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Daniel James Byrd 

VACCINIA VIRUS BINDING AND INFECTION OF PRIMARY HUMAN 

LEUKOCYTES 

 

Vaccinia virus (VV) is the prototypical member of the orthopoxvirus genus of the 

Poxviridae family, and is currently being evaluated as a vector for vaccine 

development and cancer cell-targeting therapy. Despite the importance of 

studying poxvirus effects on the human immune system, reports of the direct 

interactions between poxviruses and primary human leukocytes (PHLs) are 

limited. We studied the specific molecular events that determine the VV tropism 

for major PHL subsets including monocytes, B cells, neutrophils, NK cells, and T 

cells. We found that VV exhibited an extremely strong bias towards binding and 

infecting monocytes among PHLs. VV binding strongly co-localized with lipid rafts 

on the surface of these cell types, even when lipid rafts were relocated to the cell 

uropods upon cell polarization. In humans, monocytic and professional antigen-

presenting cells (APCs) have so far only been reported to exhibit abortive 

infections with VV. We found that monocyte-derived macrophages (MDMs), 

including granulocyte macrophage colony-stimulating factor (GM-CSF)-polarized 

M1 and macrophage colony-stimulating factor (M-CSF)-polarized M2, were 

permissive to VV replication. The majority of virions produced in MDMs were 

extracellular enveloped virions (EEV). Visualization of infected MDMs revealed 

the formation of VV factories, actin tails, virion-associated branching structures 

and cell linkages, indicating that infected MDMs are able to initiate de novo 
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synthesis of viral DNA and promote virus release. Classical activation of MDMs 

by LPS plus IFN-γ stimulation caused no effect on VV replication, whereas 

alternative activation of MDMs by IL-10 or LPS plus IL-1β treatment significantly 

decreased VV production. The IL-10-mediated suppression of VV replication was 

largely due to STAT3 activation, as a STAT3 inhibitor restored virus production to 

levels observed without IL-10 stimulation. In conclusion, our data indicate that 

PHL subsets express and share VV protein receptors enriched in lipid rafts. We 

also demonstrate that primary human macrophages are permissive to VV 

replication. After infection, MDMs produced EEV for long-range dissemination 

and also form structures associated with virions which may contribute to cell-cell 

spread. 

 

 
Andy Qigui Yu, Ph.D., Chair 
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Chapter I - Introduction 

 

Virus tropism 

Rapid advances in the last century have considerably reduced mortality 

due to infectious diseases. This was mainly achieved by scientific advancement 

in the treatment and control of infections leading to the introduction of antibiotics 

and vaccines. Despite such advances, emerging or re-emerging pathogens 

remain as a primary concern for global healthcare (1). The treatment of viral 

diseases has mostly depended on the development of vaccines and updated 

medical practices as the development of anti-viral drugs has progressed 

relatively slower than antibiotics. Most emerging pathogens of particular worry 

are viruses and include several virus families: bunyaviruses (hantavirus, Rift 

Valley), coronaviruses (SARS-CoV, MERS-CoV), filoviruses (Ebola, Marburg), 

flaviviruses (Dengue, hepatitis C, West Nile), poxviruses (monkeypox), and 

retroviruses (HIV-1) (1). The emergence of a virus as an agent of human disease 

usually involves the transfer from another species, called zoonosis. The 

possibility of viral zoonosis occurring is determined by the host tropism of the 

virus which can be described at the micro and macro levels.  

Viral tropism can be viewed as having a three-tiered barrier: cellular 

specificity, tissue specificity, and the host response to infection (2). At the cellular 

level, virus replication for certain cell types of certain species can either be 

abortive, meaning failure to replicate, or permissive, meaning success in infection 

and replication. The permissiveness of a cell to virus infection can be examined 
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by success or failure at any stage of the virus life cycle, including binding, entry, 

capsid uncoating, nucleic acid replication, particle assembly, and release. Virus 

tropism at the level of tissues is influenced by cellular tropism, but is also 

determined by tissue-specific anti-viral responses. This level is largely dependent 

on the patterns of virus distribution and dissemination within an organism. 

Tropism at the level of whole organisms is largely influenced by the first two 

levels and is defined by the possible range of effects from viral pathogenesis, 

symptoms of disease, and the ability to infect other individuals. This level defines 

whether a whole species supports permissive or abortive infections. Certain 

species may also be reservoir hosts that can be infected, avoid any overt 

pathogenesis, but still lead to the infection of other individuals or support 

zoonosis. These three levels of viral tropism determine the permissiveness of a 

species to a virus, and can be used to describe in detail why a virus causes 

disease. 

All viruses are obligate intracellular infectious agents and require specific 

host factors on the surface and within cells to replicate and spread to other cells. 

For viruses that infect large multicellular organisms, it is most likely that only 

particular cell types or tissues contain these necessary factors. In general, all 

viruses must bind to their receptors on the surface of target cells to initiate 

infection. Viruses must then induce the entry of the virus particles either by 

membrane fusion if it has a lipid envelope, or by some form of endocytosis for 

both enveloped and non-enveloped viruses. For example, the HIV-1 virus 

envelope protein gp120 requires the host T cell CD4 as a receptor, along with 
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CXCR4 or CCR5 as a co-receptor to be able to bind to cells and initiate fusion of 

the virus envelope with the host cell membrane. Often, membrane fusion occurs 

via the induction of low pH environments as with endosomes containing virus 

particles that are endocytosed. For example, the influenza envelope protein 

hemagglutinin (HA) binds to sialic acid (3) or DC-SIGN (Dendritic Cell-Specific 

Intercellular adhesion molecule-3-Grabbing Non-integrin ) (4) on the host cell 

surface to induce endocytosis of the virus particle. As the vesicle containing 

influenza particles converts to an endosome, the pH drops which activates the 

fusion activity of HA, releasing the capsid into the cytoplasm. However, HIV-1 

and other retroviruses rely on pH-independent route of entry. Once a virus enters 

the cell cytoplasm, the virus capsid degrades and specific intracellular host 

factors must be present to complete each stage of the virus life cycle. Virus 

replication often requires host polymerases, chromosomes, translational 

machinery, kinases, cytoskeletal structures, and motor proteins. Thus, virus-

receptor interactions, induction of entry, and intracellular factors influence the 

susceptibility of cell types and can all therefore constitute interspecies barriers.  

 

Poxvirus tropism 

Poxviruses are a family of large, complex, enveloped DNA viruses that 

show a wide range of species specificities (2, 5), and are known to infect 

invertebrates and vertebrates including fish, reptiles, birds, and mammals. The 

sub-family Chordopoxvirinae specifically infects vertebrates and includes four 

genera that infect humans. One of the genera in this sub-family, Orthopoxviridae, 
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is mammal-specific. The orthopoxviruses all have approximately 200 genes, are 

morphologically indistinguishable, and include virus species such as variola 

major, vaccinia, cowpox, monkeypox, and camelpox. Variola virus is the 

causative agent of smallpox, a disease which has likely killed more people than 

any other pathogen in human history (2), with a mortality rate of around 30% (6). 

Vaccination against variola was undertaken beginning in the 18th century using 

the live or attenuated orthopoxvirus cowpox. Because of the extreme sequence 

similarity between orthopoxviruses and the relatively slow rate of mutation, cross-

protection against many orthopoxviruses can be induced upon vaccination with 

another virus species from the genus. Vaccinia and cowpox were chosen as live 

vaccines for smallpox because of the relatively benign symptoms following 

percutaneous infection and the near certainty of acquired immunity developed 

against smallpox. In the 20th century, a global vaccination campaign using 

attenuated vaccinia strains led to the complete eradication of smallpox by 1979, 

ending millennia of terror from a disease which had killed hundreds of millions of 

people since its emergence before the beginning of human history (6). Thus, 

smallpox is eradicated, but many lessons can be learned from the disease 

related to fighting current outbreaks or preventing the emergence of new deadly 

pathogens. 

 

 



5 
 

 

Fig. 1. Overview of poxvirus morphogenesis. General steps following the 

formation of a mature extracellular poxvirus virion. 1) Virus binding and envelope 

fusion. 2) Juxta-nuclear virus factory formation. 3) IMV formation and migration 

on microtubules. 4) Wrapping of trans Golgi membrane to form IEV. 5) Fusion of 

outer envelope to produce CEV. 6) Detachment from the cell surface to produce 

a free-floating EEV particle. 
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Cellular tropism for orthopoxviruses, like all viruses, can be examined by 

the success or failure at every stage of the virus life cycle in the cell (Fig. 1). 

Orthopoxviruses first bind to host cell receptors and initiate entry either by fusion 

to the cell surface, or endocytosis followed by fusion to the vesicle membrane. 

The virus capsid then degrades or “uncoats” and genes with early promoters are 

transcribed which mainly code for factors used in viral DNA replication. 

Poxviruses are unique among DNA-based viruses because they undergo DNA 

replication entirely in the cytoplasm rather than the nucleus. Eventually a “virus 

factory” forms where a section of the rough endoplasmic reticulum is converted 

into a structure for assembling virus particles (7). Virions first exist as single 

enveloped “intracellular mature virions” (IMV) and are transported along 

microtubules (8). Some IMVs are wrapped in a double membrane originating 

from the Golgi apparatus containing unique viral envelope proteins which is then 

referred to as the triple-enveloped “intracellular enveloped virion” (IEV) (8). Via 

microtubules, the IEV is brought to the cell surface membrane where the outer 

virus envelope fuses to the cell surface, thereby secreting a double-membraned 

virion out of the cell. The virion will then stay attached to the cell surface, called 

the “cell-associated virion” (CEV), until various mechanisms are used to release 

the virion from the cell (9, 10). CEVs often remain on the cell surface and are 

launched away from the cell via polymerization of intracellular actin to contact 

neighboring cells (11). The final, free-floating form is referred to as the 

“extracellular enveloped virus” (EEV), and is considered the main mediator for 
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long range infections within a host. These actin tails are formed via signaling 

from viral envelope proteins on the cell surface (10). 

Despite the high sequence similarity of orthopoxviruses, stringent host 

species tropisms exist between the virus species, i.e., variola virus is a strict 

human-specific pathogen that causes smallpox in humans only (2), and myxoma 

virus is a rabbit-specific poxvirus that causes a lethal disease (myxomatosis) in 

rabbits only (2, 5). The genomes of most of the known orthopoxviruses have 

been sequenced, and while many genes are highly conserved between the 

different viral species and are essential for infection (12), divergent genes exist, 

called “host range genes,” and have been used to explain certain characteristics 

of the restrictive host tropisms. Host range genes were first identified in 

poxviruses by spontaneous deletions from viruses in culture, whereas many 

more were discovered later by targeted viral gene recombination. Most of these 

deletions or knockouts were tested in cell lines to show a loss of infectivity for 

certain cell types. The first host range genes for poxviruses were discovered from 

cultured vaccinia virus (VV) that developed spontaneous deletions in the K1L and 

C7L genes and, although able to transcribe some viral genes, these viruses lost 

the ability to replicate in human cells (13). Among many other host range genes, 

the best categorized are the E3L and K3L genes in VV. Double-stranded RNA 

(dsRNA) is a common product from viral infection in eukaryotic cells, and host 

immune responses have evolved to sense dsRNA to initiate innate immunity 

(14). In humans, dsRNA is first detected by PKR which activates the interferon 

response and induces apoptosis. Viruses have evolved many strategies to hide 
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dsRNA, and VV has developed ways to surround its dsRNA with E3L to directly 

block host PKR or create a decoy substrate with K3L to inhibit PKR (15). When 

E3L and K3L are deleted in VV, they show reduced rates of infectivity in different 

cells lines specific for cell lines from particular species (15). 

 

Poxvirus binding 

Despite the advances in understanding poxvirus cellular tropism using 

cells lines, much remains unknown concerning host species specificity. For 

instance, variola major is particularly deadly in humans and is thought to have 

never naturally crossed into another species. Meanwhile, the main host for the 

myxoma virus is the brush rabbit, where only mild symptoms are induced, but 

myxoma can also infect the European rabbit usually causing fatal disease. The 

precise molecular basis underlying the strict species barriers for poxviruses 

remains unclear which may reflect the lack of knowledge in many facets of the 

basic virology of poxviruses . In particular, no specific cellular receptor for any 

poxvirus has yet been identified; however, several ubiquitous carbohydrate-

based molecules have been suggested as receptors for VV. The first discovered 

were heparin sulfate (HS) and chondroitin sulfate (CS). Both are complex, highly 

negatively charged unbranched polysaccharides called glycosaminoglycans 

(GAGs) that are associated with numerous membrane proteins, including 

collagen in the extracellular matrix. The VV envelope protein A27L and H3L, 

previously associated with virus entry, was found to bind cell surface HS, as 

soluble HS reduced VV binding to cells and virions were found to bind to HS-
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coated beads (16). The VV envelope protein D8L binds to cell surface 

chondroitin sulfate in a similar manner (17). Apart from GAGs, VV was also found 

to bind to the ubiquitous extracellular matrix laminins, which are complexes of 

glycoproteins with many functional isotypes (18). However, different lines of 

evidence suggest that GAG-independent receptors exist for VV. The VV 

envelope protein L1R was shown to be crucial for entry into cell lines as anti-L1R 

antibodies blocked virus entry into cells and soluble L1R pretreatment could 

block entry (19). Interestingly, L1R was shown to bind to cells that were negative 

for GAGs (19). Additionally, recent work examining primary human leukocytes 

has strongly suggested a GAG-independent, protein-mediated poxvirus receptor 

on the surfaces of these cell types. Additional notions have been raised of the 

existence of potentially GAG-independent VV receptors as VV binding and entry 

in cell lines has been demonstrated to be highly dependent on specific areas of 

the cell membrane called lipid rafts. 

 

The raft hypothesis 

The cell membrane is composed of hundreds of types of lipids. The 

organization of the cell membrane was slowly elucidated in the last century, 

culminating in the development of the fluid mosaic model by Singer and 

Nicholson (20). From freeze-fracture electron microscopy, the cell membrane 

was found to be an ocean of lipids with proteins embedded either into the 

membrane or bound peripherally. The fluid mosaic model presented a picture of 

cell membranes as an equalizing solvent with no long term membrane 
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organization, rather than having a relatively permanent crystalline structure. 

However, through observations of epithelial cell layers it was found that cell 

membranes on the apical and basolateral cell surfaces had distinct lipid and 

protein components, and that transport of proteins into these different domains 

involved vesicles with different components which used special sorting systems 

(21). Apical domains on cells were found to be enriched in cholesterol, 

sphingolipids and sphingomyelin, whereas basolateral surfaces had more 

phosphatidylcholine (21). Observations of virus budding were also key in 

identifying the components of these membrane domains, where viruses such as 

influenza (22) that bud from the apical membrane tended to have sphingolipids 

and sphingomyelin, whereas viruses such as vesicular stomatis virus (23) that 

bud from the basolateral surfaces contained more phosphatidylcholine. Other 

than the apical surface of epithelial cells, smaller cholesterol and sphingolipid-

rich regions on cells have also been identified such as caveolae which are small 

invaginations in the cell membrane important for certain types of endocytosis. 

A further indication of the segregation of cell membrane domains is the 

behavior of glycosylphosphatidylinositol (GPI)-anchored membrane proteins. 

Rather than having a transmembrane domain like most surface membrane 

proteins, GPI-anchored proteins are peripherally bound to the membrane surface 

via a carbohydrate linkage with phosphatidylinositol. It was found that GPI-

proteins specifically trafficked only to the apical side of epithelial cells (24), and 

as such, were found on viruses that bud from apical surfaces (25). The existence 

of unique membrane domains was further suggested by the differential 
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insolubility of cell membranes. Certain methods to extract cell membranes using 

non-ionic detergents were found to produce an insoluble material easily 

separable from detergent-soluble material by density gradients. Analysis of the 

material, called “detergent-resistant membrane” (DRM), found that it was 

enriched in components specific for the apical surface of epithelial cells, namely: 

sphingolipids, sphingomyelin, cholesterol, and GPI-anchored proteins (26, 27).  

Thus, in slight opposition to the classic fluid mosaic model, a “raft 

hypothesis” has developed describing cell membranes as having separate 

domains that aggregate particular components which are critical for cellular 

membrane functions. Based on the above observations, an operational definition 

of membrane lipid rafts was proposed to be areas of the membrane that: 1) have 

high sphingolipids, sphingomyelin, cholesterol, and GPI-linked proteins; 2) can 

be specifically enriched with cold non-ionic detergent extractions; and 3) have 

functions that are inhibited via the disruption of cellular cholesterol. Rafts are 

thought to be involved in nearly every function associated with membrane 

structure, including: surface protein organization, cell motility, cell cycle control, 

antigen presentation, phagocytosis, nutrient uptake, and virus budding and entry. 

Many of the factors located specifically in DRMs, such as integrins (28) and IgE 

receptors (29), are known to become activated by cross-linking on the cell 

surface, a process that only happens once they enter the dense environment 

created by membrane rafts. 
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Lipid rafts and virus entry 

Because lipid rafts play a major role in organizing the cell surface 

membrane, it is not surprising that rafts are found to be crucial for the success of 

the virus life cycle at various stages for several viruses. Numerous studies have 

found the importance of rafts in viral binding, entry, assembly, and budding, by 

showing the localization of viral components in rafts and by disrupting rafts to see 

inhibitions to virus infection (30). Cholesterol is crucial to maintain the 

organization of all lipid raft-associated structures, and removing it from the cell or 

inhibiting its production leads to the dissolution of lipid rafts on the cell surface, 

and thus, can be a useful tool to study the importance of rafts in various 

conditions. Removing cholesterol can be achieved by treating cells with 

cyclodextrin, a membrane-permeable small molecule that binds to cholesterol 

and pulls it out of the cell membrane. This condition can be rescued by adding 

cholesterol back into the cells using cholesterol-embedded liposomes. 

Cholesterol synthesis can also be inhibited with pharmacological methods such 

as with statins to study raft formation. Using these tools, intact lipid rafts were 

found to be essential for the entry of non-enveloped viruses: adenovirus, 

Coxsackievirus, echovirus, enterovirus, human papillomavirus (HPV), rotavirus, 

and simian virus 40 (SV40); as well as enveloped viruses: Ebola virus, Epstein 

Barr virus, Hepatitis C virus, herpes simplex virus-1, HIV-1, influenza, VV, and 

SARS. 

Lipid rafts were found to be crucial for the entry of many viruses. Many 

routes of endocytosis for viruses in eukaryotic cells have been investigated, such 
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as clathrin-mediated entry, phagocytosis, and macropinocytosis, but a special 

route involving raft-enriched caveolae has also been identified. Caveolae are lipid 

rafts on the cell surface that form small invaginations and have a constant 

recycling of membrane components. The internalized membrane from caveolae 

form special compartments called “caveosomes” and can be specifically stained 

inside the cell to observe any associations with other factors. Viruses that 

specifically bind to rafts in caveolae can take advantage of this recycling system 

to enter the cell. This process is sensitive to cholesterol depletion, and is 

inhibited by the knockdown of dynamin-1, or  caveolin-1, a raft-specific surface 

protein. SV-40, HPV, echovirus, coronaviruses, and other viruses are known to 

take advantage of caveolae-dependent endocytosis. Echovirus uses CD55, a 

GPI-anchored raft-enriched host protein as a cell receptor, whose binding 

induces caveolin and raft-dependent endocytosis (31, 32). Similarly, 

coronaviruses bind to raft-specific CD13 which induces caveolin-dependent 

endocytosis (33). However, virus receptors need not always be raft specific to 

induce this pathway. SV-40 binds to MHC-I on the cell surface which is not raft-

specific, but the binding itself causes MHC-I to localize with caveolin-1 which 

then induces endocytosis (34, 35).  

Caveolae are only a part of the ways lipid rafts are structured on the cell 

surface, and virus entry has been associated with rafts while also being caveolin-

independent. The receptor for HIV-1 is CD4 along with co-receptors CCR5 or 

CXCR4. While CD4 usually exists inside lipid rafts, in T cells CCR5 and CXCR4 

do not. It was found that for HIV-1 entry into macrophages, however, intact lipid 
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rafts and the raft-localization of CXCR4 is a requirement (36, 37). Lipid rafts not 

only play a role in entry, but also in virus budding. HIV-1 has evolved to take 

advantage of the ability of lipid rafts to form unique platforms too aggregate 

specific components by localizing envelope proteins in rafts along with other host 

components advantageous to the virus(25). Thus, when viral components are 

collected at the membrane surface, viral envelope proteins induce budding while 

taking with it host lipid raft proteins (38). Host lipid rafts contain the GPI-anchored 

proteins CD55 and CD59 which are crucial regulators of host complement 

activation that also resists the effects of the complement system on the HIV-1 

particle (39). Although most studies of lipid rafts focus on their influence on the 

cell surface membrane, lipid raft and associated components recycle into the cell 

and form a unique membrane environment among intracellular organelles. This 

unique environment is also thought to be critical to intracellular virus assembly at 

certain stages (30).  

 

Lipid rafts and poxviruses 

It has been found that the VV envelope proteins A14, A17, and D8L 

localize to detergent-resistant fractions within 30 mins after the virus entry into 

HeLa cells (40). This indicates that VV entry may be related to lipid rafts as viral 

envelope proteins quickly enter host lipid rafts once the envelope has fused. The 

same study found that VV entry into HeLa cells was dependent on intact lipid 

rafts as cholesterol depletion with methyl-β-cyclodextrin (mβCD) greatly inhibited 

entry in a HS-independent manner (40). VV entry was also caveolin-independent 
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suggesting that the caveolae recycling pathway was not involved. Considering 

the raft-association with VV entry and the recent reports of VV receptors on 

primary human leukocytes, we hypothesized that unique protein receptors for VV 

may exist on primary human leukocytes enriched in lipid rafts.   

 

Poxvirus replication and interactions with monocytic cells 

 Poxviruses infect a wide array of organs and tissues, but usually depend 

on infection of the skin and mucosal tissues for propagation and dissemination. 

In nature, variola virus has a strict human-specific tropism and non-human 

reservoirs of the virus have never been found. Variola virus transmission via 

inhalation is followed by infection and replication in epithelial cells of the oral and 

respiratory mucosa (41). The subsequent stages of infection involve viral 

infiltration of lymphoid organs accompanied by strong viremia and skin lesions. In 

an attempt to develop an animal model of smallpox, recent studies using high 

doses of variola virus to infect Cynomolgus macaques have demonstrated that 

infected animals develop systemic infection and hemorrhagic symptoms, 

therefore replicating smallpox disease in humans (42, 43). In infected macaques, 

variola virus could not be isolated from plasma, but was found to be associated 

with blood monocytes implicating that monocytes serve as an important means of 

virus transportation via viremia (42). Additionally, through immunofluorescent 

staining, infected monocytic cells in macaques were found carrying virus 

antigens into organs that later erupted in lesions (42). In the macaque infection 

model it was also found that virus trafficking via monocytic cells was correlated 



16 
 

with increased severity of disease (43). Given their importance in defense 

against invading pathogens, monocytic cells may act as a double-edged sword in 

variola virus infection by mediating both infection control and virus dissemination.   

VV has a genome 95% homologous to variola virus (19) which reflects its 

extreme antigenic similarity. Similar to variola virus but without the overt 

pathogenesis, VV can produce a generalized infection which involves EEV 

viremia with subsequent infection of distant sites on the skin (8). Additionally, 

CEV can rapidly transfer between neighboring cells in culture via actin tails (11), 

but the precise routes of long-range dissemination via viremia are unknown. 

Visualizations of VV skin lesions in mice have shown that highly motile infected 

macrophages are adjacent to infected skin foci (44). Extraction and analysis of 

these macrophages have revealed that the cells are permissively infected, and 

are associated with 7% of the total VV in the lesion (44). Thus, macrophages 

have been exhibited in mammals as potential candidates for mediating long-

range VV dissemination. Among studies of VV infection of primary human 

macrophages, one report has demonstrated that the infection is abortive, as the 

cells only support early stages of the VV infection cycle, including morphologic 

cytopathic effects, deactivation of host cell protein synthesis, and activation of 

early viral protein synthesis; but not infection in late stages, including synthesis of 

late viral proteins, replication of viral DNA, and production of infectious viral 

progeny (45). VV infection of primary human monocytes and dendritic cells (DCs) 

has also been demonstrated to be abortive in vivo and in vitro (46-52); here, viral 

DNA is only weakly replicated, no late genes are transcribed, and no actin tails or 
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viral factories form. Hence, it has been speculated that, in humans, VV cannot 

replicate in monocytic cells including monocytes, macrophages and DCs.  

 

Summary of findings 

In this report, the binding and infection of VV in ex vivo human leukocytes 

is profiled. Among all cell types observed, VV was able to bind to monocytes, B 

cells, activated T cells, and neutrophils, but not resting T cells. This binding was 

mediated by protein receptors on the cell surface which are enriched in lipid rafts 

for all susceptible cell types. Although a specific protein receptor has not been 

identified yet, a list of putative receptors was made via deductions from raft-

associated proteins matched with expression data for each cell type. Only 

monocytic cells were able to express virus genes to a significant degree, and this 

observation holds true for in vitro monocyte-derived macrophages. Macrophages 

are observed in vivo as being a significant source of VV antigen staining. 

Previously, among primary human leukocytes, activated T cells were the only cell 

type known to support VV replication. This report reveals that in vitro monocyte 

derived macrophages are permissive to VV. This permissiveness persisted 

during many different macrophage activation states, but was sensitive to M2b 

(LPS plus IL-1β) and M2c (IL-10) activation.  
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Chapter II - Research Goals 

 

Poxvirus binding and infection of leukocytes 

Poxviruses are currently being tested as vaccine vectors for HIV-1 

prevention (53) and as cancer cell-targeted therapies (54, 55). Despite the 

importance of studying poxvirus effects on the human immune system, reports of 

the direct interactions between poxviruses and PHLs are limited. When used as a 

vaccine vector, the efficacy of the vaccine depends on the dynamics of the 

immune response to the virus. Approaches to use poxviruses as cancer 

therapies have focused on the immunomodulation potential of the virus by 

engineering it to focus the immune response against tumors. Indeed, even 

though both of these therapies depend entirely on the immune system, there are 

few studies analyzing specific interactions of poxvirus with primary human cells. 

Greater knowledge of these interactions will no doubt aid in engineering 

poxviruses to provide improved immunogenicity and greater honing of the 

immune response against cancer cells. 

Poxviruses infect a wide variety of cell lines in culture, leading to the 

presumption that specific receptors for these viruses may not be required, or that 

conserved and ubiquitous receptors may be widely distributed on the surface of 

diverse cell types (2). These conjectures may have impeded attempts to identify 

cellular receptors that mediate poxvirus binding and infection. However, recent 

reports have shown that VV and canarypox virus (ALVAC) do not indiscriminately 

infect all cell types of primary human hematopoietic cells they encounter, but 
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instead demonstrate an extremely strong preference for infection of monocyte-

lineage cells among peripheral blood mononuclear cells (PBMCs) (56-58). 

Significantly, expression of VV receptor(s) can be induced de novo on primary 

human T cells upon T cell activation (56). As a consequence, activated T cells 

become susceptible to VV binding, infection, and replication. In contrast, resting 

T cells are not susceptible to VV binding or infection. These receptors are likely 

proteins because inhibitors of transcription (actinomycin D), protein synthesis 

(cycloheximide), and intracellular protein transport (brefeldin A) significantly 

reduce VV binding to activated primary human T cells, and also treatment of 

primary human monocytes or activated T cells with trypsin or pronase diminishes 

VV binding and infection (56).  

Poxviruses not only bind to and infect monocytes but also use these cells 

to initiate a systematic infection. A recent report using high doses of variola virus, 

the most virulent member of the poxvirus family, to infect Cynomolgus macaques 

in an attempt to develop an animal model of smallpox has demonstrated that 

variola virus is disseminated by means of monocytic cell-associated viremia (42). 

This suggests that monocytes play a significant role in the initiation of systematic 

infection. Monocytes may use putative viral receptors to collect infectious variola 

virus particles and then disseminate them to uninfected cells and tissues, 

resulting in a generalized infection. However, the specific molecular events that 

determine poxvirus bias towards monocyte binding and infection remain unclear. 

In this work, we investigated the susceptibility of major subsets of primary human 

leukocytes (PHLs) to VV binding and infection. We show that PHL subsets 
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express and share protein VV receptors on the cytoplasmic membrane, and that 

VV receptors are induced de novo on certain but not all PHL subsets.  

 

VV binding and lipid rafts 

The finding that VV entry into HeLa cells in dependent on intact lipid rafts 

presents questions to other facets of VV infection. It is suggestive that since 

these specialized areas of the cell membrane are required for entry, they likely 

contain factors such as binding receptors to direct virions to these areas for entry 

to take place. Thus, we hypothesize that VV receptors are enriched in host cell 

surface lipid rafts. Primary human cells are, so far, the only cell types to 

demonstrate a clear distinction in the behaviors of VV binding in terms of de novo 

synthesis of a protein receptor. VV cannot bind to ex vivo human peripheral T 

cells other than in trace amounts, but upon T cell activation with anti-CD3 and 

anti-CD28 antibodies, the cells become highly susceptible to binding (56). 

Therefore, this system is advantageous in hunting for unique VV receptors, which 

have not been discovered to date, and is suitable to test our hypothesis that VV 

preferentially binds to factors in lipid rafts. In this study, we used cholera toxin 

subunit B (CTB) as a marker for membrane rafts. The cholera toxin binds to host 

cell surface ganglioside M1 (GM1), which is known to be a component of 

detergent-resistant membranes. CTB was found to be highly colocalized in all VV 

binding-susceptible leukocytes previously tested. We therefore proceeded to 

verify the presence of VV receptors in rafts by reshaping rafts to observe the VV 

binding response and by attempting to block with DRM-derived mouse serum.  
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VV replication in primary human macrophages 

 Macrophages are found in tissues throughout the body in most organs. 

These tissue macrophages are mainly derived from circulating monocytes, but 

are difficult to collect and study. To obtain macrophages, researchers have 

developed several approaches to differentiate primary blood monocytes by 

incubating them with (1) media containing human AB or fetal bovine serum (FBS) 

(59), (2) media containing FBS supplemented with GM-CSF or M-CSF (60, 61), 

or (3) conditional serum-free media with or without GM-CSF or M-CSF (62, 63). 

These different methods for MDM generation have not been systematically 

related to one another functionally or transcriptionally. GM-CSF-induced MDMs 

replicate some of the functions and transcriptional profiles of classically activated 

pro-inflammatory (M1) cells in vivo, whereas M-CSF-induced MDMs are more 

like alternatively activated anti-inflammatory (M2) macrophages (64). Gene 

expression profile studies of murine M2 cells have found some common 

expression of genes between M2 cells generated in vitro and M2 cells from in 

vivo disease models (65, 66). In vitro M1 and M2 macrophages largely mirror the 

functional phenotypes of macrophages in vivo in allergy, parasitic infections, and 

certain cancers (67), but other pathological conditions such as 

neurodegenerative diseases express unique macrophage phenotypes. In 

contrast, human AB serum-derived MDMs have so far not been related to 

particular states in vivo. Here we report that both M1- and M2-polarized 

macrophages are permissive for VV infection and replication, whereas human AB 

serum-derived MDMs could be infected, but were abortive as reported previously 
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(45). Infected M1 and M2 MDMs mainly produced EEV and exhibited virion-

associated structures that may promote virus spread to neighboring cells. VV 

replication was found to be dependent on known poxvirus-associated signaling 

pathways, and the activation of STAT3 was strongly inhibitory to virus production. 

These results provide critical information to the burgeoning fields of 

cancer-killing (oncolytic) virus therapy with VV. Recent successful clinical trials 

using VV engineered to be cancer cell-specific have demonstrated the potential 

for VV as an oncolytic agent, particularly as a platform for various immune 

therapies for cancer (68-71). M2 macrophages are considered a common 

presence in tumors and are associated with poor prognosis. These results 

demonstrate a preference for VV replication in M2 macrophages, and could 

assist in designing treatments and engineering poxviruses with special 

considerations for their effect on M1 vs. M2 macrophages. Macrophages may not 

only be a target for oncolytic therapy, but also as a delivery medium. 

Macrophage-based delivery of oncolytic adenovirus was previously 

demonstrated to be more effective at tumor reduction than virus alone (72). Our 

findings are also uniquely relevant for oncolytic VV therapy because the level of 

EEV in a tumor was highly correlated to effectiveness of treatment (73). We have 

observed that infected MDMs produce predominantly EEV after 2 days of 

infection. Therefore, this work highlights macrophages as highly relevant to VV 

oncolytic therapy whether in terms of residents in a tumor or vehicles for delivery. 

This work also highlights the importance of macrophages in the design of 

vaccines using poxvirus vectors. The understanding of the dynamics of poxvirus-
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infected foci is central in understanding the effectiveness of the immune 

response to poxvirus-mediated vaccine vectors. The high CD8 T cell response of 

poxvirus vaccines makes them particularly promising as a vaccine vector against 

viral diseases (74). Monocytic cells have been found to be an important part of 

vaccinia skin lesions in mice in controlling the infection as well as mediating virus 

transport out of infected foci (44). VV infected foci are surrounded by monocytic 

cells that are heavily stained with virus antigen. It was observed that monocytic 

cells uptake virus around the foci while CD8 cells target and kill infected 

monocytes (44). Thus, monocytic cells likely play an essential role in the 

immunogenicity of poxvirus-based vaccines. 
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Chapter III - Materials and methods 

 

Cytokines, antibodies, and flow cytometric analysis 

The following anti-human monoclonal antibodies (mAbs) or polyclonal Abs 

(pAbs) conjugated with fluorochrome were purchased from BD PharMingen (San 

Diego, CA): anti-CD3APC, anti-CD4PerCP, anti-CD8PE, anti-CD14APC, anti-CD19PE, 

anti-CD56PE, and matched-isotype control Abs conjugated with FITC, PE, PerCP, 

or APC. Anti-human neutrophil lipocalin (HNL) (pAbs) were purchased from 

Novus Biologicals (Littleton, CO) (cat. # NBP1-45682) and anti-human CD66bPE 

Ab (clone B1.1/CD66) were purchased from BD Biosciences (San Diego, CA) 

(cat# 333412), respectively. Rabbit pAbs against full-length human Integrin β-1 

(CD29) were purchased from Abnova (Taipei, Taiwan) (cat# H00003688-D01P) 

and rabbit pAbs against human amino acid transporter SLC3A2 (CD98) were 

purchased from Thermo Fisher Scientific (Pittsburgh, PA) (cat# PA5-21547). 

Isolated PHL subsets including monocytes, B cells, T cells, neutrophils, and NK 

cells were subjected to VV binding and surface staining with different 

combinations of Abs, followed by flow cytometric analysis (FACS) using a BD 

FACSCalibur (BD Biosciences, San Diego, CA). Data were analyzed using 

FlowJo software (TreeStar, San Carlos, CA). Appropriate isotype controls were 

used at the same molarity as the test Abs and control staining was performed 

during every FACS. The following mouse anti-human monoclonal antibodies 

(MAbs) conjugated with fluorochromes were purchased from BioLegend: anti-

CD68 (clone Y1/82A) conjugated with Alexa Fluor 488, anti-CD163 (clone 
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GHI/61) conjugated with PE, and anti-CD86 (clone IT2.2) conjugated with APC. 

For intracellular staining (ICS) of STAT3 activation or caspase-3, cells were fixed 

with 2% paraformaldehyde (PFA), permeabilized with 0.1% saponin, and stained 

with mouse anti-human Stat3 phospho-Tyr705 (clone 4/P-STAT3) conjugated 

with Alexa Fluor 647 or rabbit anti-human caspase-3 (active form) conjugated 

with FITC (BD Biosciences). Staining for apoptosis and necrosis with Annexin V-

FITC plus propidium iodide (PI) was performed using the Annexin-V-FLUOS 

Staining Kit (Roche, Mannheim, Germany) according to the manufacturer’s 

instructions. 

The following recombinant human cytokines for cell culture were 

purchased from EMD Millipore (Darmstadt, Germany): rhIL-1β, rhIL-10, and 

rhIFN-γ. Recombinant hM-CSF and rhGM-CSF (carrier-free) were purchased 

from BioLegend (San Diego, CA). Ultrapure lipopolysaccharide (LPS) derived 

from Salmonella minnesota R595 was purchased from InvivoGen (San Diego, 

CA).  

 

VV enrichment, titration, and infection protocols 

The primary VV strain used in this study was Western Reserve (WR). The 

EGFP reporter virus “VV-EGFP” is a WR strain containing a chimeric gene 

including the influenza virus nucleoprotein, the ovalbumin SIINFEKL peptide, and 

enhanced green fluorescence protein (EGFP) that localizes to the nucleus (75). 

Both VV WR and VV-EGFP were obtained from Dr. Jonathan Yewdell (NIH, 

Bethesda, MD). vA5L-YFP is a recombinant WR VV constructed with the viral 
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core protein A5L fused to yellow fluorescence protein (YFP) suitable for 

visualizing individual virions (76) and obtained from Dr. Bernard Moss (NIH, 

Bethesda, MD). All viral stocks were generated and titrated in chicken embryo 

fibroblasts (Charles River Laboratories, Wilmington, MA) or the monkey kidney 

cell line CV-1 (ATCC, Manassas, VA) in complete RPMI-1640 (RPMI-1640 

medium supplemented with 10% FBS, 2 mM L-glutamine, 100 U/ml penicillin, 

and 100 U/ml streptomycin). After 3 days of infection, cells were lysed in a 

dounce homogenizer. Culture supernatants and cell lysates were then subjected 

to ultracentrifugation at 25,000 g for 80 min through a 36% sucrose cushion. 

Pellets were resuspended and subjected to virus purification by 

ultracentrifugation through a 24 - 40% sucrose gradient as previously described 

(77). Viral titers were determined by a virus plaque assay. Briefly, CV-1 cells 

were grown in 6-well plates to 90% confluency and overlaid with various dilutions 

of purified virus. After 1 h of incubation, cells were washed and overlaid with 

complete RPMI-1640 containing 1.5% carboxylmethylcellulose to prevent de 

novo EEV plaque formation. After 2-3 days of culture, cells were washed and 

stained with a 0.01% crystal violet with 15% ethanol solution and then washed so 

that plaques could be counted to calculate virus plaque-forming units (pfu). 

 For infections involving the virus plaque assay and CsCl gradient 

separation, primary macrophages in 12- or 6-well plates (50,000 or 300,000 cells 

per well, respectively) were incubated with VV WR at a multiplicity of infection 

(MOI) of 5 for 1 h, washed three times with PBS and cultured for 2 days in 

complete RPMI-1640. Culture supernatants and cells were harvested at various 
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time points. Cells were lysed by three rounds of freezing and thawing, followed 

by sonication in a cup horn sonicator. Cell lysates and supernatants were either 

mixed together or analyzed separately for determination of virus titers. VV-EGFP 

was used to monitor viral gene expression in MDMs, except that these cells were 

cultured for a short period (6 h) in order to analyze for EGFP expression. At 6 h 

of culture, cells were fixed with 2% PFA and EGFP-positive cells were 

quantitated using FACS. For VV binding assays, primary MDMs were chilled to 

4°C and incubated with vA5L-YFP at an MOI of 5 on ice for 1 h with gentle 

mixing. Cells were washed three times with ice-cold PBS, fixed with 2% PFA, 

and YFP-positive cells were quantitated using FACS. 

 

Preparation of human PBMCs 

 Whole-blood samples or leukapheresis products were obtained from 

healthy blood donors with written consent obtained from each participant. 

Investigational protocols were approved by Institutional Review Boards for 

Human Research at the Indiana University School of Medicine (Indianapolis, IN). 

To isolate peripheral blood mononuclear cells (PBMCs), whole blood or 

leukapheresis products were separated by Ficoll-Hypaque (Amersham 

Pharmacia Biotech AB, Uppsala, Sweden) gradients. Monocytes, B cells, and NK 

cells were then enriched by negative isolation using Ab-conjugated magnetic 

beads in the Monocyte, B cell, and NK cell Negative Isolation Kits (Dynal, Oslo, 

Norway). Resting T cells were isolated from the PBMCs using the Pan T Cell 

Isolation Kit II (Miltenyi Biotec, Auburn, CA), which yielded >95% purity of CD3+ T 



28 
 

cells. CD3+ T cells were activated by incubating with anti-CD3/anti-CD28 Ab-

coated magnetic beads (Life Technologies, Carlsbad, CA), and cultured in 

complete RPMI 1640 medium. The resulting cell preparations contained more 

than 95% of the desired cell types assessed by CD14, CD3, CD4, CD8, CD19, or 

CD56 staining and FACS. Neutrophils were isolated from whole blood from 

healthy donors by density gradient separation in Lympholyte-Poly solution 

(Cedarlane Labs, Hornby, ON) to isolate polymorphonuclear cells, followed by 

treatment with water to lyse red blood cells. Neutrophil purity was >98% as 

determined by flow cytometric analysis of HNL+CD66b+ cells.  

To differentiate cells into macrophages, isolated monocytes were cultured 

in complete RPMI-1640 media supplemented with either 50 ng/ml of rhGM-CSF 

or 50 ng/ml of rhM-CSF, or in RPMI-1640 containing 10% human AB serum 

(Gemini Bio Products, West Sacramento, CA). Culture media were changed 

every 3 days. Macrophages were considered fully differentiated after 7 days of 

culture as determined by morphology. T cells were separated from PBMCs and 

subjected to activation using the Dynabeads Human T Cell Expander kit (Life 

Technologies, Carlsbad, CA) according to the manufacturer’s instructions. T cells 

were allowed to incubate with anti-CD3 and anti-CD28-coated beads for 72 h 

before use in experiments. 

 

HIV-1 infection of cell lines 

The latently HIV-1-infected cell line U1 was activated with 10 nM PMA to 

allow for virus production. After 2 days, supernatants were collected from cells 
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and centrifuged at 100,000g to pellet the virions. The pellet was resuspended, 

dispersed with a cup horn sonicator, and used to infect the monocytic cell lines 

THP-1 and U937. After 3 weeks of culturing, the infected cell lines were 

compared to uninfected controls for the presence of integrated viral DNA using 

PCR. Also, the downregulation of CCR5 was detected by surface staining with a 

PE-conjugated antibody against human CCR5 followed by FACS analysis. A VV 

binding assay was then performed on the HIV-1 infected and uninfected cell 

lines. 

 

Polarization of primary human leukocyte subsets 

Individual PHL subsets were treated with various agents at 37°C to induce 

membrane polarization and lipid raft relocation. Briefly, isolated monocytes were 

incubated with 100 ng/mL of GM-CSF (BioVision, Milpitas, CA) for 24 h (78), B 

cells were incubated with 100 ng/mL of SDF-1 (Biolegend) on rhICAM-2 (fc)-

coated coverslips for 30 min (79), activated T cells adhered to anti-CD44 coated 

coverslips for 30 min (80, 81), and neutrophils were treated with 10 nM of the 

bacterial peptide fNLPNTL (Bachem, Torrence, CA) for 5 min (82). After 

treatment, all cell types were fixed with 2% PFA, and subjected to VV binding 

and analyzed by fluorescence microscopy. 

 

Immunosera raised against cell membrane extracts or whole cells  

 All animal experimentation was conducted following the NIH guidelines for 

housing and care of laboratory animals and performed in accordance with 
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Indiana University Institutional regulation after review and approval by the 

institutional Animal Care and Use Committee at Indiana University. Female 

BALB/c mice, 6-8 weeks of age, from the Jackson Laboratory (Bar Harbor, ME) 

were subjected to intraperitoneal (i.p.) immunization. Mice were divided into nine 

groups with 3 mice per group, and then subjected to immunization with: (1) 

detergent-resistant membranes (DRMs), (2) crude membrane extracts (CMEs), 

or (3) whole cells. These immunogens were prepared from either 40x106 

monocytes, resting T cells, or activated T cells from the same blood donors. 

DRMs and CMEs were prepared from each type of these cells as previously 

described (83). Briefly, 40x106 cells were lysed in 1% Triton X-100/PBS plus 1x 

Protease Inhibitor Cocktail (Fisher Scientific, Pittsburgh, PA) at 4˚C for 1 h. 

Lysates were clarified by centrifugation at 1,000 x g for 10 min, and the resulting 

supernatants were mixed with 45% sucrose in PBS which was then added to the 

bottom of an ultracentrifuge tube. Equal volumes of 35% and 5% sucrose/PBS 

were sequentially added to the tube to create discontinuous gradients. The tube 

was centrifuged at 166,000 x g for 18 h at 4°C in an Optima LE-80K 

ultracentrifuge (Beckman Coulter, Brea, CA). The light-scattering band near 

~20% sucrose (DRMs) was harvested, diluted in PBS containing 1x Protease 

Inhibitor Cocktail, and then centrifuged at 166,000 x g at for 2 h at 4°C. The DRM 

pellet was homogenized in PBS using a Dounce homogenizer. For CME 

preparation, 40x106 cells of each subset in PBS with 1x Protease Inhibitor 

Cocktail were disrupted with a Dounce homogenizer. After clarification, the 

resulting supernatant was centrifuged at 120,000 x g, and the pellet was 
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resuspended in PBS. Primary immunizations were followed by two immunization 

boosts on day 14 and day 28. Two weeks after the last immunization boost, 

animals were anesthetized with isoflurane and harvested from the retro-orbital 

sinus for serum collection.  

 To evaluate the immunization efficacy, an ELISA assay was developed to 

titrate Abs against human CD55, a common glycosylphosphatidylinositol (GPI)-

anchored protein in cell lipid rafts (84). Briefly, microplates were coated with 

recombinant CD55 protein at 0.1 ug/mL (R&D Systems, Minneapolis, MN). After 

washing and blocking with 5% FBS/PBS, plates were incubated with serially 

diluted immunosera, followed by the addition of anti-mouse IgG mAb conjugated 

with horseradish peroxidase (HRP). Pooled pre-immunization mouse sera were 

used as negative controls. Absorption was read at a wavelength of 450 nm in a 

plate spectrophotometer (BioTek, Winooski, VT).  

 

Knockdown of CD29 and CD98 in HeLa cells and T cells 

Dharmacon Smartpool Accell siRNA constructs against human CD29 and 

CD98 were purchased from Thermo Fisher Scientific (Pittsburgh, PA). These 

siRNA constructs were transfected into cells using the Amaxa Nucleofector 

system (Lonza, Basel, Switzerland) according to the manufacturer’s instructions. 

Briefly, 150 - 300 nM of each siRNA mixture was used per 5 x 106 activated T 

cells or 1 x 106 HeLa cells. Transfected cells were cultured for 48 h, and then 

subjected to Western blot or FACS using rabbit pAbs against human CD29 or 

CD98 to analyze knockdown of human CD29 or CD98. These cells were also 
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subjected to VV binding and infection to determine the effects of CD29 and CD98 

on VV binding and entry. 

 

Pretreatment of cells with polyclonal antibodies specific for host 

membrane proteins 

 Whole PBMCs were incubated with various pAbs against human 

membrane proteins of interest in an attempt to block VV binding. PBMCs were 

pretreated for 30 mins on ice with the following antibodies: rabbit pAbs against 

CCR2 purchased from Proteintech Group (Chicago, IL) (cat# 16153-1-AP); 

mouse anti-CD11a (clone G43-25B) purchased from BD Biosciences; rabbit 

pAbs against integrin beta-1 (CD29) purchased from Abnova (Taipei, Taiwan) 

(cat# H00003688-D01P); goat pAbs against integrin beta-2 purchased from 

Santa Cruz Biotechnology (Dallas, TX) (cat# sc-6624); mouse anti-CD33 (clone 

P67.6) purchased from BD Biosciences; CD52; rabbit pAbs against SLC3A2 

(CD98) purchased from Thermo Fisher Scientific (Pittsburgh, PA) (cat# PA5-

21547); mouse anti-CD169 (clone 7-239) purchased from AbD Serotech (Cardiff, 

UK). After washing, cells were resuspended in complete RPMI and subjected to 

VV binding assays. After PFA fixation, cells were analyzed with FACS for the 

mean fluorescent intensity (MFI) of YFP while gating on either myeloid or 

lymphocyte- specific morphologies. 
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Macrophage activation and RT-PCR transcriptional profiling 

 Monocyte-derived macrophages (MDMs) were activated using different 

cytokine combinations. First, isolated blood monocytes were cultured in complete 

RPMI-1640 supplemented with either 50 ng/ml of rhGM-CSF or 50 ng/ml of rhM-

CSF. After 7 days of differentiation, GM-CSF-induced MDMs (M1) were 

stimulated with 10 ng/ml of LPS plus 50 ng/ml of rhIFN-γ. M-CSF-induced MDMs 

(M2) were activated with either 10 ng/ml of rhIL-4 (M2a), 10 ng/ml of LPS plus 10 

ng/ml of rhIL-1β (M2b), or 10 ng/ml of rhIL-10 (M2c). Cells were cultured for 24 h. 

For inhibition of JAK2/STAT3 during M2c activation, 1-5 μM of cucurbitacin I (JSI-

124, Sigma-Aldrich, St. Louis, MO) was added along with rhIL-10. For RT-PCR 

analysis of activation-associated genes, cells were washed three times in PBS 

and subjected to RNA extraction using the RNeasy Mini kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. RNA was subjected to 

cDNA synthesis using the Superscript III First Strand synthesis kit (Life 

Technologies, Carlsbad, CA) according to the manufacturer’s instructions. Real-

time RT-PCR was performed using the RT2 SYBR Green/ROX FAST mastermix 

(Qiagen, Hilden, Germany) with primers against M1 or M2 specific genes, 

including: IL-6 forward, 5’-GAGGATACCATCCCAACAGACC-3’ and IL-6 reverse, 

5’-AAGTGCATCATCGTTGTTCATACA-3’; IL-10 forward, 5’-

GCCTAACATGCTTCGAGA-3’ and IL-10 reverse, 5’-

TGATGTCTGGGTCTTGGTTC-3’; CD163 forward, 5’-

CCAGTCCCAAACACTGTC-3’ and CD163 reverse, 5’-TTCTGGAATGGTAG 

GCCTTG-3’; Arg1 forward, 5’-CAGAAGAATGGAAGAGTCAG-3’ and Arg1 
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reverse, 5’-CAGATATGCAGGGAGTCACC-3’; and β-actin forward, 5’-

CTCGACACCAGGGCGTTAG-3 and β-actin reverse, 5’-

CCACTCCATGCTCGATAGAT-3’ (Life Technologies, Carlsbad, CA). Expression 

data by the cycle threshold (Ct) value was compared to actin expression and 

analyzed using 2−ΔΔCT as previously described (85). For infection of activated 

cells, M1 or M2-polarized cells were infected with VV WR at an MOI of 5 for 3 h. 

Cells were washed extensively in PBS and then cultured in media containing the 

activation cytokines.  

 

CsCl density-gradient ultracentrifugation for VV separation 

 Virus-containing supernatants and cell pellets were harvested from 5x107 

VV-infected M2 macrophages. To separate and analyze mature vs. enveloped 

virus particles, the virus was purified from cell lysates via 24 - 40% discontinuous 

sucrose gradients. Purified virus was added to CsCl gradients made with 2 ml of 

1.30 g/ml overlaid with 3 ml of 1.25 g/ml, followed by 4 ml of 1.20 g/ml in a 12 ml 

tube as previously described (86, 87) and centrifuged in an Optima LE-80K 

ultracentrifuge with an SW-41 rotor (Beckman Coulter, Brea, CA) at 20°C for 2 h 

at 120,000 g (32,000 rpm). Fractions (0.5 ml each) were harvested from the top 

of each gradient, and subjected to virus collection by ultracentrifugation at 21,000 

g (15,000 rpm) for 30 min in a tabletop microcentrifuge. Virus pellets were 

resuspended in 100 μl of PBS and sonicated in a cup horn sonicator. The 

absorbance of each fraction was measured at 260 nm and the number of virion 
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particles estimated using the follow formula: numbers of virus particles = A260 * 

1.2x1010. 

 

Signaling pathway inhibition in human primary macrophages 

 M2-polarized MDMs were infected with VV WR at an MOI of 5 for 3 h. 

Cells were washed three times with PBS, and incubated in complete RPMI 1640 

medium with 5 - 40 μM of the Akt inhibitor LY294002, 1 - 100 μM of the ERK 

inhibitor PD98059, or 1 - 10 μM of the JNK inhibitor SP600125. After incubation 

for 24 – 48 h, cells and supernatants were harvested and virus titers determined 

using the virus plaque assay. Cell lysates were also analyzed for the level of 

kinase inhibition using the “Pathscan Phospho-SAPK/JNK (Thr185/Tyr185),” 

“Pathscan Phospho-Akt1,” and “Pathscan Phospho-p44 MAPK” sandwich ELISA 

kits (Cell Signaling Technology, Danvers, MA) according to the manufacturer’s 

instructions. Within the same kits, antibodies against SAP/JNK, Akt, and Erk (Cell 

Signaling Technology) were used to detect levels of unphosphorylated targets. 

 

Confocal microscopy 

 PHLs were infected with vA5L-YFP VV at an MOI of 5 and fixed at various 

intervals. To detect extracellular virions, cells were incubated with the rabbit 

polyclonal antiserum NR-631 against the VV WR-encoded L1R protein (obtained 

through the NIH Biodefense and Emerging Infections Research Resources 

Repository, NIAID, NIH) followed by a secondary antibody staining of donkey 

anti-rabbit IgG (H+L) conjugated to Alexa Fluor 546 (Life Technologies, Carlsbad, 
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CA). An aliquot of the same infected cells were fixed with 2% PFA, permeabilized 

with 0.1% saponin, and incubated with phalloidin conjugated to Alexa Fluor 546 

(Life Technologies, Carlsbad, CA) for F-actin staining. For lipid raft staining, cells 

were incubated with cholera toxin subunit B (CTB) conjugated with Alexa Fluor 

647 (Life Technologies, Carlsbad, CA) at 4°C for 20 min to stain ganglioside M1 

(GM1). For CTB-patching, cells were treated with a 1:100 dilution of goat anti-

CTB pAbs (Millipore, Darmstadt, Germany) in 2% FBS/PBS for 30 min on ice, 

and then incubated at 37oC for 20 min as previously described (88). Cells were 

then mounted onto glass slides using ProLong Gold Antifade reagent (Life 

Technologies, Carlsbad, CA) containing 4′,6-diamidino-2-phenylindole (DAPI) 

dye for DNA staining. Slides were viewed using an Olympus FV1000-MPE 

confocal/multiphoton microscope fitted with a 60X water objective. Images were 

processed using ImageJ version 1.47 software (NIH, Bethesda, MD). 

 

Statistical analysis 

 Data obtained from two groups were analyzed using Student’s t test, 

whereas data obtained from three groups or more were analyzed using Tukey's 

post hoc analysis of variance (ANOVA) test. Values of p<0.05 were considered 

statistically significant. 
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Chapter IV - Results 

 

VV differentially binds to PHL subsets 

 The majority of studies investigating the entry of VV into host cells have 

focused on single-enveloped VV IMV particles because they are the most 

abundant (>98%) and maintain their membrane integrity after freezer storage (8, 

89). Double-enveloped virus forms like EEV and CEV not only have different 

binding behaviors for cell lines, they are difficult to maintain since they cannot be 

stored for long periods. The IMV particles of vA5L-YFP or EGFP-VV were 

therefore used in this study. Isolated monocytes, B cells, neutrophils, resting T 

cells, and NK cells were incubated with vA5L-YFP particles at binding conditions 

(4oC for 30 min) to study VV binding profiles for these PHL subsets. At an MOI of 

10, vA5L-YFP bound to 76 ± 10% of monocytes, 71 ± 9% of B cells, 28 ± 2% of 

neutrophils, 3 ± 2% resting T cells and 2 ± 2% of NK cells (Fig. 2A, 2B). These 

values were the results of the mean ± standard deviation (SD) from six healthy 

blood donors. VV binding to monocytes, B cells, and neutrophils was not affected 

by soluble heparan sulfate (HS) at 10 μg/mL (Fig. 2A, 2B), an optimal 

concentration that completely blocks VV non-specific binding to HS 

glycosaminoglycan (GAG) side chains of cell surface proteoglycans of BSC40 

cell line (90). In contrast, HS at 10 μg/mL eliminated the trace amount of VV 

binding to resting T cells and NK cells (Fig. 2A, 2B), suggesting that binding to 

these cells is GAG-dependent. VV binding to monocytes, B cells and neutrophils 

was markedly reduced by trypsin treatment (Fig. 2A, 2B).  
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Fig. 2. VV differentially binds to PHLs. (A) Major PHL subsets including 

monocytes, B cells, neutrophils, resting T cells and NK cells were untreated or 

treated with trypsin or HS, and then subjected to vA5L-YFP binding at an MOI of 

10. VV binding was measured by YFP intensity using flow cytometric analysis. 

(B) Pooled data represented mean ± SD of VV binding (% of YFP-positive cells) 

to PHL subsets from 6 blood donors. * p<0.05, ** p<0.01. 

Virus-free 

vA5L-YFP VV 

vA5L-YFP 
vA5L-YFP + HS 
vA5L-YFP + trypsin 
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We investigated whether T cells activated with anti-CD3 and anti-CD28 

antibodies become sensitive to VV binding to confirm that VV receptor(s) can be 

induced de novo upon T cell activation (56). As was previously reported, we 

found that cells became susceptible to binding upon activation which increased 

with time (Fig. 3A, 3B). Similar to the result with monocytes, B cells, and 

neutrophils, VV binding to activated T cells was markedly reduced by treatment 

with trypsin, but not soluble HS (Fig. 3B). In contrast, activated NK cells remain 

non-permissive to VV binding (Fig. 3C). These results indicate that VV binding to 

monocytes, B cells, neutrophils, and activated T cells is mediated by protein VV 

receptors independent of HS GAGs, and that these receptors are induced upon 

activation of T cells, but not with NK cells (Fig. 3D).  

 To visualize VV binding at the single cell level, purified monocytes, resting 

T cells, activated T cells and TA3 cells with vA5L-YFP paticles were incubated at 

binding conditions, and visualized with confocal microscopy to examine VV 

binding. At an MOI of 10, vA5L-YFP bound to monocytes at ~39 virions per cell 

(mean from 100 cells counted) (Fig. 4A, 4B), whereas VV binding was 

considerably lower in resting T cells (0.05 virions per cell, mean from 100 cells 

counted). vA5L-YFP did not bind to TA3 cells that were previously shown not to 

bind with VV (77, 91). After activation with anti-CD3/anti-CD28 Abs-coated 

magnetic beads for 3 days, activated T cells became sensitive to VV binding with 

a similar binding degree to that of monocytes (Fig. 4A, 4B).  
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Fig. 3. T cell activation induces VV binding susceptibility. (A, B) The kinetics 

of VV binding to T cells activated with anti-CD3 and anti-CD28 antibodies (n=6) 

during a 0 – 72 h activation period. (C) VV binding to activated T cells on day 3 of 

activation with trypsin or HS pretreatment. (D) Isolated NK cells were activated 

with IL-2 for 3 days, stained for surface CD69 and subjected to VV binding assay. 

* p<0.05, ** p<0.01. 
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Fig. 4. T cell activation increases the number of attached virions. (A) 

Representational confocal microscope analysis of VV binding assay performed 

on monocytes, resting T cells, T cells activated with anti-CD3 and anti-CD28 

antibodies, and the TA3 cell line at the single cell level. (B) Virions per cell count 

from a pool of 100 cells for donor represented as the mean ± SD (n=6) of VV 

binding to monocytes, resting T cells, T cells activated with anti-CD3 and anti-

CD28 antibodies, and TA3 cells. ** p<0.01. 
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VV infection varies among PHL subsets 

  To determine whether VV binding was correlated to VV reporter gene 

expression, we infected PHL subsets with EGFP-VV at an MOI of 10 for various 

length of time. EGFP-VV is a VV WR strain with an EGFP reporter gene under a 

VV early/late promoter. We confirmed that VV preferentially infected monocytes 

with 65 ± 8% (n=6) cells becoming EGFP-positive 6 h post-infection, whereas 15 

± 5% (n=6) of activated T cells were EGFP-positive 24 h post-infection (Fig. 5A, 

5B). In contrast, only 4 ± 2% (n=6) of B cells were infected, whereas neutrophils 

and resting T cells resisted VV infection as only trace amounts of these cells 

were EGFP-positive 24 h post-infection (Fig. 5A, 5B). VV infection of monocytes 

and activated T cells was significantly reduced by trypsin treatment, but not 

soluble HS (Fig. 5A, 5B). This result demonstrates the disparity between the 

degree of VV binding and viral gene expression in primary leukocytes. 

Particularly, although B cell and activated T cells are highly susceptible to VV 

binding, gene expression is relatively low. This may be explained by a rate-

limiting factor in a post-binding step such as entry and uncoating. Further 

analysis of monocyte subpopulations revealed that the vast majority of virus was 

bound to "classical" CD14high CD16- monocytes and were sensitive to VV 

infection when compared to "patrolling" CD14lowCD16+ monocytes (Fig. 6A, 6B). 

Thus, VV binding to primary human leukocytes is selective for certain cell types, 

and does not correlate with VV gene expression. 

Two previous studies have demonstrated that VV-infected primary human 

monocytes do not produce either viral late-gene products or viral DNA copies, 
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indicating that VV undergoes abortive infection in primary human monocytes (56, 

92). Our data together with these results indicate that: (1) monocytes are the 

most sensitive PHL subset to VV binding and infection, but the infection is 

abortive; (2) B cells and neutrophils are sensitive to VV binding, albeit to different 

degrees, but non-permissive to VV infection; (3) NK cells (both resting and 

activated states) and resting T cells resist VV binding and infection; and (4) from 

our findings and others (56), activated T cells are the only cell type among ex 

vivo PHLs to permit VV to complete the whole cycle of binding, infection and 

replication (56). 
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Fig. 5. VV reporter gene expression was mainly detected in monocytes. (A) 

Profiles of PHL subset expression of VV reporter gene EGFP and the effects of 

trypsin treatment. (B) Pooled data represent the mean ± SD of VV infected (% of 

EGFP-positive) cells to PHL subsets from 6 blood donors. * p<0.05, ** p<0.01. 
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Fig. 6. VV preferentially binds and infects CD14high, CD16- monocytes. 

Isolated monocytes were subjected to the VV binding assay with vA5L-YFP or 

infected with VV-EGFP to test for VV gene expression and then stained for 

surface CD14 and CD16. (A) FACS plot of CD16 staining vs A5L expression 

corresponding to VV binding. (B) VV binding assay with vA5L-YFP or infection 

assay with VV-EGFP gated on CD14high CD16- or CD14low CD16+ monocytes. 
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Profile of VV binding and infection of monocyte-derived cell lines 

  In light of the results showing that monocytes have among the highest 

degree of VV binding and are also the only cell type to express a VV reporter 

gene to a significant degree, VV binding and infection of monocytic cell lines was 

investigated. We used the human acute monocytic leukemia cell line THP-1, the 

pro-monocytic histiocytic lymphoma cell line U937, and the U1 cell line which is a 

HIV-1-infected clone from U937 with a latent infection phenotype. Using the VV 

binding assay at 5 MOI, U937 cells were by far the most susceptible to VV 

binding with 92.3 ±  5% YFP positive cells, followed by THP-1 with 30.8 ± 2%, 

and U1 with 35.1% ± 7% (Fig. 7A). In contrast, the degree of EGFP reporter 

gene expression for U937 was 24.5% ± 2% EGFP-positive, 48.7% ± 2% for THP-

1, and 2.3% ± 1% for U1 (Fig. 7B). Similar to primary leukocytes that are 

susceptible to VV binding, no direct correlation was seen with VV binding and 

infection between the cell types. However, this result reveals a clear distinction in 

VV binding and infection of U937 compared to U1 which is suggestive that HIV-1 

infection of U937 resulted in a down regulation of potential VV receptors. 
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Fig. 7. VV binding to monocytic cell lines. VV binding with A5L-YFP or 

infection with VV-EGFP were performed on the indicated monocytic cell lines. VV 

reporter gene expression (A) and virus binding (B) representative FACS plot 

histograms for EGFP or YFP fluorescence.  
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Effect of HIV infection on VV binding and infection 

  It was observed in this study that the HIV-1-infected cell line U1 had a 

significantly reduced degree of VV binding and infection relative to its HIV-1 

uninfected parent cell U937. To test the effects of HIV-1 infection on VV binding 

and infection, U937 and THP-1 cells were infected with HIV-1 derived from U1. 

U1 cells were activated with PMA and the culture supernatant was collected after 

3 days of activation. The supernatant was ultracentrifuged to collect HIV-1 

virions, resuspended, and incubated with U937. After 1 month in culture to allow 

for latent infection of cells, HIV-1 infection was detected via PCR amplification of 

the HIV-1 gag gene to measure the level of HIV-1 DNA integration. HIV-1-

infected THP-1 and U937 cells were positive for gag integration whereas 

uninfected cells were negative (Fig. 8A). HIV-1 infection is known to 

downregulate surface expression of CCR5. Staining of CCR5 with FACS 

revealed that HIV-1 infected THP-1 and U937 had significantly reduced CCR5 

surface expression (Fig. 8B). Thus, HIV-1 infected monocytic cells lines test 

positive for HIV-1 integration and the effects of host surface protein 

downregulation. It was revealed using the VV binding assay on the HIV-1 

infected or uninfected U937 that HIV-1 infection significantly lowers the degree of 

VV binding (Fig. 9). HIV-1 infection, however, had no measureable effect on VV 

binding to THP-1 (Fig. 9), although the degree of binding to THP-1 was already 

similar to that of U1 (Fig. 8A). This reduction in VV binding is similar to the initial 

comparison between U937 vs. U1. Thus, HIV-1 infection of monocytic cell lines 

causes a downregulation of VV surface receptors.   
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Fig. 8. Infection of monocytic cell lines with U1-derived HIV-1. Monocytic cell 

lines were infected with HIV-1 derived from the U1 cell line. (A) HIV-1 integration 

was examined by PCR by amplifying gag and detected using agarose gel 

electrophoresis (amplicon = 570 bp). (B) Representative FACS scatter plots of 

CCR5 surface expression of HIV-1 infected or uninfected monocytic cell lines. 
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Fig. 9. HIV-1 infected monocytic cell lines become resistant to VV binding. 

vA5L-YFP VV binding assay of HIV-1 infected monocytic cell lines with 

representative FACS scatter plots. 
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VV strongly binds to lipid rafts on the surfaces of all susceptible PHL 

subsets 

 Because lipid rafts play a critical role in VV entry into cell lines (40, 88), 

and entry is inhibited by treatment of HeLa cells with methyl-β-cyclodextrin 

(mβCD) (40), potential VV receptors were tested for enrichment in lipid rafts on 

primary human cells. We searched for the colocalization of VV binding with CTB-

stained lipid rafts on the surfaces of all susceptible PHL subsets. Visualization of 

lipid rafts in cell lines is often performed by “patching” which involves staining 

rafts with CTB and subsequently staining with anti-CTB pAb antibodies to 

aggregate rafts together on the cell surface. Colocalization of VV with lipid rafts 

on PHL subsets including monocytes, B cells, neutrophils, and activated T cells 

was observed in both patched and unpatched states, whereas CXCR4 on 

monocytes, neutrophils, and activated T cells, and CD19 on B cells did not 

colocalize with VV binding (Fig. 10A, 11A, 12A, 13A). Colocalization of CTB 

staining with VV A5L was measured as the percentage of pixels of A5L staining 

overlapping with CTB (Fig. 10B, 11B, 12B, 13B) and was always significantly 

higher than CXCR4 or CD19. CXCR4 and CD19 are not localized in surface lipid 

rafts in these cell types. This result strongly suggests that VV preferentially binds 

to surface lipid rafts in all ex vivo primary human leukocytes to which VV is 

known to be susceptible to bind. 
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Fig. 10. VV binds to lipid rafts on monocytes. Isolated monocytes were 

subjected to staining with CTB conjugated with Alexafluor 647 (red), or anti-

CXCR4 Ab conjugated with Alexafluor 647 (red) followed by patching with anti-

CTB. Monocytes were then incubated with vA5L-YFP (green) at an MOI of 10 

under binding conditions, fixed with 2% PFA, and adhered to poly-l-lysine coated 

coverslips. Scale bars represent 10 μM. (B) Colocalization analysis in the CTB-

patched images of the percentage of A5L overlap with CTB or CXCR4. * p<0.05. 

% A5L overlap with CTB 

* 
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Fig. 11. VV binds to lipid rafts on B cells. Isolated B cells were subjected to 

staining with CTB conjugated with Alexafluor 647 (red), or anti-CD19 Ab 

conjugated with Alexafluor 647 (red) followed by patching with anti-CTB. B cells 

were then incubated with vA5L-YFP (green) at an MOI of 10 under binding 

conditions, fixed with 2% PFA, and adhered to poly-l-lysine coated coverslips. 

Scale bars represent 10 μM. (B) Colocalization analysis in the CTB-patched 

images of the percentage of A5L overlap with CTB or CXCR4. * p<0.05. 

% A5L overlap with CTB 

* 
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Fig. 12. VV binds to lipid rafts on activated T cells. Activated T cells were 

subjected to staining with CTB conjugated with Alexafluor 647 (red), or anti-

CXCR4 Ab conjugated with Alexafluor 647 (red) followed by patching with anti-

CTB. T cells were then i incubated with vA5L-YFP (green) at an MOI of 10 under 

binding conditions, fixed with 2% PFA, and adhered to poly-l-lysine coated 

coverslips. Scale bars represent 10 μM. (B) Colocalization analysis in the CTB-

patched images of the percentage of A5L overlap with CTB or CXCR4. * p<0.05. 

% A5L overlap with CTB 

* 
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Fig. 13. VV binds to lipid rafts on neutrophils. Neutrophils were subjected to 

staining with CTB conjugated with Alexafluor 647 (red), or anti-CXCR4 Ab 

conjugated with Alexafluor 647 (red) followed by patching with anti-CTB. 

Neutrophils were then incubated with vA5L-YFP (green) at an MOI of 10 under 

binding conditions, fixed with 2% PFA, and adhered to poly-l-lysine coated 

coverslips. Scale bars represent 10 μM. (B) Colocalization analysis in the CTB-

patched images of the percentage of A5L overlap with CTB or CXCR4. * p<0.05. 

% A5L overlap with CTB 

* 
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VV binds to lipid rafts enriched in uropods of polarized leukocytes 

To further analyze the association of VV binding with lipid rafts, we polarized 

monocytes, B cells, neutrophils and activated T cells, and then conducted lipid 

raft staining and VV binding. During PHL migration and/or polarization in vivo and 

in vitro, GM1-stained lipid rafts and raft components move to the uropod ends of 

cells (93-96). Many surface proteins also move in and out of lipid rafts during the 

polarization process to fulfill certain physiological roles, e.g., as adhesion 

proteins move to the leading edge to regulate attachment and migration, cell 

communication proteins localize to the raft-enriched uropod (97). Thus, this 

assay not only provides another way to demonstrate the colocalization of VV with 

lipid rafts, but also presents a unique characteristic about the location of putative 

VV receptors during cell migration and polarization. As previously reported, GM-

CSF, SDF-1, bacterial peptide fNLPNTL, and anti-CD44-coated coverslips 

effectively induced polarization of monocytes (93), B cells (96), neutrophils (95), 

and activated T cells (81), respectively, as 80 ± 8% (n=6) of monocytes, 65 ± 6% 

(n=6) of B cells, 75% ± 11% (n=6) of neutrophils, and 35% ± 4% (n=6) of 

activated T cells displayed elongated cell shapes and uropod formation. In all 

polarized cell types, vA5L-YFP strongly colocalized with CTB-stained lipid rafts 

enriched in polarized cell uropods (Fig. 14, 15, 16, 17, 18, 19). In contrast, VV did 

not colocalize with F-actin molecules in lamellipodia in the leading edge of 

polarized cells. If monocytes were continually cultured for 3 days in GM-CSF-

containing complete RPMI 1640 (Fig. 15) to represent cell differentiation or 7 

days (Fig. 16) to represent fully differentiated macrophages, the cells also 
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maintained a polarized phenotype with bound VV strongly colocalized with lipid 

rafts in the uropods. These results indicate that VV receptors are strongly 

associated with lipid rafts in PHL subsets in both ex vivo and polarized states.  
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Fig. 14. VV binds to the uropods of polarized monocytes. VV binding to lipid 

rafts enriched in uropods of polarized monocytes. Cells were treated with GM-

CSF to induce cell polarization. Polarized cells were subsequently fixed with 2% 

PFA and stained with CTB conjugated with Alexafluor 647 (red), phalloidin 

conjugated with Alexa Fluor 546 to stain actin filaments (violet) and DAPI (blue). 

Cells were then subjected to VV binding with vA5L-YFP (green) and confocal 

microscopy analysis.  

 

 

vA5L-YFP 
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Fig. 15. VV binds to the uropods of polarized differentiating monocytes. VV 

binding to lipid rafts enriched in uropods of polarized differentiating monocytes. 

Cells were treated with GM-CSF to induce cell polarization for 3 days. Polarized 

cells were subsequently fixed with 2% PFA and stained with CTB conjugated 

with Alexafluor 647 (red), phalloidin conjugated with Alexa Fluor 546 to stain 

actin filaments (violet) and DAPI (blue). Cells were then subjected to VV binding 

with vA5L-YFP (green) and confocal microscopy analysis. 
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Fig. 16. VV binds to the uropods of macrophages. VV binding to lipid rafts 

enriched in uropods of polarized monocyte-derived macrophages. Polarized cells 

were subsequently fixed with 2% PFA and stained with CTB conjugated with 

Alexafluor 647 (red), phalloidin conjugated with Alexa Fluor 546 to stain actin 

filaments (violet) and DAPI (blue). Cells were then subjected to VV binding with 

vA5L-YFP (green) and confocal microscopy analysis. 
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Fig. 17. VV binds to the uropods of polarized B cells. VV binding to lipid rafts 

enriched in uropods of polarized B cells. Cells were treated with SDF-1 to induce 

cell polarization. Polarized cells were subsequently fixed with 2% PFA and 

stained with CTB conjugated with Alexafluor 647 (red), phalloidin conjugated with 

Alexa Fluor 546 to stain actin filaments (pink), and DAPI (blue). Cells were then 

subjected to VV binding with vA5L-YFP (green), and confocal microscopy 

analysis. 

 

 

 

vA5L-YFP 
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Fig. 18. VV binds to the uropods of polarized activated T cells. VV binding to 

lipid rafts enriched in uropods of polarized day 3 activated T cells. Cells were 

allowed to adhere to anti-CD44-coated plates to induce cell polarization. 

Polarized cells were subsequently fixed with 2% PFA and stained with CTB 

conjugated with Alexafluor 647 (red), phalloidin conjugated with Alexa Fluor 546 

to stain actin filaments (pink), and DAPI (blue). Cells were then subjected to VV 

binding with vA5L-YFP (green), and confocal microscopy analysis. 

 

 

 

 

 

 

vA5L-YFP 
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Fig. 19. VV binds to the uropods of polarized neutrophils. VV binding to lipid 

rafts enriched in uropods of polarized day 3 activated T cells. Cells were treated 

with bacterial peptide fNLPNTL to induce cell polarization. Polarized cells were 

subsequently fixed with 2% PFA and stained with CTB conjugated with 

Alexafluor 647 (red), phalloidin conjugated with Alexa Fluor 546 to stain actin 

filaments (pink), and DAPI (blue). Cells were then subjected to VV binding with 

vA5L-YFP (green), and confocal microscopy analysis. 
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Immunosera raised against DRMs strongly block VV binding  

 Because VV receptors are strongly associated with lipid rafts in PHLs and 

are likely proteins or protein modifications, we hypothesized that mouse 

immunization with DRMs from susceptible PHL subsets would be able to induce 

Abs that would block VV binding. To this end, we immunized BALB/c mice with 

DRMs fractionated from monocytes, activated T cells, or resting T cells. 

Immunosera against DRMs from resting T cells would not block VV binding as 

resting T cells do not express VV-binding receptors. Immunosera against whole 

cells or CMEs from monocytes, activated T cells, or resting T cells were also 

raised to be used as VV-blocking comparisons as a previous study has reported 

that immunosera against whole monocytes or activated T cells effectively 

blocked VV binding to activated T cells (56). We found that all immunogens from 

all cell types effectively elicited pAbs against the CD55 protein (Fig. 20). Because 

CD55 is associated with lipid rafts, DRMs from all cell types induced the highest 

titers of anti-CD55 Abs when compared with immunogens of whole cells or CMEs 

(Fig. 20). Immunosera raised against DRMs, whole cells, or CMEs from 

monocytes or activated T cells effectively blocked VV binding to monocytes, B 

cells, and activated T cells (Fig. 21). In contrast, immunosera raised against 

DRMs, whole cells, or CMEs from resting T cells did not affect VV binding to any 

of these cell types, which is similar to the results observed from pre-immunization 

sera. Anti-DRM immunosera exhibited the strongest blockage activity, followed 

by immunosera against CMEs and then whole cells (Fig. 21). None of the 

immunosera generated exhibited blocking activity against VV binding to 
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neutrophils. This result may suggest that VV binds to neutrophils using different 

receptors than on monocytes and T cells. The inability of immunosera to block 

VV binding on neutrophils may also be explained by the low basal level of VV 

binding which may limit the experimental resolution. Concordant with the 

monocyte binding result, infection of monocytes was drastically reduced when 

cells were pretreated with anti-DRM immunosera, and to a lesser extent by anti-

CME immunosera, but not by immunosera against DRMs or CMEs from resting T 

cells (Fig. 22A). Notably, anti-DRM immunosera did not affect endocytosis of 

latex beads (Fig. 22B), whereas cytochalasin D, a known endocytosis inhibitor, 

effectively blocked endocytosis of latex beads (Fig. 22B). Thus, immunosera 

raised against DRMs from monocytes or activated T cells effectively blocked VV 

binding to and infection of VV-susceptible PHL subsets. The blocking activity is 

significantly higher than that mediated by immunosera raised against CMEs or 

whole cells. These results suggest that VV receptors are enriched in DRMs, and 

these receptors are shared by the virus-susceptible subsets of PHLs.  
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Fig. 20. Immunosera derived from DRM is more reactive against raft-

specific CD55. Titers of anti-human CD55 Abs in immunosera raised against 

DRMs, CMEs, or whole cells from monocytes, resting T cells or activated T cells 

were determined using an ELISA assay. Mono W, whole monocytes; Mono CME, 

monocyte crude membrane extracts (CMEs); Mono DRM, monocyte detergent-

resistant membranes (DRMs); ActT W, whole activated T cells on day 3 of 

activation; ActT CEM, activated T cell CMEs, ActT DRM, activated T cell DRMs, 

ResT W, whole resting T cells, ResT CME, resting T cell CMEs, ResT DRM, 

resting T cell DRMs, Pre, preimmune serum. 
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Fig. 21. Blockage of VV binding with immunosera against DRM. Diluted 

immunosera at 1:10 in PBS were used to block VV binding to monocytes (A), B 

cells (B), activated T cells (C), and neutrophils (D). The mean fluorescence 

intensity (MFI) of YFP represents VV binding intensity to PHL subsets of 6 blood 

donors. Mono, monocytes; ActT, activated T cells on day 3 of activation; ResT, 

resting T cells; W, whole cells; CME, crude membrane extracts; DRM, detergent-

resistant membrane; Pre, preimmune serum. *p<0.05, and **p<0.01. 
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Fig. 22. Blockage of monocyte infection with immunosera against DRM. (A) 

Diluted immunosera at 1:10 in PBS were used to block VV infection of 

monocytes. (B) Effects of diluted immunosera at 1:10 in PBS and cytochalasin D 

on monocyte endocytosis of latex beads. The MFI of EGFP represents VV 

infection intensity to PHL subsets of six blood donors. CME, Crude membrane 

extract; DRM, detergent-resistant membrane. *p<0.05, and **p<0.01. 
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Immunosera depleted with VV-susceptible PHL subsets lose blocking 

activity against VV binding 

 To further test whether monocytes, activated T cells, and B cells share VV 

receptors, we pre-incubated anti-DRM immunosera with monocytes or activated 

T cells to deplete Abs in these immunosera. We found that anti-DRM 

immunosera depleted with either monocytes or activated T cells, but not resting T 

cells, profoundly reduced activity in blocking VV binding to all cell types 

examined including monocytes (Fig. 23A), B cells (Fig. 23B), and activated T 

cells (Fig. 23C). PHL subsets from six healthy donors were used in the Ab 

depletion. These results further indicate that VV receptors are enriched in lipid 

rafts and are protein or protein-mediated, and that efforts to identify poxvirus 

receptors. Thus, the study of interactions of individual poxvirus proteins with viral 

receptors should be focused on DRMs instead of soluble membrane proteins 

extracted from target cells by non-ionic detergent lysis methods. 

This conclusion adds to the knowledge of characteristics of VV receptors 

on PHLs, where: (1) receptors are mainly expressed on monocytes, B cells, and 

neutrophils in peripheral blood; (2) receptors are expressed de novo following T 

cell activation; (3) receptors are upregulated on CD16- monocytes versus CD16+; 

(4) receptors are lipid raft-associated. Using these criteria, a list of putative VV 

receptors was made using mass spectrometry or RNA-seq data from previous 

studies (Table 1). Proteins were selected based on their presence in monocyte 

detergent-resistant membranes (98), the upregulation on CD16- vs. CD16+ 
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monocytes (99) , and the upregulation on activated T cells vs. naïve T cells 

(100). 
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Fig. 23. Immunosera depleted with VV-susceptible PHLs subsets reduced 

their blocking activity against VV binding. Immunosera raised against DRMs 

from monocytes were diluted 1:10 in PBS, and then were treated with activated T 

cells (40x106); alternatively, immunosera raised against DRMs from activated T 

cells were treated with monocytes (40x106) to deplete Abs. Ab-depleted 

immunosera were then used to block VV binding to monocytes (A), B cells (B), 

and activated T cells (C). The MFI of YFP represent VV binding to PHL subsets 

of six blood donors. Data were compared using Tukey’s ANOVA assay. Anti-M 

DRMs, immunosera raised against DRMs of monocytes were incubated with 

activated T cells to deplete Abs; Anti-Act T DRMs, immunosera raised against 

DRMs of activated T cells were incubated with monocytes to deplete Abs; 

*p<0.05.  

 

 

 



72 
 

Table 1. Partial list of lipid raft-associated proteins expressed on different 

PHL subsets.   

Raft-associated 
proteins 

Monocytes 

Upregulated 
on CD16- 

monocytes 
Activated 

T cells B cells 

Alpha enolase x x x x 

Annexin VI x x x x 

ATP1A1 x 
 

x x 

Carboxypeptidase M x x 
  Catenin, alpha 1 x 

 
x x 

CAP1 x x x x 

*CCR5 x x x 
 CD11b x x x x 

*CD18 x 
 

x x 

CD1d x x 
 

x 

*CD9 x x x x 

*CD29 x 
 

x x 

*CD33 x x 
  CD36 x x 
  CD44 x x x x 

*CD98 x  x x 

CXCR1 x x x 
 Flotillin 1 x x x x 

Flotillin 2 x 
 

x x 

Galectin-9 x 
 

x 
 IL-13Rα1 x x x x 

Lamp 2 x  x x 

LDLR x  x x 

Syntaxin 7 x  x x 

 

A list of putative VV receptors was made using mass spectrometry or RNA-seq 

data from previous studies. Proteins were selected based on the presence in 

monocyte detergent-resistant membranes (98), the upregulation on CD16- vs. 

CD16+ monocytes (99) , and the upregulation on activated T cells vs. naïve T 

cells (100). *Boldface indicates that the protein was further investigated in this 

chapter. x, protein is expressed on the cell type surface. 
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Lipid raft-associated proteins CD29 and CD98 are not directly involved in 

VV binding 

 The lipid raft-associated proteins CD29 and CD98 in HeLa cells and 

mouse embryonic fibroblasts (MEFs) were demonstrated to play a critical role in 

VV entry into these cells, as knockdown or knockout of these proteins 

significantly reduce VV entry (101, 102). In addition, VV entry into GD25 cells (a 

mouse cell line that is deficient in CD29 expression) was less efficient than entry 

into GD25β1A cells (GD25 cells expressing human CD29) (101). We then 

wanted to determine whether these two lipid raft-associated proteins also play a 

role in VV binding, entry, and infection in PHLs. We found that knockdown of 

either CD29 or CD98 in HeLa cells (Fig. 24A) or activated T cells (Fig. 24B) did 

not affect VV binding to these cells (Fig. 24C, 24D). However, knockdown of 

CD29 or CD98 in HeLa cells reduced EGFP-VV infection, as MFI of EGFP was 

significantly reduced in HeLa cells transfected with siRNA constructs against 

human CD29 or CD98 (Fig. 24C), this result is consistent with the previous 

reports (101, 102). In contrast, knockdown of CD29 or CD98 in activated T cells 

had no effect on VV infection (Fig. 24D). In fact, CD29 expression on the surface 

of HeLa cells pre- or post-knockdown of CD29 had no correlation with VV 

binding, as both the CD29-negative and CD29-positive population did not show 

any difference in VV binding (Fig. 24E).  

 These results are in agreement with previous reports showing that CD29 

and CD98 are important for VV infection in HeLa cells through mediating VV 

entry, but these two proteins have no effect on VV binding, entry, and infection of 
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primary human T cells, although they are highly expressed on activated T cells. 

Notably, VV binding and CD29 expression were highly correlated on activated T 

cells (Fig. 24E). VV binding was also previously shown to correlate with T cell 

activation markers CD25 and CD69 (56). The apparent correlation with VV 

binding and CD29 cannot be used to suggest CD29 as a VV receptor because 

CD29 is also expressed on naïve cells (103) and level of expression correlates 

with T cell activation (104), as well as with CD25 and CD69 (103). 
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Fig. 24. Knockdown of the raft-associated factors CD29 and CD98 has no 

direct effect on VV binding. HeLa cells and primary human activated T cells 

were transfected with siRNA against CD29 and CD98 and the level of 

knockdown was measured by Western blot on HeLa cells (A) and surface 

expression by FACS on activated T cells (B). A VV binding assay with vA5L-YFP 

and infection assay with VV-EGFP were performed on HeLa (C) and activated T 

cells (D) to observe the effects on infection after siRNA knockdown. (E) A flow 

cytometry plot of HeLa cell CD29 surface staining versus vA5L-YFP showing the 

relationship between CD29 expression and VV binding. *p<0.05. NS, not 

significant.  
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Polyclonal antibody blockage of specific host surface proteins  

Our data suggested several interesting candidates for protein VV 

receptors (Table 1). To test the potential binding of VV to particular protein 

species, we attempted to block VV binding by first pretreating cells with pAbs 

raised against full-length or extracellular domains of human membrane proteins 

of interest. Panels of pAbs included targets with surface expression patterns 

matching patterns of VV binding to PHL subsets, including: lipid raft-associated 

proteins CD9, CD33, CCR2, CCR5; adhesion molecules Integrin αL, integrin β1, 

CD169; and GPI-anchored proteins CD14, CD52, CD55, and CD59. None of the 

pAbs tested demonstrated aberrant VV binding measured by FACS (Fig. 25). 
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Fig. 25. Polyclonal antibody blockage against lipid raft-related surface 

proteins. Lipid raft-related human proteins of interest were targeted by pAb 

treatment to block VV binding. In three separate experiments, primary human 

monocytes were treated with different panels of pAbs and subjected to a VV 

binding assay with vA5L-YFP. Degree of binding was related by measuring the 

MFI of YFP. *p>0.05. VV, vaccinia virus; DRM, detergent-resistant membrane; 

ns, not significant.

MFI of YFP MFI of YFP 

MFI of YFP 
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M1- and M2-polarized macrophages are permissive to VV replication 

It was previously reported that VV exhibits an abortive infection in primary 

human MDMs derived from peripheral blood monocytes by culturing them in 

media containing 10% human AB serum (45). We infected human AB serum-

derived MDMs with VV WR at an MOI of 5 for 3 h to 48 h and found that VV did 

not replicate as virus plaque numbers did not increase (Fig. 26A), thus 

corroborating this prior report (45). Compared to MDMs generated with human 

AB serum, it is known that supplementation of media with GM-CSF or M-CSF 

generates M1- or M2-polarized cells, respectively, and promotes cell survival 

(105). After deriving MDMs with these cytokines, both M1 and M2-polarized 

MDMs expressed the low-density lipoprotein (LDL)-binding glycoprotein CD68, a 

common macrophage marker, whereas only M-CSF-polarized cells markedly 

expressed the scavenger receptor CD163, a surface marker for M2 MDMs (Fig. 

26B). In contrast to MDMs derived from human AB serum, GM-CSF and M-CSF-

derived MDMs were permissive to VV (Fig. 26C). At an MOI of 5, GM-CSF-

polarized cells produced 11.3 ± 2.1 PFU per cell at 24 h and 15.3 ± 1.2 PFU per 

cell at 48 h. M-CSF-polarized cells produced 24.5 ± 2.3 PFU per cell at 24 h and 

31.7 ± 3.1 PFU per cell at 48 h. In comparison, HeLa cells, a human epithelial 

carcinoma cell line widely used for VV infection and replication, produced 44.0 ± 

6.0 PFU per cell at 24 h and 56.7 ± 5.5 virions per cell at 48 h. Primary T cells 

activated with anti-CD3 and anti-CD28 antibodies were also productive as 

previously reported (56), but only produced 1.8 ± 0.8 PFU per cell at 24 h and 3.3 

± 1.5 PFU per cell at 48 h (Fig. 26C). Thus, VV efficiently replicates in primary 
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human M1 and M2 cells, relatively less efficiently in activated T cells, but does 

not replicate in human AB serum-derived MDMs. 
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Fig. 26. VV replicates in GM-CSF or M-CSF-derived MDMs. MDMs derived 

from human serum AB (A) or with GM-CSF or M-CSF (C) were infected with 5 

MOI of VV WR and virus was extracted from cell lysates at 3, 24, and 48 h of 

post infection. (B) CSF-derived MDMs were surface stained for the human 

macrophage marker CD68, and the M2-specific marker CD163 and analyzed by 

FACS. (D) The viral titers produced per cell of a variety of primary macrophages 

and HeLa cells were compared by infecting cells at 5 MOI and determined by 

plaque assays on the cell lysates at 3, 24, and 48 h of post-infection. All data are 

representative of cells derived from five blood donors. hpi, hours post-infection. 
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To understand whether the different degrees of VV replication in the three 

types of MDMs (M1, M2, and human AB serum-derived MDMs) are directly 

related to the efficacy of virus binding and infection, MDMs were infected with 

VV-EGFP, a VV WR containing an EGFP reporter gene regulated under a VV 

early/late promoter, for a short period (< 6 h), or incubated with vA5L-YFP under 

binding conditions (on ice for 30 min). EGFP-positive or YFP-positive cells were 

quantified by FACS. No significant differences in either early infection or virus 

binding were observed among these three MDM types (Fig. 27), suggesting that 

VV binding and early infection is comparable among human AB serum, GM-CSF, 

and M-CSF-derived cells. VV infection was previously reported to induce 

apoptosis in the murine macrophage cell line J774.G8 (106). To investigate the 

fates of VV infection in primary human cells, apoptosis was monitored by 

intracellular staining of active caspase-3. No significant levels of caspase-3-

positive MDMs were detected and did not increase within two days of infection 

(Fig. 28A). This result is in contrast to uninfected primary human monocytes that 

are known to undergo spontaneous apoptosis in culture (107). Additionally, 

infected MDMs were stained with PI to detect necrotic cells and no increase in 

PI-positive cells was observed (Fig. 28B). This result is concordant with 

observations that cell numbers were never significantly decreased throughout the 

two-day infection and no nucelosomal units or apoptotic bodies were observed 

throughout extensive viewing with confocal microscopy. It is notable that 

detection of surface phosphatidylserine with annexin-V was not an appropriate 

assay for this experiment, as VV was found to contain phosphatidylserine in the 
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virion outer membrane (108, 109). We found that most cells were positive for 

annexin-V staining after virus binding and throughout the infection (data not 

shown). Therefore, MDMs derived from human AB serum, GM-CSF, or M-CSF 

treatment have a similar degree of early infection and binding, and do not 

undergo apoptosis within 2 days of infection. 
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Fig. 27. VV binding and infection of human serum- and CSF-derived MDMs. 

The degrees of VV binding to and early infection of MDM subtypes were 

determined by FACS. MDM subtypes were incubated with vA5L-YFP at an MOI 

of 5 on ice for 30 min or with VV-EGFP at an MOI of 5 for 6 h and then subjected 

to FACS to determine the efficacy of VV binding and early infection. All data are 

representative of cells derived from five blood donors. 
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Fig. 28. VV infection does not induce apoptosis in MDMs. Necrosis and 

apoptosis of infected monocytes and MDMs were detected using PI staining and 

intracellular caspase-3 staining at 6 h, 24 h, and 48h post-infection. All data are 

representative of cells derived from five blood donors. hpi, hours post-infection; 

ns, not significant. 
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Virus factories, actin tails, and branching structures are formed in VV-

infected macrophages 

 Since we found that primary macrophages are permissive to VV, we 

sought to find VV-associated structures previously discovered in infected cell 

lines. The first structure we searched for was actin tails. Virions attached to the 

cell surface induce intracellular signaling along with VV early proteins to induce 

the polymerization of actin to extend the membrane under the attached virions to 

thrust them far away from the main cell body (110). These actin tails are strongly 

associated with cell-to-cell spread of VV (11). Additionally, between 2 – 6 h post-

infection, perinuclear regions in the cell where poxvirus DNA replication takes 

place become wrapped with membrane from the endoplasmic reticulum (ER) (7). 

These regions become the main sites of poxvirus assembly and are referred to 

as virus factories (7). Although virus factories and actin tails are well documented 

in VV-infected cell lines, they could not be detected in infected primary DCs (51). 

To further investigate the cellular effects of VV infection and replication in MDMs, 

we searched for the presence of these common structures associated with VV-

infected cell lines. At various stages of vA5L-YFP infection, monocytes or M2-

polarized MDMs were visualized using confocal microscopy. In addition, F-actin 

was stained with phalloidin conjugated to the fluorophore Alexafluor 647 to 

observe actin dynamics throughout the infection. In agreement with the results 

obtained from the virus plaque assay, primary monocytes showed no visible 

increase in VV particles after 24 h infection (Fig. 29). In contrast, VV replication in 

MDMs was apparent as cell-associated virions increased (Fig. 29). 
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Characteristically, VV infection in cell lines such as HeLa cell leads to the 

formation of perinuclear virus factories that co-opt a section of the ER for VV 

DNA replication and initial virus assembly (7). After 24 h infection, perinuclear VV 

factory structures with high levels of L1 expression were observed in M2-

polarized MDMs (Fig. 30), but not in monocytes (Fig. 29). These perinuclear 

factory structures in M2 MDMs exhibited DAPI staining, indicating VV DNA 

replication (Fig. 30).  

CEV virions in cell lines protrude from the cell surface via actin 

polymerization (111). This process requires certain host factors such as Abl 

tyrosine kinases (112) and the products of VV genes A36, A33, A34, and B5R 

(8). We found that VV virions associated with actin tails in MDMs became visible 

by 3 h post-infection and persisted throughout the course of infection (Fig. 31). 

Additionally, VV virions were frequently observed to localize inside projections 

linking neighboring cells together and in areas with lamellipodia-associated 

protrusions (Fig. 29, white arrows, Fig. 32). Virus-induced branching between 

cells also occurred (Figs. 29, 32), which is reminiscent of the elongation and 

branching observed in infected cell lines such as BS-C-1 (113). The VV-

associated lamellipodia and branching may represent a strategy for cell-to-cell 

transmission, which can be visualized by live imaging assays. The increasing 

presence of multi-nucleated cells was also evident over the course of infection. 

Macrophages can fuse together to form multi-nucleated cells (giant cells), and 

this process is associated with granulomas and may occur in response to 

presence of foreign bodies and certain pathogens. We found that 4.5 ± 1.6% (n = 
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6) of cells were multi-nucleated at the start of infection, which increased to 19.4 ± 

5.0% (n = 6) after 24 h post-infection (Fig. 33). Together, our data indicate that 

VV factory formation and VV-associated actin tails occur in infected primary 

MDMs, but not in primary monocytes. Additionally, VV dissemination may occur 

through routes of cell-to-cell transmission via actin tails, lamellipodia, or 

branching structures. 
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Fig. 29. Virions increase in infected MDMs. Primary monocytes and M2-

polarized MDMs were infected with vA5L-YFP (green) at 5 MOI for various time 

points as indicated and visualized along with F-actin staining with phalloidin (red) 

and DNA staining with DAPI (blue). Scale bars represent 10 μM. All data are 

representative of cells derived from five blood donors.  
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Fig. 30. Virus factories are present in VV-infected MDMs. M2-polarized 

MDMs were infected with vA5L-YFP (green) at 5 MOI for various time points as 

indicated and visualized along with F-actin staining with phalloidin (red) and DNA 

staining with DAPI (blue). Scale bars represent 10 μM. All data are 

representative of cells derived from five blood donors.  
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Fig. 31. VV-infected MDMs generate actin tails. M2-polarized MDMs were 

infected with vA5L-YFP (green) at 5 MOI for the indicated time points and 

visualized with F-actin staining by phalloidin (red) and DNA staining with DAPI 

(blue). Scale bars represent 10 μM. All data are representative of cells derived 

from five blood donors.  
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Figure 32. VV associates with cell linking and branching structures. (A) M2-

polarized MDMs were infected with vA5L-YFP (green) at 5 MOI for various time 

points as indicated and visualized along with F-actin staining with phalloidin (red) 

and DNA staining with DAPI (blue). (B) Transillumination field of A5L-YFP 

infected M2 MDM. Scale bars represent 10 μM. All data are representative of 

cells derived from five blood donors.  
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Figure 33. VV-infected MDMs develop giant cells. Giant cell formation 

throughout VV infection was observed and multinucleated cells counted at 

various time points. Graph is representative of cells derived from five blood 

donors. * p<0.05, ** p<0.01 . 
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MDMs mainly produce enveloped forms of VV 

VV titers in culture supernatants and cell pellets from infected M1 and M2-

polarized MDMs were analyzed by virus plaque assay, and it was found that 

supernatants contained more infectious virions than cell lysates (Fig. 34A); 

specifically, virus titers were 3-fold and 5-fold higher than those from cell lysates 

of M1 and M2, respectively. Given that a 2-day VV infection did not cause 

significant cell apoptosis and death that released IMV virions into the culture 

supernatants, our results suggest that most virions produced in MDMs may be in 

the form of EEV. The cell-associated virions titrated by the virus plaque assay 

could either be IMV within the cell, CEV attached to the cell surface, EEV bound 

to the cell surface, or virus particles from the input of the primary infection. The 

proportion of intracellular versus extracellular cell-associated virus was 

determined by confocal microscopy using vA5L-YFP with antibody staining of the 

VV surface envelope protein L1. By this approach, intact virus particles inside or 

outside the cells can be visualized with vA5L-YFP, whereas cell surface-attached 

virions are seen by L1 staining of vA5L-YFP virions. For the first 8 h of infection, 

92.8 ± 8.5% of cell-associated virions were extracellular (Fig. 35B, yellow merged 

from L1 red and YFP green), which was most likely left over from the primary 

virus input. By 24 h post-infection, the total number of virions was greatly 

increased and but the percentage of extracellular VV decreased to 45.5 ± 7.0% 

(Fig. 35B). By 48 h, nearly all of the cell-associated virions were again 

extracellular, at 87.5 ± 5.2% (Fig. 35B). These data suggest that, by 48 h of 

infection, nearly all de novo cell-associated virus is either CEV or EEV that 
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reattached to the cell surface. This visualization of cell-associated VV suggests 

that even the virus derived from cell pellets in Fig. 34A is mostly the double-

membraned CEV / EEV form. 

To analyze the proportion of double-enveloped forms (CEV and EEV) 

versus single-enveloped mature forms (IMV), virions were collected from cells 

and supernatants, purified, combined and separated by a CsCl density-gradient 

ultracentrifugation. The CsCl density-gradient is able to separate double-

enveloped virions (EEV or CEV) that have a lower buoyant density of 1.23-1.24 

g/ml from single membrane IMV particles that have a higher buoyant density of 

1.27-1.28 g/ml (114). For M2 cells, analysis of fractions from the gradient 

revealed that most virus particles were enriched in the fraction associated with 

EEV buoyant density (Fig. 34B), with an estimated 3.8 times the number of VV 

particles calculated in the IMV form. This is in contrast to VV virions that are 

produced by the CV-1 cell line (Fig. 34B), with an estimated 4.1 fold higher 

number of IMV relative to fractions associated with EEV. This result from infected 

CV-1 cells is typical of most cell lines infected with VV WR. Overall, our results 

indicate that VV produced in MDMs is mainly EEV released into the supernatant, 

and that by 48 h of infection most cell-associated VV is on the cell surface. 
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Fig. 34. MDMs mainly produce enveloped forms of VV. (A) M1- and M2-

polarized MDMs were infected with VV WR at 5 MOI. Virus was extracted from 

either cells or culture supernatant at 3, 24, and 48h time points and analyzed by 

a plaque assay. (B) Purified VV particles from VV WR-infected M2-polarized cells 

and CV-1 cells were extracted from cell lysates and supernatants and analyzed 

by separation on a CsCl density gradient. Fractions from the gradients were 

tested for absorbance at 260 nm to estimate the amount of virus particles 

corresponding to the buoyant densities of mature or enveloped forms of VV. All 

data are representative of cells derived from five healthy blood donors. * p<0.05. 
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Fig. 35. Cell-associated VV is mainly extracellular 48 h post-infection. (A) 

M2-polarized cells infected with vA5L-YFP (green) under the same conditions 

were stained for the VV envelope protein L1 (red) and visualized by confocal 

microscopy. Scale bars represent 10 μM. (B) The number of extracellular (A5L + 

L1 staining) and intracellular (A5L alone) cell-associated virions were counted at 

different time points as indicated. All data are representative of cells derived from 

five healthy blood donors. * p<0.05. hpi, hours post-infection. 
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VV-associated signaling pathways are required for virus replication in 

MDMs 

 VV is dependent on Erk1/2 and Akt signaling pathways for entry and 

replication (115-118). Additionally, contrasting reports describe the SAPK/JNK 

pathway as either supportive for VV replication (119) or having no effect (120). 

VV infection also activates MKK4/7 for the JNK1/2 pathway which is important for 

changes in host cell motility and branching in mouse embryonic fibroblasts 

(MEFs) (120). To analyze the dependence of these three pathways on VV 

replication in MDMs independent of binding and entry, M2-polarized cells were 

infected with VV at an MOI of 5 for 3 h and then treated with various 

concentrations of the Akt inhibitor LY294002 and the Erk1/2 inhibitor PD98059. 

We found that both inhibitors reduced virus replication in a dose-dependent 

manner, suggesting that Akt and Erk pathways play a critical role in VV 

replication in MDMs (Fig. 36B), which is in agreement with the results obtained 

from VV infection in cell lines. Interestingly, the effects of both GM-CSF and M-

CSF on MDM differentiation and maturation are partly through activation of the 

Akt and Erk pathways. We also found that VV replication was markedly inhibited 

by the JNK1/2 inhibitor SP600125 in a dose-dependent manner (Fig. 36B). 

SP600125 was previously found to decrease VV and cowpox replication in cell 

lines, but the same degree of inhibition was observed in JNK1 and JNK2-

knockout MEFs (121), which strongly suggests a JNK1/2-independent effect of 

SP600125.   
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Figure 36. VV-associated signaling pathways are required for VV replication 

in MDMs. M2-polarized MDMs were infected with 5 MOI of VV WR for 3 h; cells 

were washed and treated with 5, 10, or 40 μM of LY294002, 1, 10, or 100 μM of 

PD98059, or 1, 5, or 10 μM of SP600125. Cell lysates were collected at 3 and 24 

h post-infection. (A) Lysates were analyzed by a sandwich ELISA coated with 

anti-Akt, Erk, or JNK antibodies and treated with secondary antibodies against 

pAkt, pErk, and pJNK and unphosphorylated targets, respectively. (B) VV was 

extracted from lysates at the different time points as indicated and titrated by a 

virus plaque assay. All data are representative of cells derived from five blood 

donors. * p<0.05. 
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Effects of macrophage activation on VV replication 

 To test the effects of different macrophage activation states on VV 

replication and to further probe the pathways related to VV replication in MDMs, 

M1 and M2 activation were induced to observe the effects on VV replication. In 

general, classical (M1) activation of macrophages in response to IFN-γ and LPS 

stimulation exhibits an inflammatory phenotype. Alternative (M2) activation of 

macrophages can be induced via a variety of cytokines and reagents including 

LPS, immune complexes, glucocorticoids, IL-1β, IL-10, TGF-β and Th2 cytokines 

like IL-4 and IL-13. These stimuli can produce distinct cell types with unique 

functions. M1-polarized cells activated by LPS and IFN-γ, and M2-polarized cells 

activated by either IL-4 (M2a), LPS plus IL-1β (M2b), or IL-10 (M2c), for 2 days 

were analyzed with RT-PCR for common M1 and M2 activation markers. M1 

activation exhibited higher IL-6 mRNA, whereas M2-activated cells had higher 

mRNA levels of arginase 1 (arg-1), CD163, and IL-10 (Fig. 37A). In addition, 

surface staining and FACS showed that activated M1 expressed higher levels of 

the M1 activation marker CD86 on the cell surface (Fig. 37B). M1- or M2-

polarized cells were infected with VV WR at an MOI of 5 for 3 h, and then 

subjected to activation. Activation of M1-polarized cells with LPS plus IFN-γ had 

no effect on VV replication as VV plaque numbers were not affected (Fig. 38A). 

Similarly, activation of M2-polarized cells by IL-4 had no effect on VV replication, 

but treatment with LPS + IL-1β or with IL-10 significantly reduced VV productivity 

(Fig. 38A). At 48 h of infection, activation of M2b and M2c reduced VV plaques 
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from 1.22 ± 0.13 x106 in M2-polarized cells to 0.55 ± 0.06 x106 and 0.20 ± 0.05 

x106, respectively. 
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Fig. 37. Verification of macrophage activation markers. M1-polarized cells 

were stimulated with LPS + IFN-γ, whereas M2-polarized cells were stimulated 

with IL-4 (M2a), LPS + IL-1β (M2b), or IL-10 (M2c). (A) After 24 h of infection, 

RNA was extracted from cells and then subjected to cDNA synthesis and RT-

PCR to detect M1 (IL-6) and M2 (Arg1, CD163, IL-10) activation-associated 

genes. (B) M1 cells were surface stained for the activation marker CD86 and 

analyzed by flow cytometric analysis. All data are representative of cells derived 

from five blood donors. * p<0.05, ** p<0.01 
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In T cells and macrophages, the downstream effects from IL-10 receptor 

activation largely act through the JAK/STAT pathway, with STAT3 being a 

prominent transcription factor. We used cucurbitacin I, a specific inhibitor of 

JAK2/STAT3, to probe the effect of STAT3 activation on VV replication. 

Compared to untreated M2 cells, M2c cells had significantly higher levels of 

pSTAT Y705 as determined by FACS, indicating that IL-10 treatment activates 

STAT3. Both M2-polarized and M2c cells treated with cucurbitacin I had reduced 

levels of activated STAT3 (Fig. 38B). When M2c cells were infected with VV WR 

at an MOI of 5 for 3 h, followed by addition of cucurbitacin I, VV production 

increased to the level of M2 cells without IL-10 stimulation (Fig. 38D). For 

example, infected M2 cells treated with IL-10 for 48 h produced 0.5 ± 0.2 x106 

PFU, whereas cells treated with IL-10 + 5 uM cucurbitacin I produced 1.4 ± 0.1 

x106 PFU. Surprisingly, M2-polarized cells even without IL-10 treatment produced 

more VV in response to the inhibitor treatment (Fig. 38C). After 48 h of 

incubation, untreated M2-polarized cells produced 1.3 ± 0.1 x106 PFU whereas 

cells treated with 5 uM cucurbitacin I produced 1.8 ± 0.1 x106 total PFU. Overall, 

these data demonstrate that M1 or M2a activation has no effect on VV 

replication, but M2b and M2c activation markedly reduces virus production. With 

M2c activation, a JAK2/STAT3 inhibitor rescued levels of virus production to 

comparable levels to cells without IL-10 treatment. 
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Fig. 38. Alternative activation of MDMs reduces VV production in a STAT3-

dependent manner. (A) M1- or M2-polarized cells were infected with 5 MOI of 

WR VV for 3 h. Cells were washed extensively and treated with M1 or M2 

stimulation factors. At 24 and 48 h of infection, virus plaque assays were 

performed on cell lysates from activated MDMs. (B) M2-polarized cells were 

stimulated with IL-10 with or without cucurbitacin I and analyzed for STAT3 

activation by intracellular staining with anti-pSTAT3 Y705. (C, D) Virus plaque 

assays were performed on lysates from IL-10 or IL-10 + cucurbitacin I-treated 

cells after 3, 24, and 48 h of infection. All data are representative of cells derived 

from five blood donors. * p<0.05, ** p<0.01. hpi, hours post-infection. 
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Chapter V - Discussion 

 

Profile of VV binding and infection of PHLs 

The discovery of poxvirus receptors will provide a better understanding of 

the unique effectiveness of live VV-based vaccines that are a focus of several 

current clinical trials. This knowledge is requisite for the rational development of 

safer and more effective poxvirus-based vaccines against other infectious 

pathogens and tumors. Currently, over a dozen viral vaccines based on live 

poxvirus vectors are licensed in veterinary medicine (122). In humans, a 

combination of a poxvirus-based HIV-1 vaccine priming with viral envelope (Env) 

boosting demonstrates a promising protective effect in the HIV-1 vaccine efficacy 

trial, known as the RV144 clinical trial (123). The success of these poxvirus-

based vaccines greatly renews research interest in poxvirus biology and virology. 

Because VV replication is dependent on epidermal growth factor receptor 

(EGFR)/Ras pathway signaling, which is commonly active in epithelial cancers 

(124), VV has been developed as a promising oncolytic agent to kill tumor cells, 

and been engineered as a vehicle for the intravenous delivery and expression of 

anti-tumor siRNA and peptides (70, 124, 125). Therefore, characterization of VV 

binding and infection tropism will also broaden the prospects for engineering live 

viruses to more specific and dangerous for cancer cells 

 In this dissertation, we observed the patterns of VV binding to and 

infection of major PHL subsets including monocytes, B cells, neutrophils, NK 

cells, and T cells. We found that VV exhibited an extremely strong bias towards 
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binding to and infecting the monocytes subpopulation of PHLs (Fig. 2, 3) which is 

in agreement with previous reports (56, 126, 127). VV also bound to primary B 

cells to a similar degree as that of monocytes, but VV binding to neutrophils was 

considerably lower (Fig. 2, 3). These results suggest that monocytes not only 

express VV receptors on the cell surface but also have all pathways necessary 

for viral uptake, entry, intracellular trafficking and ultimately penetration to the 

cytoplasm, where the whole process of poxvirus replication takes place. In 

contrast, primary B cells and neutrophils express VV receptors on their surface, 

albeit at different degrees, but they likely lack cellular pathways for VV entry or 

other downstream events. It is also possible that VV may require more than one 

molecular species as receptors, and monocytes have all these molecular 

species, whereas B cells and neutrophils have fewer. Many viruses such as 

poliovirus use a single molecular species as its receptor (128), whereas other 

viruses such as HIV-1 use more than one molecular species for viral entry (128). 

Different outcomes of VV binding to monocytes versus B cells or neutrophils 

imply that these cell types can be used as cell models to dissect the molecular 

mechanisms of poxvirus binding, penetration, entry, and infection, eventually 

leading to a better understanding of poxvirus tropism and species specificity, and 

to the discovery of poxvirus receptors.  
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HIV-1-infection of monocytic cell lines and VV binding 

 Interestingly, it was found that monocytic cell lines had a marked reduction 

in VV binding after HIV-1 infection of these cells. When screening different 

monocytic cell lines with the VV binding assay, it was noticed that the HIV-1 

infected cell line U1 had significantly reduced VV binding relative to its parent cell 

U937 which is not HIV-1 infected. U1 is a clone from a group of HIV-1-infected 

U937 cells. U1 was selected because of its phenotype of a latent infection of 

HIV-1 where the provirus exists in the genome, but can only be induced to 

produce new virus upon cell activation (129). The latent HIV-1 infection in U1 

resulted primarily from a specific mutation in the HIV-1 tat gene which induces 

the virus to mimic a latent phenotype (130). This simulated latency could be 

reversed by repairing the tat mutation or by adding wildtype Tat protein into the 

cell culture (130). Infection of U937 with the U1-derived HIV-1 virus resulted in a 

similar reduction in VV binding when comparing U937 to U1. U1 cells, although 

producing only trace amounts of virus, were shown to express high levels of the 

HIV-1 regulatory proteins Tat, Rev, and Nef, even before cell activation (131). 

Nef is known to downregulate surface expression of CD4 (132), CXCR4 (133), 

and MHC-I (134), and CD1d (135). Thus, a similar mechanism may be involved 

to selectively downregulate certain VV receptors. Apart from specific viral protein 

interactions with host membrane proteins to cause their internalization, HIV-1 

infection in these cells may also modulate large scale recycling of lipid raft-

specific proteins. Lipid rafts are constantly being recycled on the cell surface via 

raft-specific means of endocytosis like caveolae internalization. Large scale 
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reabsorption of all surface lipid rafts can occur when certain cell type detach from 

a surface (136) with storage of raft-enriched membranes in specialized 

compartments (137, 138). Upon re-attachment to a surface, lipid rafts are 

released from these compartments and trafficked to the cell surface (137-139). 

These routes of lipid raft reabsorption may be influenced by HIV-1 infection which 

can be tested by surface staining for lipid raft-specific factors. Interestingly, the 

PI3K-dependent Arf6 endocytic pathway regulates both HIV-1 downregulation of 

MHCI (134) and the internalization of lipid rafts after detachment (138). Thus, 

candidates for VV receptors may be detected by cataloging the proteins with 

downregulated surface expression via this pathway.  

 

VV receptor enrichment in PHL lipid rafts 

The VV envelope consists of approximately 25 surface membrane 

proteins and several have been proposed as receptor-binding proteins (140). 

However, while three envelope proteins have been implicated in binding to highly 

negatively-charged GAGs, none have been validated as receptor-binding 

proteins for unique or cell-specific ligands. We found that VV colocalized with 

lipid rafts on the surface of all major PHL subsets (monocytes, B cells, and 

neutrophils) that are susceptible to VV binding (Fig. 10, 11, 12, 13). Activated T 

cells become sensitive to VV binding and infection because VV receptors are 

induced de novo upon T cell activation (56). We found that the VV receptors 

newly induced on activated T cells also colocalized with lipid rafts (Fig. 12). 

Strikingly, these receptor molecules move together with lipid rafts, as VV binding 
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is concentrated in lipid rafts even if they are relocated to the uropods of polarized 

cells (Fig. 14, 15, 16, 17, 18, 19). While previously VV entry was found to require 

intact lipid rafts (40), we demonstrate that VV binding is strongly associated with 

lipid rafts. VV entry is known to be clathrin-independent which is not surprising, 

as clathrin-formed vesicles are a maximum of 100 nm in diameter (141), while a 

vaccinia particle is 250 x 400 nm. VV entry is also caveolin-independent, 

meaning it does not likely use caveolae-related endocytosis (40). Thus, for 

primary leukocytes, intact lipid rafts may also be required for virus entry but not 

require caveolin - similar to the entry of HIV-1 (38).  

These results differ from prior reports with cell lines in culture (40). In 

HeLa cells, membrane lipid rafts are important for VV penetration, but not for VV 

binding, as MβCD treatment significantly inhibits VV uncoating without affecting 

virion attachment (40). In addition, HeLa cell surface CD29 and CD98, two lipid 

raft-associated proteins, are important for VV entry (102, 117), but not for VV 

binding (Fig. 24). These two proteins have no effect on VV binding to and 

infection of primary human T cells, as knockdown of their expression on the 

surface of activated T cells does not affect viral binding and infection (Fig. 24), 

and anti-human CD29 pAbs did not block VV binding to PHLs (Fig. 25). 

Furthermore, primary human NK cells express high levels of CD29 together with 

many other adhesion molecules (142), but these cells are resistant to VV binding 

and infection (56, 57) (also Fig. 2). These data indicate that VV receptors are 

strongly associated with PHL lipid rafts, but not with CD29 and CD98. 
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 It has been reported that immunosera raised against whole monocytes or 

activated T cells effectively blocked VV binding to these cells (56). If VV 

receptors were enriched in lipid rafts, immunosera raised against DRMs would be 

more effective than immunosera raised against whole cells in blocking VV 

binding. In fact, anti-DRM immunosera significantly blocked VV binding to the 

highest degree, whereas immunosera raised against whole cells or CMEs also 

blocked VV binding but to a much lesser extent (Fig. 21). Blockage of VV binding 

by these immunosera appears to be specific, as immunosera raised against 

either DRMs, CMEs, or intact resting T cells did not affect VV binding (Fig. 21). In 

addition, these immunosera lost their blocking activity if they were depleted 

against monocytes or activated T cells, but not resting T cells (Fig. 23). 

Importantly, immunosera raised against monocyte DRMs, CMEs, or whole cells, 

were able to block VV binding to B cells and activated T cells (Fig. 21). Similarly, 

immunosera raised against activated T cell DRMs, CMEs, or whole cells were 

able to crossly block VV binding to B cells and monocytes (Fig. 21). These data 

strongly suggest that monocytes, B cells, and activated T cells share one or more 

unique protein receptors for VV. It is pertinent to note that the consequences of 

VV binding to these cell types have vastly different outcomes.  

Activated T cells are permissive to VV binding, infection, and replication. 

In contrast, primary B cells and neutrophils are only sensitive to VV binding, but 

not permissive to VV infection. For monocytes, VV binds to and enters  cells to 

initiate virus infection, but the infection is abortive as no viral late gene product 

has been detected (56) and viral DNA copies are not increased in infected 
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monocytes (143). This indicates that the state of certain cellular pathways in 

monocytes is not permissive for VV replication. Monocytes bound with VV may 

help VV dissemination from initial infected sites to distant organs and tissues as 

variola virus is disseminated by monocytic cell-associated viremia (42). It is 

possible that monocytes use the putative viral receptors to grab infectious variola 

virus particles and then disseminate them to uninfected cells and tissues via 

filopodial extensions, a major mechanism that HIV-1 uses to disseminate virus 

from dendritic cells to other cell types (144). Cell-associated VV spread by 

filopodial extensions greatly reduces the time needed to infect neighboring cells 

in culture, and this process only requires VV early gene transcription which 

monocyte-lineage cells are known to express during VV infection (11). It is 

possible that VV binds to the uropods of phagocytes such as monocytes, 

macrophages, and neutrophils among PHLs, to spread to tissues and to resist 

phagocytic activity. A recent report has demonstrated that Neisseria meningitidis 

binds to the uropods of migrating neutrophils to spread the bacteria during cell 

migration through epithelial cell layers (145). This study found that uropod-bound 

bacteria were resistant to phagocytosis, which only occurs at the pseudopod end 

(leading edge) (145). Our results also showed that VV preferentially binds to the 

uropod ends of phagocytes, which may also provide protection from 

phagocytosis and assist in viral dissemination leading to a generalized infection. 
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Permissiveness of primary human cells to VV  

 The primary human cell types including epithelial cells, keratinocytes, and 

fibroblasts in the airway, skin, and other tissues have been considered the main 

cellular sites for orthopoxvirus infection and replication. In one report, primary 

human dermal microvascular endothelial cells (HMVEC), fibroblasts, and 

keratinocytes were infected in vitro with VV WR at an MOI of 10 for 60 h and 

produced 197.8, 129.1, 21.8 PFU/cell, respectively (52). This result is 

comparable to our data where, after 48 h of infection, M1-polarized MDMs 

produced 15.3 ± 1.2 PFU/cell and M2-polarized cells produced 31.7 ± 3.1 

PFU/cell when VV was used at an MOI of 5 (Fig. 26), suggesting that 

differentiated macrophages may be a significant source of viral load in vivo. 

Previously, the only primary human leukocyte type known to be permissive to VV 

was activated T cells (56). Among primary human leukocyte subtypes, VV is able 

to bind to monocytes, activated T cells, B cells, and neutrophils (56, 146, 147), 

but is only able to express viral genes in monocytes and activated T cells to a 

significant degree (127, 146, 148). Primary human monocytes and B cells have 

been shown to express little to no levels of the VV late gene A56 (56), suggesting 

that these cell types support only an abortive VV infection. We have corroborated 

this result by showing no virus production in primary human monocytes using a 

virus plaque assay (Fig. 26D). In contrast to monocytes, MDMs derived from GM-

CSF or M-CSF are permissive to VV, but MDMs derived from human AB serum 

alone are abortive. We observed no differences when comparing VV surface 

binding and reporter gene expression during early infection between these cell 
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types. Assuming the reporter gene expression correlates with virus entry, the 

abortive phenotype in human AB serum-derived cells may be explained by a 

post-entry mechanism. In comparison to human AB serum alone, it is known that 

GM-CSF or M-CSF supplementation promotes survival of MDMs (105), 

increases cell proliferation (149), increases tumoricidal activity (61), and alters 

the expression of certain cell surface markers (149). However, there are no 

reports comparing the specific molecular differences or signaling pathways that 

promote these divergent phenotypes.  

 

VV replication and macrophage signaling 

Macrophages display remarkable plasticity and can change their 

physiology and phenotype in response to environmental cues, e.g., M2 cells 

reside in the tissues that ubiquitously express M-CSF (150) can be converted to 

M1 via exposure to bacterial components and GM-CSF (151), or M1 cells 

associated with inflammation can be converted to M2 with IL-4 or TGF-β 

exposure (152). M-CSF binds to cell surface colony stimulating factor 1 (c-Fms) 

to trigger dimerization and subsequent autophosphorylation of tyrosine residues 

which serve as binding sites for the SH2 domains of specific signaling molecules 

(153). Ultimately, this leads to the release of ROS which activates Erk1/2, p38 

MAPK, and Akt to promote monocyte survival and differentiation (154-159). GM-

CSF receptor activation is followed by Jak2 phosphorylation of receptor tyrosines 

and eventual activation of STAT5 and the MAPK and Akt pathways via Grb2, 

Shc, and SHP2 (160). Similarly, VV is reported to be dependent on MAPK 
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signaling (115, 116), and the Akt pathway for replication (118). We observed 

significantly decreased viral production with treatment of MAPK, Akt, and JNK 

inhibitors (Fig. 36), although off-target effects of each inhibitor cannot be 

excluded. It has been previously reported that VV production increases in mouse 

embryonic fibroblasts (MEFs) from JNK1 or JNK2 knockout mice (119). However, 

VV production is not altered in MEFs from JNK1/2 double knockout mice (120). 

Additionally, when MEFs from JNK1/2 double knockout mice are treated with 

SP600125 (121), VV replication is inhibited. These reports strongly indicate a 

JNK1/2-independent effect from SP600125 treatment, which has been found to 

be poorly specific for JNK1/2 and inhibits other kinases (161, 162) and could 

potentially include VV-encoded kinases critical for infection.  

 Notably, VV infection itself induces the activation of the Erk1/2, p38 

MAPK, and Akt pathways in primary human monocytes (143), and viral protein 

production is dependent on activation of these pathways (143). Because 

monocytes are abortive to VV infection, it is likely that the stimulation of these 

three pathways alone is not sufficient to induce permissiveness in monocytic 

cells. In primary T cells and T cell lines, tyrosine phosphorylation of CCR5 alone 

allows cells to become permissive to VV replication (163, 164). This involves the 

downstream phosphorylation of Grb2, Jak2, and Erk1/2 which are all also directly 

activated by GM-CSF and M-CSF in monocytic cells. Thus, considering the 

plasticity of macrophage activation or differentiation and the overlap of signal 

transduction pathways required by both MDM activation and VV replication, it 

may be that factors directly downstream of GM-CSF and M-CSF stimulation 
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induce permissiveness of MDMs, rather than relatively permanent characteristics 

of cell differentiation. 

 In vitro activation of MDMs in some ways reflects macrophage activation 

states in vivo in certain diseases (65, 67). Surprisingly, we found that M1 

activation resulted in no change to VV production (Fig. 38A). This is 

counterintuitive because of the many anti-viral factors induced by LPS and IFN-γ 

stimulation (165). However, poxviruses have evolved dozens of strategies to 

evade such anti-viral responses (166). Alternative activation with IL-4 treatment 

had no detectable effect on VV replication (Fig. 38A), which is consistent with 

similar transcriptional profiles of M-CSF-treated versus IL-4 treated MDMs (167). 

However, alternative activation with IL-10 or with LPS + IL-1β significantly 

reduced virus production (Fig. 38A). In different cell types, many of the effects of 

IL-10 are mediated via the activation of the Jak2/STAT3 pathway, with STAT3 

being a crucial factor for alternative activation in macrophages and immune 

homeostasis. We found that the JAK2/STAT3 inhibitor cucurbitacin I increased 

VV production in both M2-polarized and M2c activated cells in a manner 

correlative to STAT3 activation. VV infection does not block STAT3 activity, but 

does dephosphorylate STAT1 to reduce the effect of IFN-stimulation (168). In 

general, M1 activation involves STAT1 activation, while much of the effect of M2 

activation centers on STAT6 (67). Macrophage-specific STAT3 knockout mice 

have a phenotype resembling that of IL-10-knockout mice: increased 

inflammation and susceptibility to endotoxic shock, largely the result of the 
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effects of IL-10 on macrophages being silenced (169). Therefore, STAT3 

activation likely regulates factors that are critical to VV replication.  

  

VV dissemination via macrophages 

Our study also provides several lines of evidence that primary 

macrophages promote VV dissemination: 1) high EEV production, 2) actin tail-

associated CEV, and 3) VV-associated cell branching and linkages. IMV is often 

considered to be the most abundant infectious form of VV produced in most cell 

types. The CEV form of VV mediates cell-to-cell spreading, and detachment of 

CEV to become EEV mediates longer-range dissemination (8, 170). We 

observed that by 48 h of infection with VV WR, EEVs were the dominant virus 

form produced in MDMs (Fig. 34). This principle of high EEV production is 

comparable to the rabbit kidney cell line RK13 which produces significantly more 

EEV relative to other cell lines (171). Additionally, the VV strain IHD-J produces 

high EEV titers in cell lines, especially in RK13 (171). When compared to the VV 

WR strain, IHD-J produces more EEV particles because it releases more CEV 

into the supernatant while strains like VV WR retain CEV on the cell surface 

(170). Thus, considering the paradigm in EEV production that exists between WR 

and IHD-J in cell lines, this anomaly in MDMs will likely be explained by a host 

cell-related mechanism like that of RK13, rather than a characteristic of the virus 

strain itself. In cell lines, different factors have been associated with EEV 

production, including the Abl tyrosine kinases (112, 172) and SH2 domain 



117 
 

containing phosphoinositide 5-phosphatase 2 (SHIP2) (173), which may be 

involved with the high EEV production seen in MDMs. 

 Characteristic actin tails were observed associated with MDMs throughout 

the course of infection (Fig. 31). It is well known that actin-based VV motility is 

entirely relegated to CEVs on the cell surface, whereas microtubules mediate 

kinesin transport of intracellular virus particles (110). The formation of actin tails 

requires the phosphorylation of the VV envelope protein A36 by Src and Abl 

family kinases (111, 112) which recruit Grb2, Nck, and the Arp2/3 complex to 

induce the polymerization of actin (174). A36-dependent actin nucleation itself 

has been implicated in detachment of CEVs from the cell surface (10). The 

inhibition of actin tails in cell lines dramatically reduces the degree of cell-to-cell 

infection as seen by shrinking virus plaque formation. Thus, assuming the 

principle remains the same as in cell lines, the presence of such structures in 

MDMs is indicative of actin-dependent cell-to-cell transmission. We observed 

surface-bound virions throughout the first 8 h of infection that could theoretically 

be carried away from initial infection sites to infect cells contacted by migrating 

macrophages. The actin polymerization inhibitors cytochalasin D and latrunculin 

A have been shown to inhibit actin tail formation while not affecting the number of 

CEVs (9, 175, 176) and could be used in MDMs to test the dependence of actin 

for cell-to-cell transmission. 

 Within the first hours of infection, MDMs exhibited VV-associated cell 

branches and linkages with neighboring cells (Fig. 29, 32). It has been previously 

found that VV-infected BS-C-1 cells become motile and form branches (113). 
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These structures are also reminiscent of the cell-to-cell spread of retroviruses via 

filopodial bridges (177). Additionally, we frequently observed lamellipodia-leading 

structures containing virus particles in MDMs (Figs. 29, 32). In mouse 

macrophages, giant cell formation occurs and is preceded by cell branching and 

lamellipodia formation (178). Interestingly, we observed an increase in giant cell 

formation throughout the infection (Fig. 33). Macrophage giant cells can be 

generated via contact with various pathogens and foreign bodies. In this case it is 

unknown whether giant cell formation is the result of the innate ability of host 

macrophages to fuse or if it is influenced by VV-induced syncytia. However, 

syncytia from VV has so far only been observed at low pH (179, 180) or with a 

mutation or dysfunction in the fusion complex genes A56R (181) and K2L (182, 

183).   
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Chapter VI - Future Directions 

 

Post-binding analysis of VV infection in PHLs 

 A better understanding of the rate-limiting steps to VV infection of PHLs 

will provide a better platform to design and test immunotherapies involving VV. 

What remains a mystery is how to explain the disparity between VV binding and 

VV gene expression in both primary human leukocytes and monocytic cell lines. 

Although primary monocytes, B cells, and activated T cells were highly 

susceptible to VV binding, only monocytes expressed VV reporter gene to a 

significant degree. Also, whereas U937 was much more susceptible to VV 

binding, THP-1 expressed higher levels of the VV reporter gene following 

infection. The answer to this question is most likely found in the differences in VV 

entry, uncoating, and intracellular signaling by each cell type. Entry of IMV virions 

can be measured via visualization with confocal microscopy, on either the inside 

or outside of the cell at different time points. This can be done by cell surface 

staining for VV envelope proteins to stain extracellular virus and the use of anti-

VV core protein antibodies to detect uncoated virus particles intracellularly. 

Comparing the two conditions for each cell type can reveal differences in the rate 

of entry. If a different entry rate is observed, various routes of entry can be 

analyzed by detecting markers of macropinocytosis, or caveolin and dynamin-

dependent mechanisms.  

Uncoating of the viral core must occur after entry to release virus DNA and 

enzymes into the cytoplasm to begin viral gene transcription and DNA replication. 
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Uncoating of poxviruses is known to occur in two stages: 1) host enzymes break 

away the remaining viral envelope and part of the core; 2) viral DNA within the 

intact core transcribes most of the early VV genes including enzymes to 

breakdown the remaining capsid (184). If either stage fails to complete, this can 

be detected through different observations using a transmission electron 

microscope to view cross-sections of infection cells. The most obvious sign that 

uncoat is malfunctioned is if many VV cores are visible within the cell hours after 

the primary infection. Additionally, cores seen associated with DNA staining are 

evidence of incomplete uncoating as not only is the core still present, but viral 

DNA has failed to escape it (185). Such observations are indicative of either a 

lack of host enzymes to complete the first stage, or a failure of VV early gene 

transcription or translation to complete the second stage. 

If no error in virus uncoating is observed, the infection may be limited by 

VV gene expression beyond that related to the first stage of uncoating. For 

example, VV was successfully demonstrated to bind and enter primary human 

dendritic cells, but only early VV genes were transcribed and no late genes (47, 

48) which are critical for virion assembly. Individual genes regulated under early, 

early/late, intermediate, and late VV promoters can be selected for each infected 

cell type and analyzed with Northern blotting or RT-PCR to determine at what 

stage VV gene expression is interrupted. Recently, a microarray with probes for 

more than 200 VV WR ORFs was developed that successfully profiled VV genes 

transcribed from human cells (186) which could be used to more specifically 

locate end points in the VV life cycle. 
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Enrichment and detection of potential VV receptors 

Although several effective anti-viral drugs for poxviruses and DNA viruses 

exist, the discovery of a specific poxvirus receptor would lead to the development 

of poxvirus receptor agonists that could be used to quickly treat poxvirus-infected 

patients to counter viremia. This approach is similar to the CCR5 receptor 

agonists developed for HIV-1 treatment. Additionally, considering the potential of 

poxviruses as vaccines and immunotherapies, the identification of the specific 

receptors that mediate this strict binding tropism will surely lead to better 

strategies to better engineer poxvirus treatments. Despite the evidence that VV 

has a strict cell type binding tropism, especially with primary cells, no cell type-

specific receptor has ever been discovered. The results presented in this work 

demonstrate that putative VV receptors can be enriched in DRM fractions from 

leukocytes. With this knowledge and with the observations of the patterns of VV 

binding to particular hematopoietic cell types, a study may to designed to 

specifically enrich and identify putative receptors using liquid chromatography 

mass spectrometry. Conceivably, surface proteins may be isolated from similar 

cell types that are known to have an extreme difference in VV binding. This can 

include naive vs. activated primary T cells, CD16-positive vs. CD16-negative 

primary monocytes, or HIV-infected or uninfected cells from the U937 cell line.  

To use such a method, our data provide critical information about the 

nature of VV receptors on leukocytes. If a membrane protein is known to be lipid 

raft or DRM-specific, special methods of isolating membrane protein to avoid the 

reliance on non-ionic detergents to lyse and solubilize the cell membrane must 
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be used. Detergent-resistant membrane is known to precipitate out of non-ionic 

detergent solutions, which leads to the removal of significant portions of DRM-

specific proteins during washes and centrifugations. Thus, methods using no 

detergents or only ionic detergents should be preferred when extracting DRM-

enriched proteins. It is interesting to speculate why, after a century of molecular 

research on poxviruses, a unique VV receptor has not yet been discovered. The 

insolubility of DRM-enriched proteins may be a contributing factor. 

 

Specific macrophage signaling pathways affecting VV replication 

IL-10 produced by T regulatory cells in many types of cancer has been 

associated with a reduction of Th1 responses that regulate IFN-γ and CD8+ cell 

anti-tumor immunity (187-189). This role for IL-10 as an anti-inflammatory agent 

in tumors is significant for the use of VV as an oncolytic agent, as we have found 

that VV replication in MDMs is sensitive to IL-10 stimulation. IL-10 produced 

within a tumor may also inhibit VV production in macrophages, which may be a 

significant source of viral load, and may limit the cell-to-cell spreading via 

macrophages. Thus, a better understanding of the mechanism of IL-10 inhibition 

of VV replication should be investigated. We have found that IL-10 reduced VV 

production mainly through STAT3 activation. In macrophages, STAT3 is a 

transcription factor that directly regulates the expression of over 100 genes (190), 

but the pathways leading to VV inhibition are unknown. Activated STAT3 in 

macrophages is known to downregulate the expression of many pro-

inflammatory cytokines, which may somehow be essential for VV replication. 
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STAT3 also works in macrophages to suppressive the inflammatory response by 

inducing the transcription of several genes known to be involved in anti-

inflammatory pathways (190), and could be potentially inhibitory to VV 

replication. 

 

Cell-to-cell spread of VV via macrophages 

Recently, a report testing oncolytic adenovirus found that delivery of the 

virus via macrophages was much more effective than other routes of delivery 

(72). The efficacy of an oncolytic virus is not only determined by its ability to 

specifically target and kill tumor cells, but also its ability to propagate and spread 

efficiently between cells with a tumor. Cell-to-cell transmission of VV has been 

documented in cell lines either by cell elongation and branching (113) or via actin 

tails (11). We showed that macrophages produce mainly EEV, but numerous 

micrographs of VV-associated cellular structures were strongly indicative of cell-

to-cell transfer. Studying the routes of VV dissemination via macrophage will lead 

to a better understanding of VV dissemination in vivo and may lead to an 

improved route to deliver oncolytic VV. To further investigate the ability of MDMs 

to distribute VV via cell-to-cell transmission, live imaging should be carried out to 

directly view virions crossing from infected MDMs to other uninfected cells. The 

virions previously viewed as associated with cell-linking structures were most 

likely cell surface-bound IMV particles left over from the primary. Therefore, anti-

EEV neutralizing antibodies could be used to block the infection of newly created 

extracellular virions to view the infectious nature of surface-bound IMV particles 
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associated with cell-linking structures. If actin tails are seen mediating cell-to-cell 

spread, cells could be treated with actin-inhibitors cytochalasin D or latrunculin A 

(9, 175, 176) to test the effects on actin-dependent dissemination. The role of 

actin in this process should be visualized using a plasmid or virus vector 

containing an actin-staining molecule as phalloidin cannot be used for live cell 

imaging.  

 

Eczema vaccinatum and macrophages 

 Among the possible negative effects of attenuated VV-based vaccinations, 

the most dangerous side effect occurs on recipients with a history of atopic 

dermatitis (AD) or eczema. Although these patients should not be administered 

the vaccine, they can become exposed from other vaccinated individuals that are 

shedding the virus (191). VV exposure in these patients leads to eczema 

vaccinatum (EV), a potentially fatal disease with a widespread rash and 

smallpox-like patterns of VV-infected skin lesions caused by viremia. EV patients 

have been successfully treated with anti-VV IgG, DNA replication inhibitor 

cidofovir, and EEV production-inhibitor tecovirimat (ST-246) resulting in no long 

term damage and minimal scarring (191). However, precisely how autoimmune 

diseases in the skin can cause widespread dissemination of attenuated VV is 

unknown. Skin from AD patients is known to have defective epidermal barriers, 

and includes mild amounts of keratinocyte hyperplasia and higher amounts of 

inflammatory cells (192). These hyperplastic keratinocytes may contribute to the 

high viral load of EV patients, as transformed cells in culture tend to produce 
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much higher viral titers than primary cells. Additionally, the increased presence of 

inflammatory cells also suggests a role for enhanced dissemination of the virus 

which may accommodate the high viremia and dissemination in the skin of EV 

patients (192). In EV and smallpox patients, variola lesions are strongly 

associated with areas of healing or inflammation. Similarly, a case study from an 

autopsy on an EV patient found that virus particles in skin lesions were found 

mainly in the epidermis but also with high amounts in skin macrophages and 

neutrophils (193). Thus, macrophages and other inflammatory cells may be 

associated with the high viral dissemination seen in EV patients.  

 In AD patients, monocytes much more readily invade sites of inflammation 

and differentiate into macrophages (194) which explains the high number of 

macrophages found in AD patient skin (195). These macrophages are highly 

linked to AD-associated altered expression of cytokines, chemokines, pattern 

recognition receptors, and aberrant phagocytosis (196). Our results with VV 

infection of macrophages suggest that MDMs are used by VV to produce virions 

suitable for long range dissemination, and also seem to contribute to cell-to-cell 

dissemination. Thus, the widespread dissemination of inflammatory 

macrophages in AD patients may be an explanation for the high amount of VV 

dissemination found in EV patients. To test this hypothesis, numerous murine 

models of AD and EV can be used (192, 197). Mice could be infected with 

attenuated or non-attenuated strains of VV to induce EV-like symptoms and 

monocytes/macrophage could be monitored. The route of VV dissemination via 

viremia could be determined by isolating cell types or serum from the blood and 
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titering virus on each. The proportion of VV in the circulation could be visualized 

with live imaging of the blood circulation with staining for VV, monocytes, and 

other cell types. To find the source of virus entering the skin, histological slides of 

the skin prior to lesion formation can be prepared with staining for VV antigen 

and macrophage markers to search for potential associations.
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