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ABSTRACT OF THESIS 

CHARACTERIZATION OF THE SHAPE MEMORY BEHAVIOR OF 
HIGH STRENGTH NiTiHfPd SHAPE MEMORY ALLOYS 

NiTiHf alloys have emerged as potential materials for applications requiring high 
transformation temperatures (> 100 °C) with high strength and work output. Although they 
have high transformation temperatures, their low damping capacity, brittleness and poor 
superelastic responses (of Ti-rich NiTiHf) impedes their wider usage in many industrial 
applications. In this study, the quaternary alloying element of Pd has been added to NiTiHf 
alloys to improve and tailor their shape memory behavior,. NiTiHfPd alloys were 
systematically examined regarding the composition and heat treatments effects. 

Effects of substituting Hf with Ti on the shape memory behavior of NiTHfPd alloys 
were investigated. There compositions were selected as Ni40.3Ti34Hf20Pd5 
Ni40.3Ti39.7Hf15Pd5 and Ni40.3Ti44.7Hf10Pd5 (at.%). Their transformation temperatures, 
microstructure and shape memory properties were revealed and compared with 
conventional shape memory alloys. It was revealed that their transformation temperatures 
increases but transformation strain decreases with the increment of Hf content. 

Additionally, superelastic responses of Ni45.3Ti29.7Hf20Pd5 and Ni45.3Ti39.7Hf10Pd5 
alloys were investigated.  Transformation temperatures of polycrystalline 
Ni45.3Ti29.7Hf20Pd5 are highly dependent on aging temperatures and they can be altered 
widely from room temperature to 250 oC. 

Finally, the damping capacity of the Ni45.3Ti39.7Hf10Pd5 polycrystal and [111]-
oriented Ni45.3Ti29.7Hf20Pd5 single crystal were investigated. The damping capacities were 
found to be 16-25 J.cm-3, and 10-23 J.cm-3 for the Ni45.3Ti39.7Hf10Pd5 and [111]-oriented 
Ni45.3Ti29.7Hf20Pd5  alloys, respectively. 
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1. Chapter 1: Introduction  

1.1 Motivation and Objectives 

  Throughout the centuries, metals, mainly steel and aluminum, have been used 

as structural materials in many applications. However, advanced technology and 

applications required high-performing materials. Thus, material scientists have 

investigated a new group of materials that would qualify as lightweight, multifunctional or 

multicomponent [1-3]. 

Smart materials are the branch of active or multifunctional materials which can 

possess more than one property with the aid of external signals such as temperature, stress, 

magnetic, electric field [2]. Shape memory alloys, magnetic shape memory alloys, 

piezoelectric ceramic and polymers are examples of such active materials [1]. 

Shape memory alloys have the unique ability to recover from large deformation by 

the removal of stress or heating. This phenomenon can be explained by the diffusionless 

solid to solid phase transformation, namely martensitic transformation. If martensitic 

transformation is reversible, it is called thermoelastic martensitic transformation [4]. 

During this thermoelastic martensitic transformation, material transforms from high-

temperature parent phase (B2) to low-temperature martensite phase (B19’) [5]. In other 

words, shape memory alloys can convert thermal energy to mechanical energy; thus, they 

can be utilized in numerous engineering applications in biomedical, aerospace, automobile 

and oil industries [1].  
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The most studied SMAs systems are Cu, Fe, and NiTi-based alloys. However;  

NiTi-based alloys are the workhorse of the SMAs because of their distinct superelasticity 

(SE) as well as their shape memory effect (SME) properties [6]. These properties are highly 

composition-dependent [7]. They also have excellent corrosion resistance and high 

damping capacity [6, 8].  While equiatomic NiTi alloys do not show good superelasticity, 

Ni-Rich NiTi alloys exhibit promising superelasticity because of the formation of 

precipitation.  Besides this, transformation temperatures and strength of Ni-rich NiTi alloys 

can be controlled with thermal treatments thanks to the formation of precipitates [9].  

Although NiTi alloys display promising properties, their low transformation 

temperatures (below 100 oC), poor strength and cycling stability are major challenges in 

many applications [4]. Low transformation temperatures and strength have limited the NiTi 

alloys to the applications that avoid high temperatures.  For this reason, in order to alter the 

TTs and phase transformation mechanism, a third alloying element is added to NiTi binary 

system [10]. Hf, Zr, Pd, Pt, and Au are the most common alloying elements added to elevate 

the TTs. The alloys are named as High-Temperature shape memory alloys (HTSMAs). Hf 

and Zr are preferred among the other elements due to their relatively low cost [11]. NiTiHf 

and NiTiZr alloys had similar shape memory properties when they are compared to other 

high temperature shape memory alloys [12]. Ni-rich NiTiHf and NiTiZr alloys exhibit high 

mechanical strength and stable reversible transformation because of the precipitations [13]. 

Visible TTs chancing occurs above 10oC at-% in NiTiZr and NiTiPd/Pt alloys.  Additions 

of Hf above 3% elevate the TTs, while up to 5-10 at-% hafnium results in 5 oC/at-% 

increases, and after that, it increases by 20oC/at-% [12]. Particularly, the addition of Hf up 

to 30% can elevate TTs up to 400 oC [14]. It is clear that Hf element is more effective on 
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the TTs of HTSMAs; however, brittleness of NiTiHf alloys is the main challenge in the 

applications; that is why quaternary elements such as Cu, Nb, Pd can be added to NiTiHf 

alloying system. Experiments revealed that addition of Pd to NiTiHf alloy has improved 

the ductility, shape memory properties and adjusted the TTs, as well [12] 

The objectives and technical approaches to current study are to 

• Study the effects of the addition of Pd into NiTiHf alloying system on their shape 

memory properties,  

• Reveal the transformation temperatures, strain, hysteresis, microstructures, 

hardness and thermal cycling under compression responses of as-received (not 

applied post processing) NiTiHfPd alloys and they compare with aged samples, 

• Study the influence of composition on the shape memory responses and TTs of 

NiTiHfPd alloys,  

•  Explore the effect of heat treatment time and temperature on the TTs and shape 

memory effect of NiTiHfPd alloys.  

1.2 Brief history of Shape Memory Alloys 

Shape Memory alloys was first discovered by A. Ölander as “smart alloys” in 1932 

and Vernon described the term “shape memory” in 1941. Ölander found that the solid phase 

transformation in gold-cadmium (Au-Cd) alloys would deform when they cooled down, 

and would return to their prearranged shape when heated [15]. Later, Greninger and 

Mooradian noticed similar results in copper-zinc (Cu-Zn) and copper-tin (Cu-Sn) under 

thermal cycling [15, 16].  The thermoelastic martensitic transformation, which is the core 

phenomenon of shape memory effect, was governed by Kurdjumov and Khandros in 1949 
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and later by Chang and Read in 1951 [1, 15, 16]. In the early 1960s, William Buehler and 

his co-workers at the Naval Ordnance Laboratory (NOL) discovered the NiTi alloy and 

named it NiTiNOL [1]. Within two decades, SMAs, particularly NiTi became the preferred 

advanced material in many commercial applications thanks to their unique properties, 

above all, due to the fact that they exhibited good ductility, corrosion and wear resistance 

compared to most ordinary alloys [3, 5].  Later, HTSMAs such as TiPd, TiPt were 

developed at the beginning of the 1970s and they received a great deal of interest in the 

aerospace and oil industry.  At the same time, other alloying elements such as Cu and Nb 

were added into NiTi alloys and research investigated their TTs and mechanical properties. 

Finally, another group of SMAs was discovered: besides the anticipated temperature and 

stress effects, these SMAs are sensitive to magnetic fields, and they can exhibit shape 

changes under magnetic fields. Magnetic SMAs also have great potential in actuator 

industries [1].  

1.3 Background of Shape Memory Alloys  

Shape memory alloys are a new class of metallic materials which have specific 

properties that make them more favorable compared to conventional materials. These 

alloys are unique because they can convert thermal energy into mechanical work and vice 

versa. After they mechanically deform at low temperature, these alloys can recover their 

original shape when having been heated to a certain temperature. They also demonstrate 

another mechanism that enables them to recover a large amount strain after they 

mechanically deform between their transformation temperatures [17]. 

 SMAs have a capacity to solid-solid diffusionless thermoelastic phase 

transformation. SMAs go through two different phases with three different crystal 
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structures: twinned martensite (also referred to as self-accommodated martensite variants), 

detwinned martensite (also referred to as single variant martensite of reoriented martensite) 

and austenite phase. Austenite phase is known as a stable high-temperature phase, while 

martensite phase is known as an unstable, low-temperature phase [2, 15]. Temperature or 

external mechanic deformation results in the solid-solid transformation of SMAs. Based 

on this transformation, the main phenomenon of SMAs, namely Superelasticity (SE) and 

Shape Memory Effect (SME) will be detailed in the following sections. 

1.4 Mechanism of martensitic transformations in SMAs 

 Phase transformation in SMAs can take place under either stress or changed 

temperatures. During the transformation, there are specific temperatures associated with 

the transformation. The martensite starts temperature (Ms) is the temperature where the 

martensite phase starts when the material is cooling down from austenite phase. Martensite 

finish (Mf) temperature is where the martensite-to-austenite transformation is completed 

upon cooling. Similarly, during heating, the martensite-to-austenite transformation starts 

at austenite start temperature (As) and then, at austenite finish (Af) temperature, the material 

is completely in the austenite phase upon heating.           

Figure 1.1. shows a typical DSC response of SMA. The calorimetric graph gives 

the transformation temperatures under zero stress condition. TTs can be determined by the 

tangential method. Upon cooling, material transforms to (partially or fully) detwinned 

martensite phase. During heating process, it will recover to the austenite phase.   
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Figure 1-1 Typical DSC response 

Figure 1.2 illustrates schematic of thermal cycling under stress. The constant stress 

is applied when the temperature is slightly above Af, and it cools to below Mf, the 

transformation will result in the material to enter the martensite phase. When the material 

is heated above the Af, complete shape recovery can be obtained. However, if the applied 

stress is enough for the plastic deformation, full shape recovery cannot be observed. TTs, 

total and irrecoverable strain, also temperature hysteresis can be obtained from the thermal 

cycling response and critical points were shown in Figure 1.2. It should be noted that since 

TTs are highly stress dependent, TTs can elevate with increasing stress level.  
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Figure 1-2. Schematic of thermal cycling under stress 

1.4.1 Shape memory effect (SME)  

Figure 1.3 (a) presents a schematic shape memory effect of SMAs.  When the 

material is loaded at Mf temperature, twinned martensite transforms to detwinned 

martensite, and it is a macroscopic shape chance. When the load is released new 

configuration is retained at this temperature, full recovery cannot be observed.  

Subsequently, if material heated above Af temperature, it could recover the retain strain 

while it transforms from detwinned martensite to austenite phase (Figure1.3b). This 

phenomenon is called shape memory effect (SME). 



 
 

8  

 

Figure 1-3 Schematic of shape memory effect behavior of SMAs 

1.4.2 Superelasticity (SE) 

Figure 1.4 shows a typical superelastic behavior in SMAs which takes places during 

the loading and unloading. When the material is in austenite phase (temperature is slightly 

above Af), the inital linear part represents the elastic deformation of the austenite phase. 

Continued stress leads to phase transformation and plateau region is observed during the 

transformation from austenite to the martensite phase. When the stress is removed, reverse 

transformation martensite to austenite takes places. If there is no plastic deformation, fully 

reversible shape recovery can be observed. Young moduli and critical stress of austenite 

and martensite, superelastic strain and irrecoverable strain, mechanical hysteresis can be 

obtained from superelastic curves. 

Superelastic behavior can be observed up to a certain temperature. If the 

temperature above Md ( martensite desist temperature), SMAs deform as conventional 

materials [18].  
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Figure 1-4 Typical SMA superelastic cycle 

 

1.5 NiTi and NiTi-Based Shape Memory Alloys 

1.5.1 Binary NiTi 

NiTi (nitinol) alloys are the most studied and used shape memory alloys among the 

Cu and Fe- based SMAs because of their excellent mechanical properties, superelasticity 

and shape memory effect [6, 19]. NiTi alloys have the ability to recover strain of 8% or 

more depending on the test temperatures [20].  Martensitic transformation and their 

reversion make them a good candidate for many applications such as biomedical devices, 

implants, and deployable aerospace structures. SMAs display good wear, corrosion 

resistance, high specific electric resistance and high work density [7, 21, 22]. 

Near-equiatomic NiTi SMAs undergo three different phases which are the B2 

austenite-A the monoclinic B’19 martensite (M) and the trigonal R-phase. Solution treated 
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near equiatomic NiTi displays a single stage transformation, namely, B2 to B’19 and B’19 

to B2. When the materials expose certain condition such as cold working or aging R phase 

could be emerged because of the precipitation formation [7, 22-24]. These three different 

transformations display different properties, for instance, while B2-R transformation 

exhibit very small strain (around 1%) and hysteresis, R-B19 and B2-B19 transformation 

show highly large strain (up to 10%) [24]. 

 

Figure 1-5 The chance of Ms temperatures as a function of Ni-content [25] 

 

The Ni content in NiTi alloys has an essential role in altering the transformation 

temperatures. Figure 1.5 shows that when the Ni-rich precipitates appear in the matrix, Ni 

content decreases in the matrix, this results in increasing TTs [22]. Additionally, Ni-rich 

precipitations effect the strength of NiTi matrix [4]. However, TTs cannot be altered of 

near–equiatomic NiTi alloy because precipitation cannot be obtained by aging [25]. Also, 
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not only Ni content but also contamination such as oxygen and carbon affect the properties 

of NiTi alloys [7]. 

  As shown in Figure 1.6 the deformation of shape memory alloys is highly 

temperature dependent because of the martensitic transformation. Below the Af 

temperatures full recovery cannot be obtained and materials plastically deformed. If the 

material heated above the critical transformation temperatures, it will be deformed as 

conventional materials [26]. 

 

Figure 1-6  Schematic stress-strain curves of Ti-Ni alloy at different temperatures [26] 

 
The composition is also one of the main parameters on the SMAs properties; highly 

Ni-rich NiTi alloys show high strength and toughness as compared the equiatomic NiTi 

alloys [27].  Shape memory behaviors  of Ni-rich Ni54Ti46 alloys have been investigated by 

Karaca and et al. [27]. It was found that aged at 550 oC for 3hr Ni-rich NiTi alloys exhibited 

3% superelastic response under high stress of 1500 MPa.  Another ultra Ni-rich Ni60Ti40 
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alloys have been investigated by Kaya and et al. [28], and they obtained that 1.4% 

recoverable strain under 1000 MPa for 600 0C-3h aged alloys.  

1.5.2  High-Temperature Shape Memory Alloys (HTSMAs) 

The beginning of the development of SMAs has been used in the applications with 

operating temperature below 100 oC.  However, developing the technology and increasing 

the needs in specific applications such as aircraft, oil and automobile industry require high 

transformation temperatures. These demanding push the scientists to new development in 

SMAs and new shape memory alloying system emerged as a High-Temperature Shape 

Memory Alloys (HTSMA) [1]. Thus, HTSMAs have been widely investigated not only 

their high transformation temperatures but also good cycling stability, creep and plastic 

deformation resistance.  Furthermore, poor workability because of the secondary phases 

and relatively small transformation strain are their main challenges. However, those 

drawbacks could be overcome with thermal treatment, and alloying [12]. 

Alloying is one of the most powerful ways to improve the properties of NiTi alloys 

[29]. Addition of the third element expands the applications which need more specific 

properties of NiTi alloys. Alloying influences the TTs, strength, ductility, and shape 

memory characteristics. For example;  

• Fe, Cr, Co, Al can decrease the TTs,  

• Hf, Zr, Pd, Pt, Au increase the TTs,  

• Cu and Nb can alter the hysteresis, [30] 

Addition of Cu to NiTi alloys reduces the pseudoelastic hysteresis and also 

decreases the transformation strain. NiTiCu alloys are an ideal material for actuator due to 
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the small hysteresis. In contrast to the actuators, some applications need large hysteresis. 

Addition of Nb to NiTi alloys provides the wide thermal hysteresis. Moreover, also, 

NiTiNb alloys can be deformed at low temperatures.  This alloys with around 3% Nb 

contents have shown good SME responses [1]. 

 NiTiPd alloys have considerable attention between the HTSMA. Initially, Pd 

element had been added only for elevating TTs, however; recently, researchers have 

focused on their work output and dimensional and thermal stability. TTs can be tailored by 

replacing Ni with Pd in the alloying system. Figure 1.7 shows the Pd concentration and 

TTs relation. It is clear that when the Pd content higher than 10% in the system, 

transformation temperature raised linearly.  

Additionally, the thermal stability of NiTiPd alloys studied, and it was observed 

that these alloys display better thermal stability after 1000 cycling.  While the TT of NiTiPd 

changed only 2 oC after 1000 cycling, 30 oC change were observed in NiTi alloys after 

1000 cycling [12, 30] 

 

Figure 1-7 Ms temperature as a function of Pd content [12] 
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 In particular, NiTiHf and NiTiZr are more investigated among the HTSMAs, 

because they are cheaper alternatives to Pd, Pt, and Au [13]. Although NiTiHf and NiTiZr 

display very similar shape memory response, Hf content is more efficient on the alloying 

system.  If the Zr content is higher than 10%, transformation temperatures are raised at 18 

oC/at %Zr. Moreover, also, when the Zr content is 20%, this alloy displays full recovery 

and it decreases with increasing Zr contents. However, up to 3%, Hf addition to NiTi binary 

alloys can elevate the transformation temperatures, and TTs start to increase after 5% Hf. 

Figure 1.8 shows the martensitic peak temperatures (Mp) as a function of Hf and Zr content 

in the ternary NiTiX alloying system. It is clear that in all the studies, the addition of Hf 

content above 10%  cause the dramatic increases in transformation temperature [12, 30].  

 

Figure 1-8 Martensitic peak temperatures as a function of a) Hf and b)Zr content [12 

1.5.3 NiTiHf-X Alloys  

NiTiHf alloys have considerable attention among the SMAs because they are 

relatively cheap compared to Pd andPt and TTs can reach up to 400 oC for Hf content up 

to 30 at%  [14, 31]. However, particularly, Ni lean NiTiHf alloys have several drawbacks, 
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poor thermal stability, brittleness and low strength and these handicaps limited their actual 

applications [32]. Even though they are good candidates for high temperatures application, 

low ductility and strength are also significant challenges. Therefore, quaternary elements 

are added to NiTiHf alloys overcome their limitations.  

 Recently, Cu was investigated as one of the quaternary alloying elements into the 

NiTiHf alloys,  NiTiHfCu alloying system was studied by Pasko et al. [33], and they 

observed that addition Cu was highly improved glass forming ability and superelasticity 

behavior. Another study was conducted by Liang et al. [34] they noted that NiTiHfCu 

alloys with three different compositions showed two-way shape memory behavior. They 

also showed exceptional thermal cycling stability.  

Karaca et al. also investigated the addition of 5% Cu to NiTiHf alloys replacing Ni. 

They figured out that NiTiHf5Cu alloys can be a candidate for high-temperature 

application because their TTs can be elevated from 100oC to 200oC with the heat 

treatments. Furthermore, 0.8% two-way shape memory strain was obtained above the 80oC   

[35]. 

Nb is also added to NiTiHf alloys to alter the properties of alloying systems. Kim 

et al [36] added to Nb to NiTiHf and investigated its cold workability. They observed that 

addition of Nb to NiTiHf alloys improved the cold workability and shape recovery; 

however, it caused to decrease TTs and plastic strain when Nb content decreased from 0 to 

15% in NiTiHf. It was also revealed that increasing of the Nb contents result in increasing 

the recovery ratio, namely, while the Nb content was the recovery ratio was 60%, it was 

90% when Nb content decreased to 15% in NiTiHf (Figure 1.9) 
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Figure 1-9 Thermal cycling response under constant stress (a) Ti– 49.5Ni–15Hf, (b) (Ti–
49.5Ni–15Hf)–5Nb, (c) (Ti–49.5Ni–15Hf)–10Nb and (d) (Ti–49.5Ni–15Hf)–15Nb alloys 

[36]. 

Pd is another precious alloying element for NiTiHf alloys. The addition of Pd to 

NiTiHf alloy have played an important role on the TTs, shape memory properties as well 

as ductility of NiTiHf alloys. Addition of Pd can be resulted in increasing TTs as the 

expense of Ti or enhance the shape memory behavior as the expense of Ni in NiTiHfPd 

alloying system [29]. Recently, numerous studies have been carried out to reveal the effect 

of Pd in the NiTiHf alloys. 
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2. Chapter Two: Experimental Procedure 

2.1 Introduction   

This chapter describes the details of the technical equipment and experimental 

method used in the characterization of NiTiHfPd alloys. The material fabrication, 

preparation, microstructural analysis, calorimetric measurements and mechanical testing 

will be detailed throughout the chapter. 

2.2 Material Fabrication and Preparation 

EDM was used to cut compression samples (8x4x4 mm3) and small pieces for DSC, 

hardness and microstructural analysis for each alloy. Figure 2.1 shows the employed 

KNUTH smart EDM. 

 

Figure 2-1 KNUTH smart EDM 
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2.3 Heat Treatments 

Lindberg/Blue M BF514541 Box furnace is used for heat treatments which is 

shown Figure 2.2. The furnace can reach to maximum temperature of 1200 oC.  The 

samples were aged at a various temperature between 300oC to 800oC for 3 hrs followed by 

immediate water quenching at room temperature. 

 

Figure 2-2 Lindberg/Blue M Box furnace (BF514841) 

2.4 Calorimetry Measurements 

Transformation temperatures (Ms, Mf, Af and As) were measured using a Perkin 

Elmer Pyris 1 shown in Figure 2.3 differential scanning calorimeter (DSC). Typical 

temperature range is from -150 ºC to 600 ºC and the heating/cooling rate was 10 ºC/min in 

a nitrogen atmosphere. Since the sample weight and preparation influence the measured 

TTs, a small amount of the materials (20-40 mg) should be used, and sample must be 

polished to obtain a good thermal contact. After polishing and weight measurement, sample 

kept in the aluminum pan before holding in DSC, and the other place was kept empty as a 

reference. The sample thermally cycled, and the difference of the supplied heat power was 

recorded. TTs are measured using a tangential method Figure 1.1 
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Figure 2-3 Perkin-Elmer DSC Pyris 1 

 

2.5 Hardness Measurements  

  Microhardness measurements were obtained by Vicker microhardness 900-

391D testing setup (Figure 2.4).  100 g-force was applied for 15 sec and then removed. Ten 

indentation measurements were recorded for each sample, the highest and the lowest 

measurements were discarded, and an average of 8 readings was reported  

      

Figure 2-4 Metal-tester micro Vickers Hardness Tester 900-391D and Schematic of 
Vickers hardness measurement 
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2.6 Microstructural Analysis  

For microstructural analysis, first samples were mounted using Epoxy resin and 

hardener and left for 8 hours for the solidification. For polishing, BUEHLER 

EcoMet/AutoMet 250 Grinder-Polisher was used that is shown in Figure 2.5. To achive 

the perfect surface, the grinding procedure has several steps including polishing with 

diamond suspensions of 9µm, 6µm, and 3µm. As for the final steps, alumina suspensions 

of 1µm and 0.5µm were used to obtain a smoother surface.  

 

Figure 2-5 BUEHLER EcoMet/AutoMet250 Grinder-Polisher 

 

Keyence VH_Z250 optical Microscopy was used to discover the microstructure of 

the samples (Figure 2.6). The polished samples were etched by H2O (82.7%), HNO3 

(14.1%), HF (3.2%) (by volume) solution for various time period which is dependant on 

the composition of the alloy 
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Figure 2-6 Keyence VH_Z250R Optical Microscopy 

 
 

2.7 Thermo-mechanical Tests  

Thermos-mechanical compression experiments were conducted using the 100 KN 

MTS landmark servo-hydraulic test frame (Figure2.7). During the loading, a strain rate of 

10-4 sec-1 was used while the unloading was performed under force control at a rate of 50 

N/sec. The axial strain was measured by an MTS high-temperature extensometer which 

was attached to the top and bottom grips. Heating of the specimens occurred by means of 

mica band heaters retrofitted to the compression grips, at the rate of  5 ºC/min. Cooling 

was achieved through internal liquid nitrogen flow in the compression grips at 3 ºC/min 

rate. Omega CN8200 PID temperature controller was used for controlling the temperature, 

and three thermocouples were attached to the top and bottom grips of the MTS and to the 
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sample as well to provide real-time temperature recording during the experimentation

 

Figure 2-7 MTS Landmark servo-hydraulic test platform 
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3. Chapter Three: Effects of Composition on The Shape Memory Properties of 

Polycrystalline NiTiHfPd Alloys  

3.1 Introduction  

The aim of this chapter is to investigate the effects of chemical composition change 

(replacing with Hf) on the transformation temperatures (TTs), shape memory behavior and 

compressive stress responses of Ni40.3Ti34Hf20Pd5 Ni40.3Ti39.7Hf15Pd5 and 

Ni40.3Ti44.7Hf10Pd5 polycrystalline shape memory alloys. Additionally, microstructures of 

these alloys are revealed by optical and scanning electron microscopy.  Distribution of 

secondary phases and composition also were discussed.  For briefness, Ni40.3Ti34Hf20Pd5 

Ni40.3Ti39.7Hf15Pd5 and Ni40.3Ti44.7Hf10Pd5 alloys will be called as NiTi20HfPd, 

NiTi15HfPd, and NiTi10HfPd throughout the section. Moreover, since any heat treatments 

have not been applied, these alloys will also be called as-received.  

3.2  Phase Transformation alloys   

Transformation temperatures provide the first idea and plan of the shape memory 

alloys. TTs are determined with DSC tests under zero stress, and they were measured from 

the curve which is shown in Figure 1.1. For each  DSC cycle, higher temperatures represent 

the martensite to austenite phase; lower temperatures represent the austenite to martensite 

phase transformations.  

Figure 3.1 shows the DSC graphs of as received NiTiHfPd alloys as a function of 

Hf contents.   Ms temperatures of 127 oC, 48 oC,  19 oC and Af temperatures of 162 oC, 107 

oC and 98 oC were measured for NiTi20HfPd, NiTi15HfPd and NiTi10HfPd, respectively. 
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Figure 3-1 DSC responses of NiTi20HfPd, NiTi15HfPd, and NiTi10HfPd alloys 

3.3 Microstructural characterization of NiTiHfPd alloys  

Figure 3.2 shows the optical microscope images and SEM of the as-received 

NiTi15HfPd and NiTi10HfPd alloys.  It is clear that secondary phases are homogeneously 

dispersed throughout the matrix. The chemical compositions of secondary phases and 

matrix were determined by EDS which is shown in Table 3.1.  The secondary phases of all 

three alloys were found to be highly Ti-rich. While Ni and Ti contents of matrix of 

NiTi15HfPd andNiTi10HfPd are very close, the matrix of NiTi20HfPd is highly Ni-rich.   
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Figure 3-2 Optical microscopy and SEM images a-b) NiTi20HfPd, c-d) NiTi15HfPd and e-f) 
NiTi15HfPd 
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Table 3.1 EDS analysis of NiTi20HfPd, NiTi15HfPd and NiTi10HfPd 

 
 

Element 
                                                                   Composition (at%) 
NiTi20HfPd                                              NiTi15HfPd                                         NiTi10HfPd 
Second 
Phase 

Matrix Overall Second 
Phase 

Matrix Overall  Second 
Phase 

Matrix Overall  

Titanium  49.97 27.84 36.14 50.8 40.9 40.4 52.3 41.3 47.3 

Nickel  32.75 44.64 39.12 34.3 37.3 39.5 36.1 42.7 38.1 
Hafnium  2.49 5.06 4.95 10.9 15.6 14.5 7.7 9.5 9.2 
Palladium  14.79 22.46 19.79 4 6.2 5.6 3.9 6.5 5.4 

 

3.4 Shape memory behavior  

Figure 3.3 shows the thermal cycling under stress response of the as-received 

NiTiHfPd alloys. Each sample was thermally cycled between a temperature above Af and 

a temperature below Mf under a constant stress. Once a thermal cycle was completed, the 

stress was increased, and then the samples were again thermally cycled. Transformation 

temperatures were measured by using tangential method; total, recoverable, irrecoverable 

strains were also obtained from thermal cycling curves, which is shown in Figure 2.2   

Figure 3.3(a) shows the thermal cycling behavior of as-received NiTi20HfPd 

sample under constant stress. While very small recoverable strains were obtained, full 

recovery was not observed in this alloy. The recoverable strain of 0.20% and 0.22% and 

irrecoverable strain of 0.14% and 0.18% were measured at 700MPa and 1000 MPa 

respectively.  

Figure 3.3(b) shows thermal cycling behavior of the as-received NiTi15HfPd alloy 

under compression.  The Ms raised from 74 oC to 88 oC as the applied stress was increased 

from 300-1000 MPa. During the thermal cycling experiment, very small recoverable strain 
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of 0.43% was obtained at 700MPa. It showed full recovery up to 500MPa with 0.39% 

recoverable strain.  

The thermal cycling responses of the as-received NiTi10HfPd alloy are given in 

Figure 3.3(c). The Ms increased from 47 oC to 90 oC alloys when the applied stress was 

raised from 300 to 1000MPa. Near perfect dimensional stability was observed up to 700 

MPa with 0.23% irrecoverable strain. It also showed the recoverable strain of 1% and 

irrecoverable strain of 0.7% at 1000 MPa.  

 

 

Figure 3-3 Thermal cycling under constants stress of as-received a) NiTi20HfPd, b) 
NiTi15HfPd and c) NiTi20HfPd alloys 

b) 

b) 



 
 

28  

3.5 Isothermal Stress-Strain Behavior of NiTi20HfPd and NiTi15HfPd 

Figure 3.4 shows the stress-strain responses of as-received NiTiHfPd alloys. The 

NiTi20HfPd and NiTi15HfPd alloys exhibited fully recoverable superelasticity above the 

Af, as the NiTi10HfPd showed full recovery even under Af temperatures when it was 

loaded until 1100MPa.  

Stress-strain responses of as received NiTi20HfPd sample illustrated in Figure 3.4 

(a). All the tests were conducted above Af and loaded up to 2% strain. While the full 

recovery was observed between 200 oC and 260 oC, plastic deformation is observed with 

0.14% and 0.37% irrecoverable strain at 180 oC and 280 oC, respectively. 

NiTi15HfPd as-received sample was loaded-unloaded above Af temperature at 115 

oC, 140 oC and 180 oC (Figure 3.4b). Full recovery was obtained in all three conditions 

while the sample was loaded up to 1200 MPa.  

In contrast the NiTi20HfPd, NiTi15HfPd and NiTi10HfPd sample was tested below 

the Af temperature and loaded up to 2% strain. It also showed full recovery except at 55oC 

with 0.2% irrecoverable strain. 
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Figure 3-4 The compressive stress-strain response of as-received NiTiHfPd alloys as a 
function of temperature 
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Figure 3-5 C-C relationship of as received NiTi15HfPd and NiTi10HfPd alloys (data 
were extracted from the heating-cooling curves) 

The relationship between σms and Ms can be determined by the Clausius-Clapeyron 

(C-C) equation [18] : 

𝛥𝛥𝛥𝛥
𝛥𝛥𝛥𝛥

= − ∆𝐻𝐻
𝜀𝜀𝑡𝑡𝑡𝑡𝛥𝛥0

    

 𝛥𝛥𝛥𝛥 is the difference between critical stresses, 𝛥𝛥𝛥𝛥 is the temperature difference,  𝛥𝛥0 

is the equilibrium temperature and finally 𝜀𝜀𝑡𝑡𝑡𝑡 is the transformation strain. The C-C slope 

was found to be 15.2MPa/ oC, 45MPa/ oC and 29.9MPa/ oC for NiTi10HfPd, NiTiH15HfPd 

and NiTi20HfPd alloys. It is known that high C-C slopes are resulting in small and unstable 

recoverable strain and also lack of superelastic responses [32]. Thus, in the current study, 

while the C-C slopes of NiTiHfPd alloys are relatively higher than previous studies of 
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NiTiHfPd, recoverable strains are smaller.  Previous studies have reported that C-C of as- 

extruded polycrystalline Ni45.3Ti29.7Hf20Pd5 alloys was 10.7MPa/ oC with the recoverable 

strain of 2.93% at 1000MPa [37]. C-C  value of Ni50.8Ti49.2 alloys was reported as 

11.5MPa/oC with the recoverable strain of 3.26% under 300MPa constant stress [5].  It 

could be noted that NiTiHfPd alloys can be employed under high stress levels. The main 

reason of observing small strain in these alloys is the formation of secondary phases. Since 

they do not undergo phase transformation, they reduce the transformation strain. Thus, high 

volume fraction of secondary phases in the matrix results in less transformation strain. In 

Figure 3.2, Ti-rich secondary phases can clearly be observed, and these large secondary 

phases prevent the matrix to fully transform.   

 

Figure 3-6 Thermal hysteresis of as-received NiTiHfPd alloys as a function of applied 
stress 
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The thermal hysteresis of NiTiHfPd alloys were measured from the heating-cooling 

curves and are shown in Figure 3.6. It is clear that thermal hysteresis increased with applied 

stress. Thermal hysteresis was measured as 38oC, 48 oC, and 61 oC at 300 MPa and 72 oC, 

64 oC and 97 oC at 1000 MPa for as-received NiTi20HfPd, NiTi15HfPd and NiTi10HfPd, 

respectively. The thermal hysteresis of NiTi10Hf is determined to be larger than 

NiTi15HfPd.  The thermal hysteresis is related to the compatibility of transforming phases 

and energy dissipation during the phase transformation [38]. Previous study also showed 

similar results where thermal hysteresis under 100 MPa were 17, 41, 72 oC for 

Ni45.3Ti29.7Hf20Pd5 Ni45.3Ti34.7Hf15Pd5, and Ni45.3Ti39.7Hf10Pd5 alloys, respectively [32]. 

We can conclude that, when Hf content increase in the alloying system, thermal hysteresis 

decreased.  

3.6 Summary and conclusion  

Effects of chemical composition on the transformation temperatures and shape 

memory properties were investigated in this chapter. The significant results have been 

summarized,  

1. It was revealed that transformation temperatures increased as the Hf content 

increases into the alloying system. The Ms Temperatures were found to be 127 oC, 

48 oC, and 19 oC for Ni40.3Ti34Hf20Pd5 Ni40.3Ti39.7Hf15Pd5 and Ni40.3Ti44.7Hf10Pd5, 

respectively.  

2. Perfect recovery was obtained when the samples loaded with strain of 2% and stress 

level higher than 1GPa.  

3. Relatively large secondary phases observed in the optical and SEM images and this 

secondary phase limited to obtain perfect recovery.  
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4. Clausius-Clapeyron relation were a strong function of Hf content, and the C-C 

slopes were found to be 15.2MPa/ oC, 45MPa/ oC and 29.9MPa/ oC for as-received 

NiTi10HfPd, NiTiH15HfPd, and NiTi20HfPd alloys, respectively. 

5. Thermal hysteresis increased as a function of applied stress and Hf contents 
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4. Chapter Four: Effects of Aging on the Shape Memory Behavior of NiTiHfPd 

Alloys  

4.1 Introduction  

The purpose of this chapter is to investigate the influence of aging on the shape 

memory behavior of Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5, and Ni40.3Ti44.7Hf10Pd5 alloys. 

Transformation temperatures were determined after aging, the effects of aging temperature 

and time on the TTs were discussed. Hardness tests were conducted for all conditions and 

compared. Shape memory properties of Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5, and 

Ni40.3Ti44.7Hf10Pd5 alloys were revealed, and stress-strain and strain temperature responses 

were explained. For the briefness Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5 and 

Ni40.3Ti44.7Hf10Pd5 alloys were called NiTi20HfPd, and NiTi15HfPd NiTi10HfPd 

throughout the section.  

4.2 Effects of Aging on the Transformation Temperatures  

In this section, TTs of aged NiTi20HfPd, NiTi15HfPd, and NiTi10HfPd alloys 

were given.  All the samples aged from 300 oC to 800 oC for 3 hours and TTs were 

determined as a function of aging temperature. Additionally, to observe the effect of aging 

duration, NiTi10HfPd samples were aged from 30 min to 10 hours at 500 oC.  All the stress-

free DSC tests were employed for three cycles to verify the stability of the TTs. From ss-

received to 500 oC-3hr aging results were given at the graphs, rest of the TTs were shown 

at the comparison graph. 

Figure 4.1(a) shows TTs of the NiTi20HfPd as a function aging temperature. 

Initially, TTs decreased when they aged between 300 oC to 400 oC then started to increase 

up to 500 oC, after that dramatically TTs decreased again. When the aging temperature was 
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650 oC, TTs started to increase again. The maximum and minimum Af was found to be 265 

oC and 108 oC at aged 800 and 350 oC, respectively. 

 

Figure 4-1 DSC responses of as-received and aged samples a) NiTi20HfPd and b) 
NiTi15HfPd  

Figure 4.1 (b) shows DSC response of NiTi15HfPd alloy. This alloy showed very 

similar behavior with NiTi20HfPd. The maximum and minimum Af temperatures were 

found to be 182oC and 83 oC aged at 800 oC and 350 oC for 3 hours, respectively.  

Figure 4.2 (a) illustrates the TTs of NiTi10HfPd alloys aged for 3 hours. TTs 

slightly changed when they compared to NiTi20HfPd and NiTi15HfPd. Dramatic TTs 

changed was not observed in this alloy. Maximum and minimum Af were measured from 

DSC curves, and they are 119 oC and 66 oC aged at 700 oC and 350 oC for 3 hours.  
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Figure 4-2 DSC responses of NiTi15HfPd as-received and aged samples as a function of 
a) temperature and b) duration time 

TTs of NiTi10HfPd alloys as a function of aging time at 500 oC were shown in 

Figure 4.2 (b). In this study, aging temperature was kept constant as 500 oC while aging 

time was varied from 30 mins to 10 hours. It was observed that aging time does not affect 

on the TTs, but long aging time results a slightly decrease on the TTs. Under 500 C, the 

Ms temperature of aging time 30 mins and 10 hours were measured as 40 oC and 22 oC, 

respectively 
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Figure 4-3 Comparison of TTs of NiTi20HfPd, NiTi15HfPd and NiTi10HfPd alloys as a 
function of various aging temperatures 

Figure 4.3 illustrated the comparison of TTs of NiTiHfPd alloys aged at selected 

aging temperatures for 3 hours. The lowest TTs were observed aged at 350 oC, the reason 

of this drop could be the formation of secondary phases. Since the secondary  

 It is clear that NiTi20HfPd showed the highest TTs among three alloys and its Ms 

temperature can be tailored between from 99 oC to 228 oC with the heat treatments. 

NiTi15HfPd exhibited similar TTs trend with NiTi20HfPd and sharp changing was 

observed in both alloys. However, TTs of NiTi10Pd were quite lower than other and 

slightly changed with the thermal treatments. The Ms Temperatures of NiTi10HfPd 

changed between 2 oC to 50 oC. It is known that higher than 3 at-% addition of Hf to NiTi 

results in increasing TTs. This increases around 5 oC/at-% while the Hf content 5-10 %, 
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further addition of Hf dramatically elevates the TTs around 20 oC/at-% [12]. Thus, 

NiTi10HfPd alloy showed lower TTs than NiTi15FPd and NiTi20HfPd.  

4.3 Hardness Measurements 

Figure 4.4 compares the Vicker’s hardness of NiTi20HfPd, NiTi15HfPd and 

NiTi10HfPd alloys as a function of aging temperature.  All the experiments were carried 

out at room temperature, and thus all the samples were martensite. NiTi20HfPd and 

NiTi15HfPd alloys exhibit a similar trend.  Also, Vicker’s value of NiTi10HfPd alloys was 

lower than others. NiTi15HfPd and NiTi20Hf showed the lowest hardness value, while 

NiTi10HfPd has the highest value after 400 oC -3h aging. 

 

Figure 4-4 Vicker’s hardness of NiTi20HfPd, NiTi15HfPd and NiTi10HfPd alloys as a 
function of aging temperature 
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4.4 Mechanical Responses of aged NiTiHfPd alloys  

Figure 4.5 (a)-(b) illustrated that the shape memory response of the NiTiHfPd alloys 

aged at 350 oC for 3 h. NiTi15HfPd and NiTi10HfPd alloys showed almost perfect shape 

memory effect up to 500 MPa with irrecoverable strains of less than 0.2%. Irrecoverable 

strain increased when the stress level reached to 700 MPa with 0.3 and 0.6%, for 

NiTi15HfPd and NiTiHf10Pd respectively. 

 

 

Figure 4-5 Thermal cycling of 350 oC -3h aged a) NiTi15HfPd, b) NiTi10HfPd alloys 
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Shape memory responses of 500 oC -3h aged NiTi15HfPd and NiTi10HfPd samples 

were depicted in Figure 4.6. While the applied stress increased from 400 to 1000 MPa, the 

Ms of NiTi15HfPd increased from 121 oC to 128 oC which is the highest Ms observed 

among all experiments. Additionally, NiTi15HfPd showed nearly perfect shape memory 

effect with 0.2% irrecoverable strain at 700 MPa. The Ms was 66 oC and 93 oC at 300MPa 

and 1000MPa, respectively. On the other hand, the irrecoverable strain of 0.25% was 

observed even at low stress of 300 MPa in NiTi10HfPd alloy 

      

 

Figure 4-6 Thermal cycling of 500 oC -3h aged a) NiTi15HfPd, b) NiTi10HfPd alloys 
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Figure 4-7 Compressive responses of 500 oC-3hr aged NiTi10Hf alloys at a) 90 oC, b) 
130 oC 

Figure 4.7 illustrates the compressive responses of 500 oC -3hr aged NiTi10HfPd 

alloys at 90 oC and 130 oC. To observe the superelastic behavior, sample was tested above 

the Af temperature.  When the sample was loaded up to 3% strain, irrecoverable strains 

were 0.3% and 0.5% at 90 oC and 130 oC, respectively upon unloading. With further loading 
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up to 4%, the irrecoverable strain of 0.69 % and 0.62 % were observed at 90 oC and 130 

oC, respectively. It is clear from the graphs that high plastic deformation and strain 

hardening occurred at high-stress levels. Thereby, full recovery was not observed in 

NiTi10HfPd. 

 

 

Figure 4-8 Total (solid line) and irrecoverable (dash line) strains as a function of the 
applied stress of as received and aged a) NiTi15HfPd, b) NiTi10HfPd alloys 
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Total and irrecoverable strains as a function of the applied stress of as received and 

aged NiTiHfPd alloys were given in Figure 4.8. While the as-received NiTi15HfPd sample 

showed very small recoverable strain of 0.4%, 350 oC -3hr aged sample showed highest 

transformation recoverable strain with 1% at 1000 MPa. Moreover, the total strain of as-

received and 350 oC -3h aged and 500 oC 3h aged NiTi15HfPd were 0.53%, 0.91%, and 

0.49% respectively, at 700 MPa, which is a good agreement with the hardness values of 

NiTi15HfPd. In contrast, NiTi10Hf as-received, 350 oC- 3hr and 500oC- 3hr aged samples 

showed very close strains and similar trend. Thus, heat treatments did not effect of 

NiTi10HfPd properties which are in good agreement DSC results. 

4.5 Summary  

In this chapter, mechanical properties and transformation temperatures were 

investigated as a function of aging temperatures and duration time. Following remarkable 

results can be explained; 

1. Transformation temperatures of NiTiHfPd alloys can be tailored with the heat 

treatments. Moreover, these alloys can operate from room temperature to high 

temperatures (250 oC).  

2.  While the transformation temperatures of NiTi20HfPd and NiTi15HfPd alloys 

were affected by the aging temperatures, TTs of NiTi10HfPd were not significantly 

effected by heat treatments and its TTs slightly increased with aging temperatures. 

However, when the aging temperature kept constant at 500  oC, TTs of NiTi10HfPd 

decreased with aging time.  

3. Hardness values of NiTi20HfPd and NiTi15HfPd are quite similar; however, 

NiTi10HfPd showed lower values.  
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4. 500 C- 3h aged NiTi10HfPd did not exhibited superelastic behavior with 0.3 and 

0.5 % strain at 90 oC and 130 oC respectively when the sample loaded till 3% strain. 

5. Fully shape memory recovery could not be achieved except NiTi15Hf aged at 350 

oC for 3 hours sample under 300 MPa. Very small recoverable strains were 

observed due to the presence of secondary phases. 
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5. Chapter Five: Shape Memory Behavior of Ni45.3Ti29.7Hf20Pd5 and 

Ni45.3Ti39.7Hf10Pd5  Alloy  

5.1 Introduction   

This chapter examines the shape memory properties of Ni45.3Ti39.7Hf10Pd5 and 

Ni45.3Ti29.7Hf20Pd5 alloys. Transformation temperatures and hardness values of as-received 

and aged Ni45.3Ti29.7Hf20Pd5 and Ni45.3Ti39.7Hf10Pd5 samples were determined. 

Temperature-dependent compressive responses of the as-received Ni45.3Ti29.7Hf20Pd5 and 

Ni45.3Ti39.7Hf10Pd5 samples have been revealed. Isothermal compression tests were 

conducted to observe the superelastic responses of the aged Ni45.3Ti39.7Hf10Pd5 alloy at 

selected temperatures (400 oC, 500 oC, and 600 oC). Stress hysteresis and critical stress 

were determined as a function of test temperatures. Additionally, aged at 400 oC- 3h 

Ni45.3Ti39.7Hf10Pd5 and [111] orientation Ni45.3Ti29.7Hf20Pd5 samples were tested at 

selected strain rates to reveal the damping capacity of those alloys. Since only a few studies 

conducted on the damping capacity and strain rate of Ni45.3Ti39.7Hf10Pd5 alloys, the 

systematic study provided the effect of the aging on the superelastic responses, critical 

stresses, stress hysteresis and dissipated energy of Ni45.3Ti39.7Hf10Pd5 and single crystal 

[111] Ni45.3Ti29.7Hf20Pd5 alloys.  

5.2 Shape Memory Behavior of Ni45.3Ti29.7Hf20Pd5 

Transformation temperatures of Ni45.3Ti29.7Hf20Pd5 were revealed with DSC as 

shown in Figure 5.1. Samples were aged for 3 hours from 300 to 500 oC.  Af  of the as-

received sample was found to be 106 oC, and TTs decreased to 400 oC-3hr aging, and it 

was found to be 27 oC for 400 oC-3hr aging condition. After that, they sharply increased at 
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450 and 500 oC-3hr. TTs increased to 203 oC at 500 oC-3hr aging. It was found that aging 

is an effective method to adjust TTs and they could be operated at a wide range of 

temperatures.  

 

Figure 5-1 Transformation Temperatures of NiTi20HfPd as a function of aging 
temperatures 

 

Figure 5-2 Vickers micro-hardness values of NiTi20HfPd alloys as a function of aging 
temperatures 
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Figure 5.2 shows the Vickers hardness of as–received and 3 hours aged 

NiTi20HfPd alloys. All the aged samples showed lower hardness values than the as-

received condition. Vickers hardness values were very similar between at 300 oC to 400 oC 

aging conditions. However, hardness values sharply dropped after 450 oC-3hr aging.  

 

Figure 5-3 Temperature dependent compressive response of as-received 
Ni45.3Ti29.7Hf20Pd5 

Figure 5.3 shows temperature-dependent stress versus strain responses of as-

received Ni45.3Ti29.7Hf20Pd5. As-received sample was simply loaded up to 3% strain and 

then unloaded. After each test, the sample was heated above the Af temperature, and the 

irrecoverable strain was recovered after heating. The sample was not entirely austenite 

below 106 oC thus, below this temperature did not show full recovery after unloading. The 

same process was repeated as the test temperatures increased by 20 oC on each test. The 

sample showed almost full recovery at 120 oC which is above Af temperatures.   
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5.3 Temperature Dependent Superelastic response of Ni45.3Ti39.7Hf10Pd  

As-received and aged samples of Ni45.3Ti39.7Hf10Pd5 alloy  tested in this section. 

Samples were aged at selected temperatures, 400 oC, 500 oC and 600 oC for 3 hours. Acar 

E. [4] has been determined transformation temperatures of the first batch of this alloy, and 

it was found to be -40 oC. At each batch TTs and mechanical behaviors slightly are 

changed. For this reason, it was thought that TTs went to lower than -40 oC based on the 

previous studied. Therefore, TTs of this alloy cannot be determined since DSC equipment 

which in the current lab can go to min -60 oC. For this reason, TTs cannot be provide for 

the comparison. 

 

Figure 5-4 Temperature dependent stress-strain curves of as-received Ni45.3Ti39.7Hf10Pd5 
alloy 

Stress-strain curves response of as-received Ni45.3Ti39.7Hf10Pd5 alloy at various 

temperatures were given in Figure 5.4. Sample showed full recovery with strain of 6% 

between 0 oC to 60 oC.   The irrecoverable strain of 0.32% was determined at -20 oC when 
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the sample loaded up to 5%. According to C-C relation the critical stress is temperatures 

dependent, and critical stresses linearly raised with the increasing of temperature.  

Figure 5.5 illustrated the stress-strain responses of aged at 400 oC-3h, 500 oC-3h  

and 600 oC-3h  Ni45.3Ti39.7Hf10Pd5 alloys in compression at selected test temperatures. 

Samples loaded up to strain values of 1 % then unloaded. After the completed cycle, the 

applied strain was incremented by 1%. This process was repeated until the applied strain 

of 5 % for each test temperatures. The last curves were displayed at graphs.  

  

 

Figure 5-5 Temperature dependent stress-strain curves of Ni45.3Ti39.7Hf10Pd5 alloys at a) 
and b) 400 oC-3hr, c) 500 oC-3hr, d) 500 oC-3hr aged conditions 

Stress-strain responses of aged at 400 oC-3h Ni45.3Ti39.7Hf10Pd5 alloy were given in 

Figure 5.5 (a-b). The temperature range was selected from -40 oC to 80 oC. Full recovery 
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was observed all the temperatures except -40 oC in which irrecoverable strain of 0.71 % 

was observed. While the critical stress increased, plateau region was diminished as a 

function of temperatures.  

Figure 5.5 (c) shows the compressive stress response of the sample aged at 500 oC-

3hr. Test temperature selected as a 25 oC, 60 oC and 100 oC. The sample was loaded up to 

the strain of 5% and unloaded. Full recovery and high-stress hysteresis were obtained at 25 

oC.  At the temperature of 60 oC, almost full recovery was observed with the irrecoverable 

strain of 0.32%. However, stress hysteresis became narrow at this temperature. When the 

temperature increased to 100 oC, work hardening was, and plastic deformation was 

observed with the irrecoverable strain of 0.77%.   

Similarly, temperature dependent stress-strain responses of aged at 600 oC-3hr 

sample were given in Figure 5.4 (d).  The sample showed full recovery at 25 oC and 60 oC. 

However, at the temperature of -40 oC irrecoverable strain of 0.64% was observed. This 

irrecoverable strain can be called a remained martensite, since the sample loaded at higher 

temperatures, it showed fully transformation. Sample was plastically deformed with an 

irrecoverable strain of 0.45% at 100 oC, and work hardening was observed. 
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Figure 5-6 Critical stress versus temperature diagram of the as-received and  
aged Ni45.3Ti39.7Hf10Pd5 

Critical stress- temperature graph of as-received and aged Ni45.3Ti39.7Hf10Pd5 was 

given in Figure5.6. Critical stresses were measured by the tangent method from stress-

strain curves. It is clear that critical stresses increased with temperature. This phenomenon 

is also known asClausius-Clapeyron relation. The C-C slopes were found to be 8.01 

MPa/oC, 6.21 MPa/oC, 8.94 MPa/oC and 9.88 MPa/oC for as-received and aged samples at 

400 oC, 500 oC and 600 oC for 3hours, respectively.  However, aging is not effective 

function on critical stresses, almost in all conditions, similar slopes measured. 
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Figure 5-7 Stress hysteresis of aged Ni45.3Ti39.7Hf10Pd5  

SMAs is mechanical hysteresis (stress hysteresis) which is a determinant factor for 

the damping applications [39]. The stress hysteresis values of Ni45.3Ti39.7Hf10Pd5  alloys 

as-received and aged at 400 oC, 500 oC, and 600 oC for 3 hours were given in Figure 5.7 

Stress hysteresis values measured from the stress-strain graphs. They determined as the 

difference between the loading and unloading curves which is shown in Figure 1.4.  

Stress hysteresis of 400 oC 3-h aged sample decreased when the test temperature 

increased from -40 to -20 oC. Next, between -20 to 60 oC temperature range hysteresis did 

not change as a function of test temperature. However, after 60 oC, hysteresis dropped 

sharply.  500 oC 3-h aged sample tested only between 25 oC to 100 oC. Hysteresis decreased 

as a function of temperature. Mechanical hysteresis of sample aged at 600 oC for 3 hours 

was almost same between -20oC to 60 oC. After that, it decreased when the test temperature 

increased. It is clear that stress hysteresis is highly temperature dependent.   
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Figure 5-8 Superelastic cyclic response of aged Ni45.3Ti39.7Hf10Pd5 

 

To invesitigate the cyclic stability, aged sample was subjectted to the cycling 

loading.  Figure 5.8 shows the superelastic cycling of aged Ni45.3Ti39.7Hf10Pd5. Since the 

three aged conditions responses were similar, 500 oC 3 hours aging condition was selected 

for cycling test. The sample was loaded up to the strain of 4.5%, and almost full recovery 

was obtained with an irrecoverable strain of 0.07% in the first cycle. The sample exhibited 

perfect superelastic cycling behavior with an irrecoverable strain of 0.208% in 10th cycling.   

5.4 Thermal Cycling Under Constant Stress Responses 

Temperature cycling under constant stress level tests has been carried out for aged 

Ni45.3Ti39.7Hf10Pd5 alloy. Each sample thermally cycled under selected high-stress level in 

austenite phase than cooled to down to below Mf to fully transform and heated up again 
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above Af temperature to transform to the austenite phase. With the thermal cycling 

recoverable, irrecoverable strains and Ms temperatures were determined by high-stress 

level. Ms temperatures measured from 800 MPa curves and they were found to be 16 oC, 

33 oC, and 29 oC aged at 400 oC, 500 oC, and 600 oC for 3 hours samples.  Recoverable and 

irrecoverable strains were also determined to be 2.44, 3%, 2.77% and 0.56, 0.66, 0.76% 

for aged at 400 oC, 500 oC, and 600 oC-3h samples, respectively under 800 MPa. The 

irrecoverable strains increased with the increasing aging temperatures.  

 

Figure 5-9 The constant stress, strain-temperature responses of aged  
Ni45.3Ti39.7Hf10Pd5samples at 800 MPa 
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Figure 5-10. Comparison of the work output energy densities for NiTi-based shape 
memory alloys as a function of operation temperature [4] 

Work output of SMA should be mentioned since it is an important measurement 

for the solid-state actuator. Work output is related to applied stress and transformation 

strain. Mathematically, work output can be calculated by multiplying of recoverable strain 

and applied stress. Higher work output decreases the required weight and volume. Thus, 

work output capacity can be expressed as the efficiency of SMAs [4].  Figure 5-10 shows 

a comparison of the work output densities for NiTi-based SMAs. NiTiHfPd alloys exhibit 

the highest work output densities between 32-36 J/cm3. In previous study, work output 

capacity of  as-received Ni45.3Ti39.7Hf10Pd5 was found to be 29 J/cm3  and J 25 J/cm3   at 700 

and 1000 MPa, respectively [32]. The work output density decreased as increasing stress 

level due to the lower recoverable strain. Shape memory properties of aged 

Ni45.3Ti39.7Hf10Pd5 alloy under 800MPa were given in table 5.1.  It was found to be the 
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work output of this alloy 19.52, 24 and 22.16 J/cm3 for aged at 400 oC-3hr, 500 oC-3hr, 

600 oC-3hr, respectively. 

Table 5.1. Comparison of shape memory parameters of aged NiTiHfPd alloy under 800 
MPa 

Aging Temp 
(oC) 

MS 

(oC) 
Total Strain, 

% 
Irrecoverable 

Strain, % 
Work Output 

J/cm3 

400 oC-3hr 16 3 0.56 19.52 

500 oC-3hr 33 3.66 0.66 24 

600 oC-3hr 29 3.53 0.76 22.16 

 

5.5 The superelastic behavior of NiTiHfPd alloys under selected loading rates 

Last two decades, SMAs have been under investigation for many applications, one 

of them is civil structures because of their unique behavior [40]. While shape memory 

effect is shown by heating and superelasticity is taken place by releasing the load [41]. 

Higher damping capacity and larger recoverable strain are obtained from the shape memory 

then superelasticity, however, heating- cooling cycle is slower than the stress-strain cycle. 

Thus, in many studies, researcher have been focused on the superelastic behavior of SMAs 

rather than shape memory effect [41]. 

Beside the damping capacity, SMAs exhibit high fatigue and corrosion resistance 

which make them a useful candidate for civil structures. They can be used as connector or 

damping elements for bridges structures [40, 42].  

In the light of this information, we investigated the effect of loading frequency and 

temperature on the superelastic responses of single and polycrystalline NiTiHfPd alloys. 

Tests were employed at different strain amplitude, various temperatures and loading 
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frequencies from 0.05 Hz to 1 Hz.  Any transformation was not observed till -60 oC and 

based on the previous study, it was assumed Af  is lower than  -60 oC. Thus, all the samples 

performed above Af temperatures.  

In dynamic application, SMAs are exposed to high loading rates. In this purpose, 

NiTiHfPd alloys are examined under different loading rate.  Figure 5.9 shows the stress-

strain response of Ni45.Ti39.7Hf10Pd5  aged at 400 oC-3hr alloys. The sample was loaded up 

to 5 % at each frequency and test temperatures. It is clear from the curves that loading rate 

does not affect the forward transformation, however, in the backward transformation, 

0.05Hz loading rate was separated from the others, and it absorbed higher energy.  

 

Figure 5-11 Experimental stress-strain curves of aged polycrystalline Ni45.Ti39.7Hf10Pd5   
alloys at various temperatures with different strain rate 
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Figure 5-12 Experimental stress-strain curves of aged Ni45.Ti29.7Hf20Pd5 [111] orientation 
alloy at various temperatures with different strain rate 

Figure 5.10 shows that compression behavior of Ni45.Ti29.7Hf20Pd5 [111] orientation 

alloy at different frequencies and various temperatures. It was clear that the curves at 0.5 

Hz and 1 Hz lap to each other. While the forward transformation was similar for all the 

frequencies, in the backward transformation, 0.05 Hz curves were separated from others. 

The sample was transformed at lower critical stress at 0.05 Hz when it was compared with 

0.5 Hz and 1Hz frequencies. Between -55 oC and -15 oC visible plateau region was 

observed, after -15 oC plateau was disappeared. The sample was showed perfect 

superelasticity at all the test temperatures and frequencies; irrecoverable strain was not 

observed.  

 The absorbed energy was calculated from the highest stress level of each 

temperature. The area of under the stress-strain curves (stress hysteresis area) provides the 

dissipated energy/damping capacity. Figure 5.11 (a) shows the absorbed energy of 
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Ni45.3Ti39.7Ti10Pd5 aged at 400 oC for 3 hours. The absorbed energy was found to be 25.13, 

20.8 and 17.71 J/mm3 at 0oC, 20 oC and 40 oC for 0.05Hz, 0.5Hz, 1Hz frequencies, 

respectively. It is clear that higher strain rate resulted in lower absorbed energy. In contrast, 

absorbed energies did not change as a function of test temperatures. 

 Absorbed energy versus temperature graph of Ni45.3Ti29.7Ti20Pd5 [111] was given 

in Figure 5.3-(b). The sample was tested in the wider temperature range from -55 oC to 25 

oC. The same trend was observed in Ni45.3Ti29.7Ti20Pd5 [111] alloy. Higher frequencies 

resulted in lower dissipated energies. Above 35 oC, dissipated energy decreased linearly up 

to 5 oC then it saturated. Acar et al [43] have been worked on polycrystalline   

Ni45.3Ti29.7Ti20Pd5 and they also observed the similar trend. Dissipated energy at the high 

frequency is lower.  

 

Figure 5-13 Absorbed the energy of a) Ni45.3Ti39.7Ti10Pd5 b) Ni45.3Ti29.7Ti20Pd5 aged at 400 
oC-3hr samples as a function of test temperatures. 
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Figure 5-14 Critical stresses of a) Ni45.3Ti39.7Ti10Pd5 b) a) Ni45.3Ti29.7Ti20Pd5 aged at 400 
oC-3hr samples as a function of test temperatures. 

Temperature has a significant effect on the mechanical behavior of the materials.  

Under compression, the mechanical behavior can be altered with testing temperature. In 

SMAs, critical stress represents the stress-induced martensitic transformation under 

loading. One can see that critical stress increased while the test temperature increased. 

Also, critical stress for strain rate shows different values. While the critical stress for 1 Hz 

frequency in Ni45.3Ti39.7Ti10Pd5 found to be the lowest, critical stress for 1 Hz frequency in  

[111] Ni45.3Ti29.7Ti20Pd5 alloy had the highest values.  

5.6 Summary 

In this chapter, Ni45.3Ti39.7Hf10Pd5 and Ni45.3Ti29.7Hf20Pd5 alloys were investigated. 

Shape memory behavior of high temperature polycrystalline Ni45.3Ti29.7Hf20Pd5 alloy was 

examined. Another polycrystalline Ni45.3Ti39.7Hf10Pd5 alloy was aged at selected 

temperatures and their temperature-dependent superelastic behavior was revealed. At the 

final study in this chapter is strain rate test to reveal the damping capacity of [111] 

orientation Ni45.3Ti29.7Hf20Pd5 and polycrystalline Ni45.3Ti39.7Hf10Pd5 alloys. The 

significant results have been summarized,  
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1. It was found that transformation temperatures of polycrystalline of 

Ni45.3Ti29.7Hf20Pd5 highly dependent on aging temperatures. Thus, they can be 

operated in the wider range of temperatures between 25 oC-250 oC. 

2. The temperature-dependent superelastic behavior of aged Ni45.3Ti39.7Hf10Pd5 

samples was investigated. It was found to be aging was not a strong function 

for the Ni45.3Ti39.7Hf10Pd5 alloy. They showed similar superelastic responses at 

all aging temperatures.  

3.  They showed perfect superelastic behavior up to the strain of 5% at 25 oC for 

all aging condition.  

4. C-C relation of the aged samples of Ni45.3Ti39.7Hf10Pd5 alloy was very similar 

to each other, and they were found to be 6.11 MPa/ oC, 8.94 MPa/ oC, and 6.95 

MPa/ oC after aging at 400 oC, 500 oC and 600 oC for 3hr, respectively.  

5.  Work output  densities of Ni45.3Ti39.7Hf10Pd5 alloy  were found to be 19.52, 24 

and 22.16 J/cm3 for aged at 400 oC-3hr, 500 oC-3hr, 600 oC-3hr, respectively. 

6. While the polycrystalline Ni45.3Ti39.7Hf10Pd5 alloy aged at 400 oC for 3hr 

exhibits 25-16 J.cm-3 damping capacity, 400 oC-3hr aged [111]-orientated 

Ni45.3Ti29.7Hf20Pd5 shows 10 to 23 J.cm-3 damping capacity.  

7. Critical stress was affected by both temperature and strain rate. Critical stress 

increased as a function of temperature for both alloys.  
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6. Chapter Six: Conclusion  

In this study, shape memory properties, microstructure and mechanical behavior 

of Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5, Ni40.3Ti44.7Hf10Pd5, and Ni45.3Ti29.7Hf20Pd5,  

Ni45.3Ti39.7Hf10Pd5   alloys were investigated. Hf contains were varied from 20 to 10 at% 

and Pd was 5 at %.  

At first, composition effects were detailed of Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5, 

and Ni40.3Ti44.7Hf10Pd5. It was founded that Hf contents have significant effects on the 

microstructure, transformation temperatures, and mechanical behavior. When the Hf 

content increases, transformation temperatures increase, shape memory properties (strain 

hysteresis, superelastic responses) weaken. The highest transformation strain was obtained 

for the Ni40.3Ti44.7Hf10Pd5.  However, Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5 alloys showed 

higher TTs (up to 250 oC) and strength at high stress-level than the Ni40.3Ti44.7Hf10Pd5 alloy. 

Additionally, they have narrow hysteresis at the high-stress level, and these properties 

make them a bright candidate for the high temperatures and actuators applications. 

Besides the composition effects, a comprehensive aging study was conducted on 

the Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5, Ni40.3Ti44.7Hf10Pd5, and Ni45.3Ti29.7Hf20Pd5 

alloys. It was found that aging is a powerful method to adjust the transformation 

temperatures of SMAs. With the aid of heat treatments, TTs raised from room temperatures 

to around 250 oC. However, aging was not affected by the shape memory effect of the 

Ni40.3Ti34Hf20Pd5, Ni40.3Ti39.7Hf15Pd5, and Ni40.3Ti44.7Hf10Pd5 because of the presence and 

formation of secondary phases. Although aged 350 oC-3hr aged Ni40.3Ti44.7Hf10Pd5 alloy 

showed relatively wider shape memory effect, it did not show promising superelastic 

responses.  
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Another systematic study was conducted on the 400 oC-3 hr aged Ni45.3Ti39.7Hf10Pd 

polycrystalline alloys and [111] orientated Ni45.3Ti29.7Hf20Pd5 single crystals. Samples 

were subjected to the different strain rates and the damping capacities were found to be 16-

25 J.cm-3 and 10-23 J.cm-3 for Ni45.3Ti39.7Hf10Pd5 and [111] oriented Ni45.3Ti29.7Hf20Pd5, 

respectively.  
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