. (2008). DC activated via dectin-1 convert 
Treg into IL-17 producers. Eur J Immunol 38, 3274-3281. 

Ouyang, W., Jacobson, N.G., Bhattacharya, D., Gorham, J.D., Fenoglio, D., Sha, 
W.C., Murphy, T.L., and Murphy, K.M. (1999). The Ets transcription factor 
ERM is Th1-specific and induced by IL-12 through a Stat4-dependent 
pathway. Proc Natl Acad Sci U S A 96, 3888-3893. 

Ouyang, W., Lohning, M., Gao, Z., Assenmacher, M., Ranganath, S., Radbruch, 
A., and Murphy, K.M. (2000). Stat6-independent GATA-3 autoactivation 
directs IL-4-independent Th2 development and commitment. Immunity 12, 
27-37. 



164 
 

Ouyang, W., Ranganath, S.H., Weindel, K., Bhattacharya, D., Murphy, T.L., Sha, 
W.C., and Murphy, K.M. (1998). Inhibition of Th1 development mediated 
by GATA-3 through an IL-4-independent mechanism. Immunity 9, 745-
755. 

Ozaki, K., Spolski, R., Ettinger, R., Kim, H.P., Wang, G., Qi, C.F., Hwu, P., 
Shaffer, D.J., Akilesh, S., Roopenian, D.C., et al. (2004). Regulation of B 
cell differentiation and plasma cell generation by IL-21, a novel inducer of 
Blimp-1 and Bcl-6. J Immunol 173, 5361-5371. 

Pai, S.Y., Truitt, M.L., and Ho, I.C. (2004). GATA-3 deficiency abrogates the 
development and maintenance of T helper type 2 cells. Proc Natl Acad Sci 
U S A 101, 1993-1998. 

Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F., and Penit, C. (1998). 
Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to 
clonal deletion and IL-2 dependency. Int Immunol 10, 371-378. 

Parham, C., Chirica, M., Timans, J., Vaisberg, E., Travis, M., Cheung, J., Pflanz, 
S., Zhang, R., Singh, K.P., Vega, F., et al. (2002). A receptor for the 
heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel 
cytokine receptor subunit, IL-23R. J Immunol 168, 5699-5708. 

Park, H., Li, Z., Yang, X.O., Chang, S.H., Nurieva, R., Wang, Y.H., Wang, Y., 
Hood, L., Zhu, Z., Tian, Q., and Dong, C. (2005). A distinct lineage of CD4 
T cells regulates tissue inflammation by producing interleukin 17. Nat 
Immunol 6, 1133-1141. 

Patel, D.D. (2001). Escape from tolerance in the human X-linked autoimmunity-
allergic disregulation syndrome and the Scurfy mouse. J Clin Invest 107, 
155-157. 

Paul, B., Mishra, V., Chaudhury, B., Awasthi, A., Das, A.B., Saxena, U., Saxena, 
A., Chauhan, L.K., Kumar, P., and Raisuddin, S. (2009). Status of Stat3 in 
an ovalbumin-induced mouse model of asthma: analysis of the role of 
Socs3 and IL-6. Int Arch Allergy Immunol 148, 99-108. 

Paul, W.E., and Zhu, J. (2010). How are T(H)2-type immune responses initiated 
and amplified? Nat Rev Immunol 10, 225-235. 

Pettinelli, C.B., and McFarlin, D.E. (1981). Adoptive transfer of experimental 
allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph 
node cells by myelin basic protein: requirement for Lyt 1+ 2- T 
lymphocytes. J Immunol 127, 1420-1423. 

Poholek, A.C., Hansen, K., Hernandez, S.G., Eto, D., Chandele, A., Weinstein, 
J.S., Dong, X., Odegard, J.M., Kaech, S.M., Dent, A.L., et al. (2010). In 
vivo regulation of Bcl6 and T follicular helper cell development. J Immunol 
185, 313-326. 

Pugh-Bernard, A.E., Silverman, G.J., Cappione, A.J., Villano, M.E., Ryan, D.H., 
Insel, R.A., and Sanz, I. (2001). Regulation of inherently autoreactive 
VH4-34 B cells in the maintenance of human B cell tolerance. J Clin Invest 
108, 1061-1070. 



165 
 

Pykalainen, M., Kinos, R., Valkonen, S., Rydman, P., Kilpelainen, M., Laitinen, 
L.A., Karjalainen, J., Nieminen, M., Hurme, M., Kere, J., et al. (2005). 
Association analysis of common variants of STAT6, GATA3, and STAT4 
to asthma and high serum IgE phenotypes. J Allergy Clin Immunol 115, 
80-87. 

Quintana, F.J., Basso, A.S., Iglesias, A.H., Korn, T., Farez, M.F., Bettelli, E., 
Caccamo, M., Oukka, M., and Weiner, H.L. (2008). Control of T(reg) and 
T(H)17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 
65-71. 

Raby, B.A., Hwang, E.S., Van Steen, K., Tantisira, K., Peng, S., Litonjua, A., 
Lazarus, R., Giallourakis, C., Rioux, J.D., Sparrow, D., et al. (2006). T-bet 
polymorphisms are associated with asthma and airway 
hyperresponsiveness. Am J Respir Crit Care Med 173, 64-70. 

Radhakrishnan, S., Cabrera, R., Schenk, E.L., Nava-Parada, P., Bell, M.P., Van 
Keulen, V.P., Marler, R.J., Felts, S.J., and Pease, L.R. (2008). 
Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific 
autoimmune effectors in vitro and in vivo. J Immunol 181, 3137-3147. 

Raulet, D.H., and Guerra, N. (2009). Oncogenic stress sensed by the immune 
system: role of natural killer cell receptors. Nat Rev Immunol 9, 568-580. 

Raz, R., Lee, C.K., Cannizzaro, L.A., d'Eustachio, P., and Levy, D.E. (1999). 
Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl 
Acad Sci U S A 96, 2846-2851. 

Ree, H.J., Kadin, M.E., Kikuchi, M., Ko, Y.H., Suzumiya, J., and Go, J.H. (1999). 
Bcl-6 expression in reactive follicular hyperplasia, follicular lymphoma, and 
angioimmunoblastic T-cell lymphoma with hyperplastic germinal centers: 
heterogeneity of intrafollicular T-cells and their altered distribution in the 
pathogenesis of angioimmunoblastic T-cell lymphoma. Hum Pathol 30, 
403-411. 

Reinhardt, R.L., Liang, H.E., and Locksley, R.M. (2009). Cytokine-secreting 
follicular T cells shape the antibody repertoire. Nat Immunol 10, 385-393. 

Renauld, J.C., Vink, A., Louahed, J., and Van Snick, J. (1995). Interleukin-9 is a 
major anti-apoptotic factor for thymic lymphomas. Blood 85, 1300-1305. 

Rengarajan, J., Mowen, K.A., McBride, K.D., Smith, E.D., Singh, H., and 
Glimcher, L.H. (2002). Interferon regulatory factor 4 (IRF4) interacts with 
NFATc2 to modulate interleukin 4 gene expression. J Exp Med 195, 1003-
1012. 

Robertson, M.J., Chang, H.C., Pelloso, D., and Kaplan, M.H. (2005). Impaired 
interferon-gamma production as a consequence of STAT4 deficiency after 
autologous hematopoietic stem cell transplantation for lymphoma. Blood 
106, 963-970. 

Rocken, M., Racke, M., and Shevach, E.M. (1996). IL-4-induced immune 
deviation as antigen-specific therapy for inflammatory autoimmune 
disease. Immunol Today 17, 225-231. 



166 
 

Rudra, D., Egawa, T., Chong, M.M., Treuting, P., Littman, D.R., and Rudensky, 
A.Y. (2009). Runx-CBFbeta complexes control expression of the 
transcription factor Foxp3 in regulatory T cells. Nat Immunol 10, 1170-
1177. 

Sakaguchi, S., Yamaguchi, T., Nomura, T., and Ono, M. (2008). Regulatory T 
cells and immune tolerance. Cell 133, 775-787. 

Saoudi, A., Kuhn, J., Huygen, K., de Kozak, Y., Velu, T., Goldman, M., Druet, P., 
and Bellon, B. (1993). TH2 activated cells prevent experimental 
autoimmune uveoretinitis, a TH1-dependent autoimmune disease. Eur J 
Immunol 23, 3096-3103. 

Schaerli, P., Willimann, K., Lang, A.B., Lipp, M., Loetscher, P., and Moser, B. 
(2000). CXC chemokine receptor 5 expression defines follicular homing T 
cells with B cell helper function. J Exp Med 192, 1553-1562. 

Schmidt, C., Giese, T., Ludwig, B., Mueller-Molaian, I., Marth, T., Zeuzem, S., 
Meuer, S.C., and Stallmach, A. (2005). Expression of interleukin-12-
related cytokine transcripts in inflammatory bowel disease: elevated 
interleukin-23p19 and interleukin-27p28 in Crohn's disease but not in 
ulcerative colitis. Inflamm Bowel Dis 11, 16-23. 

Schnyder-Candrian, S., Togbe, D., Couillin, I., Mercier, I., Brombacher, F., 
Quesniaux, V., Fossiez, F., Ryffel, B., and Schnyder, B. (2006). 
Interleukin-17 is a negative regulator of established allergic asthma. J Exp 
Med 203, 2715-2725. 

Schraml, B.U., Hildner, K., Ise, W., Lee, W.L., Smith, W.A., Solomon, B., Sahota, 
G., Sim, J., Mukasa, R., Cemerski, S., et al. (2009). The AP-1 transcription 
factor Batf controls T(H)17 differentiation. Nature 460, 405-409. 

Sehra, S., Bruns, H.A., Ahyi, A.N., Nguyen, E.T., Schmidt, N.W., Michels, E.G., 
von Bulow, G.U., and Kaplan, M.H. (2008). IL-4 is a critical determinant in 
the generation of allergic inflammation initiated by a constitutively active 
Stat6. J Immunol 180, 3551-3559. 

Sehra, S., Yao, Y., Howell, M.D., Nguyen, E.T., Kansas, G.S., Leung, D.Y., 
Travers, J.B., and Kaplan, M.H. (2010). IL-4 regulates skin homeostasis 
and the predisposition toward allergic skin inflammation. J Immunol 184, 
3186-3190. 

Sherman, M.A., Powell, D.R., and Brown, M.A. (2002). IL-4 induces the 
proteolytic processing of mast cell STAT6. J Immunol 169, 3811-3818. 

Shimbara, A., Christodoulopoulos, P., Soussi-Gounni, A., Olivenstein, R., 
Nakamura, Y., Levitt, R.C., Nicolaides, N.C., Holroyd, K.J., Tsicopoulos, 
A., Lafitte, J.J., et al. (2000). IL-9 and its receptor in allergic and 
nonallergic lung disease: increased expression in asthma. J Allergy Clin 
Immunol 105, 108-115. 

Shimoda, K., van Deursen, J., Sangster, M.Y., Sarawar, S.R., Carson, R.T., 
Tripp, R.A., Chu, C., Quelle, F.W., Nosaka, T., Vignali, D.A., et al. (1996). 
Lack of IL-4-induced Th2 response and IgE class switching in mice with 
disrupted Stat6 gene. Nature 380, 630-633. 



167 
 

Siegel, M.D., Zhang, D.H., Ray, P., and Ray, A. (1995). Activation of the 
interleukin-5 promoter by cAMP in murine EL-4 cells requires the GATA-3 
and CLE0 elements. J Biol Chem 270, 24548-24555. 

Simeone-Penney, M.C., Severgnini, M., Tu, P., Homer, R.J., Mariani, T.J., Cohn, 
L., and Simon, A.R. (2007). Airway epithelial STAT3 is required for allergic 
inflammation in a murine model of asthma. J Immunol 178, 6191-6199. 

Skapenko, A., Leipe, J., Niesner, U., Devriendt, K., Beetz, R., Radbruch, A., 
Kalden, J.R., Lipsky, P.E., and Schulze-Koops, H. (2004). GATA-3 in 
human T cell helper type 2 development. J Exp Med 199, 423-428. 

So, T., Song, J., Sugie, K., Altman, A., and Croft, M. (2006). Signals from OX40 
regulate nuclear factor of activated T cells c1 and T cell helper 2 lineage 
commitment. Proc Natl Acad Sci U S A 103, 3740-3745. 

Stallmach, A., Giese, T., Schmidt, C., Ludwig, B., Mueller-Molaian, I., and Meuer, 
S.C. (2004). Cytokine/chemokine transcript profiles reflect mucosal 
inflammation in Crohn's disease. Int J Colorectal Dis 19, 308-315. 

Stritesky, G.L., Yeh, N., and Kaplan, M.H. (2008). IL-23 promotes maintenance 
but not commitment to the Th17 lineage. J Immunol 181, 5948-5955. 

Stumhofer, J.S., Laurence, A., Wilson, E.H., Huang, E., Tato, C.M., Johnson, 
L.M., Villarino, A.V., Huang, Q., Yoshimura, A., Sehy, D., et al. (2006). 
Interleukin 27 negatively regulates the development of interleukin 17-
producing T helper cells during chronic inflammation of the central 
nervous system. Nat Immunol 7, 937-945. 

Subramanian, S., Tus, K., Li, Q.Z., Wang, A., Tian, X.H., Zhou, J., Liang, C., 
Bartov, G., McDaniel, L.D., Zhou, X.J., et al. (2006). A Tlr7 translocation 
accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci U 
S A 103, 9970-9975. 

Sun, C.M., Hall, J.A., Blank, R.B., Bouladoux, N., Oukka, M., Mora, J.R., and 
Belkaid, Y. (2007). Small intestine lamina propria dendritic cells promote 
de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 204, 
1775-1785. 

Suto, A., Kashiwakuma, D., Kagami, S., Hirose, K., Watanabe, N., Yokote, K., 
Saito, Y., Nakayama, T., Grusby, M.J., Iwamoto, I., and Nakajima, H. 
(2008). Development and characterization of IL-21-producing CD4+ T 
cells. J Exp Med 205, 1369-1379. 

Sutton, C., Brereton, C., Keogh, B., Mills, K.H., and Lavelle, E.C. (2006). A 
crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells 
that mediate autoimmune encephalomyelitis. J Exp Med 203, 1685-1691. 

Suzuki, Y., Orellana, M.A., Schreiber, R.D., and Remington, J.S. (1988). 
Interferon-gamma: the major mediator of resistance against Toxoplasma 
gondii. Science 240, 516-518. 

Swain, S.L., Weinberg, A.D., English, M., and Huston, G. (1990). IL-4 directs the 
development of Th2-like helper effectors. J Immunol 145, 3796-3806. 

Szabo, S.J., Dighe, A.S., Gubler, U., and Murphy, K.M. (1997). Regulation of the 
interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 
(Th1) and Th2 cells. J Exp Med 185, 817-824. 



168 
 

Szabo, S.J., Jacobson, N.G., Dighe, A.S., Gubler, U., and Murphy, K.M. (1995). 
Developmental commitment to the Th2 lineage by extinction of IL-12 
signaling. Immunity 2, 665-675. 

Szabo, S.J., Kim, S.T., Costa, G.L., Zhang, X., Fathman, C.G., and Glimcher, 
L.H. (2000). A novel transcription factor, T-bet, directs Th1 lineage 
commitment. Cell 100, 655-669. 

Szabo, S.J., Sullivan, B.M., Stemmann, C., Satoskar, A.R., Sleckman, B.P., and 
Glimcher, L.H. (2002). Distinct effects of T-bet in TH1 lineage commitment 
and IFN-gamma production in CD4 and CD8 T cells. Science 295, 338-
342. 

Tafuri, A., Shahinian, A., Bladt, F., Yoshinaga, S.K., Jordana, M., Wakeham, A., 
Boucher, L.M., Bouchard, D., Chan, V.S., Duncan, G., et al. (2001). ICOS 
is essential for effective T-helper-cell responses. Nature 409, 105-109. 

Takatori, H., Nakajima, H., Hirose, K., Kagami, S., Tamachi, T., Suto, A., Suzuki, 
K., Saito, Y., and Iwamoto, I. (2005a). Indispensable role of Stat5a in 
Stat6-independent Th2 cell differentiation and allergic airway 
inflammation. J Immunol 174, 3734-3740. 

Takatori, H., Nakajima, H., Kagami, S., Hirose, K., Suto, A., Suzuki, K., Kubo, M., 
Yoshimura, A., Saito, Y., and Iwamoto, I. (2005b). Stat5a inhibits IL-12-
induced Th1 cell differentiation through the induction of suppressor of 
cytokine signaling 3 expression. J Immunol 174, 4105-4112. 

Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev 
Immunol 21, 335-376. 

Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T., and Akira, S. 
(1998). Stat3 activation is responsible for IL-6-dependent T cell 
proliferation through preventing apoptosis: generation and characterization 
of T cell-specific Stat3-deficient mice. J Immunol 161, 4652-4660. 

Takeda, K., Kishimoto, T., and Akira, S. (1997). STAT6: its role in interleukin 4-
mediated biological functions. J Mol Med 75, 317-326. 

Takeda, K., Tanaka, T., Shi, W., Matsumoto, M., Minami, M., Kashiwamura, S., 
Nakanishi, K., Yoshida, N., Kishimoto, T., and Akira, S. (1996). Essential 
role of Stat6 in IL-4 signalling. Nature 380, 627-630. 

Tarleton, R.L., Grusby, M.J., and Zhang, L. (2000). Increased susceptibility of 
Stat4-deficient and enhanced resistance in Stat6-deficient mice to 
infection with Trypanosoma cruzi. J Immunol 165, 1520-1525. 

Tarrant, T.K., Silver, P.B., Chan, C.C., Wiggert, B., and Caspi, R.R. (1998). 
Endogenous IL-12 is required for induction and expression of 
experimental autoimmune uveitis. J Immunol 161, 122-127. 

Temann, U.A., Geba, G.P., Rankin, J.A., and Flavell, R.A. (1998). Expression of 
interleukin 9 in the lungs of transgenic mice causes airway inflammation, 
mast cell hyperplasia, and bronchial hyperresponsiveness. J Exp Med 
188, 1307-1320. 

Temann, U.A., Ray, P., and Flavell, R.A. (2002). Pulmonary overexpression of 
IL-9 induces Th2 cytokine expression, leading to immune pathology. J Clin 
Invest 109, 29-39. 



169 
 

Tepper, R.I., Levinson, D.A., Stanger, B.Z., Campos-Torres, J., Abbas, A.K., and 
Leder, P. (1990). IL-4 induces allergic-like inflammatory disease and alters 
T cell development in transgenic mice. Cell 62, 457-467. 

Teunissen, M.B., Koomen, C.W., de Waal Malefyt, R., Wierenga, E.A., and Bos, 
J.D. (1998). Interleukin-17 and interferon-gamma synergize in the 
enhancement of proinflammatory cytokine production by human 
keratinocytes. J Invest Dermatol 111, 645-649. 

Thierfelder, W.E., van Deursen, J.M., Yamamoto, K., Tripp, R.A., Sarawar, S.R., 
Carson, R.T., Sangster, M.Y., Vignali, D.A., Doherty, P.C., Grosveld, G.C., 
and Ihle, J.N. (1996). Requirement for Stat4 in interleukin-12-mediated 
responses of natural killer and T cells. Nature 382, 171-174. 

Thieu, V.T., Yu, Q., Chang, H.C., Yeh, N., Nguyen, E.T., Sehra, S., and Kaplan, 
M.H. (2008). Signal transducer and activator of transcription 4 is required 
for the transcription factor T-bet to promote T helper 1 cell-fate 
determination. Immunity 29, 679-690. 

Thompson, A.J., and Locarnini, S.A. (2007). Toll-like receptors, RIG-I-like RNA 
helicases and the antiviral innate immune response. Immunol Cell Biol 85, 
435-445. 

Thornton, A.M., and Shevach, E.M. (1998). CD4+CD25+ immunoregulatory T 
cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 
production. J Exp Med 188, 287-296. 

Tone, Y., Furuuchi, K., Kojima, Y., Tykocinski, M.L., Greene, M.I., and Tone, M. 
(2008). Smad3 and NFAT cooperate to induce Foxp3 expression through 
its enhancer. Nat Immunol 9, 194-202. 

Tsuji, M., Komatsu, N., Kawamoto, S., Suzuki, K., Kanagawa, O., Honjo, T., Hori, 
S., and Fagarasan, S. (2009). Preferential generation of follicular B helper 
T cells from Foxp3+ T cells in gut Peyer's patches. Science 323, 1488-
1492. 

Umeshita-Suyama, R., Sugimoto, R., Akaiwa, M., Arima, K., Yu, B., Wada, M., 
Kuwano, M., Nakajima, K., Hamasaki, N., and Izuhara, K. (2000). 
Characterization of IL-4 and IL-13 signals dependent on the human IL-13 
receptor alpha chain 1: redundancy of requirement of tyrosine residue for 
STAT3 activation. Int Immunol 12, 1499-1509. 

Urban, J.F., Jr., Noben-Trauth, N., Donaldson, D.D., Madden, K.B., Morris, S.C., 
Collins, M., and Finkelman, F.D. (1998). IL-13, IL-4Ralpha, and Stat6 are 
required for the expulsion of the gastrointestinal nematode parasite 
Nippostrongylus brasiliensis. Immunity 8, 255-264. 

Uyttenhove, C., Simpson, R.J., and Van Snick, J. (1988). Functional and 
structural characterization of P40, a mouse glycoprotein with T-cell growth 
factor activity. Proc Natl Acad Sci U S A 85, 6934-6938. 

Van Esch, H., Groenen, P., Nesbit, M.A., Schuffenhauer, S., Lichtner, P., 
Vanderlinden, G., Harding, B., Beetz, R., Bilous, R.W., Holdaway, I., et al. 
(2000). GATA3 haplo-insufficiency causes human HDR syndrome. Nature 
406, 419-422. 



170 
 

van Rijt, L.S., Kuipers, H., Vos, N., Hijdra, D., Hoogsteden, H.C., and Lambrecht, 
B.N. (2004). A rapid flow cytometric method for determining the cellular 
composition of bronchoalveolar lavage fluid cells in mouse models of 
asthma. J Immunol Methods 288, 111-121. 

Van Snick, J., Goethals, A., Renauld, J.C., Van Roost, E., Uyttenhove, C., 
Rubira, M.R., Moritz, R.L., and Simpson, R.J. (1989). Cloning and 
characterization of a cDNA for a new mouse T cell growth factor (P40). J 
Exp Med 169, 363-368. 

Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A., and Stockinger, B. (2009). 
Natural agonists for aryl hydrocarbon receptor in culture medium are 
essential for optimal differentiation of Th17 T cells. J Exp Med 206, 43-49. 

Veldhoen, M., Hirota, K., Westendorf, A.M., Buer, J., Dumoutier, L., Renauld, 
J.C., and Stockinger, B. (2008a). The aryl hydrocarbon receptor links 
TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 
106-109. 

Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M., and Stockinger, B. 
(2006a). TGFbeta in the context of an inflammatory cytokine milieu 
supports de novo differentiation of IL-17-producing T cells. Immunity 24, 
179-189. 

Veldhoen, M., Hocking, R.J., Flavell, R.A., and Stockinger, B. (2006b). Signals 
mediated by transforming growth factor-beta initiate autoimmune 
encephalomyelitis, but chronic inflammation is needed to sustain disease. 
Nat Immunol 7, 1151-1156. 

Veldhoen, M., Uyttenhove, C., van Snick, J., Helmby, H., Westendorf, A., Buer, 
J., Martin, B., Wilhelm, C., and Stockinger, B. (2008b). Transforming 
growth factor-beta 'reprograms' the differentiation of T helper 2 cells and 
promotes an interleukin 9-producing subset. Nat Immunol 9, 1341-1346. 

Vermeire, K., Heremans, H., Vandeputte, M., Huang, S., Billiau, A., and Matthys, 
P. (1997). Accelerated collagen-induced arthritis in IFN-gamma receptor-
deficient mice. J Immunol 158, 5507-5513. 

Vinuesa, C.G., Cook, M.C., Angelucci, C., Athanasopoulos, V., Rui, L., Hill, K.M., 
Yu, D., Domaschenz, H., Whittle, B., Lambe, T., et al. (2005). A RING-
type ubiquitin ligase family member required to repress follicular helper T 
cells and autoimmunity. Nature 435, 452-458. 

Vogelzang, A., McGuire, H.M., Yu, D., Sprent, J., Mackay, C.R., and King, C. 
(2008). A fundamental role for interleukin-21 in the generation of T 
follicular helper cells. Immunity 29, 127-137. 

Wang, H.Y., and Wang, R.F. (2007). Regulatory T cells and cancer. Curr Opin 
Immunol 19, 217-223. 

Weaver, C.T., Hatton, R.D., Mangan, P.R., and Harrington, L.E. (2007). IL-17 
Family Cytokines and the Expanding Diversity of Effector T Cell Lineages. 
Annu Rev Immunol. 

Wei, G., Wei, L., Zhu, J., Zang, C., Hu-Li, J., Yao, Z., Cui, K., Kanno, Y., Roh, 
T.Y., Watford, W.T., et al. (2009). Global mapping of H3K4me3 and 
H3K27me3 reveals specificity and plasticity in lineage fate determination 
of differentiating CD4+ T cells. Immunity 30, 155-167. 



171 
 

Wei, L., Laurence, A., Elias, K.M., and O'Shea, J.J. (2007). IL-21 is produced by 
Th17 cells and drives IL-17 production in a STAT3-dependent manner. J 
Biol Chem 282, 34605-34610. 

Wery-Zennaro, S., Letourneur, M., David, M., Bertoglio, J., and Pierre, J. (1999). 
Binding of IL-4 to the IL-13Ralpha(1)/IL-4Ralpha receptor complex leads 
to STAT3 phosphorylation but not to its nuclear translocation. FEBS Lett 
464, 91-96. 

Wildin, R.S., Ramsdell, F., Peake, J., Faravelli, F., Casanova, J.L., Buist, N., 
Levy-Lahad, E., Mazzella, M., Goulet, O., Perroni, L., et al. (2001). X-
linked neonatal diabetes mellitus, enteropathy and endocrinopathy 
syndrome is the human equivalent of mouse scurfy. Nat Genet 27, 18-20. 

Wills-Karp, M. (2000). The gene encoding interleukin-13: a susceptibility locus for 
asthma and related traits. Respir Res 1, 19-23. 

Wynn, T.A. (2003). IL-13 effector functions. Annu Rev Immunol 21, 425-456. 
Xu, J., Yang, Y., Qiu, G., Lal, G., Wu, Z., Levy, D.E., Ochando, J.C., Bromberg, 

J.S., and Ding, Y. (2009). c-Maf regulates IL-10 expression during Th17 
polarization. J Immunol 182, 6226-6236. 

Xu, L., Kitani, A., Fuss, I., and Strober, W. (2007). Cutting edge: regulatory T 
cells induce CD4+CD25-Foxp3- T cells or are self-induced to become 
Th17 cells in the absence of exogenous TGF-beta. J Immunol 178, 6725-
6729. 

Yamashita, M., Ukai-Tadenuma, M., Kimura, M., Omori, M., Inami, M., Taniguchi, 
M., and Nakayama, T. (2002). Identification of a conserved GATA3 
response element upstream proximal from the interleukin-13 gene locus. J 
Biol Chem 277, 42399-42408. 

Yang, J., Murphy, T.L., Ouyang, W., and Murphy, K.M. (1999). Induction of 
interferon-gamma production in Th1 CD4+ T cells: evidence for two 
distinct pathways for promoter activation. Eur J Immunol 29, 548-555. 

Yang, X.O., Angkasekwinai, P., Zhu, J., Peng, J., Liu, Z., Nurieva, R., Liu, X., 
Chung, Y., Chang, S.H., Sun, B., and Dong, C. (2009). Requirement for 
the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage 
commitment. Nat Immunol 10, 1260-1266. 

Yang, X.O., Nurieva, R., Martinez, G.J., Kang, H.S., Chung, Y., Pappu, B.P., 
Shah, B., Chang, S.H., Schluns, K.S., Watowich, S.S., et al. (2008a). 
Molecular antagonism and plasticity of regulatory and inflammatory T cell 
programs. Immunity 29, 44-56. 

Yang, X.O., Panopoulos, A.D., Nurieva, R., Chang, S.H., Wang, D., Watowich, 
S.S., and Dong, C. (2007). STAT3 regulates cytokine-mediated generation 
of inflammatory helper T cells. J Biol Chem 282, 9358-9363. 

Yang, X.O., Pappu, B.P., Nurieva, R., Akimzhanov, A., Kang, H.S., Chung, Y., 
Ma, L., Shah, B., Panopoulos, A.D., Schluns, K.S., et al. (2008b). T helper 
17 lineage differentiation is programmed by orphan nuclear receptors 
ROR alpha and ROR gamma. Immunity 28, 29-39. 

Yang, Y., Ochando, J., Yopp, A., Bromberg, J.S., and Ding, Y. (2005). IL-6 plays 
a unique role in initiating c-Maf expression during early stage of CD4 T cell 
activation. J Immunol 174, 2720-2729. 



172 
 

Yao, Z., Fanslow, W.C., Seldin, M.F., Rousseau, A.M., Painter, S.L., Comeau, 
M.R., Cohen, J.I., and Spriggs, M.K. (1995). Herpesvirus Saimiri encodes 
a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 
3, 811-821. 

Yao, Z., Kanno, Y., Kerenyi, M., Stephens, G., Durant, L., Watford, W.T., 
Laurence, A., Robinson, G.W., Shevach, E.M., Moriggl, R., et al. (2007). 
Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 
4368-4375. 

Ye, P., Rodriguez, F.H., Kanaly, S., Stocking, K.L., Schurr, J., Schwarzenberger, 
P., Oliver, P., Huang, W., Zhang, P., Zhang, J., et al. (2001). Requirement 
of interleukin 17 receptor signaling for lung CXC chemokine and 
granulocyte colony-stimulating factor expression, neutrophil recruitment, 
and host defense. J Exp Med 194, 519-527. 

Ying, S., Meng, Q., Kay, A.B., and Robinson, D.S. (2002). Elevated expression of 
interleukin-9 mRNA in the bronchial mucosa of atopic asthmatics and 
allergen-induced cutaneous late-phase reaction: relationships to 
eosinophils, mast cells and T lymphocytes. Clin Exp Allergy 32, 866-871. 

Yoo, J.Y., Wang, W., Desiderio, S., and Nathans, D. (2001). Synergistic activity 
of STAT3 and c-Jun at a specific array of DNA elements in the alpha 2-
macroglobulin promoter. J Biol Chem 276, 26421-26429. 

Yu, D., Rao, S., Tsai, L.M., Lee, S.K., He, Y., Sutcliffe, E.L., Srivastava, M., 
Linterman, M., Zheng, L., Simpson, N., et al. (2009). The transcriptional 
repressor Bcl-6 directs T follicular helper cell lineage commitment. 
Immunity 31, 457-468. 

Yu, Q., Thieu, V.T., and Kaplan, M.H. (2007). Stat4 limits DNA methyltransferase 
recruitment and DNA methylation of the IL-18Ralpha gene during Th1 
differentiation. Embo J 26, 2052-2060. 

Zaretsky, A.G., Taylor, J.J., King, I.L., Marshall, F.A., Mohrs, M., and Pearce, 
E.J. (2009). T follicular helper cells differentiate from Th2 cells in response 
to helminth antigens. J Exp Med 206, 991-999. 

Zenewicz, L.A., Yancopoulos, G.D., Valenzuela, D.M., Murphy, A.J., Karow, M., 
and Flavell, R.A. (2007). Interleukin-22 but not interleukin-17 provides 
protection to hepatocytes during acute liver inflammation. Immunity 27, 
647-659. 

Zhang, D.H., Yang, L., Cohn, L., Parkyn, L., Homer, R., Ray, P., and Ray, A. 
(1999a). Inhibition of allergic inflammation in a murine model of asthma by 
expression of a dominant-negative mutant of GATA-3. Immunity 11, 473-
482. 

Zhang, D.H., Yang, L., and Ray, A. (1998). Differential responsiveness of the IL-5 
and IL-4 genes to transcription factor GATA-3. J Immunol 161, 3817-3821. 

Zhang, S.Y., Boisson-Dupuis, S., Chapgier, A., Yang, K., Bustamante, J., Puel, 
A., Picard, C., Abel, L., Jouanguy, E., and Casanova, J.L. (2008). Inborn 
errors of interferon (IFN)-mediated immunity in humans: insights into the 
respective roles of IFN-alpha/beta, IFN-gamma, and IFN-lambda in host 
defense. Immunol Rev 226, 29-40. 



173 
 

Zhang, X., Wrzeszczynska, M.H., Horvath, C.M., and Darnell, J.E., Jr. (1999b). 
Interacting regions in Stat3 and c-Jun that participate in cooperative 
transcriptional activation. Mol Cell Biol 19, 7138-7146. 

Zheng, S.G., Wang, J., and Horwitz, D.A. (2008). Cutting edge: 
Foxp3+CD4+CD25+ regulatory T cells induced by IL-2 and TGF-beta are 
resistant to Th17 conversion by IL-6. J Immunol 180, 7112-7116. 

Zheng, S.G., Wang, J.H., Gray, J.D., Soucier, H., and Horwitz, D.A. (2004). 
Natural and induced CD4+CD25+ cells educate CD4+CD25- cells to 
develop suppressive activity: the role of IL-2, TGF-beta, and IL-10. J 
Immunol 172, 5213-5221. 

Zheng, Y., Danilenko, D.M., Valdez, P., Kasman, I., Eastham-Anderson, J., Wu, 
J., and Ouyang, W. (2007a). Interleukin-22, a T(H)17 cytokine, mediates 
IL-23-induced dermal inflammation and acanthosis. Nature 445, 648-651. 

Zheng, Y., Josefowicz, S.Z., Kas, A., Chu, T.T., Gavin, M.A., and Rudensky, A.Y. 
(2007b). Genome-wide analysis of Foxp3 target genes in developing and 
mature regulatory T cells. Nature 445, 936-940. 

Zhou, L., Ivanov, II, Spolski, R., Min, R., Shenderov, K., Egawa, T., Levy, D.E., 
Leonard, W.J., and Littman, D.R. (2007). IL-6 programs T(H)-17 cell 
differentiation by promoting sequential engagement of the IL-21 and IL-23 
pathways. Nat Immunol 8, 967-974. 

Zhou, L., Lopes, J.E., Chong, M.M., Ivanov, II, Min, R., Victora, G.D., Shen, Y., 
Du, J., Rubtsov, Y.P., Rudensky, A.Y., et al. (2008). TGF-beta-induced 
Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat 
function. Nature 453, 236-240. 

Zhu, J., Cote-Sierra, J., Guo, L., and Paul, W.E. (2003). Stat5 activation plays a 
critical role in Th2 differentiation. Immunity 19, 739-748. 

Zhu, J., Guo, L., Min, B., Watson, C.J., Hu-Li, J., Young, H.A., Tsichlis, P.N., and 
Paul, W.E. (2002). Growth factor independent-1 induced by IL-4 regulates 
Th2 cell proliferation. Immunity 16, 733-744. 

Zhu, J., Guo, L., Watson, C.J., Hu-Li, J., and Paul, W.E. (2001). Stat6 is 
necessary and sufficient for IL-4's role in Th2 differentiation and cell 
expansion. J Immunol 166, 7276-7281. 

Zhu, J., Jankovic, D., Grinberg, A., Guo, L., and Paul, W.E. (2006). Gfi-1 plays an 
important role in IL-2-mediated Th2 cell expansion. Proc Natl Acad Sci U 
S A 103, 18214-18219. 

Zhu, J., Min, B., Hu-Li, J., Watson, C.J., Grinberg, A., Wang, Q., Killeen, N., 
Urban, J.F., Jr., Guo, L., and Paul, W.E. (2004). Conditional deletion of 
Gata3 shows its essential function in T(H)1-T(H)2 responses. Nat 
Immunol 5, 1157-1165. 

Zhu, J., and Paul, W.E. (2008). CD4 T cells: fates, functions, and faults. Blood 
112, 1557-1569. 

 
 
 
 
 



 

CURRICULUM VITAE 
 

Gretta L. Stritesky 
 

Education 
2005   B.S. Biological Sciences,     Moorhead, MN 
  Concordia College 
2010 Ph.D. Department of Microbiology   Indianapolis, IN 

and Immunology, Indiana University 
 
Honors, Awards, and Fellowships 
2004   Tri Beta Biology National Honor Society Member 
2006 Awarded fellowship on Immunology and Infectious Disease 

Training Grant (T32 AI 060519) 
2008 University Travel Fellowship, IUPUI 
2009 Keystone Symposia Scholarship 
2009 Harold Raidt Graduate Student Teaching Award 
2010  Awarded 3rd place in Sigma Xi Graduate Research Competition, 

IUPUI  
 
Abstracts Presented and Conferences Attended  
2006 GL Stritesky, AN Mathur and MH Kaplan. IL-23 induces IL-17  

Production from specific T cell subsets. Autumn Immunology 
Conference.  

2007 GL Stritesky, AN Mathur and MH Kaplan. IL-23 enhances the 
maintenance of IL-17 secretion fromTGFβ+IL-6 primed cells. 
International Congress of Immunology. Selected for an oral 
presentation. 

2007 GL Stritesky, AN Mathur and MH Kaplan. Defining the role of IL-23 
in the Th17 phenotype. Autumn Immunology Conference.  

2008 GL Stritesky, N Yeh and MH Kaplan. Determining Th17 lineage 
commitment. American Association of Immunologists. 

2008 GL Stritesky and MH Kaplan. Defining the role of STAT3 in Th2 cell 
differentiation and function. Autumn Immunology Conference.  

2009 GL Stritesky, N Yeh and MH Kaplan. IL-23 promotes maintenance 
but not commitment to the Th17 lineage. Keystone Symposia: 
TH17 Cells in Health and Disease.  

2010 GL Stritesky, S Sehra and MH Kaplan. STAT3 in T cells is required 
for the differentiation of Th2 cells and the development of allergic 
inflammation. Federation of European Biochemical Societies 
Special Meeting - Jak-Stat Signaling: from Basics to Disease.  

 
Peer Reviewed Publications 
2007 Mathur AN, Chang HC, Zisoulis DG, Stritesky GL, Yu Q, O’Malley 

JT, Kapur R, Levy DE, Kansas GS & Kaplan MH. Stat3 and Stat4  



 

direct development of IL-17-secreting Th cells. J 
Immunol.178(8):4901-7. 

 
2008 O’Malley JT, Eri RD, Stritesky GL, Mathur AN, Chang HC, 

Hogenesch H, Srinivasan M, and Kaplan MH. STAT4 isoforms 
differentially regulate Th1 cytokine production and the severity of 
inflammatory bowel disease. J Immunol. 181(7):5062-70. 

 
Mo C, Chearwae W, O’Malley JT, Adams SM, Kanakasabai 
S,Walline CC, Stritesky GL, Good SR, Perumal NB, Kaplan MH, 
and Bright JJ. Stat4 Isoforms Differentially Regulate Inflammation 
and Demyelination in Experimental Allergic Encephalomyelitis. J 
Immunol. 181(8):5681-90. 

 
Stritesky GL*, Yeh N*, and Kaplan MH. IL-23 promotes 
maintenance but not commitment to the Th17 lineage. J Immunol. 
181(9):5948-55. Highlighted “In this issue.” 
*These authors contributed equally. 

 
Korn T, Mitsdoerffer M, Croxford AL, Awasthi A, Dardalhon V, 
Galileos G, Vollmar P, Stritesky GL, Kaplan MH, Waisman A, 
Kuchroo VK, and Oukka M. IL-6 controls Th17 immunity in vivo by 
inhibiting the conversion of conventional T cells into Foxp3+ 
regulatory T cells. Proc Natl Acad Sci U S A. 105(47):18460-5. 

 
2009 O’Malley JT, Sehra S, Thieu VT, Yu Q, Chang H-C, Stritesky GL, 

Nguyen ET, Mathur AN, Levy DE and Kaplan MH. STAT4 limits the 
development of adaptive Treg cells. Immunology. 127. 587-595. 

 
Good SR, Thieu VT, Mathur AN, Yu Q, Stritesky GL, Yeh,N, 
O’Malley JT, Perumal NB and Kaplan MH. Temporal induction 
pattern of STAT4 target genes defines potential for Th1 lineage-
specific programming. J Immunol. 183:3839-3847. 

 
2010 Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, 

Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, 
Perumal NB, Tepper RS, Nutt SL, Kaplan MH.  The transcription 
factor PU.1 is required for the development of IL-9-producing T 
cells and allergic inflammation.  Nat Immunol. 11(6):527-34. 

 
Stritesky GL, Muthukrishnan R, Sehra S, Travers J, Nguyen ET, 
Goswami R, Levy DE and Kaplan MH.  Signal Transducer and 
Activator of Transcription 3 is required for T helper 2 development.  
Submitted.  


