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PHOSPHOETHANOLAMINE TRANSFERASES IN HAEMOPHILUS DUCREYI 
MODIFY LIPID A AND CONTRIBUTE TO HUMAN DEFENSIN RESISTANCE 

 
 
 

 
Haemophilus ducreyi resists the cytotoxic effects of human antimicrobial peptides 

(APs), including α-defensins, β-defensins, and the cathelicidin LL-37.  Resistance to LL-

37, mediated by the sensitive to antimicrobial peptide (Sap) transporter, is required for H. 

ducreyi virulence in humans.  Cationic APs are attracted to the negatively charged 

bacterial cell surface.  In other gram-negative bacteria, modification of 

lipopolysaccharide or lipooligosaccharide (LOS) by the addition of positively charged 

moieties, such as phosphoethanolamine (PEA), confers AP resistance by means of 

electrostatic repulsion.  H. ducreyi LOS has PEA modifications at two sites, and we 

identified three genes (lptA, ptdA, and ptdB) in H. ducreyi with homology to a family of 

bacterial PEA transferases.  We generated non-polar, unmarked mutants with deletions in 

one, two, or all three putative PEA transferase genes.  Mutants with deletions in two PEA 

transferase genes were significantly more susceptible to β-defensins, and the triple mutant 

was significantly more susceptible to both α- and β-defensins, but not LL-37; 

complementation of all three genes restored parental levels of AP resistance.  Deletion of 

all three PEA transferase genes also resulted in a significant increase in the negativity of 

the mutant cell surface, suggesting these three genes contribute to the addition of 

positively charged moieties on the cell surface.  Mass spectrometric analysis revealed that 

LptA was required for PEA modification of lipid A; PtdtA and PtdB did not affect PEA 
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modification of LOS.  In human inoculation experiments, the triple mutant was as 

virulent as its parent strain.  While this is the first identified mechanism of resistance to 

α-defensins in H. ducreyi, our in vivo data suggest that resistance to cathelicidin may be 

more important than defensin resistance to H. ducreyi pathogenesis. 
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CHAPTER ONE: INTRODUCTION 

Haemophilus ducreyi Basic Information and Phylogeny 

Haemophilus ducreyi is a gram-negative coccobacillus that causes the sexually 

transmitted disease chancroid (1, 2).  H. ducreyi is a facultative anaerobe and a member 

of the Pasteurellaceae family (3, 4), and has no known non-human reservoirs in nature, 

making it an obligate human pathogen (3).  H. ducreyi is classified as a Haemophilus 

species primarily due to its growth requirements and specific need for heme.  More 

recently, rRNA analysis has revealed H. ducreyi is more related to the Actinobacillus 

cluster rather than the Haemophilus cluster of the Pasteurellaceae family (5).  The 

genome of H. ducreyi is 1.7MB in size with 1830 predicted open reading frames.   

Clinical Manifestations 

Infection occurs primarily in the mucosal epithelium, the stratified squamous 

epithelium, and occasionally the local lymph nodes (6, 7).  The disease is characterized 

by a painful ulcer at the site of infection (8).  H. ducreyi infections are endemic among 

sex workers of resource poor regions in Asia, Africa, and South America (9, 10); the 

prevalence of H. ducreyi infections, while estimated at 6-7 million in 1995 (11) and 

considered steadily on the decline, is nearly impossible to obtain.  A combination of 

difficulty with culturing the bacteria, a lack of reliable diagnostic testing, and syndromic 

management of genital ulcer diseases (GUD) with antibiotics that treat both H. ducreyi 

and syphilis have led to vastly underreported numbers (8, 12-14).  While considered 

classically a sexually transmitted disease, recent studies in the South Pacific have 

identified a non-sexual transmission of H. ducreyi that causes cutaneous ulcers in the 

limbs of patients (15-18). 
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During the course of an infection, H. ducreyi enters the epithelial layer through 

micro-abrasions in skin, often a result of sexual intercourse (19).  As few as one colony 

forming unit (CFU) is needed to be infectious (20, 21).  The disease initially forms small 

papules within a week of acquisition, although papules can form as early as one day after 

infection.  Papules then develop into pustules after several days, and eventually progress 

to painful ulcers at the site of infection (22, 23).  The ulcers, which can persist for several 

weeks to several months, ultimately lead to erosion and autoamputation of the infected 

area if left untreated (3).  Currently, the Centers for Disease Control and Prevention 

recommend treatment with a single dose of azithromycin or ceftriaxone or multiple doses 

of ciprofloxacin or erythromycin (24).   

H. ducreyi is a concern for public health in underdeveloped countries because 

chancroid has been shown to facilitate both the acquisition and transmission of HIV (8).  

The presence of GUD, such as chancroid, can increase acquisition of HIV by more than 

20-fold (25, 26).  The likely mechanism behind this increase is a combination of open 

ulcers in skin resulting in lack of epithelial barriers and the infiltration during infection of 

T-cells and macrophages, which contain the HIV-target CD-4 receptor and CCR5 and 

CXCR4 co-receptors (27).  Upon entering the ulcer, the virus is exposed to T-cells and 

macrophages that are responding to the H. ducreyi infection as well as to dendritic cells 

that may present HIV to additional T-cells (28); in essence, the host’s immune response 

to the H. ducreyi infection actually presents HIV with its target cells. 
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Human Model of H. ducreyi Infection 

Much has been learned about H. ducreyi pathogenesis from the human inoculation 

experiments developed in the 1990s.  While animal models do exist as a model for H. 

ducreyi infection, none are an accurate representative of the human immune response to a 

H. ducreyi infection.  Although a human infection can begin with as few as one CFU, the 

animal models require much larger inocula, indicating that H. ducreyi is not as fit in these 

models as in human infection; mice and macaques require 107 CFU and swine and rabbits 

require 104-105 CFU (1).  The swine and rabbit are the more commonly used models, as 

macaque monkeys are expensive and only the males develop ulcers, and H. ducreyi does 

not survive in mice, with lesions being due to LPS rather than bacterial growth.  The 

swine and rabbit models do, however, illicit an antibody response and spontaneously 

clear the infection.  Antibodies in the swine model are protective, whereas antibodies 

created during natural human infections are not protective.  The rabbit model is also 

temperature dependent; H. ducreyi will only grow if the rabbits are living at 15-17 

degrees Celsius (29-31).  The animal models of H. ducreyi infection do have the 

advantage of being able to let the infection proceed to the ulcerative stage whereas the 

human model of H. ducreyi infection is halted before ulcers develop.  However, since H. 

ducreyi naturally only infects humans, the human is considered the most relevant model 

for invasion and infection.  Since the H. ducreyi infection remains local, and the strains 

used are easily treated with appropriate antibiotics, there is minimal risk to human 

volunteers.   

The development of the human model of H. ducreyi infection over the past twenty 

years has provided the field with a method of examining virulence in the bacteria’s 
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natural host.  In the model, healthy volunteers are infected with H. ducreyi in the upper 

arm via an allergen testing device with an estimated delivered dose (EDD) of 90 CFU of 

35000HP, a human-passaged variant of a Class I clinical isolate 35000 (21).  There are 

three inoculation sites on one arm, and the subject may also be inoculated in the opposite 

arm with an EDD of 45-180 CFU of an H. ducreyi mutant strain, again at three sites.  The 

infection is followed for 14 days and either spontaneously resolves or is stopped before 

ulcer formation or development of pain and discomfort of the volunteer.  Patients are 

given one oral dose of ciprofloxacin to treat the infection, and biopsies are taken at the 

conclusion of the trial (20, 21, 32).  While the human inoculation experiment can only 

provide information regarding the first two weeks of infection, disease progression of 

wild-type H. ducreyi can be compared with that of a mutant strain to examine the 

necessity of specific genes for virulence.  

Upon H. ducreyi entry into the host epithelium, there is a vigorous 

polymorphonuclear leukocyte (PMN) response, which forms the initial epidermal 

abscess.  Macrophages also enter and form a collar at the base of the infection (23).  H. 

ducreyi remains extracellular throughout the infection, and it co-localizes with 

phagocytic immune cells, collagen, and fibrin (33).  After 24 hours of infection, 

additional macrophages, myeloid dendritic cells, NKT cells, and CD4+ and CD8+ T-cells 

are recruited to the papule site.  Since there is a small inoculum and shortened duration of 

the human trial, there is a limited B-cell response and no serum antibodies for H. ducreyi 

are produced in the human model of infection.  In natural infections, however, there is a 

serum antibody response, although these antibodies are not bactericidal and do not 

provide immunity (34-36).  Due to treatment during early stages of the infection and time 
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limitations of the human model, little is known about how or why clearance can naturally 

occur. 

H. ducreyi Virulence Mechanisms 

During infection, the first line of host immune defense H. ducreyi encounters is 

phagocytic cells.  Two large supernatant proteins, LspA1 and LspA2, are expressed as 

soluble proteins and inhibit phagocytosis (37).  A third protein, LspB, is involved in the 

secretion of these proteins across the cell membrane (38).   The specific mechanism of 

action of LspA1 and LspA2 involves blocking the Fcγ-receptor mediated uptake in 

phagocytic cells.  They do so by inhibiting the phosphorylation of Src family tyrosine 

kinases, which initiate the signal for phagocytosis (39).  The result is phagocytic cells that 

are unable to ingest and remove the H. ducreyi bacteria.  Studies done in the human 

model of H. ducreyi infection reveal that LspA1 and LspA2 are required for virulence 

(40).   

H. ducreyi has also been shown to resist complement-mediated killing by normal 

human serum; attenuated, serum-sensitive strains of H. ducreyi are killed by the classical 

complement pathway (41).  Briefly, in this pathway, a complement-reactive protein binds 

to the antibodies IgG or IgM, which have bound to pathogens.  This forms the C-1 

complex (42), which cleaves C4 and C2 into multiple parts.  The C-1 complex binds with 

C4b and C2b to form the C3-convertase, which cleaves C3 and binds with C3b.  The 

compound consisting of IgM, C-1, C4b, C2b, and C3b, recruits C5, C6, C7, C8, and C9, 

which will form the membrane attack complex.  This complex creates large pores in the 

membrane of the pathogen, resulting in cellular death (43). 
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There are two outer membrane proteins, the ducreyi serum resistance protein 

(DsrA) and the ducreyi lectin protein (DltA), found on the H. ducreyi cell surface that 

contribute to serum resistance (44, 45).  DsrA is a protein that forms large trimers on the 

bacterial outer membrane, which prevents the binding of IgM onto the H. ducreyi cell 

surface (16).  The DsrA complex inhibits the complement cascade that creates the 

membrane attack complex.  H. ducreyi strains lacking the DsrA protein are serum 

sensitive and fully attenuated in the human model of H. ducreyi infection (44, 46).  

Recent studies have also found that DsrA is involved in fibrinogen, fibronectin, and  

vitronectin binding, suggesting DsrA plays a large role in H. ducreyi  adhesion during 

infection (47, 48).  DltA, a fibronectin and carbohydrate-binding surface protein, is also 

involved in serum resistance.  The exact mechanism of action is not yet known, but the 

dltA mutant is moderately sensitive to serum and are partially attenuated in the human 

model (45, 49).  

There have been several additional virulence mechanisms found in H. ducreyi.  

While they may not specifically involve evading the immune system, they have been 

identified by the human model of H. ducreyi infection as necessary for virulence.  Iron 

acquisition is vital to bacterial survival as most host environments are typically iron 

deficient.  The hemoglobin binding protein HgbA found in H. ducreyi shares homology 

with TonB-dependent outer membrane receptor proteins found in other gram-negative 

bacteria.  HgbA binds hemoglobin and is important for iron acquisition in H. ducreyi (50, 

51).  HgbA is required for virulence in the human model of infection (48, 52, 53).  The H. 

ducreyi peptidoglycan-associated lipoprotein (PAL), which is homologous to proteins in 

numerous gram-negative bacteria, is important for linking the outer membrane with the 
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peptidoglycan, providing stability to the cell envelope (54-56).  Studies in the human 

model have revealed that PAL is necessary for H. ducreyi virulence in humans (57).  The 

fibrinogen binder protein FgbA, shown to bind fibrin, is also necessary for virulence.  A 

deletion in fgbA resulted in partial attenuation (58); although the mechanism is unknown, 

it is predicted that this protein could use fibrin deposits to shield the bacterial cell surface 

from host immune responses as seen in other bacteria (59, 60).   

Several virulence genes found in H. ducreyi reveal the necessity for adherence 

and microcolony formation.  The necessary for collagen adhesion protein (NcaA) is an 

outer membrane protein that has been shown to be crucial for H. ducreyi binding to type I 

collagen, an important step in bacterial adherence and invasion.  Mutants lacking NcaA 

are fully attenuated in the human model (61).  The fimbria like proteins (Flp1-3) in H. 

ducreyi shares homology with the tight adherence, or Tad, proteins found in many gram-

positive and gram-negative bacteria.  These Tad proteins are essential for adherence, 

pathogenesis, and biofilm formation (62).  In H. ducreyi, loss of Flp1 or Flp2 inhibits 

bacterial attachment to the foreskin and microcolony formation (63, 64).  Mutants with 

deletions in flp1-3 and tadA were fully attenuated in the human model of H. ducreyi 

infection (63, 65).  H. ducreyi also has a homolog of the Vibrio harveyi LuxS quorum 

sensing protein.  Although H. ducreyi does not have a known mechanism of quorum 

sensing, LuxS could contribute to the formation of microcolonies; a mutant lacking the 

LuxS protein was partially attenuated in the human model (66).   

Clinical isolates of H. ducreyi can be separated into two classes.  While clinically 

there exists little variation within each class, being 94% invariant (67), the differences 

between Class I and Class II strains of H. ducreyi are variations in the sequence and 
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expression of multiple key virulence factors, outer membrane proteins, and 

lipooligosaccharide (LOS) (67).  The outer membrane proteins DsrA and DltA are 

truncated in the Class II isolates.  Although Class II strains are still serum resistant, the 

Class II DltA protein is four amino acids smaller than its Class I homolog, and the Class 

II DsrA protein is smaller, shares between 47.8 – 56.0% homology with the Class I DsrA, 

and is not recognized by class I DsrA antibodies (68).  The Class II NcaA protein has a 

different N-terminus when compared to the Class I NcaA protein.  The Hlp is larger in 

Class II strains than Class I, and Class II strains also contain variant outer membrane 

proteins (OMPA2 and MOMP) as well as a truncated LOS (68, 69).  There are amino 

acid substitutions and insertions in FgbA when comparing Class I and Class II strains, 

although both proteins are still functional (58).  Both the Sap transporter and MTR efflux 

pump, transporters involved in AP resistance, are functionally conserved amongst Class I 

and II strains, although there are some variations throughout the Class I strains (70, 71).   

It is unclear the extent of effect that these variations have on the different classes; 

Class II strains grew slower and formed smaller colonies than Class I strains in vitro, 

although both strains are still fully virulent in vivo.  Recent studies have revealed that 

recombination is evident amongst Class I strains, but not between Class I and Class II 

strains.  This suggests that these two classes may form separate, distinct species (67). 

Regulation of Virulence 

 An important aspect of virulence genes is their regulation; bacteria are not 

constitutively expressing every gene in their genome; they regulate genes based on 

environmental stimuli to enact proper responses.  H. ducreyi has one known two-

component signal transduction regulator system, which is homologous to the two-
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component signal transduction system CpxRA found in Escherichia coli.  CpxRA is 

comprised of two parts: CpxA, a membrane-bound sensor kinase, and CpxR, a 

cytoplasmic response regulator.  CpxA functions as a kinase, an autokinase, and a 

phosphatase, whereas CpxR acts as a transcriptional activator or repressor (72-74).  In the 

absence of stress, CpxA will function primarily as a phosphatase to tightly regulate the 

amount of phosphate on CpxR, which can be phosphorylated by small cytoplasmic 

molecules such as acetyl phosphate (74).  In E. coli, the presence of cellular envelope 

stress activates CpxA, which autophosphorylates itself and then phosphorylates CpxR. 

CpxR then continues on to regulate the transcription of various virulence genes (75, 76).  

 In H. ducreyi, the CpxRA system has been shown to regulate 165 genes, and it 

specifically plays an important role in regulating the expression of lspB, lspA2, dsrA, 

ompA2, and flp1 (77).  Deletion of cpxR results in an upregulation of lspB and lspA2, and 

the cpxR mutant is still fully virulent in the human model of H. ducreyi infection (66, 78).  

However, deletion of cpxA, which acts as a CpxR phosphatase in the absence of stimuli, 

results in activation of the CpxRA system.  In this mutant, the virulence genes lspB, 

lspA2, dsrA, and flp1 are all down regulated (77).  Decreased expression of these genes 

results in a loss of virulence, as seen in the human model (79).   

 While it is still not entirely clear what stress activates the CpxRA system in H. 

ducreyi, studies have shown that possible membrane stress may play a role in CpxRA 

activation.  In the presence of fetal calf serum, the CpxRA transcripts decrease, which in 

turn increases the expression of virulence genes necessary for serum survival, such as 

dsrA (66, 77).  In the mtrC mutant, a strain with a deletion of the periplasmic binding 

protein in a tripartite efflux pump, CpxRA is activated (71).  It is possible that deletion of 
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function in this efflux pump resulted in accumulation of molecules in the periplasm, 

which in turn caused membrane stress that then activated CpxA.  Current studies are 

underway to better understand the stressor and mechanism of activation of the CpxRA 

system.     

 Recent studies have defined two new regulators of virulence in H. ducreyi.  A 

host RNA-binding protein, Hfq, has been found to influence the expression of roughly 

16% of H. ducreyi genes.  Hfq protein binds to mRNA and regulates interactions with 

small RNAs, likely controlling the degradation and thus expression of the mRNA (80).  

Hfq is found to primarily regulate expression of virulence genes, such as flp1, lspB, 

lspA2, and dsrA, during stationary phase.  A mutant with a deletion of hfq was found to 

be fully attenuated in the human model of H. ducreyi infection (81).  Additionally, H. 

ducreyi has a homolog of the E. coli extracytoplasmic function sigma factor RpoE, which 

regulates envelope maintenance and repair.  In H. ducreyi, RpoE regulates the expression 

of 180 genes that play a role in maintaining and regulating the cellular envelope.  While 

the role of RpoE is distinct from that of CpxRA, both are involved in the upkeep and 

response of the H. ducreyi envelope (82). 
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Antimicrobial Peptides 

 During infection, H. ducreyi faces the robust immune response of host-secreted 

antimicrobial peptides (AP).  APs are typically small, cationic peptides ranging from 12-

100 amino acids in length that target microorganisms.  They are practically universally 

present, isolated from single-celled organisms to complex members of the plant and 

animal kingdoms (83, 84).  There are many different classes of APs that affect many 

different types of microorganisms; while there are APs that specifically target 

DNA/RNA/protein/macro-molecule synthesis (85, 86), the majority are known to target 

the cell membrane and lyse the bacterial cell (87).  APs, such as cathelicidin, are 

primarily stored in neutrophil granules at high concentrations (10 mg/mL); when the APs 

are released during an infection, the concentration becomes diluted (88-90).  However, 

APs have shown functional activity at concentrations below 10 µg/mL (91).  Other APs, 

such as the defensins, can be stored in circulating immune cells such as neutrophils, 

macrophages, NK cells, and Paneth cells, as well as expressed in tissue-specific cells 

such as in the skin or vaginal epithelial layers (92); they can be constitutively expressed 

or NF-κB dependent, expressed only during times of inflammation or infection (93-96).  

H. ducreyi encounters defensins and cathelicidin during the course of its infection (22, 

23, 33).  

 Mammalian defensins are divided into three classes; α-defensins, β-defensins, and 

θ-defensins.  They are characterized by six cysteine residues that form three distinct 

disulfide bonds.  α-defensins form disulfide bonds between cysteine residues 1-6, 2-4, 

and 3-5 to create a triple-stranded β-sheet structure (97).  β-defensins form disulfide 

bonds between cysteine residues 1-5, 2-4, and 3-6 to also create a triple-stranded β-sheet 
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structure (98).  To date, there are six known human α-defensins, and over 30 known 

human β-defensins.  θ-defensins, recently discovered in the rhesus macaque monkey and 

not found in humans, form a circular peptide.  Although its circular secondary structure is 

not numbered because there is no N or C terminus, it forms disulfide bonds between what 

would be considered the 1-2, 3-6, and 4-5 cysteine residues in the primary structure (99).   

 The defensins can be secreted by immune cells or stored in leukocyte granules 

(88, 89, 100), and they can be expressed either constitutively or induced during infection 

(101-106).  While the exact targets are still debated, the antibacterial activity of defensins 

is thought to come primarily from targeting the cell membrane and causing permeability 

in the cell membrane, which eventually will eventually lead to the formation of pores 

(107-112).  These pores then allow potassium to leave the cell, disrupting the osmotic 

balance as well as destroying the electrochemical gradient, leading to cell death.  The 

permeabilization of the cell membrane is also linked to inhibition of RNA, DNA, and 

protein synthesis (108); while it is unclear whether the inhibition of these processes or if 

the formation of pores is the ultimate lethal step, the end result is cell death.  

 The cathelicidins are another class of APs; while there are many members of this 

class, the only human cathelicidin is LL-37.  This AP, which lacks disulfide bonds, is 37 

amino acids long and forms an α-helix in solution (113, 114).  LL-37 is produced in a 

variety of cells including leukocytes, neutrophils, and epithelial cells, and is often found 

in bone marrow, saliva, sweat, and breast milk (113-116).  The LL-37 mechanism of 

action against E. coli has been studied in real time using fluorescence.  First, LL-37 

crosses the outer membrane in a non-lethal fashion; this step is common amongst APs, 

and involves the AP attaching to and inserting itself into the outer cell membrane.  This 
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leads to a disturbance of the membrane that induces self-promoting uptake, a non-lethal 

permeabilization of the outer membrane (117).  As LL-37 crosses the periplasm, E. coli 

growth is halted, presumably a result of LL-37 interfering with cell wall synthesis.  The 

peptide then congregates on the cytoplasmic membrane, disrupting and eventually 

causing the formation of pores and cell death.  The entire process from initial attachment 

to the outer membrane to cell death occurs in roughly 30 minutes (118).  

  Many mechanisms exist in both gram-positive and gram-negative bacteria that 

confer resistance to APs.  Bacteria can modify their cell surface structure or charge to 

reduce the ability of APs to bind or penetrate the cell surface; for example, Vibrio 

cholerae will add the positively charged amino-arabinose Ara4N to repel cationic APs 

(119).  Some bacteria such as Bacillus anthracis can form spores with a thick spore coat 

and cortex to prevent AP access to the cell surface (120), and other bacteria such as 

Pseudomonas aeruginosa congregate together and form biofilms, which also provide 

protection from APs (121).  Some bacteria are able to express molecules that either down 

regulate the expression of APs or  bind to extracellular APs to inhibit their capacity to 

attach to the cell surface; Shigella flexneri can down-regulate the expression of LL-37 

and the β-defensin HBD-1, and the Streptococcus pyogenes protein M1 binds to LL-37 to 

inactivate it (122, 123).  Others are able to produce peptidases and proteases, both as 

outer membrane proteins or cytoplasmic proteins, which degrade APs before they can 

reach their intracellular targets; for example, Staphylococcus aureus has two proteinases, 

metalloproteinase and glutamylendopeptidase, that digest and degrade LL-37 before it 

induces lethality (124).  Efflux pumps or channels are present in bacteria to provide 

resistance to APs; Klebsiella pneumonia has the efflux pump AcrAB that pumps out 
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polymyxin B out of the cell before lethal damage can be done (125).  Lastly, bacteria can 

also modify the intracellular targets or enzymatic pathways to inhibit AP functionality; 

this is commonly seen in bacteria such as E. coli that resist the AP microcin B17 by the 

DNA gyrase protein GyrB (126).  Taken together, bacteria have evolved and developed 

numerous mechanisms to resist the lethal modes of action of APs (127, 128). 

H. ducreyi and Antimicrobial Peptides 

During infection, H. ducreyi encounters host immune cells and resident 

keratinocytes that express APs (22, 23, 33).  PMNs express the α-defensins human 

neutrophil-1 (HNP-1), HNP-2, HNP-3, and HNP-4, the β-defensin human beta defensin 4 

(HBD-4), and the human cathelicidin LL-37 in response to infection (91, 129).  

Macrophages express the β-defensins HBD-1 and HBD-2, and the cathelicidin LL-37 in 

response to inflammation (92, 130).  The resident keratinocytes constitutively express the 

β-defensin HBD-1 and express HBD-2, HBD-3, and HBD-4, and the cathelicidin LL-37 

in response to inflammation (131-133).  Vaginal epithelial cells constitutively express the 

α-defensin human defensin 5 (HD-5) (134). 

H. ducreyi has been shown to resist the lethal activity of several classes of human 

APs relevant to infection, including α-defensins, β-defensins, and the human cathelicidin 

LL-37 (135).  In these studies, H. ducreyi was significantly more resistant than E. coli K-

12 to the α-defensins HNP-1, HNP-2, HNP-3, and HD-5, the β-defensins HBD-2, HBD-

3, and HBD-4, and the cathelicidin LL-37.  The α-defensins used in these studies had 

virtually no effect on H. ducreyi survival at any experimental concentration.  This 

resistance was conserved among both classes of H. ducreyi, and involves the sensitive to 
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antimicrobial peptides (Sap) transporter and the multiple transferable resistance (MTR) 

efflux pump.   

The Sap transporter is an influx pump and belongs to the family of oligopeptide 

(Opp)–dipeptide (Dpp) peptide and metal ion–uptake ATP binding cassette (ABC) 

transporters (136-138).  Structurally, the Sap transporter has five main components: 

SapA, SapB, SapC, SapD, and SapF (Figure 1A).  SapB and SapC are permease proteins 

found in the inner membrane and form a pore.  SapD and SapF are ATPase subunits that 

use the energy from converting ATP to ADP to power the influx pump.  SapA is a 

periplasmic binding protein that binds to specific peptides and shuttles them through 

SapBC by the energy provided from SapDF (136, 138).  In Haemophilus influenzae, the 

Sap transporter has been shown to play a role in cellular homeostasis by conferring 

uptake of heme, and SapD specifically is involved in potassium uptake (138, 139).  The 

Sap transporter also confers resistance to both LL-37 and the β-defensin HBD-3 by 

directly binding to the APs and shuttling them into the cytoplasm before they can attach 

to the inner membrane, the lethal target for APs (138, 140, 141).  Once inside the 

cytoplasm, the APs are degraded by cytoplasmic peptidases (137).  In addition to H. 

influenzae, the Sap transporter has been found to confer resistance to APs in Salmonella 

enterica, Erwinia chrysanthemi, and Proteus mirabilis (136, 142, 143).  

In H. ducreyi, the Sap transporter confers resistance to the human cathelicidin LL-

37, but not α- or β-defensins (70, 144).  A mutant strain with a deletion of the periplasmic 

binding protein encoding gene sapA was moderately more sensitive than 35000HP to LL-

37; when observed in the human model of H. ducreyi infection, the sapA mutant was 

partially attenuated (70).  When a mutant with deletions of the permease encoding genes 
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sapB and sapC was generated, it was significantly more sensitive than both 35000HP and 

the sapA mutant to LL-37.  The sapBC mutant was rendered completely attenuated in the 

human model of H. ducreyi infection (144).  The results from both the SapA and SapBC 

studies confirm not only that the Sap transporter is necessary for H. ducreyi virulence, but 

that SapBCDF still has some functionality without the binding protein SapA.  

A second mechanism of AP resistance found in H. ducreyi is the MTR efflux 

pump (71).  This efflux pump is a member of the resistance-nodulation-division (RND) 

family of drug efflux pumps, which not only provide resistance to a variety of antibiotics 

but also export various other toxic substrates such as detergents and APs.  These tripartite 

efflux pumps are powered by proton motive force (PMF), a force generated by the 

potential energy stored in proton and voltage gradients across a membrane (145-149).  In 

Neisseria gonorrhoeae, the MTR efflux pump, a member of the RND family, has three 

components: MtrC, MtrD, and MtrE (Figure 1B).  MtrD is an inner membrane transporter 

protein involved in proton translocation, and MtrE is an outer membrane channel protein.  

MtrC is a periplasmic fusion protein that connects MtrD to MtrE.  Studies have shown 

that the MTR efflux pump had three MtrD and three MtrE subunits with six MtrC fusion 

proteins linking MtrD to MtrE (150).  Substrates are thought to be effluxed from both the 

cytoplasm and periplasm by MTR, and in N. gonorrhoeae, resistance to LL-37 and 

protegrin-1, a β-sheet porcine AP that targets the cell membrane (151), is mediated by 

MTR (145). 

In H. ducreyi, exposure to carbonyl cyanide m-chlorophenyl hydrazone (CCCP), 

a compound that disrupts the proton gradient and PMF (152), revealed there was a PMF-

dependent mechanism of resistance to both β-defensins and LL-37 (71).  H. ducreyi has a 
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homolog of the N. gonorrhoeae MTR efflux pump, and a mutant generated with a 

deletion in mtrC had an increase in sensitivity to β-defensins and LL-37 when compared 

to 35000HP (71).  Deletion of mtrC also activated CpxRA, suggesting the loss of MtrC 

may cause periplasmic stress.  While CpxRA activation does increase susceptibility to 

LL-37, studies revealed the presence of a PMF-dependent mechanism of AP resistance 

still present in the cpxA mutant.  This showed that the increase in sensitivity to LL-37 and 

β-defensins was a result of the loss of the MTR efflux pump and not the activation of 

CpxRA (71), thus showing that the MTR efflux pump confers resistance to both β-

defensins and LL-37 in H. ducreyi. 
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Figure 1. Structure of the Sap Transporter and MTR Efflux Pump.  (A) The Sap 

transporter has five main components: SapA, SapB, SapC, SapD, and SapF.  SapA is a 

periplasmic binding protein; SapB and SapC are permease proteins found in the inner 

membrane that form a pore; SapD and SapF are ATPase subunits that use the energy 

from converting ATP to ADP to power the influx pump.  OM and IM shown are the outer 

and inner membrane of the bacteria.  (B) The MTR efflux pump has three components: 

MtrC, MtrD, and MtrE.  MtrC is a periplasmic fusion protein; MtrD is an inner 

membrane transporter protein involved in proton translocation; MtrE is an outer 

membrane channel protein.  MtrD and MtrE have three subunits with six MtrC fusion 

proteins linking MtrD to MtrE.  OM and IM shown are the outer and inner membrane of 

the bacteria. 
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Electrostatic Repulsion and Phosphoethanolamine 

The Sap transporter and MTR efflux pump confer resistance to LL-37 and β-

defensins, but there is still no defined mechanism of resistance to α-defensins in H. 

ducreyi.  One focus of ongoing research is to search for new mechanisms in H. ducreyi 

that confer this AP resistance.  One mechanism of AP resistance in bacteria is to modify 

the cell surface with positively charged moieties.  These moieties decrease the overall 

negativity of the cell surface, which can create an electrostatic repulsion of the positively 

charged APs (153).  In gram-positive bacteria, teichoic acids found in the cell wall are 

modified with alanine groups; alanylation adds positive charges to the bacterial cell 

surface and contributes to resistance APs (154, 155).  Gram-negative bacteria have been 

shown to modify their lipopolysaccharide (LPS) or LOS with positively charged 

aminoarabinose or phosphoethanolamine (PEA) (156-163).  There is no evidence of the 

presence of an aminoarabinose transferase in H. ducreyi or that H. ducreyi modifies its 

LOS with aminoarabinose.  However, H. ducreyi LOS contain one PEA modification on 

the lipid A and a second PEA modification on the KDO of its core oligosaccharide 

(Figure 2) (164, 165). 

Modification of LPS or LOS with PEA has been shown to be advantageous for 

pathogenesis in several gram-negative bacteria.  PEA modification of the cell surface 

confers resistance to a wide range of APs, including protegrin-1, LL-37, β-defensins, and 

the antibiotic polymyxin B while also providing protection from human serum (153, 157, 

158, 161-163, 166-170).  All characterized PEA transferases are members of the 

YhjW/YjdB/YijP/YbiP superfamily of enzymatic inner membrane proteins, and 

furthermore, all characterized lipid A PEA transferases in gram-negative pathogens are 
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members specifically of the Yjdb family of enzymatic proteins (159, 166).  Additionally, 

there are many putative PEA transferases that are members of this superfamily.   

In the pathogenic Neisseria, three PEA transferases have been identified, 

including LptA, Lpt-3 and Lpt-6, which PEA-modify lipid A or the Heptose II core sugar 

at the third or sixth position, respectively (159, 171-173).  These PEA modifications 

contribute to Neisseria resistance to polymyxin B, a positively charged  antibiotic that 

targets the cell membrane and often is used as a model cationic AP (174), protegrin-1, 

human and murine cathelicidin, and human serum (162, 163, 166, 167).  Lipid A PEA 

modification in Neisseria has an important role in adhesion to endothelial and epithelial 

cells, both required for initial infection.  This modification also has been shown to reduce 

the pro-inflammatory cytokines and chemokines secreted by vaginal epithelial cells in 

female mice (167, 175).  Additionally, both the murine female genital tract and the 

human male urethra models of N. gonorrhoeae infection have shown that PEA 

modification of lipid A contributes to survival in vivo (167, 176).  Structural 

representations of the Neisseria LOS can be found in the Appendix Figure 8.   

PEA modifications have been show to contribute to AP resistance in additional 

gram-negative bacteria.  In Salmonella enterica, the PEA transferase CptA modifies the 

Heptose II core sugar, and lipid A is PEA-modified by EptA (157, 158) These PEA 

modifications of the LPS confer resistance to polymyxin B (153, 157, 158).  

Additionally, competitive infection experiments in mouse models of S. enterica infection 

showed a moderate decrease in survival of PEA transferase mutants when compared to 

wild-type strains (157).  In E. coli, the PEA transferase EptB modifies KDO, and lipid A 

is PEA-modified by PmrC (161, 168).  These PEA modifications of the E. coli LPS not 
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only confer resistance to polymyxin B, but they also play an important role in protecting 

the cell from environmental stresses, such as the toxic effects from high calcium exposure 

(161, 168).  Structural representations of the Salmonella and E. coli LPS can be found in 

the Appendix Figures 9 and 10.     

In addition to LPS and LOS, PEA transferases can modify other bacterial cell 

surface structures.  Recently, studies have shown that the Campylobacter jejuni PEA 

transferase EptC modifies lipid A, flagella, and surface glycans with PEA, contributing to 

resistance to human and avian β-defensins and polymyxin B (169, 170, 177).  Deletion of 

these PEA modifications in C. jejuni also result in a decrease in motility of the organism 

(169, 178).  In contrast to Neisseria, in C. jejuni, one PEA transferase is responsible for 

multiple PEA modifications, indicating that each specific PEA modification is not 

necessarily controlled by an independent or specific PEA transferase.  N. gonorrhoeae 

has been shown to modify its Type IV pili with PEA, although the source of this 

modification and its advantage remains unclear (179).  In addition to cell surface 

structures, the recently described PEA transferase OpgE (also known as YbiP) modifies 

osmoregulated periplasmic glucans (OPGs) in E. coli (180-182).  These OPGs, which are 

important components of some gram-negative bacterial envelopes, play crucial roles in 

cellular chemotaxis and motility (181, 183, 184).  There is no evidence that H. ducreyi 

contains any OPGs.    
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Figure 2. H. ducreyi LOS. Depiction of H. ducreyi LOS, including known PEA 

modifications found on the lipid A and on the KDO core sugar.  Starting from the right, 

KDO is 3-Deoxy-D-manno-oct-2-ulosonic acid, Hep is Heptose, Glc is Glucose, Gal is 

Galactose, GlcNAc is N-Acetylglucosamine, and NeuAc is N-acetylneuraminate.  Sugars 

with a highlighted P are phosphorylated, and PEA indicates a PEA modification at that 

site.  
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Hypothesis 

The H. ducreyi genome encodes three genes that have strong homology to the 

YhjW/YjdB/YijP/YbiP family of PEA transferases (Figure 3).  We hypothesized that 

these genes, lipid A PEA transferase lptA (HD0852), PEA transferase of H. ducreyi ptdA 

(HD0371) and ptdB (HD1598) contribute to AP resistance and virulence of H. ducreyi.  

In this thesis, we generated deletion mutants lacking one, two, or three putative PEA 

transferase genes in H. ducreyi.   Using these mutants, we examined the role that these 

putative PEA transferase genes play in H. ducreyi resistance to APs.  We also analyzed 

the contributions of these gene products to cell surface charge and LOS structure.   

Lastly, we utilized the human model of H. ducreyi infection to determine whether these 

PEA transferase genes are required for virulence in vivo.   
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A. 

 

B. 

 

C. 

 

Figure 3. Genomic Map of ptdA, lptA, and ptdB.  The location within the genome of 

each putative PEA transferase is shown above.  (A) HD0371 is the putative PEA 

transferase ptdA, (B) HD0852 is the putative PEA transferase lptA, and (C) HD1598 is 

the putative PEA transferase ptdB.   
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CHAPTER TWO: MATERIALS AND METHODS 

Bacterial Strains and Growth Conditions 

Bacterial strains and plasmids are listed in Table 1. Unless otherwise mentioned, 

H. ducreyi strains were grown at 33°C with 5% CO2 on chocolate agar plates 

supplemented with 1% IsoVitalex.  If strains contain plasmid vectors or antibiotic 

resistance cassettes, appropriate antibiotics were added to the agar, including 

spectinomycin (200 µg/ml), kanamycin (20 µg/ml) or streptomycin (100 µg/ml) (70).  

Liquid cultures of H. ducreyi were grown in Columbia broth supplemented with hemin 

(50 µg/ml) (Aldrich Chemical Co., Milwaukee, WI), 5% heat inactivated fetal bovine 

serum (HyClone, Logan, UT), and 1% IsoVitalex and supplemented with half the 

concentration of appropriate antibiotics used in agar medium.  E. coli strains were grown 

at 37°C in Luria-Bertani broth with appropriate antibiotics, which include spectinomycin 

(50 µg/ml), ampicillin (50 µg/ml), kanamycin (50 µg/ml), or streptomycin (100 µg/ml), 

with the exception of strain DY380, which was grown in L-Broth at 32°C or 42°C as 

indicated (79, 185).   

Deletion of ptdA, lptA, and ptdB in H. ducreyi  

We used the recombineering technique, as previously described (71), to generate 

unmarked, non-polar mutants with deletions in lptA, ptdA, or ptdB, as well as mutants 

with deletions in two or three of these genes (Table 1).  Briefly, as shown in Figure 4, this 

method replaces the target gene with a spectinomycin resistance (SpecR) cassette flanked 

by flippase (FLP) recognition target (FRT) sites.  Using FLP recombinase, the SpecR 

cassette is removed, leaving the target gene start ATG, 81 bp of an FLP scar peptide, and 

the final 21 bp of the target gene, including the stop codon (79).  Briefly, PCR products 
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of 5.5 kb containing ptdA, 3.5 kb containing lptA, or 5.0 kb containing ptdB were 

generated with HD0371for3 and HD0371rev3, HD0852for1 and HD0852rev1, or 

HD1598for3 and HD1598rev3, respectively (Table 2).  These products were cloned into 

TOP10 E. coli cells (Invitrogen), which were then transformed with a 2.2 kb PCR 

fragment containing a SpecR cassette flanked by FRT sites and 50 bp homologus 5’ and 

3’ of the target gene, which was amplified by H1P1HD0371 and H2P2HD0371, 

H1P1HD0852 and H2P2HD0852, or H1P1HD1598 and H2P2HD1598 (Table 2).  After 

recombination, each fragment was ligated into pRSM2072 to generate the mutagenic 

plasmid pMEB252 (from ptdA), pMEB256 (from lptA), or pMEB251 (from ptdB). 

Each mutagenic plasmid was individually transformed into H. ducreyi as 

previously described (71), and mutant colonies were selected and transformed with 

pRSM2975, a temperature sensitive plasmid containing FLP recombinase.  Incubation 

with anhydrotetracycline induced the FLP recombinase, and after selection for loss of 

SpecR and loss of pRSM2975, the resulting recombined strain is an unmarked, non-polar 

deletion mutant with the FLP scar in place of the target gene.  This process was repeated 

with each mutagenic plasmid to create a strain collection lacking any combination of one, 

two, or three of the putative PEA transferase genes ptdA, lptA, and ptdB (Table 1).  In all 

mutants, PCR and sequencing across the deleted region confirmed loss of target gene(s).  

For the mutant lacking all three genes, named 35000HPΔPEAT, whole genome 

sequencing revealed identical DNA between the mutant and parent strain 35000HP, with 

the exception of loss of the three target genes.  Growth curves comparing 

35000HPΔPEAT to 35000HP were established by measuring the absorbance reading of a 

broth culture at OD660 over a 24 hour period.   
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Figure 4. Recombineering of Target Gene.  The recombineering technique was used to 

generate unmarked, non-polar mutants with deletions in lptA, ptdA, or ptdB, as well as 

mutants with deletions in two or three of these genes.  The target gene was replaced via 

homologous recombination of upstream (H1) and downstream (H2) sites with a 

spectinomycin resistance (SpecR) cassette flanked by flippase (FLP) recognition target 

(FRT) sites.  Using FLP recombinase, the FRT sites recombined and the SpecR cassette 

was excised, leaving the target gene start ATG, 81 bp of an FLP scar peptide, and the 

final 21 bp of the target gene, including the stop codon.   
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Table 1. Bacterial strains and plasmids used in this study. 

Strain or Plasmid Genotype or Descriptiona Source 
Strains 
35000HP 
 
E. coli TOP10 
 
 
 
E. coli DY380 
 
 
 
 
35000HP/pLSSK 
35000HPΔPEAT 
 
35000HPΔPEAT/pLSSK 
 
35000HPΔPEAT/pPEAT 
 
35000HPΔptdA 
 
35000HPΔlptA 
 
35000HPΔptdB 
 
35000HPΔptdA lptA 
 
35000HPΔlptA ptdB 
 
35000HPΔptdA ptdB 
 
35000HPSapA/pLSSK 
 
35000HPsapA/phbpA 
 
35000HPsapA/pdppA 
 
35000HPsapBC/pLSSK 
 
35000HPsapBC/poppA 
 
35000HPmtrC/pLSSK 
 

 
Class I Clinical Isolate human-passaged 
variant 
F- mcrA ∆(mrr-hsdRMS-mcrBC) 
φ80lacZ∆M15 ∆lacX74 recA1 ara∆139 
∆(ara-leu)7697 galU galK rpsL (StrRR) 
endA1 nupGλ- 
F- mcrA Δ(mrr-hsdRMS-mcrBC) 
Φ80dlacZ M15 ΔlacX74 deoR recA1 
endA1 araD139 Δ(ara, leu) 7649 galU 
galK rspL nupG (λcI857 (cro-bioA) <> 
tet) 
35000HP with vector pLSSK; StrepR 
ptdA, lptA, ptdB unmarked deletion 
mutant of 35000HP 
35000HPΔPEAT with vector pLSSK; 
StrepR 
35000HPΔPEAT with complement vector 
pPEAT; StrepR 
ptdA unmarked deletion mutant of 
35000HP 
lptA unmarked deletion mutant of 
35000HP 
ptdB unmarked deletion mutant of 
35000HP 
ptdA lptA unmarked deletion mutant of 
35000HP 
lptA ptdB unmarked deletion mutant of 
35000HP 
ptdA ptdB unmarked deletion mutant of 
35000HP 
sapA unmarked deletion mutant of 
35000HP with vector pLSSK; StrepR 
35000HPsapA with complement vector 
phbpA; StrepR 
35000HPsapA with complement vector 
pdppA; StrepR 
sapBC unmarked deletion mutant of 
35000HP with vector pLSSK; StrepR 
35000HPsapBC with complement vector 
poppA; StrepR 
mtrC unmarked deletion mutant of 
35000HP with vector pLSSK; StrepR 

 
(21) 
 
Invitrogen 
 
 
 
(185) 
 
 
 
 
(71) 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
This study 
 
(144) 
 
Unpublishedb 

 
Unpublishedb 

 
(144) 
 
Unpublishedb 
 
(71) 
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35000HPmtrC/pmtrC 
 
FX517 
35000HPΔcpxA 
 
 
Plasmids 
pLSSK 
pPEAT 
pRSM2072 
pRSM2975 
pMEB252 
 
pMEB256 
 
pMEB251 
 
pCR-XL-TOPO  
pMEB346  
pMEB344 
pMEB348 
pMEB355 
pMEB356 
pmtrC 
phbpA 
pdppA 
poppA 

35000HPmtrC with complement vector 
pmtrC; StrepR 
dsrA:cat insertion mutant of 35000; CmR  
cpxA unmarked deletion mutant of 
35000HP 
 
 
H. ducreyi shuttle vector; StrepR 
ptdA lptA ptdB in pLSSK; StrepR 
Suicide vector; AmpR 
FLP recombinase vector 
ptdA replaced with SpecR cassette in 
pRSM2072 
lptA replaced with SpecR cassette in 
pRSM2072 
ptdB replaced with SpecR cassette in 
pRSM2072 
TA cloning vector; KanR 
ptdA in pCR-XL-TOPO; KanR 
lptA in pCR-XL-TOPO; KanR 
ptdB in pCR-XL-TOPO; KanR 
ptdA in pLSSK; StrepR 
lptA ptdB in pCR-XL-TOPO; KanR 
mtrC in pLSSK; StrepR 
hbpA in pLSSK; StrepR 
dppA in pLSSK; StrepR 
oppA in pLSSK; StrepR 

(71) 
 
(44) 
(79) 
 
 
 
(186) 
This study 
(187) 
(79) 
This study 
 
This study 
 
This study 
 
Invitrogen 
This study 
This study 
This study 
This study 
This study 
(71) 
Unpublishedb 
Unpublishedb 
Unpublishedb 

a StrepR, resistance to streptomycin; CmR, resistance to chloramphenicol; AmpR, 

resistance to ampicillin; KanR, resistance to kanamycin; SpecR, resistance to 

spectinomycin.   

b Rinker et al., manuscript in preparation 
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Table 2. Primers used in this study. 

Primer Construct or use Sequence 

HD0371for3 
 
HD0371rev3 
 
HD0852for1 
 
HD0852rev1 
 
HD1598for3 
 
HD1598rev3  
 
H1P1HD0371  
 
 
 
H2P2HD0371  
 
 
 
H1P1HD0852 
 
 
 
H2P2HD0852 
 
 
 
H1P1HD1598 
 
  
 
H2P2HD1598 
 
   
 
HD0371compf
or1 
HD0371compr
ev3 
HD0852compf
or1 
HD0852compr

ptdA fragment 
 
ptdA fragment 
 
LptA fragment 
 
LptA fragment 
 
ptdB fragment 
 
ptdB fragment 
 
pMEB252 
 
 
 
pMEB252 
 
 
 
pMEB256 
 
 
 
pMEB256 
 
 
 
pMEB251 
 
  
 
pMEB251 
 
 
 
pMEB346  
 
pMEB346 
 
pMEB344 
 
pMEB344  

ACTAGTGGCTCACCAAGCCATT
GGTTACAA 
ACTAGTGCAGGAATTGTACGGT
CTGAACG 
ACTAGTAGGGAAATGATCCGA
AGCGAGGA 
ACTAGTTCGGTCGTATTAACGT
GCTGACCA 
ACTAGTTGGCAAATTAAACCAC
ACGCGGTC 
ACTAGTATGCGCGATATGCTTA
ATGCTGGC 
AACAATGAGGCTATTTTATTTC
TGCTGACCTTGTTTTATAGATTA
TTATGATTCCGGGGATCCGTCG
ACC 
ATTAACACATAGTTATTAATGC
TTTCTAATTAATTGCTGATTGTG
GTGTTTGTAGGCTGGAGCTGCT
TCG 
ATAGCTTGATAGGCATTATTGC
TTATGTTTTTATACAAAGGAAT
TTTATGATTCCGGGGATCCGTC
GACC 
TTTTGCTAAAAAGGCCGCTTAC
AAGCGTATTACTCTACTTTATG
AGCACATGTAGGCTGGAGCTGC
TTCG 
ATTAAACAAGGAATAGCGCCCC
TATATATTTACTACTAGAATCT
ATAATGATTCCGGGGATCCGTC
GACC 
GCCTGCTTTTTTATTATTAGTAA
TCTGTGCTATTCCTGAACGTGC
CCATTTGTAGGCTGGAGCTGCT
TCG 
GCACGTGATGTATTGGCTAAAG
GT 
TTTATTTTCTGCTTGCATTAACA
CATAGTTATTAAT 
GCTTGTAAAGGACGTAGCCAAG
TG 
TACCGGCTCGGATTTCTAAGAA
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ev1 
HD1598compf
or1 
HD1598compr
ev1 

 
pMEB348  
 
pMEB348 

GG 
CCTTGCAATGCCTCACCACTTA
GTT 
TCCGTCTCAATCAGTCGGTGAC
TA 

 

Complementation of ptdA, lptA, and ptdB in trans  

To complement the mutations in 35000HPΔPEAT, fragments of 2.05 kb, 2.5 kb, 

and 1.95 kb, containing 164 bp, 340 bp, and 185 bp 5’ of the ptdA, lptA, and ptdB ATG 

start sites respectively, including the predicted promoter regions, were amplified from 

genomic DNA of 35000HP with primers HD0371compfor1 and HD0371comprev3, 

HD0852compfor1 and HD0852comprev1, and HD1598compfor1 and HD1598comprev1.  

These fragments were TA-cloned into pCR-XL-TOPO (Invitrogen, Carlsbad, CA), 

resulting in pMEB346 (containing ptdA), pMEB344 (containing lptA), and pMEB348 

(containing ptdB). 

The 2.05 kb ptdA fragment was excised from pMEB346 by digestion with NotI 

and SpeI and ligated into the shuttle vector pLSSK, resulting in the 5.6 kb pMEB355.  

The 2.5 kb lptA was excised from pMEB344 by digestion with SpeI and XbaI and ligated 

into SpeI-digested and shrimp alkaline phosphatase treated ptdB-containing pMEB348 to 

form a 8.0 kb pMEB356, with the genes oriented lptA ptdB.  The 4.5 kb lptA ptdB 

fragment was then excised from pMEB356 by digestion with SpeI and ApaI and ligated 

into pMEB355.  The resulting plasmid (Figure 5), pPEAT, contains a 10.1 kb insert 

encoding ptdA, lptA, and ptdB with their native promoter regions in vector pLSSK.  

35000HPΔPEAT was transformed with pPEAT to obtain 35000HPΔPEAT/pPEAT.  

35000HPΔPEAT was transformed with pLSSK to generate 35000HPΔPEAT/pLSSK.   
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Figure 5. Complementation plasmid pPEAT.  The three putative PEA transferase 

genes were inserted into the plasmid pLSSK in the order shown: ptdA (HD0371), lptA 

(HD0852), and then ptdB (HD1598).  The ptdA fragment contains 164 bp 5’ of the start 

codon, the lptA fragment contains 340 bp 5’ of the start codon, and the ptdB fragment 

contains 185 bp 5’ of the start codon.  The ori indicates the plasmid’s origin of 

replication, strA is a gene encoding streptomycin antibiotic resistance, and sulA is a gene 

encoding sulfonamide antibiotic resistance.  
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qRT-PCR 

We analyzed RNA isolated from 35000HP, 35000HPΔPEAT, and 

35000HPΔPEAT/pPEAT for transcripts of the target genes lptA, ptdA, and ptdB, as well 

as a control gene gyrB (HD1643), by quantitative reverse transcriptase PCR (qRT-PCR), 

as described previously (70).  Briefly, RNA was isolated from mid-logarithmic cultures 

with TRizol Reagent (Invitrogen, Carlsbad, CA), treated twice with DNase I (Ambion, 

Austin, TX),  and purified with an RNeasy spin column (Qiagen, Valencia, CA).  After 

analysis by gel electrophoresis following RT-PCR to ensure lack of DNA contamination, 

reactions were carried out with the one-step QuantiTect SYBR Green RT-PCR kit 

(Qiagen) and the 7500 Real-Time PCR System (Applied Biosystems, Carlsbad CA).  The 

Pfaffl method, which calculates gene expression from the PCR primer efficiencies and 

the expression level of a control gene, was used to determine the relative quantification of 

the target genes compared to the constitutively expressed gyrB (HD1643) (188), and 

three biological replicates were used to quantify the RNA. 

Isolation of H. ducreyi LOS  

LOS was extracted from H. ducreyi using a microphenol method, as previously 

described (189) for strains 35000HP/pLSSK, 35000HPΔPEAT/pLSSK, 

35000HPΔPEAT/pPEAT, 35000HPΔlptA, 35000HPΔptdA, and 35000HPΔptdB.  Briefly, 

plate-grown bacteria were harvested, washed with PBS, and then diluted in H2O.  The 

aqueous phase of a 65°C phenol/water extraction was kept, and the LOS was precipitated 

overnight at -20°C with cold ethanol.  The sample was lyophilized overnight, and 

samples were either further analyzed by mass spectrometry or run on a tris-glycine gel. 
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Isolation of H. ducreyi outer membrane proteins  

Outer membrane protein preparations and analysis were performed as described 

(190).  Briefly, plate-grown H. ducreyi were sonicated and subject to 2% sodium lauroyl 

sarcosinate (Sarkosyl) extraction.  The insoluble outer membrane proteins were collected 

and then resolved by SDS-PAGE and stained with Coomassie blue.   

In addition, the OMPs were subject to proteomic post translational modification 

(PTM) analysis.  Samples were suspended in 8M urea, sonicated, and digested overnight 

in 2 μg trypsin (Promega) after being reduced with 10 mM DTT in 10 mM ammonium 

bicarbonate and alkylated with 55 mM iodoacetamide in 10 mM ammonium bicarbonate.  

The peptides were then injected onto a C18 column (NanoAcquity UPLC®) and were 

eluted with a linear gradient from 3 to 40% acetonitrile (in water with 0.1% formic acid) 

developed over 240 minutes at room temperature, at a flow rate of 500 nL/min.  The 

effluent was elctro-sprayed into a mass spectrometer (Thermo-Fisher Scientific Orbitrap 

Velos Pro and Waters UPLC system), and the resulting peptide analysis was compared 

against the Uniprot H. ducreyi database using a SequestTM algorithm, searching for PEA 

modification (S, T, Y; +123.009 Da). 

Antimicrobial Peptide Bactericidal Assays 

Recombinant α- and β-defensin peptides were purchased from AnaSpec (San 

Jose, CA: HBD-1), PeproTech Inc. (Rocky Hill, NJ: HNP-1, HBD-2, HBD-3), Peptides 

International (Louisville, KY: HD-5), and Sigma-Aldrich (St. Louis, MO: HNP-2); 

synthetic LL-37 was purchased from Phoenix Pharmaceuticals, Inc. (Belmont, CA).  APs 

were reconstituted as previously described (71).  
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 AP assays were performed as described previously (135).  Briefly, approximately 

1000 CFU of mid-logarithmic phase H. ducreyi were incubated with 0.2, 2.0, and 20 

µg/mL of diluted peptide for one hour.  Samples were plated in triplicate on chocolate 

agar plates supplemented with appropriate antibiotics, and survival at each concentration 

of peptide after one hour was compared to survival of a control sample receiving diluent 

but no peptide.  We used a Student’s t-test with Sidak adjustment for multiple 

comparisons to determine statistical significance, and comparisons between strains for 

sensitivity to a given AP were made only when assayed side-by-side.  

Serum Bactericidal Assay  

35000HP/ pLSSK, 35000HPΔPEAT/pLSSK, and 35000HPΔPEAT /pPEAT were 

assayed for survival in 50% normal human serum, as described previously (44).  Briefly, 

14 – 16 hour growth from confluent plates was scraped into GC broth and diluted to 1000 

CFU/mL.  Bacteria were mixed 1:1 with either active or heat-inactivated human serum.  

Survival was determined by plate count after 45 min incubation.  Assays were performed 

in triplicate, and the percent survival was calculated as the ratio of the (average active 

serum CFU/plate) / (average heat-inactivated serum CFU/plate) for each strain.  The 

serum-sensitive mutant strain 35000HPdsrA was included in the assay as an internal 

control, and we used a Student’s t test with Sidak adjustment for multiple comparisons to 

determine statistical significance. 

Cell Surface Charge Assay 

We compared cell surface charges of the H. ducreyi strains by adapting protocols 

used to compare membrane charge changes in red blood cells and yeast using Alcian 

Blue 8GX, a cationic dye that binds proportionately to negatively charged cell surfaces 
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(191, 192).  H. ducreyi strains were grown to mid-logarithmic phase, harvested, washed, 

and diluted in sterile phosphate buffered saline (PBS).  Approximately 1000 CFU of 

bacteria were incubated for 30 minutes with 100 µg/mL Alcian Blue 8GX (Sigma-

Aldrich, St. Louis, MO) in PBS; control samples were incubated in PBS alone.  The 

bacteria were centrifuged and the supernatant removed, and the pellet was then 

suspended in 500 µL PBS.  Absorbance at O.D.607 was measured for both the supernatant 

and suspended bacteria.  Parallel bacterial samples were used to determine dry weight, 

and the absorbance measurements were normalized to the parent strain. Strains were 

compared for the amount of dye bound to the bacteria (by both loss of dye in supernatant 

and gain of dye in bacterial cells), normalized to the dry weight of each bacterial cell 

sample, using the PBS control samples to account for background absorption levels.  A 

comparative decrease in remaining dye in the supernatant sample, and inversely an 

increase in dye bound to the bacterial cells, correlates to the sample having a more 

negative outer membrane charge.   

For statistical analysis, mutant-parent pair differences in absorbance readings 

from both bacteria and supernatants from each strain were computed to account for day-

to-day sample variation.  Since the absorbance measurements were not normally 

distributed, non-parametric Wilcoxon signed ranks tests were used to test for significance 

difference between mutant and parent samples. 

MALDI-MS Analysis of H. ducreyi LOS 

LOS was extracted from H. ducreyi as described above.  To generate LOS more 

amendable to mass spectrometric analyses, O-deocylated LOS (O-LOS) samples were 

prepared by treating 50-100 μg of LOS with 50 μl of anhydrous hydrazine followed by 
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acetone precipitation as described previously (193). All samples were desalted by drop 

dialysis using 0.025-μm pore size nitrocellulose membranes (Millipore, Bedford, MA) 

and were subsequently lyophilized. Samples were reconstituted in high-performance 

liquid chromatography (HPLC) grade H2O; 1 μl was loaded onto the target, allowed to 

dry, and then overlaid with either 1 μl of matrix (50 mg/ml 2,5-dihydroxybenzoic acid 

(DHB) (Laser Biolabs, Sophia-Antipolis Cedex, France) in 70% acetonitrile) or DHB 

made as a saturated solution in 70% acetonitrile. Samples were subsequently analyzed 

using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) on an 

LTQ linear ion trap mass spectrometer coupled to a vMALDI ion source (MALDI-LIT) 

(Thermo Fisher, Waltham, MA). The vMALDI source uses a nitrogen laser that operates 

at 337.1-nm wavelength, 3-ns pulse duration, and 60-Hz repetition rate. Data were 

collected in the negative ion mode using the automated gain control and the automatic 

spectrum filter settings.  Alternatively, samples were analyzed on the Waters Synapt G2 

hybrid mass spectrometer utilizing the MALDI ionization source in the negative ion 

mode.  

Human Model of H. ducreyi Infection  

For the human model of H. ducreyi infection, we used the strains 35000HP and 

35000HPΔPEAT.  Three healthy male and five healthy female volunteers over 21 years 

of age were recruited for the study. Informed consent was obtained from the subjects for 

participation and for HIV serology, in accordance with the human experimentation 

guidelines of the U.S. Department of Health and Human Services and the Institutional 

Review Board of Indiana University–Purdue University Indianapolis.  
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The experimental human challenge protocols were followed as previously 

described (20, 21, 32, 34, 53, 194).  Subjects were observed until they reached the 

clinical endpoint, defined as either 14 days post-inoculation, resolution of infection at all 

sites, or development of a pustule that was painful or pruritic or at least 6 mm in 

diameter.  Following the clinical endpoint, biopsies were taken of both a parent site and 

mutant site.  The subjects were then treated with a single dose of oral ciprofloxacin.  

Individual colonies from the inoculum, surface cultures, and biopsies were analyzed by 

qRT-PCR to provide confirmation of parent and mutant genotypes.  Papule and pustule 

formation rates for parent and mutant inoculation sites were compared using logistic 

regression with generalized estimating equations (GEE) to account for the within-subject 

correlation.  Ninety-five percent confidence intervals (95% CI) for papule and pustule 

formation rates were calculated using GEE-based sandwich standard errors.  Day 1 

papule size was compared using analysis of variance with a random subject effect.    
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CHAPTER THREE: RESULTS 

Identification of putative PEA transferases in H. ducreyi.   

Previously, we established that the Sap transporter and MTR efflux pump 

mediated LL-37 and β-defensin resistance in H. ducreyi (70, 71, 144).  We next wanted 

to find what mechanism was responsible for α-defensin resistance.  Similar to other 

bacteria, H. ducreyi LOS is modified with the positively-charged PEA, leading to our 

hypothesis that H. ducreyi PEA modifications confer resistance to APs.  In gram-negative 

bacteria, the known and characterized PEA transferases are members of the 

YhjW/YjdB/YijP/YbiP superfamily of inner membrane proteins (159).  Using the Basic 

Local Alignment Search Tool (BLAST) tool on the National Center for Biotechnology 

Information website, we searched for H. ducreyi homologs of the YhjW/YjdB/YijP/YbiP 

superfamily; homology searches found three members of this family in the H. ducreyi 

genome (Table 3).  LptA (HD0852) shared strong homology with characterized lipid A 

PEA transferase genes in Neisseria, E. coli, and S. enterica; PtdA (HD0371) and ptdB 

(HD1598) were homologous to the OPG-modifying PEA transferase OpgE in E. coli.   
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Table 3. Putative H. ducreyi PEA transferases.  

H. 
ducreyi 
Gene ID 

H. ducreyi Protein Homologous Protein 
(organism) 

Expect 
Value 

Site of 
Action 

HD0852  Lipid A PEA 
transferase LptA 

 
LptA (N. gonorrhoeae) 

 
0 

 
lipid A 

LptA (N. meningitides) 0 lipid A 
EptA/PmrC (E. coli) 3e-138 lipid A 
EptA/PmrC (S. enterica) 
 

2e-134 lipid A 

HD0371 
 

PEA transferase of H. 
ducreyi PtdA 

 
OpgE/YbiP (E. coli) 
 

 
1e-76 

 
unknown 

HD1598 

 
PEA transferase of H. 

ducreyi PtdB 
 

 
OpgE/YbiP (E. coli) 
  

 
1e-62 

 
unknown 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 
 



Confirmation and initial characterization of the mutants with deletions of the 

putative PEA transferase genes. 

Once we identified the putative PEA transferase genes, we generated mutants 

with deletions of one, two, or all three genes (Table 2); mutagenesis was confirmed by 

PCR (Figure 6) and sequencing (data not shown).  Additionally, the entire genomes of 

35000HP and 35000HPΔPEAT were sequenced by shotgun sequencing to confirm no 

additional genomic mutations had occurred during the mutagenesis; the 35000HP and 

35000HPΔPEAT genomes were identical with the exception of the expected loss of lptA, 

ptdA, and ptdB in the mutant strain.  Complementation of 35000HPΔPEAT with pPEAT 

was confirmed by qRT-PCR, and the expression level of each PEA transferase gene was 

within ± 2-fold of parental expression levels (Figure 7). 

In order to determine the effect of the putative PEA transferase deletions on H. 

ducreyi growth, a 24-hour growth curve was measured.  There was no significant 

difference in growth rate between the parent and mutant strains (Figure 8); these data 

suggests that loss of the putative PEA transferase genes does not affect the bacteria’s 

ability to grow in vitro.  We also compared the outer membrane protein (OMP) and LOS 

profiles of 35000HP and 35000HPΔPEAT.  SDS-PAGE showed identical banding 

patterns between the parent and mutant strain OMP profiles (Figure 9A).  When 

comparing the LOS profiles, silver-stained gels revealed no noticeable difference 

between the parent and mutant strains (Figure 9B).  Since a single PEA is 123 Da in size, 

loss of a PEA modification on the OMP or LOS would likely not be observed in SDS or 

tris-glycine gels; these data suggests that loss of the putative PEA transferase genes does 

not have a major effect on the OMP and LOS profiles.   
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Figure 6. 35000HPΔPEAT has deletions at ptdA, lptA, and ptdB loci.  PCR of (P) 

35000HP, (M) 35000HPΔPEAT, and (C) a no-template control was performed with 

intragenic primers for ptdA, lptA, ptdB, and sapA.  Amplicons for each gene are present 

in 35000HP whereas bands for ptdA, lptA, and ptdB are no longer present in 

35000HPΔPEAT, with sapA still present as a positive template control.  No bands are 

present at any no-template control well.   
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Figure 7. 35000HPΔPEAT/pPEAT restores expression of PEA transferase genes.  

qRT-PCR of expression levels of ptdA, lptA, and ptdB in 35000HP/pLSSK (normalized 

to 1), 35000HPΔPEAT/pLSSK, and 35000HPΔPEAT/pPEAT.   35000HPΔPEAT/pLSSK 

has no expression of the putative PEA transferase genes, and expression of these genes is 

restored by pPEAT.  
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Figure 8. Deletion of PEA transferase genes does not affect growth rate compared to 

35000HP.  Growth rates of 35000HP and 35000HPΔPEAT were determined by 

measuring the absorbance at OD660 over a 24 hour time period.  There is no difference 

between 35000HP and 35000HPΔPEAT when plotted on a log10 scale.  
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Figure 9. Outer membrane protein profile and lipooligosaccharide profile of 

35000HPΔPEAT remain unchanged from parent. A) Coomassie-stained SDS-PAGE 

outer membrane protein profile of (1) 35000HP and (2) 35000HPΔPEAT shows no 

difference between parent and mutant.  The first lane on the left is a protein ladder.  B) 

Silver-stained Tris-glycine LOS profile of 35000HP (1) and 35000HPΔPEAT (2) shows 

no difference between parent and mutant.  The first lane on the left is a protein ladder. 
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The H. ducreyi PEA transferase genes confer resistance to α- and β-defensins but 

not to cathelicidin or human serum.    

In order to determine the contribution of each putative PEA transferase to AP 

resistance, we assessed the role they had in resistance to human APs by assaying the 

parent and mutant strains for sensitivity to the α-defensin HD-5, the β-defensin HBD-3, 

and the human cathelicidin, LL-37, at various concentrations. 

When comparing 35000HP to mutants with single deletions in lptA, ptdA, or ptdB, 

we found no significant changes in sensitivity to HD-5, HBD-3, or LL-37 (Figures 10-

12).  This suggests that loss of any one PEA transferase does not have an effect on AP 

resistance.  We next compared 35000HP to mutants with deletions in two putative PEA 

transferases.  We found that all three mutants were more susceptible than 35000HP to 

HBD-3 (Figures 13B, 14B, 15B).  We additionally found statistically significant 

differences between 35000HP and 35000HPΔlptA ptdA at one concentration of HD-5 and 

LL-37 (Figure 13A, 13C.).  Similarly, we found a statistically significant difference in 

sensitivity to LL-37 at one concentration between 35000HP and 35000HPΔptdA ptdB 

(Figure 15A).  It was unclear if this data was biologically significant or a product of 

chance due to day-to-day variations in the assays, so we next characterized the mutant 

with deletions in all three putative PEA transferases.   

To further determine the role of all three PEA transferase genes in AP resistance, 

we assayed 35000HP/pLSSK, 35000HPΔPEAT/pLSSK, and 35000HPΔPEAT/pPEAT for 

sensitivity to α-defensins, β-defensins, and LL-37 at various concentrations.  We found 

that 35000HPΔPEAT/pLSSK was significantly more sensitive to the α-defensin HD-5 at 

all three concentrations (Figure 16A); complementation with pPEAT restored the parental 
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resistance phenotype.  We next wanted to determine if the putative PEA transferases 

conferred resistance to additional α-defensins.  We found 35000HPΔPEAT/pLSSK had 

an increased susceptibility compared to 35000HP/pLSSK when challenged with HNP-1 

and HNP-2 (Figures 16B, 16C); complementation with pPEAT restored the parental 

resistance phenotype.  These data indicate that the PEA transferase gene products 

contribute to α-defensin resistance in H. ducreyi. 

Next, we found that 35000HPΔPEAT/pLSSK was significantly more susceptible 

to the β-defensin HBD-3 at 2 concentrations (Figure 17A); complementation with pPEAT 

restored the parental resistance phenotype.   We next wanted to determine if the putative 

PEA transferases conferred resistance to additional β-defensins.  We found 

35000HPΔPEAT/pLSSK had a greater sensitivity than 35000HP/pLSSK to HBD-2 

(Figure 17B); complementation with pPEAT restored the parental resistance phenotype.  

These data suggest that the PEA transferase gene products contribute to β-defensin 

resistance in H. ducreyi.  

While we did see statistically significant decreases in survival when exposed to 

LL-37 in 35000HPΔlptA ptdA and 35000HPΔlptA ptdB, we found no significant 

difference in sensitivity to LL-37 between 35000HP/pLSSK and 

35000HPΔPEAT/pLSSK at any concentration (Figure 18).  The assays with 

35000HPΔPEAT/pLSSK, which displays the greatest sensitivity to APs amongst all the 

PEA transferase mutants, were also performed in a greater number of replicates.  All data 

taken together suggest that we likely saw a statistical anomaly in the double mutants, and 

the H. ducreyi PEA transferase gene products likely contribute to α- and β-defensin 

resistance but do not contribute significantly to cathelicidin resistance. 
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Previous studies have shown that addition of PEA to LOS contributes to serum 

resistance in Neisseria gonorrhoeae (162).  In contrast, we found no significant 

difference in sensitivity between 35000HP and 35000HPΔPEAT to normal human serum 

(Figure 19).  These data indicate that the putative PEA transferases of H. ducreyi do not 

contribute to resistance to human serum.  
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Figure 10. ptdA alone does not confer resistance to α- and β-defensins or cathelicidin 

in H. ducreyi.  35000HP and 35000HPΔptdA were examined for resistance to the (A) α-

defensin HD-5 (B) β-defensin HBD-3, and (C) human cathelicidin LL-37.  There were no 

statistically significant differences between 35000HP and 35000HPΔptdA for HD-5, 

HBD-3 or LL-37.  Data represents average ± standard error of three independent assays, 

and statistical significance was determined by Student’s t-test. 
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Figure 11. ptdB alone does not confer resistance to α- and β-defensins or cathelicidin 

in H. ducreyi.  35000HP and 35000HPΔptdB were examined for resistance to the (A) α-

defensin HD-5 (B) β-defensin HBD-3, and (C) human cathelicidin LL-37.  There were no 

statistically significant differences between 35000HP and 35000HPΔptdA for HD-5, 

HBD-3 or LL-37.  Data represents average ± standard error of three independent assays, 

and statistical significance was determined by Student’s t-test. 
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Figure 12. lptA alone does not confer resistance to α- and β-defensins or cathelicidin 

in H. ducreyi.  35000HP and 35000HPΔlptA were examined for resistance to the (A) α-

defensin HD-5 (B) β-defensin HBD-3, and (C) human cathelicidin LL-37.  There were no 

statistically significant differences between 35000HP and 35000HPΔptdA for HD-5, 

HBD-3 or LL-37.  Data represents average ± standard error of three independent assays, 

and statistical significance was determined by Student’s t-test. 
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Figure 13. lptA and ptdA together confer resistance to β-defensins, and possibly to α-

defensins and cathelicidin, in H. ducreyi.  35000HP and 35000HPΔlptA ptdA were 

examined for resistance to the (A) α-defensin HD-5 (B) β-defensin HBD-3, and (C) 

human cathelicidin LL-37.  Asterisks indicate statistically significant differences from 

35000HP (P < 0.05).  Data represent average ± standard error of three to four 

independent replicates, and statistical significance was determined by Student’s t-test. 
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Figure 14. lptA and ptdB together confer resistance to β-defensins, but not α-

defensins or cathelicidin, in H. ducreyi.  35000HP and 35000HPΔlptA ptdB were 

examined for resistance to the (A) α-defensin HD-5 (B) β-defensin HBD-3, and (C) 

human cathelicidin LL-37.  Asterisks indicate statistically significant differences in 

survival of the mutant versus 35000HP (P < 0.05).  Data represent average ± standard 

error of three independent replicates, and statistical significance was determined by 

Student’s t-test. 
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Figure 15. ptdA and ptdB together confer resistance to β-defensins, possibly 

cathelicidin, but not α-defensins, in H. ducreyi.  35000HP and 35000HPΔptdA ptdB 

were examined for resistance to the (A) α-defensin HD-5 (B) β-defensin HBD-3, and (C) 

human cathelicidin LL-37.  Asterisks indicate statistically significant differences from 

35000HP (P < 0.05).  Data represent average ± standard error of four independent 

replicates, and statistical significance was determined by Student’s t-test. 
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Figure 16. PEA transferases confer resistance to the α-defensins HD-5, HNP-1, and 

HNP-2 in H. ducreyi.  35000HP/pLSSK, 35000HPΔPEAT/pLSSK and 

35000HPΔPEAT/pPEAT were tested for resistance to the α-defensins (A) HD-5, (B) 

HNP-1, and (C) HNP-2.  Asterisks indicate statistically significant differences from 

35000HP (P < 0.05).  Complementation with pPEAT restored parental levels of 

susceptibility to defensins.  Data represent average ± standard error of six independent 

replicates, and statistical significance was determined by Student’s t-test. 
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Figure 17. PEA transferases confer resistance to the β-defensins HBD-2 and HBD-3 

in H. ducreyi.  35000HP/pLSSK, 35000HPΔPEAT/pLSSK, and 35000HPΔPEAT/pPEAT 

were tested for resistance to the β-defensins (A) HBD-2 and (B) HBD-3.  Asterisks 

indicate statistically significant differences from 35000HP (P < 0.05).  Complementation 

with pPEAT restored parental levels of susceptibility to defensins.  Data represent 

average ± standard error of three to four independent replicates, and statistical 

significance was determined by Student’s t-test. 
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Figure 18. PEA transferases do not confer resistance to cathelicidin in H. ducreyi.  

35000HP/pLSSK, 35000HPΔPEAT/pLSSK and 35000HPΔPEAT/pPEAT were tested for 

resistance to the human cathelicidin LL-37.  There was  no statistically significant 

difference between 35000HP and 35000HPΔPEAT/pLSSK.  Data represent average ± 

standard error of six independent replicates, and statistical significance was determined 

by Student’s t-test. 
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Figure 19. PEA transferases do not confer resistance to human serum in H. ducreyi.  

35000HP, 35000HPΔPEAT and FX517, a serum-sensitive dsrA mutant, were examined 

for resistance to human serum.  There was no significant difference in sensitivity to 

serum between 35000HP and 35000HPΔPEAT; FX517 was significantly more sensitive 

to serum than 35000HP, indicated by asterisk (P < 0.05).  Data represent average ± 

standard error of six independent assays, and statistical significance was determined by 

Student’s t-test. 
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35000HPΔPEAT had a more negative cell surface charge than 35000HP.   

Our initial hypothesis states that these PEA transferases alter the cell surface 

charge to confer AP resistance by electrostatic repulsion.  Once we established that the 

PEA transferase genes contributed to the cationic defensin resistance, we next examined 

whether these transferase genes affect the cell surface charge of H. ducreyi.  To do this, 

we modified a protocol that uses the cationic dye Alcian Blue 8GX, which 

proportionately binds to the cell surface based on charge, to compare the relative cell 

surface charges of 35000HP and 35000HPΔPEAT.  We hypothesized more Alcian Blue 

would bind to 35000HPΔPEAT than 35000HP, thus indicating a greater negatively 

charged cell surface on 35000HPΔPEAT.  

 When comparing 35000HPΔPEAT to 35000HP (Table 4.), we found 17.5% more 

dye bound to 35000HPΔPEAT cells than to 35000HP cells (P < 0.0001).  We also found 

16.5% less dye remaining in the supernatant from 35000HPΔPEAT cells than from 

35000HP cells (P < 0.0001).  Complementation of 35000HPΔPEAT/pLSSK with pPEAT 

genes restored the level of dye bound to that of 35000HP/pLSSK (data not shown).  

These data indicate that the cell surface of 35000HPΔPEAT was more negatively charged 

than 35000HP, suggesting that the PEA transferase gene products conferred the addition 

of positive moieties on the cell surface.     

 We next compared the relative cell surface charge of 35000HP, the three single 

mutants, 35000HPΔptdA ptdB, and 35000HPΔPEAT (Figure 20).  We found no 

significant difference in cell surface charge between 35000HP and any of the single 

mutants.  However, a statistically significant trend was found indicating that more dye 

bound to 35000HPΔptdA ptdB (roughly 9.5% more) and 35000HPΔPEAT (roughly 21% 
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more) than 35000HP.  These data suggest that loss of one putative PEA transferase does 

not affect the cell surface charge.  However, there does appear to be an additive effect, 

where loss of two PEA transferase gene products increases the negativity of the cell 

surface, and loss of all three PEA transferases has the greatest effect of cell surface 

charge.     

 

 

 

 

 

Table 4. Cell surface of 35000HPΔPEAT is more negatively charged than 35000HP.   

 
Strain Mean Stdb Median 

Wilcoxon  

p-valuec 

Bacterial Cells 
35000HP 0.280a 0.203 0.217 

<0.0001 
35000HPΔPEAT 0.329 0.237 0.268 

Supernatant 
35000HP 0.588 0.602 0.374 

<0.0001 
35000HPΔPEAT 0.491 0.532 0.313 

 

a absorbance measurement at O.D.660 

b Std, Standard deviation 

c Statistical significance determined by comparing median values with a non-parametric 

Wilcoxon signed ranks test because the absorbance measurements were not normally 

distributed; n = 24 
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Figure 20. Loss of putative PEA transferases ptdA and ptdB contributes to increased 

cell surface negativity.  The cell surface charges of 35000HP, 35000HPΔlptA (ΔlptA), 

35000HPΔptdA (ΔptdA), 35000HPΔptdB (ΔptdB), 35000HPΔptdA ptdB (ΔptdA ptdB), 

and 35000HPΔPEAT (ΔPEAT) were examined.  The percentage of Alcian blue dye that 

bound to the bacteria, which correlates with a negatively charged cell surface, was 

normalized to 35000HP for each sample.  Data indicates the average of five independent 

assays, and a significant trend was observed (P = 0.036).   
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H. ducreyi LptA modifies the LOS lipid A with phosphoethanolamine.   

After determining that the PEA transferase genes play a role in modifying the H. 

ducreyi cell surface charge, we next hypothesized that the observed change in surface 

charge correlated with the loss of PEA modification on H. ducreyi LOS.  We tested this 

hypothesis by analyzing the LOS structures of each single mutant as well as the parent, 

the triple mutant, and the complemented triple mutant via mass spectrometry. 

LOS samples from each strain were prepared in triplicate and then O-deacylated 

to generate water soluble O-LOS that was analyzed by MALDI-MS.  Lipid A and 

oligosaccharide (OS) “prompt fragments” are generated within the instrument during the 

ionization process.  These fragments can provide useful information in determining LOS 

structures. 

  To define the full contribution of the putative PEA transferases on LOS 

structure, triplicate O-LOS samples from 35000HP/pLSSK, 35000HPΔPEAT/pLSSK, 

and 35000HPΔPEAT/pPEAT were prepared and analyzed by MALDI-MS (Figure 21, 

Table 5).  The O-deacylated monophosphorylated lipid A (MPLA) at m/z 951.6 or 951.4 

was observed in 35000HP/pLSSK as well as in 35000HPΔPEAT and its corresponding 

complemented strain.  Since PEA is 123 Da in size, the peak at m/z 1074.5 corresponds to 

a MPLA with the addition of one PEA; this peak was observed in the parent strain and 

the complement strain, but was not observed in 35000HPΔPEAT, indicating loss of PEA 

modification in the mutant lipid A. 

Evaluation of the full O-LOS glycoforms showed that all three strains had PEA 

present on the oligosaccharide.  Glycoforms containing one PEA were observed in all 

three strains at m/z 3123, 2832, 2670, 2467, and 2304 (see Table 5 for full glycoform 
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compositions).  Glycoforms containing two PEA groups were observed in both the parent 

strain as well as the complemented strain at m/z 3268 and 2977 (see Table 5 for full 

glycoform compositions).  The masses corresponding to O-LOS structures with two PEA 

groups were not observed in 35000HPΔPEAT.  The observation that the lipid A from 

35000HPΔPEAT lacked the addition of PEA, combined with the presence of a PEA on 

the oligosaccharide of the O-LOS from this strain, demonstrates that the lipid A PEA 

transferase is inactive but that a second PEA transferase, responsible for the addition of 

PEA onto the oligosaccharide, is still active. 

We next analyzed the lipid A fragments from each single mutant strain to provide 

further information about the H. ducreyi O-LOS.  Representative spectra of the lipid A 

regions of the O-LOS from the single mutant strains and the corresponding parent strain 

are shown in Figure 22.  The peak at m/z 951.5, corresponding to the MPLA, was 

observed in all three single mutants (35000HPΔptdB, 35000HPΔptdA, and 

35000HPΔlptA) as well as the parent strain.  The MPLA with the addition of one PEA, 

found at m/z 1074.5, was observed in the parent strain as well as the 35000HPΔptdB and 

35000HPΔptdA strains, but was not observed in the 35000HPΔlptA strain.  These data 

indicate that LptA alone confers the PEA modification of lipid A.  Studies indicated no 

change in cell surface charge when comparing 35000HP to 35000HPΔlptA (Figure 20.), 

suggesting that loss of the lipid A PEA modification does not have a significant effect on 

cell surface charge, and that it is the modification of something other than LOS that 

additionally contributes the observed change in cell surface charge.  
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Table 5.  H. ducreyi O-LOS glycoforms and corresponding monoisotopic masses. 

 [M-H]-
obs 

Glycofor
ma 

He
x 

HexN
Ac 

PE
A 

NeuA
c 

[M-H]-

calc 
35000H

P/ 
pLSSK 

35000H
P 

ΔPEAT/ 
pLSSK 

35000HP 
ΔPEAT/ 
pPEAT 

bA5a1** 3 1 2 1 3268.0
7 

3268.18 cnd 3267.82 

A5a1* 3 1 1 1 3123.0
8 

3123.00 3122.73 3122.73 

A5a1 3 1 0 1 3000.0
7 

2999.91 2999.73 2999.55 

bA5** 3 1 2 0 2976.9
8 

2977.09 nd 2976.73 

A5* 3 1 1 0 2831.9
8 

2831.91 2831.73 2831.64 

A5 3 1 0 0 2708.9
8 

2708.82 2708.64 2708.55 

A4* 2 1 1 0 2669.9
3 

2669.82 2669.64 2669.55 

A4 2 1 0 0 2546.9
2 

2546.73 2546.64 2546.55 

A3* 2 0 1 0 2466.8
5 

2466.64 2466.64 2466.45 

A3 2 0 0 0 2343.8
4 

2343.64 2343.55 2343.45 

A2* 1 0 1 0 2304.8
0 

2304.55 2304.55 2304.36 

a All molecular masses contain four Heptoses, Kdo(P), and O-deacylated lipid A.  

Asterisks indicate the number of PEA present in the structure.   

bGlycoforms were observed in their sodiated forms.  

cnd indicates that the particular glycoform was not detected in the sample. 
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Figure 21.  H. ducreyi putative PEA transferases contribute to modification of Lipid 

A with PEA.  Negative-ion MALDI-MS spectra of O-LOS from (A) 35000HP/pLSSK, 

(B) 35000HPΔPEAT/pLSSK, and (C) 35000HPΔPEAT/pPEAT.  The compositions of the 

glycoforms are described in Table 5.  Masses labeled with two asterisks only observed in 

the parent strain and the corresponding PEAT complemented strain.  The asterisk in the 

glycoform nomenclature designates the number of PEA groups present on the O-LOS. 
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Figure 22.  LptA contributes to modification of Lipid A with PEA. Negative-ion 

MALDI-MS spectra of O-LOS from (A) 35000HPΔptdB, (B) 35000HPΔptdA, (C) 

35000HPΔlptA, and (D) 35000HP.  The figure shows zoomed images from representative 

spectra for each strain.  The O-deacylated monophosphorylated lipid A (MPLA) was 

observed at m/z 951.46 or 951.45; this structure plus the addition of PEA was observed at 

m/z 1074.5.  The MPLA plus PEA was not observed in the 35000HPΔlptA samples. 
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H. ducreyi ptdA, lptA, and ptdB are not required for survival in vivo.   

We next examined the role of the PEA transferase genes in virulence in vivo by 

using the human model of H. ducreyi infection.  To do this, we challenged eight healthy 

adult volunteers with between 58 – 139 CFU of 35000HP and between 40 – 224 CFU of 

35000HPΔPEAT, with the exception of the final three volunteers who were challenged 

with roughly equal doses of parent and mutant (Table 6). 

 Of the patient sites inoculated with 35000HP, 23 of 24 (95.8%) developed 

papules, while 21 of 24 (87.5%) sites inoculated with 35000HPΔPEAT developed 

papules.  Pustules developed at 5/24 (20.8%) parent-inoculated sites and 5/24 (20.8%) 

mutant-inoculated sites.  The average parent papule size at day 1 was 8.7 mm2 whereas 

the average mutant papule size at day 1 was 5.0 mm2.   

 When comparing 35000HP and 35000HPΔPEAT, there was no statistical 

difference between papule formation rate (parent = 95.8% [95% C.I., 88.2 – 99.9%], 

mutant = 87.5% [95% C.I., 76.3 – 98.7%], P = 0.103) or pustule formation rate (parent = 

20.8% [95% Confidence Interval (C.I.), 9.7 – 32.0%], mutant = 20.8% [95% C.I., 4.8 – 

36.9%], P = 1.0).  The difference in day 1 papule size (parent 8.7 mm2, mutant 5.0 mm2) 

did approach statistical significance, with a P of 0.051.  However, taken together, these 

data suggest that the gene products of ptdA, lptA, and ptdB do not contribute to H. 

ducreyi virulence during human infection. 
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Table 6. 35000HPΔPEAT is fully virulent in vivo.   

Response to inoculation of live H. ducreyi strains 
Volunteera Gender

b 
Observation 
period 
(days) 

Isolatec Dose 
(CFU) 

No. of 
initial 
papules 

No. of 
pustules at 
endpoint 

441 M 7 P 58 3 1 
      M 56-224d 2 2 
442 M 7 P 58 3 1 
      M 56-224d 3 1 
444 F 9 P 70 3   
      M 40-159e 3 1 
445 F 7 P 70 3 1 
      M 40-159e 2   
446 F 7 P 70 3 1 
      M 40-159e 3   
447 M 8 P 139 3   
      M 112 3   
451 F 7 P 108 3   
      M 88 3   
453 F 12 P 108 2 1 
      M 88 2 1 
 

a Volunteers 441 and 442 were inoculated in the first iteration.  Volunteer 443 withdrew 

from the study prior to inoculation.  Volunteers 444, 445, and 446 were inoculated in the 

second iteration.  Volunteer 449 was excluded from the trial; volunteers 448 and 450 

withdrew from the study prior to inoculation. Volunteer 447 was inoculated in the third 

iteration.  Volunteers 451 and 453 were inoculated in the fourth iteration.  Volunteer 452 

was excluded from the study prior to inoculation.    

b M, Male; F, Female     

c P, 35000HP (parent); M, 35000HPΔPEAT (mutant)      

d Mutant-inoculated sites received EDD of 56, 112, or 224 CFU. 
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e Mutant-inoculated sites received EDD of 40, 80, or 159 CFU.   
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CHAPTER FOUR: DISCUSSION 

The relationship between host and pathogen is like a giant chess game; one of 

fluidity and constant evolution, with each side trying to outplay the other.  The interplay 

between H. ducreyi and its human host is no different.  For every component of the 

immune system used as defense during infection, H. ducreyi has developed a mechanism 

of resistance.  Our research primarily focuses on the evasion of host antimicrobial 

peptides.  Previous studies have established that LL-37 resistance is mediated by the Sap 

transporter and the MTR efflux pump and β-defensin resistance is mediated by the MTR 

efflux pump as well.  Our research was aimed at discovering a mechanism of α-defensin 

resistance in H. ducreyi.   

Several bacteria have used modification of their cell surface as a way to avoid the 

immune system.  Surface proteins may be modified to serve as camouflage or to directly 

interact with immune system components.  In gram-negative bacteria, PEA transferases 

modify a variety of substrates, including carbohydrate components of LPS, other sugars 

in the gram-negative envelope, and proteinaceous surface structures; the best 

characterized PEA transferases are those that PEA-modify the LPS of enteric pathogens 

or the LOS of N. gonorrhoeae.  PEA modification of LPS or LOS contributes to AP 

resistance and serum resistance in vitro and to virulence in vivo.  Structurally, all known 

gram-negative PEA transferases are members of the YhjW/YjdB/YijP/YbiP family of 

inner membrane proteins.  In H. ducreyi, both lipid A and core components of the LOS 

are modified with PEA; we identified three H. ducreyi genes with strong homology to 

known PEA transferases.  Hypothesizing that these PEA transferases may be involved in 
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α-defensin resistance, our goal was to characterize the role of these PEA transferases in 

H. ducreyi pathogenesis.   

We examined the in vitro effect of PEA modification on resistance to human APs 

relevant to H. ducreyi infection, including α-defensins, β-defensins, and the cathelicidin 

LL-37.  Using mutants with deletions in one, two, and all three putative PEA transferases, 

we observed that PEA modification did not appear to confer resistance to LL-37 (Figures 

10-16).  While there were several slight albeit statistically significant differences between 

the parent and double PEA transferase mutants in LL-37 sensitivity, these differences 

were not present in the triple mutant.  Since we performed a greater number of assays 

with the triple mutant and consistently observed no difference in LL-37 susceptibility 

between the parent and triple mutant, the statistical significance found when comparing 

LL-37 sensitivity between the parent and double mutants was likely not biologically 

relevant.  It is more likely a product of day-to-day variation that produced a statistical 

anomaly.       

PEA transferases have been shown to confer resistance to LL-37 in pathogenic 

Neisseria, but previous studies have already established that both Sap and MTR play 

major roles in LL-37 resistance in H. ducreyi (70, 71, 144).  It is still possible that PEA 

transferases contribute to LL-37 resistance, but the presence of an intact Sap transporter 

and a functioning MTR efflux pump may be masking any contribution of PEA 

modification to LL-37 resistance.  Inactivating or deleting both the Sap transporter and 

the MTR efflux pump in the triple PEA transferase mutant could provide more insight to 

what role PEA modifications have in LL-37 resistance.  It is also possible that the 

presence of PEA-modified KDO in 35000HPΔPEAT still confers resistance to LL-37; to 
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fully understand the contribution of PEA modifications to LL-37 resistance, this active 

PEA transferase would need to be deleted as well. 

It was clear, however, that PEA modification plays a role in H. ducreyi resistance 

to both α- and β-defensins.  When any one of the PEA transferase genes was deleted, we 

observed no difference in AP susceptibility between the parent and mutant strains; 

however, when two PEA transferase genes were deleted, the mutants became more 

susceptible to β-defensins (Figures 13B, 14B, 15B).  It was only when all three PEA 

transferase genes were deleted that the mutant became more susceptible than the parent 

strain to the α-defensins as well.  Thus, all three putative PEA transferases contribute to 

defensin resistance (Figures 16A, 17).  We likely see a significant increase in 

susceptibility to HBD-3 with two PEA transferase deletions because HBD-3 has a greater 

overall net positive charge (+13) than HD-5 (+6).  We hypothesized that the addition of 

the positively charged PEA onto the cell surface conferred AP resistance, so it is not 

surprising that the AP with the greatest overall net positive charge is most affected by 

PEA addition.  It is worth noting that while the increased sensitivity to the defensins is 

considered moderate, roughly between a 25-35% decrease in survival when compared to 

parent, it is consistent throughout the defensins tested (Figures 16, 17).  Thus, this is the 

first known mechanism of α-defensin resistance found in H. ducreyi.   

When all three putative PEA transferases were deleted, we also observed a 

significant change in surface charge of the organism (Table 4).  Loss of lptA alone, which 

we found is necessary to PEA-modify Lipid A, had no effect on surface charge in our 

assay.  Our inability to detect changes in surface charge in any of the single mutants may 

reflect a lack of sensitivity of the cationic dye assay, but this data is consistent with what 
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we observed in AP resistance; loss of one putative PEA transferase does not appear to 

have a large enough effect on cell surface charge to influence AP resistance.  Likewise, 

the greatest effect on surface charge observed in the lptA ptdA ptdB mutant does correlate 

with the increased sensitivity to defensins.  When we examined the cell surface charge of 

35000HPΔptdA ptdB, we saw an intermediate between the single mutants and triple 

mutant.  Deletion of these two putative PEA transferases increases H. ducreyi 

susceptibility to HBD-3, which correlates with the increase in negativity of the cell 

surface seen in the Alcian blue assay.  It is difficult to predict, however, the limitations of 

our surface charge assay.  Ideally, we would examine the relative surface charges of each 

single, double, and triple mutant compared to parent with techniques sensitive enough to 

detect minute changes in absorbance and weight.  These data suggest that it is the 

additive effect of PEA modification at multiple sites on the H. ducreyi surface that 

provides sufficient positivity to repel cationic APs.   

The results of the AP and cell surface charge assays, taken together, raise the 

question about gene regulation.  LptA, ptdA, and ptdB are not controlled by any known 

regulons in H. ducreyi, nor are they found in an operon, suggesting that, if they were 

regulated, it is done on an individual gene-by-gene basis.  It is possible the lack of AP 

resistance seen in the lptA mutant a result of this gene product alone having a minimal 

effect on cell surface charge, as seen in the cell surface charge assay, or a result of an up-

regulation of the putative PEA transferases ptdA and ptdB.  Expression levels of lptA, 

ptdA, and ptdB could be measured and compared in 35000HP, each single mutant and 

each double mutant.  We then can determine if these genes are constitutively expressed or 

if their expression is increased with the loss of one or more PEA transferase.  If they are 
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constitutively expressed, then we can infer than each PEA transferase gene product alone 

may not affect cell surface charge enough to confer AP resistance.  However, if 

expression of ptdA and ptdB increases in the lptA mutant, then there is likely a 

compensatory regulation mechanism present.  This regulation could then account for why 

we do not see a change in cell surface charge or AP sensitivity in the lptA mutant. 

In contrast to observations in N. gonorrhoeae, loss of the three PEA transferase 

genes did not affect susceptibility of H. ducreyi to human serum (162).  Our results 

indicate that, in H. ducreyi, PEA modification likely does not play a role in evasion of 

host complement.  H. ducreyi expresses two surface proteins, DsrA and DltA, which have 

been previously shown to confer resistance to complement-mediated killing (44, 45).  

DsrA blocks binding of IgM to the H. ducreyi surface and prevents initiation of the 

complement cascade, whereas the contribution of the structurally related DltA to serum 

resistance remains unclear (44, 45).  Thus, in a similar masking effect that the Sap 

transporter and MTR efflux pump may have on AP resistance, the activities of DsrA and 

DltA may be concealing any contribution of surface modification with PEA on serum 

resistance.  DsrA is a large surface protein that likely acts as a shield, preventing IgM 

from binding to the H. ducreyi cell surface; this blocking action would likely take place 

before IgM would come in contact with the PEA modifications found on the cell surface.  

It is possible that deleting dsrA and dltA in the triple PEA transferase mutant may reveal 

that PEA modification has a slight contribution to serum resistance, but as we’ve shown, 

these PEA transferases likely do not appear to confer resistance to human serum.   

Our data suggest that all three PEA transferase genes in H. ducreyi contribute to 

lessening the negativity of the cell surface (Table 4).  Mass spectrometric analysis 
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indicated that LptA does this by modifying lipid A with PEA (Figure 21); the functions 

of ptdA and ptdB are less clear.  Loss of either gene alone had no effect on the 

modification of lipid A, but both genes contributed to effects on cell surface charge and 

AP resistance (Figure 19, Table 4).  The closest characterized homolog of these genes, 

opgE, encodes a PEA transferase that targets OPGs.  OPGs and related periplasmic 

glucans have been found in disparate gram-negative bacteria, from the 

Enterobacteriaceae to Alphaproteobacteria (180).  However, no OPG-like molecules 

have been described among the Pasteurellaceae, which includes H. ducreyi; further, we 

were unable to find homologs of any known OPG biosynthesis or modification genes in 

the genomes of the Pasteurellaceae, except for opgE.  Thus, OpgE homologs in the 

Pasteurellaceae, such as PtdA and PtdB, likely target other molecules; our cell surface 

charge data suggest that PtdA and PtdB modify surface structures with positively charged 

moieties.  Since ptdA and ptdB share this homology with the E. coli OpgE, we could 

generate an E. coli mutant with a deletion in opgE and attempt to complement this strain 

with a plasmid carrying the H. ducreyi ptdA or ptdB genes.  If PEA modification of Opg 

is restored, then we can say with more certainty that ptdA and ptdB are, in fact, PEA 

transferases.  We could then search for additional cell surface proteins in H. ducreyi that 

could potentially be modified with PEA by PtdA and PtdB.  

There is precedence for PEA transferases to modify surface proteins.  C. jejuni 

modifies its flagellum with PEA, and N. gonorrhoeae modifies its type IV pilus with 

PEA (169, 179).  H. ducreyi does not have a flagellum, and there is no evidence that the 

organism expresses a type IV pilus.  However, the three H. ducreyi genes pilA (HD1123), 

pilB (HD1124), and pilC (HD1125) share homology to known and characterized type IV 
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pilus genes found in pathogenic Neisseria and Pseudomonas aeruginosa.  Analysis of 

these putative genes may help reveal if these homologs have a functional role in H. 

ducreyi or if they are pseudogenes that are vestigial from an ancient ancestor and are no 

longer expressed.  We could also analyze the function of these three putative genes by 

generating a mutant with deletions in all three genes.  We could then examine this mutant 

for defects in growth and motility as well as what contribution, if any, it has in virulence 

using the human model of H. ducreyi infection.  If we do see expression and function of 

the putative type IV pili in H. ducreyi, we can also attempt to isolate the putative type IV 

pilus and examine its structure for PEA modification.  If PEA modification is found, it 

may be plausible that PtdA or PtdB is responsible for modifying this protein with PEA; 

mass spectrometry analysis of the 35000HP putative type IV pilus compared to that of the 

ptdA, the ptdB, and the ptdA ptdB mutants could further reveal if these PEA transferases 

are responsible for modifying the putative type IV pilus with PEA. 

The function of PtdA and PtdB may not be limited to what has previously been 

described.  They potentially could modify any surface protein; our cell surface charge 

assays examine the overall surface charge, not just that of a specific region or protein.  

Preliminary proteomic post translational modification (PTM) analysis of all surface 

proteins found in the H. ducreyi genome was inconclusive; one culture of 35000HP 

revealed PEA modification of the major outer membrane protein (MOMP) and outer 

membrane protein A2 (OMPA2), while a second culture of 35000HP had no PEA 

modification of any outer membrane proteins.  Similarly, one culture of the 

35000HPΔPEAT that underwent PTM analysis showed PEA modification of MOMP and 

OMPA2 and the second culture revealed no modification (data not shown).  While the 
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preliminary data was inconclusive, the first step would be to have additional PTM 

analysis of 35000HP to better determine if there are outer membrane proteins modified 

with PEA.  Next, PTM analysis of 35000HPΔptdA and 35000HPΔptdB would confirm if 

these PEA transferases confer modification of any outer membrane proteins.   

Given the large number of surface proteins and the variability seen in the 

preliminary analysis, it may be more efficient to specifically isolate any outer membrane 

proteins in H. ducreyi in which PEA modification has been shown.  The mass 

spectrometry data of the H. ducreyi LOS indicated that even known sites of PEA 

modification, such as lipid A, exist in both modified and unmodified forms.  By isolating 

specific proteins, it may provide us with less background and a better analysis of each 

protein.  When attempting to isolate a specific protein, we can recombinantly express it 

on a plasmid the surface protein gene flanked with a B-terminus polyhistidine-tag to 

allow for pull-down elution in a nickel column isolate large quantities of our target 

surface protein.  Thus, instead of globally searching through hundreds of proteins for a 

small 123 Da PEA modification, we can have more stringent analysis of one specific site 

on one specific protein.  In a sense, this is similar to examining RNA expression in a 

microarray versus using qRT-PCR; while microarrays are useful when looking at global 

expression of genes during specific conditions, they can potentially be unreliable as a sole 

analysis due to background and a high number of false negatives or positives.  By using 

qRT-PCR, the expression of one specific gene can be determined by comparing it to a 

constitutively expressed “housekeeping” gene rather than comparing the target gene 

expression to a large number of genes.  Isolation and analysis of several potentially PEA 

77 
 



modified outer membrane proteins in 35000HP, 35000HPΔptdA, and 35000HPΔptdB 

could reveal the function and modification site of PtdA and PtdB.       

The other question that the LOS mass spectrometry analysis raised is what gene 

product is responsible for modifying H. ducreyi KDO with PEA.  The PEA modification 

of KDO was detected by mass spectrometry in all strains examined in this study, 

including the triple mutant strain, 35000HPΔPEAT (Figure 20).  These data indicate that 

an additional PEA transferase exists in H. ducreyi that has yet to be identified.  

Homology searches do not reveal additional putative PEA transferases in H. ducreyi.  

Since we are specifically looking for gene products that modify KDO with PEA, we 

could perform transposon mutagenesis to introduce random mutations throughout the H. 

ducreyi genome.  We could initially screen for sensitivity to polymyxin B, whose cationic 

structure that targets bacterial membranes resembles that of many APs.  Once we have 

found a strain susceptible to polymyxin B, we would then analyze the mutant by mass 

spectrometry to determine if KDO is modified with PEA.  If we found a gene responsible 

for the PEA addition on KDO, we would then have to undergo a similar process of 

deletion and characterization as seen with lptA, ptdA, and ptdB.  While mass spectrometry 

analysis will ultimately determine if this gene confers PEA modification to the KDO core 

sugars in the H. ducreyi LOS, we are still interested in the effect these putative proteins 

would have on cell surface charge and AP resistance.   

We could construct an additional mutant with deletions in all PEA transferase 

genes, including lptA, ptdA, ptdB, and any newly discovered putative PEA transferases, 

and assay for additive contribution to cell surface charge and AP resistance.  We would 

likely see a greater change in cell surface charge and an increase in sensitivity to APs in 
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the multi-PEA transferase mutant when compared to 35000HP, and we may also see an 

impact on virulence with this mutant in the H. ducreyi model of human infection.           

 When tested in the human model of H. ducreyi infection, 35000HPΔPEAT was 

fully virulent.  This result differs from previous in vivo studies in animal and human 

models of S. enterica and N. gonorrhoeae infection.  An eptA cptA mutant of S. enterica 

was less fit than its parent strain in mice, although the reduced in vivo survival of the 

mutant was considered modest (157).  In N. gonorrhoeae, LptA-mediated modification of 

lipid A with PEA provided an increased fitness advantage in both female mice and 

human male volunteers (176).  While competition infection assays are more sensitive in 

determining fitness in vivo, they are not a reliable method that can be used with H. 

ducreyi.  Due to the clumping nature of H. ducreyi, it is nearly impossible to determine 

inoculation.  This would make it very difficult to inoculate the volunteer with an exact 

1:1 ratio of parent to mutant strains as well as to determine the exact number of CFU 

recovered post infection.  Additionally, N. gonorrohoeae competition infections use large 

inoculum (105-106), whereas H. ducreyi requires as few as one CFU to be infectious.  

Using such small inoculation sizes in H. ducreyi would have a greater impact on the 

statistical analysis.          

In the H. ducreyi human challenge model, spontaneous resolution of all parent-

inoculated sites occurs in 24.8% of participants (n=299 subjects); the overall parent 

pustule formation rate is 53.8% (n=803 sites) (195).  In the present study, the pustule 

formation rate at parent-inoculated sites was only 20.8%.  With such a low parent pustule 

formation rate, it would be difficult to discern a difference in pustule formation rates 

between parent and mutant strains even if the mutant was partially attenuated.  Since 
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KDO is still modified with PEA, we cannot say for certain that PEA modifications do not 

contribute to virulence in the humans, but we can conclude that the gene products of 

ptdA, lptA, and ptdB likely do not contribute significantly to virulence in the human 

model of H. ducreyi infection. 

The human model of H. ducreyi infection is an invaluable tool, especially since 

the current swine and rabbit models of invasion and infection have major limitations.  

Animal models require a much larger inoculum than the human model, and both swine 

and rabbits clear the infection and produce protective antibodies (29-31), neither of which 

are representative of the human immune response to a H. ducreyi infection.  In many 

animal models of infection, large numbers of genetically identical subjects are 

challenged.  While this may allow for a more discernable difference in virulence by 

eliminating potential variables, it does not account for the genetic diversity found in a 

normal population. 

It is important, however, to also acknowledge the limitations of the human model.  

There are strict regulations that limit the number of human volunteers used in each trial; 

statistics become more powerful with greater numbers, and we would like to have a high 

number of test subjects to allow for a more stringent statistical analysis.  In an ideal 

setting, subjects would also be more representative of the global population in both 

ethnicity and age; the current human model of H. ducreyi infection has been limited to 

individuals aged 18-68, with 80% of the subjects being Caucasian, 18% were African 

American, and only 2% were Asian American.  Currently, there is no apparent 

association with race or sex and papule formation (195).  The human model is limited to 

the first two weeks of infection; it is possible that there are virulence mechanisms that 
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may not be critical for initial invasion and infection but rather for sustained, long-term 

infection.  Ideally, we would be able to challenge human volunteers throughout the 

course of the entire H. ducreyi infection to better determine the impact of each gene 

product on virulence.          

When we examine both our in vitro and in vivo data, potentially the lack of 

contribution to virulence in vivo can be attributed to the modest difference in 

susceptibility to defensins between the parent and mutant strains observed in vitro.  A 25-

35% increase in sensitivity to defensins may not be significant enough to correlate with 

attenuation in vivo.  But these results of this trial could also raise the question of the 

overall importance of defensins in the host’s response to H. ducreyi infection.  Previous 

human trials examining the importance to pathogenesis of the Sap transporter, which 

confers resistance to LL-37 but not defensins, established a direct correlation between 

LL-37 resistance in vitro and virulence in vivo: a sapA mutant with a 15-20%  loss of 

transporter-mediated LL-37 resistance was partially attenuated in vivo, and a sapBC 

mutant, with no transporter activity and a 35-45% loss in resistance to LL-37, was fully 

attenuated for virulence (70, 144).  These data, together with the current study, suggest 

that, during H. ducreyi infection, LL-37 plays a more significant role than defensins in 

host defense.  A greater impact of LL-37 than defensins on host defense could also 

account for the greater role observed for N. gonorrhoeae LptA in human infection; unlike 

its H. ducreyi homolog, N. gonorrhoeae LptA contributes to LL-37 resistance (162).     

 In summary, we identified three H. ducreyi genes that shared a high degree of 

homology to known PEA transferases found in other gram-negative bacteria.  Deletion of 

all three genes, including lptA, ptdA, and ptdB, resulted in an increase in sensitivity to α- 
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and β-defensins, a more negatively charged cell surface, and the loss of PEA 

modification on lipid A.  While this is the first known mechanism of α-defensin 

resistance and the first characterized PEA transferase found in H. ducreyi, the lptA ptdA 

ptdB mutant was fully virulent when tested in the human model of H. ducreyi infection.  

Our results suggest that AP resistance is conferred by multiple mechanisms in H. ducreyi 

and that defensins may play a lesser role than LL-37 in host defense against H. ducreyi.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82 
 



APPENDIX 

Part 1: Sap Periplasmic Binding Protein Homologs 

 Previous studies have shown that the H. ducreyi Sap transporter (Figure 1A) 

confers resistance to the bactericidal effects of LL-37, and that this mechanism of AP 

resistance is vital for virulence in the human model of H. ducreyi infection (70, 144).  

When observing the in vivo sensitivity to LL-37, we noticed that the sapA mutant had a 

modest resistance phenotype whereas the sapBC mutant was highly sensitive to LL-37 

compared to 35000HP.  Since the sapA mutant still had an intact inner membrane channel 

(SapB and SapC) as well as functioning ATPases (SapD and SapF), these data suggest 

that the Sap transporter retains partial function in the absence of the periplasmic binding 

protein SapA; the Sap transporter is only completely disabled when the inner membrane 

permeases are deleted. 

 SapA shares homology to the periplasmic binding proteins heme-binding 

lipoprotein (hbpA) and the dipeptide-binding protein (dppA).  In nontypeable H. 

influenzae, HbpA is necessary to bind and deliver heme into the cytoplasm by means of 

the DppBC inner membrane channel (139).  DppA has been found in other Haemophilus 

species and is predicted to be a periplasmic transport protein.  The Sap transporter is also 

involved in heme acquisition and transportation, suggesting the possibility that HbpA and 

DppA may also utilize the Sap permeases to transport heme into the cell (139).  Since 

there appears to be an interplay between the Sap transporter and HbpA and DppA, we 

hypothesized that, in the absence of SapA, HbpA and DppA may be able to transport LL-

37 through the Sap permease proteins and restore partial function of the transporter. 
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 We approached this hypothesis by generating plasmids expressing either hbpA or 

dppA, with the aim to complement 35000HPsapA with phbpA or pdppA.  We then 

transformed the 35000HPsapA with either phbpA or pdppA and examined the resistance 

to LL-37.  We saw no difference between 35000HPsapA/pLSSK and 

35000HPsapA/phbpA or 35000HPsapA/pdppA (Appendix Figure 1).  These data suggest 

that HbpA and DppA are not able to transport LL-37 through the Sap permease channel.  

However, it does not rule out the possibility that there may be additional periplasmic 

binding proteins that may function to transport LL-37 through the Sap permease in the 

absence of SapA.  One likely possibility is a protein homologous to the periplasmic 

transport protein oligopeptide-binding protein (OppA) found in the Haemophilus genus.  

Subsequent studies done by the Bauer laboratory post-doctoral fellow Sherri Rinker show 

that loss of OppA increases H. ducreyi sensitivity to LL-37, and that OppA is not only 

able to bind LL-37, but it can also partially complement the sapA mutant.  These data 

suggest that OppA contributes to transporting LL-37 through the Sap channel in the 

absence of SapA.   
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Appendix Figure 1. hbpA and dppA cannot confer AP resistance through the Sap 

transporter.   35000HP/pLSSK, 35000HPsapA, 35000HPsapA/phbpA, and 

35000HPΔSapA/pdppA were examined for resistance to the human cathelicidin LL-37.  

Asterisks indicate statistically significant differences from 35000HP (P < 0.05).  Data 

represents average ± standard error of three independent assays, and statistical 

significance was determined by Student’s t-test. 
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Part 2: MtrC Contributes to AP Resistance 

 Resistance-nodulation-division (RND) efflux pumps are a common mechanism of 

AP resistance in gram negative bacteria (145, 146, 148).  RND efflux pumps, such as the 

MTR pump found in N. gonorrhoeae, are powered by proton motive force (PMF) (145, 

149).  To determine if there was a PMF-dependent mechanism of AP resistance in H. 

ducreyi, we exposed 35000HP to carbonyl cyanide m-chlorophenyl hydrazone (CCCP), a 

proton uncoupler which disrupts the proton gradient and PMF, and then performed our 

AP assay as previously described in the Methods section above (135, 152).  We found 

that 35000HP was more susceptible to both the β-defensin HBD-3 and LL-37, but not the 

α-defensin HNP-2, after exposure to CCCP (Appendix Figure 2), indicating the presence 

of a PMF-dependent mechanism of AP resistance.  Homology searches revealed H. 

ducreyi has a homolog of the N. gonorrhoeae MTR efflux pump, and we next generated a 

mutant with a deletion in mtrC (work done by post-doctoral fellow Sherri Rinker).    

After generating the mtrC mutant, we next examined its susceptibility to APs.  

We found that 35000HPmtrC/pLSSK was more sensitive than 35000HP/pLSSK to both 

LL-37 and multiple β-defensins, but not α-defensins (Appendix Figures 3-5); 

complementation with pmtrC restored the parental resistance phenotype.  Further studies 

revealed that a deletion in mtrC activated the CpxRA system (71), which also increases 

susceptibility to LL-37 (work done by post-doctoral fellow Sherri Rinker).  We therefore 

next wanted to determine if the increased sensitivity to APs in the mtrC mutant is a result 

of CpxRA activation or of the loss of MtrC function.  When we compared 35000HP, 

35000HPmtrC, and 35000HPΔcpxA sensitivity to LL-37 side-by-side, we observed 

greater cathelicidin susceptibility in 35000HPmtrC than in 35000HPΔcpxA (Appendix 
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Figure 6), suggesting that loss of mtrC affects AP resistance in more ways than just 

activation of CpxRA. 

To further determine the independent contributions of CpxRA and MTR to AP 

resistance, we exposed 35000HP, 35000HPmtrC, and 35000HPΔcpxA to CCCP and then 

examined sensitivity to both LL-37 and the β-defensin HBD-3.  We found that the 

addition of CCCP increased 35000HP and 35000HPcpxA susceptibility to both LL-37 

and HBD-3 but did not alter 35000HPmtrC susceptibility to these peptides (Appendix 

Figure 7).  This demonstrates the presence of a PMF-dependent mechanism of AP 

resistance, likely MTR, still present in the cpxA mutant.  If the decreased AP resistance 

phenotype seen in 35000HPmtrC was only because of CpxRA activation, we would not 

have expected to see any change in AP resistance between the cpxA mutant with or 

without CCCP.  These data taken together strongly indicate that MTR and CpxRA work 

through separate mechanisms to confer resistance to APs.  
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Appendix Figure 2. H. ducreyi has a PMF-dependent mechanism for LL-37 and 

HBD-3 resistance, but not HNP-2 resistance.  35000HP was pretreated with the PMF 

inhibitor CCCP (1000µM), or its diluent DMSO, and then assayed for resistance to (A) 

LL-37 (2 μg/ml), (B) HBD-3 (10 μg/ml), or (C) HNP-2 (10 μg/ml).   Asterisks indicate 

statistical significance between pairs shown with lines (P < 0.05).  Data represents 

average ± standard error of four independent assays, and statistical significance was 

determined by Student’s t-test.    

A 
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Appendix Figure 3. MTR confers resistance to the human cathelicidin LL-37 in H. 

ducreyi.  35000HP/pLSSK, 35000HPmtrC/pLSSK and 35000HPmtrC/pmtrC were 

examined for resistance to the cathelicidin LL-37.  Asterisks indicate statistical 

significance from 35000HP (P < 0.05).  Data represents average ± standard error of five 

independent assays, and statistical significance was determined by Student’s t-test.    
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Appendix Figure 4. MTR confers resistance to β-defensins in H. ducreyi.  

35000HP/pLSSK, 35000HPmtrC/pLSSK and 35000HPmtrC/pmtrC were examined for 

resistance to the β-defensins (A) HBD-2, (B) HBD-3, and (C) HBD-4.  Asterisks indicate 

statistical significance from 35000HP (P < 0.05).  Data represents average ± standard 

error of two to five independent assays, and statistical significance was determined by 

Student’s t-test.    
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Appendix Figure 5. MTR does not confer resistance to α-defensins in H. ducreyi.  

35000HP/pLSSK, 35000HPmtrC/pLSSK and 35000HPmtrC/pmtrC were examined for 

resistance to the α-defensins A) HNP-1, B) HNP-2 and C) HD-5.  Asterisks indicate 

statistical significance from 35000HP (P < 0.05).  Data represents average ± standard 

error of three to five independent assays, and statistical significance was determined by 

Student’s t-test.    
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Appendix Figure 6. Loss of MTR in H. ducreyi has a greater effect on resistance to 

the human cathelicidin LL-37 than just loss of cpxA.  35000HP, 35000HPΔcpxA, and 

35000HPmtrC were examined for resistance to the cathelicidin LL-37.  Asterisks indicate 

statistical significance from 35000HP (P < 0.05).  Data represents average ± standard 

error of three independent assays, and statistical significance was determined by 

Student’s t-test.    
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Appendix Figure 7. Proton motive force dependence of mtrC- and cpxA-mediated 

AP resistance. Strains 35000HP, 35000HPmtrC, and 35000HPΔcpxA were pretreated 

with DMSO alone or CCCP in DMSO and challenged with (A) LL-37 (2 μg/ml) or (B) 

HBD-3 (10 μg/ml).  Asterisks indicate statistical significance between pairs shown with a 

bracket (P < 0.05).  Data represents average ± standard error of six independent assays, 

and statistical significance was determined by Student’s t-test.    
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Part 3: H. ducreyi Whole Genome Sequencing 

 After construction of 35000HPΔPEAT, we confirmed by whole genome 

sequencing that the genomes of 35000HP and 35000HPΔPEAT were identical with the 

exception of the three putative PEA transferase genes.  While there was no difference 

between the two strains, we did observe differences between 35000HP and the published 

H. ducreyi genome sequence.  Although bacteria can develop random mutations, the 

35000HP strain used is taken fresh from a freezer stock to avoid extended passaging and 

increased chance of mutation.  While it remains unclear if these observed differences 

happen to be isolated to one specific colony or perhaps errors in sequencing, there 

alterations seen in six genes, four intergenic regions, and one t-RNA transcript code, with 

the changes shown in Appendix Table 1.   

The six genes with varying sequences were HD0110 (Mu-like prophage FluMu 

protein), HD0264 (malate dehydrogenase), HD0885 (glycosyl transferase), HD1455 

(nicrotinamide phosphoribosyl transferase), and HD1449 and HD1973 (both hypothetical 

proteins).  The difference in HD0110 was a single base pair change that resulted in a 

proline becoming a glutamine.  The differences in HD0264 included four separate 

insertions that all resulted in stop codons and truncation of the protein.  Instead of the 

normal 324 amino acid protein, the variants contained a protein either 69, 75, or 79 amino 

acids in length.  The differences in HD0885, HD1449, and HD1455 were all single base 

pair changes that resulted in a valine becoming an alanine, a leucine becoming a proline, 

and a phenylalanine becoming a cysteine, respectively.  Lastly, the differences in 

HD1973 were insertions that either eliminated the open reading frame of the protein or 

inserted a glycine-leucine-tyrosine amino acid chain.  While it is hard to predict how the 
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elimination of the open reading frame in the hypothetical protein HD1973 or how the 

single amino acid changes affect protein structure or function, the truncation found in 

malate dehydrogenase (HD0264) could have an effect on growth or metabolism.  Malate 

dehydrogenase catalyzes the oxidation of malate to oxaloacetate and functions as a part 

of the carbohydrate metabolic pathways.  It is unclear if there is a significant difference in 

growth or virulence between 35000HP and the published strain or if this mutation has any 

effect on cellular metabolism, although this is unlikely given the consistency of 35000HP 

growth in the human model of H. ducreyi infection. 

  The four intergenic regions with varying sequences were pre-HD0001 (glucose 

inhibited division protein A), pre-HD0887 (nucleoside transport), pre-HD1968 (50S 

Ribosomal protein L14), and pre-HD1448 (unknown hypothetical protein).  The 

mutations before HD0001 were both single base pair changes and insertions, all 

occurring between 287-295 nucleotides before HD0001.  The differences before HD0887 

and HD1448 were a single base pair change or a single base to double base change 

respectively, occurring 89 and 68 nucleotides before the start of the genes.  The 

differences found before HD1968 included single base pair changes, base pair deletions, 

or small insertions, all of which occurred between 90-92 nucleotides before the gene.  

Lastly, the t-RNA transcript code with a single base pair change was tRNA-Asp-2; 

however no open reading frame was detected in either the published sequence or 

35000HP. It is unclear if any of these alterations have an effect on gene expression or 

protein function. 

 If a bacterial strain is passaged numerous times, it would not be uncommon for its 

genome to change over time; however, 35000HP is not passaged, so these results were 
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somewhat unexpected.  To confirm the differences, the eleven gene or intergenic 

sequences could be PCR amplified and sequenced; this would likely be more accurate 

and efficient than sequencing the entire genome again.  Should these differences still 

exist, for example in malate dehydrogenase, additional testing could be done to search for 

phenotypic differences.  Functional assays could determine if growth or metabolism has 

changed between 35000HP and the published strain, and mutagenesis could determine if 

the gene products are even necessary for growth and virulence.  While it is unclear which 

sequence is considered more accurate, this does show that the H. ducreyi genome remains 

very stable.   
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Appendix Table 1. Variations between 35000HP and published H. ducreyi genomic 

sequence. 

POSa Gene ID REFb ALTc Resultd 

1 

Pre-HD0001 
(glucose inhibited 
division protein 

A) 

A T Single bp 
change 

2 Pre-HD0001 C T Single bp 
change 

3 Pre-HD0001 C A Single bp 
change 

4 Pre-HD0001 G T Single bp 
change 

4 Pre-HD0001 GTTTA 

GTGGATAACTTTACCG
TTTA,GATAACTTTACC
GTTTA,GGTGGATAACT

TTACCGTTTA 

Insertion 

5 Pre-HD0001 TT TTAACTTTACCGTT,TG
GATAACTTTACCGTT Insertion 

6 Pre-HD0001 T TAACTTTACCGTT,TAC
CGTT Insertion 

7 Pre-HD0001 TA TACTTTACCGTTTA Insertion 
8 Pre-HD0001 A ACCGTTTA Insertion 

81481 HD0109 
(hypothetical) C A Silent 

Mutation 

81481 HD0110 (Mu-like 
prophage) C A P to Q 

199946 HD0264 (malate 
dehydrogenase) A ATGCGGGT Truncation 

199947 HD0264 A AGGGTG Truncation 
199948 HD0264 A ACGGGTGA Truncation 
199954 HD0264 CG CTAATTTAG Truncation 

708646 HD0885 (glycosyl 
transferase) T C V to A 

710026 
Pre-HD0887 
(nucleoside 
transport) 

G T Single bp 
change 

118593
8 

Pre-HD1448 
(hypothetical) C CA Insertion 

118606
7 

HD1449 
(hypothetical) T C L to P 

119069
5 

HD1455 
(nicrotinamide T G F to C 
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phosphoribosyl 
transferase) 

164535
3 

Pre-HD1968 (50S 
Ribosomal 

protein) 
GGT GAAGCAAAAAGT,GAA

GT,G Insertion 

164535
5 Pre-HD1968 T C Single bp 

change 

164612
0 

HD1973 
(hypothetical) CC CGGATTGTAC,CCGGAT

TGTAC 

Eliminates 
ORF, GLY 
insertion 

169894
8 n/a ATAAC

TTT 
ATAACTTTACCGTTTAA

CTTT Insertion 

169895
0 n/a AACTT

T AACTTTACTTT Insertion 

169895
1 n/a ACTTT 

ACTTTACCCTTT,ACTTT
ACCGTCTTT,ACTTTACC

GTTTATCTTT 
Insertion 

a Location of mutation on H. ducreyi chromosome 

b Published H. ducreyi sequence 

c 35000HP genome sequence 

d Result; expected impact mutation has on gene 
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Part 4: Bacterial LOS, LPS Structures 

The three H. ducreyi genes of interest in this study, ptdA, lptA, and ptdB, share 

strong homology with PEA transferases found in other bacteria, including N. 

gonorrhoeae, N. meningitidis, S. enterica, and E. coli.  Here, we show the structures of 

the Neisseria LOS (Appendix Figure 8), Salmonella LPS (Appendix Figure 9), and E. 

coli LPS (Appendix Figure 10). 

  

Appendix Figure 8. Neisseria LOS. Depiction of the structure of Neisseria LOS (196).  

PEA modifications are indicated by the red arrows and occur on the Hep II core sugar on 

carbons 3 and 6 as well as on the lipid A.   
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Appendix Figure 9. Salmonella LPS. Depiction of Salmonella LPS (197).  PEA 

modifications are indicated by the red arrows and occur on the Hep II core sugar as well 

as on the lipid A.   
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Appendix Figure 10. E. coli LPS. Depiction of E. coli LOS (198).  PEA modifications 

are indicated by the red arrows and occur on the KDO core sugar as well as on the lipid A 

(PEA modification on the lipid A is not shown in this figure, but the modification can 

occur where the arrow indicates).   
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