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ABSTRACT OF THESIS 

 

 

BAYESIAN-INTEGRATED SYSTEM DYNAMICS MODELLING FOR 

PRODUCTION LINE RISK ASSESSMENT 

Companies, across the globe are concerned with risks that impair their ability to produce 

quality products at a low cost and deliver them to customers on time. Risk assessment, 

comprising of both external and internal elements, prepares companies to identify and 

manage the risks affecting them. Although both external/supply chain and 

internal/production line risk assessments are necessary, internal risk assessment is often 

ignored. Internal risk assessment helps companies recognize vulnerable sections of 

production operations and provide opportunities for risk mitigation.  

In this research, a novel production line risk assessment methodology is proposed. 

Traditional simulation techniques fail to capture the complex relationship amongst risk 

events and the dynamic interaction between risks affecting a production line.  Bayesian- 

integrated System Dynamics modelling can help resolve this limitation. Bayesian Belief 

Networks (BBN) effectively capture risk relationships and their likelihoods. Integrating 

BBN with System Dynamics (SD) for modelling production lines help capture the impact 

of risk events on a production line as well as the dynamic interaction between those risks 

and production line variables. The proposed methodology is applied to an industrial case 

study for validation and to discern research and practical implications. 

KEYWORDS: Risk assessment, production line, Bayesian Belief Networks and System 

Dynamics. 
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1. Introduction 

 

1.1 Background 

Risks are unavoidable due to the complex and dynamic nature of operations. Risks 

have the potential to alter a company’s performance in a devastating manner. As a result, 

organizations are seeking methods that would help identify and manage these risks. This 

has led to an increased realization of the importance of risk management and the benefits 

of undertaking such initiatives. The Institute of Risk Management (IRM, 2002) states that 

“risk management marshals the understanding of risks effecting the organisation, increases 

probability of success and reduces uncertainty regarding company’s ability to achieve set 

targets.” 

ISO 31000 (2015) defines ‘risk’ as “the effect of uncertainty on objectives.” It 

further defines ‘effect’ as “deviation from the expected” and ‘uncertainty’ as “the state of 

deficiency of information related to an event.” Risk is expressed in terms of the likelihood 

of occurrence and the consequence of the risk event.  

ISO 31000 (2015) further defines risk management as “the performance of 

coordinated activities to direct and control an organization with regard to risk. Risk 

management practices are aimed at identifying, assessing and mitigating risks impacting 

an organization.” ISO 31000 (2015) has streamlined the risk management structure by 

providing some guidelines which is summarized in Figure 1. As shown, establishing the 

context, risk identification, risk analysis, risk evaluation and risk treatment are the five key 

steps in the process. Concurrently, communication, monitoring and reviewing are 
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additional tasks that enhances the effectiveness of each step in the risk management 

process.      

 

Figure 1: ISO 31000 risk management framework (2015) 

1.2 The Current Status 

Increased complexity in products to be manufactured, strict regulations and a 

continuously changing market have led to an increase in risks affecting the manufacturing 

sector.  Succeeding in such competitive markets may require adopting bold strategies. 

Often, production capacities and capabilities are quoted aggressively in order to secure 

more customers. Under such circumstances, the failure to respond quickly to raw material 

shortages, downtimes, deteriorating equipment conditions, or other operational risks could 

have expensive consequences. Company-wide risk assessment can provide a more holistic 

view of the risks affecting a company and better opportunities to mitigate them. The scope 
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of a company-wide risk assessment must include both internal and external operations. 

External/supplier risk assessment has drawn significant attention compared to 

internal/production line risk assessment. William et al., (2015) identified this trend when 

only three studies on manufacturing/internal risk assessment were found compared to 

several in the field of supply risk assessment. Even though the scope of risk assessment is 

much narrower with internal operations, adopting comprehensive internal risk management 

practices can be of significant importance as it can enable a company gain competitive 

advantage over its competitors by ensuring financial strength, quality of goods and services, 

and increased customer satisfaction. 

Companies suffer from significant losses and diverge from their business plans 

when risk events occur. Hence, they are always seeking for ways to assess the impact of 

various risks and respond to them. External risks are extremely complex in nature and have 

a large impact. Controlling or mitigating external risks is a tedious task and usually requires 

the effort of multiple individuals. On the contrary, internal risks are comparatively less 

complicated and their management often within the scope of the supervisor or engineer. 

However, the use of structured methods for internal risk management is overlooked in 

many companies. Using well-defined methods for internal risk assessment can offer high 

returns with minimal resource expenditure and bring reliability to the production line. 

Nevertheless, as pointed out by William et al., (2015), very few studies have focussed on 

developing better methods for internal risk assessment. Amongst the various internal 

aspects susceptible to risks, production operations (lines) are one of the most critical areas 

that need attention. Hence, the focus of this study is on risk assessment at the production 

line level. 
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Current techniques of risk assessment are not sufficiently comprehensive to assess 

internal risks. Most techniques do not provide enough information to the industry personnel 

to solve the problem effectively. Popular techniques such as using a risk matrix approach 

can help visualize risks impacting the production line but fail to capture the relationship 

between risks. Techniques like Fault Trees, Event Trees and Bayesian Belief Networks 

(BBN) help capture the inter-relationships amongst risk events and quantify risk likelihood 

but fail to account for the impact of these risk events on the production line, making them 

one directional. Alternatively, simulation techniques like System Dynamics (SD) can 

enable users to envision the impact of risks on the production line and the dynamic 

interaction between risk events through feedback loops. However, SD fails to effectively 

capture relationships amongst risk events and calculate conditional risk likelihoods. Risk 

assessment should be conducted to understand both the likelihood and potential impact of 

risk events on production line. Failure to understand both these aspects of risks, defeats the 

whole purpose of conducting risk assessments.     

1.3 Research Objective 

Therefore, the objectives of this thesis research are to: 

1. Develop a methodology to evaluate production line risk, which can capture the 

dynamic nature of risk events and their relationships with each other.  

2. Assess the impact on the production line, upon exposure to risk events, over a 

period to evaluate the effectiveness of the method developed. 

The remainder of the thesis is organized as follows. Chapter 2 presents a literature 

review where the current methods of risk assessment are presented and research gaps are 
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identified. Since studies on risk assessment at the production line level is not extensive, 

supply chain risk assessment methodologies (which can also be used for assessing risk at 

production line level) have also been considered. The methodology developed for risk 

assessment at the production line level is presented in Chapter 3, taking into consideration 

the research gap and the objectives. The application of methodology to a production line 

case study is presented in the following chapter. The results obtained from the model are 

described in Chapter 4. Further, the effectiveness of the methodology in assessing the 

behavior of the production line system is also examined. Conclusion about the research 

work and the degree of success with which the research objectives were achieved are 

described in the following chapter. A discussion of future work, based on the limitations 

of the model, is also presented in this section. 
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2. Literature Review 

ISO 31000 (2015) defines risk assessment as a three step process: risk 

identification, risk analysis and risk evaluation. The literature related to each of these areas, 

particularly in relation to production line risk assessment, is presented individually in the 

following sections. 

2.1       Risk Identification 

At the production line level, Risk identification involves the process of recognizing 

the risks impacting the production line and recording them. IRM (2002) recommends a 

comprehensive understanding of the organisation’s activities, internal and external, in 

order to identify risks impacting the organisation and having a detailed description of these 

risks presented in a tabular form to facilitate risk assessment. It lists out several risk 

identification techniques such as brainstorming, questionnaires, incident investigation, 

auditing and inspection, Hazard and Operability Studies (HAZOP) etc. Along with these 

traditional techniques, risk taxonomies can prove to be an effective guide during the risk 

identification phase. Rao and Goldsby (2009) identified the risks impacting supply chains 

where risks were broadly classified as environmental risks, industry risks and 

organisational risks. In addition, Badurdeen et al., (2014) presented a comprehensive 

supply chain risk taxonomy. 

 Amongst these noted techniques, HAZOP is one of the most structured methods 

for risk identification at the production line level. HAZOP has been widely used in the oil 

and chemical process industries in identifying process related risks as pointed by Bustad 

and Bayer (2013). HAZOP is a technique where events causing deviations in the process 

are identified, making use of process flow diagrams and process parameters information. 
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Users go through all the technical details of the process to break it down into several 

sections. These sections are then studied in detail to identify possible deviations in the 

process and their potential causes. Arief et al., (2009) advocates the use of HAZOP based 

methodology to identify risks impacting supply chain. They call for a careful assessment 

of the process, through a process flow diagram, to search for deviations using a set of 

guidewords in combination with system parameters for identifying risks in the supply 

chain. Amongst the many aspects of supply chain that the paper deals with, operational 

department is what is applicable at the production line level. Despite HAZOP being a well-

structured method for identifying risks, the extent of information required on the process 

is discouraging. One of the pre-requisites for using HAZOP is that the process must be well 

defined with a set of parameters for each operation. Quality of risk identification process 

through HAZOP is heavily dependent on the availability of these process details. Bustad 

and Bayer (2013) also argued about the limitations of HAZOP in identifying unforeseen 

risks. In addition, the method is highly time consuming and therefore expensive. 

Alternatives like brainstorming and auditing were also explored. Independent and 

dependent risk events can be identified well using these alternatives. Furthermore, Bustad 

and Bayer (2013) support the idea of combining some of these techniques to make risk 

identification process more reliable. 

However, brainstorming and auditing at the production line level need direction and 

defined boundaries as it is easy to digress from the line level. The subjective nature of these 

methods make it difficult to identify risks in a systematic manner. A good way to overcome 

this limitation is to adopt a value based thinking. Shah et al., (2013) identify risks at the 

line level based on its impact on the ability of process to deliver the value proposition. 
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Identifying risks having an impact on value proposition helps streamline the process of risk 

identification at the line level by providing direction and filtering out the unnecessary risks. 

The organisational risks cluster from Rao and Goldsby (2009) and the operating risks sub-

cluster in Badurdeen et al., (2014) can be useful in identifying risks relevant at the 

production line level. Risk events like raw material shortages, process changes and 

machine failure are widely applicable. These risks, listed in the risk taxonomy, may or may 

not impact a specific production line but they serve as a guide during risk identification 

phase.   

2.2       Risk Analysis 

Risk analysis is the process of examining the risk impacting the production line. 

Since production line risk assessment is a less explored field, published literature in supply 

chain risk assessment was reviewed extensively. Quantitative risk assessment was the 

prime focus of the review.  

Risk matrix is the most commonly used approach for risk analysis in risk 

management studies as pointed out by Peace (2017). A risk matrix consists of two 

variables, risk likelihood and severity. The risk matrix is further categorized into high, 

medium and low risk zones. This provides the user with the visual evidence of the nature 

of risk and the priority with which the risk events need to be addressed. This approach was 

developed at US Airforce Electronic Systems Center by Paul et al., (1995) to assess risks 

on one of their applications. The risk matrix has been applied in several other risk 

management studies including project management (Murray et al., 2011), supply chain 

management (Bustad and Bayer, 2009, Li et al., 2013, Kodithuwakku, 2015) and in 

maintenance suppliers’ management by Antosz et al., (2017). Bustad and Bayer (2009) 
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presented a risk management process at Coca Cola Enterprises by combining HAZOP and 

risk matrix methods. They identified supply chain risks impacting the industry through 

HAZOP and assessed them using a risk matrix. This approach is good for creating 

awareness and could work as a quick overview of the risks impacting the production line. 

However, the risk matrix method is mostly qualitative. One major flaw of this method is 

that it fails to prioritize risk events with low probability but a very high impact (natural 

disasters, terrorist attacks etc.) as the overall risk value would be low. Also, they are not 

capable of accounting for the uncertainty in complex systems.  

Using Fault Trees are another popular approach for risk analysis in risk 

management studies. Fault trees are based on the fundamental principle of converting 

physical systems into logical expressions where a set of causes lead to an event of interest. 

The application of fault trees in assessing the reliability of a production line was 

demonstrated in Zhang et al., (2011) and Ariavie et al., (2012) and for inventory risk 

assessment within the aerospace industry in Chen-Yang et al., (2013). This approach gives 

an insight into the events resulting in a failure event. However, its dependence on logical 

operators thwarts it from being able to capture the complex inter-relationships amongst risk 

events. Also, the deterministic nature of fault trees fail to capture the stochastic nature of 

models/systems.  

Event Trees are also used for risk analysis in risk management studies. Event trees 

are used to model the consequences occurring from an initiating event based on Boolean 

logic. Moshen and Keren (2011) demonstrate the use of event trees in assessing reliability 

of safety systems. They were able to calculate the probabilities of risk events and identify 

the major sources of safety system failure. As risk events identified in the safety system 
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were few in number, event trees were able to evaluate risk likelihood effectively. While 

event trees help identify failure propagation across the system, they are not effective to 

evaluate risk in complex systems due to their dependence on Boolean logic and 

deterministic nature. 

Bow-tie modelling is another technique used to combine the benefits of using fault 

trees and event trees. Left side of the bow-tie consists of a fault tree which models a set of 

events resulting in the occurrence of the identified event. This event branches out to form 

event trees and thus model the consequence of that event. BT has been applied in risk 

management studies within manufacturing sector by Pereira et al., (2015) and Pereira and 

Lima, (2015) and in safety analysis of process systems by Khakzad et al., (2013).  

Bayesian Belief Networks (BBN) is an effective tool to capture both the 

interdependencies between risk events and uncertainty in likelihood. Unlike fault trees and 

event trees, BBN make use of Node Probability Tables (NPT) to represent the conditional 

probabilities between parent and child risks. BBNs are a probabilistic approach, based on 

Bayes theorem, used for decision making under uncertainty (details are included in chapter 

3). BBN models have been used as a risk assessment tool in various fields: fault diagnosis 

in a hydropower plant using BBN was discussed by Chaur and Sou (2013); supply chain 

risk analysis using BBN was demonstrated by Badurdeen et al., (2014) and additional case 

studies were presented in Amundson et al., (2013); supply network risk propagation by 

Garvey et al., (2015); information risk in supply chain by Sharma and Routroy (2016) and 

ecological risk assessment in ecosystems was discussed by McDonald et al., (2015).  

Garvey et al., (2015) capture the interdependencies between risk events by constructing a 

BBN model. The research quantifies risks occurring at various nodes and captures their 
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propagation across the supply chain. The usage of BBN to capture risk propagation across 

the supply chain is a valuable learning point. Sharma and Routroy (2016) assess 

information risk factors like information security, information leakages and reluctance 

towards information sharing on the supply chain. They highlighted BBNs capability in 

handling subjective data along with objective data. Badurdeen et al., (2014) outlined a well-

structured method for supply chain risk assessment by linking the risk drivers to the 

performance measures. This model captures the uncertainty within the system in an 

effective way. However, the risk events analyzed are static in nature. In reality, risk events 

evolve with time and dynamically interact with the system. Also, they fail to capture the 

impact of risk events on the system. Thus, BBN models alone may not be enough for risk 

analysis.  

Dynamic causal relations can be modelled well using simulation tools such as 

System Dynamics (SD). SD is a powerful tool comprising of stocks and flows. Stocks 

represent levels, which can be used to represent inventories, cash reserves, etc. Flows 

determine the quantity of stock that is moving from one location to another. A simulation 

of a model of a system demonstrates the change in stocks and flows over a period. The SD 

approach has been applied in the field of risk assessment. Risk analysis using SD on a new 

product development process was demonstrated by Dehghanbaghi and Mehrjerdi (2013) to 

study the impact of risk events on performance metrics like sales, production, government 

support and raw materials. They quantified risks by multiplying risk likelihood and 

severity. The model was then simulated to assess the impact of risk events on the metrics 

mentioned above. Although they were able to capture the impact of risk events on system 

variables, multiplying risk likelihood and severity might be misleading as pointed by 
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Bustad and Bayer (2009). They argued that multiplying risk factors fail to capture risk 

events with low likelihood and high severity or vice-versa. Similarly, the risks associated 

with NASA’s shuttle launching system was studied by Dulac et al., (2005) using SD to 

capture the dynamic nature of risks and their impact on the shuttle launch.  

SD models could capture the impact of risk events on the system; however, SD 

models have difficulty in representing relationships between risk events due to their 

subjective nature. Therefore, combining SD and BBN can prove to be an effective way to 

capture both the probabilistic exposure to risk events and the transient impact over time. 

Mohaghegh (2010) demonstrated the combination of SD and BBN for Socio-Technical 

Risk analysis. The author modelled risks using a BBN software and connected it with SD 

simulation model. The model is capable of capturing dynamic nature of variables within 

the system through SD and BBN captures inter-relationships and uncertainty in risk events. 

A major limitation of this approach is in simulating the data. For each time step, data had 

to be transferred between the two softwares. This severely limits the number of time steps 

for which the data can be simulated.   

While production line risk assessment has been addressed before, most of the 

methods used provide only a limited perspective, often using qualitative and deterministic 

information. Integrating capabilities offered by different tools can provide a more versatile 

approach to evaluate risks at the production line level. 

Alternatively, the P-graph methodology was explored in dealing with risk 

management. Varga et al., (2010) describes P-graphs (process graphs) as bipartite graphs, 

consisting of nodes for a set of materials, a set of operating units, and arcs linking them. 



  

22 
 

The set of materials can be the raw materials, intermediate products/materials, or products. 

The operating units are defined in terms of input and output materials as well as their ratios. 

P-graphs have been used in optimizing supply chain under uncertainty by Sule et al., (2011) 

and increasing reliability in bio-diesel supply chains by Bertok et al., (2013). P-graphs can 

be used to model a production line by using material nodes for raw materials, work in 

process inventory and finished goods. Operating units can be used to model the 

workstations through which the material flows. However, its limitation in representing 

complex relationships between risk events and its inability to capture stochasticity in 

process parameters make it a less preferred option.  

Additionally, mathematical programming models were explored for their suitability 

for assessing risk. Kungwalsong (2013) developed a multi-criteria optimization model for 

supply chain disruption risk management. To handle multiple and conflicting objectives, 

goal programming was used. Disruption risks were quantified based on hazard, 

vulnerability and availability of risk management practices. This risk was used as one of 

the factors in the optimization model. The author was capable of providing the tradeoff 

between multiple objectives such as profit, risk level etc. Medina-Herrera et al., (2014) 

developed a mixed-integer non-linear programming model for optimal plant layout. Plant 

safety risk was considered as one of the parameters for optimizing plant layout. The model 

was able to optimize the layout based on multiple factors like distance, profit and risk 

levels. Mathematical programming models are suitable for constructing selection models 

by considering risk factors. However, they fail to capture the inter-dependencies amongst 

risk events in a complex system. 
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Risk analysis at the production line level requires the method adopted to be capable 

of handling a complex system with inter-dependent variables. Amongst the techniques 

discussed, fault trees, event trees and BBN are most suitable at the production line. Their 

ability to capture relationship between risk events helps calculate risk likelihood. However, 

they fail to capture the impact of risk events on the production line and the dynamic 

interaction between risk events and the production line. Alternatively, SD is extremely 

relevant at the production line level. SD is capable of depicting the production line and 

assess the impact of risk events over a simulation time period. Its feedback-loop property 

helps in capturing the dynamic interactions between risk events and production line 

variables. However, it fails at calculating risk likelihood in an effective way.  Perhaps, 

integration of two or more methods might provide a better a way to quantify both the risk 

likelihood and the impact of risks on production line. 

2.3 Risk Evaluation and Risk Treatment 

Risk evaluation is the process of prioritizing risks for risk treatment. Risks analyzed 

are compared against the standards or preferred criteria to determine the priority. These 

prioritized risks are then treated. 

Risk treatment is the process of developing strategies to treat risks. ISO 31000 

(2009) provides several options for risk treatment: 

(1) avoiding the risk by deciding not to start or continue with the activity that gives rise 

to the risk;  

(2) taking or increasing the risk in order to pursue an opportunity;  

(3)  removing the risk source; 

(4)  changing the likelihood;  
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(5) changing the consequences;  

(6) sharing the risk with another party or parties; 

(7) retaining the risk by informed decision. 

Bilsel (2009) developed a multi-objective mathematical model solved using goal 

programming approach to develop risk mitigation strategies. The model assigns primary 

suppliers and backup suppliers to the buyer and determines order quantities. By assigning 

backup suppliers, supply risk is mitigated. Scenario analysis is another approach to evaluate 

risk. Miller and Waller (2003) describe scenario analysis as “a way of structured thinking 

in which stories are created that bring together factual data and human insight to create 

scenarios exploring future possibilities.” Miller and Waller (2003) and Daszyńska-Żygadło 

(2012) advocate the use of scenario analysis in risk management studies.  Miller and Waller 

(2003) analyzed scenarios at a corporate level across a firm’s portfolio of businesses. Their 

study empowered managers to make investment decisions under uncertainty. Daszyńska-

Żygadło (2012) used the method to understand the exogenous risks influencing the 

operations of a company. This research was aimed at improving organizational learning and 

its ability to develop responses to react and recover form occurrence of risk events. 

Analyzing the system under several scenarios aids its users in decision-making under 

uncertainty. 

The literature review systematically reviews the current techniques used for the 

three aspects of risk assessment: risk identification, risk analysis and risk evaluation. This 

helped understand the merits and demerits of the current techniques and identify research 

gaps. 
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Brainstorming and auditing are effective at identifying risks at the production line 

level. Adopting a value based thinking, when using these methods, prevents from 

digressing from the scope. Additionally, risk taxonomies serve as a guide during risk 

identification phase.  When abundance of data and time is available, HAZOP is a good 

technique to explore.  

Risk analysis at the production line level requires the technique to quantify risk 

likelihood, influenced by several interdependent risks, and the dynamic interaction between 

risk events and production line variables. Risk matrix is a simplistic approach to analyze 

risks but fails at the production level due to the intricacies in the system. Fault trees, event 

trees, bow-ties and BBN are effective at quantifying risk likelihood. BBN, especially, is 

extremely relevant at production line level due to its capability of calculating risk events’ 

likelihoods in a complex interdependent system. It uses causal relationships between risk 

events to determine their likelihood. However, they fail to capture the dynamic interaction 

between risk events and production line variables. Alternatively, SD simulation technique 

could assess the impact of risk events on the production line and capture the dynamic nature 

of system variables. However, unlike BBN, they fail to capture the interdependent risks in 

the system. The P-graph technique could be used to depict the production line model and 

can analyze the propagation of risks through the system. However, their deterministic 

nature restricts their use in being used as a simulation model. Also, interdependencies 

between risk events cannot be captured through this technique. Mathematical models don’t 

have much relevance at the production line level as the intricate details of production line 

are required to be converted into a mathematical programming model. None of the above 

mentioned techniques for risk analysis are capable of analyzing both the risk likelihood and 
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the impact on the production line. A new technique or an integration of techniques is 

required to analyze risks at the production line level effectively.  

Risk evaluation using scenario analysis approach enables users to evaluate risks 

impacting the production line and develop strategies for risk management. Several 

simulation techniques have the inbuilt feature of scenario analysis. Using SD simulation 

would allow to assess the impact of risk events on the production line and to test several 

scenarios. Results from this would aid users in decision making when a risk event occurs.  
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3. Research Methodology 

A production line risk assessment framework that is developed in this research is 

depicted in Figure 2. A risk taxonomy relevant at the production line level is developed 

during the risk identification phase using brainstorming and referring to general risk 

taxonomies. Risk identification is followed by risk analysis. Most techniques for risk 

analysis fail to capture the dynamic and interdependent nature of risk events and their 

impact on the production line. In this research, a combination of BBN and SD is chosen to 

develop a more versatile technique for risk analysis (details are included in section 3.2). 

Lastly, risk is evaluated through scenario analysis. Each of the steps shown is described in 

detail in the following sections.    

 

Figure 2: Production Line Risk Assessment Framework. 
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3.1.      Phase I: Risk Identification 

Risk identification is the most crucial step for risk assessment. Identifying potential 

risks relevant at the production line level establishes a strong foundation for the subsequent 

stages of risk analysis and risk evaluation. One of the most challenging tasks during this 

phase is to define the boundaries within which risk would be assessed, as it is very easy to 

digress from production line level risks to organizational /industry level risks. The best way 

of defining these boundaries is to have a discussion with the team assessing risk and come 

to a consensus on the scope of risk assessment.  

To support the process of risk identification, the risk taxonomy developed by 

Badurdeen et al., (2014) was used as a starting point. The operational risks are listed in 

Table 1. These risks were utilized as a guide during risk identification phase. Such a guide 

allows in selecting risks relevant to the case-study or the scope of risk assessment.   

Table 1: Operational risks from Badurdeen et al., (2014) 

Subcategory Risk dimensions 

Organizational Raw material shortage. 

Operating Quality variability 

  Employee productivity due to labor unrest/strikes 

  Machine failure 

   Spare part restriction 

  Work/life unbalance, unsocial hours of working 

  

Technology – outdated hardware (inability to adapt new 

technologies 

  Inventory management problems 

  Increased costs of disposal to landfills 

  

Nature of regulations faced (OSHA, EPA) – hazardous materials 

used in the factory 

  Poor traceability – high costs to trace 

  

Communication/IT systems (hardware, software, hackers, virus, 

worms) 

  Process changes, machine changes/upgrades 
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Apart from these risks listed in the risk taxonomy, there are other potential risks 

that can be unique to an organization or an industry. These risks are identified through 

some conventional techniques like brainstorming, surveys and audits. Alternatively, a 

detailed approach of HAZOP could be used when abundant data regarding the process is 

available.  

Merely identifying individual risks impacting the production line is of little value 

if the inter-relationships between these risk events aren’t understood. Often, the occurrence 

of one risk event effects the occurrence of a dependent risk event.  Badurdeen et al., (2014) 

demonstrated the importance of capturing the causal relationships between risk events to 

analyse the propagating effects of risk events. Developing a risk network map is an 

effective way to visualize the inter-relationships between the risks effecting production 

line. A risk network map is a qualitative technique of representing the causal relationship 

between various risk events and production line KPIs.   

Additionally, for an effective risk assessment, both the risk events and their impact 

on the production line need to be taken into consideration. The impact of these risk events 

on the production line is assessed by evaluating the impact on selected Key Performance 

Indicators (KPIs).  

3.2.      Phase II: Risk Analysis 

The approach followed to analyze risk at the production line level is depicted in 

Figure 3. Quantifying risks requires a risk assessment model capable of handling both 

objective and subjective risks, capturing inter-dependencies and having a strong 

mathematical foundation to calculate likelihood of risk events.  
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Assessing risks over a period of time required studying the system for transient 

behavior. System dynamics (SD) is chosen as the technique to simulate behavior as it 

allows user to observe the behavior of the production line and test its performance under 

different scenarios. Simulation techniques such as SD, alone cannot capture sudden 

changes/disruptions in production line caused by risk events. This limitation can be 

overcome by combining simulation with risk assessment techniques. Bayesian Belief 

Networks (BBN) was found as an effective method to capture the conditional probabilistic 

relationship between risk events. Thus SD, when combined with BBN, can provide a 

versatile technique to assess the production line under the influence of risk events 

Additionally, a suitable platform is required to model the production line, capture 

the interaction between production line simulated and BBN risk model used to model the 

conditional relationships and dynamic nature of risk events (via a feedback mechanism 

from the line to the BBN risk model). 



  

31 
 

 

Figure 3: Risk Analysis Approach.  

3.2.1.   Bayesian Belief Networks (BBN) 

BBNs are a robust probabilistic approach often used for reasoning, diagnosis, 

prediction and decision making under uncertainty. Pai et al., (2003), Cowell et al., (2007) 

and Lockamy and McCormack (2012) recommend BBN as a tool that allows users to model 

subjective beliefs with available evidence. Their ability to exploit quantitative and 

qualitative data to generate posterior probabilities is of help in the field of risk assessment. 

Pearl (1985) defines BBNs as directed acyclic graph, which consists of nodes and arcs 

connecting dependent nodes. Nodes represent variables like product quality, supplier issues 

etc. Fenton and Neil (2012) provide a deep insight into BBN modelling. The different types 

of nodes mentioned by Fenton and Neil (2012) are: 
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(a) Ranked nodes: Ranked nodes are discrete variables whose states are represented 

on a scale from 0 to 1. Each state has an interval width and label associated with it. 

Ranked nodes are extremely useful in representing variables having different states. 

For example, quality of work, level of experience, chance of snowfall, etc., are well 

expressed using ranked nodes. Each ranked node has a predetermined number of 

states and interval width associated with it. Consider a ranked node known as 

quality of work with 5 possible states (poor, below average, average, above average 

and excellent) and the interval width being 0.2 as shown in Table 2. Thus, quality 

of work is poor when the value is between 0-0.2, below average when the value is 

between 0.2-0.4 etc. 

Table 2: Ranked Nodes - BBN 

State Interval 

Poor 0-0.2 

Below average 0.2-0.4 

Average 0.4-0.6 

Above average 0.6-0.8 

Excellent 0.8-1 

 

      There are several real life cases where nodes can be represented suitably as a state 

but not as a discrete number between 0-1. One such example is illustrated below in 

Figure 4.  The skill of operator, dedication of operator and quality of work are nodes 

measured on a subjective scale (poor, below average, average, above average, 

excellent). 
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Figure 4: BBN ranked nodes example. 

      Considering skill of operator, dedication of operator and quality of work consists of 

5 states, a weighted function is used to determine the state of child node (quality of 

work) depending on the parent nodes.  

(b) Boolean nodes: Boolean nodes are used to define nodes with only two states, True 

(1) and False (0). There are several real life cases where only 2 states are possible, 

for example, Medical test (positive and negative), Marriage (yes and no) etc. 

      Contrary to ranked nodes where weighted functions are used to determine the state 

of child node, Boolean nodes make use of logic operators to determine the state of 

the child node. Several logic operators can be used in BBNs. 

      OR operator: OR operator is used in cases where the child node C is true when 

parent nodes A or B are true. An example is shown below in Figure 5. Child node 

“bad weather” is true when parent nodes “rainfall” or “snowfall” is true. 

Skill of operator
Dedication of

operator

Quality of work
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Figure 5: OR operator example. 

AND operator: AND operator is used in cases where the child node C is true when 

both parent nodes A and B are true/false. For example in Figure 6, a power failure 

can only occur when both the main power supply and the backup power supply fail. 

 

Figure 6: AND operator example. 

M from N operator: The M from N operator is used in cases where the child node 

C is true when M out of N (M<=N) parent nodes are true. For example in Figure 7, 

a power failure can occur when two out of three power sources fail.  

Rainfall Snowfall

Bad Weather

Main power

supply

Backup power

supply

Power failure
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Figure 7: M from N operator example.  

      An important note to make here is that when M=1, it is equivalent to an OR operator 

and when M=N, it is equivalent to AND operator. 

Noisy OR operator: The Noisy OR operator is used when the impact of each parent 

node on the child node is of a varying degree. For example, say that obesity is 

caused due to lack of exercise, improper diet and stress. However, each of these 

parent nodes can have a varying degree of impact. In such cases a Noisy OR 

operator is used. Each parent node is assigned with a number between 0 and 1. This 

number signifies the probability of occurrence of child node when parent node 

occurs. If there is a 30% chance that lack of exercise causes obesity then the number 

assigned to lack of exercise is 0.3. Additionally, a leak parameter is added to the 

model, which accounts for the noise in the model. This leak parameter represents 

additional causes leading to obesity, which have not been considered in the model. 

(c) Numeric nodes: Numeric nodes are used in cases where numbers are required to 

represent the variable. These nodes are either discrete (number of defects, number 

of workers etc.) or continuous (level of water, height of workers etc.). When a 

Power supply 1 Power supply 2

Power failure

Power supply 3
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particular system consists of both discrete and continuous nodes it is known as a 

hybrid system.  

 The relationships amongst nodes are defined through conditional probabilities. The 

conditional probability is the probability of child node C given that the parent node Pt is 

true and it is denoted as P(Pt|C). The relationships between nodes in BBNs are 

fundamentally based on the Bayes’ theorem and can be stated as follows: 

   

 

| *
( | )

P C Pt P Pt
P Pt C

P C
               

(1) 

where, P(Pt | C) is the conditional probability of occurrence of parent node (Pt) 

given that child node (C) occurs. Similarly, P(Pt) and P(C) are probabilities of Pt and C 

occurring. Alternatively, P(C | Pt) is the probability of C given Pt occurs. 

For risk assessment using BBN, each risk event is considered as a node and the 

complex relationships between these risk events is captured through conditional 

probabilities. A node probability table (NPT) is associated with each node/risk event as 

shown in Figure 8. This table defines relationship between the child node and its parent 

nodes using conditional probabilities.  



  

37 
 

 

Figure 8: Sample Node Probability Table -BBN 

From these NPTs, the probability of occurrence of child node is calculated using 

the chain rule application of Bayes theorem.  

( ) ( | 1, 2)* ( 1)* ( 2) ( |~ 1, 2)* (~ 1)* ( 2) |

( | 1,~ 2)* ( 1)* (~ 2) ( |~ 1,~ 2)* (~ 1)* (~ 2)

( ) (0.2*0.25*0.18) (0.65*0.75*0.18) (0.4*0.25*0.82) (0.11*0.75*0.82)

0.2464

P C P C Pt Pt P Pt P Pt P C Pt Pt P Pt P Pt

P C Pt Pt P Pt P Pt P C Pt Pt P Pt P Pt

P C

 

 

   



 

(2) 

where, C is the child node occurring due to parent nodes Pt1 and Pt2. P(C), P(Pt1) 

and P(Pt2) are probabilities of C, Pt1 and Pt2 occurring. The complement of these 

probabilities are represented as P(~C), P(~Pt1) and P(~Pt2). P(C|Pt1,Pt2) is the 

conditional probability of C when Pt1 and Pt2 are true. Alternatively, P(C|Pt1,~Pt2) is the 

conditional probability of C when Pt1 is true and Pt2 is false and so on.  

Additionally, the BBN allows back propagation which help in tracking the source 

of the problem. When the occurrence probability (posterior probability) of a child node is 

known, the probabilities of parent nodes can be updated using the reverse application of 

Bayes theorem. This helps a user to identify the possible root cause of a risk event.  
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In spite of the robust structure of BBNs, there are some concerns that need to be 

addressed before using it for risk assessment. BBN models are heavily dependent on the 

scope defined. As the scope increases, the number of nodes increase thus leading to an 

increase in the complexity of BBN models. Usually, BBN models are constructed by 

feeding both objective and subjective data. As the BBN size increases the objective data 

required can become very large making the process of data collection extremely 

cumbersome. Also, if the number of child nodes to a parent node increases, determining 

the conditional probabilities of each child can become unrealistic. This is another reason 

to clearly define the scope of risk assessment. When it comes to subjective data, the 

quality, diversity and number of industry experts/users interviewed can play a crucial role. 

Hence, the process of data collection needs to be well structured. In addition, 

computational abilities need to be taken into account when dealing with BBN models. 

3.2.2.   System Dynamics 

System Dynamics (SD) is an approach to model and understand the behaviour of a 

complex system over a period. SD is a powerful tool to capture the non-linear behaviour 

of the system through SD feedback loops and delays. Sterman (2000) provides details on 

modelling using SD simulation. SD modelling follows a 2-step methodology: 

(1) Causal Loop diagram 

(2) Stock and Flow diagram 

A causal loop diagram is used to visualize the causal relationships in a system. It 

consists of all the elements representing the system and their interactions with each other 
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including feedback loops and time delays, which are an integral part of the system. It helps 

conduct a qualitative analysis of the system’s structure and behaviour.   

 A simple example of a system represented using a causal loop diagram is 

demonstrated in Figure 9. Customer demand, manufacturing output and climate change 

are the three variables considered in a system. An increase in customer demand increases 

manufacturing output and vice-versa. This leads to a reinforcing feedback loop. Hence, a 

continuous growth pattern could be observed. Simultaneously, manufacturing output 

increases the risk of climate change. A time delay is used to represent this as climate 

change due to manufacturing output is a slow process. Additionally, climate change results 

in decrease in manufacturing output thus forming a balanced loop and both loops act 

simultaneously. Initially with increase in customer demand, manufacturing output 

increases. Eventually, manufacturing output subsides with climate change.   

 

Figure 9: Causal Loop Diagram example. 

A causal loop diagram is followed by stock and flow diagram. A stock and flow 

diagram is a quantitative analysis technique with the use of stocks and flows. Stocks are 

accumulations in the system and stocks are used to represent variables like inventories, 

revenue or any other variable that changes with time. Flows are entities that control these 
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stocks. A flow entering a stock (Entry_flow) increases the value of a stock and a flow 

exiting a stock (Exit_flow) decreases its value. Mathematically, the relationship between 

stocks and flows is shown in equation (3) below.  

0

( _ _ )

t

Stock Entry flow Exit flow dt   

(3) 

A causal loop diagram is transformed into a stock and flow diagram as shown in 

Figure 10 below. Customer demand leads to growth in manufacturing output at a certain 

rate. This, in turn, promotes customer demand. The growth in manufacturing output 

negatively impacts the climate at a rate represented by the decline rate. Initially, growth 

rate will be far more than the decline rate, leading to an increase in manufacturing output. 

However, as the rate of decline increases, manufacturing output will be stalled and then 

start declining.  

 

Figure 10: Stock and Flow Diagram Example. 

Simulating stock and flow model computes data regarding the performance of the 

system for the simulated time period. Analyzing this data provides insight into the behavior 

Manufacturing
output

Decline rateGrowth rate

Customer
demand Climate change
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of the system.  System Dynamics captures the non-linear nature of the system in an 

effective way. 

3.2.3.   Bayesian-Integrated System Dynamics 

BBNs are a powerful way of capturing the probabilistic nature amongst risk events. 

BBN models help quantify risks and capture relationships amongst them. A BBN’s 

inability of capturing the dynamic nature of production line risk is enhanced in this research 

by combining it with an SD model. Combining BBN with SD production line model 

provides capabilities such as feedback loops and delays to the BBN risk model helping 

capture the dynamic nature of risk events. Additionally, SD production line model’s ability 

to integrate KPIs and to perform several what-if scenarios helps gain a better understanding 

of the system’s behaviour. 

A methodology is proposed here to facilitate the interaction between BBN risk 

model and SD production line model. Vensim, an SD software, allows its users to construct 

a model with user defined variables and functions easily. This allows to create the BBN 

risk model and SD production line model within Vensim. To improve visualization of 

complex models, Vensim has a provision for dividing the model into several subsets known 

as views. The BBN model is constructed in one such view and the SD production line 

model in another view. The interaction between the views occurs through shadow variables 

which are the variables from another view interacting with the variables of the current view. 

Each risk event in the BBN model and their conditional probabilities are 

represented as variables. Arcs are used to connect these variables. Figure 11 shows the 

representation of BBN in SD software (Vensim). Parent risk event 1 (RE1) and risk event 
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2 (RE2) are connected to child risk event 3 (RE3) using arcs. Their corresponding 

probabilities are P(RE1), P(RE2) and P(RE3). The complement of these probabilities are 

denoted as P(~RE1), P(~RE2) and P(~RE3). P(RE3|RE1,RE2) is the conditional 

probability of RE3 given RE1 and RE2 are true. Similarly, P(RE3|RE1,~RE2) is the 

conditional probability of RE3 given RE1 is true and RE2 is false. P(RE3|~RE1,RE2) is 

the conditional probability of RE3 given RE1 is false and RE2 is true. P(RE3|~RE1,~RE2) 

is the conditional probability of RE3 given RE1 and RE2 are false.   The likelihood of each 

risk event and their conditional probabilities are represented as variables.   

 

Figure 11: Representing BBN in System Dynamics. 

For the child nodes, the conditional probabilities are calculated using the chain rule 

application of Bayes’ theorem. For example, the probability of risk event 3 (P(RE3)) can 

be computed as shown in equation (4): 

( 3) ( ( 3) | 1, 2)* ( 1)* ( 2)) ( ( 3) |~ 1,~ 2)*(1 ( 1))*(1 ( 2)))

( ( 3) |~ 1, 2)*(1 ( 1))* ( 2)) ( ( 3) | 1,~ 2)* ( 1)*(1 ( 2)))

P RE P RE RE RE P RE P RE P RE RE RE P RE P RE

P RE RE RE P RE P RE P RE RE RE P RE P RE

   

   
                                                             

        (4) 

The BBN model is then connected to the production line SD simulation model to 

assess the impact of risk events on the production line over the simulation period.  
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When child risk events occur, they can trigger various adverse impacts on the 

production line. This is modelled in SD by identifying the most likely production line 

variable to be impacted by each child node and then capturing it by a user-defined equation. 

SD facilitates modelling of a production line through stocks and flows. Stocks are 

accumulations of system variables, similar to inventories. These stocks/inventories are 

controlled through flows, similar to production rates. Rehab (2014) demonstrates an 

effective method for the construction and analysis of a lean manufacturing system using 

SD. This method could be used in construction of production line model. Figure 12 shows 

the construction of a production line model. The model consists of three workstations 

through which raw material gets processed. Raw material is represented as a stock and 

procurement rate is the flow that controls the quantity of raw materials available. Work in 

process (WIP) at station 1 is represented as stock controlled by procurement rate and 

production rate at station 1. If procurement rate is greater than production rate at station 1 

then WIP at station 1 increases. Alternatively, if production rate at station 1 is higher than 

procurement rate then WIP at station 1 decreases. The WIP at station 2 is controlled by 

production rates at station 1 and station 2. The WIP at station 3 is controlled by production 

rates at station 2 and station 3.    

 

Figure 12: System Dynamics production line model 

This production line model is considered to be the baseline model. The baseline 

model is built using system variables without considering the effects of risk events. It is 
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this baseline model that helps compare results from both cases and highlights the 

significance of risk assessment. It is important to note that baseline model is not based on 

ideal values of system variables. Natural variation occurring in system variables is 

considered while building the baseline model.  

The baseline model is simulated and its results are recorded. In order to observe the 

effects of risk events on the baseline model, the BBN model is connected to the SD 

production line model. The BBN model calculates the likelihood of child risk events based 

on their causal relationships with parent nodes and the prior probabilities entered. Based 

on this likelihood of the child risk event, the severity of risk event is calculated. Given the 

scope of the study is the production line level, some form of proportionality is anticipated 

between likelihood and severity of risk events. This relationship is captured through the 

use of a lookup function or table function and can be developed using expert opinion. The 

relationship can be entered in the form of table function by associating a severity (in terms 

of production loss) with a likelihood range. For example, when P(RE3) is between 0 to 0.1, 

the severity of the risk event 3 is loss of 200 parts. Similarly, when P(RE3) is between 0.2-

0.3 then the severity of risk event 3 is assumed to be a loss of 250 parts. The BBN risk 

model is connected to the SD production line model through a production line variable. 

The production line variable is impacted by both the likelihood and severity of risk event. 

Equation 5 shows the calculation of the risk event impact using the function 

“PULSETRAIN”, an in-built Vensim function that relates the impact frequency (1/P(RE)) 

and the severity of risk event: 
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(5) 

where, impact_start_time is the time when first risk event occurs, impact_duration 

is the duration for which the risk event lasts for upon occurrence and impact_frequency is 

the frequency at which risk events occur which is the inverse of risk likelihood calculated 

from BBN risk model. Final_time is the end of simulation time period. 

Severity_of_risk_event is developed by expert opinion as discussed above. 

PULSE is a Vensim function that returns 1 when current time (time) is greater than 

a pre-determined time (start_time) from which PULSE function is to be activated and less 

than the sum of start_time and duration for which a time interval lasts (interval_width). 

For example, if a simulation time period is for 50 days and PULSE function is to be used 

for an event occurring after 20th day and lasting for 2 days then the start_time would be 20 

and interval_width would be 2. PULSE function would return the number 1 on 21st and 

22nd day of the simulation time period. Equation 6 describes the math behind PULSE 

function. 

 

 (6) 

A train of repeated pulses is known as PULSETRAIN function. 

In order to capture the dynamic nature of risk events, a response variable is 

triggered to alter the nature of risk events through the production line model. Usually, KPIs 

are the system variables that trigger a response variable. Figure 13 shows an example where 

_ _ ( _ _ ,

_ , _ , _ )* _ _ _ .

Risk event impact PULSETRAIN impact start time

impact duration impact frequency final time Severity of risk event



_ _ (( _ int _ ) _ ,1,0)If then else start time erval width time start time  
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RE3 is the risk event that impacts the production line variable (related to production rate 

at station 1). The impact of risk events on the production line is monitored at the station 3 

through a KPI. When the KPI value increases/decreases beyond a certain limit, it is setup 

to initiate a risk management (RM) process. The RM reduces the likelihood of the RE3. 

Equation 7 shows how P(RE2) is impacted by RM.  A residual risk is associated with the 

risk event, which can be determined by the use of data and/or expert judgement. P(RM) 

drives P(RE2) such that when P(RM) is 0, P(RE2) remains unchanged and when P(RM) is 

1, P(RE2) is equal to residual risk. 

( 2) ( 2)*(1 ( )) (Re _ * ( ))P RE P RE P RM sidual risk P RM     

(7) 

This change in value of P(RE2) is reflected on P(RE3) and thus, establishing a feedback 

loop.  

 

Figure 13: Interaction between BBN and SD model. 

3.3.      Risk Evaluation 

The impact of the risk events on the production line KPIs is examined for risk 

evaluation. KPIs give a holistic idea about the behaviour of the system and aids 
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management in decision-making. In addition, SD provides a platform to analyze the system 

under several scenarios. Evaluating the system under several scenarios, realistic and far-

fetched, can help gain further insight into the behavior of the system and enable companies 

to prepare for radical or extreme situations.   
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 4. Application of Methodology 

 

4.1.   Case Study Overview 

The automotive industry is one of the most competitive industries in the 

manufacturing sector. In this research a case study from the automotive industry is used to 

demonstrate the application of the proposed method.    

A growing supplier of precision metal components and assemblies using 

fineblanking technology was considered to apply the methodology proposed for production 

line risk assessment. The company operates plants at several locations across the globe 

including US, Canada, Mexico and China. The company name and other information is 

withheld due to confidentiality reasons.  

One of the divisions in the company’s US facilities specializes in producing several 

kinds of engine plates and transmission parts, which are supplied to major automobile 

manufacturers. One of the major and strategically important customer’s products, Engine 

Plates, was selected for study in this research. The processes/stations through which the 

raw material is converted into finished good and sent to the customer are listed in the 

process routing sheet (provided by the company). Production capacities at each station is 

calculated by the ERP software, PLEX, by collecting real time data. Sources for other data 

are mentioned in the following sections, where relevant. 

The process routing for producing engine plates and the production capacity at each step is 

provided in Table 3. The engine plates are first fineblanked in a hydraulic press followed 

by drilling operation where holes are drilled using a drill press. This is followed by tapping 

and countersink operations. After secondary machining, engine plates go through finishing 
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operations of grinding and beltsanding. After finishing processes, these plates go for 

inspection and to the packing station, ultimately reaching shipping area. Fineblanking is 

the second quickest operation with a mean production capacity of 3200 parts/day. Drilling, 

Tapping and Countersink operations re slightly behind with a mean production capacity of 

2610 and 2465 parts/day respectively. Grinding operation is the bottleneck operation with 

a mean production capacity of just 1740 parts/day. The following process of Beltsand and 

Brush is the quickest operation with a mean production capacity of 7250 parts/day. This is 

followed by inspection and packing where the mean production capacity is slightly higher 

than that of the Grinding operation at 1900 parts/day. Shipping can handle 5500 parts/day. 

Table 3: Process routing of engine plates. 

S.no. Process Step Production Capacity 

(parts/day) 

1 Fineblanking Normal dist.(3200,50) 

2 Drilling Normal dist.(2610,25) 

3 Tapping and Countersink Normal dist.(2465,25) 

4 Grinding Normal dist.(1740,10) 

5 Beltsand and Brush Normal dist.(7250,25) 

6 Inspection and Packing Normal dist.(1900,10) 

7 Shipping 5500 

 

4.2.   Risk Identification 

A Risk Network map of risks impacting the production line was developed with the 

help of industry personnel. General operational risks identified by Badurdeen et. al., (2014) 

were referred during this phase.  
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It was discerned that manufacturing disruptions or delays are the primary risks 

impacting production line as shown in Figure 14. New product testing (NPT), procurement 

time delays (PTD) and the overall equipment effectiveness (OEE) factors, which are 

availability, performance and quality, related risks are the major risk events leading to the 

manufacturing delay (MD) risk. On the other hand raw material shortages (RMS), caused 

by poor supplier relationship (PSR), and delivery problems (DP) were found to be the 

major risk events leading to the procurement time delay (PTD) risk event at the 

fineblanking station. Alternatively, consumables shortage (CS), caused by poor supplier 

relationship (PSR), and delivery problems (DP) were found to be the major risk events 

leading to the procurement time delay (PTD) risk event at the grinding station.  

 

(a): Fineblanking station                                    (b): Grinding station 

Figure 14: BBN risk model for Case study. 

Impact of risk events on the production line is considered at the fineblanking station 

and grinding station. The fineblanking station was strategically targeted as it is the first 

stage of the production line and has the highest value addition. The grinding station is 
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selected as it is the bottleneck station and affects the overall throughput of the production 

line.    

4.3.   Risk Assessment 

Vensim, an SD software, is used to develop the BBN and production line models. 

Figure 15 shows a causal loop diagram for the case study. The cause-effect relationship 

between risk events from BBN model and production line variables from production line 

SD model are represented in the figure.  

 

Figure 15: Causal loop diagram- Case study 

Based on the causal loop diagram shown in Figure 16, the BBN and the production 

line SD models are developed. The BBN model consists of risks identified in step1. 

Tables 4-8 display the prior probabilities of risk events at fineblanking station and 

Tables 9-13 display data used at grinding stations. The data required to construct these 

node probability tables were obtained by utilizing resources within the company and 

consulting with the managers. 
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Table 4: Prior probabilities for poor supplier relationship and new product testing at 

fineblanking station. 

Nodes Yes No 

Poor supplier relationship 0.2 0.8 

New product testing 0.38 0.62 

 

Table 5: Node probability table for poor supplier relationship and raw material shortage 

at fineblanking station. 

Parent node Raw material shortage 

Poor supplier relationship Yes No 

Yes 0.5 0.5 

No 0.2 0.8 

 

Table 6: Node probability table for raw material shortage, delivery problems and 

procurement time delay at fineblanking station. 

Parent nodes 
Procurement time 

delay 

Raw material shortage 
Delivery 

Problems 
Yes No 

Yes 
Yes 0.72 0.28 

No 0.65 0.35 

No 
Yes 0.6 0.4 

No 0.1 0.9 

 

Table 7: Prior probabilities for poor supplier relationship and new product testing at 

fineblanking station. 

Nodes Min Max Mean Standard deviation 

Delivery Problems 0.3 0.8 0.55 0.05 

OEE factors related risks 0.4 0.85 0.5 0.15 
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Table 8: Node probability table for PTD, NPT, OEE factors related risks and MD at 

fineblanking station. 

Parent nodes 
Manufacturing 

delay 

Procurement time delay 
New product 

testing 

OEE 

factors 

related 

risks 

Yes No 

Yes 

Yes 
Yes 0.9 0.1 

No 0.54 0.46 

No 
Yes 0.42 0.58 

No 0.2 0.8 

No 

Yes 
Yes 0.66 0.34 

No 0.25 0.75 

No 
Yes 0.22 0.78 

No 0.05 0.95 

 

Table 9: Prior probabilities for poor supplier relationship and new product testing at 

grinding station. 

Nodes Yes No 

Poor supplier 

relationship 
0.25 0.75 

New product testing 0.45 0.55 

 

Table 10: Node probability table for poor supplier relationship and consumables shortage 

at grinding station. 

Parent node Consumables shortage 

Poor supplier relationship Yes No 

Yes 0.4 0.6 

No 0.04 0.96 
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Table 11: Node probability table for Consumables shortage, delivery problems and 

procurement time delay at grinding station. 

Parent nodes 
Procurement time 

delay 

Consumables shortage Delivery Problems Yes No 

Yes 
Yes 0.6 0.4 

No 0.3 0.7 

No 
Yes 0.3 0.7 

No 0.05 0.95 

 

Table 12: Prior probabilities for poor supplier relationship and new product testing at 

grinding station. 

Nodes Min Max Mean 
Standard 

deviation 

Delivery Problems 0.2 0.6 0.4 0.05 

OEE factors related risks 0.3 0.65 0.42 0.12 

 

Table 13:  Node probability table for PTD, NPT, OEE factors related risks and MD at 

grinding station. 

Parent nodes 
Manufacturing 

delay 

Procurement time delay 
New product 

testing 

OEE factors 

related risks 
Yes No 

Yes 

Yes 
Yes 0.9 0.1 

No 0.42 0.58 

No 
Yes 0.38 0.62 

No 0.15 0.85 

No 

Yes 
Yes 0.65 0.35 

No 0.28 0.72 

No 
Yes 0.2 0.8 

No 0.05 0.95 

 

This is followed by developing the SD production line model as shown in Figure 

16. Each station has a production capacity, which is the maximum output at the workstation 
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without considering risk events and WIP constraints. Production capacities follow a normal 

distribution, as shown in Table 3, obtained through comprehensive time studies performed 

on several operators. In addition, data from previous time studies performed by the sales 

& accounting departments, for business planning purposes, are used. Actual production 

rate at each station depends on the minimum of WIP quantity at the station and production 

capacity. WIP at each station is computed based on the difference between entry and exit 

production rates at that station.  

The inspection and packing station performs a quality check. Defective products 

are reworked and introduced back to the production line. The defects percentage is obtained 

through the quality reports at the inspection station.  

The demand follows a Normal distribution with a mean of 1724 parts/day and 

standard deviation of 35 parts. It was obtained from demand forecasts calculated by the 

sales department. Demand fulfilment rate is equal to the shipment rate. Order backlog is 

based on the difference between demand fulfilment rate and demand. Delay in delivery is 

equal to order backlog divided by demand fulfilment rate. Revenue is calculated as the 

difference between revenue made from sales and lost sales.   
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Figure 16: BBN-Integrated SD modelling for Case study 
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This production line model could also be considered as the baseline model. Baseline 

model produces results similar to the business plan for the year and what the industry 

personnel expect to see without any risks. The baseline production model is then connected 

to the BBN model for risk assessment as shown in Figure 16. The manufacturing delay risk 

likelihoods (fineblanking and grinding), calculated from BBN model, forms the basis for 

impact frequency at the fineblanking and grinding stations. The Severity of risk events is 

estimated with the help of industry personnel. Since the scope of the risk assessment is at 

the production line level, proportionality is assumed between severity of risk events and 

risk likelihood. Table 14 displays the relationship between the risk likelihood and severity 

of the risk at fineblanking and grinding stations. 

To incorporate the impact due to risk events, the production capacity equation is 

modified by subtracting the baseline production capacity with the risk event impact 

(quantified in terms of production rate loss). Equation 5 is used to calculate the risk event 

impact. 
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Table 14: Relationship between manufacturing delay risk and severity of risk event at 

fineblanking and grinding stations. 

Fineblanking station Grinding station 

Manufacturing 

delay risk 

Severity of 

risk event 

(parts) 

Manufacturing 

delay risk 

Severity of 

risk event 

(parts) 

0 0 0 0 

0.05 0 0.05 0 

0.1 0 0.1 0 

0.15 0 0.15 0 

0.2 500 0.2 200 

0.25 1000 0.25 200 

0.3 1000 0.3 450 

0.35 1000 0.35 450 

0.4 2000 0.4 450 

0.45 2000 0.45 450 

0.5 2500 0.5 900 

0.55 2500 0.55 900 

0.6 2500 0.6 900 

0.65 2500 0.65 900 

0.7 2750 0.7 900 

0.75 2750 0.75 1340 

0.8 2750 0.8 1340 

0.85 3000 0.85 1340 

0.9 3000 0.9 1340 

0.95 3000 0.95 1800 

1 3000 1 1800 

 

The dynamic nature of risk events is captured through risk response variable as 

shown in Figure 16. Risk response is triggered by the “Delay in delivery” performance 

indicator. A proportional relationship is defined, as shown in Table 15, between risk 

response variable and “Delay in delivery” performance indicator. This risk response 

variable mitigates or reduces the likelihood of OEE factors related risks as it is within the 

scope of the production team. The model is then simulated for a long duration to observe 

the changes in the behavior of the system. 400 days was chosen as the ideal simulation 

period as this would give the model enough time to experience effect of risk events and the 
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response triggered by poor performance. This would, in turn, help in assessing the system 

more accurately. 

Table 15: Relationship between delay in delivery and risk response variable. 

Delay in 

delivery 

Risk 

Response 

Delay in 

delivery 

Risk 

Response 

0 0 5.5 0.4 

0.5 0 6 0.4 

1 0 6.5 0.4 

1.5 0.05 7 0.5 

2 0.1 8 0.5 

2.5 0.15 9 0.5 

3 0.2 10 0.75 

3.5 0.25 11 0.75 

4 0.25 12 0.9 

4.5 0.35 13 0.9 

5 0.35 14 1 

 

4.4.   Risk Evaluation 

System Dynamics allows users to run various scenarios and obtain a comprehensive 

understanding of the system’s behaviour. The case study company managers are interested 

in the possibility of testing scenarios based on variation in the OEE risk and response time 

towards risk impact. Table 16 shows the two states chosen for the OEE factors related risk 

variable and response time decided in consultation with industry personnel. The two states 

chosen are normal and high. Under the high state, mean OEE factors related risk is 0.75. 

Response time is the time taken for the risk response activities to take place and show a 

difference on the risk likelihood of OEE factors related risk. Under normal state, response 

time is 1 week and it is 1 month when the state is high. Table 17 presents the 16 what-if 

scenarios that were run on the model. 
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Table 16: Variables and alternate states for testing. 

Station Risk events Normal High 

Fineblanking 

Station 

OEE risk mean: 0.5 mean: 0.75 

Response 

time 

1 week 1 month 

Grinding Station OEE risk mean: 0.42 mean: 0.75 

Response 

time 

1week 1 month 

Table 17: Scenarios used for case study 

S.No. Fineblanking station Grinding station 

OEE risk Response 

time 

OEE risk Response 

time 

1 Normal Normal Normal Normal 

2 High Normal Normal Normal 

3 High Delayed Normal Normal 

4 Normal Delayed Normal Normal 

5 Normal Normal High Normal 

6 Normal Normal High Delayed 

7 Normal Normal Normal Delayed 

8 Normal Delayed Normal Delayed 

9 High Normal High Normal 

10 High Normal High Delayed 

11 High Delayed High Delayed 

12 Normal Delayed High Delayed 

13 Normal Delayed High Normal 

14 High Normal Normal Delayed 

15 High Delayed Normal Delayed 

16 High Delayed High Normal 
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5. Results and Discussion 

5.1       Establishing Baseline 

Simulation of production line without considering the effects of risk events 

helps verify the model and to establish a baseline. Results from this simulation reflect 

the expectations from the line and provide a basis to compare different scenarios.   

A variety of KPIs were studied to comprehend the behaviour of the production 

line.  

Delay in delivery: This is the most customer orientated KPI and is a reflection of the 

overall performance of the production line. It is important to have a low delay in 

delivery to maintain a good relationship with customers. In the baseline scenario, 

production capacities at each station are adequate to fill customer orders on time and 

hence, there is no delay in delivery. 

Production rates: Although delay in delivery reflects the overall performance of the 

production line, it does not reveal details about the efficiency of workstations. 

Production rates at fineblanking and grinding stations were of primary concern given 

their importance. Fineblanking is the most value adding process in the routing and the 

most critical operation. Grinding station is the bottleneck operation. Hence, the 

production rates at this station dictate the overall throughput of the line.  

Figure 17(a) displays the fineblanking station performance. Fineblanking 

performance remains consistent throughout the 400 day period with peak production 

on the 45th day at 1859 parts. Due to its high production capacity of 3200 parts/day, 

fineblanking rate is equal to the demand for the product. Figure 17(b) displays grinding 

station throughput. Grinding also remains consistent through the 400 day period. 
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Although grinding capacity is not equal to peak demand, WIP at grinding station helps 

in meeting demand and avoid a delay in delivery.  

Revenue: Revenue is another key indicator. Revenue generated indicates the 

profitability of the production line. Overall revenue from sales for the simulation period 

was at $4.1792 million. Since there was no delay in delivery, revenue curve is a linear 

equation.  

  

(a) Baseline- Fineblanking rate (b) Baseline- Grinding rate 

 

 

(c) Baseline-Revenue  

Figure 17: Key performance indicators for baseline scenario 

5.2       Risk Analysis for Different Scenarios 

Following the analysis of the baseline scenario, the production line model was 

subjected to risk events to study other scenarios described in Table 8. Behavior of the 

production line system was assessed based on varying intensity of risk likelihood and 

response towards these risk events. The delay in delivery was chosen to be the best 
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performance indicator to analyze the difference between each scenario as it reflects the 

overall performance of the production line, profitability and customer satisfaction. This 

analysis revealed some interesting trends in the system’s behaviour. Some of these 

observations are recorded below.  

5.2.1       Comparison of “Delay in delivery” Performance 

Observation 1: Scenario 1 has a higher delay in delivery compared to scenario 2 

despite having a lower risk likelihood as shown in Figures 18(a) and 18(b). This was in 

contrast with the expectation of a higher delay in delivery when the production line is 

subjected to higher manufacturing delay risk. After analyzing the data, it was inferred 

that an increased risk likelihood results in an increase in risk response. With a higher 

risk at the fineblanking station in scenario 2, the delay in delivery is quite high initially. 

This high delay increases risk response, and this in turn, results in increased risk 

mitigation. Due to the increased risk mitigation, “Delay in delivery” in scenario 2 is 

much lower when compared to that of scenario 1 in the latter part of the simulation.   

Observation 2: Contrary to the previous observation, scenario1 & scenario 5, depicted 

in Figures 18(a) and 18(d), show a different trend. A high risk likelihood at the grinding 

station results in a higher delay in delivery. The reason for this is that the grinding 

station is the bottleneck operation. A high manufacturing delay risk at the grinding 

station resulted in aggressive risk response. However, the delay in delivery was high 

and did not follow the pattern as seen in observation 1. A high risk likelihood at the 

grinding station (bottleneck operation) caused a drastic impact on the production line 

which couldn’t be compensated with the risk response activities.   

Observation 3: Scenario 4 shows a slightly higher delay in delivery when compared to 

scenario 1 as displayed in Figures 18(a) and 18(c). In general, an increase in risk 
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response time leads to an accumulation of problems and increased manufacturing 

delays, which would in turn cause delay in delivery. However, the data suggests that a 

delayed risk response at the fineblanking station acts in favour of the company’s cause. 

Although, a delayed risk response increases manufacturing delays and delay in delivery 

initially, it also increases the risk response and this leads to a decrease in likelihood of 

OEE factors related risk. This, in turn, reduces manufacturing delay risk likelihood and 

makes the production line run efficiently for the remainder of the simulation period.    

  

(a) Scenario 1 (b) Scenario 2 

  

(c) Scenario 4 (d) Scenario 5 

Figure 18: Delay in delivery performance for scenarios 1,2,4 and 5. 

Observation 4: On the other hand, scenario 5 & scenario 6, displayed in Figures 19(a) 

and 19(b), show a different trend. In scenario 5, the impact of high risk likelihood at 

the grinding station causes a huge delay in delivery. The risk response activities 

resulting from delay in delivery was not enough for the production line to recover from 

this impact. A delayed risk response in scenario 6, does not make much difference. 
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With a delayed response, there is a difference of only ¾ days towards the end of the 

simulation period. Hence, it can be concluded that resources need to be spent to avoid 

the situation of a high risk likelihood at the grinding station. 

Observation 5: Before analyzing scenarios, the production line was expected to 

experience maximum delay in delivery when there is a high risk likelihood and delayed 

risk response at both fine-blanking and grinding station (scenario 11). However, 

scenario 10 shows a higher delay in delivery when compared to scenario 11 as displayed 

in Figures 19(c) and 19(d). A higher manufacturing delay risk at both fineblanking and 

grinding stations leads to a serious impact on the production line. This impact results in 

an aggressive risk response. In scenario 11, a delayed risk response considers the risk 

events occurring during this delayed period and hence results in higher risk response. 

Hence, delay in delivery is a little lower when compared to that of scenario 10. 

  

(a) Scenario 5 (b) Scenario 6 

  

(c) Scenario 10 (d) Scenario 11 

Figure 19: Delay in delivery performance for scenarios 5,6,10 and 11. 
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Observation 6: From Figures 20(b) and 20(d), scenario 7 has a higher delay in delivery 

when compared to scenario 14 despite having a lower manufacturing delay risk 

likelihood. The high risk likelihood results in a higher delay in delivery initially. This 

results in higher risk response, which drives down manufacturing delay risk likelihood. 

Hence, delay in delivery in scenario 14 is lower than that of scenario 7.  

Observation 7: Scenario 5 shows a higher delay in delivery than in case of scenario 9 

despite having a high risk at just the grinding station. Scenario 9, displayed in Figure 

20(c), has a higher risk at both fineblanking and grinding stations resulting in a higher 

“Delay in delivery” initially. This results in an increase in risk response and thus leads 

to risk mitigation. Hence, a lower delay in delivery is seen towards the latter part of 

simulation in scenario 9. 

  

(a) Scenario 5. (b) Scenario 7. 

  

(c) Scenario 9. (d) Scenario 14. 

Figure 20: Delay in delivery performance for scenarios 5,7,9 and 14. 
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Although delay in delivery is an effective KPI to compare between scenarios, it 

cannot help the user to comprehend system’s behaviour without additional support. A 

good delivery performance might not necessarily mean a good process and a bad 

delivery performance might not necessarily mean a non-profitable process. Apart from 

delay in delivery performance indicator, performance indicators like revenue, demand 

fulfilment rate, production rates and manufacturing delay risks at fineblanking & 

grinding stations, provide further insight into the system. It is necessary to consider the 

above mentioned KPIs to evaluate overall performance of the line. 

To avoid redundancy, a selected set of scenarios were analyzed based on the 

realistic nature of the scenarios and their potential threat to the production line. 

5.2.2    Analyzing Scenarios using all Key Performance Indicators. 

Scenario 1: 

Delay in Delivery: Initially, demand is fulfilled with the help of inventory and 

production. From Figure 21(a) delay in delivery occurs on the 16th day and continues 

until the end of simulated time period. Delay in delivery increases to 2 days and then 

starts declining due to risk response activities taking place. After 251st day, delay in 

delivery increases slightly with occurrence of risk events and then decreases again 

towards the end of the simulation period. 

Demand vs Demand fulfilment rate: Demand fulfilment rate is the final throughput 

of the production line. As shown in Figure 21(b) the demand fulfilment rate reduces 

due to occurrence of risk events. Initially, the impact of risk events is compensated by 

production and inventory. After a period, risk events begin to impact production rates. 

The demand fulfilment rate fluctuates heavily in this period. With risk management 

activities taking place, this variation reduces to a significant extent.    
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From this graph, it could be concluded that major delay in delivery occurs 

during the period when risk likelihood is high. This delay in delivery continues until 

the end of simulation period due to lack of high production capacity. 

Manufacturing Delay risk – Fineblanking vs Grinding: Initially, the manufacturing 

delay risk likelihood, displayed in Figure 21(c), at both the fineblanking and the 

grinding stations is high. As this risk starts impacting the production line, risk response 

activities take place. Manufacturing delays are affected by procurement time delay, 

OEE factors related risk and new product testing. Risk response activities are directed 

towards reducing risk likelihood of OEE factors related risk. This is what brings down 

the manufacturing delay risk likelihood as time progresses. Risk response intends to 

drive the risk likelihood to a minimum value. 

Manufacturing delay risk at fineblanking station is slightly higher when compared to 

that of grinding station. However, the impact of Grinding delays is much higher on the 

production line as it is the bottleneck operation. 

Fineblanking rate: Fineblanking station has a high production capacity. The actual 

throughput is quite low compared to its capacity as it depends on the demand. As shown 

in Figure 21(d), the effect of risk events at the fineblanking station is quite low on the 

production line because of the high production capacity. Initially risk events at the 

Fineblanking station occur frequently. The impact of these risk events is indicated in 

the form of delay in delivery performance indicator. Risk response activities take place 

actively causing a decline in risk occurrence. 

Grinding rate: Grinding station is the bottleneck operation and has a huge impact on 

the production line when subject to risk events. As shown in Figure 21(e), the initial 

impact of risks at the grinding station decreases the grinding rate drastically. The 

grinding rate is at its lowest on the 33rd day at 1284 parts. The demand for the product 
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is 1724 parts/day on an average and the low grinding rate leads to delay in delivery. As 

risk response activities take place, grinding rate is more stable. With the reduction in 

risk likelihood, risk impact also reduces. Towards the latter part of the simulation 

period, the grinding station is relatively stable with the lowest grinding rate on the 300th 

day at 1512 parts.  

Revenue: From the Figure 21(f), revenue made from sales is quite high, around $10,200 

per day initially. As the manufacturing delays start impacting delivery to the customer, 

a late delivery fee is imposed. This drives the revenue/day down. On 48th day, 

revenue/day is down to a low of   $4773. With risk response activities reducing the 

impact of manufacturing delay risk events on the production line, there is an 

improvement in delivery and this is reflected in the revenue graph as well. Small 

fluctuations are observed in revenue/day from there on. 
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(a) Delay in delivery (b) Demand vs Demand fulfilment rate 

 

 

  

 

(c) Manufacturing delay risk likelihood. (d) Fineblanking rate. 

 

 

 

 

(e) Grinding rate (f) Revenue 

Figure 21: Key performance indicators for scenario 1. 

Scenario 5:   

Delay in Delivery: As shown in Figure 22(a), a high risk likelihood at the bottleneck 

station has a huge impact on the production line. A huge delay in delivery of 5.48 days 

is experienced on 50th day. The risk response activities help in reducing the delay in 

delivery. The high risk at bottleneck station drives the risk down aggressively. 
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However, the grinding station capacity is not enough to compensate for the delay in 

delivery caused during the beginning of the simulation time period. Hence, even after 

risk likelihood is reduced, there is only a marginal decrease in delay in delivery. 

Demand vs Demand fulfilment rate: As seen in Figure 22(b), demand fulfilment rate 

is almost equal to the demand until risk events impact the production line. A severe 

drop to 1300 parts is seen in the demand fulfilment rate on the 82nd day. As risk 

response activities take place, demand fulfilment rate improves again. 

Manufacturing delay risk – fineblanking vs grinding: It can be seen in Figure 22(c) 

that the likelihood of manufacturing delay risk is high initially. Around the 40th day risk 

response activities take place and reduces the likelihood of risk events. 

Fineblanking rate: Fineblanking rate, as shown in Figure 22(d), is reduced to 1272 

parts on 5th day. Due to the high production capacity at fineblanking station, loss in 

production is covered on the following day. With risk response activities taking place, 

there is no further impact on the fineblanking rate. 

Grinding rate: Initially, manufacturing delay risk events have a huge impact on 

grinding rate as shown in Figure 22(e). On the 7th day production rate at Grinding 

station is the lowest at 1273 parts. With risk response activities taking place, the impact 

of risk events on grinding station becomes significantly lower. 

Revenue: Revenue graph, from Figure 22(f), shows a steep decline due to the increase 

in delay in delivery and decrease in demand fulfilment rate. A loss of $3,711 is observed 

on 50th day. Revenue is on the negative side for 4 days. With risk response activities, 

demand fulfilment rate is restored to the normal rate. However, delay in delivery, which 

is difficult to compensate because of low grinding capacity, lead to huge losses. In 

conclusion, a high risk at grinding station leads to huge losses to the company.  
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(a) Delay in delivery (b) Demand vs Demand fulfilment rate 

 

 

 

 

(c) Manufacturing delay risk likelihood (d) Fineblanking rate 

 

 

 

 

(e) Grinding rate. (f) Revenue 

Figure 22: Key performance indicators for scenario 5. 
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Scenario 10: 

 

 

 

 

(a) Delay in delivery (b) Demand vs demand fulfilment rate 

 

 

 

 

(c) Manufacturing delay risk (d) Fineblanking rate 

 

 

 

 

(e) Grinding rate (f) Revenue 

Figure 23: Key performance indicators for scenario 10. 

 

 

 

 

 

 



  

74 
 

Scenario 11: 

 

 

 

 
(a) Delay in Delivery (b) Demand vs Demand fulfilment rate. 

 

 

 

 

(c) Manufacturing delay risk (d) Fineblanking rate 

 

 

 

 

(e) Grinding rate (f) Revenue 

Figure 24: Key performance indicators for scenario 11. 
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Scenario 16: 

 

 

 

 

(a) Delay in delivery (b) Demand vs Demand Fulfilment rate. 

 

 

 

 

(c) Manufacturing delay risk (d) Fineblanking rate. 

 

 

 

 

(e) Grinding rate (f) Revenue 

Figure 25: Key performance indicators for scenario 16. 

The results obtained through the combination of BBN risk model and SD 

production line model, aided in decision-making. Some of the key aspects in the 

behaviour of the system, which humans tend to misjudge, were captured through a 

mathematically well-structured risk assessment model.  
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The results obtained reflect the performance of the production line with the 

existing capacity. Almost all the delay in delivery is caused due to the high demand for 

the product. With a marginal difference in demand and production capacity at the 

bottleneck station, delay in delivery is bound to occur when a risk event impacts the 

production line. Also, most of the production delay that occurred during a risk event, 

continued until the end of the simulation period because the impact caused by risk 

events was hard to compensate for with the existing production capacity.  

5.2.3    Effect of Overtime on Delay in Delivery  

On the other hand, industry personnel have several quick action plans to deal 

with problems in meeting customer’s demand. Order backlog is not allowed to continue 

for extended periods of time because that would hurt their profits and tarnish their 

reputation. Hence, to obtain further insight into the production line system behaviour, 

production line was customized as per requirement. Some of the quick action plans 

reviewed are: 

1. Overtime: Increasing capacity by working extra hours is one of the easiest and 

a low risk alternative to meet the demand. However, it has its own share of 

problems. Working overtime can sometimes lead to a reduced operator 

efficiency. Also, overtime costs are high considering operator and engineer 

costs, electricity etc.  

2. Hiring temporary workers: When the demand is high, production managers 

increase their workforce to match the demand. Temporary workers help boost 

the production capacity. Proper scheduling of jobs along with the extra 

workforce could help bridge the gap between demand and supply. However, the 

time required to train temporary workers might worsen the situation. Also, 



  

77 
 

finding skilled temporary workers is a tedious task and the paper work required 

makes it a less preferred quick response. 

3. Building high inventory: Inventory is a liability which could prove to be an 

asset to the company, provided, it is monitored and managed properly. Building 

high inventory would increase storage costs tremendously as the material that 

the product is made out of is mild steel, which is prone to corrosion. Also, there 

is a limit to which inventory can be increased. This option is the least preferred 

one as a lot of money is tied up in the form of inventory.  

4. Accommodating delayed jobs on other machines: Accommodating delayed 

jobs on other machines might prove to be a good temporary solution to the 

production capacity problem. However, it might not be possible to customize 

machines to run delayed jobs easily. Engineers might have to invest more time 

and money to design fixtures and optimize process parameters. Additionally, it 

might lead to a delay on other jobs. Hence, this option is certainly the last resort.    

Increasing capacity through overtime is chosen as the most feasible option. 

Testing the production line under the increased capacity condition was important 

because it was not possible for the company to indulge in risk management activities 

every time a risk event occurs. Sometimes, industry personnel prefer to compensate for 

the loss in production by working extra hours. Also, behaviour of the production line 

was assessed by varying the mean demand and is recorded in the appendix section. 

Understanding the capabilities of the production line under different demand patterns 

would help managers, engineers and schedulers prepare contingency plans.   

Labour and other operating costs per part calculated was based on the available 

data. 7.5 hours of extra time was considered per day, each shift working 3.75 hours 

extra. After an elaborate discussion, it was decided that excess capacity would be added 
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when delay in delivery exceeds 1.5 days. This information was fed into the simulation 

model and simulated for 400 days.  

Scenario 1: 

Delay in delivery: Delay in delivery starts on the 16th day and increases to 1.62 days 

on the 36th day. Extra capacity is added as a result of this delay by increasing working 

hours. Risk response activities occuring simultaneously help in keeping the delivery 

delay to a low till the end of simulation period.   

Revenue: On the 36th and 37th day, revenue/day drops down below -$7,000. It is on 

these days when excess capacity is added through overtime. However, the cumulative 

revenue generated at the end of the simulation period is $650,000 more. 

  

(a) Delay in delivery under overtime (b) Revenue under overtime 

Figure 26: Effect of overtime on scenario 1 
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Scenario 5: 

Cumulative revenue for 400 days is equal to $3.69 million, where as, the 

cumulative revenue is $829,542 without making use of extra capacity. 

 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime 

Figure 27: Effect of overtime on scenario 5. 

Scenario 10 

The cumulative revenue is $3.7 million when extra capacity is added through 

overtime. Cumulative revenue is at -$1.67 million dollars without making use of extra 

capacity. 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 28: Effect of overtime on scenario 10. 
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Scenario 11: 

The cumulative revenue is $3.719 million when extra capacity is added through 

overtime. Cumulative revenue is at -$1.4 million without making use of extra capacity 

through overtime. 

  
(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 29: Effect of overtime on scenario 11. 

Scenario 16: 

The cumulative revenue is $3.936 million when extra capacity is added through 

overtime. Cumulative revenue is at $1.735 million when extra capacity isn’t utilized. 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 30: Effect of overtime on scenario 16. 
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6.  Discussions and Conclusions 

The proposed methodology provides a versatile technique to assess the impact 

of risks affecting the production line. The BBN model captures the relationships 

between risk events through the node probability tables and calculates the posterior 

probabilities of risk events. Integrating this BBN model with SD production line model 

and simulating the model helps understand the impact of these risk events on the 

performance of the production line. KPIs are monitored to examine the behavior of the 

system under the influence of risk events. The dynamic interaction between risk events 

and the production line is captured by using feedback loops from SD production line 

model to the BBN risk model, which is triggered by the KPIs. This BBN-integrated SD 

modelling bridges the research gaps identified and helps users comprehensively 

understand the risks affecting a company.  

6.1 Research contributions 

Most of the techniques currently used for risk assessment fail to quantify risks 

and, simultaneously, assess the impact of risk events on the system. Techniques like 

BBN, fault trees, event trees and bow-ties focus mainly on the likelihood of risk events 

and the causal relationship between them. Alternative techniques such as risk matrix 

approach lack the sophistication required to quantify risks in a complex inter-connected 

system. Most of these existing techniques fail to capture the transient effect of risks on 

the production line over a period of time and how the system will change. Although 

simulation techniques can be used to model the transient behaviour of a production line, 

they alone cannot capture sudden changes/disruptions in the production line caused by 

the risk events.  
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This research presented a comprehensive risk assessment methodology to 

quantify risks affecting the production line and study the transient impact of these risks 

on the production line. Integrating BBN with SD simulation model provides the 

simulation technique with a complementary capability to capture the causal 

relationships between risks and to quantify them. This results in a versatile technique 

to assess production line under the influence of risk events. 

6.2 Industry Relevance 

Company-wide risk assessment is still in its nascent stages despite its 

importance being acknowledged by many practitioners and academicians. Risk 

management in industries is mostly confined to occupational safety and disaster 

management. Few industries that recognize the impact of risks on their global supply 

chain invest their time and money on supply chain risk management. However, risks 

impacting the internal operations/ production line are often neglected. This is largely 

due to the lack of knowledge on the operational risks and the effect of these risks on 

the internal operations. Engineers and managers at the middle management level are 

aware of some of the frequently occurring risk events but do not understand the full 

extent to which these risks can affect the internal operations/production line.  

Research focussed on operational risks at the production line level, helped gain 

some insights that would benefit industries. The methodology allows industry personnel 

to amalgamate real-time data and expert opinion/perception to assess the performance 

of the production line. It allows them to contemplate the future by simulating the model 

and by evaluating multiple key metrics. Risk assessment is followed by decision-

making which is one of the key elements where the industry personnel desire tools to 

support them. Analyzing several scenarios by adding, removing and/or changing system 

variables helps individuals to visualize their decisions and their consequences. Using 
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such a tool improves the production line utilization, resource allocation, labour 

assignments, profitability and product delivery, ultimately leading to customer 

satisfaction.  

Production and management personnel are aware of the importance of risk 

management for operations reliability. They, generally, have an idea about some of the 

risks impacting internal operations, however, the full extent of the impact of risks on 

the production line is not known to them. Insights gained from this research suggest 

that it is the interaction between production line and the risks that determines the overall 

performance of the production line. A high risk might not necessarily result in a huge 

impact on KPIs and vice-versa. The system/production line has an intrinsic capability 

to deal with the impact of risk events up to a certain extent. Hence, from a broader 

perspective, it would be highly beneficial for industry personnel to understand this 

interaction between risk events and production line to prioritize risks for mitigation 

strategies. 

6.3      Challenges 

During the initial phase of research, one of the biggest challenges was to find 

the simulation platform that would enable BBN risk and SD production line modelling. 

Vensim was chosen as it enabled to accomplish the task and was an open-source 

software. Vensim is capable of modelling both discrete and continuous variables. 

Discrete variables in the production line were modelled using discrete functions like 

delays and integer constraints. Some other constraints had to be added to make it 

relevant for production line modelling. For example, WIP at different stations, which 

were modelled as stocks, could assume either positive or negative real number. To 

prevent this error, non-negative constraints were added to the WIP quantities and 



  

84 
 

functions were introduced to make production rate to be zero when the WIP quantity 

was zero.  

Another concern was in the estimation of severity of the child risk event on the 

production line variable with which it directly interacts. Since the scope of risk 

assessment was at the production line level, proportionality between likelihood and 

severity of risk events was assumed. Additionally, a function was required to capture 

the interaction between production line variables, risk likelihood and risk severity. 

PULSETRAIN, a Vensim in-built function, was eventually chosen to model the impact 

of risk events on the production line variable. 

6.4       Limitations 

Although the BBN-integrated SD model is a versatile technique for risk 

assessment, it has some limitations that are important to note. One of the most tedious 

and time consuming task is to define system boundaries and variables to be modelled, 

especially for first time users. Additionally, users need to have a decent understanding 

of the mathematics behind BBN as they would need to manually construct the BBN 

risk model within Vensim. Also, users must be capable of debugging the model by 

adding/removing constraints or making changes to the functions in order to incorporate 

the complexity within a system. 

6.5 Future work 

Future work would be focussed on overcoming some of the limitations in the 

model. One of the major tasks is to facilitate the process of modelling. The interface 

would be made more user-friendly by developing the model within excel and 

transferring data to Vensim. Excel would allow for a much easier and familiar approach 

where each cell in the excel spreadsheet can be represented as a variable and any 
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changes to the model (such as adding variables, changing prior probabilities etc.) can 

be easily performed in the excel file. These changes would then be reflected in the SD 

model when data is transferred. Similarly, results of the production line KPIs could be 

exported to excel for further data analysis. Excel VBA could be an effective way of 

creating a user-friendly interface that would encourage more users to make utilize the 

risk assessment model.  

Additionally, back propagation capability would be introduced to the model. 

Back propagation is one of the key features of BBN, which helps calculate the 

likelihood of parent nodes based on the likelihood of child node, thus identifying the 

root causes. This property would provide industry personnel to identify root causes of 

risk events and thus manage the production line better. 
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Appendix: Effect of Overtime and Varying Demand on Scenarios 

Scenario 1 

(1) Under high demand of 1825 parts/day (mean) 

Delay in Delivery: Delivery delays start on the 10th day and exceeds 1.5 days in delay 

for a total of  43 times. Extra capacity is added as a result of this delay by increasing 

working hours. Risk response activities occuring simultaneously help in reducing 

delivery delays. However, due to the high demand, delivery delays are bound to occur. 

Revenue: Overtime is triggered 43 times throughout the simulation period. Overtime 

cost is about $14,000. This causes huge losses when overtime is triggered. The 

cumulative revenue using extra capacity is  $3.18 M, compared to -$31M loss without 

the extra capacity. 

  

(a) Delay in delivery under overtime (b) Revenue under overtime. 

Figure 31: Effect of overtime on scenario 1 when demand is high. 

(2) Low demand = 1620 parts/day 

Delay in Delivery: Delivery delays start on the 38th day.  Overtime is triggered on 59th 

day. Extra capacity and risk management activities occuring simultaneously reduce 

delivery delays.   

Revenue: Overtime is triggered on 59th day. Cumulative revenue is $11,000 less.  

Hence, it can be concluded that during a low demand it is better to engage in risk 

management rather than working overtime. 
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(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 32: Effect of overtime on scenario 1 when demand is low. 

 

Scenario 5 

(1) Under high demand of 1825 parts/day (mean). 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 33: Effect of overtime on scenario 5 under high demand. 

(2) Under low demand of 1620 parts/day (mean). 

The cumulative revenue is $25,000 higher than the case without using extra capacity.  

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 34: Effect of overtime on scenario 5 when demand is low. 
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Scenario 16 

(1) Under high demand of 1825 parts/day (mean). 

The cumulative revenue is $3.218 million when extra capacity is added through 

overtime. 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 35: Effect of overtime on scenario 16 when demand is high. 

 

(2) Low demand = 1620 parts/day 

The cumulative revenue is $3.218 million when extra capacity is added through 

overtime. 

  

(a) Delay in delivery under overtime. (a) Revenue under overtime. 

Figure 36: Effect of overtime on scenario 16 when demand is low. 
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Scenario 11 

(1) Under high demand of 1825 parts/day (mean). 

The cumulative revenue is $3.17 million when extra capacity is added through 

overtime. 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 37: Effect of overtime on scenario 11 when demand is high. 

 

(2) Under low demand of 1620 parts/day (mean). 

The cumulative revenue is $3.73 million when extra capacity is added through 

overtime. 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 38: Effect of overtime on scenario 11 when demand is low. 
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Scenario 10 

(1) Under high demand of 1825 parts/day (mean). 

Cumulative revenue is $3.18 million in this case. 

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 39: Effect of overtime on scenario 10 when demand is high. 

(2) Under a low demand of 1620 parts/day (mean). 

The cumulative revenue is $3.75 million when extra capacity is added through 

overtime.  

  

(a) Delay in delivery under overtime. (b) Revenue under overtime. 

Figure 40: Effect of overtime on scenario 10 when demand is low. 
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