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ABSTRACT 

 

Tara Lynn Oman 

 

REGULATION OF OUTER SURFACE LIPOPROTEIN A IN THE LYME DISEASE 

SPIROCHETE BORRELIA BURGDORFERI 

 

Borrelia burgdorferi, a bacterium which causes Lyme disease, is maintained in nature 

through a cycle involving two distinct hosts: a tick vector and a mammalian host. To 

adapt to these two diverse environments, B. burgdorferi undergoes dramatic alterations 

in its surface lipoprotein. Two essential lipoproteins, outer surface protein A (OspA) and 

outer surface protein C (OspC), are reciprocally regulated throughout the B. burgdorferi 

lifecycle. Very little is known about the regulation of OspA. These studies elucidate the 

regulatory mechanisms controlling the expression of OspA. Various truncations of the 

ospA promoter were created and then studied in our novel in vitro model of ospA 

repression or grown within the host-adapted model. A T-Rich region of the ospA 

promoter was determined to be a cis-element essential for both the full expression and 

full repression of ospA. 
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CHAPTER ONE: INTRODUCTION 

 

History of Lyme disease 

Lyme disease is the most common arthropod-borne disease in the United States. In 

1975, in Lyme, Connecticut, an unusual number of children presented symptoms of 

Juvenile Rheumatoid Arthritis (Steere et al., 1977). Although the definitive cause had not 

been confirmed, an infectious agent was suggested to be responsible for the arthritis 

displayed in the children. It was suspected that the unidentified infectious agent was 

being spread via an arthropod vector given that the patients lived near wooded areas 

and the highest frequency of outbreaks occurred in the summer (Steere et al., 1979; 

Steere et al., 1977). Around this same period, outbreaks of spotted fever spread by 

Rickettsia-infected ticks were occurring on Long Island, New York. In 1984, scientist 

Willy Burgdorfer was collecting tick samples in attempts to isolate a virulent strain of 

Rickettsia rickettsii. Incidentally, during this endeavor, Willy Burgdorfer discovered the 

spirochete Borrelia burgdorferi. It was suspected that this newly discovered bacterium 

was the causative agent of the arthritis cases in Lyme Connecticut (Burgdorfer, 2006; 

Burgdorfer et al., 1985). To confirm this notion, sera were taken from the patients in 

Lyme, Connecticut that were misdiagnosed with Juvenile Rheumatoid Arthritis and the 

presence of B. burgdorferi was confirmed.  

 

Epidemiology of Lyme disease 

B. burgdorferi is the primary causative agent of Lyme disease (Burgdorfer et al., 1985). 

Twelve of the thirty-seven known Borrelia species are capable of causing Lyme disease 

(Hengge et al., 2003). Lyme disease is an emerging infectious disease throughout 

Europe, Asia, South America, and Canada as well as the United States. According to the 

Center for Disease Control and Prevention (CDC), Lyme disease is the most common 
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vector-borne illness in the United States (2011). The number of reported Lyme disease 

cases has increased over the past 14 years. In 1996, there were 17,730 confirmed 

cases of Lyme disease while in 2010 there were 22,572 confirmed cases and 597 

probable cases of Lyme disease in the United States as reported by the CDC (Figure 1).  

 

Lyme disease is endemic in several areas of the United States, but is concentrated in 

the Northeastern and the upper Northeastern states (Figure 2). According to the CDC, 

94% of the total Lyme disease cases were reported from just the following 12 states: 

Connecticut, Delaware, Maine, Maryland, Massachusetts, Minnesota, New Jersey, New 

Hampshire, New York, Pennsylvania, Virginia and Wisconsin (2010). Lyme disease is 

most prevalent in these states because they have a wooded, grassy environment which 

supports B. burgdorferi’s vector, the deer tick Ixodes scapularis, as well as the 

mammalian hosts required for the complete B. burgdorferi natural lifecycle. 

 

Natural Lifecycle of B. burgdorferi  

In nature, B. burgdorferi is maintained via an enzootic cycle being transmitted between a 

tick vector, the Ixodes tick, and a mammalian host, usually small animals like the white-

footed mouse, rabbit and some birds (Anderson, 1998). In the United States, I. 

scapularis is the main arthropod vector in the upper Midwestern and the Northeastern 

parts of the country while the Western blacklegged tick, Ixodes pacificus, is the main 

arthropod vector in the western part of the country. The tick’s lifespan is only two years. 

During their lifespan, the tick matures from an egg and then transforms into larval, 

nymph, and adult stages (Figure 3). The tick takes three blood meals throughout its 

entire life- once during each of its last three stages of development.  
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The adult female ticks lay eggs during the spring time, and then the eggs hatch during 

the summer into larvae. Upon hatching, the naïve larvae acquire B. burgdorferi when the 

tick larva takes a blood meal from a Borrelia-infected small mammal, usually a white-

footed mouse. Because B. burgdorferi cannot be transmitted transovarially, infected ticks 

cannot pass the bacterium to its offspring and therefore the offspring must acquire the 

bacterium via the blood meal of an infected animal (Burgdorfer et al., 1985; Magnarelli et 

al., 1992; Piesman et al., 1986). 

 

In the subsequent spring, the Borrelia-infected larva molts into a nymph. During the 

summer, the nymph is able to feed a second time. During this feeding, the nymph takes 

a blood meal from a small, uninfected mammal and will transmit the bacteria to the 

mammal thus completing the transmission cycle (Lane and Loye, 1991; Spielman, 1994; 

Steere et al., 2004). It is also during this nymphal stage that the infected tick is most 

likely to transmit B. burgdorferi to humans, which serve as accidental hosts (Lane and 

Loye, 1991). After molting into an adult, the tick feeds for the third and final time during 

the fall, usually on a large mammal such as a deer. Although deer are not competent 

reservoirs for spirochetes, larger animals are needed to feed a large number of adult 

ticks to support tick mating (Matuschka et al., 1993). 
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Figure 1. Reported Cases of Lyme Disease by Year in the United States, 1996-2010 

(CDC Division of Vector-borne Infectious Diseases).  

The number of confirmed cases and estimated probable cases of Lyme disease, as 

reported by the State Health Departments, shows an increase of incidences over time. 

There were 22,572 confirmed cases of Lyme disease in 2010, a 37% increase from 

1996. 
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Figure 2. Reported Cases of Lyme Disease in the United States, 2009 (CDC 

Division of Vector-borne Infectious Diseases).  

For each case of Lyme disease confirmed by the State Health Departments, one dot is 

placed randomly within the county of the patient’s residence. Cases have been reported 

in nearly every state, but the county of residence is not necessarily the county in which 

the infection was acquired. The greatest number of cases was reported in the 

Northeastern and the upper Northeastern states. 
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Figure 3. The enzootic life cycle of Ixodes scapularis, the tick that spreads Lyme 

disease (CDC Division of Vector-borne Infectious Diseases).  

The Ixodes tick has four stages of life: the egg, larva, nymph and adult. The egg is laid 

during the spring and hatches into larva during the summer. The larva takes a blood 

meal from a B. burgdorferi-infected small mammal or bird and then molts into a nymph 

during the subsequent spring. The infected nymph feeds another time during the spring 

or summer during which the tick transmits the bacteria to an uninfected mammalian host 

thus completing the B. burgdorferi transmission cycle. The nymph molts into an adult 

and the adult mates, takes a blood meal from a large mammal, and then lays eggs in the 

following spring to complete the lifecycle of the tick. 
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Clinical Manifestations of Lyme disease 

The clinical manifestations of Lyme disease vary depending on its progression. Early 

localized infection (Stage One) is within days to weeks following initial infection with B. 

burgdorferi. These patients may present fever, headache, fatigue and Erythema 

Chronicum Migrans. Erythema Chronicum Migrans is the red macule at the site of the 

tick bite that expands to become an annular rash that has central clearing giving the 

appearance of a bulls-eye. Following the early localized infection is the early 

disseminated infection (Stage Two), which occurs weeks or months after initial 

inoculation. Symptoms in this stage include severe neurologic and cardiac complications 

such as meningitis, encephalitis, Bells’ palsy, and transient Atrio-Venticular block. The 

last stage of the disease is late or persistent infection (Stage Three) which begins 

months to years after initial infection. Intermittent and migratory arthritis, as well as 

neurologic and musculoskeletal problems such as encephalitis and altered memory and 

speech are manifestations of persistent infection (Warinner, 2001). 

 

B. burgdorferi Structure and Genome 

B. burgdorferi belongs to a group of bacteria phylogenetically distinct from other main 

bacterial groups, the spirochetes (Woese et al., 1984). Characteristic of spirochetes B. 

burgdorferi is a long, thin helical shaped bacterium with endoflagella that give B. 

burgdorferi its characteristic helical shape (Figure 4). There are 7 to 11 flagella inserted 

near the poles of the spirochete that wind around the rod-shaped protoplasmic cylinder, 

and overlap in the center, giving the spiral shape structure as well as motility to B. 

burgdorferi (Barbour and Hayes, 1986; Charon and Goldstein, 2002; Charon et al., 2009; 

Motaleb et al., 2000; Sartakova et al., 2001). B. burgdorferi lacks lipopolysaccharide and 

has an inner and outer membrane (Takayama et al., 1987). The outer membrane, or 

cytoplasmic cylinder, surrounds both the periplasmic flagella and the protoplasmic 
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cylinder, which is composed of a peptidoglycan layer and an inner membrane enclosing 

the cytoplasmic contents (Barbour and Hayes, 1986; Johnson et al., 1984; Kudryashev 

et al., 2010; Rosa, 2005; Rosa, 1997). 

 

The genetic composition of B. burgdorferi is complex and unusual, thus creating 

obstacles for genetic studies and genetic manipulation. The segmented genome is 

composed of a linear chromosome of approximately 910 kilobases (kb) along with 

eleven circular plasmids (cp) and twelve linear plasmids (lp) totaling approximately 610 

kb (Casjens, 2000; Fraser et al., 1997). B. burgdorferi has the largest number of 

plasmids of any characterized genome. The plasmids are numbered according to their 

size in kb pairs. The sequenced B. burgdorferi strain B31 contains circular plasmids cp9, 

cp26, and nine homologous plasmids (cp32-1 to cp32-9); linear plasmids lp5, lp17, lp21, 

lp25, four homologous plasmids (lp28-1 to lp28-4), lp36, lp38, lp54, lp56; and the 910 kb 

linear chromosome (Fraser et al., 1997). The stability of these plasmids varies. 

Frequently, some plasmids are lost after only a few generations of in vitro growth while 

others are stable through continuous passage (Barbour, 1988; Byram et al., 2004; 

Grimm et al., 2003; Schwan et al., 1995; Xu et al., 1996).  

 

Many of B. burgdorferi’s plasmids encode essential functions which are required for the 

spirochete to complete its natural infectious cycle (Labandeira-Rey et al., 2003; 

Labandeira-Rey and Skare, 2001; Lawrenz et al., 2002; Schwan et al., 1988; Xu et al., 

1996). Two plasmids relatively unstable during in vitro culture growth, which are also 

essential for persistent infection within the mammalian host, are lp25 and lp28-1 

(Labandeira-Rey et al., 2003; Purser and Norris, 2000). B. burgdorferi lacking lp25 

cannot grow in wild-type mice, severe combined immunodeficient (SCID) mice, or within 

dialysis membrane chamber (DMC) implants suggesting a physiological defect. The lp25 
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plasmid contains the gene pncA, encoding for a nicotinamidase, which is likely to have a 

role for biosynthesis of NAD that is essential for in vivo growth, but not required for in 

vitro growth (Purser et al., 2003; Purser and Norris, 2000).  

 

Similarly to lp25, the lp28-1 plasmid is also essential for the persistent infection in mice 

(Grimm et al., 2004a). In B. burgdorferi, the lp28-1 plasmid contributes to the 

spirochete’s ability to persistently infect the host by encoding for VlsE (Vmp-like 

sequence E). Vmp stands for variable major protein and contributes to the antigenic 

variation of proteins in spirochetes (Barbour, 1993). VlsE is able to cause antigenic 

variation by undergoing an extensive genetic recombination mechanism at the vls-locus 

(Coutte et al., 2009; Zhang and Norris, 1998). 
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Figure 4. The spirochete B. burgdorferi and schematic of its structure (Rosa et al., 

2005). 

(A) The scanning electron micrograph (left) showing the morphology of B. burgdorferi 

and the cross-sectional view of the transmission electron micrograph (right) showing the 

helical shape imparted by the periplasmic flagella. (B) Schematic of the spirochete 

illustrating the bundles of 7 to 11 flagella wound around the protoplasmic cylinder, 

overlapping in the middle, with the insertion points near the poles of the cell. The flagella 

are enclosed within the periplasm by the outer membrane. (C) The protoplasmic cylinder 

is enclosed by the cytoplasmic membrane and a peptidoglycan layer. The endoflagella 

are inserted into the cytoplasmic membrane and extend through the cell wall into the 

periplasm, the space between the cytoplasmic and outer membranes. 

 



 
 

11 

Lipoprotein Role in Virulence 

B. burgdorferi is a Gram-negative-like bacterium that contains an inner and outer 

membrane, but unlike Gram-negative bacteria, B. burgdorferi lacks lipopolysaccharide 

(LPS) (Takayama et al., 1987). Rather than LPS, Borrelia contains an abundance of 

lipoproteins on its outer surface (Figure 5). LPS and lipoproteins are both major 

components of the outer membrane of bacteria. In fact, B. burgdorferi has an unusually 

large amount of lipoproteins; putative lipoproteins comprise as much as 14.5% of the 

genes encoded on B. burgdorferi’s plasmids, suggesting the lipoproteins play an 

important role in virulence (Casjens, 2000). Of all the open reading frames predicted in 

B. burgdorferi, lipoproteins account for 7.8% and this number is much higher than other 

bacterial genomes such as Treponema pallidum, 2.1%, or Helicobacter pylori containing 

1.3% (Casjens, 2000; Fraser et al., 1997; Setubal et al., 2006).  

 

Lipoproteins are membrane-anchored proteins found in Borrelia that are peripherally 

tethered to the lipid bilayer leaflets of the inner or outer membranes via the lipoprotein’s 

acyl group of the terminal cysteine. The lipoprotein begins as a prolipoprotein precursor 

within the cytoplasm. Next, the prolipoprotein is translocated through the inner 

membrane via a sec-dependent transport mechanism, and the ABC transporter-like 

complex, LolCDE, releases the outer membrane-targeted lipoproteins from the inner 

membrane (Yakushi et al., 2000). After release from the inner membrane, while in the 

periplasm, the lipids are modified to form mature lipoproteins containing a lipid-modified 

N-terminus. Lipoprotein maturation is suggested to occur in three steps: 1) 

diacylglyceryltransferase transfers a diacylglyceride to the sulfur of the cysteine side 

chain as specified by the signal sequence LXYC on the unmodified prolipoprotein; 2) 

signal peptidase II cleaves at the amino side of the cysteine residue to form a 

prolipoprotein; and 3) transacylase adds a third fatty acid to the new amino terminus via 
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an amide linkage to form the mature lipoprotein (Fraser et al., 1997; Hayashi and Wu, 

1990; Juncker et al., 2003). The periplasmic chaperone, LolA, forms a complex with the 

lipoprotein and crosses through the periplasm (Yokota et al., 1999). Next, this complex 

interacts with LolB, a receptor on the outer membrane, mediating the anchor of 

lipoproteins to the inner leaflet of the outer membrane (Yokota et al., 1999). The 

lipoprotein is flipped across the outer membrane through an unidentified outer 

membrane module. 

 

The most abundant lipoproteins are outer surface lipoproteins (Osp). Of these Osps, the 

most well-known of these outer surface proteins are OspA, OspB, OspC, OspD, OspE 

and OspF (Bergstrom et al., 1989; Burgdorfer et al., 1983; Howe et al., 1985; Lam et al., 

1994; Wilske et al., 1993; Zumstein et al., 1992). Other lipoproteins include decorin-

binding proteins (Dbp), Borrelia glycosaminoglycan-binding proteins (Bgp), and the VlsE. 

Interestingly Borrelial lipoproteins and Gram-negative bacteria’s LPS share similar roles: 

1) they induce the host inflammatory response and are targets for bactericidal 

antibodies; 2) they contribute to the stability and structural integrity of the bacteria; and 

3) they act as adhesions. Osps also have additional functions not shared by LPS: they 

are able use lipoproteins to 1) adapt to the various host environments; 2) evade 

phagocytosis by the host immune system; and 3) acquire nutrients (Liang et al., 2002).  

 

Borrelial lipoproteins and Gram-negative bacteria’s LPS activate the mammalian host’s 

innate immune system. Borrelia’s activation of the host immune system is achieved via 

toll-like receptor II (TLR2) and toll-like receptor I (TLR1), whereas toll-like receptor IV 

(TLR4) recognizes the LPS of Gram-negative bacteria. TLR2 heterodimerizes with TLR1 

to recognize triacyl-lipoproteins. The pattern recognition receptors of TLR2 recognize 
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Borrelial lipoproteins and activate the host’s inflammatory mediators to elicit the 

inflammatory response at the site of infection (Hirschfeld et al., 1999).  

 

Also similarly to LPS, Osps play a role in the structural integrity of the bacteria. 

Throughout its lifecycle, B. burgdorferi must transition to and survive within many 

chemically different environments within its tick and the mammalian hosts. To respond to 

and adapt to these various environments, the bacteria undergo drastic adaptive changes 

through differential gene expression to alter its surface lipoprotein expression profile 

(Brooks et al., 2003; de Silva and Fikrig, 1997; Indest et al., 2000; Liang et al., 2002; Pal 

et al., 2004b; Seshu and Skare, 2000). The absence of Osps lead to a weak bacterial 

membrane, however addition of Osps is able to restore the structural integrity of the 

lipoprotein (Xu et al., 2008). 

 

Another characteristic shared with LPS is the lipoprotein’s ability to function as an 

adhesion molecule used in bacterial transport and binding. Several lipoproteins have 

various adherence capabilities. Bgp is able to bind heparin sulphate and plays a role in 

mammalian infection (Parveen et al., 2003; Parveen and Leong, 2000). BBK32 is a 

lipoprotein that is able to bind fibronectin to promote Borrelia attachment to 

glycosaminoglycans and is important for dissemination (Probert and Johnson, 1998; 

Seshu et al., 2006). OspA is a lipoprotein that is able to attach to a protein within the tick 

gut, which is important for Borrelia colonization within the tick (Pal et al., 2000). 

Lipoproteins play a major role in Borrelia adhesion in a similar manner that LPS plays in 

adherence for Gram negative bacteria.  
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Figure 5. Membrane structure of Gram-negative bacteria and Borrelia. 

Both Gram-negative bacteria and Borrelia contain an inner membrane and outer 

membrane with a peptidoglycan layer located within the periplasmic space. Gram-

negative bacteria contain LPS on the outer surface whereas Borrelia lacks LPS. Rather, 

Borrelia contains an abundance of lipoproteins on its outer surface. 
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Functions of the lipoproteins OspA and OspC 

Two major Osps which are highly regulated are OspA and OspC; both are located on the 

outer membrane of B. burgdorferi. OspA and OspC are reciprocally regulated throughout 

the lifecycle of B. burgdorferi. B. burgdorferi residing within the midgut of unfed ticks 

have OspA present, while OspC is absent. However, upon a blood meal, the bacteria 

migrate from the tick midgut to the tick salivary glands to be transmitted to the 

mammalian host. During this transition, OspA is down-regulated and OspC is expressed 

(de Silva et al., 1996; Kobryn and Chaconas, 2001; Schwan and Piesman, 2000; 

Schwan et al., 1995). Some environmental and host signals affecting OspA and OspC 

expression include pH, cell density, temperature, and the presence of blood or other 

nutritional factors (Carroll et al., 2000; Carroll et al., 2003; Ramamoorthy and Scholl-

Meeker, 2001; Revel et al., 2002; Schwan et al., 1995; Tokarz et al., 2004; Yang et al., 

2004). For example, during in vitro growth cultivation at 23°C, OspC is not expressed, 

but a temperature shift to 37°C results in OspC being highly expressed. OspA, however, 

is unaffected by temperature: at both 23°C and 37°C, OspA is constitutively expressed 

which makes studying the repression of ospA difficult. 

 

The presence of OspC is essential for 1) the migration of B. burgdorferi from the tick 

vector to the mammalian host; and 2) the infection of the mammalian host (Gilbert et al., 

2007; Grimm et al., 2004b; Pal et al., 2004b; Tilly et al., 2006). Studies have shown that 

ospC mutant B. burgdorferi was not able to establish an infection in either wild-type mice 

or SCID mice. However, the ospC mutant was able to be transmitted to and establish 

infection within the tick. Therefore, OspC is not required to establish an infection within 

the tick, but OspC is essential for the invasion and infection of mammalian host (Yang et 

al., 2003a). To help facilitate the invasion of Borrelia into the mammalian host, OspC 

specifically binds Salp15. Salp15 is a tick salivary protein that blocks the mammalian 
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host’s CD4+ T-cell activation. This suppresses the host’s immune response at the site of 

the tick bite (Anguita et al., 2002; Ramamoorthi et al., 2005). In a study that compared B. 

burgdorferi without Salp15 present in the environment to B. burgdorferi with Salp15 

present, it was found that B. burgdorferi with Salp15 present have an increased bacterial 

burden and are better protected against antibody-mediated killing. This indicates that 

Salp15 assists B. burgdorferi in evading the host immune system by blocking the host’s 

CD4+ T-cell activation thereby inhibiting the IgG antibody response (Anguita et al., 2002; 

Ramamoorthi et al., 2005). 

 

OspC is required for the transmission and early infection of the mammalian host while 

OspA, on the other hand, is required for the colonization of B. burgdorferi within the tick 

(Yang et al., 2004). OspA specifically binds the tick receptor TROSPA found within the 

midgut of the tick to facilitate attachment of the spirochete to the vector midgut (Pal et 

al., 2004a). The receptor in the tick gut serves as a ligand for tethering spirochetes via 

OspA binding (Pal et al., 2000; Pal et al., 2004a). While in the midgut of an unfed tick, 

spirochetes express high levels of OspA; together OspA and the flagellin proteins 

account for one-third of the total protein in B. burgdorferi (Coleman and Benach, 1987). 

When the infected tick feeds on a vertebrate host, the bacterium multiplies within the tick 

midgut and OspA is repressed while OspC is up-regulated (Schwan et al., 1995). Little 

or no OspA is present in the B. burgdorferi transmitted to the mammalian host (Cassatt 

et al., 1998). The repression of ospA is essential during mammalian infection, because 

even low levels of OspA can elicit a humoral response by the host to cause clearance of 

the bacterium or cause great immunological pressure on the pathogen (Strother et al., 

2007; Xu et al., 2008). While OspA is not essential for early infection in mice, OspA is 

necessary for tick infection and maintenance in the midgut (Yang et al., 2004). The 

converse is true about OspC: OspC is essential for transmission to and early infection in 
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the vertebrate host, but is not necessary for the infection and maintenance within the tick 

midgut (Grimm et al., 2004b; Pal et al., 2004b).  

 

Reciprocal Production of OspA and OspC 

As mentioned previously, B. burgdorferi drastically alters its surface lipoproteins as a 

strategy to adapt to its two diverse host environments: the tick and the mammalian host 

(Anguita et al., 2002; Haake, 2000; Philipp, 1998; Schwan, 2003). In particular, during 

tick feeding, the two virulence factors OspA and OspC are reciprocally regulated and this 

coordinated regulation is believed to be important for the transmission of the spirochete 

between the tick and the mammalian host (Akins et al., 1998; de Silva et al., 1996; 

Montgomery et al., 1996; Stevenson et al., 1995). The reciprocal regulation has been 

shown in populations of cells as well as within individual cells using flow cytometry. 

Individual spirochetes coordinate the increase of OspC with the down-regulation of OspA 

(Srivastava and de Silva, 2008). 

 

Most bacterial species have several sigma factors which are able to bind to an RNA 

polymerase core to form an RNA polymerase holoenzyme. The addition of a sigma 

factor to the RNA polymerase allows for promoter recognition specificity during the 

initiation of transcription. Most bacteria have a general housekeeping sigma factor (σ70) 

which transcribes the majority of genes as well as several alternative sigma factors. The 

alternative sigma factors are able to distinguish different promoter sequences to direct 

the RNA polymerase to initiate transcription of select groups of genes in response to 

various environmental or developmental signals. B. burgdorferi contains only three 

sigma factors: RpoD (σ70), and the alternative sigma factors RpoN (σ54) and RpoS (σS) 

(Fraser et al., 1997).  
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The Response regulator protein II (Rrp2), in combination with RpoN and RpoS, forms 

the Rrp2-RpoN-RpoS regulatory network. During mammalian acquisition of Borrelia, 

Rrp2-RpoN-RpoS plays a central role in controlling the repression of OspA and the 

production of OspC as well as other differentially expressed genes in B. burgdorferi like 

decorin-binding protein A (DbpA), which facilitates Borrelia adherence to mammalian 

extracellular matrix, and the lipoprotein BBK32 that binds to mammalian fibronectin to 

facilitate spirochete acquisition (Figure 6) (Boardman et al., 2008; Caimano et al., 2007; 

Hubner et al., 2001; Yang et al., 2003a). The Rrp2-RpoN-RpoS pathway becomes 

activated through a cognate sensor histadine kinase Hk2 (gene BB0764) or acetyl 

phosphate(Xu et al., 2010) sensing environmental signals and activating Rrp2 (gene 

BBE0763) via phosphorylation. Signals such as low pH, elevated temperature and CO2 

concentration, high cell density and the presence of host signals are known to activate 

the pathway upon tick feeding (Akins et al., 1998; Burtnick et al., 2007; Caimano et al., 

2007; Carroll et al., 1999; Indest et al., 1997; Stevenson et al., 1995; Yang et al., 2003b). 

Rrp2 is an NtrC-like bacterial two-component response regulator that functions as an 

enhancer binding protein (EBP) dependent on RpoN to activate transcription. Together, 

RpoN and the phosphorylated Rrp2 control the transcription of RpoS, a second 

alternative sigma factor. RpoS then up-regulates many genes, including ospC, and 

represses others, like ospA, via an unknown mechanism (Boardman et al., 2008; 

Caimano et al., 2007; Fisher et al., 2005; Ouyang et al., 2008; Yang et al., 2003b; Yang 

et al., 2005).  

 

A study using B. burgdorferi grown within DMC’s implanted into rat peritoneal cavities 

(the “Host-adapted model”) demonstrated that wild-type bacteria had high OspC and low 

OspA levels, a profile expected for B. burgdorferi grown within a mammal (Caimano, 

2005). However, rpoS mutants grown in the Host-adapted model were not able to 
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repress ospA nor express ospC implying that ospA repression and ospC activation are 

connected at the molecular level through an unknown mechanism involving RpoS. 

 

There is a second two-component response regulator predicted to be encoded by the B. 

burgdorferi genome, Response regulator protein 1 (Rrp1, gene BB0419). While Hk2 and 

the Rrp2-RpoN-RpoS pathway promote spirochete transmission from the tick to the 

mammal and early infection of the mammal, the two-component system of histadine 

kinase Hk1 (gene BB0420) and response regulator Rrp1 promotes spirochete survival 

within the fed tick midgut (Caimano et al., 2011). It is predicted that Hk1 activates Rrp1 

through phosphorylation. Rrp1, a guanylatecyclase, is responsible for the synthesis of 

the second messenger bis-(3’-5’)-cycle dimericguanosine monophosphate (c-di-GMP) 

which affects the production and activity of Borrelial virulence factors such as those 

responsible for glycerol transport (He et al., 2011; Rogers et al., 2009; Ryjenkov et al., 

2005). Because ospA becomes upregulated during transmission from the mammal to the 

tick, an Rrp1 activation condition, the Rrp1 pathway may contribute to the activation of 

ospA. 
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Figure 6. The Rrp2-RpoN-RpoS regulatory network, σ54-σS sigma factor cascade, 

controls the inverse production of OspA and OspC. 

An unfed, infected tick takes a blood meal from a mammal and engorges with blood. In 

the fed, infected tick as well as the infected mammal, the Rrp2-RpoN-RpoS pathway is 

activated in B. burgdorferi upon response regulator Rrp2 phosphorylation by histadine 

kinase Hk2. Rrp2 in conjunction with RpoN activates transcription of RpoS. RpoS 

activates outer surface lipoprotein C (OspC) and OspC-related genes like decorin-

binding protein A (DbpA) and the fibronectin-binding protein (BBK32). RpoS represses 

OspA via an unknown mechanism. The Rrp2-RpoN-RpoS pathway is not activated in the 
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unfed, infected tick. The mechanism of OspA expression is also not known (←, positive 

activation; Ⱶ, negative activation). 
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Genetic Regulation of ospA 

The signals and pathways by which ospA is expressed and the mechanism by which 

RpoS represses ospA have not been fully elucidated. OspA and OspB are encoded by a 

two-gene operon, the ospAB operon (genes BBA15 and BBA16), located on the lp54 

plasmid (Figure 7) (Howe et al., 1986). The RpoD promoter drives the expression of the 

ospAB operon (Sohaskey et al., 1999). RpoD is a major sigma factor within B. 

burgdorferi and is constitutively expressed. While the expression of ospA has not been 

fully elucidated, it is known that the σ70-driven ospAB promoter contains three putative 

cis-elements: an inverted repeats (IR) region, a direct repeats (Rept) region, as well as a 

thymine rich (T-Rich) region (Sohaskey et al., 1999). Sohaskey et al. (1999) used the 

chloramphenicol acetyltransferase (CAT) reporter to show deletion of the T-Rich region 

of the ospAB promoter results in a decrease in reporter expression. Xu et al. (2010) 

demonstrated, by measuring ospA transcript of the ospA reporter within an ospAB 

mutant, that the Repeats and the T-Rich regions of the ospAB promoter are required for 

the full expression of ospA.  

 

The alternative sigma factor RpoS, which is controlled through the Rrp2-RpoN-RpoS 

pathway, is required for ospA repression (Caimano et al., 2005; Yang et al., 2003a). It is 

postulated that RpoS represses ospA either indirectly or directly (Figure 8). A possible 

method by which RpoS could indirectly repress ospA is by controlling the expression of 

an unknown ospA repressor that binds to the ospAB promoter cis-element required for 

ospA repression. This would subsequently prevent the transcription of ospA by blocking 

access of the RpoD-containing holoenzyme to the ospAB promoter. Conversely, RpoS 

could bind directly to the ospAB promoter in the presence of an accessory factor that is 

specific to in vivo cultivation, the only condition in which ospA is repressed. RpoS could 
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then bind to the promoter blocking the RpoD-dependent transcription of ospA (Caimano 

et al., 2005). 

 

In this study we seek to determine the cis-elements required for the repression and the 

activation of the ospAB promoter. A previous study by Sohaskey et al., used the 

transient CAT reporter system to evaluate which cis-elements were required for the 

activation of ospA. Their studies suggest that the T-Rich region is required for the full 

activation of ospA, however these studies were done using a transient, nonreplicating 

reporter. This reporter is transient because it does not replicate upon bacteria replication 

and is therefore an unstable reporter. Our goal is to develop a stable, replicating reporter 

system to more accurately determine which cis-elements play a role in the regulation of 

ospA. Another goal of these studies is to use our stable reporter system to identify the 

trans-factors required for the full activation and repression of ospA. And lastly, we want 

to develop an in vitro model to study ospA repression. Studying ospA repression has 

been proven tedious as the only way to acquire Borrelia with repressed ospA is to 

cultivate Borrelia in in vivo conditions. Cultivating Borrelia in vivo produces low yields of 

bacteria, so it is difficult to collect enough bacteria to use in experiments. The overall 

goal of our studies is to further elucidate the mechanisms by which ospA is regulated. 
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Figure 7. The ospAB operon the putative regulatory cis-elements in the upstream 

region of the ospA gene. 

(A) Schematic of the ospAB operon located on the B. burgdorferi linear plasmid 54. (B) 

Inverted arrows (>> and <<) denote the inverted repeat element (IR); arrowheads (>>) 

denote the repeats element (Rept); asterisks (*) denote the T-Rich element (T-Rich). 

The -35 and -10 promoter elements, ribosomal-binding site (RBS), and the ATG start 
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codon (Met) are underlined. Arrows (→) indicate the 3’ primer (P3’) and 5’ primers (PFL; 

PΔIR; PΔIR,Rept ; or PΔIR,Rept,T-Rich) used to create the four ospAB promoter constructs shown 

below. (C) Schematic representation of the ospAB promoter deletion constructs 

controlling luciferase or ospA expression All four ospAB promoter constructs are 

denoted by the prefix PospAB- followed by the name of the corresponding deletion 

(indicated at the left) with the size of the resulting promoter (indicated at the right) in 

base pairs (bp). The full-length promoter (PospAB-FL) contains all three putative cis-

elements; PospAB-∆IR contains the Repeats and the T-Rich regions; PospAB-∆IR,Rept 

contains only the T-Rich element; PospAB-∆IR,Rept,T-Rich promoter does not contain 

any of the putative cis-elements; and the PospAB-T-Rich-mut is the full-length ospAB 

promoter with a mutated T-Rich region. 
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Figure 8. Proposed models for the RpoS-dependent ospA repression. 

(Left panel) RpoS controls the expression of an unknown ospA repressor protein. The 

unknown ospA repressor protein binds to the ospAB promoter at the T-Rich cis-element, 

which in turn prevents transcription of ospA by the RpoD-containing holoenzyme. (Right 

panel) Association with an in vivo-specific accessory factor allows RpoS to bind directly 

to the ospAB promoter thereby blocking RpoD-dependent transcription initiation. 

Abbreviations: RNA polymerase (RNAP), repressor (Rep), accessory factor (AF). 
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HYPOTHESIS 

 

Based on the previous literature concerning ospA regulation, I propose the following: 

First, I hypothesize that either the IR, Repeats, or T-Rich regions on the ospAB promoter 

are key components required for the full activation or repression of ospA. The rationale 

behind this hypothesis is based on previous literature which states these three regions 

are highly conserved suggesting that they are of importance (Sohaskey et al., 1999).  

 

Second, ospA is being repressed either directly or indirectly by RpoS. Previous literature 

has shown that RpoS is required for ospA repression (Caimano et al., 2005). This 

suggests that either RpoS is able to directly bind to the ospAB promoter to prevent RpoD 

from initiating transcription or RpoS is able to control the expression of an unknown 

ospA repressor.  

 

Third, I hypothesize that an in vitro model can be created to study ospA repression. 

ospA is constitutively expressed in vitro. In B. burgdorferi, the abrogation of ospAB 

results in the constitutive expression of RpoS (He et al., 2008). Since RpoS mediates the 

repression of ospA either directly or indirectly, an ospAB mutant would have RpoS 

constitutively expressed thereby creating ospA repression conditions. In order to 

measure ospA repression within the ospAB mutant, a luciferase reporter can be placed 

under the control of an ospAB promoter to measure the ospAB promoter activity and 

thus allow for a novel method to study ospA repression in vitro.  
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CHAPTER TWO: MATERIALS AND METHODS 

 

Bacterial Strains and Growth Conditions 

The bacterial strains used in this study are described in Table 1. The TOP10 E. coli 

strain (Invitrogen, Carlsbad, CA) was used as the cloning host. B. burgdorferi clones 13A 

and BbAH130 as well as the ospAB mutant strain were described previously (He et al., 

2008; Hubner et al., 2001; Xu et al., 2007; Yang et al., 2004). The B31 13A strain was 

isolated by serially diluting a wild-type B. burgdorferi strain B31 5A13 to identify a single 

clone which lost lp25 and lp56 but retained the remaining 19 plasmids of the B. 

burgdorferi genome. This clone, 13A, is more easily transformable because it lost the 

lp25 and lp56 plasmids which contain restriction enzymes that negatively affect 

transformation efficiency (Lawrenz et al., 2002). BbAH130 is an infectious strain derived 

from plating a low passage 297 strain on Barbour-Stoenner-Kelly (BSK) agar medium. B. 

burgdorferi 297 is an infectious strain which was isolated from the cerebrospinal fluid of 

a patient with Lyme disease (Yang et al., 2004). The ospAB mutant strain (ΔospAB) was 

previously generated by electroporating the suicide vector, pXT-OspA-Strep, into the B. 

burgdorferi strain BbAH130. The suicide vector underwent homologous recombination 

with the wild-type Borrelia genome to insert the streptomycin-resistance gene (aadA) 

into the native ospA gene thus inactivating the ospAB operon.  

 

E. coli cultures were grown with appropriate antibiotics at 37°C with aeration in Miller 

Difco Luria Bertani (LB) broth (Becton, Dickinson and Company, Sparks, MD) or grown 

on LB plates consisting of LB broth with 2% agar. Kanamycin concentrations for both LB 

broth and LB agar were 50 µg ml-1 while ampicillin was 100 µg ml-1. Borrelia were 

cultivated in vitro at 37°C with 5% CO2 in BSK medium (Sigma, St Louis, MO) 

supplemented with 6% normal rabbit serum (Pel-Freez Biologicals, Rogers, AR). 



 
 

29 

Antibiotic concentrations used to select for mutants were 300 μg ml−1 for kanamycin and 

100 μg ml−1 for streptomycin. Dark-field microscopy was used to enumerate spirochetes. 

Cultures were harvested at mid-logarithmic phase of growth (approximately 3×107 

spirochetes ml−1), unless otherwise noted. For the norepinephrine studies, cultures were 

grown to mid-log in 10 ml BSK, split equally into two 5ml cultures and then centrifuged at 

4000 x g for 20 minutes. The pellets were suspended into either BSK only or BSK with 

the addition of norepinephrine bitartrate (Sigma) to a final concentration of 10µM. After 

suspension, cultures were grown for 48 hours before harvesting. 
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Table 1. Strains and plasmids used in this study. 

Plasmid or Strain Description Source 

Plasmids 
  

 
pBSV2 

B. burgdorferi/E. coli shuttle vector with native 

ospAB 

(He et al., 

2008) 

 
pOspA 

pBSV2 with full-length ospAB promoter 

controlling native ospA 

(He et al., 

2008) 

 
pOspAB 

pBSV2 with full-length ospAB promoter 

controlling native ospAB 

(He et al., 

2008) 

 
pOspAB-∆IR pOspA carrying PospAB-∆IR controlling OspA This study 

 
pOspAB-ΔIR,Rept 

pOspA carrying PospAB-∆IR,Rept controlling 

OspA 
This study 

 
pOspAB-ΔIR,Rept,T-Rich 

pOspA carrying PospAB-∆IR,Rept,T-Rich 

controlling OspA 
This study 

 
pOspAB-T-Rich-mut 

pOspA carrying PospAB-T-Rich-mut 

controlling OspA 
This study 

 
pJD48 

B. burgdorferi/E. coli shuttle vector with a 

luciferase reporter under control of no 

promoter 

(Blevins et 

al., 2007) 

 
pLuc-PflaB 

pJD48 carrying flaB promoter controlling 

luciferase 
This study 

 
pLuc-FL 

pJD48 carrying PospAB-FL controlling 

luciferase 
This study 

 
pLuc-∆IR 

pJD48 carrying PospAB-No-IR controlling 

luciferase 
This study 

 
pLuc-∆IR,Rept 

pJD48 carrying PospAB-No-IR,Rept 

controlling luciferase 
This study 



 
 

31 

 
pLuc-∆IR,Rept,T-Rich 

pJD48 carrying PospAB-No-IR,Rept,T-Rich 

controlling luciferase 
This study 

 
pLuc-T-Rich-mut 

pJD48 carrying PospAB-T-Rich-mut 

controlling luciferase 
This study 

B. burgdorferi Strains 
  

 
13A Clone derived from B. burgdorferi B31 5A13 

(Xu et al., 

2007) 

 
AH130 Clone derived from B. burgdorferi RJ297 

(Hubner et 

al., 2001) 

 
∆ospAB ospAB mutant 

(Yang et al., 

2004) 

 
AH130/pJD48 AH130 receiving pJD48 This study 

 
AH130/pLuc-PflaB AH130 receiving pLuc-PflaB This study 

 
AH130/pLuc-FL AH130 receiving pLuc-FL This study 

 
AH130/pLuc-∆IR AH130 receiving pLuc-∆IR This study 

 
AH130/pLuc-∆IR,Rept AH130 receiving pLuc-∆IR,Rept This study 

 

AH130/pLuc-∆IR,Rept,T-

Rich 
AH130 receiving pLuc-∆IR,Rept,T-Rich This study 

 
AH130/pLuc-T-Rich-mut AH130 receiving pLuc-T-Rich-mut This study 

 
13A/pJD48 13A receiving pJD48 This study 

 
13A/pLuc-PflaB 13A receiving pLuc-PflaB This study 

 
13A/pLuc-FL 13A receiving pLuc-FL This study 

 
13A/pLuc-∆IR 13A receiving pLuc-∆IR This study 

 
13A/pLuc-∆IR,Rept 13A receiving pLuc-∆IR,Rept This study 

 

13A/pLuc-∆IR,Rept,T-

Rich 
13A receiving pLuc-∆IR,Rept,T-Rich This study 

 
13A/pLuc-T-Rich-mut 13A receiving pLuc-T-Rich-mut This study 
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∆ospAB/pOspAB ∆ospAB receiving pOspAB This study 

 
∆ospAB/pOspAB-∆IR ∆ospAB receiving pOspAB-∆IR This study 

 

∆ospAB/pOspAB-

∆IR,Rept 
∆ospAB receiving pOspAB-∆IR,Rept This study 

 

∆ospAB/pOspAB-

∆IR,Rept,T-Rich 
∆ospAB receiving pOspAB-∆IR,Rept,T-Rich This study 

 
∆ospAB/pJD48 ∆ospAB receiving pJD48 This study 

 
∆ospAB/pLuc-PflaB ∆ospAB receiving pLuc-PflaB This study 

 
∆ospAB/pLuc-FL ∆ospAB receiving pLuc-FL This study 

 
∆ospAB/pLuc-∆IR ∆ospAB receiving pLuc-∆IR This study 

 
∆ospAB/pLuc-∆IR,Rept ∆ospAB receiving pLuc-∆IR,Rept This study 

 

∆ospAB/pLuc-

∆IR,Rept,T-Rich 
∆ospAB receiving pLuc-∆IR,Rept,T-Rich This study 

 
∆ospAB/pLuc-T-Rich-mut ∆ospAB receiving pLuc-T-Rich-mut This study 

 
∆ospAB/rrp2G239C ∆ospAB with rrp2 point mutation 

(He et al., 

2008) 

 
∆ospAB/∆rpoN ∆ospAB with inactivated rpoN 

(He et al., 

2008) 

 
∆ospAB/∆rpoS ∆ospAB with inactivated rpoS 

(He et al., 

2008) 
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Generation of Native OspA Reporter Vectors 

The plasmid pOspAB is a shuttle vector containing origins of replication for both E. coli 

(ColE1) and B. burgdorferi (cp9) as previously described (He et al., 2008; Yang et al., 

2004). pOspAB contains the native ospA gene as a reporter under the control of the full-

length ospAB promoter containing all three of the putative cis-elements. The plasmid 

also has a kanamycin resistance marker. To construct shuttle vectors with various 

deletions of the ospAB promoter controlling the ospAB reporter, multiple polymerase 

chain reactions (PCR) were performed using the primer sets indicated in Table 2. 

pOspAB, containing the full-length ospAB promoter, served as the cloning template. 

Each PCR reaction used Taq DNA Polymerase (New England BioLabs) and the same 3’ 

primer, ospAB-Down-3'-SacI, but different 5’ primers. The 5’ primers were used in the 

reactions to create various length ospAB promoter fragments as noted in the ΔIR 

promoter removed the IR region from the full-length ospAB promoter; the ΔIR,Rept 

promoter removed the promoter segment encompassing the IR and the Repeat region of 

the ospAB promoter; and the ΔIR,Rept,T-Rich promoter removed the promoter segment 

encompassing each of the three putative cis-elements from the ospAB promoter.  

 

During PCR amplification of the various promoters, the 3’ primer ospAB-Down-3’-SacI 

introduced a SacI restriction site to the 3’ end of the resulting fragments while each of 

the 5’ primers introduced an XbaI restriction site at the 5’ end (Table 2). The resulting 

PCR fragments (ΔIR, ΔIR,Rept, and ΔIR,Rept,T-Rich) were cloned into the pSC-A-

amp/kan TA cloning vector (Stratagene, La Jolla, CA) to create the plasmids. Blue/white 

screening was used to select for transformants by spreading 40 µl of 40 μg ml−1X-gal 

dissolved in dimethylformamide on top of the agar plates containing ampicillin. The three 

resulting plasmids and the parental plasmid pOspAB were digested with SacI and XbaI 

and then ligated together to create pOspAB-∆IR, pOspAB-∆IR,Rept, and pOspAB-



 
 

34 

∆IR,Rept,T-Rich (Table 1). These plasmids have various ospAB promoters site-

directionally inserted upstream of the ospAB gene to control the transcription of ospAB. 

pOspAB has the full-length ospAB promoter containing all three of the putative cis-

elements: the IR, Repeats and T-Rich regions. The pOspAB-∆IR contains the Repeat 

and the T-Rich regions, but not the IR. The pOspAB-∆IR,Rept contains the T-Rich region 

but lacks the IR and Repeats regions. pOspAB-∆IR,Rept,T-Rich lacks all three of the 

putative cis-elements: IR, Repeats, and T-Rich.  

 

Site-directed mutagenesis was performed by Genscript (Piscataway, NJ) to mutate the 

T-Rich region of the full-length ospAB promoter. The T-Rich region’s 10 bp sequence 

“TTATTTTTT” of the plasmid pOspAB was mutated to the 10 bp sequence 

“CGCGGCCGCG” to create the plasmid pOspAB-T-Rich-mut. This plasmid contains 

ospAB expressed by the PospAB-T-Rich-mut promoter, which is the full-length ospAB 

promoter with a mutated T-Rich region.  

 

To place the PospAB-T-Rich-mut promoter controlling luciferase expression, PCR 

amplification of the plasmid pOspAB-T-Rich-mut using the primers ospA-FL-BglII and 

ospA-ATG-3-NdeI was performed (Table 2). The resulting promoter fragment and the 

pJD48 plasmid were digested with NdeI and BglII and then ligated to create the plasmid 

pLuc-T-Rich-mut. This plasmid contains luciferase expressed by the full-length ospAB 

promoter with a mutated T-Rich region.  
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Table 2. Primers used in this study. 

 

  

Primer name Sequence (5' to 3') Purpose

ospAB- No-IR-XbaI CATCTAGACATTAAATCTAAGCTTAATTAGAAC
5' primer; PCR of the ospAB  promoter 

for constructing pOspAB-ΔIR

ospAB- No-Repeat-XbaI CATCTAGACCAAACTTAATTGAAGTTATTATC
5' primer; PCR of the ospAB  promoter 

for constructing pOspAB-ΔIR,Rept

ospAB- No-T-Rich-XbaI CATCTAGAATTTTCTATTTGTTATTTGTTAATC

5' primer; PCR of the ospAB  promoter 

for constructing pOspAB-ΔIR,Rept,T-

Rich

ospAB- Down-3'-SacI CTTGAGCTCCTAAGAGACTTTTTCCAGAAGTAACA

3' primer; PCR of the ospAB  promoter 

for constructing all of above listed 

plasmids.

ospA -FL-BglII AGATCTAGACATTTAACTTTTC
5' primer; PCR of the ospAB  promoter 

for constructing pLuc-FL

ospA -No-IR-BglII CTAGATCTCATTAAATCTAAGCTTAATTAGAA
5' primer; PCR of the ospAB  promoter 

for constructing pLuc-ΔIR

ospA- No-Repeat-BglII CTAGATCTCCAAACTTAATTGAAGTTATTAT
5' primer; PCR of the ospAB  promoter 

for constructing pLuc-ΔIR,Rept

ospA- No-T-Rich-BglII CTAGATCTAATTTTCTATTTGTTATTTGTTAAT
5' primer; PCR of the ospAB  promoter 

for constructing pLuc-ΔIR,Rept,T-Rich

ospA -ATG-3-NdeI CATATGATATTCTCCTTTTATATTAATATAACTT

3' primer; PCR of the ospAB  promoter 

for constructing the four above listed 

plasmids.

FlaB-F AGATCTTACCTTGGATTTTACCGTTAAGCGC
5' primer; PCR of the flaB  promoter for 

constructing pLuc-PflaB

FlaB-R CATATGATATCATTCCTCCATGATAAAAT
3' primer; PCR of the flaB  promoter for 

constructing pLuc-PflaB

Q-HX-OspA-F TAGCAGCCTTGACGAGAAAAACAG
5' primer; PCR of the ospA  gene for qRT-

PCR

Q-HX-OspA-R TTATCAGAAGTTCCTTTAAGCTCA
3' primer; PCR of the ospA  gene for qRT-

PCR

Q-HX-FlaB-F ACCAGCATCACTTTCAGGGTCTCA
5' primer; PCR of the flaB  gene for qRT-

PCR

Q-HX-FlaB-R CAGCAATAGCTTCATCTTGGTTTG
3' primer; PCR of the flaB  gene for qRT-

PCR

*Restriction sites for purpose of cloning are highlighted in boldface letters
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Generation of Luciferase Reporter Vectors 

The previously described plasmid pJD48 was used to create the luciferase reporter 

vectors (Blevins et al., 2007). pJD48 is a shuttle vector containing a replication origin for 

B. burgdorferi (cp9) and for E. coli (ColE1). pJD48 contains an NdeI and BglII cloning 

site upstream of the luciferase gene which allows for placement of a promoter to control 

the expression of the luciferase. In addition to luciferase, pJD48 also contains a 

kanamycin-resistance marker. To create luciferase reporter constructs with varying 

length ospAB promoters, serial truncations of the ospAB promoter were created via PCR 

using four various 5’ primers and using the same 3’ primer (PospA-ATG-3-NdeI). The 5’ 

primer introduced a BglII restriction site to the 5’ PCR fragment end while the 3’ primer 

introduced an NdeI restriction site to the 3’ end of the PCR fragment; pOspA, containing 

the full-length wild-type ospAB promoter, served as the PCR template. Primer pairs are 

listed in Table 2. The resulting PCR fragments (FL; ΔIR; ΔIR,Repts; and ΔIR,Repts,T-

Rich) were cloned into the pSC-A-amp/kan TA cloning vector. The resulting plasmids 

and pJD48 were digested with NdeI and BglII and ligated together to create pLuc-FL, 

pLuc-ΔIR, pLuc-ΔIR,Repts, and pLuc-ΔIR,Repts,T-Rich (Table 1). 

  

Genetic Manipulation of Borrelia burgdorferi 

Borrelial electroporations were performed as previously described (Samuels, 1995; Yang 

et al., 2004). B. burgdorferi were recovered from -80°C frozen stock into 2mL of BSK 

medium. The culture was incubated at 34°C with 5% CO2 until the culture cell density 

was approximately 3×105 spirochetes ml-1. The culture was then transferred to 50ml BSK 

medium with appropriate antibiotics and grown until the cell density reached more than 

3×107 spirochetes ml-1. For preparation of competent cells, the Borrelia culture was 

centrifuged at 4,000 rpm for 20 minutes at 4°C and the supernatant was decanted. The 

cells were washed twice with 30 ml cold saline (0.9% sodium chloride dissolved in 

http://www.ncbi.nlm.nih.gov/pubmed/14981112
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double-distilled water) and washed an additional three times with 30 ml cold 

Electroporation Solution (EPS) which consists of 9.3% sucrose and 15% glycerol 

dissolved in double-distilled water. After the final wash, the final pellet was gently 

suspended in 50 µl of EPS and transferred to a 1.5 ml eppendorf tube. About 5-20 µg of 

plasmid DNA was added to the resuspension and the mixture was transferred to a pre-

chilled electroporation 0.2 cm cuvette (Bio-Rad) and allowed to chill on ice for at least 1 

minute. To electroporate, the cuvette was placed in the gene pulser (Gene pulser, Bio-

Rad) and a single exponential decay pulse of 2.5 kV, capacitance of 25 µF, and 

resistance of 200 Ω was allowed producing a time constant of 4 to 6 ms. Immediately 

after electroporation, 1 ml of BSK was added to the cuvette and then this was 

transferred to 35 ml BSK without antibiotics. The culture was incubated overnight at 

34°C with 5% CO2. Following overnight incubation, appropriate antibiotics were added 

and 220 µl of the 35 ml overnight culture was aliquoted into each well of a 96 well plate. 

The color of the medium in the plate wells were monitored; a change of color from red to 

yellow indicated that cells were growing, which was verified by microscopic examination 

of a sample of the cells from the well. If cell growth is confirmed, 10 µl of the positive 

culture was transferred to 2 ml or 15 ml BSK with appropriate antibiotics and then further 

analyzed and assayed. 

 

Quantitative RT-PCR 

Cultures were pelleted by centrifugation and the RNA extracted using the RNeasy mini 

kit (Qiagen, Valencia, CA) per the manufacturer’s instructions. Purified RNA was treated 

with DNase (Promega) and converted to cDNA using SuperScript III reverse 

transcriptase with random primers (Invitrogen, Carlsbad, CA) following the 

manufacturer’s instructions. Platinum SYBR green qPCR SuperMix-UDG (Invitrogen) 

along with primers specific for flaB and ospA were used to perform qPCR in triplicate on 
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the cDNA samples (Table 2). An absolute quantification method using qPCR was 

performed according to the manufacturer’s instructions (Stratagene) using the specific 

flaB primers and serial dilutions of the standard template, a cloning vector containing the 

flaB gene. Briefly, a standard curve was generated by plotting template quantity against 

the Ct values of the standards. The quantity of ospA transcript was determined by 

comparing the samples’ Ct values to the standard curve plot. The standards and 

samples were performed in triplicate using an ABI 7000 Sequence Detection System. 

 

Luciferase assays 

Luciferase assays were performed as previously described using the commercial 

luciferase assay system (Promega Corp., Madison, WI) (Blevins et al., 2007). After 

enumerating the bacteria via dark-field microscopy, bacterial cultures were centrifuged at 

4,000 rpm for 20 minutes at 4°C. The supernatant was decanted and the pellet was 

washed twice with PBS, with centrifugation at 4,000 rpm for 20 min at 4°C after each 

wash. The final pellet was transferred to a 1.5 ml Eppendorf tube and was suspended in 

100 µl of the cell culture lysis reagent (CCLR), which was supplied by the manufacturer. 

The debris were pelleted by centrifugation in a microcentrifuge at 15,000 rpm for 1 min. 

Ten microliters of lysate was aliquoted into luminometer tubes (Promega) and 50 µl of 

luciferase assay reagent was added immediately prior to beginning measurements. 

Luciferase activity was measured for 10 sec using a Centro LB 960 luminometer 

(Berthold Technologies, Oak Ridge, TN). The average background luminescence was 

subtracted from the readings and the measurement reported as relative light units 

(RLU).  
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Host-Adapted Spirochete Model 

The insertion of DMC’s containing B. burgdorferi into the peritoneal cavities of rats was 

previously described (Akins et al., 1998). Borrelia were grown to mid-logarithmic and 

then diluted in BSK to 3×103 Bb ml-1. Five milliliters of this dilution was put into a 10 kDa 

Spectra/Por dialysis membrane (Spectrum Medical Industries Inc., Los Angeles, CA) 

and inserted into the peritoneal cavity of four- to six-week-old Sprague-Dawley rats 

(Harlan, Indianapolis, IN) using strict aseptic technique. Fourteen days after 

implantation, the DMCs were harvested and its contents removed by syringe aspiration. 

Spirochetes were enumerated via dark-field microscopy and then prepared for the 

luciferase assay as described.  
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CHAPTER THREE: RESULTS 

 

Section I: The T-Rich region is required for the full activation of the ospAB 

promoter. 

 

Deletion of T-Rich element in wild-type B. burgdorferi with luciferase reporter 

results in decreased luciferase expression  

The ospAB promoter contains three putative cis-elements: the IR region, the repeats 

region, and the T-Rich region (Sohaskey et al., 1999). To determine which of these three 

putative cis-elements are required for the full activation of the ospAB promoter, the 

various length ospAB promoters PospAB-FL; PospAB-ΔIR; PospAB-ΔIR,Rept; and 

PospAB-ΔIR,Rept,T-Rich were created by PCR using pOspAB as a template. The four 

promoters are as follows: 1) the PospAB-FL promoter is the full-length ospAB promoter 

containing all three putative cis-elements; 2) the PospAB-ΔIR promoter lacks the IR 

region while retaining the Rept and T-Rich regions; 3) the PospAB-ΔIR,Rept promoter 

retains the T-Rich region but lacks the region encompassing the IR and the Rept 

elements; and 4) the PospAB-ΔIR,Rept,T-Rich promoter deletes the ospAB promoter 

region encompassing all three of the putative cis-elements. These promoters were site-

directionally cloned upstream of the luciferase open reading frame in the pJD48 shuttle 

vector to control the expression of the luciferase reporter, and then the plasmids were 

electroporated into wild-type B. burgdorferi 13A to create the strains pLuc-FL; pLuc-∆IR; 

pLuc-∆IR, Rept; and pLuc-∆IR,Rept,T-Rich, respectively.  

 

These four strains were grown in vitro at 37°C, a condition in which ospA is constitutively 

expressed, and then harvested and prepared for the luciferase assay. The effect of the 

absence of the putative cis-elements on the ospAB promoter activity was determined 
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using the luciferase assay. The luciferase assay results indicate that there was no 

significant difference in luciferase activity between the PospAB-FL promoter and the 

PospAB-ΔIR or the PospAB-ΔIR,Rept promoters (Figure 9). However, there was a 

reduction in luciferase activity in the PospAB-ΔIR,Rept,T-Rich promoter, showing that 

deletion of the T-Rich element results in a decrease of ospAB promoter activation.   
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Figure 9. Influence of cis-elements on ospAB promoter activation. 

The 13A strain electroporated with a shuttle vector containing the luciferase reporter 

under the control of either the constitutively expressed flaB promoter (PflaB), no 

promoter (none), the full-length ospAB promoter (PospAB-FL), the ospAB promoter 

lacking the IR region (PospAB-ΔIR), the ospAB promoter lacking the IR and Repeats 

regions (PospAB-ΔIR,Rept) and the ospAB promoter lacking all three putative cis-

elements (PospAB-ΔIR,Rept,T-Rich). Strains were grown in BSK at 37°C and prepared 

for luciferase assay (*, p<0.05 using paired Student’s t-test). 
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Deletion of T-Rich element in the ospAB mutant B. burgdorferi with ospA reporter 

results in decreased ospA transcript. 

Using various ospAB promoters controlling the luciferase reporter expression within the 

wild-type Borrelia 13A, it was determined that deletion of the T-Rich region results in 

decreased activation of the ospAB promoter. To confirm this finding, we used a similar 

approach to measure ospAB promoter activity, but employed a native ospAB reporter 

rather than using the luciferase reporter.  

 

The various length ospAB promoters PospAB-FL; PospAB-ΔIR; PospAB-ΔIR,Rept; and 

PospAB-ΔIR,Rept,T-Rich were site-directionally cloned upstream of the ospAB open 

reading frame in the pOspAB shuttle vector to control the expression of the ospAB 

reporter. The plasmids were electroporated into ospAB mutant Borrelia to create the 

strains pOspAB-FL; pOspAB-∆IR; pOspAB-∆IR, Rept; and pOspAB-∆IR,Rept,T-Rich, 

respectively. The resulting strains were grown in vitro at 37°C, a condition in which ospA 

is highly expressed. The cultures were harvested and then prepared for analysis by 

qRT-PCR. 

 

The ospA transcript number was measured relative to the flagellin (flaB) transcript which 

is constitutively expressed. The results show that deletion of the IR or deletion of the IR 

and Rept regions together did not result in a significant decrease of ospA transcript 

compared to the full-length promoter (Figure 10). However, deletion of the IR, Rept and 

T-Rich regions combined showed a decrease in the ospA transcript level compared to 

the full-length promoter suggesting that the T-Rich region is required for the full 

activation of ospA. This result is in agreement with our previous finding using the 

luciferase reporter.  
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Figure 10. ospA transcript levels of the various ospAB promoters controlling 

expression of ospAB within the ospAB mutant B. burgdorferi. 

The B. burgdorferi ospAB mutant with a shuttle vector containing the ospAB reporter 

under the control of either the full-length ospAB promoter (PospAB-FL), the ospAB 

promoter lacking the IR region (PospAB-ΔIR), the ospAB promoter lacking the IR and 

Repeats regions (PospAB-ΔIR,Rept) and the ospAB promoter lacking all three putative 

cis-elements (PospAB-ΔIR,Rept,T-Rich). Strains were grown in BSK at 37°C and 

prepared for qRT-PCR. Transcript relative to copies of flagellin, flaB (*, p<0.05 using 

paired Student’s t-test). 
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Mutation of the T-Rich element in wild-type B. burgdorferi with luciferase reporter 

results in decreased luciferase expression  

Next, we wanted to further dissect the ospAB promoter. The promoters used to show 

that the T-Rich region is required for the full activation have multiple elements missing 

and not just the T-Rich region. To ensure that the effect we have seen is dependent 

solely on the T-Rich region and not a combination of the T-Rich element and the IR or 

Rept elements, we used site-directed mutagenesis to mutate only the T-Rich region. 

 

Site-directed mutagenesis was used to replace the 10 bp sequence “TTATTTTTTT” of 

the T-Rich region with a different 10 bp sequence “CGCGGCCGCG” to create the 

promoter PospAB-T-Rich-mut. This promoter was site-directionally cloned upstream of 

the luciferase open reading frame in the pJD48 shuttle vector and then transformed into 

the 13A B. burgdorferi strain and grown in vitro at 37°C. The luciferase expression level 

of the PospAB-T-Rich-mut promoter was compared to the PospAB-FL. The PospAB-T-

Rich-mut promoter had significantly reduced levels of luciferase (Figure 11). The 

reduction in the ospAB promoter expression caused by the mutagenesis of the T-Rich 

region indicates that the T-Rich region alone is responsible for the full expression of 

ospA. Together, these studies show that the T-Rich region is required for the full 

activation of ospA. 
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Figure 11. Influence of the T-Rich cis-element on ospAB promoter activation. 

The 13A strain electroporated with a shuttle vector containing the luciferase reporter 

under the control of either the constitutively expressed flaB promoter (PflaB), the full-

length ospAB promoter (PospAB-FL), and the PospAB-FL promoter with a mutated T-

Rich region (PospAB-T-Rich-mut). Strains were grown in BSK at 37°C and prepared for 

luciferase assay (*, p<0.05 using paired Student’s t-test).  
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Section II: Establishment of an in vitro model of ospA repression 

 

Abrogation of ospAB results in constitutive activation of ospC 

OspA and OspB are major surface lipoproteins in B. burgdorferi. During mammalian 

infection, OspC is produced while OspA is repressed. However, the inverse regulation is 

true during the infection of ticks: OspA is produced while OspC is not. A previous study 

by Yang et al. (2004) abrogated OspAB by disrupting the ospAB operon. Their studies 

demonstrated that the ospAB mutant was able to infect mice but was not able to 

colonize or replicate in ticks (Yang et al., 2004). In addition to this finding, we observed 

that the deletion of ospAB within B. burgdorferi results in the increased, constitutive 

expression of ospC (He et al., 2009) 

 

To determine the influence of OspA and OspB on the expression of OspC, the protein 

profiles of the ospAB mutant and the wild-type parental strain BbAH130 were compared. 

The ospAB mutant and BbAH130 were grown in vitro at either 23°C, a condition in which 

OspC is not produced, or 37°C, a condition where OspC is produced. The cultures were 

harvested and the lysates were subjected to SDS-PAGE before the proteins were 

stained by Coomassie blue (Figure 12). As expected, at 23°C, the wild-type BbAH130 

did not produce OspC; at low temperatures which mimic the tick environment, OspA is 

highly expressed whereas OspC is not. At both 23°C and 37°C, the ospAB mutant did 

not produce OspA, as expected, due to the disruption of the ospAB operon. However, 

the ospAB mutant exhibited OspC production at both 23°C and 37°C. OspC is normally 

expressed at 37°C, but not at 23°C. These results show that OspC is constitutively 

expressed in the ospAB mutant regardless of temperature. 
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In addition to determining the effect of ospAB abrogation on OspC, the effect of ospAB 

abrogation on other differentially expressed lipoproteins was also evaluated. Decorin-

binding protein (DbpA), fibronectin-binding protein (BBK32), and multicopy lipoprotein-8 

(Mlp8) are all lipoproteins which are known to be expressed at 37°C, but not at 23°C (He 

et al., 2007; Hubner et al., 2001; Yang et al., 2007). To determine if expression of these 

temperature-induced lipoproteins was affected by the abrogation of ospAB, immunoblot 

assays were performed on the wild-type BbAH130 and ospAB mutant whole cell lysates 

from cultures grown at 23°C. Antibodies specific to the differentially expressed 

lipoproteins DbpA, BBK32, Mlp-8 as well as OspC were used. FlaB, the constitutively 

expressed flagellin protein, served as the protein loading standard. The lipoproteins 

DbpA, BBK32 and Mlp-8 were not present or in low presence in the wild-type BbAH130, 

however, they were abundantly produced in the ospAB mutant (Figure 13). These 

results demonstrate that in addition to ospC being constitutively expressed in the ospAB 

mutant grown at 23°C, dbpA, bbk32 and mlp-8 are constitutively expressed or 

upregulated in the ospAB mutant. 
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Figure 12. Abrogation of ospAB results in constitutive activation of ospC (He et 

al., 2009). 

The wild-type clone BbAH130 (wt) and the isogenic ospAB mutant (ΔospAB) were grown 

in BSK medium at either 23°C (23) or 37°C (37). Cultures were harvested at mid-

logarithmic phase, and cell lysates were subjected to SDS-PAGE before the protein was 

stained with Coomassie blue. The molecular mass markers are indicated at the left of 

the figure in kilodaltons (kDa). Protein bands corresponding to OspA and OspC are 

labeled on the right. 
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Figure 13. Abrogation of ospAB influences the production of lipoproteins (He et 

al., 2009). 

The wild-type clone BbAH130 (wt) and the isogenic ospAB mutant (ΔospAB) were grown 

in BSK medium at 23°C. Cultures were harvested at mid-logarithmic phase and whole 

cell lysates were probed with antibodies directed against the specific lipoprotein 

(indicated on left). FlaB is constitutively expressed and serves as the control for equal 

lysate amounts. 
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Mutation or inactivation of rpoS, rpoN or rrp2 abolishes constitutive expression of 

ospC in the ospAB mutant 

In B. burgdorferi, the Rrp2-RpoN-RpoS pathway mediates the temperature-induced 

expression of ospC, dbpA, and bbk32 (Figure 6) (Eggers et al., 2004; Gilbert et al., 

2007; He et al., 2007; Hubner et al., 2001; Yang et al., 2003a). Since abrogation of 

ospAB resulted in constitutive expression of ospC, dbpA and bbk32, and expression of 

these three lipoproteins is mediated through the Rrp2-RpoN-RpoS pathway, we 

hypothesized that the Rrp2-RpoN-RpoS regulatory pathway is constitutively activated in 

the ospAB mutant.  

 

To determine if the Rrp2-RpoN-RpoS pathway is responsible for the constitutive 

expression of ospC within the ospAB mutant, mutations in the rrp2, rpoN, or rpoS genes 

were generated in the ospAB mutant. The ospAB mutant and the double mutant cultures 

were cultivated in BSK at 35°C, harvested at mid-log and the whole cell lysates 

subjected to SDS-PAGE before staining with Coomassie blue. The rrp2 point mutation, 

the inactivated rpoN and the inactivated rpoS in the ospAB mutant resulted in decreased 

constitutively expressed OspC production compared to the wild-type or the ospAB 

mutant (Figure 14). These results indicate that ospC is constitutively expressed due to 

the Rrp2-RpoN-RpoS pathway being constitutively expressed upon abrogation of 

ospAB. 

  



 
 

52 

 

Figure 14. Constitutive expression of OspC in the ospAB mutant is abolished 

upon mutation or inactivation of rpoS, rpoN or rrp2 (He et al., 2008). 

The ospAB single mutant (ΔospAB), and the ospAB double mutants of rpoS (ΔrpoS), 

rpoN (ΔrpoN), and rrp2 (rrp2G239C) were cultured in BSK at 35°C, harvested at mid-log 

and the whole cell lysates subjected to SDS-PAGE before staining with Coomassie blue. 

The molecular mass markers are indicated at the left of the figure in kilodaltons (kDa). 

  



 
 

53 

Complementation of the ospAB mutant with a wild-type copy of ospAB or ospA 

alone restores repression of ospC at 23°C 

The constitutive activation of the Rrp2-RpoN-RpoS pathway in the ospAB mutant could 

be due to spurious mutation locking the pathway in an active state rather than the 

constitutive expression being due to the abrogation of ospAB. To ensure that the 

constitutive activation of the Rrp2-RpoN-RpoS pathway was due to the loss of ospAB 

expression, the ospAB mutant was complemented with the shuttle vector pOspAB 

carrying a wild-type copy of native ospAB. The wild-type, ospAB mutant and the ospAB 

complement were cultivated in BSK at 23°C and whole-cell lysates were subjected to 

SDS-PAGE before staining with Coomassie blue. The ospAB mutant complemented with 

ospAB was not able to constitutively produce OspC at 23°C like the ospAB mutant 

(Figure 15). This suggests that the abrogation of ospAB is responsible for the 

constitutive activation of the Rrp2-RpoN-RpoS pathway.  

 

In addition to complementing the ospAB mutant with native ospAB, the ospAB mutant 

was complemented with only ospA driven by the native ospAB promoter (pOspA) to 

determine if the absence of ospA was mainly responsible for the constitutive OspC 

production phenotype. The shuttle vector alone without ospAB or ospA, pBSV2, was 

used as a control to ensure the effects seen in pOspAB or pOspA were due to the 

shuttle vector, but rather to reintroducing ospAB and ospA. Complementation with ospA 

alone restored the temperature-dependent repression of ospC expression (Figure 15). 

Together, these data demonstrate that the abrogation of ospA, rather than spurious 

mutation, was responsible for the constitutive activation of the Rrp2-RpoN-RpoS 

regulatory pathway.  
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Figure 15. Complementing the ospAB mutant with ospAB or ospA alone restores 

ospC repression at 23°C (He et al., 2008). 

The wild-type strain (wt), the ospAB mutant (∆ospAB), the ospAB mutant complemented 

with the shuttle vector alone (∆ospAB/pBSV2), and the ospAB mutant complemented 

with the shuttle vector carrying the native copy of ospAB (∆ospAB/pOspAB) or ospA 

(∆ospAB/pOspA) were cultivated at 23°C. Whole-cell lysates were subjected to SDS-

PAGE before staining with Coomassie blue. The labeled bands on right correspond to 

OspA, OspB and OspC. The molecular mass markers are indicated at the left of the 

figure in kilodaltons (kDa). 
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Proposed model for the positive feedback circuit between the activation of the 

Rrp2-RpoN-RpoS regulatory pathway and the reduction of OspA 

The constitutive production of OspC via the Rrp2-RpoN-RpoS regulatory pathway, which 

is constitutively activated upon abrogation of ospAB, suggests a positive feedback circuit 

(Figure 16). Feedback loops have been reported in other bacteria (Guespin-Michel and 

Kaufman, 2001), and such a feedback loop could be beneficial to B. burgdorferi’s 

transmission and mammalian infection. Given our results, we hypothesize that the Rrp2-

RpoN-RpoS regulatory pathway is activated during tick feeding by an unknown signal. 

The activation of the Rrp2-RpoN-RpoS pathway results in the expression of an unknown 

transcriptional repressor regulated by RpoS, which is able to repress ospA expression. 

Upon repression of ospA, OspA production is decreased and there is a reduction in the 

surface-associated OspA. This reduction further activates the Rrp2-RpoN-RpoS pathway 

to achieve and maintain the maximal level of Rrp2-RpoN-RpoS activation to encourage 

the expression of OspC leading to B. burgdorferi’s migration from the tick midgut to 

establish infection in mammals. 
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Figure 16. Proposed model for the positive feedback circuit between the activation 

of Rrp2-RpoN-RpoS regulatory pathway and the reduction of OspA. 

The activation of the Rrp2-RpoN-RpoS is hypothesized to be activated upon tick feeding 

by an unknown signal. The activation of this pathway results in expression of an 

unknown transcriptional repressor which is able to repress ospA. OspA production is 

decreased upon the repression of ospA causing a reduction in the surface-associated 

OspA. The reduction further activates the Rrp2-RpoN-RpoS pathway to achieve and 

maintain the maximal level of Rrp2-RpoN-RpoS activation, which in turn activates 

expression of ospC (←, positive activation; Ⱶ, negative activation). 
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The proposal of an in vitro model of ospA repression 

The expression of ospC is temperature-dependent during in vitro cultivation in BSK. 

Expression of OspA, however, is not temperature-dependent; OspA is abundantly 

expressed during in vitro cultivation at both 23°C and 37°C. Since OspA is not 

temperature-dependent like OspC, there has been a lack of an in vitro model for 

studying the regulation of ospA. Studying the downregulation of ospA can only be done 

in vivo, which is very difficult, therefore very little is known about the mechanism 

underlying the downregulation of ospA. 

 

While the complete mechanism of ospA downregulation has not been fully elucidated, 

Caimano et al. discovered that the alternative sigma factor RpoS is required for the 

repression of ospA (2005). RpoS likely represses ospA by either 1) binding directly to 

the ospAB promoter; or 2) by controlling the expression of an unknown ospA repressor. 

 

He and coworkers have shown that rpoS is constitutively activated in an ospAB mutant 

(He et al., 2008). Thus, the ospAB mutant can serve as a system to study the repression 

of the ospAB promoter in vitro. To develop this system, the pLuc-FL plasmid (a shuttle 

vector containing the luciferase reporter under the control of the full-length ospAB 

promoter) was electroporated into the ospAB mutant. In this construct, the ospAB mutant 

constitutively expresses rpoS and subsequently RpoS represses the full-length ospAB 

promoter (probably either directly or indirectly). The full-length ospAB promoter controls 

the expression of a luciferase reporter to measure the level of ospA repression by RpoS 

(Figure 17A).  

 

The pLuc-FL plasmid was transformed into both the wild-type parental BbAH130 and the 

ospAB mutant. These strains were grown in BSK at 37°C and analyzed by the luciferase 
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assay. The ospAB mutant had reduced luciferase activity compared to the wild-type 

BbAH130 (Figure 17B). The reduced luciferase activity in the ospAB mutant indicates 

that RpoS was able to repress the ospAB promoter. This ospAB mutant containing the 

luciferase reporter under the control of the ospAB promoter can be used as a tool to 

study the repression of ospA in vitro. This is a novel in vitro model of ospA repression. 
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Figure 17. Establishment of an in vitro model of ospA repression. 

(A) Schematic of proposed in vitro model of ospA repression. In ospAB mutant B. 

burgdorferi (ΔospAB), RpoS expression is constitutive. RpoS is required for the 

repression of ospA via an unknown mechanism: either RpoS directly represses ospA or 

RpoS influences the expression of an unknown ospA repressor. The luciferase reporter 

expressed by the full-length ospAB promoter within the ospAB mutant can used to 

measure the level of ospAB promoter repression due to the overexpression of the ospA 

repressor. (B) BbAH130 (wt) and the ospAB mutant (ΔospAB), both containing the 

shuttle vector with the full-length ospAB promoter controlling luciferase expression, were 

grown at 37°C. The constitutive flaB promoter and a promoterless promoter (none) 

controlling luciferase expression were used as controls.  
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Deletion of the T-Rich element results in increased luciferase expression using 

the in vitro model of ospA repression 

We hypothesize that in ospA repression conditions, RpoS controls an unknown 

repressor (or repressors) which bind to the ospAB promoter at one or more of the three 

putative cis-elements (Figure 16). To determine which of the three putative cis-

element(s) are required for the full repression of ospA, we employed the in vitro model of 

ospA repression where rpoS is constitutively expressed (Figure 17). Using this model, 

the ospAB mutant, which constitutively expresses the putative ospA repressor, was 

electroporated with a shuttle vector containing the luciferase reporter under the control of 

either 1) the full-length ospAB promoter, PospAB-FL; 2) the PospAB-∆IR promoter which 

is lacking the IR element; 3) the PospAB-∆IR,Rept promoter lacking the region 

encompassing the IR and Rept elements; or 4) the PospAB-∆IR,Rept,T-Rich promoter 

which lacks all three putative cis-elements. These strains were grown at 37°C in BSK 

medium and then harvested and prepared for the luciferase assay. The PospAB-

∆IR,Rept,T-Rich strain had a significant increase in luciferase expression compared to 

the full-length, PospAB-∆IR, and PospAB-∆IR,Rept promoters (Figure 18A). This data 

suggests that the T-Rich region is required for full repression of ospA and that RpoS 

either directly binds to the T-Rich region or RpoS controls a repressor which binds to the 

T-Rich region.  

 

To determine if the T-Rich region alone is responsible for the full repression of ospA, we 

used our full-length ospAB promoter with the mutated T-Rich region (PospAB-T-Rich-

mut) controlling luciferase expression and placed the construct in the ospAB mutant B. 

burgdorferi and grown in vitro at 37°C. The luciferase expression levels of the PospAB-

T-Rich-mut promoter was compared to the PospAB-FL. The PospAB-T-Rich-mut 

promoter had significantly increased levels of luciferase (Figure 18B). The reduced 
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ospA repression caused by the mutagenesis of the T-Rich region indicates that the T-

Rich region alone is responsible for the full repression of ospA. 
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Figure 18. Influence of cis-elements on luciferase repression using the in vitro 

model of ospA repression. 

(A) Luciferase assay of the ospA mutant transformed with a shuttle vector containing the 

luciferase reporter under the control of either constitutively expressed flaB promoter 

(PflaB), promoterless (none), the full-length ospAB promoter (PospAB-FL), the ospAB 

promoter lacking the IR region (ΔIR), the ospAB promoter lacking the IR and Repeats 

regions (ΔIR,Rept) and the ospAB promoter lacking all three putative cis-elements 

(ΔIR,Rept,T-Rich). Strains were grown in BSK at 37°C and prepared for luciferase 

assay. (B) The ospAB mutant strain electroporated with a shuttle vector containing the 

A 

B 



 
 

63 

luciferase reporter under the control of either the constitutively expressed flaB promoter 

(PflaB), the full-length ospAB promoter (PospAB-FL), and the PospAB-FL promoter with 

a mutated T-Rich region (PospAB-T-Rich-mut). Strains were grown in BSK at 37°C and 

prepared for luciferase assay (*, p<0.05 using paired Student’s t-test).
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Addition of norepinephrine results in a decrease of repression using the in vitro 

model of ospA repression 

During mammalian infection, ospA is continually repressed. However, when an infected 

mammal is bitten by a naïve tick, ospA must be expressed in order for the B. burgdorferi 

to attach to colonize the tick midgut through OspA. The mechanism by which ospA is 

able to switch from repression to expression within the mammalian environment is not 

clear, although it is speculated that catecholamines from the host are able to signal the 

release of the repression of ospA (Scheckelhoff et al., 2007). Catecholamines, such as 

norepinephrine and epinephrine, are released by the mammalian host upon the 

presence of a stressor- such as a tick bite. To determine if the catecholamine 

norepinephrine is able to release ospA repression, B. burgdorferi were grown in the in 

vitro model of ospA repression in BSK containing either BSK only or BSK with the 

addition of norepinephrine. The full-length ospAB promoter (PospAB-FL) and the ospAB 

promoter without any of the three putative cis-elements (PospAB-∆IR,Rept,T-Rich), both 

controlling the luciferase reporter, were cultivated.  

 

The addition of norepinephrine to the in vitro model of ospA repression resulted in an 

increase of ospA expression, indicating release of ospA repression in both the ospAB 

promoter containing all three putative ospA cis-elements (PospAB-FL) as well as the 

ospAB promoter lacking all three putative ospA cis-elements (PospAB-∆IR,Rept,T-Rich) 

(Figure 15). The release of repression in the promoter lacking all three putative cis-

elements suggests that norepinephrine releases the repression of ospA through a 

mechanism independent of any of the three putative cis-elements. 
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Figure 15. Effect of norepinephrine on luciferase expression driven by various 

ospAB promoters. Luciferase assay of the ospAB mutant B. burgdorferi strain 

(ΔospAB) transformed with the various pLuc shuttle vectors containing either the 

constitutively activated promoter (PflaB), promoterless (None), full-length ospAB 

promoter (PospAB-FL) or truncated ospAB promoter (PospAB-∆IR,Rept,T-Rich) were 

treated at 37°C with 10 µM norepinephrine (BSK+NE) or without norepinephrine (BSK 

Only) for 48 hours and harvested at late logarithmic phase (*, p < 0.05; **, p<.01 using 

ANOVA). 
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Section III. Host-adapted model for studying ospA repression 

 

B. burgdorferi cultivated in dialysis membrane chambers exhibits reciprocal 

regulation: repression of OspA and expression of OspC 

Studying the repression of ospA in the past has been difficult. During in vitro cultivation, 

ospA is constitutively expressed making the study of repression impossible; however, 

during in vivo conditions, ospA is constitutively repressed. The repression of ospA can 

be reproduced using the host-adapted spirochete model. The host-adapted spirochete 

model was developed by Akins et al. (1998) in order to obtain sufficient amounts of 

spirochetes from the vertebrate host environment for further assays and evaluations. In 

this method, B. burgdorferi is cultivated within DMC’s of 10 kDa pore size to retain the 

bacteria within the chamber. The chamber is surgically implanted into the peritoneal 

cavity of a rat and incubated for two weeks before harvesting the DMC’s to recover the 

Borrelia. Borrelia cultured in this manner display a similar antigenic composition to that 

of bacteria during mammalian infection. Specifically, ospA repression can be observed in 

B. burgdorferi cultured in this manner.  

 

To establish the host-adapted model, the wild-type infectious strain BbAH130 used in 

these studies was cultivated within DMC’s of Sprague-Dawley rats. The culture was 

incubated within the peritoneum for two weeks before harvest. OspA was expressed in 

the in vitro grown B. burgdorferi, as expected, because ospA is constitutively expressed 

in vitro. However, there was no OspA expressed in the host-adapted spirochete model 

culture (Figure 19). The repression of ospA within the host-adapted spirochete model 

shows that this model is an excellent tool that mimics the in vivo repression of ospA.  
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Figure 19. Establishment of the host-adapted model. 

BbAH130 (AH130) was either cultivated in BSK at 37°C (in vitro) or within DMC’s (10 

kDa pore size) inside the peritoneal cavity of a Sprague-Dawley rat for two weeks. 

Whole cell lysates were subjected to SDS-PAGE before Coomassie blue staining. 

Protein bands corresponding to OspA and OspC are indicated on right. Protein size is 

indicated on left in kilodaltons (kDa). 
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Deletion of the T-Rich element results in increased luciferase expression using 

the host-adapted model  

Using the in vitro model of ospA repression, it was determined that the T-Rich element 

was required for the full repression of ospA. To confirm the in vitro model of ospA 

repression, wild-type BbAH130 was electroporated with the shuttle vectors expressing 

the luciferase reporter under the control of either the full-length ospAB promoter or the 

PospAB-∆IR,Rept,T-Rich promoters. These constructs were cultivated in the host-

adapted model for two weeks and then harvested and prepared for luciferase assay. The 

PospAB-∆IR,Rept,T-Rich had a higher amount of luciferase activity than the full-length 

ospAB promoter (Figure 20). This suggests that the PospAB-∆IR,Rept,T-Rich promoter 

is lacking a cis-element essential for the repression of ospA within the host-adapted 

model. This result agrees with previous findings from the in vitro model of ospA 

repression.  
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Figure 20. Influence of host signals on luciferase expression of B. burgdorferi 

cultivated in the host-adapted model. 

Luciferase assay of the wild-type B. burgdorferi strain BbAH130 transformed with shuttle 

vectors expressing luciferase under the control of either the full length ospAB promoter 

(FL) or the ΔIR,Rept,T-Rich ospAB promoter. The constitutively expressed flaB promoter 

(PflaB) was used as a control (*, p<0.05 using paired Student’s t-test). 

  



 
 

70 

BB0219, a manganese transporter, is not essential for B. burgdorferi growth 

within the host-adapted model 

B. burgdorferi is transmitted to mammals through the Ixodes tick vector. Borrelia must 

adapt to the unique environments of its two hosts to be able to establish infection. To 

establish infection, the bacterium needs to acquire essential nutrients and transition 

metals, like iron and magnesium, from its hosts. A metal transporter, BmtA (BB0219) 

has been recently identified as being important for transporting manganese and 

detoxifying reactive oxygen species (Ouyang et al., 2008).  

 

A bmtA mutant was created by disrupting BB0219. The phenotype of the bmtA mutant 

displayed a decreased uptake in magnesium, an inability to establish an infection within 

mice and the need of bmtA for reactive oxygen species protection. We sought to 

determine if the bmtA mutant’s inability to establish an infection is due to a defect in the 

mutant’s growth. We cultivated the bmtA mutant within DMC’s implanted within the 

peritoneal cavity of a rat. Upon harvest, B. burgdorferi was enumerated and it was found 

that both the wild-type and the bmtA mutant had comparable growth within the DMC 

indicating that BmtA is not essential for growth within the host-adapted model (Table 3). 

Rather than BmtA affecting growth, BmtA must play a role in establishing infection in 

some other manner. 
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Table 3. Growth of wild-type, bmtA mutant and complement Borrelia within the 

DMC. 

 

Growth represented as “+”.  

  

Growth Condition WT bmtA mutant Complement

In vitro ++++ +++ ++++

Mice ++++ ++++

DMC ++++ ++++ ++++
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CHAPTER FOUR: DISCUSSION 

 

The T-Rich Region is required for the full activation of the ospAB promoter 

Previous studies on ospA regulation had used nonreplicating, transient reporters to 

measure the ospAB promoter efficacy. These studies failed to use reporters which are 

able to replicate in B. burgdorferi, due to their lack of a B. burgdorferi replication origin. 

Therefore these previous studies were not as accurate as would be if using a stable 

reporter construct. Unlike the previous studies, to ensure a more accurate measurement 

and evaluation of ospAB promoter activity, we 1) used shuttle vectors that could 

replicate within B. burgdorferi; and 2) used the luciferase reporter which is generally 100-

fold more sensitive than the previously used CAT reporter.  

 

In our studies, we the luciferase reporter which was codon-adapted to B. burgdorferi 

(Blevins et al., 2007). B. burgdorferi has a GC content of only 28.6%, so the luciferase 

gene was codon-adapted to ensure that the luciferase gene was accurately representing 

the transcriptional activity rather than having a codon bias (Fraser et al., 1997). To 

determine which of the three putative cis-elements was required for the full activation of 

ospA, the luciferase reporter was placed under control of the full-length ospAB promoter 

and its activity was compared to several truncated ospAB promoters which deleted 

various regions containing cis-elements. We had observed that the deletion of the 

ospAB promoter region spanning from the IR to the Repeat elements did not cause a 

significant decrease in ospAB promoter expression. However, when the ospAB promoter 

region spanning the IR, Rept and T-Rich regions was deleted, there was a significant 

decrease in ospAB promoter expression. This suggested that the T-Rich region was 

required for the full activation of ospA.  
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The same series of ospAB promoters used to control luciferase expression in a wild-type 

Borrelia strain were placed to control the native ospA reporter within an ospAB mutant 

strain to evaluate which putative cis-element was required for the full activation of ospA. 

The native ospA reporter demonstrated similar results to the luciferase reporter results: 

deletion of the IR and Rept region together did not cause a significant decrease in ospA, 

however, deletion of the IR, Rept, and T-Rich regions together resulted in a decrease in 

ospA. These ospA activation studies using a luciferase reporter and ospA reporter both 

suggested that the T-Rich region was required for the full activation of the ospAB 

promoter. However, we needed to ensure that the T-Rich region was solely responsible 

for the decrease in ospAB promoter activation, rather than the T-Rich region in 

conjunction with either the IR or Rept regions. To do this, site-directed mutagenesis was 

performed to mutate a 10 bp region of the T-Rich region of the full-length ospAB 

promoter to create PospAB-T-Rich-mut. Like the other promoters tested, the PospAB-T-

Rich-mut promoter was placed controlling luciferase expression and evaluated using the 

luciferase assay. The PospAB-T-Rich-mut promoter showed reduced luciferase 

expression compared to the full-length ospAB promoter indicating that the T-Rich region 

alone was responsible for the reduction in ospAB promoter activity observed in these 

studies. Our ospA expression findings were consistent with previous data in the literature 

demonstrating that the T-Rich region is required for the full activation of the ospAB 

promoter within a transient reporter system (Sohaskey et al., 1999). Our studies, which 

used stable reporters, showed that the T-Rich region is an important regulatory element 

required for the full activation of ospA.  

 

A Novel Approach to Studying ospA repression 

Studying ospA repression in Borrelia has proven to be a very difficult task as ospA is 

only expressed during in vivo cultivation and thus collecting enough bacterial sample 
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volume to do experiments has proven to be very laborious. Therefore, there is very little 

known about the repression of ospA other than that it is mediated by RpoS in an 

unknown manner (Caimano et al., 2005). To create an easier way to study ospA 

repression, we developed an in vitro model to study ospA repression. This was achieved 

by using the luciferase reporter under the control of the ospAB promoter within an ospAB 

mutant strain, which has RpoS constitutively expressed and thus mediating the 

repression of ospA. This advance in the field should make it easier for researchers to 

study ospA repression. 

 

The T-Rich Region is required for the full repression of the ospAB promoter 

Our in vitro model to study ospA repression was used to determine which cis-elements 

are required for the full repression of ospA. The luciferase reporter was placed under 

control of the full-length ospAB promoter and other truncated ospAB promoters so the 

cis-elements required for ospA repression could be determined. Deletion of the IR or IR 

Rept regions did not cause a significant change in ospAB promoter activity compared to 

the full-length ospAB promoter. However, deletion of the IR, Rept, and T-Rich regions 

resulted in an increase in promoter activity showing that the truncated promoter was not 

able to be fully repressed. This indicated that the T-Rich region was important for the full 

repression of ospA. To ensure that the decreased repression was due solely to the T-

Rich region and not the T-Rich region in conjunction with the IR or Rept regions, we 

compared the PospAB-T-Rich-mut promoter, which has the full-length ospAB promoter 

with a mutated T-Rich region, to the full-length ospAB promoter. Our results had shown 

a decrease in repression which indicates that it is solely the T-Rich region responsible 

for the decrease in ospA repression. Our in vitro model of ospA repression demonstrated 

that the T-Rich region of the ospAB promoter was required for the full repression of the 

ospAB promoter.  
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To further study ospA repression, we explored the effects of norepinephrine on ospA 

repression. A previous study demonstrated that norepinephrine is able to de-repress 

ospA (Scheckelhoff et al., 2007). De-repressing ospA is required for the tick to acquire 

Borrelia from an infected mammal. In an infected mouse, ospA is repressed, however, 

upon tick feeding, B. burgdorferi must de-repress ospA in order to colonize the tick gut 

where OspA binds specifically to the tick’s TROSPA receptor. The previous study 

demonstrates that when a tick bites the mammal, the host releases norepinephrine and 

this contributes to de-repressing ospA. Given this, we wanted to determine if 

norepinephrine would affect ospA repression in our in vitro repression model.  

 

Using our in vitro repression model, we cultured the ospAB mutant containing either the 

full-length ospAB promoter (PospAB-FL) or the ospAB promoter lacking the IR,Rept, and 

T-Rich region (PospAB-∆IR,Rept,T-Rich) in BSK media only or BSK media containing 

norepinephrine. For both the PospAB-FL and the PospAB-∆IR,Rept,T-Rich promoter, 

there was an increase in luciferase expression upon the addition of norepinephrine 

indicating that there was a de-repression of ospA for both promoters. From this study, 

we concluded that norepinephrine is able to de-repress ospA, which is agreement with 

the previous studies. Further advancing this, we were able to conclude that the de-

repression of ospA is independent of the T-Rich region. There is likely another regulatory 

element between the T-Rich region and the ospA gene that plays a role in the de-

repression of ospA via the addition of norepinephrine. 

 

One last approach we used to study the repression of ospA was the host-adapted 

animal model in which Borrelia are cultivated within DMC’s implanted into the peritoneal 

cavity of a rat (Akins et al., 1998). We first established the host-adapted model within our 

lab. We observed that growing wild-type Borrelia within the DMC’s resulted in the 
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repression of ospA. Since ospA was able to be repressed, we were able to use the host-

adapted model to confirm our ospA repression finding we observed in vitro. In the 

DMC’s, we grew the wild-type Borrelia strain with luciferase reporter expression under 

the control of either the full-length ospAB promoter or the PospAB-∆IR,Rept-T-Rich 

promoter. There was an increase in luciferase expression in the PospAB-∆IR,Rept-T-

Rich promoter compared to the full-length ospAB promoter which mirrors our results 

from the in vitro studies that the T-Rich region is required for the full repression of ospA. 

One caveat of the host-adapted model is that, unlike in vitro cultivation, there is no 

antibiotic selection in order for the plasmids to be retained and replicating within Borrelia. 

However, it is probable that since both strains used the same parental vector and are 

identical except at the region of the ospAB promoter, that the plasmid would be lost at 

the same rate for both strains.  

 

Previous studies in ospA repression had already shown that RpoS is required for the full 

repression of ospA. Our studies further dissected the mechanism of ospA repression by 

demonstrating that the T-Rich region of the ospAB promoter is an important cis-element 

required for the full repression of ospA. For ospA repression, Rrp2 becomes 

phosphorylated upon tick feeding. Then, Rrp2 in conjunction with RpoN activate RpoS. 

RpoS then represses ospA either by 1) associating with an in vivo-specific accessory 

factor that allows RpoS to directly bind to the T-Rich cis-element of the ospAB promoter; 

or 2) by controlling the expression of an unknown ospA repressor protein that binds to 

the T-Rich cis-element of the ospAB promoter to block RpoS-dependent transcription 

initiation. For ospA activation, on the other hand, RpoD is able to bind to the T-Rich 

region of the ospAB promoter to drive the transcription initiation of ospA. 
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CHAPTER FIVE: FUTURE DIRECTIONS 

 

Potential role of BosR as a repressor of ospA  

In B. burgdorferi, BosR (BB0647) has been found to encode a novel DNA-binding 

protein in the Fur/Per family of transcriptional regulators. BosR is required for the 

induction of RpoS (Hyde et al., 2010; Ouyang et al., 2009). RpoS represses ospA via an 

unidentified mechanism (Caimano et al., 2005). A recent study has discovered that 

BosR binds specifically to the rpoS gene at three distinct sites. By making specific 

mutations in the rpoS gene and measuring the binding capability of BosR, a novel direct 

repeat and inverted repeat sequence (TAAATTAAAT), which is critical for BosR binding, 

was identified (Ouyang et al., 2011). This direct repeat sequence which BosR 

specifically binds is similar to areas upstream of the T-Rich element found on the ospAB 

promoter. Since BosR regulates RpoS, and RpoS is required for the repression of ospA, 

it is plausible that BosR could play a key role in ospA repression through binding to a 

putative BosR binding site located on the ospAB promoter.  

 

In an rpoS mutant, ospA is not able to be repressed (Caimano et al., 2005). Thus if 

BosR directly represses ospA, then inducing BosR in an rpoS mutant should restore 

ospA repression. These experiments can be performed in two different ospA repression 

conditions: 1) in the host-adapted model, or 2) in the ospAB mutant. For the host-

adapted model study, either wild-type, rpoS mutant, or an rpoS mutant complemented 

with bosR can be electroporated with a shuttle vector containing the full-length ospAB 

promoter controlling luciferase expression. The wild-type Borrelia would display low 

luciferase expression because this condition supports the repression of ospA. The rpoS 

mutant would display high luciferase expression because previous studies have shown 

that ospA is not able to be repressed in rpoS mutants (Caimano et al., 2005). This is 
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likely due to the absence of a repressor controlled through RpoS. The rpoS mutant 

complemented with bosR would have low luciferase expression if BosR is able to 

specifically bind to the ospAB promoter to cause repression. If complementation with 

bosR results in high luciferase expression, this would indicate that BosR is not 

specifically binding to the ospAB promoter to cause repression and that repression of 

ospA is due to a trans-factor(s) controlled by RpoS. 

 

A second method of determining if BosR is able to directly repress ospA would be by 

using the in vitro model of ospA repression. In this method, the same shuttle vector 

which contains luciferase under the control of the full length ospAB promoter would be 

electroporated into either 1) the BbAH130 wild-type strain; 2) the ospAB mutant strain; 3) 

the ospAB, rpoS double mutant; or 4) the ospAB, rpoS double mutant complemented 

with bosR. The strains would be cultivated at 37°C and analyzed by luciferase assay. 

The wild-type strain would expect to have high luciferase activity because ospA is highly 

expressed during in vitro cultivation. The ospAB mutant would be expected to have no 

luciferase activity because this is the in vitro model of ospA repression where the 

abrogation of ospAB causes ospA repression conditions. The ospAB, rpoS double 

mutant would show high luciferase activity because RpoS is required for the repression 

of ospA. Lastly, the ospAB mutant strain complemented with bosR would exhibit no 

luciferase activity if BosR is able to bind to the cis-elements of the ospAB promoter to 

cause repression. However, if BosR is not able to specifically bind to the ospAB 

promoter to repress its activity, then the strain would show high levels of ospA because 

ospA cannot be repressed in the absence of RpoS. 
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Identification of putative trans-factors via a knowledge-based approach 

Previous studies have shown that B. burgdorferi rpoS mutants are not able to 

downregulate OspA even during in vivo cultivation when ospA is normally repressed. 

The precise mechanism by which RpoS controls ospA repression is not known. We 

hypothesized that an ospA repressor is regulated under the control of RpoS and that a 

knowledge-based approach can be used to help identify putative DNA-binding proteins 

controlled by RpoS.  

 

Microarray data from Caimano et al. (2005) and Boardman et al (2008) identified genes 

being differentially regulated by RpoS within the host-adapted model. From this 

microarray data, a list was compiled which identified genes that appeared to be the most 

highly regulated by RpoS. From this list of RpoS-regulated genes, the genes with the 

highest transcript fold-change were next evaluated for their probability of binding to DNA. 

Their amino acid sequence obtained from Entrez Gene (NCBI) was entered on an online 

server (www.netasa.org/dbs-pred) to predict the probability of the protein binding to 

DNA. After determining the DNA-binding probability, we narrowed down the list to the 

top five gene candidates based on their: 1) fold change in the transcript levels between 

the RpoS mutant and the wild-type as determined from the microarray data; and 2) DNA-

binding capability as predicted by the online server. The top five gene candidates are 1) 

BBL29; 2) BBD01; 3) BB0449; 4) BBJ01; and 5) BBJ02.  

 

These putative DNA-binding proteins were cloned into a shuttle vector that placed their 

expression under the control of a constitutive promoter. Next, the shuttle vectors were 

electroporated into a wild-type B. burgdorferi strain. These strains were grown in vitro at 

23°C, a condition in which ospA is expressed, to determine if the any of the five 

repressor candidates were able to repress ospA. If the gene is an ospA repressor, then 
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the overexpression of the gene in the WT strain would result in lower or no ospA. There 

was no difference in any of the five expressed genes indicating that genes did not have 

an effect on ospA repression and therefore are not ospA repressors.  

 

In the future, other genes can be selected using out knowledge-based approach to 

determine if they are able to repress ospA. If the overexpressed gene does appear to 

repress ospA when overexpressed, an EMSA would need to be done to determine if the 

protein of interest is able to act as a trans-factor and bind to the ospAB promoter. Lastly 

to confirm that the gene is indeed an ospA repressor, the gene would need to be 

knocked out in B. burgdorferi and grown within a DMC. If ospA is not able to be 

repressed in this condition, then the gene would prove to be needed to repress ospA.  

 

Mass spectrometry identification of the putative trans-factors acquired using 

biotinylated ospAB promoter oligonucleotide 

The T-Rich region of the ospAB promoter has been identified as an important regulatory 

cis-element in both the expression and repression of ospA. The ospAB promoter can be 

used to isolate the trans-factor(s) binding to the ospAB promoter cis-elements by 

employing sequence-specific DNA affinity chromatography. In a method adapted from 

(Babb et al.), chemically synthesized biotin-labeled complementary 

oligodeoxynucleotides that encompassed the full-length ospAB promoter were 

purchased (2006). The full-length ospAB promoter was used because it contains the T-

Rich region, which we found was crucial for the full activation of ospA, and thus the 

activator is likely binding to this region. Next, the biotin-conjugated 

oligodeoxynucleotides were affixed to streptavidin magnetic beads and protein extracts 

from either wild-type B. burgdorferi (for ospA expression conditions since wild-type has 
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high ospA expression) or ospAB mutant (for the ospA repression conditions since the 

ospAB mutant has constitutive expression of an unknown ospA repressor) cultures were 

added. The supernatant was removed and the beads coated with biotin-labeled ospAB 

promoter were gently washed. Next, the proteins bound to the cis-element 

oligonucleotide fragments were eluted from the magnetic beads and separated by SDS-

PAGE and visualized. Protein bands were extracted and analyzed by matrix-assisted 

laser desorption ionization-time of flight (mass spectrometry) performed by the 

Proteomics Core Facility at Indiana University School of Medicine (Indianapolis, IN). The 

proteins were identified as shown in Table 4.  

 

Of particular interest is gene BBJ02 (Table 4). This gene was identified in our 

knowledge-based approach as being a putative ospA repressor due to its regulation by 

RpoS and its DNA binding probability. BBJ02 was constitutively expressed in an ospA 

activation condition to determine if it was able to act as an ospA repressor; it did not.  

 

In the future, the isolation of the activator need to be redone. To improve these studies, 

the bacterial lysis and washing steps need to be optimized to ensure less non-specific 

binding. Also, the full-length ospAB promoter with the mutated T-Rich region (PospAB-T-

Rich-mut) should be used as a control because it contains the same elements as the 

full-length promoter except the T-Rich region. Since the activator is likely binding to the 

T-Rich region, the PospAB-T-Rich-mut should not have the activator present in the 

proteins eluded from the promoter whereas the PospAB-FL should have the activator 

present. 
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Table 4. Proteins identified by mass spectroscopy to bind to the ospAB promoter. 

The name of the protein or gene (protein/gene) on the left and its putative role in B. 

burgdorferi (comments). The number of peptides is noted (peptides) and its number of 

distinct sequence (# of distinct sequences). 

 

protein/gene Comments Peptides # of distinct sequences

ospA outersurface protein 33

bbk32 p35 antigen 72 23

ospC outersurface protein 157 21

BBK01 membrane protein 39 21

FlaB Flagellin 22 11

BBG01 lipoprotein 17 10

BBI06 pfs protein (phosphorylate superfamily)11 8

DbpA adhesion protein 24 8

BB0603 membrane associate protein p66 9 7

BB0323 lipoprotein 7 7

dbpB adhesion protein 17 7

BBM27 lipoprotein 10 6

Bol26 surface protein 8 6

BB0238 6 6

WI91-23 REV protein 9 5

ospB outersurface protein 8 5

BB0689 outersurface protein 6 5

BBI39 4 3

bb0337 phosphopyruvate hydratase 3 3

bb0476 translation elongation factor 2 2

bba66 surface antigen p35 2 2

BBJ02 2 2

bb0034 outermembrane protein P13 2 2
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