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Liangyi Liu 

THE STIMULATORY ROLE OF ICOS IN THE DEVELOPMENT OF 

CD146+CCR5+ T CELLS CO-EXPRESSING IFN-γ AND IL-17 DURING GRAFT-

VERSUS-HOST DISEASE 

Graft-versus-host disease (GVHD) remains the major complication after 

allogeneic hematopoietic stem cell transplantation (HSCT), resulting from 

immunological attack on target organs such as gastrointestinal (GI) tract, liver 

and skin from donor allogeneic T cells. The most common treatment for GVHD is 

immunosuppressive drugs such as corticosteroids, which may result in many 

side effects including the loss of the beneficial graft-versus-leukemia (GVL) effect 

and increased infection rates. However, GVHD-specific drugs have yet to be 

implemented. Here we show that by targeting on a novel pathogenic CD4+ T cell 

subpopulation that our lab previously found in patients with GI GVHD, we can 

develop new avenues to treat GVHD. This novel population is characterized as 

CD146+CCR5+ T cells, co-expressing IL-17A and IFN-γ. We found that the 

inducible T-cell costimulator (ICOS), which has been reported to be important for 

human Th17 differentiation in vitro, is critical for the development of this 

nonconventional T Helper 1 (Th1*)-polarized CD146+CCR5+ conventional T cells 

(Tconvs) population. Furthermore, we found that ICOS can induce the generation 

of Th1*-polarized CD146+CCR5+ regulatory T cells (Tregs) population, lowering 

the frequencies of phenotypic markers of functional Tregs. Our data also showed 

that inhibiting the major transcriptional factor of Th17, RAR-related orphan 

receptor gamma t (RORγt), could prevent the development of CD146+CCR5+ 
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Tconvs in vitro. Our results demonstrate how pathogenic CD146+CCR5+ T cells 

are induced through ICOS or RORγt, suggesting new targets for GVHD 

treatment. We anticipate our assay to be a starting point for the development of 

novel GVHD-specific drugs. For example, the treatments that focus on inhibiting 

RORγ would have fewer side effects than general immunosuppressive drugs that 

GVHD patients use today and inhibit GVHD while sparing the GVL effect. 

Furthermore, we expect the CD146+CCR5+ Tconvs and/or Tregs can be used as 

GVHD biomarkers. These biomarkers may guide preemptive treatments such as 

RORγt inhibitor. 
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INTRODUCTION 

 

 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative 

option for a variety of acquired hematological malignancies such as leukemia, 

myelodysplatic syndromes and multiple myeloma. Its use has also expanded 

beyond blood and bone marrow cancers, such as congenital immunodeficiency 

and autoimmune diseases [1]. However, its efficacy is limited by the life-

threatening graft-versus-host disease (GVHD), which is caused by immunological 

attack from donor allogeneic T cells on target organs such as the gastrointestinal 

(GI) tract [2]. 

 

In spite of the advances in the diagnosis and treatment of acute and chronic 

GVHD, immunosuppressive drugs such as corticosteroids remain the gold 

standard for the therapy of GVHD. However, corticosteroid treatment has a 

response rate of less than 50% [3, 4] and its administration is associated with 

significant side effects such as the appearance of opportunistic infections [5] and 

loss of the beneficial graft-versus-leukemia (GVL) effect. Therefore, developing a 

specific treatment that targets GVHD pathogenic T cells and spares the GVL 

effect is needed. 

 

Our laboratory has recently identified a novel T cell subpopulation in GVHD: 

CD146+CCR5+ CD4+ T cells. The frequency of these CD146+CCR5+ 
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conventional T cells (Tconvs) is increased significantly in the cells from GI GVHD 

patients compared to HSCT patients without GVHD. Furthermore, CD146+CCR5+ 

Tconvs have a phenotype similar to T helper 1 (Th1) and T helper 17 (Th17) cells 

by co-expressing IL-17A and IFN-γ, which are also identified as nonconventional 

Th1* cells [6]. In our preliminary studies, we also found that the frequency of 

CD146+CCR5+ regulatory T cells (Tregs) is increased in GI GVHD patients while 

the frequency of total Tregs is decreased. Similar to CD146+CCR5+ Tconvs, 

CD146+CCR5+ Tregs co-express IFN-γ and IL-17A, indicating that they might be 

Th1*-polarized and have lost suppressive function after allo-HSCT. Th1 cells are 

reported to be an important driver in the pathogenesis of acute GVHD and there 

are also reports suggesting Th17 cells work synergistically with Th1 during 

GVHD [7]. Given these findings, I hypothesize that these Th1*-polarized 

CD146+CCR5+ Tconvs might be pathogenic in human GVHD and the inhibition of 

this population might be able to treat GVHD while sparing GVL. I also 

hypothesize that CD146+CCR5+ Tregs are less tolerogenic than classical Tregs 

and can also be targeted in GVHD treatment. 

 

To inhibit the induction of CD146+CCR5+ CD4+ T cells during human GVHD, my 

research focuses on two molecules: inducible T-cell costimulator (ICOS) and 

RAR-related orphan receptor gamma t (RORγt). ICOS is a CD28-superfamily 

costimulatory molecule that is expressed on activated human T cells [8, 9]. ICOS 

is also reported to be critical for the development of IL-17 producing human Th17 

cells [10]. RORγt is the master transcriptional factor for Th17 cells [11].  Chapter 
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1 elaborates how we induced the generation and development of CD146+CCR5+ 

Tconvs by ICOS co-stimulation during Th17 differentiation or mixed lymphocyte 

reaction (MLR) in vitro. In Chapter 2, I focus on inhibiting CD146+CCR5+ Tconvs 

by using a newly discovered RORγt inhibitor, TMP778. Chapter 3 shows that 

CD146+CCR5+ Tregs can also be induced by ICOS co-stimulation, co-expressing 

IL-17A and IFN-γ. The results suggest that both ICOS and RORγt are important 

for the development of Th1*-polarized CD146+CCR5+ CD4+ T cells and may 

represent new avenues to treat human GVHD more specifically and with fewer 

side effects. 
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BACKGROUND 

 

 

T helper cell activation and differentiation 

CD4 T helper (Th) cells are important cells in adaptive immunity. Naïve CD4 T 

cells are activated through interaction with antigen-major histocompatibility 

complex (MHC). They can differentiate into different subtypes of effector T cells 

depending on cytokine milieu, including Th1, T helper 2 (Th2), T helper 9 (Th9), 

Th17, T follicular helper (Tfh) and regulatory T cells (Tregs). My research focuses 

on Th1, Th17 and Tregs, which are all important cellular regulators during GVHD. 

My studies also focus on human samples and a recent study proposed to call the 

pathogenic Th17 co-expressing IFN-γ and IL-17A: nonconventional Th1 (Th1*) 

[6]. 

 

Th1 cells are differentiated through the upregulating of the transcriptional factor, 

T-box expressed in T cells (Tbet) in the presence of IL-2 and IL-12 and produce 

IFN-γ; Th17 cells are differentiated through the upregulating of RORγt and 

produce IL-17A and IL-17F; induced Tregs (iTregs) are differentiated through the 

upregulating of the transcriptional factor, Forkhead box P3 (Foxp3) in the 

presence of IL-2 and produce IL-10 and TGF-β, while naturally occurring Tregs 

(nTregs) are developed in the thymus and express Foxp3 intrinsically,  and they 

represent a mature T cell subpopulation critically involved in maintaining 

peripheral tolerance [12]. 
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Th17 

Human interleukin 17 (IL-17) was first described in 1995 [13, 14] and subsequent 

studies identified IL-17 secreting T helper cells as Th17. Since the first 

description of IL-17, different members of IL-17 cytokine family have been 

identified, including IL-17A (also known as IL-17), IL-17B, IL-17C, IL-17D, IL-17E 

(also known as IL-25) and IL-17F. The functions of IL-17A and IL-17F are best 

understood as they mediate pro-inflammatory responses [15-17]. IL-25 plays an 

important role in Th2 immunity against parasites and allergy [18-20] while the 

functions of IL-17B, IL-17C and IL-17E are largely unknown [21-24]. Th17 cells, 

which are induced by transcriptional factor RORγt, have been reported to play an 

important role in human autoimmune diseases such as psoriasis [25], 

inflammatory bowel disease (IBD) [26] and ankylosing spondylitis [27]. The 

pathogenic role of IL-17 has also been evidenced by a series of mouse models of 

autoimmune diseases such as experimental autoimmune encephalomyelitis 

(EAE) [28] and arthritis [29]. Recent success in clinical trials to treat psoriasis and 

rheumatoid arthritis by inhibiting Th17 pathways further emphasizes the 

pathogenic role of Th17 in human autoimmunity [30]. However, the clinical trials 

of IL-17A monoclonal antibody as treatment for human autoimmune diseases 

have shown variability in responses, suggesting that alternative pathways to 

block pathogenic Th17 need to be developed [31]. 
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Pathogenic Th17 or also called Th1* 

In many autoimmune diseases such as psoriasis and IBD, CD4 memory T cells 

can produce both IL-17A and IFN-γ [32]. A recent study done by Becattini and 

colleagues has shown that single human naïve CD4 T cells primed by a 

pathogen in vitro can give rise to multiple fates, including classical Th1, Th2, 

Th17 and nonconventional Th1* that co-express IFN-γ and IL-17A [6]. C. 

albicans-specific Th1* could be converted from plastic Th17 as they share 

extensive clonotype, while M. tuberculosis-specific Th1* could be generated from 

a different pathway besides Th17 as shared clonotype was not observed. My 

research focuses on how these preferential expansions shape the polarized (e.g. 

Th1, Th17 and Th1*) responses during GVHD. 

 

 

Tregs 

The regulatory T cells (Tregs) are a very important population in GVHD 

pathogenesis. They have been identified as a subpopulation of CD4 T cells that 

express high levels of the IL-2 receptor α-chain (CD25). Tregs also express the 

fork-head box transcription factor (Foxp3), which is crucial for their suppressive 

function [33]. 

 

 

 

 

6 



GVHD pathogenesis and treatment 

GVHD occurs in 25%-60% of HSCT patients depending on several factors such 

as donor type, donor age, recipient age, intensity of conditioning regimen and 

donor lymphocyte infusion [34]. It is caused by immunological attack from donor 

allogeneic T cells on target organs such as the GI tract, liver and skin [2]. Prior to 

HSCT, patients receive a conditioning regimen such as irradiation or 

chemotherapy, releasing pathogen-associated molecular patterns (PAMPs) such 

as lipopolysaccharide (LPS), danger-associated molecular patterns (DAMPS) 

such as high mobility group box 1 (HMGB-1) [35], and cytokines such as IL-6, IL-

1 and TNF-α from tissue damage. This phase is called the cytokine storm. After 

the introduction of allogeneic donor T cells, host antigen presenting cells (APCs) 

present antigens to donor T cells and prime them, resulting in the differentiation 

of pathogenic Th1 and Th17 cells. Donor APCs play a relatively minor role in 

GVHD initiation, they are important later for the GVL activity [36].  Along with the 

direct cytotoxicity of effector T cells on the target organs, natural killer cells (NK 

cells) and pro-inflammatory cytokines contribute all together to the end-organ 

damage, which is seen in the GI tract, liver and skin (Figure 1) [35]. 

 

While much progress has been made in our understanding of GVHD 

pathogenesis, there is still no specific therapy that targets the stimulatory or 

suppressive factors of the adaptive and innate immune system. Corticosteroids 

are nonspecific immunosuppressant, which remain the first line for GVHD 

treatment, and have side effects such as increased risk of infections and loss of 
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GVL effect. In addition, response to steroids is seen only in about 50% of 

patients and those patients with steroid-resistant GVHD have a mortality rate in 

excess of 90% [37]. Therefore, there is a gap of knowledge in this area that 

needs to be filled as the one proposed in my studies.  
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Figure 1. Overview of GVHD pathogenesis [35]. Conditioning regimen before 

HSCT causes damaged tissue to release DAMPs, PAMPs (LPS) and pro-

inflammatory cytokines. Interactions between donor T cells and host APCs 

further increase the release of cytokines, creating a strong cytokine storm, which 

favors the differentiation of effector T cells, especially Th1 and Th17. Direct 

toxicity from effector T cells and indirect toxicity from pro-inflammatory cytokines, 

together result in end-organ damage in the GI tract, liver and skin. During GVHD, 

Treg frequency is decreased and Tregs play a suppressive role during Th1 and 

Th17 differentiation.  
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Th17 in GVHD 

The role of Th17 in human and mouse GVHD has been controversial. Th17 cells 

in humans have not been extensively studied. Bossard and colleagues have 

shown a significantly higher numbers of Th17 cells in the intestinal mucosa of 

GVHD patients on a small cohort [38]. Other studies have also shown an 

increased level of circulating Th17 with an imbalance between Th17 and Tregs in 

GVHD patients [39-41]. The data from murine studies are debatable regarding 

their role in GVHD. The first murine GVHD study used IL-17A-/- donor T cells and 

suggested that IL-17A attenuated severe acute GVHD due to the suppression of 

Th1 differentiation [42]. Another study by Carlson and colleagues showed that 

the differentiation of Th17 cells in vitro appears to cause lethal acute GVHD with 

severe cutaneous and pulmonary damage [43]. These differences may be due to 

variations among the murine models. The study by Yu and colleagues is more 

convincing as they used Tbet and RORγt single or double deficient donor T cells 

that have intrinsic defective differentiation toward Th1 and Th17, and showed 

that the double deficient donor T cells induced less severe GVHD than Tbet-

deficient T cells [44, 45]. This result demonstrated that T cells expressing RORγt 

may work synergistically with T cells expressing Tbet to exacerbate murine 

GVHD. Another study confirmed the protective role of RORγt-/- donor T cells in 

the development of murine acute GVHD [46]. A recent study also showed that 

adoptive transfer of Tbet-deficient Th17 cells could attenuate murine acute 

GVHD, further confirming that Tbet contributes to optimal function of Th17 cells 

[45]. 
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Tregs in GVHD 

Tregs are generally accepted as a beneficial population in GVHD [47], and many 

studies have shown that there is a persistent reduction of Tregs in GVHD 

patients, which causes an imbalance between the effector and regulatory arms of 

the immune system, resulting in an inflammatory cytokine storm in patients [48-

50]. In addition to these studies that have examined Treg cells in peripheral blood 

of GVHD patients, Rieger and colleagues reported a decrease of mucosal Tregs 

in the intestinal biopsies of GVHD patients [51]. Furthermore, the adoptive 

transfer of Tregs to suppress GVHD in many murine models including 

xenogeneic GVHD (xeno-GVHD) models has already been shown [52-54], 

possibly sparing the GVL effect [55]. Clinical trials with Tregs as cellular therapy 

have also been shown to be effective in GVHD patients [56, 57]. As a novel 

GVHD therapy, low-dose IL-2 was reported to be correlated with the expansion 

of Tregs in patients [58]. However, the plasticity of human Tregs to Th17-

polarized cells in a pro-inflammatory milieu has been reported [59-61]. It has 

been demonstrated that human Treg cells can convert into Th17 cells in patients 

with autoimmune diseases such as rheumatoid arthritis [62]. Global Mapping of 

H3K4me3 and H3K27me3 in iTregs and nTregs has also revealed the plasticity 

of Tregs to Th17 cells [63]. In many autoimmune murine models such as 

autoimmune arthritis and psoriasis, the conversion of Tregs to Th17 has been 

reported to explain the increased autoimmunity in mice [64, 65].  

 

 

11 



CD146 and CCR5 

CD146 was first identified as an endothelial marker for melanoma (MCAM) [66]. 

It has been known as endothelial receptor overexpressed during inflammation 

[67]. Human CD146 is expressed on activated T cells [68] and its expression 

increases in patients with IBD [67] and mice with EAE [69]. Xing and colleagues 

have also shown that endothelial CD146 allows entry of CD146+ T cells in the 

gut [70]. CCL14 is a human CC chemokine that binds to the CC chemokine 

receptor 5 (CCR5) on T cells [71]. CCR5 has been shown to play an important 

role in GVHD pathogenesis in mice [72] and its expression on T cells can 

facilitate its infiltration in the gut [72, 73]. Reshef et al. also show that the 

blockade of CCR5 by maraviroc can inhibits lymphocyte trafficking and alleviates 

GVHD in patients [74]. 
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SIGNIFICANCE 

 

 

One contribution of our research is to determine the cellular phenotype of 

CD146+CCR5+ CD4+ T cells, including CD146+CCR5+ Tconvs and Tregs. Both of 

their frequencies are found elevated in GI GVHD patients, leading us to the 

hypothesis that CD146+CCR5+ CD4+ T cells are pathogenic during human 

GVHD. For CD146+CCR5+ Tconvs, our preliminary data suggested a Th1*-

polarized phenotype and we continued to test it by in vitro differentiation of 

human Tconvs from healthy donors. Th1* cells can produce both Th1 and Th17 

phenotypic cytokines, IL-17A and IFN-γ. Their appearance in different types of 

infections and autoimmune diseases are reported [32] while their frequencies in 

the blood of healthy donors are close to zero. Although IL-17A can be protective 

against intracellular pathogens [75], its pathogenic role in murine EAE models 

and human autoimmune diseases has also been recognized [28]. If 

CD146+CCR5+ Tconvs can be proven to have a Th1*-polarized phenotype and 

produce pathogenic cytokines, they might be a novel therapeutic target to treat 

GVHD. For CD146+CCR5+ Tregs, we found that their frequency was increased in 

GVHD patients while the frequency of total Tregs was decreased. Our clinical 

data also suggests a Th1* phenotype of these cells. Tregs are generally 

accepted as a beneficial population in GVHD, and many clinical studies have 

already begun to employ Tregs as a form of adoptive cellular therapy to prevent 

GVHD after HSCT [56, 57]. However, the plasticity of Tregs to Th17 has been 
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reported both in vitro and in many autoimmune murine models. My hypothesis is 

that CD146+CCR5+ Tregs are more plastic and less suppressive than non- 

CD146+CCR5+ Tregs during GVHD. If we demonstrate that CD146+CCR5+ Tregs 

in patients following HSCT are less functional and/or readily converted to Th17, 

they will become a novel target when treating GVHD. We designed both in vitro 

and in vivo experiments to investigate the function of these Tregs. If their role in 

the development of GVHD can be proven, CD146+CCR5+ Tregs can be the next 

population to be targeted as a supplement for Treg cellular therapy for GVHD. 

 

Another contribution of our research is to propose potential therapeutic targets: 

ICOS and RORγt for GVHD treatment. This contribution is also significant, 

because it can lead to the development of GVHD treatments, which are specific 

to Th17 type immunity. Because GVL effect is mediated by Th1 cells and Th17 

cells mediate mostly GVHD, treatments that specifically target Th17 immunity 

would ameliorate GVHD, without loss of the GVL effect. Anti-ICOS and RORγ 

inhibitors have potential for more targeted drug therapy for GVHD in the future. 

Both aim to inhibit the development of Th1*-polarized CD146+CCR5+ T cells. 

ICOS is a co-stimulatory molecule that has been shown to be critical in the 

differentiation of human Th17 cells [10]. Anti-murine-ICOS has been successfully 

used to alleviate murine GVHD [76] but only the Th1 effect was studied at the 

time. RORγ is an important transcriptional factor of Th17. A recent study 

discovered a novel RORγ inhibitor, which can inhibit Th17 differentiation [77, 78]. 

If these two treatments can successfully inhibit Th17, they may increase GVHD 
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while preserving GVL, ultimately increasing the survival and success rate of 

patients receiving allogeneic HSCT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

15 



INNOVATION 

 

 

GVHD treatments targeting Th1 immune response have been studied for 

decades, but the known functions are limited by the loss of the GVL effect. IFN-γ 

produced by Th1 cells is very important for promoting the GVL effect and Th1 

inhibition will result in decreased IFN-γ production thereby decreasing the GVL 

effect following allogeneic HSCT [79]. Unlike Th1 specific treatment, targeting 

Th17 that does not mediate GVL is likely to separate GVHD and GVL effects. 

Our research is innovative because Th17 targeting has never been performed in 

human GVHD. Different from previous studies using regular murine models, 

xeno-GVHD models are more clinically relevant for human disease and may 

ultimately guide development of novel GVHD therapeutics. Anti-ICOS treatment 

has been reported to alleviate murine GVHD, but its cellular mechanism of ICOS 

co-stimulaion is still unknown and has not been studied in xeno-GVHD models. 

TMP778 is a novel RORγ inhibitor, which can inhibit Th17 differentiation and thus 

attenuate EAE [77]. We explored for the first time the function of TMP778 in 

GVHD in vitro and hopefully will explore it in vivo in the near future. Our research 

is also innovative because CD146+CCR5+ Tregs were only recently discovered in 

my laboratory as playing a role in GVHD. Exploring this novel population’s 

plasticity and using it as a therapeutic target could offer promising treatment for 

GVHD. If CD146+CCR5+ Tregs are also Th1* polarized, I hypothesized that they 

can be targeted at the same time that the CD146+CCR5+ Tconvs by either anti-
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ICOS and/or RORγt inhibitor. These novel treatments are expected to overcome 

the current problems with non-specific GVHD treatment and could potentially 

benefit more allo-HSCT patients. 
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PRELIMINARY DATA 

 

 

To identify early GVHD biomarkers, our laboratory performed proteomic 

analysis using plasma taken 14 days prior to clinical manifestations of GI GVHD. 

We selected candidate markers that had at least a 1.5 fold increase in plasma 

levels in GI GVHD patients compared to HSCT patients without GVHD. The CC 

chemokine motif ligand 14 (CCL14) and CD146 were the two lead candidates. 

We hypothesized that the increase of CD146, CCR5, or both can serve as GVHD 

biomarkers with diagnostic or prognostic value. 

 

In previous experiments, our laboratory has found a novel T cell subpopulation in 

GVHD: CD146+CCR5+ CD4+T cells. Our preliminary clinical data shows that: (1) 

CD146+CCR5+ Tconvs frequency is a cellular biomarker of GI GVHD; (2) 

CD146+CCR5+ Tconvs population is Th1* polarized; and (3) CD146+CCR5+ Treg 

frequency is increased in GVHD patients while the overall Treg frequency is 

decreased. 
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Definition and Gating Strategy of Tconvs and Tregs 

In our studies, Tconvs are defined as CD4+CD25loCD127+ human T cells; Tregs 

are defined as CD4+CD25+CD127lo human T cells (Figure 2) (Unpublished data 

from Gomez A).  

 

 

 

 

 

Figure 2. Definition and gating strategy of human Tconvs and Tregs by flow 

cytometry. Human CD4 T cells were gated on lymphocytes; Tconvs were gated 

on CD4 T cells as CD4+CD25loCD127+ population; Tregs were gated on CD4 T 

cells as CD4+CD25+CD127lo population (Unpublished data from Gomez A). 
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CD146+CCR5+ Tconvs in GI GVHD patients 

Gomez from our laboratory first analyzed peripheral blood cells from 214 HSCT 

patients including 71 GI GVHD, 48 no GVHD and 33 non-GVHD enteritis patients 

at onset of symptoms. The frequency of CD146+CCR5+T cells was significantly 

increased in GI GVHD patients compared to patients without GVHD (p<0.001) or 

non-GVHD enteritis (p<0.001) (Figure 3). Our laboratory then further 

characterized this CD146+CCR5+ T cell population using nanostring technology 

to define differential transcriptomes between CD146+CCR5+ Tconvs and non-

CD146+CCR5+ Tconvs. Interestingly, RORγt and Tbet, two transcriptional factors 

essential for Th1* development were among the most upregulated transcripts. 

We then confirm these findings at the protein level in patient samples with 

intracellular staining of RORγt, Tbet and IL-17. These data suggest that in GI 

GVHD patients, CD146+CCR5+ T cells had a Th1* phenotype (RORγ+Tbet+) 

compared to non-CD146+CCR5+ T cells (Figure 4). 
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Figure 3. CD4+CD146+CCR5+ T cell subset is a biomarker of intestinal 

GVHD. CD146+CCR5+ Tconvs frequencies on CD4+ T cell in healthy donors 

(HD), auto-transplant patients (Auto) and allogeneic patients (all others) were 

measured by flow cytometry. (Unpublished data from Gomez A, student t test, 

mean ± SEM, significance for p < 0.05) 
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Figure 4. CD146+CCR5+ T cells are Th1* polarized. (A) Transcriptional 

differences were compared between CD146+CCR5+ Tconvs and non-

CD146+CCR5+ Tconvs by using nanostring technology. The expressions of (B) 

transcriptional factor RORγt, Tbet and (C) cytokine IL-17 on CD146+CCR5+ 

Tconvs and non-CD146+CCR5+ Tconvs in GVHD patients were measured by 

flow cytometry. (Unpublished data from Gomez and Braun, student t test, mean ± 

SEM, significance for p < 0.05) 
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TMP778 as a novel RORγt inhibitor 

Skepner and colleagues have recently identified a novel small-molecule RORγt 

inhibitor: TMP778 [78]. They reported that IL-17 and IL-17 producing cells 

induced by RORγt in human T cells can be inhibited by TMP778 (Figure 5A, 5B). 

In addition, TMP778 can inhibit Th17 signature gene expression by cells isolated 

from psoriatic patient [78]. A subsequent study also showed that RORγt small-

molecule inhibitor TMP778 could suppress Th17 cell responses in vivo and thus 

ameliorated EAE (Figure 5C) [77]. We hypothesize that Th1* cells can be 

targeted in GVHD treatment with TMP778. Therefore, TMP778 could also be a 

promising GVHD-specific drug. 
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Figure 5. TMP778 inhibits IL-17A production in human CD4 T cells.  

(A, B) Naive CD4+ T cells were transduced with RORγt lentivirus and then 

stimulated with CD3/CD28 beads in the presence of DMSO, 0.1 μM TMP778 or 

its diastereomer TMP776 for ten days. (A) After the infection, IL-17 expression 

was measured by flow cytometry. (B) Cells were then harvested and restimulated 

with CD3/CD28 beads in the presence of TMP778 or TMP776 for 48 h. IL-17 
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titers in the supernatants were determined by using Meso Scale Discovery 

(MSD) assays. Data are representative of two to three separate experiments. 

(C) C57BL/6 mice were immunized with MOG35–55 plus complete Freund’s 

adjuvant (CFA), and injected with TMP778, TMP920, digoxin or DMSO 

subcutaneously twice daily. Mice were evaluated daily for signs of EAE. (Figures 

from Skepner J et al., JI, 2014 and Xiao S et al., Immunity, 2014, mean ± SD, *p 

< 0.05). 
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CD146+CCR5+ Tregs in GVHD patients 

Magenau and colleagues published previously that Treg frequency is correlated 

with GVHD severity at onset [50]. In cohort 1, Treg frequency decreased with 

each increasing grade of GVHD (Figure 6A). Patients with GVHD whose Treg 

frequency was less than the median had a significantly greater non-relapse 

mortality (NRM) at one year than patients with Treg frequency equal to or greater 

than the median (Figure 6B). 

 

In unpublished work by Gomez, our laboratory analyzed peripheral blood cells 

from a second cohort of 214 HSCT patients including 71 GI GVHD, 48 No GVHD 

and 33 non-GVHD enteritis patients at onset of symptoms. As many studies 

reported previously [80-82], the Treg frequency was significantly decreased in GI 

GVHD patients as compared to patients without GVHD (p=0.02) or non-GVHD 

enteritis (p=0.04) (Figure 6C). Surprisingly, the frequency of CD146+CCR5+ 

Tregs was significantly increased in GI GVHD patients as compared to patients 

without GVHD (p=0.04) or non-GVHD enteritis (p=0.03) (Figure 6D, 6E). 

Transcriptome analysis with Nanostring technology and flow data of these 

CD146+CCR5+ Tregs showed that they expressed some levels of IFN-γ and IL-

17A as compared to non-CD146+CCR5+ Tregs that expressed none (data not 

shown), indicating that the CD146+CCR5+ Tregs might be Th1*-polarized and 

may have altered suppressive function after allo-HSCT. 
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Figure 6. CD146+CCR5+ Treg frequency is increased during GVHD.  

In cohort 1 (N = 60), fresh blood samples from allogeneic transplant patients with 

GVHD were acquired within 24hrs of acute GVHD onset and analyzed according 

to GVHD severity: (A) Mean Treg frequencies by grade of GVHD at onset. (B) 

NRM in patients with GVHD divided according to the median Treg frequency 

(high Treg ≥ 0.5% (N=30) or low Treg < 0.5 (N=30)) (Figures from Magenau, et 

al., Biol Blood Marrow Transplant, 2010).  

 

In cohort 2 (N=214), (C, D, E) the frequencies of CD25+CD127-Foxp3+ Tregs and 

CD146+CCR5+ Tregs on CD4 T cell in GI GVHD patients, HSCT patients without 

GVHD (No GVHD) and patients with non-GVHD enteritis were measured by flow 

cytometry. (Unpublished data by Gomez A, student t test, mean ± SEM, 

significance for p < 0.05) 
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HYPOTHESIS 1 

 

 

ICOS co-stimulation is important for the development of Th1*-polarized 

CD146+CCR5+ Tconvs during GVHD 
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CHAPTER 1. The role of ICOS in the development of Th1*-polarized 

CD146+CCR5+ Tconvs during GVHD 

 

 

OVERVIEW AND RATIONALE 

Since ICOS is critical for human Th17 development [10] and our clinical data 

shows that CD146+CCR5+ Tconvs are a Th1* polarized population, I investigated 

the role of ICOS in CD146+CCR5+ Tconvs generation in vitro and also tested the 

hypothesis that ICOS stimulation is important in the early development of 

CD146+CCR5+ Th1* in a xenogeneic GVHD (xeno-GVHD) model. The rationale 

for using a xeno-GVHD model rather than a classical murine model is due to the 

fact that murine donor T cells do not express CD146 [83], while human donor T 

cells express CD146. Xeno-GVHD can be induced by transferring human 

PBMCs or purified CD4 T cells to immunocompromised mice. I chose 

NOD/scid/IL-2Rγ-/- (NSG) mice as recipients. NSG mouse is a non-obese 

diabetic (NOD)-scid mouse bearing mutations in the IL-2 receptor common γ-

chain (IL-2Rγ chain). IL-2 receptor is responsible for various signaling through 

the IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 receptors, so the lack of this gene 

results in significantly impaired development and function of innate and adaptive 

immunity [84]. Previous studies have shown that this model will have a consistent 

development of xeno-GVHD within 20 days and a mortality rate of 90% by 2 

months [85]. 
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MATERIALS AND METHODS 

 

 

Human blood and peripheral blood mononuclear cells (PBMCs) 

Peripheral blood buffy coats from healthy adult volunteer donors were 

commercially obtained from the Indiana Blood Center. PBMCs were prepared 

from buffy coats by Ficoll-Paque density grade centrifugation (GE Amersham) 

and extensive washing with PBS. 

 

 

Human T cell and PBMCs culture media 

Human Th1, Th17 and PBMCs were cultivated in both T cell expansion medium 

(Invitrogen) and complete RMPI that was composed of RPMI 1640 complete 

tissue culture medium supplemented with L-glutamine, 10 U/ml 

penicillin/streptomycin, 20 mM HEPES, 0.1 mM NEAA, 1 mM sodium pyruvate 

(all from Invitrogen) plus 10% FBS (Hyclone), and 0.05 mM 2-ME (Sigma). 

 

 

Human T cell polarization 

T cells were isolated from fresh buffy coat. Naïve CD4+ T cells were negatively 

isolated using naïve CD4+ T cell isolation kit (Miltenyi). Total CD4+ T cells were 

negatively isolated using CD4+ T isolation kit (Miltenyi). CD146+CD4+ T cells and 
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CD146-CD4+ T cells were isolated from total CD4+ T cells using CD146 

microbeads (Miltenyi). Purification of isolation is >95%. 

 

For T cell activation, 0.5 × 106 T cells were plated in 48-well flat bottom plate with 

CD3/CD28 or CD3/ICOS coated M-450 Tosylactivated Dynabeads (Invitrogen). 

The bead-to-cell ratio was 1: 5. Cells were cultivated in T cell expansion medium 

(Invitrogen) in a 37°C and 5% CO2 incubator. 

 

For Th1 polarization, IL-2 (2 ng/ml), IL-12 (10 ng/ml) (R&D system), and 

neutralizing antibodies against IL-4 (10 μg/ml) (eBioscience) were added on day 

0. For Th17 polarization, IL-1β (20 ng/ml), IL-6 (30 ng/ml), IL-23 (30 ng/ml), TGF-

β (2 ng/ml) (R&D system) and neutralizing antibodies against IL-4 (5 μg/ml) and 

IFN-γ (2 μg/ml) (eBioscience) were added on day 0. The polarizing cytokines and 

antibodies were maintained throughout the cell culture. 

 

 

Mixed lymphocyte reaction 

The MLR was performed with responder cells and stimulator cells from two MHC-

mismatched healthy donors in a 96-well round bottom plate. The responder was 

1.5 × 106 /ml whole PBMCs isolated from fresh buffy coat. The stimulator was 1.5 

× 106 /ml PBMCs that were irradiated by 3000 cGy irradiation, leaving mostly 

APCs in the stimulator. The culture of the responder and stimulator from the 
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same donor were used as an autologous control. After 10 days of culture, the 

cells were harvested and processed to flow cytometry analysis. 

 

 

Flow cytometry 

For intracellular cytokine staining, cells were stimulated with PMA (50 ng/ml) 

(Sigma), Ionomycin (1 μg/ml) (Sigma) and Brefeldin A (3 μg/ml) (eBioscience) for 

5 hours in a 37°C and 5% CO2 incubator. Intracellular cytokines and 

transcriptional factors were stained with FoxP3 staining Kit (eBioscience). 

Stained cells were analyzed with Attune (Invitrogen) Flow Cytometer and FlowJo 

software. 

 

 

Statistical analysis 

Data were analyzed by unpaired student t test. Value of P= 0.05 or less was 

considered to be statistically significant. 

 

 

Mice 

Immunodeficient NSG mice were used as recipient mice. Mice were obtained 

from the In Vivo Therapeutics Core at the Indiana University Simon Cancer 

Center, housed under specific pathogen-free conditions in sterile ventilated 

racks. All mice were maintained on the food supplemented with Uniprime and 
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acidic water throughout the experiments. All procedures were performed in 

compliance with protocols approved by the Institutional Animal Care and Use 

Committee and Institutional Biosafety Committee. 

 

 

Xeno-GVHD model 

Human CD4 T cells were isolated from fresh buffy coat from healthy donors and 

cultured in the presence of beads coated with either CD3/CD28 or CD3/ICOS in 

vitro for 6 days. NSG mice were conditioned with 350 cGy total body irradiation 

24 hours before transplantation (Day -1). Equal numbers of mice were 

intravenously injected with approximately 1.5 × 106 CD28 activated or 1.5 × 106 

ICOS activated human CD4 T cells on Day 0. Survival, weight loss and GVHD 

clinical score were monitored every other day after transplantation. GVHD signs 

(body weight loss, hunched posture, reduced motility, hair loss and ruffed fur) 

were scored twice a week by using the grading system developed by Cooke et 

al. [86]. 
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RESULTS 

 

 

In vitro Th17 polarization increases CD146 expression on human T cells 

Unstimulated human CD4 T cells from PBMCs of healthy donors expressed 

approximately 4% CD146 (Figure 7A showing percentage on total T cells). Since 

CD146+CCR5+ T cells from GVHD patients are Th1* polarized co-expressing 

IFN-γ and IL-17A, I wanted to measure the expression of CD146 on human CD4 

T cells differentiated under Th1 and Th17 in vitro polarization. I isolated CD4 T 

cells from PBMCs and stimulated the cells with CD3/CD28 Dynabeads in either 

Th1 polarizing condition or Th17 polarizing condition for 7 days. Consistent with 

patients’ data, in vitro Th17-differentiated cells expressed more CD146 than Th1-

differentiated cells (Figure 7B). These data suggests that the frequency of CD146 

on human CD4 T cells can be induced by TCR stimulation and Th17 polarizing 

condition in vitro. 
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Figure 7. Human CD146 expression in PBMCs from healthy donors.  

(A) CD146 expression on unstimulated PBMCs from healthy donors was 

measured by flow cytometry, gated on total T cells. (B) Naïve CD4+ T cells were 

isolated from PBMCs of healthy donors and cultured under Th1 or Th17 

polarizing conditions for 7 days. CD3/CD28 Dynabeads were added on day 0 to 

activate the cells. CD146 expression on CD4+ T cells of different culture 

conditions was measured by flow cytometry on day 7. (Statistical data were 

pooled from 16 independent experiments, student t test, mean ± SEM, *p < 0.05) 
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Th1*-polarized CD146+CCR5+ Tconvs can be induced upon allogeneic 

stimulation 

To further investigate the role of CD146+CCR5+ Tconvs in the development of 

human GVHD, I performed in vitro MLRs to mimic the allogeneic reaction in 

GVHD patients. I cultured lymphocytes-free PBMCs (the responder) from one 

healthy donor with whole PBMCs (the stimulator) from another MHC-mismatched 

healthy donor. After culturing for 10 days, the frequency of CD146+CCR5+ 

Tconvs in the allogeneic culture was significantly higher than the frequency of 

CD146+CCR5+ Tconvs in the autologous control (Figure 8A, 8B). To determine if 

these CD146+CCR5+ Tconvs are Th1* polarized as we observed in PBMCs from 

GVHD patient, we measured the cytokine expression and found that the 

percentage of IL-17A+IFN-γ+ coproducing T cells was much higher on the 

CD146+CCR5+ Tconvs compared to that on the non-CD146+CCR5+ Tconvs 

(Figure 8C). These results indicate that CD146+CCR5+ Tconvs can be generated 

from allogeneic stimulation and possess a pathogenic Th1* phenotype. 
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Figure 8. CD146+CCR5+ Tconvs can be induced after allogeneic stimulation 

in MLRs. PBMCs from one healthy donor were irradiated by 3000 cGy before 

culture. The irradiated PBMCs were cultured with whole PBMCs either from the 

same donor (autologous) or another MHC-mismatched healthy donor 

(allogeneic) for 10 days. (A, B) The frequency of CD146+CCR5+ Tconvs on total 

CD4 T cells was measured by flow cytometry on day 10. (C) The cytokine 

production of CD146+CCR5+ Tconvs and non-CD146+CCR5+ Tconvs was 

measured by flow cytometry on day 10. (Statistical data were pooled from 12 

independent experiments, student t test, mean ± SEM, *p < 0.05) 
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ICOS is important for the development of the CD146+CCR5+ Tconvs 

ICOS stimulation has been shown to be critical for the development of human 

Th17 in the study by Paulos et al. [10]. I hypothesized that ICOS stimulation can 

also induce the generation of Th1*-polarized CD146+CCR5+ Tconvs. I 

investigated the role of ICOS in CD146+CCR5+ Tconvs generation. I found that 

naïve T cells from healthy donors, differentiated with both Th17 inducing 

cytokines and ICOS stimulation, showed increased percentage of 

CD146+CCR5+ T cells compared to naïve T cells differentiated with Th1 and 

CD28, Th17 and CD28 or Th1 and ICOS (Figure 9).  
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Figure 9. ICOS stimulation with Th17 polarization induces CD146+CCR5+ 

Tconvs. Naïve CD4 T cells were isolated from PBMCs from healthy donors and 

cultured in the presence of CD3/CD28 or CD3/ICOS Dynabeads ubder Th1 or 

Th17 polarizing conditions. After 7 days, the frequency of CD146+CCR5+ Tconvs 

was measured by flow cytometry. (Statistical data were pooled from 4 

independent experiments, student t test, mean ± SEM, *p < 0.05) 
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Th17 polarization with ICOS stimulation induces the generation of Th1* 

cells 

Naïve T cells differentiated with both Th17 and ICOS also co-expressed more 

Th1 and Th17 cytokines (IL-17A+IFN-γ+) than those differentiated with Th1 and 

CD28, Th17 and CD28 or Th1 and ICOS (Figure 10). These results indicate that 

Th1* cells can be induced by ICOS stimulation in the presence of Th17 polarizing 

condition. 
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Figure 10. ICOS stimulation with Th17 polarization induces Th1* cells. 

Naïve CD4 T cells were isolated from PBMCs from healthy donors and cultured 

in the presence of CD3/CD28 or CD3/ICOS Dynabeads under Th1 or Th17 

polarizing conditions. After 7 days, the frequency of IL-17A+IFN-γ+ Tconvs was 

measured by flow cytometry. (Statistical data were pooled from 7 independent 

experiments, student t test, mean ± SEM, *p < 0.05) 
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Th17 polarization with ICOS stimulation induces the pathogenic Th17 

surface markers on Tconvs 

Th17 polarization and ICOS stimulation also increased other pathogenic Th17 

markers such as CD161, IL-23R and CXCR6 (Figure 11).  
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Figure 11. ICOS stimulation with Th17 polarization induces pathogenic 

Th17 markers. Naïve CD4 T cells were isolated from PBMCs from healthy 

donors and cultured in the presence of CD3/CD28 or CD3/ICOS Dynabeads 

under Th1 or Th17 polarizing conditions. After 7 days, the frequencies of 

CD161+, IL-23R+ and CXCR6+ Tconvs were measured by flow cytometry. 

(Statistical data were pooled from 3 independent experiments, one way ANOVA, 

mean ± SEM, *p < 0.05) 
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CD146+ Tconvs are Th1* prone 

When we gated on CD146 after culturing naïve T cells under Th17 polarization 

and ICOS stimulation for 7 days, I noticed that compared to CD146- T cells, 

CD146+ T cells co-expressed more Th1* cytokines (IL-17A+IFN-γ+) (Figure 12A) 

and pathogenic Th17 (Th1*) markers (GM-CSF, BATF, IL-23R) (data not shown), 

suggesting that they might be Th1* prone. I was able to further confirm this 

hypothesis by culturing under Th1 or Th17 polarization and CD28 or ICOS 

stimulation, sorted CD146+ and CD146- T cells from mature total T cells, 

separately. CD146+ T cells co-expressed more Th1 and Th17 cytokines in all the 

differentiation culture conditions (Th1 or Th17 with CD28 or ICOS stimulation) 

(Figure 12B), suggesting that CD146+ T cells are already prone to a Th1* 

phenotype and additional polarization or TCR co-stimulation does not change 

their fate. Overall, these data show that CD146+ T cells have the capacity to 

exhibit a Th17 pathogenic cytokine profile that is independent of the effect of 

exogenous cytokines and TCR co-stimulation when CD146+ T cells are mature.  
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Figure 12. CD146+ Tconvs are Th1* prone.  (A) Naïve CD4+ T cells or (B) 

mature CD146-CD4+ and CD146+CD4+ T cells were isolated from total T cells 

and cultured under Th1 or Th17 polarizing conditions for 7 days. CD3/CD28 or 

CD3/ICOS coated Dynabeads were added on day 0 to activate the cells. The 

frequency of IL-17A+IFN-γ+ Tconvs on CD4+ T cells was measured by flow 

cytometry. (Statistical data were pooled from 4 independent experiments, student 

t test, mean ± SEM, *p < 0.05) 
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Adoptive transfer of T cells simulated by ICOS induces more severe xeno-

GVHD in an in vivo xenogeneic model 

To further investigate the role of ICOS in the development of CD146+CCR5+ 

Tconvs during GVHD, I used a xenogeneic model and transferred human CD4 T 

cells stimulated ex vivo with CD28 or with ICOS to NSG mice. First, I 

demonstrated that in the presence of ICOS stimulation, human CD4+ T cells can 

be polarized towards CD146+CCR5+ Th1* even without Th17 skewing condition 

(Figure 13A). After human T cell xenogeneic transplantation (Figure 13B), I 

monitored the survival, body weight loss and GVHD clinical scores of the mice 

and found that mice injected with ICOS stimulated cells had more severe xeno-

GVHD than mice injected with CD28 stimulated cells, which trended toward 

significance (Figure 13C).  This result suggests that ICOS stimulation might 

exacerbate GVHD in vivo. 
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Figure 13. Adoptive transfer of ICOS stimulated T cells exacerbates xeno-

GVHD. (A) Total CD4+ T cells were isolated from PBMCs and cultured in the 

presence of either CD3/CD28 or CD3/ICOS Dynabeads without polarizing 

conditions for 6 days. The expressions of CD146, CCR5, IFN-γ and IL-17A were 

measured by flow cytometry. (B) NSG mice were irradiated by 350 cGy on day -1 

and injected with 1.5 × 106 /mouse stimulated T cells. (C) Percent survival was 

measured from day 0 up to day 70. Data were pooled from two independent 

experiments. 
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DISCUSSION 

 

 

Here I show that CD146+CCR5+ Tconvs are Th1* polarized in GVHD and ICOS 

is important in the development of CD146+CCR5+ Tconvs. Indeed, I showed that 

CD146+ Tconvs could be induced after in vitro stimulation with ICOS and Th17 

polarizing condition. I also provided in vivo evidence suggesting the pathogenic 

role of ICOS stimulated Tconvs. 

 

The xeno-GVHD model also has the advantage to allow fast bench to beside 

translation as targeted human neutralizing antibodies can be used. As I showed 

evidence of ICOS to induce pathogenic Th1* and CD146+CCR5+ Tconvs, I next 

hope to investigate the effect of ICOS inhibition in xeno-GVHD models. I tested a 

human ICOS blocking antibody from Ancell (ANC6C6) in vitro [87], but this 

antibody does not seem to neutralize the ICOS co-stimulation and thus Th1* 

differentiation. Unfortunately, we also failed to obtain the authorization to use 

another promising human ICOS neutralizing antibody (314.8), which has been 

reported to block the ICOS/ICOS-L interaction for GVHD studies [88]. An 

alternative to this pitfall is to target ICOS-L that has been reported to be up-

regulated on APCs and induced by TNF-α or LPS [89, 90]. Therefore, I 

hypothesize that ICOS-L on host APCs could be targeted by ICOS-L neutralizing 

antibody during xeno-GVHD in future studies. However, targeting host APCs in 

vivo has been proven more challenging than targeting donor T cells in GVHD 
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studies. Therefore, my laboratory will focus, as priority, in future studies on the 

second therapeutic target RORγt as explained in chapter 2. 
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HYPOTHESIS 2 

 

RORγt inhibition can prevent the development of Th1*-polarized 

CD146+CCR5+ Tconvs during GVHD 
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CHAPTER 2. The role of RORγt in the development of Th1*-polarized 

CD146+CCR5+ Tconvs during GVHD 

 

 

OVERVIEW AND RATIONALE 

RORγt is known as the master transcriptional factor of Th17 [11] and its 

expression on CD4+ T cell has been shown to be important in the development of 

acute GVHD [44, 46]. A recent study discovered a novel, potent, and selective 

RORγt inhibitor, TMP778, which can inhibit human and mouse Th17 

differentiation in vitro and thus attenuate EAE in vivo [77, 78]. Therefore, the goal 

of this chapter was to investigate the role of TMP778 in inhibiting the 

development of Th1*-polarized CD146+CCR5+ Tconvs in vitro. I found that 

TMP778 can block the differentiation of pathogenic Th1* and CD146+CCR5+ 

Tconvs under either Th17 polarizing conditions or allogeneic reactions, 

suggesting that RORγt inhibition may represent a novel therapy for human 

GVHD. 
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MATERIALS AND METHODS 

 

 

Human blood and PBMCs 

Same as described in Chapter 1. 

 

 

Th17 and PBMCS culture media 

Same as described in Chapter 1. 

 

 

TMP778 reconstitution 

TMP778 powder was obtained from Dr. Jianfei Yang and synthesized by 

Tempero Pharmaceuticals (a GlaxoSmithKline company). TMP778 (stock 

solution) was diluted in pure DMSO at 808.76 mM and stored at -80°C. TMP778 

(working solution1) were diluted in pure DMSO at 10 mM and stored at 4°C. 

TMP778 (working solution2) was then diluted in cRMPI to reach final working 

concentration of 0.01 µM, 0.1 µM, 1 µM or 10 µM. The percentage of DMSO 

contained in each concentration of TMP778 was 0.0001%, 0.001%, 0.01%, 

0.1%, respectively. 

 

 

Human Th17 differentiation and treatment with TMP778 
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Naive or total CD4+ T cells were isolated as previously described in Chapter 1. 

To study the effect of TMP778 on Th17 differentiation, naive or total CD4 T cells 

(2 × 106 cells/ml) were stimulated with pre-coated anti-CD3/anti-ICOS 

Dynabeads in complete RPMI under Th17 polarizing conditions (20 ng/ml IL-1β, 

30 ng/ml IL-6, 30 ng/ml IL-23, 2 ng/ml TGF-β, 5 μg/ml anti-IL-4 and 2 μg/ml anti-

IFN-γ) in the presence of different doses of TMP778 (0.01 µM, 0.1 µM, 1 µM, 10 

µM) or DMSO control (0.0001%, 0.001%, 0.01%, 0.1%). After 7 days of culture, 

cells were harvested and processed to flow cytometry analysis. 

 

 

MLR and treatment with TMP778 

The MLR was performed as previously described in Chapter 1. Different doses of 

TMP778 (0.01 µM, 0.1 µM, 1 µM, 10 µM) or DMSO (0.0001%, 0.001%, 0.01%, 

0.1%) were added at the beginning, and the concentration of both was 

maintained throughout the culture. 

 

 

Flow cytometry 

Same as described in Chapter 1. 

 

 

Statistical analysis 

Same as described in Chapter 1. 
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RESULTS 

 

 

TMP778 suppresses the development of pathogenic Th1* and 

CD146+CCR5+ Tconvs in vitro 

To determine if TMP778 can block the development of Th1*-polarized 

CD146+CCR5+ Tconvs, I cultured either naïve CD4 T cells or total CD4 T cells 

under Th17 polarizing condition in the presence of different doses of TMP778 or 

DMSO and measured the expressions of IL-17A and IFN-γ and the frequency of 

CD146+CCR5+ Tconvs. TMP778, but not DMSO, started to inhibit the IL-17A 

production and also IL-17A+IFNγ+ Th1* differentiation at 0.01 µM and blocked up 

to 80% of pathogenic Th1* at 10 µM (Figure 14A, 14B). The frequencies of 

CD146+CCR5+ Tconvs in the culture with TMP778 were also lower than those in 

the culture without TMP778 in a dose-dependent manner (Figure 14B). These 

results indicate that TMP778 can suppress not only the differentiation of Th17 but 

also the differentiation of Th1* polarized-CD146+CCR5+ Tconvs. 
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Figure 14. CD146+CCR5+ Tconvs and Th1* are inhibited by a novel RORγt 

inhibitor, TMP778. (A) Total CD4+ T cells or (B) naïve CD4+ T cells were 

isolated from PBMCs and cultured under Th17 polarizing conditions for 7 days in 

the presence of DMSO or different doses of TMP778. CD3/ICOS coated 

Dynabeads were added on day 0 to activate the cells. The frequencies of IL-

17A+IFN-γ+ Th1* and CD146+CCR5+ Tconvs were measured by flow cytometry. 
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(Statistical data were pooled from 3 independent experiments, student t test, 

mean ± SEM, *p < 0.05) 
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TMP778 suppresses the development of CD146+CCR5+ Tconvs in 

allogeneic reactions 

To further determine the role of RORγt in human allogeneic responses, I 

performed in vitro MLRs to mimic the allogeneic reaction in GVHD patients with 

or without TMP778. The frequencies of CD146+CCR5+ Tconvs in the allogeneic 

groups with TMP778 were decreased in a dose-dependent manner (Figure 15). 

These data suggest that TMP778 can suppress the development of Th1*-

polarized CD146+CCR5+ Tconvs in allogeneic reactions in in vitro and possibly in 

vivo settings planned for future studies. 
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Figure 15. RORγt inhibitor, TMP778, inhibits the generation of 

CD146+CCR5+ Tconvs in in vitro MLRs. PBMCs from one healthy donor were 

irradiated by 3000 cGy before culture. The irradiated PBMCs were cultured with 

whole PBMCs either from the same donor (Autologous) or another MHC-

mismatched healthy donor (Allogeneic) for 10 days. 0.01% DMSO and different 

doses of TMP778 (0.01 µM, 0.1 µM, 1 µM) were added to different allogeneic 

cultures on day 0. The frequency of CD146+CCR5+ Tconvs on total CD4 T cells 

was measured by flow cytometry on day 10. 
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DISCUSSION 

 

 

I reported here that TMP778, a novel small-molecule RORγt inhibitor could inhibit 

the development of Th1*-polarized CD146+CCR5+ Tconvs in vitro. Our data in 

the previous chapter suggested that the frequency of the novel CD146+CCR5+ 

Tconvs population, which was identified as a GVHD biomarker, was increased 

significantly after ICOS stimulation in vitro. Here we show that the effect of ICOS 

co-stimulation and Th17 polarizing condition to drive the development of 

CD146+CCR5+ Tconvs can be counteracted by TMP778. Thus, the RORγt 

inhibitor, TMP778, can not only inhibit the in vitro differentiation and expansion of 

Th17 as previously reported [77, 78], but can also inhibit the differentiation of 

pathogenic Th1* as well as the Th1*-polarized CD146+CCR5+ Tconvs. These 

data also suggest that similar to classic IL-17 producing Th17 cells, IL-17A and 

IFN-γ co-producing Th1* cells could be transcriptionally regulated by RORγt. 

 

I also tested the effect of TMP778 in allogeneic reaction. During the MLR from 

two MHC-mismatched human PBMCs, TMP778 was able to decrease the allo-

reactivity by inhibiting the generation of Th1*-polarized CD146+CCR5+ Tconvs. 

These findings underline the potential of TMP778 as a treatment for GVHD. 

 

For future studies, our laboratory wants to test the effect of TMP778 in the xeno-

GVHD model described in the previous chapter. By blocking RORγt by TMP778 
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in vivo, we expect to see ameliorated xeno-GVHD. We also expect to see that 

RORγt blockade by TMP778 limits the development of pathogenic Th1* as we 

observed in in vitro studies. 
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HYPOTHESIS 3 

 

 

ICOS co-stimulation is important for the development of Th1*-polarized 

CD146+CCR5+ Tregs during GVHD 
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CHAPTER 3. Role of ICOS in the development of Th1*-polarized 

CD146+CCR5+ Tregs during GVHD 

 

 

OVERVIEW AND RATIONALE 

Our laboratory’s clinical data suggested altered function of CD146+CCR5+ Tregs 

in GVHD patients by showing that CD146+CCR5+ Treg frequency was found to 

be elevated in GVHD patients while the frequency of total Tregs was decreased. 

Furthermore, CD146+CCR5+ Tregs in GVHD patients co-expressed IFN-γ and IL-

17A, indicating that they might be Th1* polarized and lose suppressive function 

after allo-HSCT. The plasticity of Tregs to Th17 has been reported in vitro [91] 

and in many autoimmune murine models [64] as well as recently in murine 

GVHD studies [46, 92]. Therefore, I hypothesized that CD146+CCR5+ Tregs were 

more plastic and ready to convert to pathogenic Th17 during GVHD [92] and did 

research to investigate the role of CD146+CCR5+ Tregs in vitro. 
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MATERIALS AND METHODS 

 

 

Human blood and PBMCs 

Same as described in Chapter 1. 

 

 

Tregs culture media 

Human Tregs were cultivated in complete RMPI that was composed of RPMI 

1640 complete tissue culture medium supplemented with L-glutamine, 10 U/ml 

penicillin/streptomycin, 20 mM HEPES, 0.1 mM NEAA, 1 mM sodium pyruvate 

(all from Invitrogen) plus 10% FBS (Hyclone), and 0.05 mM 2-ME (Sigma). 

 

 

Treg Expansion 

Natural regulatory T cells were isolated from PBMCs using human 

CD4+CD25+CD127dim/- Regulatory T Cell Isolation Kit II (Miltenyi) and cultured in 

96-well round bottom plate. 1 × 105 Tregs were expanded with either CD3/CD28 

or CD3/ICOS coated M-450 Tosylactivated Dynabeads (Invitrogen) in the 

presence of 500 U/ml recombinant human IL-2 (R&D). The bead-to-cell ratio was 

1: 5. Cells were cultivated in complete RMPI in a 37°C and 5% CO2 incubator for 

7 days. 
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Flow Cytometry 

Same as described in Chapter 1. 

 

 

Statistical Analysis 

Same as described in Chapter 1. 
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RESULTS 

 

 

ICOS is important for the development of the Th1*-polarized CD146+CCR5+ 

Tregs 

I cultured nTregs that were isolated from human PBMCs with either CD3/CD28 

or CD3/ICOS stimulation beads in the presence of high-dose (500U/ml) of 

recombinant IL-2. After 7 days of culture, the flow analysis showed that ICOS 

activated Tregs expressed significantly lower levels of markers of functional 

Tregs such as CD25 and Foxp3 as compared to CD28 activated Tregs (Figure 

16A, 16B), suggesting an altered suppressive function in ICOS activated Tregs. 

With ICOS stimulation, Tregs also showed a Th1*-polarized phenotype by 

expressing more CD146+CCR5+ and IL-17A+IFN-γ+ Th1* cells (Figure 16C, 16D). 

These data suggest that ICOS stimulation can increase the frequency of 

CD146+CCR5+ Tregs that are Th1*-polarized in vitro. Tregs were reported to 

have the ability to convert to IL-17 secreting cells, which plays an important role 

in the pathogenesis of autoimmune diseases [64]. It is possible that these ICOS 

induced CD146+CCR5+ Tregs are Th1*-polarized and thus less suppressive, 

while in vitro Treg suppression assay showed that both of CD28 and ICOS 

stimulated Tregs retained suppressive function (Figure 16E). This observation 

warrants further analysis in the future. 

 

 

68 



 

 

 

69 



 

 

Figure 16. ICOS stimulation polarizes Tregs towards Th1*-polarized 

CD146+CCR5+ cells. nTregs were isolated from human PBMCs and cultured 

with CD3/CD28 or CD3/ICOS in the presence of 500 U/ml rhIL-2. The 

expressions of (A) CD25, (B) Foxp3, (C) CD146, (D) CCR5, IFN-γ and IL-17A 

were measured by flow cytometry (Statistical data were pooled from 3 

independent experiments, student t test, mean ± SEM, *p < 0.05). (E) After CFSE 

staining, CD28 or ICOS stimulated Tregs were restimulated with CD3/CD28 

beads in the presence of different ratios of Tconvs as indicated above. After 3 

days of culture, the frequencies of CFSE+ Tregs were measured by flow 

cytometry. 
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DISCUSSION 

 

 

Our laboratory’s clinical data suggested altered function of CD146+CCR5+ Tregs 

in GVHD patients. In addition, the results here indicate that ICOS stimulation 

increases the frequency of CD146+CCR5+ Tregs that are Th1*-polarized in vitro. 

The ICOS induced CD146+CCR5+ Tregs population decreased CD25 and Foxp3 

expression, which is important for maintaining the suppressive function and 

stability of Tregs [93]. Tregs were reported to have the ability to convert to IL-17 

secreting cells, which play an important role in the pathogenesis of autoimmune 

diseases [64]. To determine if these ICOS induced CD146+CCR5+ Tregs are less 

tolerogenic than other Tregs, I performed a suppressive functional assay to 

compare the function of CD28 and ICOS stimulated Tregs. Unfortunately, at this 

point, I didn’t observe any significant differences of the suppressive ability 

between CD28 and ICOS stimulated Tregs in vitro. However, this could be 

explained by the discrepancies between in vitro studies and what really happens 

in vivo and future studies involving murine models are worth exploring. 
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FUTURE DIRECTION 

 

 

GVHD remains the most common and fatal complication post-HSCT. In the 

future, our laboratory expects to develop novel treatments by inhibiting 

CD146+CCR5+ Tconvs and/or CD146+CCR5+ Tregs. If successful, it may have 

an impact on our understanding of the role of Th1* in GVHD. The implementation 

of xeno-GVHD model would be more clinically relevant and could ultimately 

explain the discrepancy between human and murine GVHD. Our laboratory has 

planned to perform xeno-GVHD experiments with TMP778 treatment as 

compared to DMSO treatment. We hypothesize that TMP778 can prevent the 

induction of pathogenic Th1*-polarized CD146+CCR5+ cells and we expect to see 

attenuated acute GVHD in the TMP778 treated group.  

 

In future studies, our laboratory has also planned to target the plasticity of 

CD146+CCR5+ Tregs with the RORγt inhibitor. We will first do in vitro expansion 

of Tregs with TMP778 treatment or DMSO by using the protocol described in 

Chapter 2 and 3. We expect to see less CD146+CCR5+ Tregs generated with 

TMP778 in a dose-dependent manner. We will also measure the frequencies of 

total Tregs and CD146+CCR5+ Tregs to see the influence of RORγt blockade in 

xeno-GVHD models. 
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Overall, we expect that the treatment that focus on inhibiting RORγ would have 

fewer side effects than general immunosuppressive drugs that GVHD patients 

use today and inhibit GVHD while sparing the GVL effect. We expect that the 

frequencies of CD146+CCR5+ Tconvs and/or Tregs can be used as GVHD 

biomarkers. These biomarkers may guide preemptive treatments such as RORγt 

inhibitor. Physicians will be able to treat post-HSCT patients with RORγt inhibitor 

when a high level of CD146+CCR5+ T cells is found. The combination of 

CD146+CCR5+ Tconvs and/or Tregs as a monitoring tool and RORγ inhibitor as a 

treatment will better alleviate GVHD in the future. 
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