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ABSTRACT 

Weina Zhao 

 
Tip110 Control of HIV-1 Gene Expression and Replication 

 

Transcription and alternative splicing play important roles in HIV-1 gene expression and 

replication and mandate complicated but coordinated interactions between the host and 

the virus.  Studies from our group have shown that a HIV-1 Tat-interacting protein of 

110 kDa, Tip110 synergies with Tat in Tat-mediated HIV-1 gene transcription and 

replication.  However, the underlying molecular mechanisms were not fully understood 

and are the focus of the dissertation research.  In the study, we first demonstrated that 

Tip110 bound to unphosphorylated RNA polymerase II (RNAPII) in a direct and specific 

manner.  We then showed that Tip110 was detected at the HIV-1 long terminal repeat 

(LTR) promoter and associated with increased phosphorylation of serine 2 within the 

RNAPII C-terminal domain (CTD) and increased recruitment of positive transcription 

elongation factor b (P-TEFb) to the LTR promoter.  Consistent with these findings, we 

demonstrated that Tip110 interaction with Tat directly enhanced transcription elongation 

of the LTR promoter.   

 

During these studies, we also found that Tip110 altered HIV-1 mRNA alternative 

splicing and increased tat mRNA production.  Subsequent analysis indicated that 

Tip110 selectively increased tat exons 1-2 splicing by activating HIV-1 A3 splice site but 
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had no function in tat exons 2-3 splicing.  We then showed that the preferential splicing 

activity of Tip110 resulted from Tip110 complex formation with hnRNP A1 protein, a 

negative splicing regulator that binds to the ESS2 element within tat exon 2, and as a 

result, blocked the complex formation of hnRNP A1 with ESS2 and subsequently 

activated HIV-1 A3 splice site.  Taken together, these results show that Tip110 

functions to regulate HIV-1 transcription elongation and HIV-1 RNA alternative splicing.  

These findings not only add to our understanding of Tip110 biology and function but also 

uncover a new potential target for development of anti-HIV intervention and therapeutic 

strategies. 

 
 
 
                                                Johnny J. He, Ph.D., Chair 
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INTRODUCTION 

 
1. HIV-1 AND THE AIDS PANDEMIC 

 

1.1 HIV-1 pandemic 

The acquired immunodeficiency syndrome (AIDS) has become a global epidemic.  

AIDS and its etiologic agent, HIV-1 were first identified in the early 1981.  Since then, 

there are more than 20 million people including 330,000 children have been killed.  

According to the most recent report on the global AIDS epidemic 2009 from the United 

Nations, about 34 million people were living with HIV at the end of 2008, in which there 

were 2.7 million new HIV infections and 430000 newly-infected children under 15.  In 

2008, there were 2 million AIDS-related deaths, 280000 of them were children.  The 

report also indicates that about 17 million people, close to half of the HIV-1 infected 

people, are women, suggesting that there could be more babies acquiring infection from 

their HIV-1 positive mothers through pregnancy, delivery or breast feeding.  Moreover, 

use of highly active anti-retroviral therapy (HAART) and subsequent improved survival 

of HIV-infected individuals also add to the total number of HIV-1-infected people 

worldwide. 

 

1.2 Clinical course of HIV-1 infection 

The clinical course of HIV-1 infection starts with some acute flu-like syndrome, which 

last for 6 to 12 weeks (Lyles, Munoz et al. 2000; Douek, Picker et al. 2003; Alam, 

Scearce et al. 2008).  The patient usually experiences fever, rash, swollen lymph glands, 

headache, gastrointestinal symptoms and weight loss, but none of these is life-threatening.  
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At this stage, there is an initial fall in the number of CD4+ cells and a rise in CD8+ cells 

but both cells quickly return to normal level (Douek, Brenchley et al. 2002; Guadalupe, 

Reay et al. 2003).  Virus titers can be very high at this stage and could reach one 

hundred million virus particles per milliliter of plasma.  Following the initial infection, 

potent humoral and cellular responses will have the viral replication under control and 

reduce the virus titer.  The infected individual enters the clinical latency stage; this stage 

lasts many months and years.  At this stage, HIV is present within lymphoid organs, 

mainly trapped in the follicular dendritic cells (FDC) (Douek, Picker et al. 2003).  When 

latency infected cells are activated, HIV-1 replication resumes and CD4+ lymphocytes in 

the peripheral blood exhibit steady decline.  When the CD4+counts decrease below 200 

per microliter, the individual enters the clinical AIDS stage of disease (Leng, Borkow et 

al. 2001; Brenchley, Price et al. 2006).  In this final stage, cell-mediated immunity is lost, 

there are a variety of opportunistic infections (Pantaleo, Graziosi et al. 1993).  Infected 

individuals usually die from HIV-associated diseases.  Nevertheless, host factors such as 

age or genetic differences and the virulence of different viral strains play important roles 

in the rate and severity of AIDS disease progression (Fauci 1993; Pantaleo, Graziosi et al. 

1993).  

 

1.3 HIV-1 and its genome 

HIV is a complex retrovirus with a 9.2 kb genome. It encodes nine open reading frames 

(ORF) and three of these ORF are common to all retroviruses: gag, pol, and env (Fig. 1).  

Gag provides the basic structural component of the virus; it encodes four structural 

proteins that make up the core of virion: matrix protein (MA, p17), capsid protein (CA, 

http://en.wikipedia.org/wiki/Lymphatic_system�
http://en.wikipedia.org/wiki/Dendritic_cell�
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p24), nucleocapsid protein (NC, p7 and p6).  Env encodes for gp160, the precursor of 

gp120 and gp41.  These envelope proteins are embedded in the outer layer of the virions 

and enable the virus to attach and fuse with host cells. Pol codes for three viral enzymes, 

including protease (PR), reverse transcriptase (RT), and integrase (IN).These proteins 

provide essential enzymatic functions and are encapsulated within the virion particle.  

HIV also has 6 unique regulatory genes: tat, rev, nef, vpu, vpr, and vif.  Vif, Vpr, and 

Nefproteins are packaged in the viral particle and important for HIV-1 infectivity and 

virion production.  Two other accessory proteins, Tat and Rev provide essential 

regulatory functions.  Tat protein is a transactivator for HIV-1 transcription.  It interacts 

with trans-activating responsive (TAR) structure of HIV-1 RNA, recruits positive 

transcription elongation factor b (P-TEFb) to the transcription complex and enhances the 

transcription elongation step (Frankel and Young 1998).  Rev functions to export singly 

spliced and unspliced RNA from the nucleus to the cytoplasm (Malim, Hauber et al. 

1989).  The last protein, Vpu, indirectly assists in assembly of the virion (Neil, Zang et 

al. 2008).  Besides these 9 ORF, there are other important non-coding RNA elements 

located within the HIV-1 genome, including R: a short sequence at the 5’ and 3’ ends; U5, 

a unique sequence at the 5’end; PBS: primer binding site that serves as the initiation site 

for minus strand RNA synthesis; Ψ: the recognition site for packaging viral RNA into 

particles; PPT: the polypurine tract that provides the primer for synthesis of the plus 

strand DNA; U3, a unique sequence at the 3’ end.  When HIV-1 proviral DNA is 

integrated into chromosome DNA, U3, R and U5 are duplicated at both ends of DNA and 

make up the long terminal repeat (LTR) (Frankel and Young 1998).  
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1.4 HIV-1 life cycle 

HIV-1 infection of a susceptible cell begins with interaction of the envelop 

glycoproteinsgp120 with both CD4 (Fig. 2) (Alkhatib, Combadiere et al. 1996; Feng, 

Broder et al. 1996).  Following high-affinity attachment of gp120 to CD4, the envelope 

complex undergoes a structural change, which exposes the chemokine binding domains 

of gp120 and allows them to interact with the chemokine receptor CCR5/CXCR4.After 

the virus enters into the target cell, the viral core is uncoated.  One enzyme called 

reverse transcriptase liberates the single-stranded (+) RNA from the attached viral 

proteins and converts the viral RNA into dsDNA.  Then, dsDNA enters the nucleus and 

becomes integrated into the genome by the action of another viral enzyme integrase (IN).  

Using the integrated viral DNA as a template, viral RNA is synthesized from the LTR 

promoter by the cellular enzyme RNAPII and a number of other cellular and viral factors 

(Berkhout, Silverman et al. 1989; Laspia, Rice et al. 1989).  Completely spliced RNA 

transcripts are then exported to the cytoplasm and translated into the regulatory proteins 

Tat, Rev and Nef.  Rev is imported into nucleus and facilitates nuclear export of singly 

spliced and unspliced viral RNA, while Tat transactivates to produce full-length viral 

RNA (Malim, Bohnlein et al. 1989; Malim, Hauber et al. 1989).  Structural proteins Gag 

and Env are produced by full-length mRNA.  The Env polyprotein is cleaved by cellular 

protease into two gp41 and gp120 and then transported to the plasma membrane.  The 

Gag and Gag-Pol polyproteins interact with the inner surface of the plasma membrane 

and with HIV genomic RNA to form virions, followed by budding out of the host cell.  

HIV protease (PR) cleaves the Gag and Gal-Pol polyproteins into individual HIV  

  

http://en.wikipedia.org/wiki/CD4�
http://en.wikipedia.org/wiki/Gp120�
http://en.wikipedia.org/wiki/Enzyme�
http://en.wikipedia.org/wiki/Reverse_transcriptase�
http://en.wikipedia.org/wiki/RNA�
http://en.wikipedia.org/wiki/DNA�
http://en.wikipedia.org/wiki/Cell_nucleus�
http://en.wikipedia.org/wiki/Integrase�
http://en.wikipedia.org/wiki/HIV_structure_and_genome#Tat�
http://en.wikipedia.org/wiki/HIV_structure_and_genome#Rev�
http://en.wikipedia.org/wiki/HIV-1_protease�
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Figure 1. HIV-1 genome Organization of and virion  HIV is a complex retrovirus 

with a 9.2 kb genome.  It encodes nine open reading frames (ORF) and three of these 

ORF are common to all retroviruses: gag, pol, and env.  Besides these, HIV has 6 

unique regulatory genes: tat, rev, nef, vpu, vpr, and vif.  
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structural proteins and enzymes.  Finally, the virions mature and become infectious to 

begin a new round of infection. 

 

2. 

 

HIV-1 TRANSCRIPTION AND REGULATION 

2.1 HIV-1 basal transcription 

The HIV-1 basal transcription begins from the 5’ LTR promoter and does not have the 

involvement of HIV-1 Tat protein.  It is accomplished by a complex network of 

interactions between cis-elements and trans-acting factors.  These cis-acting regulatory 

sites are located in the 5’ LTR.  The HIV-1 LTR is generally divided into four 

functional domains: TAR, the core promoter region, the enhancer region, and the 

regulatory region.  The core promoter resembles that of many eukaryotic genes, 

containing a TATA box and three tandem Sp1 sites (Mallardo, Dragonetti et al. 1996; 

Stevens, De Clercq et al. 2006).  The Sp1 sites recruit transcription factor Sp1 that is 

expressed in most eukaryotic cells and is critical for both basal transcription and 

Tat-mediated transactivation.  The TATA box facilitates the binding of transfection 

factor IID (TFIID) and transcription factor IIA (TFIIA) to the LTR.  The HIV-1 

enhancer region consists of two tandem binding sites for transcription factor NF-kB, 

which function as the principal enhancers of transcription and are required for basal 

transcription (Benjamin Berkhout 1992; FATAH KASHANCHI 1994; Carlos Sune 1995).  

The basal level of transcription leads to produce stable, short, and nonpolyadenylated 

transcripts.  These short transcripts are RNA of 60 bp containing heterogeneous 3’ ends 

and TAR element (Harrich, Garcia et al. 1989; Perkins, Agranoff et al. 1994). 
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Figure 2. HIV-1 life cycle  1. Binding of gp120to CD4 and CXCR4 or CCR5; 

2.Membrane fusion between virus and cells; 3. Viral core uncoating; 4.Reverse 

transcription of the genomic ssRNA into dsDNA provirus; 5.Nuclear importation of the 

pre-integration complex; 6.Provirus integration into the host chromosome; 7. 

Transcription and alternative splicing of HIV-1 mRNA; 8.Translation of structural 

proteins and viral enzymes; 9.Virion assembly at the cell membrane; 10.Virion budding 

and maturation 
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2.2 N-TEF 

The negative transcriptional elongation factors (N-TEF) are associated with RNAPII and 

causes transcription pausing.  N-TEF arrest RNAPII at nucleotides 20-50downstream 

from the initiation site, resulting in the accumulation of short transcripts (Wu, Yamaguchi 

et al. 2003; Wu, Lee et al. 2005). N-TEF includes the 5, 

6-Dichloro-1-beta-D-ribofuranosylbenzimidazol (DRB) sensitivity-inducing factor (DSIF) 

and the negative elongation factor (NELF) (Wada, Takagi et al. 1998; Yamaguchi, 

Watanabe et al. 1999).  DSIF is composed of Spt4 and Spt5, it is involved in HIV-1 Tat 

transactivation in vitro and contains many C-terminal repeats that can be phosphorylated 

by CDK9 in vitro (Fujinaga, Irwin et al. 2004; Ping, Chu et al. 2004).  NELF has four 

subunits: NELF-A, NELF-B, NELF-C and NELF-E.NELF-E contains RNA recognition 

motif (RRM) and interacts with the TAR element.  This binding is required for the 

inhibitory effect of NELF on transcription, which involves RNAPII pausing and 

decreased acetylation of histone H4 (Yamaguchi, Takagi et al. 1999).  DSIF and NELF 

bind to hypophosphorylated RNAPII complexes, while the hyperphosphorylation of the 

RNAPII CTD promotes dissociation of these negative factors from the complex and 

allows binding of other elongation factors (Lis 1998). 

 

2.3 P-TEFb 

The positive transcription elongation factor b (P-TEFb) is a cyclin-dependent kinase and 

controls the elongation phase of transcription by RNAPII.  During HIV-1 transcription, 

P-TEFb is the key regulator that helps RNAPII to overcome the rate-limiting step in the 

early stage of elongation and is an essential coactivator of the viral transactivator Tat.  It 
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is recruited to the TAR element by Tat and forms a stable RNA stem-loop at the 5’ end of 

the viral transcripts (Wei, Garber et al. 1998; Ammosova, Berro et al. 2006; Peterlin and 

Price 2006).  P-TEFb has two forms that have been referred as the large form and the 

free form (Michels, Fraldi et al. 2004; Barboric, Kohoutek et al. 2005; Li, Price et al. 

2005).  The free form contains CDK9 and cyclin T1 and has the kinase activity.  The 

large form contains CDK9, cylinT1, 7SK RNA and hexamethylene bisacetamide-induced 

protein1 (HEXIM1) or HEXIM2(Byers, Price et al. 2005; Egloff, Van Herreweghe et al. 

2006; Barrandon, Bonnet et al. 2007).  7SK snRNA and HEXIM1 keep P-TEFb in an 

inactivate state, but Tat competes with HEXM1 for binding to 7SK, blocks the formation 

of the 7SK/HEXIM1 complex, and releases P-TEFb from the pre-formed inactive form 

(Barboric, Kohoutek et al. 2005; Barboric, Yik et al. 2007; Li, Cooper et al. 2007; Sedore, 

Byers et al. 2007). 

 

There are two isoforms of Cdk9 in vivo: Cdk942 and Cdk955, which are generated by two 

different promoters in the Cdk9 gene (Shore, Byers et al. 2003; Shore, Byers et al. 2005).  

Cdk9 is a Cdc2-related kinase and phosphorylates the CTD of the largest subunit of 

RNAPII.  The phosphorylation of serine 5 (Ser 5) and serine(Ser2) of the RNAPII CTD 

is essential for the productive elongation of transcription (Marshall and Price 1992; Zhu, 

Pe'ery et al. 1997; Zhou, Halanski et al. 2000; Ramanathan, Rajpara et al. 2001; Shim, 

Walker et al. 2002).  Autophosphorylation of CDK9 confers the high affinity binding of 

the Tat:P-TEFb complex to TAR.  On the other hand, the Spt5 domain of DSIF and the 

E subunit of NELF can be phosphorylated and removed from TAR by CDK9, which 

leads to some reading-through transcription. Besides CDK9, Tat binding to cyclin T1 
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enhances its affinity for TAR RNA.  Tat binds to the cyclin domain of cyclin T1 in a 

zinc-dependent manner and requires specific residues within the Tat-TAR recognition 

motif of cyclin T1(Garber, Wei et al. 1998; Peng, Zhu et al. 1998; Zhou, Halanski et al. 

2000; Schulte, Czudnochowski et al. 2005).  Cyclin T1 in mouse cells has a point 

mutation (Y261R) within the Tat-TAR recognition motif, which disallows its interaction 

with Tat/TAR and has no effect on Tat transactivation.  Expression of human cyclin T1 

in mouse cells is capable of restoring the mouse cyclin T1 defect.  In summary, P-TEFb 

acts to phosphorylate the CTD of RNAPII in the early elongation complexes and converts 

RNAPII to be elongation-competent. 

 

2.4 Tat protein 

HIV-1 Tat stands for “trans-activator of transcription”.  It is encoded by two exons and 

has 85-101 amino acids depending on HIV-1 subtypes.  It is translated from multiply 

spliced transcripts that do not require Rev for their nuclear export.  Tat is structurally 

divided into five function domains: the N-terminal domain, the cysteine-rich domain, the 

core domain, the basic domain, and a C-terminal domain.  The N-terminal cysteine-rich 

core domain is also called the activation domain, where six cysteins are present and 

important for Tat /cynlin T1 interaction (Garber, Wei et al. 1998).  Another important 

domain for Tat function is the C-terminal arginine-rich domain; it is involved in Tat 

binding with TAR and also serves as a nuclear localization signal for Tat (Hauber, Miska 

et al. 1989; Siomi, Shida et al. 1990).   
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Tat is capable of transctivating the basal HIV-1 transcription (Robert A. Marciniak 1991; 

Qiang Zhou 1995).  In the absence of Tat, there are only a small number of short RNA 

transcripts produced, from which Tat protein is translated.  Newly translated Tat protein 

binds to cyclin T1 and mediates RNPAII phosphorylation, resulting in transcription of 

full- length HIV-1 mRNA (Amendt, Si et al. 1995; Suñé and Garc\'ia-Blanco 1995; Suñé, 

Goldstrohm et al. 2000; Montanuy, Torremocha et al. 2008). 

 

2.5 TAR 

TAR is 59 nucleotides (nt.) in length.  It forms an unusual secondary structure, which 

has a three-nucleotide bulge (nt. 23-25), and a six-nucleotide loop (nt. 30-35) and a 

central head nucleotide apical loop.  Tat binds to TAR at a trinucleotide bulge located 

near the apex of the TAR RNA stem-loop structure (Amendt, Si et al. 1995; Pereira, 

Bentley et al. 2000).  Specifically, Tat binds to nt.U23 in the bulge, and nt. A27, and 

nt.U38 and two phosphates between nt. A22, U23 and C24 serve to stabilize this binding.  

The cellular coactivaor of Tat, cyclinT1, binds to the central loop of TAR and creates a 

high-affinity Tat-TAR complex (Calnan, Tidor et al. 1991; Weeks and Crothers 1991). 

 

2.6 HIV-1 transcription initiation and elongation 

HIV-1 transcription is the limiting step for HIV-1 gene expression.  The first step of 

HIV-1 transcription is the formation of a large, multiprotein RNAPII holoenzyme, 

so-called pre-initiation complex (PIC) (Fig. 3).  The general transcription factors, 

including TFIIB, TFIID and TFIII, help to position the RNAPII at the starting site of 

transcription.  At this stage, the RNAPII CTD, which contains 52 repeats of 
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heptapeptied sequence (YSPTSPT), is not phosphorylated in either Ser2 or Ser5, and this 

form of CTD is called the CTDa.  Besides general transcription factors, other 

transcription enhancers like NF-kB and some histone acetyltransferases (HAT) are also 

recruited to increase the reinitiation at the LTR promoter (Sheridan, Mayall et al. 1997).  

It is also reported that Tat can bind to HAT such as CREB binding protein (CBP)/p300 or 

p300/CBP-associated factor (P/CAF) and affect the chromatin conformation of the LTR 

promoter (Benkirane, Chun et al. 1998). 

 

The next step of HIV-1 transcription is promoter clearance.  Transcription factor IIH 

(TFIIH) plays an important role in this step.  TFIIH contains DNA helicases and 

CDK-activating kinase CDK7 and is recruited to RNAPII CTDa by TFIIE.  Helicases 

can open the double strand DNA to allow it to be transcribed into RNA.  CDK7 

phosphorylates Ser5 of the RNAPII CTD and removes some transcription mediators 

bound to unphosphorylated CTD.  RNAPII is then released from pre-initiation complex 

and starts transcription (Zawel, Kumar et al. 1995).  In this stage of transcription 

initiation, Tat interacts with TFIIH and increases the CDK7 kinase activity.  It has been 

reported that a pseudosubstrate of CDK7 blocks Tat transactivation activity (Blau, Xiao et 

al. 1996; Cujec, Cho et al. 1997; Cujec, Okamoto et al. 1997). 

 

The transcription complex that is formed with TFIIH at the HIV-1 5’LTR becomes 

competent to initiate transcription but is less efficient in elongation.  The presence of 

NELF and DSIF in the initiation complex is mainly responsible for this inefficiency.  At 

this step, only short transcripts of about 60 nt are produced in the cytoplasm, indicating 
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that the integrated provirus is repressed by premature termination.  Also, a fraction of 

nuclear P-TEFb is inactive as it is bound to 7S RNA (Barboric, Kohoutek et al. 2005; 

Barboric, Yik et al. 2007; Li, Cooper et al. 2007; Sedore, Byers et al. 2007).  However, 

when Tat is translated from the short transcripts, it binds to cyclinT1 and recruits P-TEFb 

complex to the TAR RNA.  These interactions lead to phosphorylation of RNAP II Ser2 

by CDK9and as a result, increase the rigidity of the CTD and the affinity of human 

capping enzymes and act as a scaffold for splicing and polyadenylation process, which in 

turn increase transcription elongation, 5’-end capping, and histone methylation at the 

HIV-1 promoter (Zhou, Deng et al. 2003; Zhou, Deng et al. 2004).  This step is called 

transcription elongation.  P-TEFb is the key regulator for this step.  At later stages of 

elongation, Tat becomes associated with RNAP II rather than TAR RNA, indicating that 

the Tat:p-TEFb:TAR complex is disrupted during transcription (Gerber and Shilatifard 

2003; Shilatifard, Conaway et al. 2003; Sims, Belotserkovskaya et al. 2004). 

 

2.7 

As we described above, HIV-1 LTR utilizes both cellular factors and viral proteins to 

regulate HIV-1 LTR transcription.  HIV-1 LTR contains several binding site for host 

transcription factors, including NF-κB, nuclear factor of activated T-cells (NFAT), active 

protein-1 (AP1), sp1, these transcription factors function in HIV-1 basal transcription, 

and  enhance HIV-1 LTR-mediated gene expression(Gaynor 1992).  Other host 

transcriptional regulators, including HAT-1 and p300 serve to unwind chromatin 

nucleosome 1 located on HIV-1 LTR and thus greatly enhance viral gene transcription 

elongation.  Some cellular splicing factors also function in HIV-1 transcription.  

Host factors involved in HIV-1 transcription activation 
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Tat-splicing factor 1(SF1) and c-Ski-interacting protein (SKIP) are first identified as 

cellular splicing factors and later shown to be required for efficient transcriptional 

transactivation.  In particular, Tat-SF1 is a cofactor for stimulation of transcriptional 

elongation by HIV-1 Tat; SKIP associates with P-TEFb and enhances transcription 

elongation by HIV-1 Tat (Zhou and Sharp 1996; Fong and Zhou 2000; Kameoka, Duque 

et al. 2004; Vaness Bres Nathan Gomes and Jones 2005).  It is also reported that 

elongation factor ELL2, transcription factors/coactivators AF4/FMR 2 family member 4 

(AFF4), eleven-nineteen leukemia (ENL), are present in the Tat-P-TEFb complex.Tat 

and AFF4 function to bridge eleven-nineteen lysine-rich leukemia protein 2(ELL2) and 

P-TEFb together to form an elongation complex and significantly enhance HIV-1 

transcription (He, Liu et al. 2010). 

 

In the inactive P-TEFb complex, 7SK snRNP contains 7SK snRNA and CDK9 kinase 

inhibitor, HEXIM 1, and inhibits the P-TEFb kinase activity (Michels, Fraldi et al. 2004; 

Yik, Chen et al. 2004).  Host protein Yin Yang-1(YY1) has also been shown to repress 

HIV-1 gene expression via recruitment of histone deacetylase 1(Coull, Romerio et al. 

2000).  Interleukin-10 has been reported to down-regulate cyclin T1 expression through 

induction of proteasome-mediated proteolysis and to inhibit HIV-1 LTR-directed gene 

expression (Wang and Rice 2006).  Moreover, flavopitidol is shown to inhibit the 

P-TEFb kinase activity and block the HIV-1 transcription (Chao and Price 2001) 
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Figure 3. HIV-1 LTR transcription initiation and elongation  1. Pre-initiation 

complex formation: a pre-initiation complex is assembled at the LTR promoter.  It 

contains RNAPII, general transcription factors (GTF) and mediators that bind to 

unphosphorylated CTD.  Other transcription enhancers like NF-kB recruit histone 

acetyltransferases (HATs) to increase reinitiation at the LTR promoter.  2. Promoter 

clearance: TFIIH initiates promoter clearance.  CDK7 phosphorylates Ser5 of the 

RNAPII-CTD.  The transcription initiation starts.  3. RNAPII is only partially 

phosphorylated (RNAPIIa) and interacts with N-TEFb, which contains the DSIF and 

NELF.  The transcription process is blocked.  4. P-TEFb, containing CDK9 and cyclin 

T1, is recruited to the HIV-1 TAR by Tat.  CDK9 phosphosrylates Ser2 of the RNAPII 

and initiates HIV-1 transcription elongation step. 
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3. 

 

HIV-1 RNA SPLICING AND REGULATION 

3.1 Eukaryotic pre-mRNA splicing 

The pre-mRNA splicing is mediated by a large complex called spliceosome and requires 

small nuclear ribonucleoproteins (snRNPs) U1, U2, U5and U4/U6 and several 

non-snRNP splicing factors, such as U2-snRNP auxiliary factor (U2AF) and splicing 

factor 1 (SF1).  The major spliceosome splices out introns of pre-mRNA containing GU 

at the 5’ splice site and AG at the 3’ splice site (Staley and Guthrie 1998; Das, Zhou et al. 

2000; Nilsen 2002).  

During the splicing process, U1 snRNP first binds to GU sequence at the 5’ splice site 

while U2AF and SF1 associate with the 3’ splice site (Py-AG site).  The spliceosome at 

this stage is called E complex.  This is followed by association of U2snRNP with the 

branch point sequence (BPS) in the first ATP-dependent step of splicing, which is called 

A complex since ATP is hydrolyzed.  Then, U4-U5-U6 tri-snRNP joins A complex of the 

spliceosome.  The U5 snRNP binds the exons at the 5’ site, while U6 snRNP binds to U2 

snRNP.  This complex is called B complex.  Following a series of RNA-RNA and 

RNA-protein rearrangements, U1 and U4 snRNP are first released from the complex and 

a lariat structure is formed at this stage.  Subsequently, the 3’ site is cleaved and the 

exons are ligated with the second ATP hydrolysis.  Finally, the lariat structure 

debranches, the spliced RNA is released from the spliceosome (Nilsen 1996; Das, Zhou 

et al. 2000; Lallena, Chalmers et al. 2002).  
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3.2 HIV-1 mRNA alternative splicing 

Alternative splicing of HIV-1 mRNA precursors plays a critical role in regulating HIV-1 

gene expression (Fig. 4).  The alternative use of the 5’-and 3’-splice sites results in 

generation of approximately 40 spliced HIV-1mRNA species.  These RNA are divided 

into three classes: unspliced mRNA, singly spliced RNA and multiply spliced 

mRNA(Purcell and Martin 1993; Frankel and Young 1998).  Unspliced mRNA is 

necessary for expression of structural viral proteins or their precursors and also serves as 

genomic RNA.  Singly spliced mRNA encode the Env, Vpu,Vif and Vpr protein.  

Multiply spliced mRNA translate into Tat, Rev, and Nef (Felber, Hadzopoulou-Cladaras 

et al. 1989; Malim M.H. 1989).  HIV-1 mRNA splicing is a complex process.  It is 

highly regulated by three combined mechanisms: suboptimal splice sites; exonic and 

intronic cis-elements and trans-acting factors that regulate splicing by binding to 

cis-elements (O'Reilly, McNally et al. 1995; Caputi, Freund et al. 2004; Stoltzfus and 

Madsen 2006).  

 

3.3 Suboptimal splicing sites for HIV-1 

There are four splice donor sites (D1, D2, and D3andD4) and eight splice acceptor sites 

(A1, A2, A3, A4a, A4b, A4c, A5and A7) located throughout the full-length HIV-1 RNA 

genome (Fig. 4).  Among these splice sites, A3 is required for production of tat mRNA, 

A4a, b and c for production of rev and env mRNA, A5 for production of nef and env 

mRNA (Purcell and Martin 1993; Stoltzfus and Madsen 2006). 
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3.4 Exonic and intronic cis-acting elements 

Besides the splice sites, the efficiency of HIV-1 mRNA splicing is also regulated by both 

positive and negative cis-elements in HIV-1 RNA genome.  They either enhance or 

inhibit HIV-1 RNA splicing.  Some of these cis-sequences have been shown to interact 

with cellular factors. Positive cis-acting elements are known as exonic splicing enhancers 

(ESE), or intronic splicing enhancers (ISE), which increase the utilization of upstream 

3’splice site (ss) by binding to nuclear components that favor the association of 

spliceosomal components (Malim M.H. 1989; O'Reilly, McNally et al. 1995; Damier, 

Domenjoud et al. 1997; Frankel and Young 1998).  To the contrary, exonic splicing 

silencers (ESS) and intronic splicing silencers (ISS) decrease the utilization of the 

upstream 3’ ss and inhibit viral pre-mRNA splicing (Amendt, Si et al. 1995; Si, Amendt 

et al. 1997; Jacquenet, Méreau et al. 2001; Madsen and Stoltzfus 2005; Madsen and 

Stoltzfus 2006).  To date, four ESS, one ISS and four ESE have been identified within 

the viral genome (Amendt, Hesslein et al. 1994; Staffa and Cochrane 1995; Si, Amendt et 

al. 1997; Wentz, Moore et al. 1997; Si, Rauch et al. 1998).  ESE1 and ESSV are located 

downstream of A2 splice site and regulate vpr mRNA splicing (Frankel and Young 1998).   

ESSp, ESS2 and ESE2 are located in tat exon 2 and regulate A3 splice site (Jacquenet, 

Mereau et al. 2001; Hallay, Locker et al. 2006).  An ESE is also located downstream of 

A5 and used for the production of env mRNA (Caputi, Freund et al. 2004).  ESS3, ESE3, 

and ISS regulate A7 splice site and are important for all multiple spliced transcripts.  
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Figure 4. HIV-1 mRNA alternative splicing and mRNA transcripts  The HIV-1 RNA 

genome contains four splice donor sites (D1, D2, D3, and D4) and eight splice acceptor 

sites (A1, A2, A3, A4a,A4b, A4c, A5, A7).  The alternative use of 5’-and 3’- splice sites 

results in generation of approximately 40 spliced mRNA species.  These RNA are 

divided into three classes: unspliced mRNA, singly spliced RNA and multiply spliced 

mRNA.  Unspliced mRNA is necessary for expression of structural viral proteins or 

their precursors and also serves as genome RNA.  Singly spliced mRNA encode the Env, 

Vpu, Vif and Vpr protein.  Multiply spliced mRNA translate into Tat, Rev, and Nef. 
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3.5 Trans-acting factors 

The regulatory cis-elements within the RNA genome often interact with trans-acting 

factors that function in the basal splicing machinery.  These factors are from either the 

arginie-serine (SR) protein family or the heterogeneous nuclear ribonucleoprotein 

(hnRNP) family (Table 1) (Zahler, Lane et al. 1992; Staley and Guthrie 1998; Caputi, 

Mayeda et al. 1999; Tange 2001; Caputi and Zahler 2002; Jacquenet, Decimo et al. 2005).  

Splicing component of 35KDa (SC35) and alternative splicing factor/splicing factor 2 

(ASF/SF2) of the SR proteins family mainly participate in the positive regulation of 

splicing by binding to ESE cis-elements, stabilizing the core splicing components to 

nearby splice sites and influencing the choice of splicing sites.  Specifically, SC35 

interacts with ESE2 cis-element and activates the 3’ss A3 splicing;  ASF/SF2 interacts 

with ESE3 cis-elements and activates the 3’ss A7 splicing (Fu 1993; Ismaili, Perez-Morga 

et al. 1999; Mayeda, Screaton et al. 1999; Ropers, Ayadi et al. 2004; Zahler, Damgaard et 

al. 2004).  In contrast, hnRNP proteins bind to ESS or ISS elements and are involved in 

negatively regulate mRNA splicing.  They have been shown to inhibit the usage of viral 

splice sites and to counteract the SR protein activity.  For example, hnRNP A1 protein 

interacts with ESS2 cis-element, competes with SC35 protein and inactivates upstream 

3’ss A3 splicing (Caputi, Mayeda et al. 1999; Jacquenet, Mereau et al. 2001) 

 

3.6 Splicing regulation of tat mRNA 

Tat is a critical regulatory protein for HIV-1 transcription elongation and production of 

full-length HIV-1 mRNA transcripts.  It also has an apoptotic activity on infected cells 

(Karn 1999; Hallay, Locker et al. 2006).  Thus, tat mRNA production is tightly 
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regulated.  All tat mRNA are spliced at 3’ss A3, the key control elements of site A3 are 

ESS2 and ESE2, both of which are located in tat exon 2 (Fig. 5).  ESS2 is located in the 

long stem-loop structure 3 (SLS3) and forms a stable complex with several hnRNP A1 

molecules via their C-terminal gly domain (Zahler, Damgaard et al. 2004).  ESS2 

contains the hnRNAP A1 recognition sequence UAG.  Mutations in each UAG triplets 

strongly reduce hnRNP A1 binding to ESS2.  ESE2 is in a close proximity to the ESS 

element, which binds to SR protein SC35 and SRp40, the two strong activators of site A3.  

As ESE2 is localized in a close proximity to ESS2, the SC35 binding site overlaps with 

the hnRNP A1 binding site.  hnRNP A1 binding to ESS2 masks the SC35 binding site 

ESE2 and blocks the U2AF association and subsequently inhibits splicing (Zahler, 

Damgaard et al. 2004; Hallay, Locker et al. 2006). 

 

4. 

 

MOLECULAR BIOLOGY AND FUNCTION OF TIP110 

4.1 

The bioinformatic analysis has revealed that the primary sequence of Tip110 protein 

contains three putative functional domains: half-a-tetratricopeptide repeat (HAT)-rich 

domain, RNA recognition motif (RRM) domain and nuclear localization signal (NLS) 

domain (Fig. 6). 

Predicted structure of Tip110 

 

4.1.1 HAT domain 

The N-terminal two-thirds of the Tip110 protein contains seven HAT motifs.  These 

HATs provide a structural unit of two antiparallel a-helices that assemble to form a 
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                Table 1. HIV-1 transacting splicing factors 

Acceptor sites Regulatory 
cis-elements 

Regulatory 
splicing factors  

Effects on HIV-1 
mRNA splicing  

A3 ESSp 
ESS2 
ESE2 

hn RNPH 
hn RNPA1 
SC35,SRp40 

- 
- 
+ 

A5 ESE GAR ASF/SF2, SRp40 + 
A7 ESS3 

 
ISS 
ESE3 

hn RNA1 
hn RNPE1/E2 
hn RNPA1 
ASF/SF2 

- 
- 
- 
+ 
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Figure 5. Regulation of HIV-1 3' splice site A3  (A). hnRNP A1 as a negative 

regulator.ESS2 silencer is located in the long stem-loop structure3 (SLS3) and forms a 

stable complex with several hnRNP A1 molecules.  This interaction blocks the 

interaction of SC35 to ESE2 and further blocks the recruitment of U2AF35 to the 3’ss of 

A3.  (B). SC35 as a positive regulator.  When ESS2 is mutated, hnRNP A1 proteins are 

replaced by SC35.  The role of SC35 at site A3 is to counteract hnRNP A1 binding to 

ESS2 and to recruit U2AF to the A3 site. 
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platform for protein-protein interaction. This domain is responsible for interaction of 

Tip110 with Tat (Liu, Li et al. 2002).  In addition, this domain is involved in Tip110 

interaction with a C-terminal region of the U4/U6 snRNP-specific 90 K protein and the 

reassembly of the U4/U6 snRNP (Bell, Schreiner et al. 2002).  

 

4.1.2 RRM domain 

Tip110 contains two RRM domains between aa740 and 874 in its C terminus.  These 

two RRM domains correspond to RRM 2 and 3 in yeast Prp24 (Gu, Shimba et al. 1998). 

An in vitro RNA binding assay shows that Tip110 is a nuclear RNA-binding protein(Bell, 

Schreiner et al. 2002), but there is no interaction between Tip110 and TAR domain (Liu, 

Li et al. 2002).  In addition, RRM deletion mutant retains the ability of Tip110 to 

increase the HIV-1 viral expression (Liu, Li et al. 2002).  

 

4.1.3  NLS domain 

The predominant nuclear speckle localization of Tip110 is dictated by NLS between aa 

600 and aa 670 of Tip110.  The deletion of the NLS domain does not interfere Tip110 

interaction with Tat protein, but completely relocates Tip110 expression from the nucleus 

to the cytoplasm (Liu, Li et al. 2002). 
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Figure 6. Functional domains of Tip110  Each functional domain is represented by a 

distinct color: HAT domain in red, NLS domain in pink, and RRM domain in orange.   
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4.2 Biological functions of Tip110 

 

4.2.1 Tumor rejection antigen 

Some genes encode tumor rejection antigens that can be recognized by cytotoxic T 

lymphocytes (CTL), some of these antigens are under clinical trials as peptide-based 

cancer immunotherapy.  However, only a few tumor rejection antigen genes have been 

identified so far.  In 1999, a human gene KIAA0156 was found to encode a shared 

tumor epitopes recognized by HLA-A24 restricted CTL in adenocarcinoma and 

squamous cell carcinoma (SCC) (Yang 1999).  This SCC antigen recognized by T cell 3 

(SART3) antigen is identical to Tip110 and possesses two epitopes that induce 

HLA-A24-restricted and tumor-specific CTL from peripheral blood mononuclear cells of 

the majority of cancer patients.  Moreover, the 140 kDa SART3 antigen protein is 

expressed in the nucleus of malignant cell lines and also in the majority of cancer tissues 

from various organs, including head and neck SCC, lung SCC, lung adenocarcinomas, 

melanomas, and fresh leukemia cells (Kawagoe 2000).  It is also expressed in the 

cytosol of all the proliferating cells including normal T cells and malignant cells but is 

undetectable in non-proliferating normal cells (Kawagoe 2000; Sasatomi 2002).  

Because some cancers are resistant to conventional chemotherapy or radiation therapy 

but responsive to various modes of immunotherapy, the SART3 antigen has been 

proposed as an appropriate target for treatment of certain cancers. 
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4.2.2 U4/U6 snRNP recycling 

During the splicing reaction, some spliceosome components need to be disassembled and 

reactivated before entering a new splicing cycle.  For example, U6 leaves the 

spliceosome after splicing in its singular form and has to reassociate with U4 snRNP to 

regenerate the U4/U6 snRNP.  During U6 snRNP recycling, Tip110 is demonstrated to 

be a recycling factor in the transition from the singular U6 snRNP to the U4/U6 snRNP in 

the mammalian cells (Bell, Schreiner et al. 2002).  

 

Tip110 is functionally related to yeast Prp24, which specifically binds to U6 and is 

required for U4/U6 annealing recycling (Gu, Shimba et al. 1998).  As the mammalian 

homolog of Prp24, Tip110 interacts with a C-terminal region of the U4/U6 

snRNP-specific 90 K protein through its HAT domain.  Also, Tip110 is present in U6 

and U4/U6 snRNPs but absent from both the U4/U5/U6 tri-snRNP and the spliceosome 

(Bell, Schreiner et al. 2002).  In vitro recycling assay has shown that Tip110 functions to 

bring U4 and U6 snRNAs together through both RNA-protein and protein-protein 

interaction with its RRM and HAT domains (Medenbach, Schreiner et al. 2004).  Tip110 

knockout results in thymus hypolasia, other organ-specific defects and ultimately 

embryonic death in zebrafish (Trede 2007).  Subsequent microarray expression profiling 

suggests that Tip110 knockout is compensated for by up-regulation of an extensive 

network of spliceosome components.  Tip110 also interacts with other cellular splicing 

factors.  Tip110 binds to RNA-binding protein with serine-rich domain 1 (RNPS1) 

through the physical association the S domain of RNPS1 and the C terminus of Tip110 

and promotes the proximal alternative 3’splicing of calcitonin-dihydrofolate reductase 
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pre-mRNA minigene (Kenji Harada.2001).  Our lab also has indentified Tip110 to 

interact with Y-box binding protein 1 (YB-1) protein and increase oncogene CD44 

alternative splicing (manuscript in preparation).  

 

4.2.3 HIV-1 viral gene expression 

Tip110 is an important cellular factor for HIV-1 gene expression and viral replication.  

Using the yeast two-hybrid assay, Tip110 is found to bind to Tat in vivo (Liu, Li et al. 

2002).  The N-terminal HAT-rich domain of Tip110 and the core domain of Tat are 

directly involved in the Tip110-Tat complex formation.  However, there is no interaction 

between Tip110 and TAR.  Tip110 is capable of transactivating the HIV-1 LTR promoter 

through direct interaction with Tat.  Tip110 expression is associated with increased the 

HIV-1 virus production while Tip110 knock down inhibits HIV-1 replication.  These 

results demonstrate that Tip110 plays an important role in HIV-1 virus replication and 

gene expression through interaction with Tat.  However, the underlying mechanisms 

were not understood and are the focus of the dissertation research.   

 

4.2.4 Androgen receptor (AR)-mediated transactivation 

AR is a nuclear receptor and is activated by binding of the androgenic hormones.  AR 

binds to DNA and mediates gene expression in different cellular processes, which are 

critical for the development and maintenance of the male sexual phenotype.  Like other 

nuclear receptors, AR is modular in structure and contains four functional domains: 

N-terminal regulatory domain, the DNA binding domain, hinge region, and the 

C-terminal ligand binding domain (LBD).  There are a number of cellular factors 

http://en.wikipedia.org/wiki/Nuclear_receptor�
http://en.wikipedia.org/wiki/Androgen�
http://en.wikipedia.org/wiki/Phenotype�
http://en.wikipedia.org/wiki/Structural_domain�
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regulating AR transactivation by direct interaction.  One common structure among these 

proteins is the presence of the LXXLL motif or nuclear receptor (NR) box.  This 

common NR box is sufficient for the interaction between co-regulator and the LBD of the 

AR. 

 

Tip110 protein has been shown to contain the NR domain between amino acids 118 and 

122, interact with AR, and negatively regulate AR transcription activation (Liu, Kim et al. 

2004).  AR transcription activation is recovered when Tip110 expression was 

down-regulated by anti-tip110 antisense RNA plasmid.  In addition, Tip110 

overexpression blocks expression of prostate surface antigen, an AR target gene.  

Tip110 prevents the complex formation between AR and AREs, which might account for 

the inhibition effects of Tip110 on AR transcriptional activation (Liu, Kim et al. 2004). 

 

5. 

The transcriptional activation of the HIV-1 LTR promoter is a key step in HIV-1 life cycle 

and requires coordinated action of viral protein Tat and cellular proteins.  These cellular 

factors function to either disassociate the negative inhibitor which blocks RNAPII 

phosphorylation from the promoter or recruit the elongation competent 

RNAPII-containing complexes to the promoter.  Using yeast two hybrid screening and 

HIV-1 Tat as bait, our group has first identified Tip110 protein to interact with Tat.  

Further studies have shown that Tip110 synergizes with Tat to transactivate HIV-1 LTR 

and HIV-1 gene expression and viral replication.  But the underlying molecular 

mechanisms were not understood.  In addition, evidence has accumulated to suggest that 

SUMMARY OF THE BACKGROUND AND OUR HYPOTHESIS 



36 
 

Tip110 interacts with splicing-related small nuclear RNA and other cellular splicing 

factors and enhances pre-mRNA splicing.  Therefore, the overall hypothesis of this 

dissertation is that Tip110 controls HIV-1 gene expression and replication through 

transcriptional activation of the HIV-1 LTR promoter and post-transcriptional splicing of 

HIV-1 genomic RNA.  We believe this study will add to our understanding of Tip110 

protein and yield new insights into the complex interaction network between HIV-1 and 

host cells. 
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METHODS AND MATERIALS 

 

MATERIALS 

 

Media and supplements 

Dulbecco’s modified eagle’s medium (DMEM) and Roswell Park Memorial Institute 

1640 (RPMI-1640) medium were purchased from Lonza (Walkersville, MD) 

Penicillin-streptomycin-glutamine (100X), Trypsin-EDTA (0.05%Trypsin, 0.53 mM 

EDTA) were purchased from GIBCO (Grand Island, NY).  Fetal bovine serum (FBS) 

was purchased from Hyaline (Logan, UT).  Ampicilin sodium salt (100 g/ml) and 

kanamycin sulfate (50 μg /ml) were purchased from United States Biological 

(Swampscott, MA).  Luria broth (LB) liquid medium contained 0.01 g/ml Bacto 

tryptone, 0.005 g/ml Bacto yeast extract, 0.005 g/ml NaCl, and 1 mM NaOH.  LB solid 

culture plates were prepared by adding 15 g Bacto agar to 1L LB liquid medium.  Super 

Optimal Broth with catabolite repression (SOC) contained: 0.02 g/ml of Bacto Tryptone, 

0.005 g/ml of Bacto yeast extract, 0.5 mg/ml NaCl, 10 mM MgCl2, and 10 mM 

MgSO4and 20 mM glucose.  

 

Antibodies 

Mouse anti-human RNAPII CTD antibodies (8WG16, H5, H14) (1:500) were from 

Covance (Greenwood, IN).  Rabbit anti-human CDK9 (1: 1000), goat anti-human cyclin 

T1 (1: 500), mouse anti-human hnRNP A1 (1:2000), rabbit anti-GFP (1:500), mouse 

anti-human PCNA (1:2000), mouse anti- GST (1:500), rabbit anti human c-Myc (1:1000),  
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mouse IgG, rabbit IgG, were from Santa Cruz Biotechnologies (Santa Cruz, CA).  

Donkey anti-rabbit IgG and sheep anti-mouse IgG horseradish peroxidase-conjugated 

antibody were from GE healthcare (Waukesha, WI).  Mouse anti-human ASF/SF2 

(1:2000) was from Invitrogen (Carlsbad, CA).  Mouse anti-human β-actin antibody was 

from Sigma (St. Louis, MO).  Mouse anti-human Tip110 1C4H6 (1:2000), rabbit 

polyclonal anti-human Tip110 serum was made in house.  

 

Reagents 

RNaseA, o-nitrophenylß-d-galactopyranoside(ONPG), 4’,6’-diamidino-2-phenylinole 

(DAPI)isopropyl-beta-D-thiogalactopyranoside(IPTG), phenylmethanesulphonylfluoride 

(PMSF) were from Sigma.  [Methyl-3H]-thymidne 5’ triphosphate was from 

PerkinElmer (Boston, MA).  [α-32P] dCTP (specific activity 800 Ci/mmol), and [α-32P] 

UTP (specific activity 800 Ci/mmol) were from MP Biomadicals (Solon, OH).  Poly-(A) 

x (dT) and random hexmers were purchased from Roche (Indianapolis, IN).  Restriction 

endonucleases were from New England Biolabs (Beverly, MA).  T4 DNA ligase with its 

10X reaction buffers were from USB (Cleveland, OH).  TRIZOL and Superscript III 

reverse transcriptases were from Invitrogen.  Bacto tryptone, Bacto yeast extract, Bacto 

peptone, Bacto were from Becton Dickinson (Sparks, MD).  RNase inhibitor and 

deoxynucleotide triphosphates (dNTPs-dATP, dCTP, dTTP, dGTP) were from Promega 

Corporation (Madison, WI).  Protease inhibitor cocktail set V, EDTA-Free and G418 

sulfate were from Calbiochem (LaJolla, CA).  Coomassie Blue was from Bio-Rad 

laboratories (Hercules, CA).  Tat protein was from AIDS Research and Reference 

Reagent Program.   
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Biotechnology systems 

The plasmid DNA purification kits, the firefly luciferase assay system, the Wizard SV 

Gel and PCR clean-up system and the Wizard DNA clean-up system for PCR products 

purification were from Promega Corporation (Madison, WI).  Bio-Rad Protein Assay 

was from Bio-Rad Laboratories.  Centricon 30 spin columns for protein concentration 

were from Millipore (Billerica, MA).  The Expand High Fidelity PCR system, Expand 

Long Template PCR system and the Titan One Tube RT-PCR System were from Roche.  

The TOPO TA cloning kit was from Invitrogen.  The MEGA Script T7 Kit was from 

Ambion (Austin, TX).  

 

METHODS 

 

Cells and cell cultures 

 

Cell lines 

Human embryonic kidney 293T cells were purchased from American Tissue Culture 

Collection (ATCC, Manassas, VA). Human glioblastoma-astrocytoma, epithelial-like cell 

lines U373 MAGI, human T-lymphoid CEM-GFP cells were obtained from NIH AIDS 

Research & Reference Reagent Program. 

 

Competent cells for cloning and recombinant protein production 

GC5 chemically competent E.coli for cloning were from GeneChoice (Frederick, MD) 

and BL21 E.coli for recombinant protein production were from Invitrogen. 
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Cell cultures 

293T cells and U373 MAGI cells were maintained in DMEM with 10% FBS, 100 

units/ml of penicillin at 37oC with 5% CO2.  CEM-GFP cells was maintained RPMI 1640 

with 10% FBS, 100 units/ml of penicillin, 500 μg /ml of G418 and incubated at 37oC 

with 5% CO2. 

 

Cell transfections and bacterial transformation 

 

Cell transfections 

Cell transfections were carried out by the standard calcium phosphate precipitation 

method. For 10-cm tissue culture plate, 2x106 cells were plated the day before 

transfection and incubated for about 24 hours to reach 70-90% cell confluency before 

transfection.  For transfection, a 500 μl mixture of 20 μg plasmid DNA and 0.24 M 

CaCl2 in a volume of 500 μl was added dropwise into 500 μl 2X HEPES-buffered saline 

(HBS) solution (50 mM Hepes, 10 mM KCl, 280 mM NaCl, 1.5 mM Na2HPO4, 12 mM 

glucose, pH 7.05-7.15).  The transfection mixture was then incubated on ice for 20 min 

and added dropwise into 293T cells.  After overnight incubation, medium was replaced 

with fresh DMEM medium. The cells were cultured for additional 24-48 hours before 

they were harvested for further analysis.  pcDNA3 was used to equalize the total DNA 

amount while pEGFP was co-transfected to ensure a comparable level of transfection 

efficiency among all transfections.  The number of cells and the amount of solutions and 

DNA were proportionally scaled down according to the surface area of the plates, if 

different sizes of cell culture vessels were used.  
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Bacterial transformation 

GC5 competent cells (25 μl) were incubated with plasmid DNA or ligation reaction 

(0.5-2 μl) on ice for 30 min.  The cells were heat-shock in a 42oC water bath for 45 sec, 

incubated on ice for 2 min, and added 300 μl SOC medium.  The transformation mixture 

was incubated at 37oC for 45 min on a shaker at 225 rpm.  Two hundred microliters of 

cultures were placed onto an LB agar plate.  The plate was incubated at 37oC overnight.  

 

Plasmids 

pTip110.His, pTip110.HA, Tip110 deletion mutants ∆RRM, ∆NLS, and ∆CT, pTat.Myc, 

pLTR-Luc plasmid were described previously (Liu, Li et al. 2002).  GST-CTD plasmid 

was a gift from Dr. David Price of University of Iowa.  pCMV-β-Gal, pcDNA3 and 

pCMV-HA were from Clontech ( Clontech, Mountain View, CA).  Tip110 ∆NT mutant 

was constructed using pTip110.His as the template and primers 5’-CCG AAT TCA CCA 

TGG CTG CCG TAG ATG TGG AG-3’ and 5’-CCC GCT CGA GTC AAT GAT GAT 

GAT GAT GAT GCT TTC TCA GAA ACA GCT TGG C-3’.  The PCR product was 

digested by EcoR I and Sac I and insert into pcDNA3.  pGST-hnRNP A1 was made by 

cloning hnRNP A1 gene from phnRNP A1-GFP (Guil, Long et al. 2006) with primer sets 

5’-CGG AAT TCC TCT AAG TCA GAG TCT CCT AAA GAG-3’ and 5’-CGG AAT 

TCC TCT AAG TCA GAG TCT CCT AAA GAG-3’.  The amplified product was then 

digested by EcoR I and Not I and subcloned into pGEX-4T3 for GST-hnRNP A1 protein 

preparation. 
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Plasmids pHS1-WT, pHS1-ESS4 mut and pHS2 plasmid were a generous gift from Dr. 

Martin Stoltzfus of University of Iowa.  pCMV-WT, or pCMV-ESS2-M minigenes were 

constructed by digesting pHS1-WT, pHS1-ESS2-M with Not I and Xho I, the inserts 

were and subcloned into pcDNA3.  pCMV-HS2-WT minigene was constructed using 

pHS2 as the template and primers 5’-GGG GTA CCG AAC AGT CAG ACT CAT 

CA-3’and 5’-CCG CTC GAG GGA TCC GTT CAC TAA TCG-3’.  The PCR product 

was digested by Kpn I and Xho I and inserted into pcDNA3.   

 

To prepare pT7-WT and pT7-ESS2-M plasmids, 60 bp DNA fragment containing ESS2 

or ESE2 was amplified with primers 5’-CCG GAA TTC AGA GGA GAG CAA GA-3’ 

and 5’-CTA GTC TAG AAG CTT GCT TCC AGG GCT CT- 3’ and pHS1-WT, 

pHS1-ESS2-M as templates.  Amplified products were then cut by EcoR I and Xba I 

and insert into pcDNA3 for further in vitro transcription.  

 

All recombinant plasmids were sequenced to ensure their sequences. 

 

Reporter gene assays 

 

β-galactosidase activity assay 

Cells were harvested in cold phosphate-buffered saline (PBS) and pelleted at 500 x g for 

5 min.  Then, cell pellet was resuspended in 50 μl cell lysis buffer from Promega and 

incubated on ice for 5 min and then centrifuged at maximum speed for 5 min.  The 

supernatant was collected and saved.  For β-galactosidase assay, 10 μl of cell extract 
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was mixed with 3 μl of 100X Mg2+ solution (0.1 M MgCl2, 4.5 M β-mercaptoethanol), 66 

μl of 1X ONPG (4 mg/ml ONPG in 0.1 M sodium phosphate, pH 7.5), and 201 μl of 

0.1M sodium phosphate (57.7 ml 1M Na2PO4and 42.3 ml of 1M NaH2PO4, pH 7.5) and 

the mixture was incubated at 37oC for 30 min.  Then, the optical density of the reaction 

containing the released o-nitrophenyl was measured at 405 nm in a microplate reader 

(Molecular Devices, Sunnyvale, CA) 

 

Luciferase activity assay 

β-galactosidase assay was used to normalize the transfection efficiency.  Then, cell 

extract (20 μl) was mixed with 80 μl of firefly or renilla luciferase substrate (Promega).  

The luciferase activity was determined with an Opticomp Luminometer (MGM 

Instruments, Hamden, CT) and expressed as relative luciferase units (RLU). 

 

Reverse transcriptase (RT) activity assay 

One milliliter of cell culture supernatant was centrifuged at 4oC for 1.5 hours at 14000 x 

g. Virus pellet was re-suspended in 10 μl of dissociation buffer (0.25% Triton-X-100, 20% 

glycerol, 0.05 M Tris-HCl. pH 7.5, 0.008 M DTT, 0.25 M KCl) followed by three cycles 

of freezing on dry ice and thawing on ice.  Then, 40 μl of 34 μl RT assay buffer (0.083 

M Tris-HCl pH7.5, 0.008 M DTT, 0,0125 mM MgCl2 and 0.083% Triton-X-100), 1 μl 3H 

dTTP and 5 μl poly (A) x (dt) was added to the 10 μl virus suspension.  The total 50 μl 

mixture was incubated at 37oC for 1hr and then spotted onto DE81 filters (Whatman, 

England).  After washing with 2 x SSC (0.3 M NaCl, 0.03 M sodium citrate, pH 7.0), 
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the radioactivity on each filer was counted in a Beckman LS6000IS scintillation counter, 

and virus titer was expressed as cpm per ml.  

 

Immunoblotting 

Two days after transfection, cells were first washed three times with ice-cold 

phosphate-buffered saline (PBS) and collected in cell lysis buffer (50 mM Tris.HCl pH 

8.0, 0.5% NP-40, 2 mM EDTA, 137 mM NaCl, 10% glycerol, 0.5% sodium deoxycholate, 

0.2% sodium azide, 0.004% sodium fluoride, 1x protease inhibitor cocktail, 1 mM 

sodium orthovanadate, pH 7.25).  After incubation on ice for 20 min, whole cell lysates 

were obtained by centrifugation at 15000 x g for 10 min.  The protein concentration was 

determined using a Bio-Rad DC protein assay Kit (Bio-Rad).  Cell lysates of an equal 

amount of protein were separated by 8%-12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) and then eletrotransfered to the HyBond-P membrane 

(Amersham, UK).  The protein on the membrane were probed with primary antibodies 

and appropriate peroxidase-labeled secondary antibody and visualized with an ECL 

system. 

 

The cytoplasmic fractionation was prepared by PARIS Kit (Ambion), according to the 

manufacturer’s instructions.  After wash with PBS, the cells were incubated with cell 

fractionation buffer on ice for 5 min.  The supernatant was collected by centrifugation at 

500 x g for 5 min and saved as the cytoplasmic fraction. 
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Immunoprecipitation 

Cells were harvested and washed with ice-cold PBS and lyzed in immunoprecipitation 

(IP) lysis buffer (50 mM Tris HCl pH7.5, 120 mM NaCl, 0.25% NP40, 4 mM sodium 

fluoride, 1 mM sodium orthovanadate, 0.2 mM EDTA, 0.2 mM EGTA, 10% glycerol, and 

1x protease inhibitor cocktail).  Following incubation on ice for 20 min, cell lysates 

were obtained by centrifugation at 15000 x g for 10 min.  Then, cell lysates of 500 µg 

protein was first pre-cleaned by 20 μl protein A agarose beads (Millipore) and then 

incubated with 1 μg antibody and 60μl protein A agarose beads rotating at 4oC overnight.  

The beads were recovered by centrifuge and then washed with IP washing buffer (50 mM 

Tris.HCl pH 8.0, 0.5% NP-40, 2 mM EDTA, 0.4 M NaCl, 10% glycerol) for four times.  

The beads were suspended in 40 μl of 4 x SDS-PAGE sample buffer and ready for 

SDS-PAGE and western blotting analysis. 

 

RNA isolation and RT-PCR-based splicing assay 
 
Total RNA was extracted from transfected 293T cells using Trizol reagent (Invitogen), 

according to the manufacturer’s instructions.  RNA was extracted with acid phenol for 

three times to prevent DNA amplification in subsequent PCR analysis.  For RT-PCR,  

0.2 μg RNA was used with a Titan One Tube RT-PCR System (Roche, Indianapolis, IN) 

on a PE Thermocycler 9700 (PE Applied Biosystem, Foster City, CA).  The primers to 

amplify minigene from pCMV-HS1-WT or pCMV-HS1-ESS4 were: Forward (T7): 

5’-TAA TAC GAC TCA CTA TAG GGC GA-3’; Reverse (Tat37): 5’-GGC TGC AGT 

TAA CAA ACT TGG CAA TGA AAG C-3’.  The primers for amplifying unspliced and 

spliced RNA from pCMV-HS2 were T7 and HS2-R: 5’-CCG CTC GAG GGA TCC GTT 
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CAC TAA TCG-3’.  The RT-PCR program was one cycle of 50oC for 30 min, thirty 

cycles of 94oC for 1 min, 60oC for 1 min, and 72oC for 30 sec and one cycle of 72oC for 5 

min.  The primers to amplify tat transcripts from pNL4-3 or pHIV-Rev- transfected cells 

were: TAR5: 5’-CCC GAA TTC GGG TTC CCT AGT TAG CCA GAGGAG CTC CCA 

GGC TCA GAT CT-3’; Tat21: 5’-GGC TGC AGT TAA GCA GTT TTA GGC TGA CTT 

C-3’; Tat5: 5’-GTC GGG ATC CTA ATG GAG CCA GTA GAT CCT; Tat3C: 5’-GTG 

ACG GAT CCT TAC TGC TTT GAT AGA GAA AC-3’ and the program was one cycle 

of 50oC for 30 min, thirty cycles of 94oC for 1 min, 50oC for 30 sec, 72oC for 45 sec and 

one cycle of 72oC for 5 min.  GAPDH was included in a RT-PCR as control with 

primers: 5’-GAA GGTGAA GGT CGG AGT-3’ and 5’-GAA GAT GGT GAT GGG ATT 

TC-3’.  

 

Multiplex RT-PCR 

293T cells were transfected with pNL4-3 as described above.  Two days post 

transfection, total cellular RNA was first isolated from the cells and further extracted with 

acid phenol for three times to prevent DNA amplification in subsequent PCR analysis.  

Three micrograms of RNA was reversed-transcribed at 50oC for 1 hr in a total volume of 

20 μl with 10 mM dNTPs (Promega), 200 U of RNase inhibitor (Promega), 500 ng of 

random hexamer (Roche) and 200 U of Superscript III reverse transcriptase (Invitrogen).  

Then, 1 μl of amplification products were used as template for multiplex PCR in a total 

reaction volume of 50 μl with 2.5 mM MgCl2, 0.2 mM dNTPs, 1 μM of each primer, and 

1 U of AmpliTag Gold (Applied Biosystems) with primers: BSS: 5’-GGC TTG CTG 

AAG CGC GCA CGG CAA GAG G-3’ and SJ 4.7, which spans sites D4 and D7 5’-TTG 
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GGA GGT GGG TTG CTT TGA TAG AG-3’.  The PCR program was 30 cycles of 

94oC for 30 s, 60oC for 1 min, and 72oC for 2 min and then denatured at 94oC for 5 min.  

Then, 5 μl of the above PCR products were labeled by addition of 1 μCi of 32P dCTP (800 

Ci/mmol, GE Healthcare) and additional 3 cycles of PCR.  The products were analyzed 

by electrophoresis on a 8 M urea 6% polyacrylamide gel, followed by drying of the gel 

for 1 hr using a vacuum gel dryer (Pharmacia biotech), and visualized by autoradiography.  

GAPDH was included as a RT-PCR control with the primers: 5’-GAA GGTGAA GGT 

CGG AGT-3’ and 5’-GAA GAT GGT GAT GGG ATT TC-3’. 

 

Recombinant protein expression and purification 

pGEX-4T3, pGST-CTD and pGST-hnRNP A1 were first transformed into E.coli BL21.  

The culture was allowed to grow to reach an OD600 of 0.6 and then added 0.5 mM 

isopropyl-β--thiogalactoside (IPTG) and continued to incubate at 37oCfor additional 3hr.  

The bacteria were collected by centrifugation at 6000 x g for 20 min and then suspended 

in TZ buffer (50 mM Tris-HCL pH 7.9, 12.5 mM MgCl2, 0.5 mM EDTA, 100 mM KCl, 

20% glyerol, 1 mM β-mercaptoethanol, 10 µM ZnCl2).  Then, cells were lysed in a 

French Press (Thermo electron corporation, Waltham, MA) at 1800 Psi.  Bacterial 

lysates were obtained by centrifugation at 20000 x g for 5 min.  To purify the protein, 

the lysate were mixed with 500 μl glutathione Sepharose 4B beads (GE Healthcare), and 

incubated at room temperature for 3 hr with constant rotation.  The bound proteins were 

washed for 3 times by PBS and proteins were eluted from the beads with 0.2 mM reduced 

glutathione.  The purity and the yield of the recombinant protein were verified by 



48 
 

SDS-PAGE, followed by coomassie staining (first stained in 10% acetic acid, 40% 

methanol, and 0.5% coomassie blue for 2 hr, and then distained in 10% acetic acid O/N).    

 

GST pull-down assay 

GST-CTD (6 μg) protein was first phosphorylated overnight at 30oC with 6 μl casein 

kinase I (New England Biolabs) and 1mM ATP with the phosphorylation buffer (New 

England Biolabs).  Meanwhile, 4 μg GST-Tip110 protein was digested with 1 μl 

thrombin at 30oC O/N to remove the GST tag.  Unphosphorylated or phosphorylated 

GST-CTD proteins were first immobilized onto 30 µl glutathione beads in at 4oC for 2 hr.  

Then,  the protein-bound beads were incubated with purified Tip110 protein in 500 µl 

GST pull down buffer (20mM Hepes pH 7.9, 150mM NaCl, 0.5mM EDTA, 10% glycerol, 

0.1% Triton X-100, 1mM DTT) at RT for 2 hr.  Subsequently, the protein bound beads 

were washed with PBS five times, the bound-protein were eluted from the beads by 4 x 

SDS-PAGE sample buffer.  The proteins were separated by SDS-PAGE and analyzed by 

immunoblotting.  

 

Chromatin immunoprecipitation (ChIP) assay 

Cells (5x107) were first cross-linked with 1% formaldehyde at RT for 20min; the 

cross-linking was terminated by adding glycine to a final concentration of 0.125M.  The 

cells were washed by PBS three times, the cell pellet was first resuspended in cell lysis 

buffer (85mMKCl, 0.5% NP40, 5mM HEPES, pH 8.0) and incubated on ice for 10 min.  

The nuclei were recovered by centrifugation at 3000 x g for 5 min and then resuspended 

in nuclear lysis buffer (10mM EDTA, 1%SDS, 50mM Tris-HCl, pH8.1).  The nuclei 
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were incubated on ice for additional 10 min; the supernatants were collected by 

centrifugation at 15000 x g for 10 min and saved as nuclear lysates. 

 

The nuclear lysates were then sonicated on ice with 10 pulses, each for 15 sec to generate 

chromatin DNA with an average size of 600 bp.  The sonicated lysates were diluted 

10-fold with a buffer (165mM NaCl, 0.01% SDS, 1.1% Triton X-100, 1.2mM EDTA, 

16.7 mM Tris-HCl, and pH 8.0) and pre-cleared with 30 µl protein A-sepharose beads.  

The lysates were first incubated with the indicated antibodies overnight, then added 60 µl 

protein A-sepharose beads and incubated for additional for 4 hr.  The immunocomplexes 

were washed twice with a low-salt buffer (150 mM NaCl, 0.1% SDS, 1% NP-40, 1 mM 

EDTA, 50 mM Tris-HCl), twice with a high-salt buffer (500 mM NaCl, 0.1% SDS, 1% 

NP-40, 1 mM EDTA, 50 mM Tris-HCl), twice with LiCl buffer (250 mM LiCl, 0.1% 

SDS, 1% NP-40, 1 mM EDTA, 50 mM Tris-HCl), and finally twice with TE buffer (0.25 

mM EDTA, 10 mM Tris-HCl).  The recovered beads were eluted with 120 µl elution 

buffer (1%SDS, 100 mM NaHCO3); the supernatants were collected and incubated at 

65oC overnight to reverse the formaldehyde cross-linking.  The DNA from the 

supernatants were isolated by phenol extraction, followed by ethanol precipitation and 

analyzed by PCR with primers spanning HIV-1 LTR promoter: 5’-CAT CCG GAG TAC 

TTC AAG AAC TGC-3’ and 5’-GGC TTA AGC AGT GGG TTC CCT AG-3’ or GAPDH: 

5’-GAA GGTGAA GGT CGGAGT-3’ and 5’-GAA GAT GGT GAT GGG ATT TC-3’.  

The PCR program was 35 cycles of 94oC for 1 min, 55oC for 1 min, and 72oC for 30 sec.  
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In vitro elongation assay 

Plasmid HIV-1dG-less is obtained from Dr.Carlos Sune of Instituto de Parasitologia y 

Biomedicina.  In vitro transcription assay was performed as described previously (Sune, 

Goldstrohm et al. 2000) with some minor modifications.  Briefly, recombinant Tat 

protein (100, 200 ng) and Tip110 protein (200, 400 ng) were mixed in buffer D (20 mM 

Hepes pH7.9, 0.1 M KCl, 20% glycerol, 0.2 mM EDTA, 0.5 mM DTT) and added to the 

nuclear extracts (3.5 μl/ reaction) (Promega) on ice.  Then, 200 ng linerlized DNA 

templates, unlabeled NTP, 4 U Rnase inhibitor and 400mM sodium citrate were added 

into total 25 μl transcripton reaction.  The mixture was incubated at 30oC for 30 min, 

followed by the treatment of 1μl DNase I to remove the DNA template.  RNA 

transcripts were recovered by phenol extraction and ethanol precipitation, and suspended 

in 10 μl ddH2O.  Two microliters of the RNA was used for RT-PCR analysis.  The 

primers to amplify the short G-less transcripts are 5’-GGG TCT CTC TGG TTA GAC 

CAG ATC TGA GCC TGG GAG CTC-3’ and 5’-AAA ACC AAA CCC TGC GCT CCA 

TCG CCA-3’.  The primers to amplify the long G-less transcripts are 5’-GCG AGG 

CAT AAA GTT GCG TGT G-3’ and 5’-AGG AGG GAG AGG TGA GGA GAG GAT-3’.  

The amounts of long and short transcripts were determined by RT-PCR followed by 

densitometric analysis of the PCR products; the ratio of the PCR products from long 

transcripts to those from the short transcripts was calculated and used as the elongation 

efficiency. 
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In vitro transcription 

The RNA probe for the gel shift assay was transcribed using a MEGA Script T7 system 

(Ambion) with plasmids pT7-WT and pT7-E2-M as templates.  The plasmids were first 

linerlized by Hind III, 1 μg of linerlized DNA was used for transcription.  Transcription 

was performed in an 25 μl system, containing 50 mM of ATP, CTP, GTP, 5mM UTP and 

2 μl [α-32P] UTP (800 Ci/mmol) at 37oC for 4 hours.  RNA was recovered by phenol 

extraction and ethanol precipitation.  The radioactive activity of the RNA sample was 

determined in a Beckman LS6000IC Scintillation counter (Fullerton, CA).   

 

Eletrophoretic mobility shift assay (EMSA) 

EMSA was performed with 10 pmol (about 20000 cpm) of 3’-end 32P labeled RNA probe. 

RNA was first incubated in 5 μl buffer D (0.2 mM EDTA, 0.2 M KCl, 0.5 mM DTT, 0.25 

mM PMSF, 20% glycerol, 20 mM HEPES-KOH pH 7.9) at 65oC for 5 min and allowed 

to cool down to the room temperature (RT) to eliminate its potential secondary structures.  

Then, 5 μl of buffer D containing indicated amounts of recombinant hnRNP A1, Tip110, 

or 1 μl nuclear extract was added to the RNA and then incubated for 15 min on ice for 

RNA-protein complex formation.  Competitor tRNAs (5 μg) was incubated in each 

reaction.  For supershift experiments, 1μl anti-hnRNP A1 4B10 (Santa Cruz) or 

anti-Tip110 1C4H6 was added at the end of the 15 min incubation, and the reaction was 

continued on ice for additional 15 min.  The reactions were then loaded onto a native 6% 

polyacrylamide (38:2 acrylamide/bis acrylamide) gel with 45 mM Tris-broate (pH 8.3) as 

the running buffer.  The gels were dried and then exposed to X-ray film.  
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Data acquisition and statistical analysis 

The expression levels of protein and mRNA expression levels were determined with a 

densitometer, calculated on the basis of the loading controls (β-actin for Western blotting 

and GAPDH for RT-PCR) and expressed as a relative value (Rel.) to the indicated control.  

In in vitro transcription assay, the levels of long and short transcripts were determined by 

RT-PCR, followed by densitometric analysis of the PCR products, the ratio of the PCR 

products from long transcripts to those from the short transcripts was calculated and used 

as the elongation efficiency.  In in vivo splicing assays, the levels of spliced transcripts 

and unspliced transcripts were determined by RT-PCR, followed by densitometric 

analysis of the RT-PCR products, the ratio of the PCR products from the spliced 

transcripts to those from unspliced transcripts was calculated and used to further calculate 

the splicing efficiency.  All values were expressed as means ± S.D.  Comparisons 

among groups were made using two-tailed Student’s t-test.  A p value of <0.05 was 

considered statistically significant (*), and p<0.01 highly significant (**). 
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RESULTS 

PART 1: Tip110 interacts with RNAPII and regulates Tat-mediated LTR 

transcription 

 

1.1 Tip110 enhances HIV-1 replication 

Our previous work has shown that Tip110 protein plays an important role in regulating 

HIV-1 gene expression (Liu, Li et al. 2002).  To confirm these findings, 293T cells were 

co-transfected with HIV-1 proviral DNA pNL4-3 and Tip110 expression plasmid 

pTip110.HA.  A pcDNA3-based GFP expression plasmid pc3.GFP was included as a 

control for Tip110 as well as a marker to monitor the transfection efficiency.  We 

harvested the cells and determined intracellular HIV-1 production by Western blotting 

against HIV-1 structural capsid protein p24.  Compared to the pc3.GFP control, ectopic 

Tip110 expression gave rise to higher level of p24 expression (Fig. 7A).In addition, cell 

culture supernatants were collected and the activities of HIV-1 reverse transcriptase (RT) 

was determined, which has also frequently been used as an indicator of HIV-1 titers in 

these supernatants.  Consistent with the intracellular HIV-1 p24 expression, Tip110 

expression increased HIV-1 titers by more than 6-fold over the GFP control (Fig. 7B).  

These results confirmed that Tip110 enhanced HIV-1 gene expression and production. 

 

1.2 Tip110 activates Tat-mediated LTR transcription 

Our previous studies have also shown that Tip110 interacts and synergizes with HIV-1 

Tat protein to transactivate HIV-1 LTR promoter (Liu, Li et al. 2002).  Thus, we 

determined if Tip110 would affect Tat-mediated transactivation activity.  293T cells 
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were transfected with HIV-1 LTR promoter driven luciferase (Luc) reporter gene and 

pTip110.HA, pTat.Myc, or both and performed the Luc reporter gene assay.  Vector 

backbone pcDNA3 was included in the transfection to equalize the total amounts of 

plasmid DNA transfected and pTKβ-Gal was included to normalize for variations in the 

transfection efficiency.  At 36h post-transfection, cells were harvested for the Luc 

expression assay.  As expected, Tat expression greatly increased the luciferase activity in 

a dose-dependent manner (Fig. 7C).  Tip110 over-expression slightly increased the 

luciferase activity (Fig. 7C), indicating that Tip110 may transactivate the HIV-1 LTR 

basal transcription.  When we transfected the cells with increasing amounts of 

pTip110.HA in the presence of a constant amount of pTat.Myc, the transactivation 

activity was greatly enhanced as demonstrated by the increase in luciferase activity from 

4.2x104 to 16 x104.  Taken together, these results confirmed that Tip110 itself was a 

weak transactivator of the HIV-1 LTR promoter but it synergized with Tat to enhance 

Tat-mediated transactivation activity.  

 

1.3 HIV-1 gene expression does not alter Tip110 expression 

Since Tip110 plays a role in viral gene expression and viral replication, we next 

determined if HIV-1 gene expression would affect Tip110 expression.  293T cells were 

transfected with increasing amount of pNL4-3. Western blotting was performed for 

intracellular HIV-1 p24, Tip110 and β-actin.  Tip110 expression showed little changes 

with increased expression level of p24 (Fig. 8), indicating thatHIV-1 gene expression 

does not alter endogenous Tip110 expression. 
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Figure 7. Tip110 enhancement HIV-1 viral replication by transactivating 

Tat-mediated LTR transcription  (A) 293T cells were transfected with indicated 

plasmids.  Whole cell lysates were obtained after 72h, 50μg of each whole cell lysate 

was analyzed by Western blotting for Tip110 and p24 expression. Also, Western blotting 

against β-actin was included as a loading control.  (B) The transfected cell culture 

supernatants (1 ml) was collected to determine the RT activity.  (C) 293T cells were 

transfected with 0.1μg of pLTR-luc plasmid, along with various amounts of pTat.myc (0, 

0.05, 0.1 μg), or pTip110.HA (0, 0.05, 0.1 μg), or 0.05μg of pTat.myc with increasing 

amounts of Tip110 (0, 0.025, 0.05 μg).  The vector backbone pcDNA3 was added to 

equalize the total amounts of DNA transfected and pTK-β-Gal was co-transfected to 

normalize the transfection efficiency.  Transfected cells were harvested after 72 h for the 

luciferase assay. * p<0.05, ** p<0.01.   
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Figure 8. Tip110 expression with HIV-1 gene expression  293T cells were transfected 

with pNL4-3 (0, 1, 2 and 4 µg).  Whole cell lysates were prepared after 72hr; lysates of 

50μg protein were analyzed by Western blotting for Tip110 and p24 expression.  

Western blotting against β-actin was included as a loading control.  
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1.4 Tip110 interacts with Tat 

To study the underlying mechanism of Tip110 function in LTR transactivation, we first 

determined whether Tip110 interacted with other transcription factors.  We first confirm 

the interaction between Tip110 and Tat.  293T cells were transfected with pTip110.HA, 

pTat.myc separately or Tip110.HA together with pTat.myc.  Also, pc3.GFP was added to 

equalize the total amount of DNA and to ensure a comparable level of transfection 

efficiency among transfections.  Western blotting analysis showed that both Tip110 and 

Tat expression were detected by anti-HA or anti-myc antibody (Fig. 9).  Subsequently, 

we performed immunoprecipitation of cell lysates for Tat followed by Western blotting 

for Tip110.  The results demonstrated that Tip110 was detected in the 

immunoprecipitation complex when Tat and Tip110 co-transfected (Fig. 9), which 

indicated that there was an interaction between Tip110 and Tat.  

 

1.5 Tip110 binds to the unphosphorylated (CTDa) but not the phosphorylated 

(CTDo) form of the RNAPII C-terminal domain (CTD) 

One of the essential events in HIV-1 LTR promoter transcriptional activation was 

phosphorylation of serine 2 and serine 5 of the RNA polymerase II C-terminal domain. 

Therefore, we investigated whether Tip110 directly interacted with RNAPII.  To this end, 

293T cells were transfected with pTip110.HA.  The immunoprecipitation was performed 

for unphosphorylated form of RNAPII (RNAPIIa), serine 2 phosphorylated RNAPII 

(RNAPIIo-ser2) or serine 5 phorphorylated RNAPII (RNAPIIo-ser5) by 8WG16, H5 and 

H14, respectively, followed by Western blotting for Tip110 (Fig. 10A).  The results 

showed that only the immunocomplex with 8WG16 had Tip110, which indicated Tip110 
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interacted with unphosphorylated form of RNAPII, but not with the phosphorylated form.  

To further characterize this interaction, immunoprecipitation was performed of the same 

cell lysate for Tip110 by anti-HA followed by Western blotting for the unphosphorylated 

or phosphorylated form of the RNAPII (Fig. 10B).  The results showed that only 

unphosphorylated RNAPII was detected in the immunoprecipitaion complex of Tip110, 

indicating that exogenousTip110 only associated with unphosphorylated RNAPII.  We 

further investigated whether endogenous Tip110 interacted with RNAPII by performing 

immunoprecipitation of 293T cell lysates with 8WG16, H14, and H5 followed by 

Western blotting against Tip110.  The result demonstrated that only the 8WG16 

immunocomplex contained Tip110 (Fig. 11A).  This interaction was further confirmed 

by detecting unphosphorylated RNAPII by 8WG16 in Tip110 immunoprecipitates (Fig. 

11B), indicating that endogenous Tip110 only interacted with the unphosphorylated form 

of RNAPII, but not its phosphorylated form. 

 

These Western blotting results showed much less phosphorylated RNAPII band than 

unphosphorylated RNAPII (Fig. 10 and 11).  This difference could result from different 

expression levels of these two forms of RNAPII or different efficiency of the antibodies 

for these two forms (H4, H5 and 8WG16) and could contribute to the finding that there is 

a complex formation between Tip110 and RNAPIIa.  Thus, in vitro GST pull-down 

assay was further performed to confirm Tip110 interaction with unphosphorylated 

RNAPII.  First, recombinant GST-CTDa protein was purified from E.coli and confirmed 

to contain RNAPII unphosphorylated C-terminal domain by Western blotting (Fig. 12A).  

Then, GST-CTDa was phosphorylated by casein kinase I in vitro.  Meanwhile,  
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Figure 9. The interaction between Tip110 and Tat  293T cells were transfected with 

pTip110.HA (lane2), pTat.myc (lane3), or both (lane 4), and harvest 48 h after 

transfection for whole cell lysates.  Mock transfection with pc3.GFP was also included 

(lane 1).  Forty micrograms of each whole cell lysate was analyzed by Western blotting 

to determine protein expression, and immnoprecipitation followed by Western blotting 

was used to determine Tip110 binding to Tat. 
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Figure 10. The interaction between exogenous Tip110 and RNAPII  293T cells were 

transfected with pTip110.HA or pc3.GFP.  After 3 days of incubation, we performed 

immunoprecipitation of cell lysates for unphosphorylated RNAPII (8WG16), 

phosphorylated RNAPII (H14 and H5), followed by Western blotting against Tip110 (A); 

Or immunoprecipitation against Tip110, followed by Western blotting for 

unphosphorylated RNAPII (8WG16) and phosphorylated RNAPII (H14 and H5) (B). 
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Figure 11. The interaction between endogenous Tip110 and RNAPII             

(A) Immunoprecipitation was first performed on 293T cell lysates (500 μg) for the serine 

2 or serine 5 phosphorylated RNAPII, or unphosphorylated RNAPII.  These 

immunoprecipitates were then analyzed by Western blotting for Tip110 (upper panel).  

Western blotting for 8WG16, H5, and H14 were also performed against their own 

immunoprecipitates as the control (lower panel).  (B) Immunoprecipitation was 

performed with anti-Tip110 antibody, followed by Western blotting for 8WG16, H5 and 

H14 (upper panel) or for Tip110 protein as the control (lower panel).  
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Figure 12. The interaction between Tip110 with RNAPII-CTD in vitro 

(A) GST-CTDa protein was purified from E.coli, and further phosphorylated by casein 

kinase I.  To check the phosphorylation efficiency, Western blotting was performed 

against 8WG16, H14 and H5.  GST was added as a loading control.  (B) Tip110 

protein was prepared by thrombin cleavage of GST-Tip110 and then purified by 

glutathione beads to remove GST protein.  Western blotting analysis was performed for 

Tip110 and GST to ensure correct expression of Tip110 and Tip110-GST fusion protein 

and complete GST removal from Tip110 protein.  (C) Unphosphorylated or 

phosphorylated GST-CTD and GST protein were immobilized with 50 μl glutathione 

beads and incubated with purified Tip110 protein for 2 hours.  After washing, the 

protein from the pellet fraction (lanes 2-4) and supernatant fraction (lanes 5-7) were 

detected by Western blotting for Tip110; Purified Tip110 protein was included as the 

positive control to indicate the correct protein size (lane 1). The membrane was stripped 

and re-probed with anti-GST to ensure a comparable amount of GST-CTDa and 

GST-CTDo. 
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recombinant Tip110 was prepared by removing the GST tag from GST-Tip110 with 

thrombin (Fig. 12B).  Then, glutathione beads coated with purified GST, GST-CTDa or 

GST-CTDo were incubated with recombinant Tip110 protein.  Bound protein that 

remained on the beads as well as the protein from the supernatant fraction was analyzed 

by SDS-PAGE gel followed by Western blotting with Tip110 monoclonal antibody.  The 

results showed direct binding of Tip110 to unphosphorylated CTD (Fig. 12C, lane 3), but 

not GST protein (Fig. 12C, lane 2) or phosphorylated CTD (Fig. 12C, lane 4).  Taken 

together, this data demonstrated that Tip110 associated with unphosphorylated RNAPII 

CTD, but not with phosphorylated form of RNAPII at either serine 2 or serine 5. 

 

1.6 HAT domain is important for Tip110 interaction with RNAPIIa 

To determine which functional domains of Tip110 interacts with unphosphorylated 

RNAPII, we took advantage of a series of Tip110 mutants which contained RRM domain, 

C-terminal domain, NLS domain or HAT domain deletions (Fig. 13A).  Due to 

differences in antibody epitopes, the Tip110 mutants divided into two groups for Western 

blotting detection:∆RRM, ∆NLS, and ∆CT mutants were detected by anti-156 serum, and 

∆NT was detected by Tip110 monoclonal antibody.  293T cells were first transfected 

with each of Tip110 mutants and their expression was confirmed by Western blotting (Fig. 

13B & 13C).  Then, immunopreciptations with 8WG16 was performed followed by 

Western blotting for Tip110.  The mutants lacking the NLS domain, RRM domain or 

C-terminal domain bound to unphosphorylated RNAPII as efficiently as the full length 

protein (Fig. 13B).  But deletion of the HAT domain abolished the Tip110-RNAPII  
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Figure 13. The requirement of HAT domain for Tip110 binding to RNAPII 

(A) Schematic of wild-type Tip110 and its mutants.  (B) 293T cells were transfected 

with indicated Tip110 mutants or wild type Tip110.  The upper two panels were Western 

blotting with anti-156 serum (Tip110) or 8WG16 (CTDa) after immunoprecipitation with 

8WG16 antibody.  The lower two panels were Western blotting of input whole cell 

lysates for expression of Tip110 mutants and CTDa.  (C) 293T cells were transfected 

with ∆NT or wild-type Tip110 and analyzed for protein expression of Tip110 or CTDa 

(right two panels).  The interaction of ∆NT or Tip110 with unphosphorylated CTD was 

detected by immunoprecipitation using 8WG16 followed by Western blotting for Tip110 

(left two panels). 
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complex formation (Fig. 13C), indicating that HAT domain of Tip110 was directly 

involved in Tip110-RNAPII interaction. 

 

1.7 Tip110 does not interact with P-TEFb 

Since Tip110 and P-TEFb were co-localized in nuclear speckle structure, we further 

determined if Tip110 interacted with CDK9 or cyclin T1 by immunoprecipitation and 

Western blotting.  First, we examined whether endogenous Tip110 was part of the 

P-TEFb and found that neither endogenous cyclin T1 nor CDK9 was detected in 

anti-Tip110 immunoprecipitates (Fig. 14A).  Similarly, no Tip110 protein in either 

anti-CDK9 or anti-cyclin T1 immunoprecipitates was detected (Fig. 14B).   

 

To eliminate the possibility that endogenous Tip110 expression level was too low to 

detect the interaction, exogenous Tip110-expressing 293T cells were used for IP/WB.  

Immunoprecipitation followed by Western blotting demonstrated no Tip110/CDK9 or 

Tip110/cyclin T1 complex formation (Fig. 15A & 15B).  CDK9 and cyclin T1 antibody 

worked, as they were capable of immunoprecipitating each other as a complex (Fig. 14B) 

(Wei, Garber et al. 1998).  Therefore, we concluded that Tip110 did not associate with 

CDK9 or cyclin T1. 

 

1.8 Tip110 interaction with Tat recruits more P-TEFb to the transcription complex 

We next determined if Tip110 interaction with Tat would recruit more P-TEFb to the 

HIV-1 transcription complex.  293T cells were first transfected with pLTR-Luc, and 

pTat.myc, pTip110.HA, or both.  At 48hr post transfection, Western blotting was  
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Figure 14. No interaction between endogenous Tip110 and p-TEFb 

(A) Immunoprecipitation was performed for endogenous Tip110 or mouse IgG followed 

by Western blotting for cyclin T1 or CDK9 (upper panel).  Western blotting for Tip110 

of Tip110 immunoprecipitates was also performed as the positive control (lower panel).  

(B) Immunoprecipitation was performed for cyclin T1 or CDK9 separately followed by 

Western blotting for Tip110 (upper panel).  Western blotting for cyclin T1 or CDK9 of 

cyclin T1 or CDK9 immunoprecipitates was performed as the control (lower panel).  
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Figure 15. No interaction between exogenous Tip110 and P-TEFb  293T cells were 

transfected with pTip110.HA, or pc3.GFP.  The whole cell lysates were obtained after 

72h.  (A) Western blotting for Tip110 was performed for cell lysates (lanes 1, 2) and 

anti-CDK9 (lanes 3, 4) or anti-cyclin T1 (lanes 5, 6) immunoprecipitates.  (B) 

Immunoprecipitation was performed of cell extracts for Tip110 (α-HA) (lanes 3, 4) or 

CDK9 (lanes 5, 6) and followed by Western blotting for cyclin T1.Immunoprecipitation 

was performed for Tip110 (α-HA) (lanes 3, 4) or cyclin T1(lanes 5, 6) and then Western 

blotting for CDK9. 
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Figure 16.The recruitment of P-TEFb to the transcription complex by Tip110 and 

Tat  (A) 293T cells were transfected with pLTR-luc (lane 2), pTip110.HA with 

pLTR-luc (lane 3), pTat.myc with pLTR-luc (lane 4), or pLTR-luc with pTip110.HAand 

pTat.myc (lane 5).  Mock transfection with pcDNA3 (lane 1) was also included as a 

control.  The expression of Tip110, Tat, cyclin T1, CDK9 and β-actin were detected by 

Western blotting.  (B) The binding of cyclin T1 with Tat was determined by 

immunoprecipitation with c-myc (Tat) followed by Western blotting for cyclin T1, or 

anti-myc as the control (upper two lanes).  The interaction of CDK9 with RNAPII was 

determined by Western blotting for CDK9 of 8WG16 immunoprecipitates.  Western 

blotting for 8WG16 was also performed for 8WG16 immunoprecipitates as the control 

(lower two lanes). 
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performed to detect Tip110, Tat, CDK9 and cyclin T1 expression, demonstrating neither 

Tip110 nor Tat expression altered CDK9 and cyclin T1 expression (Fig. 16A).  Then, we 

performed immunoprecipitation for Tat and Western blotting for cyclin T1.  As we 

expected, cyclin T1 was detected in Tat immunoprecipitates when Tat overexpressed 

(Fig. 16B, upper two panels).  But Tip110 increased cyclin T1 in Tat 

immunoprecipitates by more than 2 fold.  Tip110 also increased unphosphorylated 

RNAPII-associated CDK9by about 1.4 fold, as shown by immunoprecipitation against 

8WG16 followed by Western blotting for CDK9 (Fig. 16B, bottom two panels).  These 

results indicated that Tip110 interaction with Tat recruited more P-TEFb to the 

transcriptional complex. 

 

1.9 Tip110 and Tat enhance RNAPII phosphorylation 

The most critical step during HIV-1 LTR promoter transactivation is the phosphorylation 

of RNAPII (Zhu, Pe'ery et al. 1997; Kim, Bourgeois et al. 2006).  CDK7 phosphorylates 

serine 5 of RNAPII for the transcription initiation; whileCDK9 phosphorylates serine 2 

for transcription elongation (Wei, Garber et al. 1998; Chen and Zhou 1999).  Since 

Tip110 could recruit more P-TEFb to the transcription complex, we next determined the 

effects of Tip110 and Tat expression on RNAPII phosphorylation.  We transfected 293T 

cells with increasing amounts of pTip110.HA, pTat.Myc, or a constant amount of 

pTat.Myc and increasing amounts of pTip110.HA.  After 48 hours, Western blotting 

analysis was performed against unphosphorylated form of RNAPII (RNAPIIa), serine 2 

phosphorylated RNAPII (RNAPIIo-ser2) or serine 5 phorphorylated RNAPII 

(RNAPIIo-ser5) by 8WG16, H5 and H14, respectively (Fig. 17A).  When Tip110 was  
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Figure 17. Enhancement of RNAPII CTD phosphorylation by Tip110 and Tat 

(A) 293T cells were transfected with increasing amounts of pTip110.HA (0, 0.5, 1.0, 4.0 

μg), increasing amount of pTat.myc (0, 0.5, 1.0, 4.0 μg), or a constant amount of 

pTat.myc (0.5 μg) with increasing amounts of pTip110.HA (0, 0.5, 1.0, 4.0 μg). pcDNA3 

was added to equalize the total amounts of DNA transfected.  Cells were cultured for 

72h and then harvested for whole cell lysates. Samples were first analyzed by Western 

blotting for Tip110 or Tat.  Then, unphosphorylated RNAPII (IIa), and serine2 (IIo-ser2) 

and serine5 (IIo-ser5) phosphorylated RNAPII levels were determined by antibody 

8WG16, H5, H14, respectively.  (B) Quantification of Western blot densitometry data 

from three independent experiments.  
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Figure 18

293T cells were transfected with increasing amounts of pTip110.HA (0, 0.5, 1.0, 4.0 μg), 

increasing amount of pTat.myc (0, 0.5, 1.0, 4.0 μg), or a constant amount of pTat.myc 

(0.5 μg) with increasing amounts of pTip110.HA (0, 0.5, 1.0, 4.0 μg).  pcDNA3 was 

added to equalize the total amounts of DNA transfected.  Cells were harvested after 72 

hours and analyzed by Western blotting against anti-CDK7, anti-cyclin H, anti-CDK9, 

anti-cyclin T1 and anti-β-action as the loading control.  

. TFIIH and P-TEFb expression inTip110 -and Tat-expressing cells 
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expressed, both RNAPIIo-ser2 andRNAPIIo-ser5 were increased by 2 fold and RNAPIIa 

was decreased (Fig. 17B, left panel).  In Tat expressing cells, RNAPIIa was slightly 

reduced, RNAPIIo-ser5 showed little change, but RNAPIIo-ser2 was increased by 1.5 

fold (Fig. 17B, middle panel).  When Tat and Tip110 were co-expressed, RNAPIIo-ser2 

and RNAPIIo-ser5 both increased by 3 fold, with RNAPIIa was decreased by 0.3 fold 

(Fig. 17B, right panel).  These results indicated that Tip110 together with Tat could 

enhance the phosphorylation of RNAPII at both serine 2 and serine 5, which may 

accounted for the Tip110 function in transcription activation.  

 

1.10 Neither Tip110 nor Tat protein alters P-TEFb or TFIIH expression level 

P-TEFb and TFIIH phosphorylate RNAPII (Wei, Garber et al. 1998; Chen and Zhou 

1999). Thus, we further investigated whether increased RNAPIIo was due to the 

up-regulation of P-TEFb or TFIIH expression by Tip110 and Tat expression.  To this end, 

293T cells were transfected with increasing amounts of pTip110.HA, pTat.Myc, or a 

constant amount of pTat.Myc and increasing amounts of pTip110.HA.  Then, Western 

blotting was performed against CDK9, cyclin T1, CDK7 and cyclin H (Fig. 18).  The 

results demonstrated that Tip110, Tat or both did not significantly alter expression of 

these four proteins, indicating that increased RNAPII phosphorylation by Tip110 or Tat 

was not due to any changes in the expression levels of P-TEFb or TFIIH components.  

 

1.11 Tip110 is detected at the HIV-1 LTR core promoter 

To determine whether Tip110 was recruited to the HIV-1 LTR promoter in vivo, ChIP 

experiments were carried out in exogenous Tip110-expressing 293T cells, or with 
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endogenous Tip110 in U373-MAGI and CEM-GFP cells.  The HIV-1 LTR core 

promoter and the primers for the ChIP assay were showed in Fig. 19A.  For ChIP assay 

with exogenous Tip110, 293T were transfected cells with pNL4-3 proviral plasmid and 

pTip110.His plasmid, and the overexpression of Tip110 was confirmed after 3 days (Fig. 

19B, lanes 1, 2).  Chromatin from cells was isolated, immunoprecipitated with 

anti-mouse IgG, 8WG16 or anti-His antibody followed by PCR to amplify the HIV-1 

LTR core promoter region.  As a control for ChIP experiment, we amplified LTR 

promoter in the RNAPII immunocomplex (Fig. 19C, lane 4) and LTR promoter could be 

also amplified in the Tip110 immunocomplex, indicating Tip110 was present at the HIV-1 

LTR promoter in vivo (Fig. 19C, lane 5).  As negative a control, mouse IgG was not 

detected at the LTR promoter (Fig. 19C, lane 3) and neither RNAPII nor Tip110 were 

detected on GAPDH coding region (Fig. 19C, lower panel), which served as a PCR 

control.  Thus, we concluded that exogenous Tip110 was recruited to the transient LTR 

promoter.  To determine if endogenous Tip110 was present in the integrated HIV-1 

promoter, we took advantage of CEM-GFP cells that have an integrated HIV-1 LTR 

promoter-driven GFP transgene cassette and U373MAGI cells that have an integrated 

HIV-1 LTR promoter-driven Lac Z transgene cassette.  Western blotting was first 

performed to confirm expression of endogenous Tip110 in these two cells (Fig. 19B, lane 

3, 4).  Chromatin was isolated from these cells, immunoprecipitated with mouse IgG, 

8WG16 or Tip110 monoclonal antibody, and subjected to PCR for the HIV-1 LTR core 

regions or GAPDH.  The result showed that positive control RNAPII and endogenous  
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Figure 19. The complex formation between Tip110 and HIV-1 LTR core promoter 

(A) Schematic of the LTR core promoter and expected primer sites for LTR PCR 

amplification.  (B) Western blot analysis for exogenous Tip110 expression in 293T cells 

(lane 1), and endogenous Tip110 expression in 293T (lane 2), U373MAGI (lane 3), and 

CEM-GFP cells (lane 4).  (C) 293T cells were transfected with the indicated plasmid.  

At 72h post-transfection, chromatin from these cells was cross-linked, sheared, and 

immunoprecipitated with the indicated antibodies.  After reversing the cross-linking,  

DNA was purified and analyzed by PCR with primer sets specific for the HIV-1 LTR 

promoter region (upper two panel), with the GAPDH coding region (lower two panels) 

included as the negative control.  (D) ChIP experiment was performed as described 

above with endogenous Tip110 expressed in U373MAGI cells (upper two panels) and 

CEM-GFP cells (lower two panels). 
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Tip110 were detected at the LTR promoter in both CEM-GFP and U373- MAGI cells 

(Fig. 19D, lane 4, 5), indicating Tip110 was detected at the HIV-1 LTR core promoter in 

vivo. 

 

1.12 Tip110 recruits more P-TEFb to the HIV-1 LTR promoter 

We then evaluated the recruitment of the Tat-induced elongation complex to the LTR core 

promoter in the presence of Tip110.  293T cells were first transfected with pLTR-Luc, 

and pTip110.HA, pTat.myc, or both.  Then, ChIP assay was performed with 

immunoprecipitation against Tat, Tip110, cyclin T1, CDK9, unphosphorylated RNAPII, 

and serine 2 or serine 5 phosphorylated RNAPII followed by PCR amplifying HIV-1 LTR 

core region (Fig. 20A).  As positive controls, both Tat and Tip110 protein could be 

detected at the LTR core region.  No CDK9 or cyclin T1 was detected at the LTR 

promoter in the absence of Tat; but with Tip110 over-expression, there are significant 

increases in the levels of cyclin T1 and CDK9 recruited to the LTR promoter.  

Meanwhile, serine 2 RNAPII phosphorylation was only observed in the LTR promoter 

with Tat expression and showed about 2 folds increase in the presence of Tip110, while 

serine 5 RNAPII phosphorylation could be detected without Tat expression and showed 

little change in the presence of Tip110 and Tat.  As we expected, neither P-TEFb nor 

RNAPII could be detected at the LTR promoter when immunoprecipitation was 

performed with mouse IgG control.  As a negative control, PCR for GAPDH coding 

region showed low level of RNAPII detected on the GAPDH region (Fig. 20B).  These 

data together suggested that the Tip110 interaction with Tat was capable of recruiting 
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increased P-TEFb to the HIV-1 LTR promoter, and further enhanced RNAPII serine 2 

phosphorylation at the LTR core promoter. 

 

1.13 Tip110 and Tat increase the LTR transcription elongation 

To determine if Tip110 interaction with Tat had direct effects on HIV-1 transcription 

elongation, we performed in vitro G-less transcription/elongation assay with some 

modifications.  The template pHIV-dG-less contains two G-free cassettes downstream 

from the HIV-1 LTR promoter, its short (promoter-proximal) and long (promoter-distal) 

transcripts are RnaseT1 resistant.  This template has been used to determine 

transcription initiation and elongation respectively (Fig. 21A) (Montanuy, Torremocha et 

al. 2008).  Following in vitro transcription of the G-less DNA template, we treated the 

reaction with DNase I and then performed RT-PCR to determine the relative levels of 

short and long G-less transcripts using two pairs of primers that were specific for each of 

those two transcripts.  These two pairs of primers were expected to give rise to about 

300bp and 520 bp PCR products, respectively.  Recombinant Tat or Tip110 proteins 

were included in the reaction.  As expected, Tat increased the long transcript level but 

had little effect on the short transcript level (Fig. 21B).  Compared to Tat, Tip110 also 

slightly increased the long transcript level and had little effects on the short transcript 

level.  Compared to Tat or Tip110, the presence of both proteins further increased the 

long transcript level and had no effect on the short transcript level.  These results 

indicated that Tip110 interaction with Tat increased the elongation efficiency of RNAPII 

complexes formed on the LTR promoter. 
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To further ascertain the significance of Tip110 protein in Tat-mediated LTR transcription 

elongation, we determined if depletion of endogenous Tip110 would affect Tat-activated 

LTR transcription.  To achieve this, we first immunodepleted Tip110 from nuclear 

extract by anti-Tip110 and saved the supernatant fractions from the depleted extracts.  

Immunodepletion with IgG was included as a control.  Western blotting confirmed that 

immunodepletion with anti-Tip110 antibody resulted in more than 70% Tip110 from the 

Nuclear extract (Fig. 22A).  Then, the in vitro G-less assay was carried out with Tip110- 

depleted nuclear extract.  Tip110 depletion reduced the HIV-1 LTR derived long 

transcripts but had minimal effect on short transcripts, indicating that Tip110 is critical 

for RNAPII transcription elongation (Fig. 22B, lane 1, 2).  However, when Tip110 was 

added back to the Tip110-depleted nuclear extract, the transcription elongation level was 

not recovered.  The inability of recombinant Tip110 to restore the transcription 

elongation is likely due to the depletion of other transcription factors associated with 

Tip110 from the nuclear extract, such as RNAPII (Fig. 22B, lane 3).   

 

To overcome this problem, we decided to knock down endogenous Tip110 by 

Tip110-specific shRNA and performed the in vivo G-less assay in Tat-expressing cells.  

We transfected pHIV-dG-less plasmid with pTat.myc into 293T cells on day 0, 4 or day 7 

following pshTip110 transfection and harvested cells at day 7 or day 10 for Western 

blotting or RNA isolation and RT-PCR.  The pshTip110 backbone vector pSIREN was 

included as a control.  Western blotting demonstrated that endogenous Tip110 protein 

expression was considerably knocked down by pshTip110in day 7 after transfection and 

slightly recovered at day 10 (Fig. 22C).  In contrast, Tip110 expression showed little 
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changes in pSIREN transfection.  In parallel with Tip110 expression, RT-PCR analysis 

showed that Tat-induced long transcripts synthesized from LTR decreased at day 7 and 

began to increase at day 10 (Fig. 22D).  pshTip110 transfection showed no changes in 

short transcripts.  pSIREN had no changes in either long or short transcripts.  Taken 

together, these results demonstrated a specific role of Tip110 in RNAPII elongation on 

the LTR promoter. 
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Figure 20. The recruitment of P-TEFb to the LTR core promoter by Tip110 and Tat  

293T cells were transfected with the indicated plasmids.  At 72h post-transfection, 

chromatin from these cells was cross-linked, sheared, and immunoprecipitated with the 

indicated antibodies.  After reverse cross-linking and phenol extraction, the purified 

DNA was amplified with primer sets for the HIV-1 LTR promoter (A) or GAPDH primer 

(B) as control.  (C) PCR products for LTR core promoter were quantitated by 

densitometry and expressed as fold increase over the input control.  The data were 

representative of three independent experiments. *: p<0.05, **: p<0.01. 
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Figure 21. Direct effects in HIV-1 transcription elongation by Tip110 and Tat 
 
(A) Schematic of HIV-1 LTR double G-less cassette template used in the experiment. The 

transcript synthesized by this template contains two G-less cassettes.  Upstream G-less 

cassette is located proximal to the promoter and used to measure transcription initiation, 

the downstream cassette is used to measure transcription elongation.  The primer 

locations to amplify the short and long transcripts were shown.  (B) The in vitro 

transcription/elongation assay was performed with HIVdG-less plasmid and 0, 100, 200 

ng of recombinant Tat protein (lanes 1-3), or 200,400 ng of GST-Tip110 protein (lanes 4, 

5), or 100 ng of Tat protein together with 200, 400 ng of GST-Tip110 protein (lanes 6, 7). 

The ratio of the PCR products from long transcripts to those from the short transcripts 

was calculated and used as the elongation efficiency. 
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Figure 22. Effects of Tip110 knock down on HIV-1 transcription elongation      

(A) Immundepletion of Tip110 from Hela nuclear extract.  Western blotting was then 

performed for undeleted, IgG and Tip110 depleted nuclear extract.  Specific antibodies 

against Tip110 and β-actin were used to demonstrate the depletion efficiency.  (B) 

Transcription elongation reactions were performed with indicated nuclear extracts, 200ng 

Tat protein, and the HIV-1 LTR G-less template.  Lane 3 had 200 ng GST-Tip110 added 

back to the transcription reaction.  (C) 293T cells were first transfected with pSIREN or 

psh-Tip110 (day 0) and then transfected with HIV-1 G-less template or pTat.myc plasmid 

at day 4 and 7.  Cells were harvested on day 7 and10 for cell lysates and Western 

blotting for Tip110, Tat and β-actin.  (D) RNA was extracted from the indicated cells; 

RT-PCR was performed for long and short transcripts.    
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PART II: Tip110 interacts with hnRNP A1 and regulates HIV-1 alternative splicing  
 

2.1 

During our study to define the synergistic effect of Tip110 and Tat on LTR transcription, 

we determined whether Tip110 enhanced HIV-1 gene expression and replication through 

direct alteration of HIV-1 gene expression profile such as Tat.  To address this possibility, 

multiplex RT-PCR was performed to compare the mRNA expression profile between 

cells with and without Tip110 over-expression.  Thus, 293T cells were transfected with 

pNL4-3 and pTip110.GFP or pEGFP as a control.  The cells were harvested and first 

prepared for Western blotting to confirm Tip110 expression (Fig. 23A). Then, RNA from 

these cells was isolated and RT-PCR was performed with a primer pair BSS-SJ4.7, which 

have been used to amplify all multiply spliced mRNA (Markus Neumann 1994).  

Following the first round of RT-PCR reaction, 5 μl of the PCR reaction were added with 

32P-dCTP and continued for additional three PCR cycles.  The products were then 

separated by denaturing gel electrophoresis.  The results showed an increased level of 

one PCR product corresponding to tat mRNA in Tip110-expressing cells (Fig. 23B).  To 

verify that the PCR product of interest was derived from tat mRNA, we recovered the 

DNA; PCR cloned it, and sequenced it.  The sequencing results confirmed that this 

product corresponded to tat exon2.  This was the first evidence to suggest that Tip110 

enhancement of HIV-1 gene expression and replication likely also involved preferential 

regulation of tat mRNA expression.  

Tip110 alters HIV-1 mRNA splicing pattern 
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Figure 23. Alteration of HIV-1 mRNA splicing by Tip110  (A)293T cells were 

transfected with pNL4-3 and pTip110.GFP or pGFP-N3.  Thirty six hours 

post-transfection the cells were harvested and performed Western blotting against Tip110 

or β-actin.  (B) Total RNA was isolated, reverse transcribed and then PCR was carried 

out with primers BSS and SJ 4.7.  Five microliter of amplification products were added 

32PdCTP for additional three PCR cycles, and separated by denaturing gel electrophoresis. 

GAPDH RT-PCR was included as a control.  
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2.2 Tip110 preferentially increases tat transcripts 

To further confirm multiplex RT-PCR results, we wished to perform RT-PCR with 

tat-specific primers (Fig. 24A).  However, because tat transcripts are multiply spliced 

and shared common regions with singly spliced and unspliced mRNA, RT-PCR cannot 

specifically amplify tat transcripts.  To overcome this problem, pHIV-Rev-plasmid was 

used in place of pNL4-3 in the transfections, as Rev deletion would retain singly spliced 

and unspliced mRNA in the nucleus and only multiply spliced mRNA was present in the 

cytoplasm.  Thus, transcription of cells with pHIV-Rev-, followed by subcellular 

fractionation would allow us to use RT-PCR to determine Tip110 effects on tat mRNA 

expression.  The cells were first transfected with pHIV-Rev-and pTip110.HA orpcDNA3 

and then performed subcellular fractionation which was assessed by Western blotting 

against nuclear protein PCNA.  Compared to whole cell lysates, the cytoplasmic fraction 

had much less PCNA (Fig. 24B).  Then, RNA was extracted from both cytoplasmic 

fractions and whole cell lysates and RT-PCR was performed with tat-specific primers.  

GAPDH was amplified as a control.  Using the cytoplasmic fraction RNA, RT-PCR 

reactions with primers TAR5/ Tat 21 or Tat 5/ Tat 3C have increased amplified products 

with Tip110 over-expressing, while the products amplified by GAPDH primer showed no 

change (Fig. 24C, left panel).  Using the whole cell RNA, RT-PCR amplified products 

remained the same with tat primers or GAPDH primer (Fig. 24C, right panel), indicating 

Tip110 preferentially increased tat transcripts, but not singly or unspliced mRNA.  By 

three independent experiments, Tip110 increased tat transcripts by more than 1.6 fold, 

which confirmed our previous conclusion that Tip110 preferentially increased tat mRNA. 
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Figure 24. Increased tat mRNA expression by Tip110  (A) Schematic of HIV-1 tat 

exons and the primer pairs for RT-PCR.  (B) 293T cells were transfected with HIV-Rev- 

plasmid with pTip110.HA or pcDNA3.The cells that were only transfected with pcDNA3 

were used as a control.  Two days after transfection, cytoplasmic fractions were 

prepared and Western blots for nuclear protein PCNA, Tip110 or β-actin were performed. 

(C)RNA was extracted from cytopolasmic fraction or whole cell lysates followed by 

reverse transcription.  PCR was performed with primers TAR5’/ Tat21 or Tat5/ 

Tat3C.GAPDH RT-PCR was included as a loading control.  RT-PCR products were 

quantitated by densitometry, and the data were means ± S.D. and representative of three 

independent experiments.  * p<0.05, ** p<0.01. 
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2.3 Tip110 increases Tat protein expression 

To further confirm that Tip110 effects on Tat protein expression resulted from HIV-1 

RNA splicing, we took advantage of tat minigene that only contains three exons and does 

not undergo alternative splicing to generate tat mRNA (Fig. 25A).  293T cells were 

transfected with pNL4-3 or the tat minigene, along with pTip110.HA and performed 

Western blotting against Tip110, Tat and β-actin.  With Tip110 overexpression, Tat 

protein expression increased by 1.6 fold in pNL4-3-transfecteced cells but remained 

unchanged in tat minigene transfected cells (Fig. 25B).  These results further confirmed 

that Tip110 increasesed tat mRNA and Tat protein expression through regulation of 

HIV-1 RNA alternative splicing.    

 

2.4 Tip110 enhances tat exons 1-2 splicing but not tat exons 2-3 splicing 

Tat mRNA splicing is regulated by acceptor splice site A3and A7 as well as the ESE or 

ESS cis-element within tat exon 2 or tat/rev exon3 (Si, Rauch et al. 1998; Zahler, 

Damgaard et al. 2004).  To determine which tat splice site Tip110 regulated, we took 

advantage of two sets of tat pre-mRNA minigenes.  The first setpCMV-HS1-WT and 

pCMV-ESS2-M contains tat exon 1, exon 2, and a shortened intron and have been used to 

study the regulation of A3 splicing site (Si, Amendt et al. 1997).  pCMV-HS1-WT 

contains wild-type ESS2, while pCMV-ESS2-M has 4 nt mutation from 4748 to 5152 in 

the ESS core sequence (Fig. 26A).  The second set pCMV-HS2contains tat exons 2 and 

3, with the putative ESS and ESE elements located in tat exon3 and has been used to 

study regulation of the A7 splice site (Si, Rauch et al. 1998) (Fig. 28A).  We constructed  
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Figure 25. Enhancement of Tat protein expression by Tip110  (A) Schematic of 

NL4-3 proviral DNA and intronless tat minigene.  (B) 293T cells were transfected with 

tat minigene (left panel) or pNL4-3 (right panel) with or without pTip110.HA.  The 

cells were harvested 48 hr after transfection, lysed in RIPA buffer, and 20 μg of each 

sample were separated by SDS-PAGE followed by Western blot analysis using 

anti-Tip110, anti-Tat, or anti-β-actin.  Tat expression was quantitated by densitometry 

and expressed as fold increase over the control (Rel.). 
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these two sets of minigenes under the CMV promoter from the original cassettes, so in 

vivo splicing assay could be performed by transfection, isolation of the RNA from the 

transfected cells followed by RT-PCR. 

 

pCMV-HS1-WT or pCMV-ESS2-M minigenes were first used to test the function of 

Tip110 in tat exons 1-2 splicing.  293T cells were transfected with pCMV-HS1-WT or 

pCMV-ESS2-M and total RNA was extracted after 3 days.  RT-PCR was later performed 

with primers T7/ tat 37, and both unspliced and spliced RT-PCR products were detected 

at the expected sizes (Fig. 26B).  As expected, ESS2-M showed a 1.6 folds increase in 

splicing efficiency over WT (Si, Amendt et al. 1997).  To further validate this new in 

vivo transcription/splicing protocol, 293T cells were co-transfected withpCMV-HS1-WT 

or pCMV-ESS2-M and increasing amounts of phnRNP A1-GFP, which has been shown to 

interact with UAG sequence in ESS2 and inhibit upstream 3’ss splicing (Caputi, Mayeda 

et al. 1999).  The results showed that hnRNP A1 expression led to less spliced RT-PCR 

products from WT but no changes from ESS2-M (Fig. 26C).  Then, the cells were 

transfected with pCMV-HS1-WT or pCMV-ESS2-M and increasing amounts of 

pTip110.HA.  The results showed that Tip110 expression increased the spliced RT-PCR 

products from WT (Fig. 27A) and no changes in ESS2-M (Fig. 27B), suggested Tip110 

enhanced tat exons 1-2 splicing and ESS2 was directly involved.   

 

Next, we performed similar experiments with tat exons 2-3 minigene pCMV-HS2 and 

ASF/SF2 was included as a positive control.  As expected, ASF/SF2 showed positive 

effects in tat exons 2-3 splicing (Fig. 28B), which was consistent with previous reports 
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that ASF/SF2 stimulates tat exons 2-3 splicing in an ESE3-dependent manner (Ropers, 

Ayadi et al. 2004).  However, when pCMV-HS2 was co-transfected with increasing 

amounts of pTip110.HA, tat exons 2-3 splicing showed no changes (Fig. 28C), indicating 

Tip110 did not affect tat exons 2-3 splicing. 

 

2.5 Tip110 knockdown decreases tat exons 1-2 splicing 

To further determine the significance of Tip110 protein in tat mRNA splicing, we 

down-modulated endogenous Tip110 expression and determined its effects on tat mRNA 

splicing.  We constructed pshTip110 plasmid to express Tip110-specific shRNA and first 

tested the efficiency of pshTip110 in decreasing endogenous Tip110 expression.  A 

transfection timeline was devised for these multiple transfection experiments (Fig. 29A). 

293T cells were first transfected with pshTip110plasmid or pSIREN backbone vector; the 

cells were harvested on day 3, 6, 10 after transfection.  Western blotting analysis 

demonstrated that endogenous Tip110 protein expression was down-modulated by 

pshTip110in day 6 after transfection but showed some recovery at day 10 (Fig. 29B).  

As a control, 293T cells were transfected with the backbone vector pSIREN, and Tip110 

expression showed no significant changes (Fig. 29B).  Then, we transfected pCMV-HS1 

or pCMV-HS2 plasmids into 293T cells on day 4 or day 7 following pshTip110 or 

pSIREN transfection (Fig. 29A).  The cells were harvested at day 7 or day 10 for RNA 

isolation and RT-PCR analysis.  In parallel with Tip110 expression, tat exons 1-2 

splicing efficiency was decreased at day 7 and began to increase at day 10 (Fig. 30A).  

In contrast, tat exons 2-3 splicing showed no changes (Fig. 30B).  Taken together, these  
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Figure 26. pCMV-WT and pCMV-ESS2-M minigene and their splicing          

(A) Schematic of pCMV-WT and pCMV-ESS2-M minigene constructs and RT-PCR 

primers.  (B) Minigene splicing: 293T cells were transfected with 2 μg of pCMV-WT or 

pCMV-ESS2-M.  Total RNA was extracted and processed for RT-PCR.  The RT-PCR 

products were determined by densitometry, the ratio of spliced to unspliced ones were 

calculated and set to 1 in the pCMV-WT-transfected cells.  (C) pCMV-WT (left panel) 

or pCMV-ESS2-M (right panel) were transfected into 293T cells in the combination of 

increasing amount of hnRNPA1-GFP (0, 0.5, 1.0 μg).  Western blotting was performed 

for GFP or β-actin expression.  RT-PCR was performed to determine the unspliced and 

spliced transcripts.  The ratio of spliced to unspliced RT-PCR products was calculated.  

These data were mean ± SD and representative of three independent experiments.        

* p<0.05, ** p<0.01.u: unspliced band, s: spliced band.  
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Figure 27. Increased tat exons 1-2 splicing by Tip110  pCMV-WT(A) or 

pCMV-ESS2-M (B) were transfected into 293T cells in combination with increasing 

amounts of pTip110.HA ( 0, 0.5,1.0 μg).  Cell were harvested for cell lysates and 

Western blotting against Tip110, β-actin, or for RNA and RT-PCR to amplify tat exons 

1-2 unspliced and spliced transcripts.  The ratio of spliced to unspliced RT-PCR 

products was calculated as before. * p<0.05, ** p<0.01.u: unspliced band, s: spliced 

band. 
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Figure 28. Tip110 effects on tatexons 2-3 splicing  (A)Schematic of pCMV-HS2 

minigene construct.  (B) 293T cells were transfected with pCMV-HS2 and increasing 

amounts of ASF/SF2 (0, 0.5, 1.0 μg) and processed as described above.  (C) 293T cells 

were transfected with pCMV-HS2 and increasing amount of Tip110 (0, 0.5, 1.0 μg) and 

processed as described above.  u: unspliced band, s: spliced band. 
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Figure 29. Tip110 knockdown  (A) The transfection timeline. (B) 293 T cells were 

transfected with pSIREN or psh-Tip110 plasmid and harvested at day 0, 3, 6, and 10 for 

western blotting analysis against Tip110 or β-actin. 
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Figure 30. Decreased tat exons 1-2 splicing by Tip110 knockdown  293T cells were 

first transfected with pSIREN or psh-Tip110 (day 0) and then transfected with 

pCMV-HS1 (A) or pCMV-HS2 (B) at day 4 and 7.  Cells were harvested on day 7 and 

day 10 for cell lysates and Western blotting or RNA and RT-PCR.  u: unspliced band, s: 

spliced band. 
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results confirmed that Tip110 preferentially increased tat exons 1-2 but not tat exons 2-3 

splicing. 

 

2.6 HAT and RRM domains are involved in Tip110-mediated tat mRNA splicing 

To determine which functional domains of Tip110 were important for Tip110-mediated 

tat mRNA splicing, we took advantage of a series of Tip110 mutants which contained 

RRM domain, C-terminal domain, NLS domain or HAT domain deletions (Fig. 13A).  

Due to differences in antibody epitopes, the Tip110 mutants divided into two groups for 

Western blotting detection: ∆RRM, ∆NLS, and ∆CT mutants were detected by anti-156 

serum, and ∆NT was detected by Tip110 monoclonal antibody.  293T cells were first 

transfected with each of the Tip110 mutants and pHIV-Rev- plasmid and then harvested 

for cytoplasmic lysates.  Expression of Tip110 and its mutants and the efficiency of 

cytoplasmic fractionation were confirmed by Western blotting against Tip110 and PCNA, 

respectively (Fig. 31A).  Then, RNA from the cytoplasmic lysates as well as whole cell 

lystate was isolated and RT-PCR was performed for tat exon 2.  GAPDH RT-PCR was 

included as a loading control.  We found that deletion of the HAT and RRM domain of 

Tip110 reduced tat exon 2 mRNA expression to the basal level but the deletion of NLS 

domain had tat exon 2 transcripts close to the wild-type Tip110 (Fig. 31B).  Later, 

similar results were obtained with minigene pCMV-HS1 (Fig. 32).  Taken together, 

these results showed HAT and RRM domains of Tip110 were involved in 

Tip110-mediated tat mRNA splicing.  
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Figure 31. Tip110 domains involved in tat mRNA splicing  293T cells were 

transfected with Tip110 or each of its mutants.  pcDNA3 was included as a control.  

Two days after transfection, cells were harvested for cytoplasmic and whole cell lysates 

and Western blotting (A), or RNA and RT-PCR with primers tat5/ tat3C to amplify tat 

exon 2 (B).  GAPDH RT-PCR was included as a loading control. W: whole cell lysate.  

C: cytoplasmic fraction lysate.   
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Figure 32. Tip110 domains involved in tat exons 1-2 splicing  (A) 293T cells were 

transfected with pCMV-WT and Tip110 or its mutants.  Expression of Tip110 and its 

mutants was determined by Western blotting.  (B) RNA was extracted for RT-PCR to 

amplify spliced/unspliced transcripts from tat exons 1-2 minigene as above.  The bar 

graph represents mean values ± SD of the spliced/unspliced ratio from three independent 

experiments.  u: unspliced band, s: spliced band. 
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2.7 Tip110 directly binds to hnRNP A1 in vitro 

We next attempted to determine the molecular mechanisms for Tip110-mediated tat 

exons 1-2 splicing.  A separate study from our own group has recently identified a 

number of Tip110-interacting proteins (Table. 2).  Among these proteins was hnRNP A1, 

which has been shown to inhibit tat exons 1-2 splicing through ESS2 element (Caputi, 

Mayeda et al. 1999).  Our result above showed that Tip110 enhanced tat exons 1-2 

splicing through ESS2 element.  Thus, we hypothesized that Tip110 interacted with 

hnRNP A1 and subsequently impaired hnRNP A1 interaction with the ESS2 element 

within tat exon 2.  To test this hypothesis, we first prepared recombinant GST-hnRNP 

A1 and Tip110 proteins and performed in vitro GST pull down assay.  We confirmed the 

MASS data that Tip110 directly bound to hnRNP A1 (Fig. 33).   

 

2.8 Tip110 interaction with hnRNPA1in vivo 

To further confirm Tip110 interaction with hnRNP A1, 293T cells were transfected with 

phnRNP A1-GFP and pTip110-HA and immunoprecipitation and Western blotting 

analysis was performed.  To our surprise, no hnRNP A1 in either anti-Tip110 or anti-HA 

immunoprecipitates could be detected (Fig. 34A).  In addition, no Tip110 was detected 

in anti-GFP or anti-hnRNP A1 immunoprecipitates (Fig. 34B).  Then, the input amount 

of cell lysate was increased by transfection of 10 times more cells.  The cell lysate was 

passed through a HA-conjugated affinity matrix column to enrich the Tip110 protein, and 

the Tip110 protein was then eluted with a competitive HA peptide and analyzed for the 

presence of hnRNP A1 protein by Western blotting.  The results showed the presence of 

hnRNP A1 protein in the elution (Fig. 34C, right panel), as well as Tip110 protein (right 
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panel), suggested Tip110 interacted with hnRNP A1 in a weak or transient manner in 

vivo.  

 

2.9 Tip110 does not bind to tat mRNA 

Tip110 is predicted to contain two RNA recognition motifs (RRM) (Fig. 14A) and it may 

bind to RNA.  Thus, we also examined the possibility that Tip110 bound to the ESE2 or 

ESS2 RNA cis-element within tat exon 2 by a gel shift assay.  RNA probes were in vitro 

transcribed from T7 promoter and purified (Fig. 35A) and recombinant hnRNP A1-GST 

protein was include as a positive control in this assay.  As expected, hnRNP A1 formed a 

complex with WT RNA (Fig. 35B, lanes 3, 4), but not with E2-M RNA (lanes 7, 8).  

Then, Tip110-GST protein was incubated with WT or E2-M RNA, and no protein-RNA 

complex detected with either WT or E2-M RNA (Fig. 35C).  To test the possibility that 

Tip110 complexed with tat mRNA through other proteins, nuclear extract was used in 

place of recombinant protein in the gel shift assay with the WT and E2-M RNA.  When 

WT was used as a probe, incubation with nuclear extract led to formation of multiple 

complexes of RNA with cellular proteins, which was shown as a smear (Fig. 35D, lane 4).  

Inclusion of anti-hnRNP A1 antibody resulted in formation of a distinct complex, 

presumably among hnRNP A1, WT RNA and anti-hnRNP A1 antibody (lane 5).  

However, inclusion of anti-Tip110 antibody showed no apparent change in the gel shift 

pattern (lane 6).  In contrast, when E2-M RNA was used as a probe, inclusion of either 

anti-Tip110 or anti-hnRNP A1 antibody showed no changes in the gel shift pattern (Fig. 

35E).  Taken together, these results further confirmed that Tip110 did not directly bind 

to ESE2 or ESS2 cis-element within tat exon 2.   
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Table 2.Tip110 interacting proteins 

Name  M.Wt Peptides 
Main protein 
1. SART 3 

 
109865 

 
51 peptides 

Cytoskeleton proteins 
1. Actin 
2. Keratin 1-Cyt1 
3. Keratin 1-Cyt9 
4. Keratin 2-Cyt2 
5. Keratin 1-Cyt10 
6. Keratin 1-Cyt10 
7. Tubulin beta 
8. Tubulin alpha 
9. Synaptotagmin 2-a 

 
41710 
65978 
62092 
65825 
59475 
57213 
49799 
50062 
42709 

 
19  peptides 
12  peptides 
9  peptides 
4  peptides 
5  peptides 
5  peptides 
3  peptides 
2  peptides 
1 peptides 

Transportation protein 
1.  Importin 2 alpha 

 
57826 

 
3  peptides 

Heat shock proteins 
1.  HSP A8 
2.  HSPA1B 

 
70845 
70009 

 
5  peptides 
6  peptides 

Ribonucleoproteins 
1. hnRNPA2-B1 
2. hnRNPA1 
3. hnRNP U 

 
28394 
38822 
88924 

 
1  peptides 
3  peptides 
2  peptides 

YB-1 protein 
1.Nulease-sensitive element-binding protein1  

 
35903 

 
1  peptides 

Skin protein 
1. Hornerin 
2. Filaggrin 

 
282228 
434922 

 
6  peptides 
4  peptides 
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Figure 33. Direct interaction between Tip110 and hnRNP A1 protein in vitro 

Tip110 protein (4 μg) was prepared by thrombin cleavage of GST-Tip110 and then 

purified by glutathione beads to eliminate the GST protein.  Meanwhile, 2 μg 

GST-hnRNP A1 and GST protein were immobilized onto glutathione beads and incubated 

with purified Tip110 protein at 4oC overnight.  After washing, the protein from GST 

beads (lane 2) and GST-hnRNP A1 (lane 3) were analyzed by Western blotting for Tip110 

(upper panel) or GST (lower panel); Purified Tip110 protein was included as the size 

marker (lane 1). 
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Figure 34. Tip110 interaction with hnRNP A1 protein in vivo  (A) Cell lysates from 

293T cells transfected with 10μg pTip110-HA and 10μg phnRNPA1-GFP were 

immunoprecipitated with Tip110 (left panel), anti-HA antibody (right panel) or mouse 

IgG followed by Western blotting against GFP.  Western blotting for Tip110 or HA 

against Tip110 or HA immunoprecipitates was also performed as the positive control.  

(B) Cell lysates were first immunoprecipitated with anti-hnRNP A1 or anti-GFP, followed 

by Western blotting for Tip110.  Western blotting with anti-hnRNP A1 or anti-GFP 

against hnRNP A1 immunoprecipitates were performed as the control.  (C) 293T cells 

(5x10cm plates) were transfected with phnRNPA1.GFP and pTip110.HA.  

hnRNPA1.GFP and Tip110.HA expression were first verified by Western blotting 

analysis with anti-Tip110 and anti-GFP antibody (upper panel).  The cell lysate were 

passed through anti-HA-affinity matrix column; bound proteins were eluted and analyzed 

by Western blotting for Tip110 or hnRNPA1-GFP (lower panel).  
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2.10 Tip110 blocks the interaction between hnRNP A1 and ESS2 cis-element 

The most important parameter for site A3 activation and tat exons 1-2 splicing is binding 

of SC 35 or SRp 40 to ESE2 and subsequent displacement of hnRNP A1 from ESS2 

(Hallay, Locker et al. 2006).  Thus, we speculated that Tip110 functioned to activate tat 

exons 1-2 splicing through its interaction with hnRNP A1 and as a result, impeded 

binding of hnRNP A1 to ESS2.  To test this possibility, gel shift assay was performed to 

determine the interaction between hnRNP A1 and WT RNA in the presence of Tip110.  

As before, hnRNP A1 complexed with WT RNA probe (Fig. 36A, lane 2).  But when 

purified recombinant GST-Tip110 protein was included, there was a dose-dependent 

inhibition in the formation of the hnRNP A1-WT RNA complex (Fig. 36A, lanes4-6).  

In contrast, GST protein showed no effects in the complex formation (Fig. 36A, lane 3).  

These results demonstrated that Tip110 impeded the complex formation between hnRNP 

A1 and ESS2.  To further confirm this inhibition effect in vivo, supershift assay was 

performed with nuclear extracts and increasing amount of Tip110-GST protein.  The 

supershifted complex was detected by adding anti-hnRNP A1 antibody (Fig. 36B, lane4) 

and decreased with increasing amounts of Tip110-GST protein (Fig. 36B, lanes 6-8).  

These results further confirmed that Tip110 blocked the complex formation of hnRNP A1 

with tat ESS2 and suggested the interaction among Tip110, hnRNP A1 and tat ESS2 

likely accounted for Tip110-mediated tat exons 1-2 splicing.  
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Figure 35. No interaction between Tip110 and ESE2/ESS2 RNA  (A) The WT RNA 

and ESE2 (E2-M) RNA used for gel shift assay.  (B) About 10 pmoles (20000cpm) of 

WT RNA or E2-M RNA probes were incubated in a 20μl reactions containing 0, 50,100 

ng hnRNPA1-GST or 200ng GST protein.  (C) 0,100,200ng of Tip110-GST or 200ng 

GST protein was incubated with WT RNA or E2-M RNA.  (C) and (D) Nuclear extract 

(1 μl) was used in place of recombinant proteins to bind WT or E2-M RNA on ice for 

15min.  Then, 1 μl anti-hnRNP A1 (4B10) or anti-Tip110 (1C4H6) was added to the 

reaction and continued for 15 min on ice, followed by gel electrophoresis.  As negative 

controls, RNA was only incubated with antibodies but without nuclear extract.  F: free 

probe; C: RNA-protein complex; S: RNA-protein-antibody supershifted complex.  
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Figure 36. Inhibition of complex formation between hnRNP A1 and ESS2 by Tip110 

(A) hnRNP A1-GST protein (100 ng) was incubated with 10 pmoles (20000 cpm) of 

32P-labeled WT RNA probes in the presence of and 0 ng (lane2), 50 ng (lane 4), 100 ng 

(lane 5), or 200 ng (lane 6) recombinant Tip110-GST protein or 200 ng GST protein 

(lane 3), and the complex formation of hnRNP A1 and WT RNA was determined by gel 

shift assay. RNA probe only was detected in the absence of hnRNPA1-GST protein (lane 

1).  (B) 1μl nuclear extract with 200 ng GST (lane 5), or 0 ng (lane 4), 50 ng (lane 6), 

100 ng (lane 7), 200 ng (lane 8) were incubated with 10 pmoles 32P-labeled WT RNA 

followed by adding 1μl anti-hnRNP A1 into the reaction.  The RNP complex formed 

without adding anti-hnRNP A1 (lane 3) or RNA incubated with only antibody (lane 2) or 

RNA only (lane1) were included as controls.  F: free probe; C: RNA-protein complex; S: 

RNA-protein-antibody supershifted complex. 
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DISCUSSION 

 

Summary of the results 

The transcriptional activation of the HIV-1 LTR promoter is a complex series of events 

and needs coordinated interactions of viral and cellular proteins.  HIV-1 Tat is the key 

transactivator of HIV-1 transcription and promotes the formation of transactivational 

complexes at the LTR promoter.  Besides Tat, a large number of cellular factors are also 

involved in the transcription.  These factors either function by removing inhibitory 

molecules which block RNAPII phosphorylation in the LTR promoter or recruiting the 

elongation competent RNAPII-containing complexes to the LTR promoter (Baillat, 

Hakimi et al. 2005; Vaness Bres Nathan Gomes and Jones 2005; Vardabasso, Manganaro 

et al. 2008) 

 

In this study, we focused on Tat-interacting Protein of 110kDa, Tip110.  Studies from 

our group have shown that Tip110 synergies with Tat in transactivation of the HIV-1 LTR 

promoter, increases viral gene expression and virus production (Liu, Li et al. 2002).  

However, the underlying molecular mechanisms were not understood and are the focus of 

the dissertation research.   

 

We first confirmed that Tip110 significantly enhanced HIV-1 gene expression and viral 

production.  This enhancement was at least in part due to their synergetic transactivation 

of the LTR promoter transactivation (Fig. 7).  HIV-1 gene expression from proviral 

DNA transfection did not alter endogenous Tip110 expression (Fig. 8).  To examine how 
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Tip110 enhanced Tat-mediated LTR transactivation, we then determined if Tip110 

interacted with known transcription factors involved in activation of HIV-1 LTR promoter.  

We found that Tip110 was complexed with unphosphorylated form (RNAPIIa) but not 

phosphorylated form (RNAPIIo) of RNAPII (Fig. 10 & 11).  The specific and direct 

interaction between Tip110 and RNAPIIa was confirmed by GST pull-down assay and 

mutagenesis analysis (Fig. 12 & 13).  Although Tip110 did not interact with cyclin T1 or 

CDK9 (Fig. 14 & 15), it interaction with Tat and RNAPIIa led to more P-TEFb 

recruitment to the transcription complex (Fig. 16).  Since P-TEFb was responsible for 

RNAPII serine 2 phosphorylation, we further found that RNAPII serine 2 

phosphorylation was increased when Tip110 and Tat were co-expressed (Fig. 17).  ChIP 

assays confirmed that Tip110 was present within the HIV-1 LTR promoter and associated 

with increased recruitments of P-TEFb to the promoter, which further led to the increased 

phosphorylation of serine 2 within the RNAPII CTD at the LTR promoter (Fig. 19 & 20).  

Consistent with these findings, we showed that Tip110 expression was direct correlated 

with transcription elongation of the LTR promoter (Fig. 21 & 22).  

 

During these studies, we noticed that Tip110 expression let to increased tat mRNA 

production (Fig. 23 & 24), as well as Tat protein expression (Fig. 25).  in vivo splicing 

assay with tat minigene showed that Tip110 preferentially increased tat exons 1-2 

splicing by activating HIV-1 A3 splicing site but had no function in tat exons 2-3 splicing 

(Fig. 27 & 28), and that the preferential activity of Tip110 was mediated by ESS2 but was 

not involved interaction between Tip110 and ESE2 or ESS2 RNA(Fig. 35).   
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Affinity purification followed by 2D Mass from a separate study in our lab indicates 

hnRNP A1, a negative splicing regulator binding to ESS2 cis-element to complex with 

Tip110 (Table 2).  Thus, we performed additional experiments and confirmed this 

interaction both in vitro and in vivo (Fig. 33 & 34).  Gel shift assay showed that Tip110 

binding to hnRNP A1 blocked the formation of hnRNP A1-ESS2 complex (Fig. 36), and 

this likely accounts for Tip110-association activation of A3 splice site and preferential 

expression of tat mRNA and Tat.  Taken together, our studies suggest that Tip110 plays 

important roles in both LTR transcription elongation and HIV-1 pre-mRNA splicing and 

as a result regulates HIV-1 viral gene expression and viral replication  

 

The interaction between Tip110 and transcription factors 

A large number of cellular factors are involved in the Tat-mediated transcription by 

recruiting the elongation competent RNAPII-containing complexes and/or interacting 

with multiple transcription factors.  For example, SKIP, Tat-SF1 and CA150 are 

associated with Tat:P-TEFb in nuclear extracts and present in large RNAPII elongation 

complexes (Zhou and Sharp 1996; Carty, Goldstrohm et al. 2000; Vaness Bres Nathan 

Gomes and Jones 2005).  Tip110 was first identified as a Tat interacting protein through 

the yeast two-hybrid screening of a human fetal brain cDNA library, with Tat as bait.  

Further studies have confirmed this direct interaction by immunoprecipitations well as 

GST pull-down assay (Liu, Li et al. 2002).  

 

We found that Tip110 bound to unphosphorylated RNAPII (CTDa) but not its 

phosphorylated form (CTDo) by immunoprecipitation followed by Western blotting (Fig. 
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10 & 11).  This direct and specific binding was further supported by the GST pull-down 

assay and mutagenesis analysis and recruited the HAT domain of Tip110 (Fig. 12 & 13).  

Protein structure analysis predicted that the N-terminal two-thirds of the Tip110 protein 

contain seven HAT motifs.  These HAT motifs provide a structural unit of two 

antiparallel α-helices that form functional TPR(s) that determine the specificity of 

protein-protein interaction (Blatch and Lassle 1999).  Besides binding to 

unphosphorylated RNAPII, the HAT domain is also responsible for Tip110 interaction 

with Tat (Liu, Li et al. 2002).  It is likely that Tip110 formed a complex with Tat and 

unphosphorylated RNAPII through the same N-terminal domain to stabilize the mega 

transcription complex.  In addition, HAT domain is involved in Tip110 interaction with 

a C-terminal region of the U4/U6 snRNP-specific 90K protein which functions in the 

reassembly of the U4/U6 snRNP(Bell, Schreiner et al. 2002; Medenbach 2004).  The 

HAT domain is also involved in Tip110 interaction with RNPS1 (Harada, Yamada et al. 

2001).  These results confirm that suggesting HAT domain controls the specificity of 

Tip110 protein-protein interaction. 

 

The recruitment of P-TEFb to the transcription complex by Tip110 and Tat 

Although Tip110 and P-TEFb are co-localized in the nuclear speckle area (Herrmann and 

Mancini 2001), our data showed no interaction between Tip110 and P-TEFb (Fig. 14 & 

15).  This phenomenon distinguishes Tip110 with other cellular transcription factors 

such as SKIP , which associates with P-TEFb and is recruited to the LTR promoter by Tat 

(Vaness Bres Nathan Gomes and Jones 2005); or ELL2, a newly found elongation factor 

in the P-TEFb complex and Tat functions to bring more ELL2 to P-TEFb and helps to 
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stabilize ELL2 and active P-TEFb (He, Liu et al. 2010).  There is no direct interaction 

between Tip110 and P-TEFb (Fig. 14 & 15), but Tip110 is capable of recruiting more 

P-TEFb to the transcription complex in the presence of Tat (Fig. 16).  Therefore, we 

speculate that Tip110 is first recruited to the unphosphorylated RNAPII on the LTR 

promoter in the absence of Tat and then interacts with Tat to recruit more P-TEFb, and 

becomes dissociated from the transcription elongation complex following P-TEFb 

phosphorylation of RNAPII.   

 

Since P-TEFb is responsible for RNAPII serine 2 phosphorylation, we set out to 

investigate whether Tip110 would change the RNAPII phosphorylation level.  Our data 

showed that Tip110 protein alone decreased the level of unphosphorylated RNAPII while 

increased the level of both serine 2 and serine 5 phosphorylated RNAPII by 2 fold, 

suggesting that Tip110 was a weak transactivator for HIV-1 LTR basal level transcription 

(Fig. 17).  When Tip110 and Tat were co-expressed, both serine 2 and serine 5 

phosphorylations of RNAPII were considerably increased, with a more decrease in 

unphosphorylated RNAPII (Fig. 17).  P-TEFb also regulates expression of several 

cellular genes at the transcription elongation stage, including hsp70, the proto-oncogenes 

c-myb, c-myc and c-fos (Rougvie and Lis 1988; Krumm, Meulia et al. 1992; Roberts, 

Purton et al. 1992).  The RNAPII complexes are stalled in the 5’ region of the 

transcription unit for these genes, P-TEFb recruitment is the key regulator that helps 

RNAPII to overcome this rate-limiting step.  TATA-box instead of TAR structure is 

important for the recruitment of P-TEFb (Montanuy, Torremocha et al. 2008).  

Therefore, the increased phosphorylated form of RNAPII may result from the recruitment 
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of P-TEFb by Tip110 and Tat to the promoters of these cellular genes.  In order to 

examine the RNAPII phosphorylation on the LTR promoter, we can label LTR-promoter 

templates 5’ end with biotin and then isolated LTR bounded PICs to detect protein 

components of the LTR PIC (Zhou, Halanski et al. 2000).  By this method, we would 

expect to see more increase in RNAPII phosphorylation located on the HIV-1 LTR 

promoter in the presence of Tip110 and Tat.  

 

Tip110 is present on the LTR promoter 

HIV-1 transcription is regulated by interplay between a combination of viral and cellular 

transcription factors with binding sites in the HIV-1 LTR promoter.  With ChIP assay, 

we first detected Tip110 on the transient LTR promoter by transfecting pNL4-3 into 293T 

cells (Fig. 19).  To further examine if Tip110 was recruited to the integrated LTR 

promoter in the absence of Tat, we performed ChIP assay in U373-MAGI or CEM-GFP 

cells.  In these cell lines, either the LTR promoter-driven Lac Z reporter gene 

(U373-MAGI) or the LTR promoter-driven GFP reporter gene (CEM-GFP)is stably 

integrated into the chromosome (Gervaix, West et al. 1997; Brockman, Tanzi et al. 2006; 

Sundaravaradan, Das et al. 2007).  The results showed that endogenous Tip110 was 

present on the integrated LTR promoter in the absence of Tat (Fig. 19), indicating that the 

Tip110 was recruited to the LTR promoter. 

 

The ChIP assay also showed that P-TEFb were only recruited to the LTR promoter only 

when Tat was expressed and showed a significant increasing with Tip110 expression (Fig. 

19).  These results were consistent with previous Western blot result that more P-TEFb 
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were recruited to the transcription complex in the presence of Tip110 (Fig. 16).  We 

observed 3 fold increases of cyclin T1 compared to 1.5 fold increase of CDK9, which 

was probably because Tat directly interacted with Tip110 and cyclin T1 and mediated 

Tip110 recruitments of cyclin T1.  Besides P-TEFb, we further examined the RNAPII 

phosphorylation level at the LTR promoter by ChIP assay.  Ser 2 phosphorylation of 

RNAPII only occurred in the presence of Tat and increased by about 2 folds with Tip110 

overexpression, which may result from the increased recruitment of P-TEFb by Tip110 

and Tat (Fig. 16).  Unphosphorylated and serine 5 phosphorylated RNAPII were readily 

detected at the HIV-1 promoter in the absence of Tat, while Tip110 with Tat only had 

slightly effect on the serine 5 phosphorylation (Fig. 16), which was consistent with 

previous studies that TFIIH is recruited to the LTR promoter for RNAPII serine 5 

phosphorylation in the absence of Tat (Chen and Zhou 1999).   

 

Mechanisms of Tip110 function in Tat-mediated LTR transactivation 

What might be the actual mechanism by which Tip110 facilitates Tat transactivation? 

Firstly, overexpression of Tip110 significantly increased the viral gene expression and 

viral replication; this enhancement might due to the role of Tip110 in LTR transactivation 

by stimulating Tat-induced RNAPII phosphorylation.  Secondly, Tip110 formed a 

complex with Tat, unphosphorylated RNAPII CTD, and was detected on the LTR 

promoter in the absence of Tat.  Moreover, P-TEFb in the transcriptional complex was 

greatly increased in the presence of Tip110 and Tat.  On the basis of these observations, 

we proposed a working model of the function of Tip110 in Tat-mediated LTR 

transcription (Fig. 37).  Tip110 was first recruited to the LTR promoter independently 
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Figure 37. A working model for Tip110 function in HIV-1 LTR transactivation 

1. When unphosphorylated form of RNAPII is blocked with NELF and DSIF, Tip110 is 

first recruited to the LTR promoter, and bound to unphosphorylated RNAPII.  2. At the 

LTR promoter, Tip110 forms a complex with unphosphorylated RNAPII and the newly 

translated Tat protein.  Tip110 recruits more cyclin T1 and CDK9 to the transcription 

complex.  3. When RNAPII serine 2 is fully phosphorylated, LTR transcription 

elongation step starts and the full-length HIV-1 mRNA is produced.  At this step, Tip110 

leaves the hyperphosphorylated form of RNAPII to start a new round of transactivation.  
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with Tat.  It formed a complex with unphosphorylated RNAPII and Tat and recruited 

more cyclin T1 and CDK9 to the transcriptional complex, which would further enhance 

the RNAPII serine 2 phosphorylation.  When RNAPII serine 2 was fully phosphorylated, 

LTR transcription elongation would start and the full-length mRNA would was 

synthesized.  At this stage, Tip110 was about to leave the hyperphosphorylated form of 

RNAPII and would be recycled to start a new round of transactivation. 

 

However, we cannot rule out the possibilities that Tip110 regulates HIV-1LTR 

transcription via other transcription factors.  A separate study from our group has 

showed that Tip110 interacted with YB-1, a cellular ssDNA/RNA binding protein that 

interacts with both Tat and TAR and increases the level of Tat: TAR association (Sawaya, 

Khalili et al. 1998; Ansari, Safak et al. 1999).  Tip110, together with YB-1, has been 

shown to greatly increase LTR transactivation (manuscript in preparation), which implies 

that the interaction of Tip110 and other transcription factor may also contribute to Tip110 

effects in Tat-mediated transcription. 

 

Also, it will be important to compare the results obtained here in 293T cells with the 

more complex transcription factor interactions that occur on the native HIV-1 genome in 

activated T cells, where both initiation and elongation are further up-regulated by 

enhancer factors such as NF-κB and NF-AT.  Because our experiments were designed to 

analyze the transcription factors that are most directly involved in Tat transactivation, 

these results should provide a useful comparative framework for similar studies based on 

the induced viral genome in activated T cells.  
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The role of Tip110 in HIV-1 alternative splicing 

Pre-mRNA splicing is coupled to RNAPII transcription elongation.  Many splicing 

factors have shown to play a role in HIV-1 transcription elongation.  Therefore, we 

examined whether Tip110 plays a role in HIV-1 alternative splicing.  Using the 

multiplex PCR, we obtained the first evidence that Tip110 altered the HIV-1 mRNA 

splicing pattern (Fig. 23).  Normalized to the equal amount of GAPDH transcripts, one 

product that was derived from tat exon 2 showed an increase intensity (Fig. 23).  Four 

tat transcripts are generated from HIV-1 mRNA splicing and all contain tat exon 2 (Fig. 

4).  So we further performed RT-PCR to check which specific form of tat transcripts is 

increased by Tip110.  The primer TAR 5’ and Tat 21 spanned from the end of tat exon 1 

to the beginning of tat exon 2 (Fig. 24A), so we expected to see multiple bands according 

to the inclusion and exclusion of introns between exon1 and 2 in different tat transcripts.  

However, due to the predominant amount of tat 1 transcript in cells, only one single band 

was amplified by TAR 5’/Tat 21(Fig. 24C), and this transcripts showed 1.6-fold increase 

in the presence of Tip110.  

 

As Tat plays an important role in virus replication, it would be conceivable to speculate 

that HIV-1 has evolved a regulatory mechanism for an appropriate level of Tat expression.  

The major tat transcripts contain 3 exons.  The exon 2 is spliced between site A3 and D4, 

its splicing is mainly controlled by ESS2 splicing silencer and ESE2 enhancer (Si, 

Amendt et al. 1997), and partly regulated by ESS2p located upstream of ESS2 (Jacquenet, 

Mereau et al. 2001).  Exons 2-3 splicing is regulated by ESS3 and ESE3 located in tat 

exon3 (Tange, Damgaard et al. 2001).  The traditional method to test tat splicing 
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efficiency is to perform in vitro splicing assay with 32P-labled splicing RNA substrate (Si, 

Amendt et al. 1997; Si, Rauch et al. 1998).  In this study, we designed a tat minigene 

under the control of the CMV promoter and performed RT-PCR of the spliced and 

unspliced RNA to monitor in vivo RNA splicing.  This new method allowed us to 

determine the in vivo relationship between Tip110 expression and the tat minigene.  The 

results showed that Tip110 specifically increased tat exon1-2 splicing but had no effects 

on tat exons 2-3 splicing (Fig. 26 &27).  Since tat exon 2 splicing between A3 and D4 

splice sites is specifically for tat transcripts, while exon 3 splicing from A7 splice site is 

shared by all the multiply spliced transcripts, Tip110 specific activation on A3 splice site 

could explain why Tip110 preferentially increased tat transcripts but not rev or vpr 

mRNAs.  

 

The interaction between Tip110 and hnRNPA1 

A separate study from our group demonstrated that Tip110 forms a complex with hnRNP 

A1 (Table 2).  We confirm this interaction both in vivo and in vitro in this study (Fig. 33 

& 34).  hnRNP A1 has been demonstrated as the major regulator of HIV-1 pre-mRNA 

site A3 splicing.  It binds to ESS2 cis-element in tat exon 2, blocks the association of 

U2AF35 and inhibits early step of spliceosome assembly (Si, Amendt et al. 1997; Caputi, 

Mayeda et al. 1999).  Thus, for A3 activation, hnRNP A1 has to be dissociated from 

ESS2, followed by SC35 or SRp 40 binding to ESE2 (Ropers, Ayadi et al. 2004; Hallay, 

Locker et al. 2006).  Thus, we speculate that Tip110 may function in HIV-1 A3 site 

activation through its interaction with hnRNP A1.  However, the interaction between 

hnRNP A1 and Tip110 could be only in an enrichment assay, but not by the routine 
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IP/WB method (Fig. 34).  The discrepancy might be result from that the antibodies for 

immunoprecipitation; or that in vivo interaction between Tip110 and hnRNP A1 might be 

weak or transient; or thatTip110 competed with other protein for hnRNP A1 binding. 

 

Further study is clearly needed to identify the domains of hnRNP A1 and Tip110 that are 

directly involved in the Tip110/hnRNP A1 interaction.  As the C-terminal Gly domain of 

hnRNP A1 mediates the interaction between hnRNP A1 and different RNA-binding 

proteins (Cartegni, Maconi et al. 1996) and HAT domain is important for Tip110 protein 

interaction (Harada, Yamada et al. 2001; Liu, Li et al. 2002), we speculated that the 

N-terminal HAT domain of Tip110 and the C-terminal Gly domain of hnRNP A1 might 

be involved in the Tip110/hnRNP A1 interaction.  Moreover, the interaction between 

Tip110 and hnRNP A1 might inhibit hnRNP A1 association with ESS2, as hnRNP A1 

forms a stable complex with ESS2 element through its C-terminal Gly domain (Zahler, 

Damgaard et al. 2004).  

 

The mechanisms of Tip110 function in regulating tat mRNA splicing 

Tip110 was first identified as a splicing factor that specifically binds to U6 and was 

required for U4/U6 annealing recycling (Gu, Shimba et al. 1998; Bell, Schreiner et al. 

2002).  Therefore, we first hypothesized that Tip110 enhanced tat exons 1-2 splicing by 

accelerating snRNP recycling and promoting spliceosome assembly at splice site A3.  

Although Tip110 contains two RRM domains, it does not interact with either ESS2 or 

ESE2 element in tat exon 2 (Fig. 35).  Surprisingly, when we determined if hnRNP A1 

mediated Tip110 effect on A3 splice site activation, we found that Tip110 blocked the  
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Figure 38. A working model for Tip110 function in HIV-1 3'ss A3 activation 
 
1. The multimerization of hnRNP A1 to the ESS2 masks the binding site of SC35 on 

ESE2, inhibits the association of U2AF35 to the A3 splicing site, and further blocks the 

U2AF65 to the PPT site.  Thus, the early step of spliceosome assembly is inhibited and 

A3 splicing site is inactivated.  2. In the presence of Tip110 protein, Tip110 directly 

binds hnRNP A1 and blocks the binding site of hnRNP A1 to ESS2 element, results in the 

dissociation between hnRNP A1 and ESS2.  Then, SC35 or SRp40 protein will bind to 

ESE2 element; increase the U2AF binding efficiency to the PPT.  These SR proteins 

counteract the negative effect of hnRNP A1 and activate the A3 splice site.   
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hnRNP A1 interaction with ESS2 element (Fig. 36).  Based on these observations, we 

speculated that hnRNP A1 was first recruited to theESS2 cis-element (Fig. 38).  The 

multimerization of hnRNP A1 at the ESS2/ESE2 masks the SR protein binding site 

within ESE2, inhibits the association of U2AF35 to the A3 splicing site, blocks the 

U2AF65 to the PPT Site, and eventually inhibits the association of U2snRNP with the 

branch site.  Therefore, the early step of the spliceosome assembly is inhibited and A3 

splice site is inactivated.  In the presence of Tip110, Tip110 binds to hnRNP A1 and 

blocks the binding site of hnRNP A1 from ESS2 element.  This will trigger the 

dissociation of hnRNP A1 withESS2 cis-element, which will further expose the ESE2 

cis-element and recruit SC35 or SRp40 to the ESE2.  Binding of SR proteins will 

counteract the negative effect of hnRNP A1 by increasing U2AF binding efficiency to the  

PPT and activating the A3 splicing site.   
 

However, Tip110 may also activate the tat A3 splicing through other splicing factors.  It 

has been reported that Tip110 binds to RNPS1 and stimulates the proximal alternative 3’ 

splicing of calcitonin-dhfr pre-mRNA minigene with RNPS1 and RNPS1 itself has been 

shown to activate tat minigene splicing (Mayeda, Badolato et al. 1999; Harada, Yamada 

et al. 2001).  Also, our group has identified that Tip110 interacted with YB-1 protein and 

increased CD44 alternative splicing (manuscript in preparation).  But YB-1 function in 

splicing has not been applied to HIV-1 alternative splicing.  Thus, further study would 

explore whether Tip110 interaction with RNPS1 or YB-1 would have any effects on 

HIV-1 alternative splicing.  Also, the tat minigene used in this study is driven by CMV 

promoter instead of HIV-1 LTR promoter, it will be interesting to learn whether Tip110 

interaction with HIV-1 LTR promoter in vivo will help to recruit other spliceosome 
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components, such as U4 and U6 snRNP to the full-length pre-mRNA and further activate 

HIV-1 alternative splicing.  

 

Tip110 function in HIV-1 transcription and pre-mRNA splicing 

Eukaryotic pre-mRNA splicing is tightly coupled to transcription, mainly through 

phosphorylated RNAPII CTD, which interacts with a numbers of splicing factors 

(Mortillaro, Blencowe et al. 1996; Kim, Du et al. 1997; Ge, Si et al. 1998).  Cellular 

factors Tat-SF1, CA150 and SKIP have been reported to function in both transcription 

and alternative splicing in HIV-1 gene expression and replication.  Tat-SF1 is required 

for efficient transcriptional transactivation by binding to P-TEFb and also interacts with 

spliceosomal components.  The TAT-SF1-snRNP-containing couple complex stimulates 

transcription as well as promotes splicing (Zhou and Sharp 1996).  CA150 is a 

transcription-splicing coupling factor and inhibits Tat-mediated HIV-1 viral transcription 

through its interaction with splicing factors and RNAPII (Zhou and Sharp 1996; Fong 

and Zhou 2000; Kameoka, Duque et al. 2004).  Therefore, the function of Tat-SF1 and 

CA150 in HIV-1 transcription elongation and alternative splicing is coupled.  SKIP 

interacts with Tat:P-TEFb complexes, acting through nascent RNA to overcome pausing 

by RNAPII. It also interacts with U5snRNP proteins and tri-snRNP110K and facilitates 

recognition of an alternative Tat-specific splice site in vivo.  However, U5snRNPs 

recruit to SKIP only within transcribed regions instead of LTR, indicating SKIP activates 

HIV-1 transcription independently of the U5snRNPs, and engages in transcription and 

splicing process at different transcription elongation stages (Vaness Bres Nathan Gomes 

and Jones 2005). 
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Tip110 regulates both Tat-mediated LTR transcription and HIV-1 alternative splicing and 

has positive effect on HIV-1 gene expression and viral replication.  However, our study 

suggested that Tip110 is recruited to the LTR promoter and released from phosphorylated 

RNAPII when transcription elongation starts.  Therefore, Tip110 would not stay with 

phosphorylated RNAPII throughout the transcription process.  However, Tip110 has to 

be relocated to tat exon2and regulate tat mRNA splicing at A3 splice site for its splicing 

effect, indicating that Tip110 functions in transcription and splicing are spatially and 

temporally regulated.  Moreover, in the in vivo splicing assay, the tat minigenes are 

driven from the CMV promoter rather than the LTR promoter; and Tat, which is critical 

for Tip110 function in transcription, is not expressed in 293T cells that were used in these 

studies.  Based on these observations, Tip110 may engage transcription and splicing 

complexes in different stages in the elongation process.  On the other hand, Tip110 

function in HIV-1 transcription elongation and splicing process is not completely 

independent.  Our data suggested that Tip110 enhanced Tat expression through 

alternative splicing, which would in turn binds to Tip110 to recruit more P-TEFb to the 

LTR promoter.  With the direct effects on LTR transcription elongation, Tip110 and Tat 

will help to produce more full-length mRNA for alternative splicing.  Thus, Tip110 

provides a positive feedback in Tat protein expression by HIV-1 RNA splicing and HIV-1 

LTR transactivation in HIV-1 gene expression and virion replication. 
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PERSPECTIVE 
 

Since the introduction of HAART therapy in 1990’s, the AIDS pandemic has been 

changed from a uniformly fatal disease to a chronic disease.  However, HARRT cannot 

eradicate the virus from the body and there are still latent virus reservoirs.  Moreover, 

even though HAART can reduce viral replication to undetectable levels, active viral 

replication is continuing in lymphoid tissue of the gut.  The cost of these drugs has been 

a significant burden to both individuals and governments.  For these reasons, alternative 

treatments for HIV-1 infection are being studied and understanding the mechanism of 

HIV-1 replication in host cells will help to develop new anti-HIV therapeutic strategies.  

 

As our understanding of the HIV pathogenesis increases, HIV-1 Tat has become the key 

determinants in disease progression.  Peptide analogs of Tat have been shown to stop the 

recruitment of cdk2 to the LTR, decrease transcription and viral load in a small animal 

model of HIV-1 infection (Van Duyne, Cardenas et al. 2008).  Other small molecular 

inhibitors have also been developed to disrupt the Tat-TAR interaction, but none has been 

moved into clinical trials (Riguet, Desire et al. 2005).  Since there are no therapies 

directly targeting individual Tat, the host factors that regulate Tat expression are potential 

targets for new HIV-1 therapeutics.  

 

On the other hand, HIV-1 alternative splicing offers several approaches for combating 

HIV-1 infection.  HIV-1 splicing is regulated by the interaction between RNA 

cis-element and splicing factors and this RNA: protein interaction provides two types of 

therapeutic targets.  One approach is to mask RNA sequences with antisense strategy to 
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block the use of viral splice sites (Asparuhova, Marti et al. 2007).  Another method is to 

modify the expression level of SR protein or hnRNP protein by RNA interference, which 

needs further work to find safe delivery systems.  Therefore, new approaches targeting 

HIV-1 regulatory elements at transcription and splicing, in combination with traditional 

antiviral strategies, may provide a new tool for fighting against HIV/AIDS. 

 

Possible role of Tip110 in HIV-1 transcription initiation 

In this study, we focused on the mechanism of Tip110 function in Tat-mediated 

transcription elongation, and the results showed that Tip110 was able to recruit P-TEFb to 

the LTR, increase the serine 2 phosphorylation which further enhanced the transcription 

elongation.  However, Tip110 showed to increase the luciferase activity controlled by 

LTR promoter (Fig. 7) and Tip110 could increase RNAPII serine 5 phosphorylation level 

(Fig. 17), indicating that Tip110 may also activate LTR transcription initiation in the 

absence of Tat.  Since Tip110 is recruited to the LTR promoter independently of Tat and 

bound to unphosphorylated RNAPII, it may recruit CDK7/cyclin H to the 

unphosphorylated RNAPII, which further accelerate the RNAPII promoter clearance step 

and enhance the transcription initiation.  To test this hypothesis, additional studies are 

needed to determine if there is an interaction between Tip110 and CDK7/cyclin H, 

followed by ChIP assay to determine if more CDK7 and cyclin H are recruited to the 

integrated LTR promoter and associated with increased RNAPII serin 5 phosphorylation 

in the presence of Tip110.   
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Role of Tip110 in HIV-1 replication in T cells 

HIV-1 requires activation of T cells for viral replication.  In memory T cells, HIV-1 

stays latent for months to years, and the absence of Tat marks one form of proviral 

latency, when only short transcripts are produced.  Upon stimulation of the cells by 

TNF-α, NF-kB and TFIIH are rapidly recruited to the LTR promoter with additional 

mediators and RNAPII.  Because Tip110 interacts with unphosphorylated RNAPII and 

is recruited to the LTR promoter, it is reasonable to speculate that Tip110 is required for T 

cell activation.  To determine the role of Tip110 during HIV-1 reactivation in T cells, 

further experiments should be performed in Jurkat cells containing integrated, but 

transcriptionally silent HIV-1 proviruses.  With the treatment of TNF-α, ChIP assay can 

be performed to examine if more NF-kB, TFIIH, TBP and RNAPII are recruited to the 

LTR in the presence of Tip110.  In addition, HIV-1 gene expression can be examined in 

activated T cells with constitutive and reduced level of Tip110.  These data will address 

the relationship between Tip110, T cell activation and HIV-1 LTR transactivation and 

help us to understand how cellular activation signals activate latent HIV-1 in T cells.  

 

Role of Tip110 in singly spliced mRNA splicing 

Using multiplex PCR, we showed that Tip110 altered the HIV-1 splicing profile of 

multiply spliced mRNA (Fig. 23).  But the role of Tip110 in HIV-1 singly spliced pattern 

was still unclear.  As HIV-1 splicing is delicately balanced, more multiply spliced 

transcripts would result in less singly spliced/unspliced mRNA.  It has been shown that 

SR proteins SC35 and 9G8 increase tat mRNA production and decrease single spliced 

products such as vpr and env mRNA and cause a large reduction of genomic RNA 
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(Jacquenet, Decimo et al. 2005).  In order to determine the Tip110 effects in singly 

spliced mRNA production, multiplex PCR with primers GAGA and KPNA specific for 

singly spliced or unspliced RNA should be performed with HIV-1 RNA isolated from 

Tip110 expressing cells (Markus Neumann 1994).  The important next step is to 

determine if the expression level of structural proteins such as Vpr, Env and Gag will be 

altered by Tip110 through splicing.  In addition, it would be interesting to determine if 

Tip110 would delay new virus maturation by altering structural protein expression. 

 

Tip110 function in transcription and splicing 
 
As previously discussed, we obtained several lines of data suggesting that Tip110 

function in HIV-1 transcription elongation and alternative splicing is uncoupled.  To 

further determine this possibility, in vitro splicing assay with the same amount of tat 

mRNA in vitro transcribed from tat minigene should be performed.  These experiments 

would allow us to evaluate Tip110 effect on tat minigene mRNA splicing without 

transcriptions.  To determine whether Tip110 splicing function is unnecessary for 

transcription, in vitro transcription/elongation assay could be performed with hnRNP 

A1-depletednuclear extract to determine if Tip110 interaction with hnRNP A1 is involved 

in HIV-1 transcription elongation.  In addition, ChIP assay could be performed to 

determine whether hnRNP A1 would be recruited to the LTR promoter with Tip110.  

These experiments will be very informative for determining whether Tip110 function in 

HIV-1 transcription elongation and alternative splicing is coupled or not. 
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Tip110 as a novel anti-HIV target 

Tat is considered to be the major HIV-1 transcription transactivation factor; therefore, it is 

conceivable that suppression of Tat expression by knocking down Tip110 may be able to 

complement the current anti-HIV therapies that are mainly targeted at HIV-1 protease and 

reverse transcriptase, providing a better treatment outcome.  To test this hypothesis, the 

efficacy of knocking down Tip110 to inhibit HIV-1 replication in an infected organism 

should be determined.  Humanized HIV-1 mouse model which recapitulates most of the 

immunological features in HIV-1 infected humans can be used for such studies (Sun, 

Denton et al. 2007).  The mice infected with HIV-1 could be treated with Tip110 siRNA 

or shRNA monitored for HIV-1 replication in these mice.  However, as the biological 

functions of Tip110 are not completely understood, any Tip110 knock-down based 

anti-HIV therapy should be only targeted at HIV-1 infected cells but not the normal cells.  

Therefore, further study has to address how to target the HIV-1 infected cells.  

Nevertheless, specific targeting of HIV-1 infected cells would be a huge challenge.  One 

potential solution is the inverse fusion strategy, that is to use vesicular stomatitis virus 

pseudotyped with HIV-1 receptor CD4 and a coreceptor, CXCR4 to infect HIV-infected 

cells (Mebatsion, Finke et al. 1997).  This strategy can be explored to deliver Tip110 

siRNA or shRNA into HIV-1 infected cells to knock down endogenous Tip110 expression 

in HIV-1 infected cells and subsequently control HIV-1 replication and the disease 

progression.   
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