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ABSTRACT 

 

Tammi M. Taylor 

 

MOUSE EMBRYONIC STEM CELLS EXPRESS FUNCTIONAL TOLL LIKE 

RECEPTOR 2 

Embryonic stem cells (ESCs) are unique in that they have potential to give rise to every 

cell type of the body. Little is known about stimuli that promote mouse (m)ESC 

differentiation and proliferation. Therefore the purpose of this study was to determine the 

role of Toll Like Receptor (TLR) ligands in mESCs proliferation, survival, and 

differentiation in the presence of Leukemia Inhibitory Factor (LIF). We hypothesized that 

TLRs are expressed and functional, and when activated by their ligand will induce 

survival, proliferation, and prevent differentiation. In this study, mESC line E14 was used 

to determine the expression of TLRs at the mRNA level and three mESC lines, R1, 

CGR8, and E14, were used to determine cell surface protein levels. We found expression 

of TLRs 1, 2, 3, 5, and 6 at the mRNA, level but no expression of TLRs 4, 7, 8 and 9 in 

the E14 mESC line. We confirmed the presence of TLR-2 but not of TLR-4, protein on 

the cell surface using flow cytometric analysis for all three cell lines. We focused our 

studies mainly on TLR-2 using the E14 cell line. Pam3Cys, is a synthetic triacyl 

lipoprotein and a TLR-2 ligand, which induced a significant increase in mESC 

proliferation on Days 3, 4, and 5 and enhanced survival of mESC in a dose dependent 

manner in the context of delayed addition of serum. All the latter experiments were 
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performed in triplicate and student T-test was performed to establish significant 

differences. Next, we demonstrated functionality of TLR-2 via the MyD88/IKK pathway, 

where MyD88 was expressed and IKKα/β phosphorylation was enhanced. This was 

associated with increased NF-κB nuclear translocation upon activation by Pam3Cys. 

Finally, we showed that there were no changes in expression of mESCs markers Oct-4, 

KLF-4, Sox-2, and SSEA-1, thus illustrating that the mESCs may have remained in a 

pluripotent state after activation with the TLR-2 ligand in the presence of LIF. These 

results demonstrate that mESCs can respond to microbial products, such as Pam3Cys, and 

can induce proliferation and survival of the mESCs. This finding expands the role of 

TLRs and has some implications in understanding embryonic stem cell biology.  

  

    Hal E. Broxmeyer, PhD, Chair 
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1 

 INTRODUCTION 

 

Survival of an organism depends on how prompt its innate immune system responds to an 

outside pathogen. The innate immune system is the first line of defense and is made up of 

myeloid cells. Myeloid cells include macrophages, neutrophils, and dendritic cells. 

Pathogen Associated Molecular Particles (PAMPs) are recognized by a Toll Like 

Receptor (TLR) on the surface of lymphoid cells and induce maturation and 

differentiation of myeloid cells (Nagai, Garrett et al. 2006).    

Previous studies have shown TLRs to couple adaptive and innate immunity via 

lymphoid cells (Iwasaki and Medzhitov 2004). Lymphoid cells, include bone marrow 

derived B, thymus derived T, and Natural Killer (NK) cells. These cells are replenished 

by hematopoietic stem cells in the bone marrow (Kondo, Weissman et al. 1997). Stem 

cells are unique cells in the body formed during gestation, and are capable of self 

renewal. Embryonic (ES), fetal or adult stem cells preserve this unique quality. Stem cells 

can also give rise to multipotent progenitors that help replenish the hematopoietic and 

immune system, and other cell types of the body. They are products of ex-vivo culture of 

the blastocyst. 
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Embryonic Stem Cells 

Embryonic Stem (ES) cells have the unique ability to self renew and differentiate into 

derivatives of all three germ layers in vivo and in vitro (Friel, van der Sar et al. 2005). 

The three germ layers are ectoderm, mesoderm, and endoderm (Figure 1). ES cells are 

derived from the inner cell mass of the blastocyst (Evans and Kaufman 1981; Martin 

1981; Axelrod 1984; Wobus, Holzhausen et al. 1984; Doetschman, Williams et al. 1988; 

Smith 2001). The blastocyst consists of an outer cell layer called the trophoblast that give 

rise to the placenta, and an inner cell layer called the inner cell mass that gives rise to all 

tissues of the body (Friel, van der Sar et al. 2005). Scientists isolated cells from this 

region in the mouse blastocyst and were able to maintain these cells in culture on 

gelatinized plates with feeder layers (Mintz and Illmensee 1975). A factor found in the 

feeder layer was identified that prevented differentiation and promoted stem cell self 

renewal of mouse ES cells (Martin and Evans 1974; Evans and Kaufman 1981; Martin 

1981). Today this factor is known as Leukemia Inhibitory Factor (LIF). LIF allows 

murine ES cells to grow in the absence of a feeder layer (Smith, Heath et al. 1988; 

Williams, Hilton et al. 1988; Friel, van der Sar et al. 2005).  Human ES cells do not 

respond to LIF. Important unknowns are finding the factors that induce and maintain self 

renewal of human ES cells.     
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Figure 1. Stem Cell Hierarchy adapted from (Wobus and Boheler 2005). mES cells come  

 

from the inner cell mass of the blastocyst and can give rise to every cell type of the body.  
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Leukemia Inhibitory Factor 

LIF is a member of the Interleukin (IL)-6 family of cytokines.  The LIF receptor (R)  

consists of LIF-Rβ and the receptor gp130 (Figure 2). The binding of LIF to its receptor 

on mES cells activates two major pathways, the Janus tyrosine associated kinase (JAK) - 

signal transducer activator of transcription 3 (STAT-3) Pathway and the SHP2-ERK 

Pathway (Figure 2) (Burdon, Chambers et al. 1999; Burdon, Stracey et al. 1999). LIF 

binding to LIF-Rβ activates the JAKs which phosphorylate the Src Homology 2 (SH-2) 

domain of its downstream target, STAT-3. Once STAT-3 is phosphorylated it undergoes 

autophosphorylation and forms a STAT-3 homodimer. The STAT-3 dimer then 

translocates to the nucleus and binds to DNA binding sites of genes which control murine 

ES cell self -renewal (Friel, van der Sar et al. 2005). 

Another pathway that is activated by LIF is the SHP2-ERK pathway via the 

gp130 receptor. The LIF-gp130R activates the RAS/MAPK pathway. SHP2 associates 

with Gab1, which causes the activation of Ras which induces the transactivation of 

MAPKs and ultimately ERK phosphorylation. This pathway is thought to lead to 

differentiation of murine ES cells (Burdon, Stracey et al. 1999; Burdon, Smith et al. 

2002). 

A recent report has shown that mesenchymal stem cells which give rise to bone 

cartilage, adipose tissue, and chondrocytes can remain in an undifferentiated/ 

proliferating state when Pam3Cys is bound to its receptor TLR-2 in these cells (Pevsner-

Fischer, Morad et al. 2007). This is an important finding because in murine ES cells the 

activation of the MAPK/ERK pathway is thought to promote differentiation. 
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Figure 2. LIF/STAT3 Paradigm for ES cell Self Renewal. Some parts of the Figure were 

adapted from (Friel, van der Sar et al. 2005). LIF activates the JAKs which then activates 

STAT3 and forms a homodimer which activates expression of Nanog and Oct-4 genes. 

TLRs may activate the Gab1-Shp2 MEK/ERK pathways.  
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Previous studies have shown that activation of gp130 Rβ can elicit production of 

IL-6, TNF-α, and IL-11 (Hilton, Hilton et al. 1994; Friel, van der Sar et al. 2005; Jenkins, 

Roberts et al. 2005), which are cytokines produced in response to activation by TLRs. 

The IL-6 cytokine family has a role in the biological activities of multiple hematopoietic 

lineages and helps to maintain pluripotency of mouse (m) ES cells (Burdon, Chambers et 

al. 1999). For example, they can stimulate the production of immature hematopoietic 

progenitor cells (HPC) when used in synergy with stem cell factor (SCF) and interleukin 

(IL)-3 (Dexter, Allen et al. 1978; Jenkins, Roberts et al. 2005) and directly stimulate 

megakayocytes to become functionally mature. The binding of IL-6 to the gp130 subunit 

induces gp130 homodimerization which leads to activation of JAKs (Heinrich, Behrmann 

et al. 1998). This ultimately leads to the phosphorylation of STAT-1 or STAT-3 

(Gerhartz, Heesel et al. 1996).  

  Studies have shown TLR2 activation can lead to an increased production of IL-6 

and TNF-α in macrophage cells. This cytokine production will be used as one means to 

determine if TLR-2 is functional in mES cells in our studies.  

 

Self Renewal Markers 

There are several mouse/human ES cell self renewal markers that are distinct in 

undifferentiated ES cells. They include Nanog, Oct 4, and Sox 2 (Niwa, Miyazaki et al. 

2000; Avilion, Nicolis et al. 2003; Sato, Meijer et al. 2004; Friel, van der Sar et al. 2005).  

Mouse ES cells in un-differentiated states also express distinctive markers. These include 

an isozyme of alkaline phosphatase and SSEA-1. (Solter and Knowles 1978; Wobus, 



 

 

9 

Holzhausen et al. 1984; Thomson, Itskovitz-Eldor et al. 1998; Reubinoff, Pera et al. 

2000; Reubinoff, Pera et al. 2001; Xu, Inokuma et al. 2001; Henderson, Draper et al. 

2002; Friel, van der Sar et al. 2005). Oct-4 and Sox-2 but not Nanog are thought to be 

regulated by the transcription factor STAT-3 (Niwa, Burdon et al. 1998; Thomson, 

Itskovitz-Eldor et al. 1998; Pesce, Anastassiadis et al. 1999; Friel, van der Sar et al. 

2005). Nanog is downstream of the transcription factor Oct-4, and they both play a 

critical role in murine ES cell self renewal (Niwa, Miyazaki et al. 2000; Friel, van der Sar 

et al. 2005). Although the expression of these markers are considered one way to 

determine a non-differentiated state, the best way to determine non-differentiated state is 

putting the ES cells back into a blastocyt to develop into a mouse, or place the cells into a 

mouse to for teratomas.  

STAT-3 activation is not involved in TLR activation pathway in macrophages 

therefore this pathway was not studied in ES cells (Hu, Chen et al. 2007). The regulation 

of STAT-3 is critical in the homeostasis of hematopoiesis because STAT-3 when hyper-

activated can act as an oncogene (Bromberg, Wrzeszczynska et al. 1999).  Previous data 

has shown that STAT-3 plays an important role in the homeostasis of the undifferentiated 

and differentiated states of murine ES cells by activating ES cell self renewal marker Oct-

4 (Niwa, Burdon et al. 1998; Friel, van der Sar et al. 2005; Guo, Mantel et al. 2008). 

 

Toll-Like Receptor Pathway 

Toll-Like Receptors (TLRs) play a critical role in innate and adaptive immune 

responses against microbial pathogens (Akira, Takeda et al. 2001; Kambris, Hoffmann et 
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al. 2002; Beutler, Hoebe et al. 2003; Gangloff, Weber et al. 2003; Beutler, Hoebe et al. 

2004; Hoebe, Janssen et al. 2004; Beutler, Jiang et al. 2006). Today there are ten TLRs 

reported in humans and 12 TLRs reported in mice (Takeda and Akira 2005). They 

include TLR-1-10 in humans and TLR1-9, RP105/11, MD1/12, and MD2/13 in the 

murine system. TLR ligands better known as PAMPs include lipopolysaccharides (LPS) 

of Gram negative bacteria such as Salmonella or Escherichia coli which activate TLR-4 

(Figure 3) (Poltorak, He et al. 1998; Hoshino, Takeuchi et al. 1999). Lipoprotein, 

lipopeptides, and peptidoglycan of Gram positive bacteria are recognized by TLR-2. 

TLR-2 forms a TLR-1/2 and or 2/6 heterodimer which recognizes triacyl and diacyl 

lipoproteins respectively (Figure 3 and 4) (Takeuchi, Hoshino et al. 1999; Ozinsky, 

Underhill et al. 2000; Takeuchi, Kaufmann et al. 2000; Takeuchi, Sato et al. 2002). 

Pam3Cys is a synthetic triacyl lipoprotein and known activator of the TLR-2/1 

heterodimer (Shimizu, Kida et al. 2008). 
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Figure 3. Toll Like Receptor Pathway. Some parts of this figure were adapted from 

(Naumann 2000; Kawai and Akira 2005).  TLR-1 and TLR-2 form a heterodimer which 

is triggered by lipoproteins such as Pam3Cys, while TLR-6 and TLR-2 form a 

heterodimer that is activated by diacyl lipoproteins. LPS is the PAMP that triggers TLR-4 

to illicit an immune response. 
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Figure 4. TLR-2 mediated signaling pathways adapted from (Arbibe, Mira et al. 2000; 

Naumann 2000; Kawai and Akira 2005; Kawai and Akira 2006). Ligands bind to 

heterodimers TLR-1/2, and TLR-2/6. Triacyl lipoproteins bind TLR-1/2 and Diacyl 

lipoproteins bind to TLR-2/6. They both mediate their activities through the adaptor 

molecules MyD88 and TIRAP, and recruit IKK which phosphorylates NF-κB and cause 

it to translocate to the nucleus.  
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TLR stimulation by PAMPs trigger signaling cascades that require intracellular 

adaptive proteins such as myeloid differentiation primary response protein 88 (MyD88), 

Toll Interleukin-1 receptor (TIR) domain-containing adaptor inducing interferon-beta 

(IFN-β) also known as TRIF, and Interleukin 1 receptor associated kinase (IRAK) 

(Figure 3 and 4) (Ferrandon, Imler et al. 2004; Takeda and Akira 2005). Activation of 

most TLRs induce the production of cytokines via the MyD88 pathway, excluding TLR-3 

which uses a MyD88-independent/TRIF pathway (Oshiumi, Matsumoto et al. 2003; 

Yamamoto, Sato et al. 2003). This leads to the activation of transcription factors such as 

activating protein 1 (AP-1), nuclear factor kappa-B (NF-κB), and interferon regulatory 

factors (IRFs) (Figure 4).  

 

Nuclear Factor of Kappa light polypeptide gene enhancer in B cells 

Nuclear factor kappa B (NF-κB) is a Rel family transcription factor composed of 

homo and heterodimers such as p50 and p65 subunits (Arbibe, Mira et al. 2000) (Figure 

4). NF-κB plays an important role in mammalian immunity and is activated by TLRs 

(Rosetto, Engstrom et al. 1995). TLRs initiate this pathway leading to NF-κB activation 

via signals through MyD88, IRAK, and TNF receptor associated factor -6 (TRAF6) 

adapator protein molecules (Arbibe, Mira et al. 2000; Bowie and O'Neill 2000; Irie, Muta 

et al. 2000) (Figure 4). The inactive form of NF-κB is a cytoplasmic heterodimer that 

consist of p50 and p65 subunits (Arbibe, Mira et al. 2000). Upon TLRs activation, IκB 

kinases (IKKs) are activated. IκB, the NF-κB inhibitor is degraded thus allowing NF-κB 

to translocate to the nucleus to mediate transcriptional gene activation (Mercurio, Murray 
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et al. 1999; Zandi and Karin 1999; Arbibe, Mira et al. 2000; Arsura, Mercurio et al. 2000) 

(Figure 4).   

Previous studies have shown NF-κB can induce tissue repair genes, inflammation, 

and neutrophil-specific chemokines in mouse embryonic fibroblasts and macrophage 

cells that are in a necrotic state (Li, Carpio et al. 2001). Therefore, it is thought that the 

triggering of NF-κB by TLRs may play a role in survival of the ES cells. Thus, we 

performed survival assays to determine if TLR activation can enhance survival of mES 

cells. 

Previous studies have shown TLRs 2 and 4 to be expressed in human 

hematopoietic progenitor cells and when stimulated with their ligands, to help replenish 

cells of the innate immune system in vitro (Banchereau and Steinman 1998; Nagai, 

Garrett et al. 2006).  Previous studies have also shown that mesenchymal stem cells 

(MSC) express all TLRs except 9 and when stimulated with their ligands prevent 

differentiation of MSCs into chondrocytes, adipose tissue, and cartilage, thus causing an 

increase in MSC proliferation in their non-differentiated state (Pevsner-Fischer, Morad et 

al. 2007). It was this information that interested us in studying a role for TLRs and their 

ligands in ES cell function. Activation of TLRs can promote the production of multiple 

cytokines and chemokines at a transcriptional level thus influencing the adaptive immune 

response (Figure 4). Some cytokines and chemokines whose secretion is induced by 

TLRs, are not produced or expressed only at low levels in the conditioned media of 

undifferentiated E14 ES cells. This includes TNF-α, and IL-6. (Guo, Graham-Evans et al. 

2006). Therefore in the current studies, the expression of these cytokines and 
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transcription factors via the IKK-αβ/NF-κB signaling pathway upon TLR stimulation was 

performed to determine the functionality of specific TLRs in mES cells  

 

Cytokines IL-6 and TNF-α 

IL-6 is a member of the IL-6 cytokine family and elicits a response via the gp130 

receptor-beta (Rβ) subunit.  Once IL-6 binds to its soluble IL-6 receptor-alpha (Rα) 

subunit, gp130 homodimerizes and activates the JAKs. JAKs then activate STAT-1 or 

STAT-3 (Gerhartz, Heesel et al. 1996). Previous studies have shown  that homeostasis of 

STAT-3 activation plays a role in mediating the cellular production of immature or 

committed hematopoietic progenitors, and is regulated by IL-6 production (Jenkins, 

Roberts et al. 2005; Chung, Park et al. 2006; Jenkins, Roberts et al. 2007). Previous 

reports have shown that in the absence of IL-6 signaling there is a decrease in STAT3 

hyper-activation and abnormal lymphopoiesis. Previous reports also have shown that if 

IL-6 is deleted in mice there are abnormalities of both immature and committed 

progenitors from multiple lineages from the spleen and bone marrow (Dexter, Allen et al. 

1978; Zipori 1989; Zipori 1990; Zipori 1992; Bernad, Kopf et al. 1994). IL-6 plays a role 

in mediating pathological hematopoietic and lymphoid responses by STAT-3 hyper-

activation (Jenkins, Roberts et al. 2007). 

 The over expression of IL-6 could lead to abnormalities i.e. tumorgenesis and 

human lymphoproliferative and myeloproliferative diseases, including multiple myeloma 

(MM), non-Hodgkin’s lymphoma (NHL), and acute myeloid leukemia (AML) which all 

display STAT3 deregulated activation (Jenkins, Roberts et al. 2007). We considered it 
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important to determine the role of TLRs in mESC differentiation, survival/proliferation 

and self renewal. Some TLRs are capable of inducing the production of inflammatory 

cytokines, such as IL-6, by antigen presenting cells. To date, IL-6 hasn’t been shown to 

be produced in mESCs (Guo, Graham-Evans et al. 2006).   

TNF-α is a cytokine produced by TLR-2/4 signaling, and is required for dendritic 

cell maturation and migration. (Kurt-Jones, Sandor et al. 2004; Adema, de Vries et al. 

2005). It is a major player in anti-tumor immunity and has been shown to reduce the 

activation of integrin αVβ3, an adhesion receptor that plays a key role in tumor 

angiogenesis, and causes a decrease in endothelial cell adhesion and survival (Ruegg, 

Yilmaz et al. 1998).    

The cytokines whose production are signaled via TLRs play a role in cell survival 

and replenishment of the innate immune system and we sought to determine if they play a 

role in the proliferation and survival of undifferentiated mES cells. ES cells are in a 

highly regulated environment and respond to various growth factors, chemokines, and 

cytokines differently. Studies have shown that bone morphogenic protein-4 (BMP-4), an 

anti neural factor in embryos in conjunction with LIF helps to maintain ES cells in a 

pluripotent state. Yet when ES cells are in BMP media alone, they differentiate into 

mesoderm and hematopoietic cells (Hilton, Hilton et al. 1994; Johansson and Wiles 1995; 

Ying, Stavridis et al. 2003). BMP interacts with serine threonine receptor heterodimers, 

while TLRs interact with MyD88 which activates serine threronine IRAK kinases IRAK1 

and IRAK4 (Hilton, Hilton et al. 1994; Ying, Stavridis et al. 2003). BMP has no direct 
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effect on the STAT-3 pathway nor does it inhibit the MAPK/ERK pathway, suggesting 

that it acts in parallel with LIF/STAT-3 (Hilton, Hilton et al. 1994).  

The cytokines produced by undifferentiated ES cells may be important in 

maintaining their stable environment and increase their survival and proliferation. When 

this niche is disrupted (i.e. when the ES cells are irradiated), there is an increase in levels 

of several cytokines whose production is induced upon TLR activation in other cell types. 

Therefore, we propose that these cytokines may play a role in ES cell survival because 

these cytokines may normally be used to maintain the hematopoietic stem cell niche 

(Hackney, Charbord et al. 2002; Zhang, Niu et al. 2003). The levels of these cytokines 

were at lower levels or not detected in normal mES cell conditioned media (Guo, 

Graham-Evans et al. 2006). The cytokines that were at higher levels under apoptotic 

conditions include IL-6 and TNFα. Production of the latter cytokines mentioned, are 

induced when either TLR-2 or TLR-4 are activated on other cell types such as MSC  

(Pevsner-Fischer, Morad et al. 2007).  
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AIMS 

 

AIM 1: Determine if murine Embryonic Stem (ES) cells express functional Toll Like 

Receptors (TLR), and if their ligands can induce or modulate murine ES cell 

proliferation/survival, self renewal and/or differentiation in the presence of Leukemia 

Inhibitory Factor (LIF). 

  

AIM 2: Clarify the roles of TLR ligands and their receptors on ES cell function under 

differentiating conditions in the absence of LIF. 
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MATERIALS AND METHODS 

 

Part I 

 

Do murine ES cells express Toll Like Receptors? 

 

Cell Cultures 

Wild-type ESC lines, E14, R1, CGR8 were cultured on gelatinized plates in Dulbecco’s 

modified Eagle’s medium (DMEM) with 15% ESC qualified fetal bovine serum (FBS) 

(Gibco-BRL, Grand Island, NY), 5.5x 10
-2

 mM β-mercaptoethanol (Gibco-BRL, Grand 

Island, NY) and 10
3
 U/mL of LIF; (Chemicon, Temecula, CA). Raw264.71, a mouse 

macrophage cell line, was purchased from ATCC (Manassas, VA) and cultured in 

DMEM (Gibco, Grands Island, NY) with 15% FBS. 

 

Primers 

RT-PCR primers were designed and optimized as previously reported (Derbigny, Hong et 

al. 2007) (Table 1). Primers were purchased from Invitrogen (Carlsbad, CA). 
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Table 1. Primers used for RT-PCR

Product Sense Primer Anti Sense Primer

Product

Size(bp)

TLR1 5'-GTGAATGCAGTTGGTGAAGAAC-3' 5'-GCTCATTGTGGGACAAATCCAA-3' 450

TLR2 5'-CTTGTTTCTGAGTGTAGGGGCT-3' 5'-CGAACCAGGAGGAAGATAAACT-3' 483

TLR3 5'-ACCCTTTCAAAAACCAGAAGAATC-3' 5'-GGACAGACGCTGTATATTGTTG-3' 521

TLR4 5'- TCAACCCCTTGAAGATCTTAAA-3' 5'-CAATTGGGTTCAAAGACATGTC-3' 459

TLR5 5'-CAGTATCAGCTGATGAGACATGAG-3' 5'-GACAGTACCGCAATAGGGATGG-3' 463

TLR6 5'- TACGGAGCCTTGATTTCCATGT-3' 5'-TGGACCTCTGGTGAGTTCTGAT-3' 485

TLR7 5'-AACCACATACCAAGCATCTCTC-3' 5'-AAATTAGGTGGCAAAGTGGTGG-3' 458

TLR8 5'-CAGAGTTGGATGTTAAGAGAGA-3' 5'-GTATATAACTGGTTGTCTTCCA-3' 459

TLR9 5'-GCCTGAGCCACACCAACATCCT-3' 5'-CCAGACCTTGGAACCAGGAAGA-3' 477

 

Adapted from (Derbigny, Hong et al. 2007) 
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RNA Extraction  

5 x 10
 5

 E14 mES cells were seeded in 60 mm culture dishes and grown to confluency. 

Total cellular RNA was extracted using the QIAGEN RNeasy Kit
TM

 according to 

manufacturer’s instructions (Qiagen Inc., Valencia, CA, USA).  RNA was stored in 

RNAse- free water at -80°C. 

 

DNase Treatment  

RNA samples were DNase treated using QIAGEN DNase free
TM

 according to 

manufacturer’s instructions (Qiagen Inc., Valencia, CA, USA). 

 

Reverse transcriptase-polymerase chain reaction  

Expression of TLRs 1 -9 and GAPDH were measured using a semi quantitative RT-PCR 

one-step AccessQuick 
TM 

RT-PCR system. (Promega, Madison, WI). The oligonucleotide  

primers  used for TLR-1 –TLR-9 and GAPDH have been reported (Derbigny, Hong et al. 

2007). Total RNA was isolated from the E14 mESC line and Raw 264.71 mouse 

macrophage cells using RNeasy minicolumns (QIAGEN, Valencia, CA). All RNA 

samples were treated with RNasefree DNase I (QIAGEN, Valencia, CA) to remove 

genomic-DNA contamination and were quantified by spectrophotometric analysis. RNA 

integrity was confirmed by agarose gel electrophoresis. Using 1µg of total RNA as the 

template for each reaction, RT-PCR was accomplished by using a polymerase kit (Access 

RT-PCR; Promega, Madison, WI). Cycling conditions were as follows: 1 min and 30 s of 

initial denaturation at 95°C, followed by eight cycles of 30 s at 95°C, 15 s at 60°C, and 
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30 s at 72°C. After the initial 8 cycles, the 30-s 72°C extension cycle was increased 3 s 

per cycle for 25 cycles. During the 40th cycle, the 72°C extension was 3 min to complete 

the RT-PCR. Reactions were also amplified in the absence of reverse transcriptase as 

negative controls. PCR products were electrophoresed on 1.5% agarose gels. Each DNA 

band was visualized by staining with ethidium bromide. Experiments were done in 

triplicate. 

 

Primary antibodies and TLR ligands 

Primary antibodies were: isotope-control PE rat IgG2a (eBioscience, San Diego, CA;  17-

4331), isotype-control APC rat IgG2b (eBioscience, San Diego, CA;12-4321), TLR2 

/CD282 anti-mouse clone 6C2 (eBioscience, San Diego, CA ;17-9021) and anti-mouse 

TLR-4/MD2 (eBioscience , San Diego, CA; 12-9924), p-IKKα/β (Cell Signaling, Denver, 

MA; 2697S), myeloid derived factor 88 (MyD88) (Abcam, Cambridge, MA; ab 2068), 

total IKKα/β (Santa Cruz, Santa Monica, CA; sc7607), NF-κB p65 (Upstate Cell 

Signaling Solutions, Temecula, CA; 0701049995), PARP (Cell Signaling, Denver, MA; 

9542), and blocking anti-TLR-2 antibody, T2.5 (Biolegend, San Diego, CA; 121802), 

and ERK1/2 (Cell Signaling, Denver, MA; 9102). TLR ligands included: TLR-2 agonist, 

Pam3Cys, and TLR-3 agonist, Poly I:C purchased from (Invitrogen, Carlsbad, CA). TLR4 

agonist, LPS from Salmonella was from Sigma Aldrich, St. Louis, MO. 
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Flow Cytometric Analysis for TLR-2 and TLR-4  

An aliquot of 1x 10
6
 cells was washed in PBS containing 1% BSA (PBS-1% BSA) three 

times. 100µl of staining buffer (PBS containing 1% BSA and .5% EDTA)  was added to 

the cell pellet along with 5µL of TLR-1-PE, TLR4-PE, or TLR-2-APC antibody for 1hr 

in the dark at 4°C. Cells were washed three times with wash buffer (PBS containing 1% 

BSA) and 300µL of wash buffer was added to cells and cells for analysis by flow 

cytometry. IgG2a was used as an isotype control for TLR1-PE, and TLR4-PE and IgG2B 

was used as an isotype control for TLR-2-APC 

 

Flow Cytometric Analysis for Oct-4, SSEA-1, SOX 2, and KLF-4 

Wild-type ESC lines E14, R1, and CGR8 were cultured with and without TLR-2, TLR-3, 

and TLR-4 agonists. Cells were collected after days 1, 2, 3, 4, and 5 for proliferation 

assay and after 30 minutes, 1 hr, and 4 hrs of TLR-agonist treatment. An aliquot of 1x 10
6
 

cells was washed in PBS containing 1% BSA (PBS-1% BSA) and incubated with anti-

mouse CD16/CD32 receptor monoclonal antibody at 1µg/100µL (Pharmigen, San Diego, 

CA) to block non-specific binding of immunoglobulin to mouse FcIII/II receptors, and 

cells were used for SSEA-1 antibody staining. Cells analyzed for SSEA-1 expression 

were incubated with a 1:20 dilution of monoclonal anti-SSEA-1 antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA) for 1 hour at 4°C.   

             Cells were then washed and incubated with a 1:100 dilution of FITC: goat anti-

mouse IgM antibody (Santa Cruz Biotechnology, Santa Cruz, CA) and analyzed. 

Remaining cells were fixed and permeabilized with Cytoperm/Cytofix (BD Biosciences, 
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San Jose, CA) and stained with a 1:100 dilution rabbit-mouse Oct-3/4 polyclonal 

antibody (Chemicon, Temecula, CA) and KLF-4 and Sox-2 antibodies (Santa Cruz 

Biotechnology, Santa Cruz, CA ) for 1hr at 4°C in the dark. Cells were washed 3 times 

with 1mL of 1x Perm/Wash Buffer, followed by staining with 1:100 dilution of FITC: 

goat anti-mouse IgG antibody (Santa Cruz Biotechnology, Santa Cruz, CA). Finally, cells 

were washed 3 times with 1x Perm/Wash Buffer and resuspended in 300µL of 1x Perm 

Wash Buffer for FACScan analysis (Becton Dickinson, Sunnyvale, CA). 

 

Western Blot p-IKK, Total IKK, and MyD88 

Cells were lysed with 100µL of MPER (Pierce, Rockland, IL) with proteinase and 

phosphatase inhibitors added (40µL of proteinase and phosphatase inhibitors added to 

4mL of MPER).  The 1.5mL centrifuge tube was vortexed to resuspend the pellet into 

solution. Total protein in supernatant was collected. 

After protein was collected, we determined protein concentration using BCA 

analysis reagents (Pierce, Rockland, IL). Standards were made using 200µL of BCA 

reagents and 20µL of each standard (125µg/mL-2000µg/mL). Samples were plated at a 

1:10 dilution. All sample and standards were performed in triplicate. The plate was 

incubated at room temperature for 2 hours and analyzed using a spectrophotometer with a 

plate reader at 540nm. 

  After protein concentration was determined, 40µg/40µL of each protein sample 

was used to perform Western blotting analysis of E14 cells. Protein was electrophoresed 

on a 4-12% gel (Invitrogen, Carlsbad, CA) in the X Cell II Sure Lock Apparatus 
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(Invitrogen, Carlsbad, CA) at 120V for 1 hr. Next the gel was transferred to the PVDF 

membrane (Millipore, Temecula, CA) in the Cell II Blot Module (Invitrogen, Carlsbad, 

CA) in the X cell II Sure Lock apparatus (Invitrogen, Carlsbad, CA) at 25 V at 4°C for 

2hrs. The MyD88 anti-rabbit (Chemicon, Temecula, CA), p-IKK anti -rabbit, Total- IKK, 

anti-rabbit, and β-actin anti-mouse (Santa Cruz Biotechnology, Santa Cruz, CA) 

antibodies were used. β-actin anti-mouse antibody was used as a loading control. 

 

Enzyme Linked Immunosorbent Assay (ELISA) for Protein 

Cytokine release was assessed by enzyme linked immunosorbent assay (ELISA) with 

5x10
5
 ESCs seeded in 24 well plates. Twenty-four hours later, the media was replaced 

with DMEM with or without the ligands for TLR-2 or TLR-4 respectively. IL-6, TNF-α, 

and IFN-β protein amounts were determined by ELISA (Ready-SET-G0! ELISA kit, 

(eBioscience San Diego, CA) according to manufacturer’s instruction. Standard curves 

were established using mouse recombinant IL-6, TNF-α and IFN-β growth factors 

respectively. The assay detection limit was 4 pg/mL protein.   

 

IL-6, TNF-α and IFN-γ mRNA and protein expression 

Total RNA was isolated by TRIZOL preparation followed by phenol chloroform/isoamyl 

alcohol extraction and ethanol precipitation. Changes in IL-6, TNF-α, and IFN-γ RNA 

levels in mES cells were analyzed by quantitative real time PCR polymerase chain 

reaction. Primers used for this assay were obtained from the Dent laboratory and are 

shown in Table 2. Relative changes in IL-6, TNF-α, and IFN-γ were determined using the 
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2
-ΔΔCt

 method. Data are expressed as fold change. To test our q-RT-PCR primers we 

analyzed cytokine expression in Raw264.71 mouse macrophage-like cells stimulated with 

TLR-2 and TLR-4 ligand. 
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Table 2. Primers for qRT-PCR

Product Sense Anti-Sense

TNF-α 5'-CACAAGATGCTGGGACAGTGA-3' 5'-TCCTTGATGGTGTGCATGA-3'

IFN-γ 5'-TCAAGTGGCATAGATGTGGAAGAA-3' 5'-TGGCTCTGCAGGATTTTCATG-3'

IL-6 5'-CCAGAAACCGCTATGAAGTTCCT-3' 5'-CACCAGCATCAGTCCCACGA-3'

β-tubulin 5'-CTGGGAGGTGATAAGCGATGA-3' 5'-CGCTGTCACCGTGGTAGGT-3'

Obtained from Dent laboratory
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Proliferation Assay  

We cultured E14 ES cells in the presence of LIF and the TLR-2 activator Pam3Cys in our 

experiments for cell suspension proliferation assays. ES cells under undifferentiated 

conditions without Pam3Cys stimulation served as a control. One hundred thousand E14 

mESCs were stimulated with 0.1µg/mL, 0.5µg/mL, and 1.0µg/mL of Pam3Cys in 5 mL 

of undifferentiated media. Incomplete Media includes DMEM for undifferentiated ES 

cells (Hyclone, Waltham, MA), 15% FBS, 1% Penicillin/Streptomycin (Gibco, Grand 

Island, NY), 1% Pyruvate (Gibco, Grand Island, NY), 1% MEM Essential Vitamins 

(Gibco, Grand Island, NY), and 1% L-Glutamine (Gibco, Grand Island, NY). Complete 

Media was made with 50mL of incomplete media plus LIF at [1:10000] and β2-

mercapthoethanol (2ME) at [1:1000] which were added fresh. Next the ES cells were 

incubated in a 5% CO2 37°C incubator for 5 days.  

To harvest cells for counting each day cells were washed with 3mL of PBS, 

trypsinized with 1mL of trypsin-EDTA (Gibco, Grand Island, NY), and placed in the 

incubator for 5 minutes to remove cells from the bottom of plates. ES cells were washed 

with 5mL of incomplete media and spun down for 5 minutes at 12,000 rpm. Supernatant 

was removed and 1mL of incomplete media was added to the cells. Next 50µL of the 

cells were stained with 50µl of Trypan Blue (Gibco, Grand Island, NY) and 10µL of the 

cells was counted on the hemacytometer. This was done for samples harvested each day 

for the cells treated with or without Pam3Cys ligand. 
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Survival Assay for ESCs in the Presence of LIF 

 

ESC growth depends on serum. After withdrawal of serum from plates <25% confluency, 

95% of ESCs die within 96 hours. To determine the effects of TLR-2 ligand, Pam3Cys on 

ESC survival, studies evaluated control medium, 200ng/mL SDF-1/CXCL12, 0.1μg/mL, 

1.0μg/mL, and 10μg/mL of Pam3Cys, and 0.1μg/mL, 1.0μg/mL, and 10μg/mL of LPS. 

Reagents were added at the beginning of the experiments, and mES cell cultures were 

initiated without serum in 1% methylcellulose-based DMEM (5.5x 10
-2

mM 2-ME and 

10
3
U/mL LIF) (Chemicon, Temecula, CA) at 2000 cells/mL. Serum was added at 0, 24, 

48, or 96 hours to each group and colonies scored 7 days after addition of serum. The 

undifferentiated status of the cells was checked by staining of the cells with anti-mouse 

Oct-4, Sox-2, KLF, and SSEA-1 antibody. 

 

Apoptosis Assay 

To analyze mESC’s undergoing apoptosis, cell cultures were subjected to serum 

withdrawal in the presence of LIF. Reagents were added at the beginning of cultures as 

followed: Control medium, TLR-2 ligand, Pam3Cys (10µg/mL), TLR-4 ligand, LPS 

(10µg/mL), and SDF-1/CXL12 (200ng/mL). Cells were collected at days 1, 2, 3, and 4 

after serum withdrawal and were stained with Annexin V (BD Biosciences, San Jose, 

CA). After withdrawal of serum for 4 days, mESCs were stained with undifferentiated 

markers Oct4, KLF4, SSEA1, and Sox2, respectively to determine if the cells remained 

undifferentiated.   
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Part II 

 

Day 4 and Day 6 EBs in Suspension 

We plated 1000 E14 mES cells/mL with or without 10µg/mL or 20μg/mL of Pam3Cys in 

IMDM media in the absence of LIF and mixed cells well in a 50mL conical tube before 

they were plated into a 35mm tissue culture plate. EB’s are formed from ES cells in the 

absence of LIF. We plated cells in the absence of LIF for 4 and 6 days. 

 

Flow Cytometry of Day 4 and Day 6 EBs 

 EB’s were accessed by flow cytometry for TLR-2 and TLR-4 and for non-differentiation 

markers like SSEA-1, Oct-4, Sox-2, and KLF-4 to determine if TLR-2 ligand will prevent 

the ES cells from differentiating to EB’s, therefore we only checked undifferentiated 

markers and not for increases in lineage markers or cell types. 

 

Western Blot of Oct-4, phosphorylated-ERK and Total ERK  

We performed Western blot analysis to determine if the TLR-2 ligand in the absence of 

LIF increased differentiation or helped to maintain stemness of ES cells, by looking at the 

expression of Oct-4 in the EBs treated with increasing doses of TLR-2 ligand as 

compared to EB’s not treated with ligand, and its control, mES cells cultured in the 

presence of LIF. Cells were lysed with 100µL of MPER (Pierce, Rockland, IL) with 

proteinase and phoshotase inhibitors added (40µL of proteinase and phosphotase 
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inhibitors added to 4mL of MPER). The 1.5mL centrifuge tube was vortexed to 

resusspend pellet into solution and spun at 4°C for 10 minutes.  

After protein was collected, we detected the protein concentration using BCA 

analysis reagents (Pierce, Rockland, IL). Standards were made using 200µL of BCA 

reagents and 20µL of each standard (125µg/mL-2000µg/mL), and samples were plated at 

1:10 dilution. All samples and standards were done in triplicate. The plate was incubated 

at room temperature for 2 hours and analyzed using a spectrophotometer with a plate 

reader at 540nm. 

  After protein concentration was determined, 40µg/40µL of each protein sample 

was used to perform Western blotting analysis of E14 Day 4 and Day 6 EBs. Protein was 

electrophoresed on a 4-12% gel (Invitrogen, Carlsbad, CA) in the X Cell II Sure Lock 

Apparatus (Invitrogen, Carlsbad, CA) at 120 V for 1 hr. Next the gel was transferred to 

the PVDF membrane (Millipore, Temecula, CA) in the Cell II Blot Module (Invitrogen, 

Carlsbad, CA) in the X cell II Sure Lock apparatus (Invitrogen, Carlsbad, CA) at 25 V at 

4°C for 2hrs.  The Oct-3/4 (Chemicon, Temecula, CA), p-ERK anti -rabbit, Total ERK 

anti-rabbit, and β-actin (Santa Cruz Biotechnologies, Santa Cruz, CA) anti-mouse 

antibody was used to determine if the undifferentiated ES cells marker was expressed in 

differentiating conditions in the presence of TLR-2 ligand. β-actin anti-mouse antibody 

was used as a loading control. 
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RESULTS 

 

Part I  

 

mES Cells effects in the presence of LIF 

 

TLR2 is expressed at the message level and on the surface of  mES cells 

               Previous reports have shown that TLRs when activated on HSCs can cause 

HSCs to differentiate into B cells and dendritic cells thus helping in the replenishment of 

the immune system (Nagai, Garrett et al. 2006). Mesenchymal Stem Cells (MSCs) 

express functional TLRs and TLRs play a role in bone repair, proliferation of MSCs and 

prevent MSC differentiation into chondrocytes, adipocytes and osteoclasts (Fischer, et.al 

2008). Little is known about TLRs and their role in mES cells, therefore we first 

determined if TLRs are expressed at the messenger RNA level using primers for TLRs 1-

9 (Table 1). We found that mRNA for TLRs 1, 2, 3, 5, and 6 were expressed but not for 

4, 7, 8, and 9 (Figure 5 A). Raw264.71, a mouse macrophage like cell line was used as a 

positive control expressing TLR-1-9 respectively (Figure 5 B and Table 2). There are 

antibodies available that detect TLR-2 and TLR-4 protein on the cell surface. Next, we 

determined if TLR-2 was expressed on the surface of mES cells and since mRNA for 

TLR4 was not expressed, we looked for protein expression of TLR-4, as a negative 

control. We found that TLR-2, but not TLR-4 was expressed on the surface of E14 mES 

cells (Figure 6) confirming the data shown at the gene level. Raw264.71 was used as a 
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positive control and expressed TLR-2 and TLR-4 on its surface. We also checked R1 and 

CGR8 mES cells for TLR-2 and TLR-4 expression. We show that these cell lines express 

TLR-2 but not TLR-4 (Figure 7 and 8). These data show that TLR-2 is expressed on three 

mES cells, so we then focused on determining if TLR-2 was functional on E14 mES 

cells. 
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Figure 5. A.) Murine embryonic stem cells express mRNA for TLRs 1, 2, 3, 5 and 6 

obtained from wildtype, E14 C57/B6 cell line. mES cells were subjected to RT-PCR with 

primers specific for TLR-1, TLR-2, TLR-3, TLR-4, TLR-5, TLR-6, TLR-7, TLR-8, and 

TLR-9. PCR products were separated by 2% agarose gel electrophoresis and visualized 

with ethidium bromide, * marks appropriate size of RT-PCR products, -RT, control 

samples without reverse transcriptase were a negative control for all primers (not shown), 

+, GAPDH served as a positive control. B.) Raw264.71 was used as a positive control for 

all primers. These results are representative of the same findings in six separate 

experiments. 
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Figure 5 
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Table 3. TLR1-9 mRNA expression in cell lines

Cell line TLR1 TLR2 TLR3 TLR4 TLR5 TLR6 TLR7 TLR8 TLR9

E14 + + + - + + - - -

Raw264.71 + + + + + + + + +

TLR mRNA levels were determined by RT-PCR using mouse specific primers.

Levels are noted as +, strong band, - band not detected.
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Figure 6. Expression of TLR-2, and TLR-4 was analyzed on the surface of E14 mES 

cells. A. TLR-2 was expressed on mES cells compared to IgG2a isotype control, B.TLR-

4 was not expressed on the surface of mES cells compared to isotype control IgG2b, 

Raw264.71 mouse macrophage cell line was used as a positive control to confirm that the 

antibodies worked properly C.TLR-2-APC, and D.TLR-4-PE. TLR-2-APC and TLR-4-

PE protein levels were analyzed by flow cytometry. IgG2a-APC and IgG2b-PE were 

used as the respective isotype controls for both cell lines in each separate experiment. 

These results are representatives of similar finding in 4 experiments mcf=mean cell 

fluorescence, a measure of the expression levels of protein on the cell surface. 
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Figure 7. Expression of TLR-2, and TLR-4 was analyzed on the surface of CGR8 mES 

cells. A. TLR-2 was expressed on mES cells compared to IgG2a isotype control, B.TLR-

4 was not expressed on the surface of mES cells compared to isotype control IgG2b, 

Raw264.71 mouse macrophage cell line was used as a positive control to confirm that the 

antibodies worked properly C.TLR-2-APC, and D.TLR-4-PE. TLR2-APC and TLR-4-PE 

protein levels were analyzed by flow cytometry. IgG2a-APC and IgG2b-PE were used as 

the respective isotype controls for both cell lines in each separate experiment. These 

results are representatives of similar findings in 4 experiments mcf=mean cell 

fluorescence, a measure of the expression levels of protein on the cell surface. 
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Figure 8. Expression of TLR-2, and TLR-4 was analyzed on the surface of R1 mES cells. 

A. TLR-2 was expressed on mES cells compared to IgG2a isotype control, B.TLR-4 was 

not expressed on the surface of mES cells compared to isotype control IgG2b, 

Raw264.71 mouse macrophage cell line was used as a positive control to confirm that the 

antibodies worked properly C.TLR-2-APC, and D.TLR-4-PE. TLR-2-APC and TLR-4-

PE protein levels were analyzed by flow cytometry. IgG2a-APC and IgG2b-PE were 

used as the respective isotype controls for both cell lines in each separate experiment.   

These results are representatives of similar findings in 4 experiments mcf=mean cell 

fluorescence, a measure of the expression levels of protein on the cell surface. 
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Treatment of mES cells with TLR-2 ligand Pam3Cys increases NF-κB nuclear 

translocation 

mES cells were plated in the presence and absence of Pam3Cys, a TLR-2 ligand, for 15 

minutes to 1 hour in the presence of LIF. The concentration of TLR ligands were based 

on prior studies . Cells that were treated with 10μg/mL of Pam3Cys, showed an increase 

in NF-κB nuclear expression compared to cells that were not treated. Cells were also 

treated with 10 μg/mL of bacterial lipopolysacchride (LPS), a TLR-4 ligand, but no 

enhancement in translocation was detected with LPS (Figure 9). We also checked for the 

expression of MyD88 and p-IKK in the E14 mESCs (Figure 10 and 11). We show that 

the E14 mESCs express MyD88, and after 15 minutes exposure to TLR-2 ligand 

Pam3Cys or 30 minutes with Poly I:C, a ligand for TLR-3, the mES cells show an 

increase in phosphorylation of p-IKK demonstrating that TLR-2 and TLR-3 are 

functional likely by the MyD88/IKK pathway in the E14 mES cells (Figures 10 and 11).  

 

TLR-2 Ligand Pam3Cys enhances E14 mES cell Proliferation   

To determine if TLR-2 plays a role in mES cell proliferation, mES cells were treated with 

varying doses of the TLR-2 ligand, Pam3Cys in presence of LIF.  mES cells manifested a 

significant 2 fold increase in total cell number by day 3 at each dosage of Pam3Cys 

(Figure 12 A). This increase was also noted at days 4 and 5 (Figure 12 A and B). In order 

to determine if the Pam3Cys effects were mediated through TLR-2, we performed 

experiments in the presence and absence of a blocking antibody for TLR-2 (T2.5). The 
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antibody blocked enhanced proliferation on day 3 induced by Pam3Cys (Figure 12 C and 

D).   

 

 Cytokine and chemokine expression levels upon stimulation with TLR-2 ligand 

mESCs were treated with Pam3Cys a ligand for TLR-2, Poly I: C, a ligand for TLR-3 and 

LPS, a ligand for TLR-4 in a 96 well plate for 18 hours. ELISA for IL-6, TNF-α and IFN- 

β were performed to determine if there would be an increase in cytokine release upon 

TLR challenge. mES cells showed no release of detectable IL-6, TNF-α, or IFN-β  

proteins (Figure 13).  

                 In contrast, we did detect TLR-2-ligand enhancement of the mRNA expression 

for IL-6 (Figure 14 A), TNF-α (Figure 14 B.) and IFN-γ (Figure 14 C). Previous reports 

have shown that TNF-α, and IL-6 were not detected in normal media of the mES cell but 

were detected in mES cells that have undergone apoptosis (Guo, Graham-Evans et al. 

2006). Next we treated the E14 mES cells with the ligands for TLR-2, TLR-3, and TLR-4 

and we measured release of a number of cytokines and chemokines noted in Table 3. We 

did not detect enhanced release of cytokines or chemokines see e.g. Table 4. Samples 

were assessed for cytokine and chemokine production, and sensitivity for each are 

denoted at charlesriver.com. (Charles River Molecular Diagnostic Laboratory, 

Wilmington, MA). 100 µL of media from E14 mESCs in the presence and absence of 

TLR-2 ligands were sent Charles River Molecular Diagnostics Laboratory to measure 58 

different cytokines and chemokines by ELISA (Table 3).  
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Next we wanted to determine if downstream targets to NF-κB would become activated. 

We looked for BCL-2 expression after 12 and 24 hours of TLR-2 stimulation (Figure 14 

D). We saw an increase in BCL-2 expression after 24 hours in the presence of TLR-2 

ligand, showing that NF-κB was functional in mES cells after 24 hours of ligand 

treatment. Expression of cytokines by the E14 mES cells showed minimal expression 

when compared to Raw264.71 macrophage- like cell line, the positive control after 12 

hours (Figure 14 E, F, and G). 
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Figure 9. Pam3Cys enhances NF-κB nuclear translocation in mES cells. 1x 10
6
 mESCs 

were plated in DMEM media in the presence of LIF. Once the cells reached confluence, 

10 μg/mL Pam3Cys or 1µg/mL of LPS was added directly into the media. mES cells were 

harvested at 30 minutes or 1 hour and nuclear and cytoplasmic proteins were extracted. 

The cytoplasmic (A and C) and the nuclear (B and D) were quantified, run on SDS-Page 

gel and blotted with an anti NF-κB p65, PARP or total ERK1/2 antibodies, The 

autoradiographs were quantified by densitometry and shown the average results of 3 

separate experiments (C and D).    
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Figure 10. MyD88 is constituitvely expressed in mESCs with and without TLR-2 ligand 

activation for 15 minutes to 4 hours. β-actin was used as a loading control. Results shown 

are for one of two experiments with similar results.  
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Figure 10 
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Figure 11. TLR-2- activation in mESC cause phosphorylation of IKK-α/β at 15 and 30 

minutes with the ligand for TLR-2 and TLR-3. Total IKK and β-actin was used as a 

loading control for experiments. Shown are the results of 1 of two reproducible 

experiments.  
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Figure 12. Pam3Cys enhances ES cell numbers on Day 3, 4, and 5 in the presence of LIF. 

A. ES cells were treated with Pam3Cys at varying doses for up to 96 hours. Significant 

changes are noted when compared to control for each day. B. Total cell number for each 

day with and without TLR-2 stimulation. C. Day 2 and Day 3 proliferation in the 

presence and absence of T.25 a blocking antibody for TLR-2 receptor with and without 

ligand. D. Day 3 proliferation assay in the presence and absence of TLR-2 ligand with 

and without blocking TLR-2 antibody (T.25). Results shown are the average of 3 

experiments with each experiments performed in triplicate. p value < .05. 
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Figure 13. mESCs do not secrete various cytokines and chemokines following 

stimulation with TLR ligands, as assessed by ELISA. mES cells cultures were treated 

with various TLR ligands: 75μg/mL Poly (I:C), 10μg/mL LPS, or 10μg/mL Pam3Cys, as 

noted, for 24 hours prior to harvesting the conditioned medium. While cytokine release in 

response to TLR ligands was detected in media conditioned by Raw264.71 cells, it was 

not detected (ND) in media conditioned by mES cell line E14. These are results each of 

one experiment performed in triplicate.  
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B. TNF-α 
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C. IL-6 
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Figure 14. qRT-PCR for A. IL-6 B. TNF-α, and C. INF-γ at 12 and 24 hrs after TLR-2 

and TLR-4 ligand stimulation on E14 mESCs. D. BCL-2 protein expression after TLR-2 

activation for 24 hours. E. IL-6, F. TNF-α, and G. INF-γ at 12 hours after TLR-2 and 

TLR-4 ligand stimulation on Raw264.71 mouse macrophage like cells. These are results 

of two experiments. Each performed in triplicate.  
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Table 4. Other Cytokines, Chemokines, and Growth Factors Assessed by ELISA 

Apolipoprotein A1 (Apo A1) Macrophage-colony stimulating factor (M-CSF)

C-Reactive Protein (CRP) Macrophage derived cytokine (MDC)

CD40 Macrophage inflammatory protein 1 α (MIP-1alpha)

CD40 ligand Macrophage inflammatory protein 1 β (MIP-1 beta)

Endothelin -1 Macrophage inflammatory protein 1 γ (MIP-1 gamma)

Eoxtaxin (MIP-2)

Epidermal Growth Factor Macrophage inflammatory protein 3 β (MIP-3 beta)

Factor VII Matrix metalloproteinase-9 (MMP 9)

Fibrinogen Monocyte chemoattractant protein -1(MCP-1)

Fibroblast growth factor basic (FGF-basic) Monocyte chemoattractant protein -3(MCP-3)

Fibroblast growth factor -9 (FGF-9) Monocyte chemoattractant protein- 5(MCP-5)

Granulocyte chemotactic protein 2 (GCP-2) Myeloperoxidase

Granulocyte macrophage-colony stimulating factor 

(GM-CSF) Myoglobin

Glutathione S-transferase α (GST-alpha) Oncostatin M (OSM)

Haptoglobin

Regulation upon activation, normal T-cell expressed and 

secreted (RANTES)

Immunoglobulin A (IgA) Serum Amyloid P

Inducible Protein-10 (IP-10) Serum glutamic-oxaloacetic transaminase (SGOT)

Insulin Stem Cell Factorn (SCF)

Interferon-gamma (IFN-γ) Thrombopoietin (TPO)

IL-1α (interleukin -1 alpha) Tissue inhibitor of metalloproteinase type – 1 (TIMP1)

IL-1β (interleukin-1 beta) Tissue Factor

IL-2 (interleukin-2) Tumor Necrosis Factor-alpha (TNF-α)

IL-3 (interleukin-3) vascular cell adhesion molecule -1 (VCAM-1)

IL-4 (interleukin-4) Vascular endothelial cell growth factor (VEGF)

IL-5 (interleukin 5) Von Willebrand Factor (vWF)

IL-6 (interleukin 6) Leptin

IL-7 (interleukin 7) Leukemia inhibitory factor (LIF)

IL-10 (interleukin 10) Lymphotactin

IL-11(interleukin 11)

IL-12p70 ( interleukin- 12p70)

IL-17 (interleukin 17)

Melanoma growth stimulatory activity protein 

(KC/GRO alpha)
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Table 5. Effects of Toll Like Receptor ligands on the capacity of E14 cells to release 

protein

Increased protein 

release 

TLR2 

challenge

TLR3 

challenge

TLR4  

challenge

Conditioned

Media

after ligand 

stimulation (pg/mL) (pg/mL) (pg/mL) (pg/mL)

CRP 2433+513 2300+265

EGF 5.1+ 0.30 5.1+ 2 4.7+0.81

Fibronogen 12000+ 1000 13000+1000 10500+1323

IL-17 2.0+0.1 1.5+0.25

IFN-β 3+1.1 2+0.4

Haptoglobin

223333+305

50 230000+ 4826 21667+57258

GM-CSF 0.23+0.06 0.24+0.06 0.19+0

GCP-2 1.8+ 0.83 1.7+0.4

IL-4 7.1+1.15 5.8+0

IP-10 15+8 13+ 8

MCP-1 4+0.8 2.4+0.8

MCP-3 6+0.6 4.2+0.2

KC/GRO-α 9.1+5 2.4+0.7

(SAP) 8933+3153 8867+2650

IL-6 0.7+0.6 0.06+0.5

IL-12p70 16+8 12+7

IL-17 2+ 0.1 1.5+ 0.25

Lymphotactin 4.13+0.5 3.93+1.5

MIP-1 alpha 81+12 88+0 81+12 76+29

SGOT 8000+13856 12333+21362 20000+3606 nd

MIP-2 2.4+0.1 2.2+0.1 1.9+0.5

VEGF 673+250 591+279 578+500

FGF-9 163+23 130+52 118+56

IgA 28333+90738

256667+15044

3

IL-1 alpha 13+2 12.6+2.5

 

                   Table shows average level of cytokine expression +/- SD (pg/mL). 
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mESCs maintain an un-differentiated state after TLR-2 activation in the presence of 

LIF 

mESCs were treated with TLR-2 and TLR-4 ligand for up to 3 days. We observed that 

TLR-2 and TLR-4 ligands did not change the expression of undifferentiated markers Oct-

4, SSEA-1, KLF, and Sox-2, when compared to cells that were not treated with TLR 

ligands (Figures 15-18). Thus, TLR2 ligand- TLR2 interactions in the presence of LIF do 

not appear to trigger differentiation of mES cells (Figures 15-18), although more 

rigourous methods of assessor the non-differentiated of ES cells, e.g. invivo/teratoma 

formation will he needed to condusively, determine this.    

 

Pam3Cys enhances and LPS decreases mES cell survival upon delayed addition of 

serum 

mES cells were plated in the presence of LIF, but with delayed addition of serum for 0, 1, 

2 and 4 days and in the absence or presence of Pam3Cys, the ligand for TLR-2, LPS, or 

SDF-1. SDF-1 was used as a positive control because our lab has shown that SDF-1 

caused an increase in survival of mESCs in the presence of LIF with delayed addition of 

serum (Guo, Graham-Evans et al. 2006). As shown in Figure 19A, SDF-1 showed a 

significant increase in cell survival compared to cells that were not treated and also 

compared to cells treated for each day with 0.1μg/mL, 1.0 μg/mL, and 10 μg/mL of TLR-

2 ligand. mES cells treated with the ligand for TLR-2 showed a dose-dependent increase 

in survival when compared to cells that were not treated for each day. Pam3Cys resulted 
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in decreased apoptosis (Figure 19 B) interestingly, LPS triggered a decrease in survival 

(Figure 19 A) and an increase in apoptosis (Figure 19 B). 
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Figure 15. Surface expression of stem cell marker SSEA-1 after TLR-2 and TLR-4 ligand 

stimulation in wild-type E14 mESCs in the presence of LIF. SSEA-1 protein levels were 

analyzed by flow analysis. These are one of three experiments showing the same 

expression levels.  
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Figure 16. Intracellular expression of stem cell marker Oct 3/4 after TLR-2 and TLR-4 

ligand stimulation in wild-type E14 mESCs in the presence of LIF. Oct 3/4 protein levels 

were analyzed by flow analysis. These are one of three experiments showing the same 

expression levels.  
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Figure 17.  Intracellular expression of stem cell marker KLF-4 after TLR-2 and TLR-4 

ligand stimulation in wild-type E14 mESCs in the presence of LIF. KLF-4 protein levels 

were analyzed by flow analysis. These are one of three experiments showing the same 

expression levels.  
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Figure 18. Intracellular expression of stem cell marker Sox 2 after TLR-2 and TLR-4 

ligand stimulation for wild-type E14 mESCs in the presence of LIF. SOX-2 protein levels 

were analyzed by flow analysis. These are one of three experiments showing the same 

expression levels.  
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Figure 19. Influence of TLR-2 on survival of mES cell colony formation subjected to 

delayed addition of serum (A), and of apoptosis of mES cells in suspension culture as 

assessed by flow cytometry. The percent Annexin V-positive cells were compared to the 

controls of that specific day *p< 0.05. (B). mES cells were cultured without serum, and 

serum added at day 0, 1, 2, and 4 after the start of culture. Colonies formed by ESCs were 

counted 7 days after addition of serum. Results shown are the average of three 

experiments, each assessed in triplicate. Experimental points were compared with the 

time 0 of the control group: (*) p< 0.05.  
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RESULTS 

 

Part II 

 

mES Cell Differentiation 

 

TLR-2 and TLR-4 are expressed in Embryoid Bodies (EBs) 

TLR-2 and TLR-4 protein expression was examined by flow analysis after removal of 

LIF. While we detected expression of TLR-2 and TLR-4 expression on the surface of 

mES cells after withdrawal of LIF, Pam3Cys did not influence TLR-2 expression (Figure 

20) and had only minimal effects on TLR-4 expression (Figure 21). 

 

In the absence of LIF, TLR2 activation caused an increase in expression of Oct-4 

and Sox-2 but not KLF-4 and SSEA-1 expression. 

We determined if Day 4 and Day 6 EBs derived from mESCs in the absence of LIF but in 

the presence of TLR-2 ligand at 10 μg/mL expressed non-differentiated markers Oct-4, 

Sox-2, KLF-4, and SSEA-1. As shown in Figures 22-25 respectively, mESCs in the 

absence of LIF, do not express Sox-2, SSEA-1, KLF-4, and Oct-4. In the absence of LIF 

and the presence Pam3Cys, there was a modest increase in expression of Sox 2 in Day 6 

EBs (Figure 22), no effect on expression of cell surface marker SSEA-1 on Day 4 or Day 

6 EBs (Figure 23), essentially no effect on expression of KLF in Day 4 or Day 6 EBs 

(Figure 24), and only a very modest increase in Oct 4 expression in day 6 EBs with 20 
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μg/mL Pam3Cys (Figure 25). Thus from the flow data, there is little evidence other than 

for Sox-2 (Figure 22) and Oct-4 (Figure 25) expression that Pam3Cys has effects on 

modifying differentiation of mES cells after removal of LIF. 
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Figure 20. Pam3Cys does not modify expression of TLR-2 after removal of LIF. Flow 

Cytometry results are shown for Day 6 EBs. These are one of three experiments showing 

the same expression levels.  
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Figure 21. Pam3Cys has minimal to no effects on expression of TLR-4 after removal of 

LIF. Flow Cytometry results are shown for day 4 and 6 EBs. These are one of three 

experiments showing the same expression levels.  
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Figure 22. Flow analysis of Sox2 expression for Day 4 and Day 6 EBs in the absence of 

LIF but in the presence of Pam3Cys for undifferentiated markers Sox 2. These are one of 

three experiments showing the same expression levels.  
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Figure 23. Flow analysis of SSEA-1 Expression for Day 4 and Day 6 EBs in the absence 

of LIF but in the presence Pam3Cys. These are one of three experiments showing the 

same expression levels.  
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Figure 24. Flow analysis of KLF4 expression for Day 4 and Day 6 EBs in the absence of 

LIF but in the presence of Pam3Cys. These are one of three experiments showing the 

same expression levels.  
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Figure 25. Flow analysis of Oct4 expression for Day 4 and Day 6 EBs in the absence of 

LIF but in the presence of Pam3Cys. These are one of three experiments showing the 

same expression levels.  
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Oct-4 levels, as assessed by Western blot, were maintained and a decrease in p-ERK 

in Day 6 EBs compared to EBs not treated with TLR-2 ligand 

mES cells were plated in the absence of LIF for 6 days, but in the presence of Pam3Cys. 

As shown in Figure 26, Oct-4 and p-MEK were assessed by western blot analysis. Oct-4 

was highly expressed in R1 cells in the presence of LIF. This was used as a positive 

control compared to cells cultured in the absence of LIF for 6 days. In contrast to the flow 

data showing little to no expression of undifferentiated cell marker Oct-4, in the presence 

of Pam3Cys and absence of LIF we saw an increase in Oct-4 protein expression by 

Western blot analysis when compared to cells that were not treated with Pam3Cys (Figure 

26 A). Next, we checked for p-ERK expression in these cells (Figure 26 B). Removal of 

LIF resulted in enhanced expression of phosphorylated ERK, but this expression level 

was greatly decreased in the presence of Pam3Cys. β-actin and total-ERK were used as 

loading controls (Figure 26 C and D). 
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Figure 26.  mES cell line R1 treated with Pam3Cys, in the absence of LIF show lessened 

down regulation of Oct 4 expression but decreased expression of phosphorylated ERK 

(42kb) compared to cells in the absence of Pam3Cys. (A) Oct-4 (B) ERK 

phosphorylation.  mES cells were grown to confluency and induced to differentiate by the 

removal of LIF. (C) Total ERK and (D) β-actin antibody to confirm equal loading. 

Representative data from two independent experiments are shown. These are one of three 

experiments showing the same expression levels.  
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Figure 26 
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DISCUSSION 

 

Experiments in the presence of LIF 

TLRs are critical components of the adaptive immune response (Takeuchi, Hoshino et al. 

1999; Underhill, Ozinsky et al. 1999; Hoebe, Du et al. 2003; Honda, Murao et al. 2003; 

Lund, Sato et al. 2003; Diebold, Kaisho et al. 2004; Heil, Hemmi et al. 2004; Krieg, Efler 

et al. 2004; Lebon, Adler et al. 2004). These receptors are expressed on hematopoietic 

stem and progenitor cells (Nagai, Garrett et al. 2006), as well as other pluripotent cell 

types (Rolls, Shechter et al. 2007) including mesenchymal stem/stromal cells (Pevsner-

Fischer, Morad et al. 2007) and are selectively expressed on the mES cell line, D3 (Lee, 

Hong et al. 2009). While it is not entirely clear why mES cell lines would express TLRs, 

mES cell lines have been shown to express certain cytokine receptors, as well as produce 

cytokines that act on mES cell lines as well as on hematopoietic progenitor cells (Guo, 

Hangoc et al. 2005; Guo, Graham-Evans et al. 2006). Since our original studies on mES 

cell lines (Guo, Hangoc et al. 2005; Guo, Graham-Evans et al. 2006), we have been 

interested in a potential role for TLRs and their ligands in mESC line function. Our 

present study addresses our experiments on the expression of TLRs in the E14, CGR8, 

and R1 mES cells and the functional activities of Pam3Cys, a ligand for TLR-2, and to a 

lesser extent, the activity of LPS on the E14 mES cell line. These studies significantly 

extend those of others (Lee, Hong et al. 2009) with regards to TLR expression in mES 

cell lines, and not unexpectedly point up some subtle differences in expression of TLRs 

in different mES cell lines.  
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              We found that the E14 mES cell line growing in the presence of LIF expresses 

mRNA (as assessed by semi-quantitative RT-PCR) for TLRs 1, 2, 3, 5, and 6, but not 

TLRs 4, 7, 8, or 9. This profile of TLR expression differs from the D3 mES cell line by 

others (Lee, Hong et al. 2009), where RT-PCR analysis showed mRNA for TLRs 2-6, but 

not for TLR1 or 7-9, thus distinguishing differential expression of mRNA for TLR-1 and 

4 between the D3 and our E14 cell line.  Interestingly, we do not observe expression of 

cell surface protein for TLR4 on the E14, CGR8, and R1 mES cell lines, and we did not 

detect mRNA expression for TLR4 on the E14 mES cell line. These differences may be 

due to the cell line itself, or perhaps subtle differences in how the cell lines were 

maintained and grown.  In this context, others (Zampetaki, Xiao et al. 2006) have 

demonstrated that expression of TLR-4 varies in the D3 mES cell line and is regulated by 

epigenetic modifications. The state of chromatin in pluripotent ES cells is different from 

that of lineage committed cells (Sha et al.2009). The basic subunit of chromatin is the 

nucleosome, which is made up of two copies of the four core histones; H2A, H2B, H3 

and H4, wrapped around 147bp of DNA (Sha et al, 2009) and maybe different amongst 

different ES cell lines. The organization of the chromatin nucleosome can have local and 

global effects on DNA mediated processes including gene regulation (Figure 27). It has 

recently been shown that epigenetic changes can contribute to cell fate by reprogramming 

a somatic cell to an embryonic stem cell. Ectopic expression of key transcription factors: 

cMyc, Oct-4, Sox-2, and Nanog in differentiated cells has clearly demonstrated that the 

epigenome of a differentiated cell can be reprogrammed to support embryonic 

development (Martin 1981; Meissner, Wernig et al. 2007; Takahashi, Okita et al. 2007; 
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Takahashi, Tanabe et al. 2007; Aoi, Yae et al. 2008; Lowry, Richter et al. 2008; 

Nakagawa, Koyanagi et al. 2008; Park, Zhao et al. 2008; Wernig, Meissner et al. 2008; 

Yamanaka 2008).  
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Figure 27. The basic unit of chromatin organization includes the nucleosome, which is 

made up of 147bp of DNA wrapped around a histone protein. Figure adapted from (Sha 

et al, 2009) 
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Figure 27 
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                 It is thought that TLR-2 and TLR-4 are important for differentiation and self 

renewal of other types of stem cells (Nagai, Garrett et al. 2006). A recent report shows 

MSCs that are set to undergo differentiation in the presence of TLR-2 ligand stimulation 

remained in a non-differentiated state (Pevsner-Fischer, Morad et al. 2007). Most 

importantly, we have defined a new role for TLR-2 in the E14 mES cell line, and its 

ligand Pam3Cys on the E14 mES cell line. Pam3Cys enhanced proliferation and cell 

survival, and decreased apoptosis in LIF-cultured cells, without apparent changes in the 

immature phenotype of the cells as assessed by cell morphology, and expression of 

SSEA-1, Oct-4, KLF-4, Sox-2 and alkaline phosphatase.  

 

TLR-2 Pathway Activates NF-κB in mES cells 

NF-κB nuclear translocation as well as increased proliferation did not result from TLR-4 

ligand stimulation. We speculate that TLR-2 activation on mES cells may play a role in 

maintenance of the mES cell niche. Some of these effects may be, at least in part, 

mediated by translocation of NF-κB (Delhalle, Blasius et al. 2004; Liang, Zhou et al. 

2004), and events upstream of NF-κB, including phosphorylation of IKK-α/β, as well as 

downstream reflects such as enhanced protein expression of BCL-2, as well as 

induced/enhanced expression of mRNA for TNF- α, IFN-γ, and IL-6. These cytokines 

have many functional activities, including effects on the hematopoietic system (Delhalle, 

Blasius et al. 2004). Although we did not detect, within the limits of our ELISA assay, 

TNF-α, IL-6 nor IFN-β protein released into mES cell line containing culture medium in 

the presence or absence of Pam3Cys, if these three cytokines are having effects on 
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proliferation and/or survival of the E14 mES cell line, it would likely be through an 

autocrine-type interaction within the E14 cells, unless cytokine levels below that which 

we can detect are active, or working in synergy with each other and/or other released 

cytokines (Guo, Hangoc et al. 2005).   

             In contrast to the results of others (Lee, Hong et al. 2009) with the D3 mES cell 

line in which a large percentage of the cells expressed TLR-4, and LPS from E.coli 

modestly enhanced proliferation of these cells as detected by BrdU incorporation, our 

E14 mESC line showed no expression of TLR-4 on the cell surface, but responded to 

LPS from Salmonella with decreased cell survival and enhanced apoptosis. Whether this 

is mediated by TLR-4 or another TLR is not clear, but it did not appear to reflect nuclear 

translocation of NF-κB as noted in Figure 3 A-D. This does bring up caution in assuming 

that what occurs in one mES cell line will happen in another mES cell line. Again, this 

may reflect the mES cell itself, or how these cells are maintained in culture (Zampetaki, 

Xiao et al. 2006). It has recently been shown that “non-classical” LPS, such as that from 

bacteroides fragilis or any bacteria other than Escherichia coli, signals primarily through 

TLR-2 and not TLR-4 (Alhawi, Stewart et al. 2009). Classical LPS comes from 

Escherichia coli bacteria but in our studies we used LPS from Salmonella and this may 

be working through the TLR-2 receptor on the E14 mES cell line. Therefore, LPS maybe 

working through TLR-2 but functions to activate a pathway which causes apoptosis, 

where as Pam3Cys functions through the TLR-2 receptor and activates a pathway which 

cause proliferation of ES cells. This requires further investigation. Lastly our results with 

poly I:C (Figure 3 F), an activator of TLR-3, suggest that TLR-3 is functionally active in 
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the E14 mES cell line, as it is enhancing cell proliferation in the D3 mES cell line (Lee, 

Hong et al. 2009). In our case, we showed that PolyI:C enhanced/induced 

phosphorylation of IKKα/β.  

 

Differentiation Experiments 

In our study, we found that TLR-2 activation, by its ligand Pam3cys, may help to 

decrease differentiation of mES cells in the absence of LIF. However, these studies were 

not conclusive due to differing effects as assessed by Western blotting and flow 

cytometry. 

                Roles of TLRs on differentiation of HPCs have been reported in innate immune 

system replenishment by HPCs (Nagai, Garrett et al. 2006) and in regeneration of 

intestinal epithelia (Pull, Doherty et al. 2005). Further investigation of these processes 

will be needed to determine how signals delivered through the activation of TLRs 

influence stem cell differentiation. 

                In summary, we demonstrate that mES cells express functional TLR-2 and that 

the expression of TLR-2 may be involved in proliferation and survival of non-

differentiated mES cells. It is possible, but as yet unproven that activation of TLR-2 may 

helps mES cells remain in an un-differentiated state under differentiation inducing 

conditions, such as with removal of LIF. 

               Murine ES cell lines have been and continue to be useful models to study stem 

cell function and responsiveness to cytokines/ligands. Overall, this work is in agreement 

with the statement of others (Lee, Hong et al. 2009), that although the biological 
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significance of functional TLRs in mES cell lines are not yet known, further investigation 

of these cells could shed important and new information on the self-renewing, pluripotent 

state of ES cells that may translate into useful information for other stem cell types, and 

their modulation.  
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FUTURE DIRECTIONS 

 

Activation of Natural TLR-2 ligands on mESCs 

There are many unanswered questions. For example, what would be the natural ligand for 

TLR-2 on ES cells?  In our study we used one ligand, Pam3Cys, but there are other 

ligands for the TLR-2/TLR-6 hetrodimer. Peptidoglycan is a natural TLR-2 ligand (Lien, 

Sellati et al. 1999; Asong, Wolfert et al. 2009; Shida, Kiyoshima-Shibata et al. 2009). It 

activates TLR-2 through the TLR-2/TLR-6 heterodimer and has also been shown to cause 

an induction of NF-κB nuclear translocation in other cells, and may also be functional in 

mES cells because we show expression of TLR-2 and TLR-6 at the mRNA level (Figure 

5). We could also determine if TLR-6 is expressed on the surface of mES cells, when 

antibodies to TLR-6 become available. 

  

Effects of TLR2 activation on mES cells differentiation  

We did not perform self renewal colony assays on mESCs, and this can be done. Our 

attemps to determine if TLR-2 activation could block or prevent differentiation of the 

mES cells in the absence of LIF but in the presence of TLR-2 ligand was not conclusive. 

TLR-2 may be involved in helping to maintain the niche for ES cells self-renewal. We 

showed Oct-4 levels increase in the absence of LIF and that ERK phosphorylation 

decreased in mES cells in the absence of LIF but in the presence of TLR-2 ligand 

assessed by western blot, but our flow data showed little change in expression of Oct-4 

levels in the absence or presence of Pam3Cys but after removal of LIF (Figure 26). Since 
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ES cell differentiation to EBs results in the formation of a ball of cells, perhaps all the 

cells were not broken up in order to get an accurate readout of cellular and intracellular 

protein levels. In the future, we could also perform western blot experiments using other 

undifferentiated markers such as Nanog, Sox-2, and KLF-4 to determine if we see 

expression in Day6 EBs treated with Pam3Cys. 

 

Do other TLR-ligands influence differentiation of mES cells in the absence of LIF? 

We can evaluate this by further differentiating the cells in the absence of LIF and 

determining if they form more differentiated cells, such as an hemangioblast. Next, we 

can check for differentiation markers such as Brachuary and FLK-1 expression in these 

EBs as compared to cells not treated with TLR ligands. We could also determine effects 

on differentiation down the hematopoietic and endothelial cell lineages that derive from 

hemangioblast. 
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